WO2014139614A1 - Procédé permettant d'estimer des profils de répartition de la vitesse du vent pour des éoliennes - Google Patents

Procédé permettant d'estimer des profils de répartition de la vitesse du vent pour des éoliennes Download PDF

Info

Publication number
WO2014139614A1
WO2014139614A1 PCT/EP2014/000145 EP2014000145W WO2014139614A1 WO 2014139614 A1 WO2014139614 A1 WO 2014139614A1 EP 2014000145 W EP2014000145 W EP 2014000145W WO 2014139614 A1 WO2014139614 A1 WO 2014139614A1
Authority
WO
WIPO (PCT)
Prior art keywords
wind
rotor
velocity distribution
distribution profile
determined
Prior art date
Application number
PCT/EP2014/000145
Other languages
German (de)
English (en)
Inventor
Thomas Weickert
Thomas Reisinger
Christoph Byner
Kim LISTMANN
Original Assignee
Abb Ag
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Abb Ag filed Critical Abb Ag
Publication of WO2014139614A1 publication Critical patent/WO2014139614A1/fr

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D17/00Monitoring or testing of wind motors, e.g. diagnostics
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2260/00Function
    • F05B2260/82Forecasts
    • F05B2260/821Parameter estimation or prediction
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2270/00Control
    • F05B2270/30Control parameters, e.g. input parameters
    • F05B2270/32Wind speeds
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction

Definitions

  • the invention relates to a method for estimating t - the wind speed distribution profile in the operation of wind turbines, which have a generator and a plurality rotatable about a rotor hub rotor blades with a respective actuator for their individual pitch adjustment, further comprising a control system for driving the actuators is provided, comprising the Step of detecting at least one momentary rotor blade-independent wind-dependent measured variable, in particular the wind speed at hub height, the rotational speed of the rotor or the electric power output by the generator.
  • a nacelle with an internally arranged generator and externally arranged rotatable rotor is arranged on a tower, wherein the rotor rotates under the influence of an acting wind and thus drives the generator.
  • a rotor typically has three rotor blades arranged symmetrically about the hub, each having a length of, for example, in the range of 30 m - 50 m with a weight of 6t to 0t.
  • the tower height can be in the range of 80m.
  • the wind acting on the rotor is usually not homogeneously distributed due to the large area of the area swept by the rotor blades, but rather a corresponding wind speed distribution profile must be assumed. This typically has a higher wind speed in the upper area of the rotor-swept area than in the lower area, which optionally subject to appropriate environmental shadowing.
  • the rotor blades During operation of the wind turbine, the rotor blades thus cover areas of the wind speed distribution profile with different wind speeds. This leads due to the cyclically changing acting moments to an additional mechanical stress on the wind turbine.
  • the rotor blades are usually individually adjustable by a respective positioning axis, which in each case runs approximately perpendicular to the axis of rotation of the rotor, this positioning process incidentally being also referred to as "pitching.”
  • the respective angle of attack can be determined (Pitch angle) of a respective rotor blade to the wind for each rotational angle of the rotor to adjust so that the forces acting on all rotor blades of the rotor torque for each angle of rotation of the rotor are approximately equal.
  • a control system is provided with measurement data of the wind power plant, by means of which control takes place. This is, for example, the wind speed at the hub height of the wind power plant, which is usually detected as an average over a period of, for example, 10 minutes. Knowing a wind velocity distribution profile as the input to the pitch control system allows a more accurate control action. With regard to the detection of a wind speed distribution profile, if a detection is provided at all, a LIDAR (light detection and ranging) based measuring system is usually used. The mechanical stress of the leaves can also be detected by their bending by means of fiber optic measuring systems.
  • LIDAR light detection and ranging
  • the basic idea of the invention is to determine the wind speed distribution profile indirectly on the basis of those measured values which are present in any case during the operation of a wind turbine, so that additional hardware is largely avoided.
  • the use of at least one wind-blade-independent wind-dependent measured variable is initially provided, which ultimately corresponds to the mean value of the wind speed of the wind speed distribution profile or at least indirectly represents it.
  • a rotor blade-independent wind-dependent measured variable can be the wind speed at hub height.
  • the electrical power output of the wind turbine, the rotational speed of the rotor or the deflection of the tower are also regarded as a rotor blade-independent wind-dependent parameter.
  • the detection and use of a rotor blade-specific wind-dependent measured variable as a function of the rotor rotation angle for determining the wind speed distribution profile is provided.
  • the measured variable has periodic fluctuations, which depend on the instantaneous rotational angle of the rotor and repeat approximately cyclically after one rotor revolution.
  • the rotor blade-specific wind-dependent measured variable represents Load fluctuations of the wind acting on the rotor blade, wherein typically sets in the lower part of the wind speed distribution profile, a lower wind speed than in the upper region.
  • a wind velocity distribution profile can be assumed to consist of a plurality of wedge-like area regions arranged around the rotor hub in a star-like manner, wherein an individual wind speed is assigned to each areal area. During a rotary movement of the rotor, each rotor blade sweeps each of these areas exactly once per revolution. According to an embodiment, based on the mean value of the wind speed over the wind speed distribution profile representative rotor blade-independent wind variable deviations are added or subtracted according to the invention depending on the rotation angle of the rotor for each area range deviations. In this way, a wind speed distribution profile is defined by the areal areas. When determining the wind speed distribution profile, respective wind speeds are calculated and stored sequentially for the areal areas, so that after a complete rotor revolution, all areal areas have a wind speed value and a complete wind speed distribution profile is available.
  • the rotor blade-specific wind-dependent measured variable correlates with the instantaneous torque of one of the respective actuators for pitch adjustment.
  • the two attack surfaces for the wind which result on both sides of the pitch axis of a rotor blade, are not identical. Since the wind impinging on the two surfaces generates in each case an opposite moment acting about the pitch axis of the rotor blade, this results in a wind dependence of the torque which must be overcome for starting a rotor blade.
  • the torque of the respective actuator can therefore in particular preferably be used as a rotor blade-specific wind-dependent measurement.
  • the actuator for the pitch adjustment is usually an electric motor.
  • the respective torque of an actuator is determined indirectly, in particular with reference to the current, voltage and / or active power curve of the actuator.
  • the torque acting on a pitch movement has two components, namely a component based on the inertia of the rotor blade and a further component which, as explained above, is wind-dependent. However, only the wind-dependent fraction is important as input for the calculation of a wind velocity distribution profile. According to a further embodiment of the method according to the invention, therefore, a torque curve of a comparable correction movement of a rotor blade unloaded from the wind is subtracted from the measured torque curve, so that the differential torque curve or the instantaneous
  • Wind speed distribution profile is conditional, wherein the determined instantaneous difference torque is used as input for the determination of the wind velocity distribution profile.
  • the method is carried out simultaneously for a plurality of wind turbine rotor blades.
  • the determination of a wind speed distribution profile is based on a look-up table in which respective wind speed distribution profiles are stored for a multiplicity of operating conditions of the wind power plant and from which the respectively most suitable or closest one is selected on the basis of the measured input variables.
  • the operating conditions are specified in this respect by the rotor-independent and rotor-dependent measured variables.
  • a look-up table can be understood as a database, which establishes a relationship between the (input) measured variables and a wind speed profile.
  • the low computing time is advantageous, since a calculation in the true sense does not take place, but only that wind speed profile with the most similar input parameters is selected.
  • a look-up table also allows the specification of a wind speed distribution profile, which is not represented by wedge-like surfaces, but where the surfaces are arranged, for example grid-like. In such a case, it proves useful if the look-up table temporal progressions of the input variables are provided and also taken into account.
  • a look-up table does not include wind velocity distribution profiles in the true sense, but only intermediate results, which are still further to process.
  • wind velocity distribution profiles of the look-up table were previously determined by corresponding simulations, for example by means of finite element calculations of a model, and then stored in the look-up table. Simulations enable a simple representation of - even extreme - operating conditions. In addition, all possible combinations of influencing variables can be determined systematically in any quantization and the look-up table can thus be systematically filled.
  • wind speed distribution profiles of the look-up table were determined on the basis of corresponding measurements, for example using a test system equipped with corresponding measuring sensors or a real model of a comparable wind turbine.
  • a wind velocity distribution profile may be determined directly on the basis of an analytical algorithm. This can be done either directly during the execution of the method steps according to the invention or also in the determination of the wind velocity distribution profiles for a look-up table.
  • a determined wind speed distribution profile may optionally be used by the control system as an input to determine control parameters for driving the actuators.
  • improved input parameters are provided for a control.
  • a redundancy is advantageously provided, so that a malfunction in the determination of a wind speed distribution profile is detected early.
  • the determination of the wind velocity distribution profile by the control system itself is essentially to be regarded as a computing device, which can be used at sufficiently high computing power for the automatic and continuous determination of a wind velocity distribution profile.
  • the corresponding measured values of the relevant measured variables available in the wind turbine are generally also provided to the control system, so that a wind speed distribution profile can be determined in this way with particularly little additional hardware expenditure.
  • Fig. 3 shows the exemplary pitch adjustment of a rotor blade
  • FIG. 4 shows an exemplary course of a pitch angle difference.
  • FIG. 1 shows an exemplary first wind turbine 10 in a frontal view.
  • a machine house On a tower 22, a machine house is arranged, with which a rotatable rotor hub 20 is connected.
  • Star-shaped around the rotor hub 20, three rotor blades 14, 16, 18 are arranged, which together form the rotor.
  • the rotor blades 14, 16, 18 sweep in a rotary motion 24 a circular surface 12, which also forms the base for a wind velocity distribution profile.
  • FIG. 2 shows an exemplary second wind turbine 20 in a side view.
  • a nacelle 42 is arranged, at one end of a rotor with Rotorblättem 32, 34 is arranged, which is rotatable about a rotation axis 44.
  • a deflection of the tower 46 is schematically indicated. Such a deflection results from the sum of the on the Rotor acting wind forces and is thus - at least indirectly - as a rotor blade independent measure used to determine the wind speed. The determination of a deflection takes place for example by means of an optical distance measurement between the upper and lower tower part.
  • the reference numeral 50 a wind sensor is indicated on the roof of the machine house 42, which detects the wind speed at hub height.
  • FIG. 3 shows in a representation 60 the exemplary pitch adjustment of a rotor blade 64, 68, which is to be regarded as part of a rotor which is rotatable about a rotation axis 74.
  • Perpendicular to the axis of rotation 74 extends an axis of rotation 62 about which the rotor blade 64, 68 is rotatable or pitch or pitchbar.
  • the rotor blade is shown in a first orientation 66 and in a second orientation 70 rotated therewith, wherein a rotational or pitch angle difference 72 is indicated between the two orientations.
  • An actuator not shown is intended to effect rotation of the rotor blade.
  • FIG. 4 shows a representation 80 of an exemplary curve 82 of a pitch angle difference 84 over the rotor rotation angle ⁇ 86 for a complete rotation of a rotor blade through 360 ° about the axis of rotation of a rotor.
  • the angular difference is defined according to conventional conventions to zero.

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Wind Motors (AREA)

Abstract

L'invention concerne des procédés permettant d'estimer le profil de répartition de la vitesse du vent (36, 38, 40) dans le domaine de l'exploitation d'éoliennes (10, 30) pourvues d'un générateur et de plusieurs pales (14, 16, 18, 32, 34, 64, 68) lesquelles peuvent tourner (24) autour d'un moyeu de rotor (20) et lesquelles comporte chacune un mécanisme de réglage permettant de régler individuellement leur pas (64⇔ 68), un système de commande permettant en outre de commander les mécanismes de réglage. Ledit procédé comprend les étapes consistant à : • mesurer au moins une grandeur réelle qui dépend du vent tout en étant indépendante de la pale, s'agissant notamment de la vitesse du vent au niveau du moyeu, de la vitesse de rotation du rotor ou de la puissance électrique produite par le générateur, • enregistrer l'angle de rotation réel (26) du rotor, • mesurer au moins une grandeur réelle qui dépend du vent tout en étant spécifique à la pale, • déterminer le profil réel de répartition de la vitesse du vent (36, 38, 40) à partir de l'au moins une grandeur de mesure qui dépend du vent tout en étant indépendante de la pale, de la grandeur de mesure qui dépend du vent tout en étant spécifique à la pale ainsi qu'à partir de l'angle de rotation (26) du rotor, • fournir au système de commande le profil de répartition de la vitesse du vent (36, 38, 40) ainsi déterminé, • lesdites étapes étant réitérées continuellement pour ainsi obtenir la variation dans le temps des grandeurs prises en considération.
PCT/EP2014/000145 2013-03-15 2014-01-18 Procédé permettant d'estimer des profils de répartition de la vitesse du vent pour des éoliennes WO2014139614A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102013004446.4 2013-03-15
DE102013004446.4A DE102013004446A1 (de) 2013-03-15 2013-03-15 Verfahren zur Abschätzung von Windgeschwindigkeitsverteilungsprofilen bei Windkraftanlagen

Publications (1)

Publication Number Publication Date
WO2014139614A1 true WO2014139614A1 (fr) 2014-09-18

Family

ID=50002675

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2014/000145 WO2014139614A1 (fr) 2013-03-15 2014-01-18 Procédé permettant d'estimer des profils de répartition de la vitesse du vent pour des éoliennes

Country Status (2)

Country Link
DE (1) DE102013004446A1 (fr)
WO (1) WO2014139614A1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10047722B2 (en) 2016-07-28 2018-08-14 General Electric Company System and method for controlling a wind turbine

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107420269B (zh) * 2016-05-23 2019-12-13 远景能源(江苏)有限公司 识别转子平面上的风力分布模式的方法以及实现该方法的风力涡轮机

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1666723A1 (fr) * 2003-09-10 2006-06-07 Mitsubishi Heavy Industries, Ltd. Dispositif de controle de l'angle d'inclinaison d'une pale
WO2009153614A2 (fr) * 2008-06-20 2009-12-23 Clipper Windpower Technology, Inc. Moyens et procédé de commande d'éolienne pour acquisition de puissance maximale
WO2012044161A2 (fr) * 2010-09-27 2012-04-05 Stichting Energieonderzoek Centrum Nederland Procédé et système pour la détection de rafales de vent dans une éolienne
US20120211986A1 (en) * 2009-10-28 2012-08-23 Ssb Wind Systems Gmbh & Co. Kg Wind sensor system using blade signals
US20130015662A1 (en) * 2010-04-01 2013-01-17 Ssb Wind Systems Gmbh & Co. Kg Control device for a wind turbine

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3106624A1 (de) * 1981-02-23 1982-09-16 Dietrich, Reinhard, 8037 Olching Regelungsverfahren fuer windenergieanlagen mit direkt aus der umstroemung des aerodynamisch wirksamen und auftrieberzeugenden profiles gewonnenen eingangssignalen
JP3655378B2 (ja) * 1995-11-28 2005-06-02 ファナック株式会社 サーボモータの外乱負荷推定方法
DE19731918B4 (de) * 1997-07-25 2005-12-22 Wobben, Aloys, Dipl.-Ing. Windenergieanlage
DE19734912A1 (de) * 1997-08-12 1999-02-18 Hartmann & Braun Gmbh & Co Kg Verfahren zur Drehmomentabschaltung für einen Stellantrieb
GB2455296A (en) * 2007-12-03 2009-06-10 Kelvin Inst Ltd Compensation system for a rotor

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1666723A1 (fr) * 2003-09-10 2006-06-07 Mitsubishi Heavy Industries, Ltd. Dispositif de controle de l'angle d'inclinaison d'une pale
WO2009153614A2 (fr) * 2008-06-20 2009-12-23 Clipper Windpower Technology, Inc. Moyens et procédé de commande d'éolienne pour acquisition de puissance maximale
US20120211986A1 (en) * 2009-10-28 2012-08-23 Ssb Wind Systems Gmbh & Co. Kg Wind sensor system using blade signals
US20130015662A1 (en) * 2010-04-01 2013-01-17 Ssb Wind Systems Gmbh & Co. Kg Control device for a wind turbine
WO2012044161A2 (fr) * 2010-09-27 2012-04-05 Stichting Energieonderzoek Centrum Nederland Procédé et système pour la détection de rafales de vent dans une éolienne

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10047722B2 (en) 2016-07-28 2018-08-14 General Electric Company System and method for controlling a wind turbine

Also Published As

Publication number Publication date
DE102013004446A1 (de) 2014-09-18

Similar Documents

Publication Publication Date Title
EP1817496B1 (fr) Procede pour optimaliser le fonctionnement d'installations d'energie eolienne
DE102008020154B4 (de) Verfahren zum Betreiben einer Windenergieanlage
EP1792075B1 (fr) Procede de regulation d'une installation d'energie eolienne, et installation d'energie eolienne correspondante
WO2018162706A1 (fr) Procédé servant à définir une puissance disponible d'un parc éolien et parc éolien associé
WO2011018284A1 (fr) Procédé de commande d’une éolienne
EP2948677B1 (fr) Procédé de mesure de l'angle d'incidence d'une pale de rotor
WO2011120729A2 (fr) Dispositif de commande pour éolienne
EP2547905B1 (fr) Procede pour faire fonctionner une eolienne
DE102011083178A1 (de) Verfahren zum Betrieb einer Windenergieanlage
EP2961981B1 (fr) Éoliennes à mise à disposition améliorée de la réserve de puissance
EP2366895B1 (fr) Procédé de détermination d'un angle d'azimut pendant une activité de maintenance d'éolienne
EP3775536A1 (fr) Éolienne, parc éolien et procédé de réglage d'une éolienne et d'un parc éolien
EP3559446B1 (fr) Procédé permettant de commander une éolienne
WO2014139614A1 (fr) Procédé permettant d'estimer des profils de répartition de la vitesse du vent pour des éoliennes
WO2012007111A2 (fr) Procédé et dispositif pour produire un signal de correction d'angle d'attaque pour une pale de rotor prédéterminée d'une éolienne
DE102019108244A1 (de) Verfahren zum Ermitteln einer Leistungskurve einer Windenergieanlage
EP3124787B1 (fr) Commande et procede de commande d'eolienne
DE102017131241A1 (de) Überwachungsverfahren für eine Windkraftanlage, zugehörige Überwachungsvorrichtung sowie Windkraftanlage mit Überwachungsvorrichtung
DE102013204492A1 (de) Verfahren und System zur Überwachung einer Einzelblattverstellung einer Windenergieanlage
DE102019119774A1 (de) Verfahren zur Steuerung eines Windparks, Steuerungsmodul für einen Windpark und Windpark
EP4296507A1 (fr) Procédé de paramétrage d'un ensemble capteur composé d'une pluralité de capteurs de charge d'une pale de rotor d'une éolienne
EP4321751A1 (fr) Procédé de détermination d'un défaut d'orientation d'une pale de rotor d'une éolienne
DE102018007997A1 (de) Verfahren und System zum Betreiben einer Windenergieanlage
WO2020109484A1 (fr) Procédé pour faire fonctionner une éolienne, éolienne et produit programme d'ordinateur
WO2020069975A1 (fr) Procédé et système pour faire fonctionner une installation d'énergie éolienne

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14701287

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14701287

Country of ref document: EP

Kind code of ref document: A1