WO2014139236A1 - 三维流速矢量能量与质量测量仪 - Google Patents

三维流速矢量能量与质量测量仪 Download PDF

Info

Publication number
WO2014139236A1
WO2014139236A1 PCT/CN2013/077911 CN2013077911W WO2014139236A1 WO 2014139236 A1 WO2014139236 A1 WO 2014139236A1 CN 2013077911 W CN2013077911 W CN 2013077911W WO 2014139236 A1 WO2014139236 A1 WO 2014139236A1
Authority
WO
WIPO (PCT)
Prior art keywords
sensor
sonar
mass
flow
energy
Prior art date
Application number
PCT/CN2013/077911
Other languages
English (en)
French (fr)
Inventor
杜国平
杜家佳
宋晓峰
杜广林
Original Assignee
南京帝坝工程科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 南京帝坝工程科技有限公司 filed Critical 南京帝坝工程科技有限公司
Priority to US14/403,031 priority Critical patent/US9568489B2/en
Publication of WO2014139236A1 publication Critical patent/WO2014139236A1/zh

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P5/00Measuring speed of fluids, e.g. of air stream; Measuring speed of bodies relative to fluids, e.g. of ship, of aircraft
    • G01P5/24Measuring speed of fluids, e.g. of air stream; Measuring speed of bodies relative to fluids, e.g. of ship, of aircraft by measuring the direct influence of the streaming fluid on the properties of a detecting acoustical wave
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02DFOUNDATIONS; EXCAVATIONS; EMBANKMENTS; UNDERGROUND OR UNDERWATER STRUCTURES
    • E02D1/00Investigation of foundation soil in situ
    • E02D1/02Investigation of foundation soil in situ before construction work
    • E02D1/027Investigation of foundation soil in situ before construction work by investigating properties relating to fluids in the soil, e.g. pore-water pressure, permeability
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/66Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by measuring frequency, phase shift or propagation time of electromagnetic or other waves, e.g. using ultrasonic flowmeters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/66Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by measuring frequency, phase shift or propagation time of electromagnetic or other waves, e.g. using ultrasonic flowmeters
    • G01F1/662Constructional details
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/66Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by measuring frequency, phase shift or propagation time of electromagnetic or other waves, e.g. using ultrasonic flowmeters
    • G01F1/663Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by measuring frequency, phase shift or propagation time of electromagnetic or other waves, e.g. using ultrasonic flowmeters by measuring Doppler frequency shift
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K7/00Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements
    • G01K7/02Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements using thermoelectric elements, e.g. thermocouples
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K7/00Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements
    • G01K7/16Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements using resistive elements
    • G01K7/22Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements using resistive elements the element being a non-linear resistance, e.g. thermistor
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K7/00Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements
    • G01K7/16Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements using resistive elements
    • G01K7/22Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements using resistive elements the element being a non-linear resistance, e.g. thermistor
    • G01K7/24Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements using resistive elements the element being a non-linear resistance, e.g. thermistor in a specially-adapted circuit, e.g. bridge circuit
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M3/00Investigating fluid-tightness of structures
    • G01M3/02Investigating fluid-tightness of structures by using fluid or vacuum
    • G01M3/04Investigating fluid-tightness of structures by using fluid or vacuum by detecting the presence of fluid at the leakage point
    • G01M3/24Investigating fluid-tightness of structures by using fluid or vacuum by detecting the presence of fluid at the leakage point using infrasonic, sonic, or ultrasonic vibrations
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M3/00Investigating fluid-tightness of structures
    • G01M3/02Investigating fluid-tightness of structures by using fluid or vacuum
    • G01M3/26Investigating fluid-tightness of structures by using fluid or vacuum by measuring rate of loss or gain of fluid, e.g. by pressure-responsive devices, by flow detectors
    • G01M3/32Investigating fluid-tightness of structures by using fluid or vacuum by measuring rate of loss or gain of fluid, e.g. by pressure-responsive devices, by flow detectors for containers, e.g. radiators
    • G01M3/3236Investigating fluid-tightness of structures by using fluid or vacuum by measuring rate of loss or gain of fluid, e.g. by pressure-responsive devices, by flow detectors for containers, e.g. radiators by monitoring the interior space of the containers
    • G01M3/3254Investigating fluid-tightness of structures by using fluid or vacuum by measuring rate of loss or gain of fluid, e.g. by pressure-responsive devices, by flow detectors for containers, e.g. radiators by monitoring the interior space of the containers using a flow detector
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P13/00Indicating or recording presence, absence, or direction, of movement
    • G01P13/02Indicating direction only, e.g. by weather vane
    • G01P13/04Indicating positive or negative direction of a linear movement or clockwise or anti-clockwise direction of a rotational movement
    • G01P13/045Indicating positive or negative direction of a linear movement or clockwise or anti-clockwise direction of a rotational movement with speed indication
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P5/00Measuring speed of fluids, e.g. of air stream; Measuring speed of bodies relative to fluids, e.g. of ship, of aircraft
    • G01P5/14Measuring speed of fluids, e.g. of air stream; Measuring speed of bodies relative to fluids, e.g. of ship, of aircraft by measuring differences of pressure in the fluid
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P5/00Measuring speed of fluids, e.g. of air stream; Measuring speed of bodies relative to fluids, e.g. of ship, of aircraft
    • G01P5/24Measuring speed of fluids, e.g. of air stream; Measuring speed of bodies relative to fluids, e.g. of ship, of aircraft by measuring the direct influence of the streaming fluid on the properties of a detecting acoustical wave
    • G01P5/241Measuring speed of fluids, e.g. of air stream; Measuring speed of bodies relative to fluids, e.g. of ship, of aircraft by measuring the direct influence of the streaming fluid on the properties of a detecting acoustical wave by using reflection of acoustical waves, i.e. Doppler-effect

Definitions

  • the invention relates to a wood engineering detecting device, in particular to an energy setting and quality detecting device for groundwater flow velocity point movement, in particular to: a ⁇ dimensional velocity vector energy and mass «measuring instrument.
  • thermoluminescence and ionization chamber isotope tracer 3 ⁇ 4 have met the requirements for measuring the flow rate of groundwater flow.
  • thermoluminescence and ionization chamber isotope tracer 3 ⁇ 4 have met the requirements for measuring the flow rate of groundwater flow.
  • the traditional pumping test is a passive method to study the permeability characteristics of the water-blocking medium, that is, the constitutional degree of the geological structure system.
  • the active "measurement method of energy and mass turbulence" mainly reveals the migration of groundwater mass flow points and the distribution of their arrogance and quality in time and space.
  • the sonar detector array can finely measure the size and distribution of the wave in the fluid, according to the time S distribution of the sonar detector array measurement data, that is, the velocity of the velocity point motion and the direction of the vector.
  • Conductance, temperature and pressure, etc. can track and monitor the velocity of the flow point in real time, driven by energy.
  • the spatial distribution of the mineralization degree, salt raft, water bulk density, temperature, etc. of the water flow entity has the same in situ ⁇ The measured flow rate vector of groundwater and the incremental change of chemical substances in the water body driven by the flow rate can accurately solve a series of civil engineering leaks from the monitoring of energy ft and mass change. Solve the key technical problems. Before the underground engineering has not had any devastating hidden dangers, predict and forecast it to prevent it from happening.
  • the flaw of the invention is that the existing groundwater seepage measurement can not measure and timely reflect the change of the microscopic performance of the water-water, and the safety hazard in the seepage environment change cannot be found in time, and a vector particle can be designed according to the groundwater flow velocity.
  • the kinetic energy tracks the change in the mass of the geotechnical material, thereby, resulting in a corresponding three-dimensional flow vector energy and mass oximeter - the technical solution of the invention 3 ⁇ 4:
  • a three-dimensional flow vector energy and mass measuring instrument characterized in that it comprises:
  • each end of the elastic skin capsule 1 is mounted with an i-type plug 2, and the elastic skin capsule and the rigid plug 2 form a cylindrical sealing cavity, wherein the upper end of the rigid plug Providing a cable connecting wire inlet and outlet hole, the rigid sealing plug at the lower end is provided with a liquid filling hole for injecting liquid into the cylindrical sealing cavity, and a sealing plug is mounted on the liquid injection hole;
  • a flow rate vector energy measuring device 12 which is mounted in the aforementioned cylindrical sealing cavity, and electrically connected to a computer 8 with a GPS locator 9 via a cable connection, by feeding the measured water flow sonar into the meter The flow direction and velocity of groundwater are obtained in the T machine to determine the vector and energy of groundwater flow.
  • a leak point mass deposition device 14 which is mounted on the outer surface of either or both of the two rigid plugs 2, and is electrically connected to the aforementioned computer 8 via a connecting cable; Measure the change of conductivity and temperature in groundwater to determine whether there is any loss of water-blocking medium in the rock mass and make timely judgment on the safety of the leak point.
  • the flow rate vector energy measuring device 12 includes:
  • An upper sonar sensor 3 and a lower sonar sensor array 4 the -sonar sensor array 4 is used to determine the direction of the sound, and the first one of the upper sonar sensor 3 and the lower sonar sensor array 4 receives the sound source.
  • the sonar sensor together ffl determines the time difference of the sound source reaching the measuring instrument;
  • An appearance to the positioner 5, the heading sensor / 3 ⁇ 4 is based on a sonar sensor in the lower sonar sensor array 4 that first senses the source signal, and other sonar sensors in the same array in the surroundings to measure the intensity Calculating, obtaining the direction of motion of the water flow vector relative to the measuring instrument, superimposing the direction of the water flow to the geographic north pole measured by the magnetic heading, and obtaining the geographical direction of the movement of the water flow: thereby determining the next point Flow rate vector measurement bit S;
  • the pressure sensor 6 is installed in the cylindrical sealing cavity to determine the depth of the water level of the measuring instrument. In order to facilitate the explosion: the determination of the position of the instrument;
  • An electronic signal processing system 7 for receiving the raw signal measured by the upper sonar sensor 3, the lower sonar sensor array heading positioner 5, the pressure sensor 6, the conductivity electrode sensor 10, and the temperature sensor 1
  • the digital signal is sent to the ground computer 8 for processing by the cable, so that the heading sensor ⁇ is a compass, a magnetic sensor, an ffi instrument or an electronic camel
  • the leakage point mass measuring device 14 includes:
  • the conductivity electrode sensor is located on the external rain of the rigid plug 2, can contact the water body of the amount of water, and measure the conductivity of the water body and the salt to the computer 8 ;
  • Temperature sensor 1 1 the temperature sensor is also located on the outer surface of the rigid sealing plug 2, can be in contact with the measured water body, and then directly measure the temperature value in the water body into the computer 8, the computer 8 The measured change in electrical conductance and temperature results in a change in the mass of the measurement point. If the rate of change is greater than... The leakage at the surface measurement point is intensified, and corresponding plugging measures must be taken to prevent the problem.
  • the skin 1 should adopt a cortical material that is similar in speed to the water velocity and has an insulating property.
  • the liquid injected in the skin capsule i should be similar to the water body velocity transmission and not insulated.
  • the number of sonar sensors in the lower sonar sensor array 4 is at least one, and they are evenly arranged along the edges of the same circumferential plane.
  • the conductivity electrode sensor i() is a stone stainless steel, titanium alloy or platinum electrode sensor.
  • the temperature sensor 1 1 is a thermocouple, a thermistor, a resistance temperature detector (RTD) or a 1C temperature sensor.
  • the invention solves the most basic design element of the seepage particle movement of groundwater which is urgently required for underground engineering practice because it can accurately calibrate the horizontal flow velocity and the 3 ⁇ 4 direction velocity and its vector of any spatial point of the ground water: , providing various hydrogeological parameters necessary for underground engineering
  • the invention solves the urgent need of the national economy.
  • the hydrogeology related to the seepage of underground engineering I the process of seepage flow.
  • the sonar turbulence detection technology is a revolutionary upgrade and innovative alternative to the isotope tracer. With 'Bay's accurate, efficient, environmentally friendly and easy to use application features, in water conservancy. Hydropower, geothermal energy development, site selection of waste banks, geological hazard assessment, subway turbulence monitoring, oil pipeline hydrological survey, foundation pit ⁇ Water quality inspection and other fields have; the general application prospects have been achieved. Often good application results.
  • the invention not only can obtain the groundwater text parameter, but also can be used to find the leakage point of the reservoir dam and the river dyke lacquer leakage, in order to quickly and accurately determine the leakage point, and timely discover the safety hazard, and the invention is clear.
  • the relationship between the detection elements in the skin capsule, and (PS is creatively connected to the computer, has the advantages of simple structure and convenient manufacture.
  • the invention can track and monitor the flow rate in real time by measuring the conductance, temperature, pressure, etc.
  • the mass point is driven by energy, and the salinity of the water flow entity, the salt, the bulk density of the water, the temperature, etc. :3 ⁇ 4 ask distribution.
  • the flow rate vector of groundwater measured in situ and the incremental change of chemical substances in the water body driven by the flow rate vector, it is possible to solve a series of civil carpentry from the monitoring of energy and mass change:
  • the leakage of the reservoir dam, the leakage of the river dyke, and the underground continuous wall.1 Water curtain wall quality inspection, groundwater solute transport and diffusion measurement.
  • the present invention starts from the principle of energy conservation and mass conservation, and passes the velocity vector quality.
  • the resulting migration of building materials achieves the purpose of quantifying and forecasting the underground hidden roads in real time, not only to find the leaking points in time, but also to monitor the leakage of the leakage points in time.
  • Providing decision-making basis for timely detection and prevention of deterioration of leakage points can prevent the occurrence of malignant accidents such as dam breaks and wall collapses.
  • the invention has the advantages of simple structure, convenient manufacture and monitoring: feiiiu
  • Figure ⁇ is a schematic view of the structure of the present invention.
  • Figure 2 is a schematic view showing the internal structure of the measuring instrument of the present invention.
  • Figure 3 is a schematic diagram of the invention in the shallow flow monitoring of reservoir dams a
  • a two-dimensional flow vector energy and mass measuring instrument which comprises an elastic skin capsule 1, a flow velocity vector energy measuring device i.2, a rolling point mass measuring device 14.14, a t-computer 8 and a GPS locator 9, as shown in Fig. 1. It is shown that both ends of the elastic skin 1 are respectively provided with a property «sealing 3 ⁇ 4 3 ⁇ 4 2 , and the elastic skin 1 and the rigid sealing plug 2 form a cylindrical sealing cavity, wherein the upper end of the rigid sealing plug is ⁇ 3 ⁇ 4
  • the electric cable connection line enters and exits the hole, and the lower end of the rigid sealing plug is provided with a liquid injection hole for injecting liquid into the circular injection sealing cavity, and the sealing hole is mounted on the liquid injection hole 1:; 3 ⁇ 4 uses cortical material with the same speed of water body velocity transmission and has insulation properties.
  • Non-conducting such as silicone oil
  • flow vector energy measurement ft installation 12 is installed in the aforementioned cylindrical seal cavity and electrically connected to the computer 8 with GPS .9 via cable connection, by measuring the measured water flow sonar give away Entering the computer towel to obtain the flow direction and speed of the groundwater, thereby determining the vector and energy of the groundwater flow.
  • the seepage point mass measuring device 1 is installed on the outer surface of either or both of the aforementioned two rigid plugs 2.
  • the flow rate vector energy measuring device 12 of the present invention comprises: an upper sonar sensor 3, a lower sodium sensor array 4, a heading positioner ⁇ pressure sensor 6 and an electronic signal processing system 7, as shown in Fig. 2, a lower sonar sensor array 4 is used to determine the direction of the sound source, and a sonar sensor in the upper sonar sensor 3 ⁇ under the sonar sensor array 4 that first receives the sound source is used together to determine when the sound source reaches the measuring instrument; the upper sonar sensor 3
  • the sonar sensor in the hub-sonar sensor array 4 can be a hydrophone, a transducer, a ceramic hydrophone or a fiber hydrophone, and the number of sonar sensors in the lower sonar sensor array 4 is at least: One, they are arranged along the edge of the same circular plane to align the heading sensor) 3 ⁇ 4 according to the first sensing of the sound source signal
  • a sonar sensor in the sonar sensor array 4 performs the calculation of the measured intensity with other sonar sensors in the same array in the surroundings, and obtains the direction of motion
  • the magnetic heading measures the superposition of her north pole to obtain the geographic direction of the water flow; thus determining the velocity vector measurement position without a point, the heading sensor ⁇ can be a compass, a magnetic sensor, a camel or an electronic camel ; !f sub-signal processing system? 3 ⁇ 4 on receiving the sonar sensor: 5, the original signal measured by the lower sonar sensor array 4 and the heading positioner 5 is converted into a digital signal and sent to the computer 8 for processing through the cable, and the existing electrical technology can be used.
  • Design and manufacture The GPS locator 9 is connected to the computer 8 to determine the geographical location of the calibrator;
  • the defect point reversing device of the present invention 4 includes an electric electrode sensor 10 and a temperature sensor.], the conductive electrode sensor seat is rigidly blocked; on the outer surface of the 3 ⁇ 4 2, the water body can be contacted with the measured water body, and the water body is measured.
  • the conductivity and the salt ffr are sent to the computer S: the temperature sensor 1; also on the outer surface of the rigid sealing plug 2, which can be connected to the measured water body, and directly measure the temperature value in the water body.
  • the computer 8 obtains the quality change of the measuring point according to the traced conductivity and the change of the temperature. If the rate of change is greater than a certain II, the leakage at the surface measuring point is intensified, and corresponding blocking measures must be taken. Take precautions.
  • the conductivity electrode sensor 10 can be located at the bottom of the rigid sealing plug 2 at the lower end, can be in contact with the measured water body, and directly measure the conductivity and salt in the water body through the two electrode sheets: the key sensor ⁇ 1 is also located at the bottom of the rigid sealing plug 2 at the lower end. It can be connected to the measured water body.
  • the temperature sensor directly measures the temperature value in the water body, the conductivity and the temperature value are measured, and the measured value is added.
  • the vector and energy can track and monitor the spatial distribution of mass spectrometry indicators such as salinity, salinity, water bulk density, and temperature of the water flow entity driven by energy in real time.
  • the on-site in-situ measurement of the flow rate vector of the i3 ⁇ 4 groundwater and the M change of the chemical substance in the water body driven by the flow rate vector can be used.
  • the method disclosed in 201110295635. 5 can be varied from energy and mass. In the monitoring, it is urgent to solve the key S-strain problems in a series of civil engineering leakages. Before the underground engineering has not yet discovered the catastrophic hidden dangers, it will be predicted and forecasted to prevent problems such as reservoir dams.
  • the sub-signal processing system 7 is mounted and positioned in the cylindrical sealed cavity; the GPS locator 9, the computer S, 4S5 interface and the ground power supply are all located outside the cylindrical sealed cavity and passed through the cable and the cylindrical sealed cavity.
  • the electronic 3 ⁇ 4 processing system 7 is connected to the measuring instrument of the present invention. When detecting the leakage point of the ten reservoir, a pressure sensor 6 should be installed in the surrounding cylindrical cavity to determine the depth of the water level of the measuring instrument, the pressure sensor. 6 available 3 ⁇ 4 resistor A, capacitive, piezoresistive or piezoelectric pressure sensor flick
  • the application of the invention in the seepage measurement of the reservoir dam is as shown in Fig. 3, and the sonar, the pressure sensor, the magnetic heading instrument, etc. in the flow rate vector energy trajectory device of the invention can be combined with the early energy equation.
  • the positioning of the leakage point can determine whether the leakage hole of the leakage point is enlarged by the change rate of the conductivity of the leakage point and the change of the temperature, whether it will cause the piping, and provide the corresponding remedial measures in time. ⁇ .

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Electromagnetism (AREA)
  • Fluid Mechanics (AREA)
  • Acoustics & Sound (AREA)
  • Multimedia (AREA)
  • Nonlinear Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Soil Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Mining & Mineral Resources (AREA)
  • Paleontology (AREA)
  • Civil Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Structural Engineering (AREA)
  • Hydrology & Water Resources (AREA)
  • Geophysics And Detection Of Objects (AREA)
  • Testing Or Calibration Of Command Recording Devices (AREA)
  • Examining Or Testing Airtightness (AREA)

Abstract

一种三维流速矢量与质量测量仪包括弹性皮囊(1),弹性皮囊(1)的两端各安装有一个刚性密封堵头(2),弹性皮囊(1)及刚性密封堵头(2)形成一圆柱形密封腔体,其中上端的刚性密封堵头(2)上设有电缆连接线进出孔,下端的刚性密封堵头(2)上设有用于向圆柱形密封腔体中注入液体的注液孔,注液孔上安装有密封塞;圆柱形密封腔体中安装有测量流速矢量能量的测量装置(12)及测量质量的装置(14)。三维流速矢量与质量测量仪具有结构简单,制造方便,检测全面的优点。

Description

说明书
三维髓矢量畲 «与质量测量仪
铰术领域
本发明涉及一种±木工程检测设备,尤其是一种用于地下水流速质点运动的 能置与质量检测设备, 具体地说是一种: Ξ维流速矢量能量与质量 «量仪。
背景技术
众所周知,所有土木工程¾础的建设均涉及二个重要的影响因素,水与岩土 的相互作用 前者是动态的主动的无时的不在浸蚀着地下工程建筑的基石; 后者 则是静态的被动的抵抗和阻 ih来自前者的浸蚀与危害。 耍使二者达到和平相处, 长治久安, 必须建立一套完备 : 效的监測机制 本发明为此提出用能量与质量守 恒原理,逑立起 S流速矢量场弓!起的建筑物质的迁移来达到实施的对地下隐蔽工 程进行定量化的预测和预报。
18S6年法国工程师 II. - P. -G.达西首次通过室内实验提出水在岩土孔隙中渗 流规律的实验定律, 从而, 奠定丁地下水漆流力学的理论。 然而, 此理论在土 木工程应 屮主要是以渗透系数 K值出现的 传统方法获得此值,大部分是通过 取土样,在室内进行溱流试验获得样品个体的渗透特性. 却无法取得原位状态下 的真实渗流形态, 此, 重要的工程 ¾设均要求进行现场水文地质抽水试验。 自 1863年法国工程师 J. Dupui t , 创立的 "裘布依抽水试验理论" , 150年来, 己 经形成法定性的, 在试验现场获取水文地质参数, 权威的工程设计依据, 随着现 代土木工程建设的高速发展,此类试验已经不能满足生 实践的需要。众所周知, 由于 "裘布依抽水试验理论"本身的缺陷以及对试验操作者的要求极高。 所以, 造成此种试验的数量愈来愈少 更主耍的是上述试验所获得的仅仅是人工干扰流 场下的岩土各层序综合的物性渗透指标 ' 即岩土孔隙体积与抽水体积的平衡 « 它无法在天然流场下获得地下水的渗流速度场与矢量场, 因此, 也就无法解决土 木工程遇到的诸多渗流关键技术问题 1957年德国科学家 Moser首次提出利用 向位素示踪测定含水层溱透流速的稀释测并法, 由于能在天然流场下的单井中对 多含水层地' F水进行渗透流速、流向及垂向流测定, ^比抽水试验费用抵, 容易 实施,而受到各阔水文地质学家的关注与使用 , 于是^多种见诸面 的测定地卜 水流速流向的装置。 最早的有接 式定向探头;后来有波 L B- Hazza 发明的 P".32 吸附与 X胶 It定向测速 ¾置:日本落合敏郎的 Ξί层同位素稀释: ' ¾ΐ向 速 装置; W. Drost和 Ki otz.等设计的棉纱 ^吸附测向、 活性炭吸附测向装置: 美画 ,利 051368 , 英国专利 2009921和 1598837介绍的中子活化测向测逨装置; 德 国慕尼黑水文地质实验室 I i)rost i982 年 «定地下水流速流向的新式示踪探 头; 中国专利:智能化单井地下水动态参数测试仪 981.11509. 8,还有 85.107160, 86 ΚΜ Π5专利介绍的热释光和电离室同位素示踪測量装 ¾等 上述发明虽达到 了测量地下水流速流向的要求.,但在实际应用中,它们都涉及到放射性核素物质 对人体和环境的影响等缺陷与负面诈用,导致许多国家与政府禁止或者在严格的 监控下有条件的限制使用, 使之无法在生产实践中得到推广与应 )¾。
地下水之所以能够运动, 基于二个最基本条件, 之一要有主动的能量(水头 1)作用, 之二被动的阻水介质要有一定的孔隙 它们为对立统一的一对技术载 体 .>尽管测试方法各不相同,传统抽 水试验是以被动方法去研究阻水介质的渗 透特性, 即地质构造体系的宪好程度。 而主动的 "能量与质量潫流测量方法" , 则主要揭示地下水潘流质点的运移及其在时空的能傲与质量的分布大小。声纳探 m器阵列能够.精细地测量出 波在流体中能最传递的大小与分布,依据声纳探澱 器阵列测量数据的时 S分布, 即 解析出流速质点运动的速度与矢量的方向; 电 导、温度 压力等能够实时地跟踪和监测流速质点在能量的驱动下, 其水流实体 的矿化度、 盐汾、 水的容重、 温度等质量量化指标的空问分布 有了现场原位 同歩测量到的地下水的流速矢量以及流速矢驚驱动下的水体中化学物质的增量 变化, 就能够从能 ft与质量变化量的监拧中, 定量地解决一系列土木工程溱漏中 急需要解决关键技术向题. 在地下工程还没有出现破坏性隐患之前,对其进行预 测和预报, 防患于未然。
如水库大坝的渗漏、江河堤坝的管涌渗漏、地卜 '连续墙体的止水结构质量检 测、地下水溶质运移与扩散测量等等。 中国专利: 单井地下水流速流向及水库滲 漏点测量方法及其装置 (申请号 2011 10295635, 5 ) 虽然给出了水流质点运动遠 度与矢量,, 但是, 它还不能够获得岩土体在流速矢量能量的驱动下, 岩土体阻水 介质的物质有没有被带出来,这就需耍在人们的肉眼还没有看到细颗粒的物质被 带出来之前, 就能够微观的在原子与分子结构指标上进 tf量化。社絶地下工程隐 患的发生, 造镉人类。
发明内容
本发明的 Θ的是针对现有地下水渗流测量仅器不能及时测量和及时反应地 卜-水的微观性能的变化, 无法及时发现渗流环境变化中的安全隐患, 设计一种能 根据地下水流速矢量质点的运动能量跟踪岩土物质的质量的变化置,从而, 得出 相应的三维流速矢量能量与质量漉量仪 - 本发明的技术方案 ¾:
-一种三维流速矢量能量与质量测量仪, 其特征是它包括:
一弹性皮囊 Ί , 该弹性皮囊 1的两端各安装有一个 i 性堵头 2, 所述弹性皮 囊〗及所述的刚性堵头 2形成一柱形密封腔体,其中上端的刚性堵头上设存电缆 连接线进出孔,下端的刚性密封堵头上设有用于向所述圆柱形密封腔体中注入液 体的注液孔, 注液孔上安装有密封塞;
一流速矢量能量测量装置 12, 它被安装在前述的柱形密封腔体中, 并通过 电缆连接线与带有 GPS定位仪 9的计算机 8电气连接,通过将测量所得的水流声 纳送入计 T机中得到地下水的流动方向和速度,从而确定地下水流动的矢量和能
Ά- 一渗漏点质量澱蘯装置 14, 它被安装在 f述的两个刚性堵头 2中任一个或 两个的外表面上, 并通过连接电缆与前述的计算机 8电气连接;它通过测量地下 水中的电导率和温度的变化从而确 ^被测点是否有岩土体阻水介质的流失,并对 渗漏点的安全性作出及时的判断。
所述的流速矢量能量测量装置 12包括:
一上声纳传感器 3和一下声纳传感器阵列 4, ―卜-声纳传感器阵列 4用于确定 声 ¾方向,上声纳传感器 3与下声纳传感器阵列 4中最先接收到声源的一个声纳 传感器一起 ffl于确定声源到达测量仪的时差; 一貌向定位器 5 , 该航向传感器/ ¾于根据最先感应到 ^源信 ¾-的下声纳传感 器阵列 4 中的一个声鈉传感器与周围的同一阵列中的其它声纳传感器进行测量 强度的计算, 得出水流矢量相对于测量仪的运动方向, 将所 ¾量到的水流运动方 向与磁航向测量到的地理北极进行叠加, 即可得到水流的运动地理方向: 从而确 定下一个点位的流速矢量测量位 S ;
-压力传感器 6, 该压力传感器 6安装在圆柱形密封腔体中, 于确定测量 仪所处水位的深度 . 以便于测爆:仪位置的确定;
一电子讯兮处理系统 7 , 它用于接收上声纳传感器 3 , 下声纳传感器阵列 航向定位器 5、 压力传感器 6、 电导电极传感器 10以及温度传感器】1所测量到 得的原始信号转换成数字信号,通过电缆发送到地面计算机 8中进行处理从而得 所述的航向传感器 δ为罗盘、 磁传感器、 ffi罗仪或电子驼罗仪
所述的渗漏点质量测量装置 14包括:
-电导电极传感器 】.(), 该电导电极传感器位于刚性堵头 2的外表雨上, 能 够¾澱量的水体接触, 测量出水体屮的导电率与盐份送 Λ计算机 8 ;
·温度传感器 1 1 , 该温.度传感器也位于刚性密封堵头 2的外表面上, 能够 与测量的水体接触, 进而直接测量出水体中的温度值送入计算机 8中, 计算机 8 裉据所测得的电导举和温度的变化得出测量点的质量变化,如果变化率大于… 定 值则表面测量点处的渗漏情况在加剧, 必须采取相应的堵漏措施以防患于未然 所述的皮囊 1应采用与水体波速传递速度相近的皮质材料并具有绝缘 坚 的性能。
T述的皮囊 i中所注的液体应与水体波速传递速度相近并绝缘不导电。 所述的下声纳传感器阵列 4中的声纳传感器的数量至少为 个,它们沿同一 个圆周平面的边缘均匀布置
所述的电导电极传感器 i()为石 不锈钢、 钛合金或铂金电极传感器 所述的温度传感器 1 1为热电偶、 热敏电阻、 电阻温度检澱器(RTD)或 1C温 度传感器。
本发明的有益效果- 本发明解决了地下工程实践急需要获得的地下水的渗流质点运动的最基本 的设计要素 因为它能够对地 'F水的任一空间点的水平流速和 ¾向流速及其矢量 进行准确溺鐘:, 提供地下工程必须的各种水文地质参数
本发明解决了国民经济急需的. 地下工程渗流相关的 种水文地质 I:程渗 流方案。声纳潫流探测技术是对同位素示踪测《危机的革命性升级和创新替代 品。 具 '灣量准确、 高效、 环保和便铋的应用特点, 在水利. 水电、 地热能开发、 废物库的选址、 地质灾害评估、 地铁谗流监护、 石油管线水文地感调查、 基坑 ± 水墙质量检 ¾等领域具有; 泛的应用前景, 已取得 .常好的应用效果。
本发明不仅能获得地下水文参数, 而且可'用于査找水库大坝、 江河堤坝 涌 漆漏的渗漏点, 为快速, 准确地硗定渗漏点, 及时发现安全隐患, 防患 未然 本发明明确了皮囊中各检测元件的 置关系,并将(,PS创造性地 J[接与计算 机相连, 具有结构简 , 制造方便的优点
本发明通过对电导、 温度、 压力等的测量, 能够实时地跟踪和监测流速.质点 在能量的驱动下, 其水流实体的矿化度、 盐份、 水的容重、 温度等质 a量化指标 的 :¾问分布。 有了现场原位同歩测量到的地下水的流速矢量以及流速矢量驱动 下的水体中化学物质的增量变化, 就能够从能量与质量变化量:的监控中, 定覽地 解决一系列土木工 s渗漏中急需要解决关键 术问题,在地下工程还没有出现破 坏性隐 ®之前, 对其迸行预溯和预报, 防患于未然。 如水库大坝的浚漏、 江河堤 坝的管涌渗漏 地下连续墙体的 .1::水幕墙质量检测、地下水溶质运移与扩散测量 本发明从能量^质量守恒原理出发,通过对流速矢量质量引起的建筑物质的 迁移实现了实时对地下隐蔽丄程迸行定量化的预测和预报的目的,不仅能及时发 现渗漏点, 而且能对渗漏点是否有凑漏物质流出作出及时的监测, 为及时发现和 预防渗漏点的恶化提供决策依据 能防止溃坝、 塌墙等恶性事故的发生。
本发明结构简单, 制造方便、 监测: feiiiu
附图说明
图丄是本发明的结构示意图。 图 2是本发明的测量仪的内部结构示意图
图 3是本发明在水库大坝淺流监测中的应¾原理 a
具体实施方式
下面结合^图和实施例对本发 ί¾作进一步的说明
如图 1、 2所示::
一种二维流速矢量能量与质量测量仪, 它包括弹性皮囊 1、流速矢量能量测 量装置 i.2、 滚漏点质量测量装置 .14、 t算机 8和 GPS定位仪 9, 如图 1所示, 弹性皮囊 1的两端各安装有一个 性«封¾ ¾ 2 , 所述弹性皮囊 1及所述的刚性 密封堵头 2形成 圆柱形密封腔体,其中上端的刚性密封堵头丄 ¾齊电缵连接线 进出孔,下端:的刚性密封堵头上设有用于向所述圆注形密封腔体中注入液体的注 液孔, 注液孔上安装有密封塞 1:; , 皮囊 1应 ¾用与水体波速传递速度相近的皮 质材料并具有绝缘性能. 具体实施时可釆闲坚固、 有柔性的聚氮酯等材料制作; 皮囊 1中所注的液体应与水体波速传递速度相近并绝缘不导电(如硅油 ,流速 矢量能量测 ft装覽 12被安装在前述的柱形密封腔体中 并通过电缆连接线与带 有 GPS .9的计算机 8电气连接,通过将测量所得的水流声纳送入计算机巾 得到地下水的流动方向和速度, 从而确定地下水流动的矢量和能 ¾; 渗篛点质量 测量装置 1 , 它被安装在前述的两个刚性堵头 2中任一个或两个的外表面上, 并通过连接电缆 ¾前述的讦算机 S电气连接;它通过侧量地下水中的电导率和温 度的变化从而确定被测点是否 岩土体阻水介质的流失,并对参漏点的安全性作 出及时的判断,:
本发明的流速矢量能 ¾测量装置 12包括: 上声纳传感器 3、 下声鈉传感器 阵列 4、 航向定位器 ^ 压力传感器 6和电子讯号处理系统 7, 如图 2所示, 下 声纳传感器阵列 4用于确定声源方向, 上声纳传感器 3 ^下声纳传感器阵列 4 中最先接收到声源的一个声纳传感器一起用于确定声源到达测量仪的时 ¾;上声 纳传感器 3和卜-声纳传感器阵列 4中的声纳传感器可为水听器、换能器、陶瓷水 听器或纤维水听器,下声纳传感器阵列 4中的声纳传感器的数量至少为::;个,它 们沿同 个圆周平面的边缘均勾布置 航向传感器 )¾于根据最先感应到声源信号 的 声纳传感器阵列 4 中的一个声纳传感器与周围的同一阵列中的其它声纳传 感器进行测量强度的计算, 得出水流矢量相对于测量仪的运动方向,将所测量到 的水流运动方向 . 磁航向测量到的她理北极进行叠加 .即可得到水流的运动地理 方向; 从而确定不一个点位的流速矢量测量位置, 航向传感器 δ可为罗盘、磁传 感器、 驼罗仪或电子驼罗仪; !f 子讯号处理系统?) ¾于接收上声纳传感器 :5、 下 声纳传感器阵列 4及航向定位器 5所测得的原始信号转换成数 信号并通过电缆 发送到计算机 8 中进行处理, 可采用现有电气技术 行设计制造: 所述的 GPS 定位仪 9与计算机 8相连, ¾于确¾测靈仪所处的地理位置;
本发明的浚 ϋ点质量翻量装置】4包括电 ^电极传感器 10和温度传感器 .]. , 电导电极传感器位子刚性堵; ¾ 2的外表面上, 能够与测《的水体接触,测量出水 体中的导电率与盐 ffr送入计算机 S中: 温度传感器 1 ;也位干刚性密封堵头 2的 外表面上, 能够与测量的水体接 te,进而直接测量出水体中的温度值送入 算机 8中, 计算机 8根据所溯得的电导率和温度的变化得出测量点的质量变化, 如果 变化率大于一定 II则表面测量点处的渗漏情况在加剧,必须采取相应的堵漏措施 以防患于未然。
具体实施时, 电导电极传感器 10可位于下端的刚性密封堵头 2的底部, 能 够与测量的水体接触,通-过两个电极片直接测量出水体中的导电率与盐份:键.度 传感器 Ϊ 1也位于下端的刚性密封堵头 2的底部, 能够与测量的水体接她, 遥过 温度传感器直接测量出水体中的温度值, 遒过电导、温度值的测量, 加上所测得 的矢量和能量就能够实时地跟踪和监测流速质点在能量的驱动下,其水流实体的 矿化度、 盐份、 水的容重、 温度等质量量化指标的空间分布。 加上现场原位同歩 测量到 i¾地下水的流速矢量以及流速矢量驱动下的水体中化学物质的增 M变化 (可. 用 201110295635. 5所公开的方法—)就能够从能量与质量变化量的监控中, ¾量地解决一系列土木工程渗漏中急需要解决关键 S术问题,在地下工程还没有 岀现破坏性隐患之前, 对其进行预测和预报, 防患于未然 如水库大坝的渗漏、 江河堤坝的管涌渗漏、地下连续墙体的止水结构质量检测、地下水溶.质运移与扩 散测量等等; 所述的丄声绒传感器 3、 下声纳传感器阵列 4、 航向定位器 5及电 子讯号处理系统 7均安装定位在所述的圆柱形密封腔体中; GPS定位仪 9、 计算 机 S、 4S5接口以及地面供电电源均位于圆柱形密封腔体外并通过电缆与圆柱形 密封腔体屮的电子 ¾号处理系统 7相连 本发明的测量仪用十水库渗漏点检测 时, 还应在圍柱形密腔体中安装一个压力传感器 6 , 以确定测量仪所处水位的深 度, 压力传感器 6可 用¾阻 A、 电容式, 压阻式或压电式压力传感器„
本发明在水库大坝渗流测量中的应用如图' 3所示,通过本发明的流速矢量能 量溯量装置中的声纳、压力传感器、磁航向仪等结合伯努力早能量方程即可实现 对镲漏点的定位,通过对涹漏点电导率的变化率及温度的变化量即可确定渗漏点 的溱漏孔是否扩大,会不会造成管涌, 为及时采取相应的补救措施提供第 ··· ·手的 资料 ' 对提高水库大坝的安全性十分重耍, 为预防和防 ±溃坝提供重耍的依据 本发明未涉及部分均与现有技术相同或可采用现有技术加以实现。

Claims

权利要求书
1. 一种三维流速矢量能量与质量测量仪, 其特征是它包括:
一弹性皮囊 (1 ) , 该弹性皮囊 (1 ) 的两端各安装有一个刚性堵头 (2) , 所 述弹性皮囊 (1 ) 及所述的刚性堵头 (2) 形成一柱形密封腔体, 其中上端的 刚性堵头上设有电缆连接线进出孔, 下端的刚性密封堵头上设有用于向所述 圆柱形密封腔体中注入液体的注液孔, 注液孔上安装有密封塞;
一流速矢量能量测量装置 (12) , 它被安装在前述的柱形密封腔体中, 并通 过电缆连接线与带有 GPS定位仪 (9) 的计算机 (8 ) 电气连接, 通过将测量 所得的水流声纳送入计算机中得到地下水的流动方向和速度, 从而确定地下 水流动的矢量和能量;
一渗漏点质量测量装置(14) , 它被安装在前述的两个刚性堵头(2) 中任一 个或两个的外表面上, 并通过连接电缆与前述的计算机(8 ) 电气连接; 它通 过测量地下水中的电导率和温度的变化从而确定被测点是否有岩土体阻水介 质的流失, 并对渗漏点的安全性作出及时的判断。
2. 根据权利要求 1所述的三维流速矢量能量与质量测量仪, 其特征是所述的流 速矢量能量测量装置 (12) 包括:
一上声纳传感器 (3 ) 和一下声纳传感器阵列 (4) , 下声纳传感器阵列 (4) 用于确定声源方向, 上声纳传感器 (3 ) 与下声纳传感器阵列 (4) 中最先接 收到声源的一个声纳传感器一起用于确定声源到达测量仪的时差; 一航向定位器(5 ), 该航向传感器用于根据最先感应到声源信号的下声纳传 感器阵列(4)中的一个声纳传感器与周围的同一阵列中的其它声纳传感器进 行测量强度的计算, 得出水流矢量相对于测量仪的运动方向, 将所测量到的 水流运动方向与磁航向测量到的地理北极进行叠加, 即可得到水流的运动地 理方向; 从而确定下一个点位的流速矢量测量位置;
一压力传感器 (6) , 该压力传感器 (6) 安装在圆柱形密封腔体中, 用于确 定测量仪所处水位的深度, 以便于测量仪位置的确定;
一电子讯号处理系统 (7 ) , 它用于接收上声纳传感器 (3 ) 、 下声纳传感器 阵列 (4)航向定位器 (5 ) 、 压力传感器 (6) 、 电导电极传感器 (10) 以及 温度传感器 (11 ) 所测量到得的原始信号转换成数字信号, 通过电缆发送到 地面计算机 (8 ) 中进行处理从而得到测量点的地下水的流动方向和速度。
3. 根据权利要求 1所述的三维流速矢量能量与质量测量仪, 其特征是所述的航 向传感器 (5) 为罗盘、 磁传感器、 驼罗仪或电子驼罗仪。
4. 根据权利要求 1所述的三维流速矢量能量与质量测量仪, 其特征是所述的渗 漏点质量测量装置 (14) 包括:
一电导电极传感器(10),该电导电极传感器位于刚性堵头(2)的外表面上, 能够与测量的水体接触, 测量出水体中的导电率与盐份送入计算机 (8 ) 中; 一温度传感器 (11 ) , 该温度传感器也位于刚性密封堵头 (2) 的外表面上, 能够与测量的水体接触,进而直接测量出水体中的温度值送入计算机(8)中, 计算机 (8) 根据所测得的电导率和温度的变化得出测量点的质量变化。
5. 根据权利要求 1所述的三维流速矢量能量与质量测量仪, 其特征是所述的皮 囊 (1 ) 应采用与水体波速传递速度相近的皮质材料并具有绝缘、 坚固性能。
6. 根据权利要求 1所述的三维流速矢量能量与质量测量仪, 其特征是皮囊 (1 ) 中所注的液体应与水体波速传递速度相近并绝缘不导电。
7. 根据权利要求 1所述的三维流速矢量声纳测量仪, 其特征是所述的下声纳传 感器阵列(4)中的声纳传感器的数量至少为 3个, 它们沿同一个圆周平面的 边缘均匀布置。
8. 根据权利要求 4所述的三维流速矢量能量与质量测量仪, 其特征是所述的电 导电极传感器 (10) 为石墨、 不锈钢、 钛合金或铂金电极传感器。
9. 根据权利要求 4所述的三维流速矢量能量与质量测量仪, 其特征是所述的温 度传感器 (11 ) 为热电偶、 热敏电阻、 电阻温度检测器 (RTD)或 IC温度传感 器。
PCT/CN2013/077911 2013-03-11 2013-06-25 三维流速矢量能量与质量测量仪 WO2014139236A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/403,031 US9568489B2 (en) 2013-03-11 2013-06-25 Three-dimensional flow velocity vector, energy and mass gauge

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201310076423.7A CN103148992B (zh) 2013-03-11 2013-03-11 三维流速矢量能量与质量测量仪
CN201310076423.7 2013-03-11

Publications (1)

Publication Number Publication Date
WO2014139236A1 true WO2014139236A1 (zh) 2014-09-18

Family

ID=48547198

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/077911 WO2014139236A1 (zh) 2013-03-11 2013-06-25 三维流速矢量能量与质量测量仪

Country Status (3)

Country Link
US (1) US9568489B2 (zh)
CN (1) CN103148992B (zh)
WO (1) WO2014139236A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111965386A (zh) * 2020-09-17 2020-11-20 上海同晟环保科技有限公司 一种水流流向监测仪及其控制方法
TWI747357B (zh) * 2020-04-21 2021-11-21 國立陽明交通大學 超音波流量計之流量量測方法

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103148992B (zh) * 2013-03-11 2015-07-08 南京帝坝工程科技有限公司 三维流速矢量能量与质量测量仪
CN105823902A (zh) * 2016-03-24 2016-08-03 南京帝坝工程科技有限公司 低流速声纳测量方法、装置及应用
CN105674965A (zh) * 2016-04-15 2016-06-15 洛阳功航机械科技有限公司 一种水文检测铅鱼
US10345269B2 (en) * 2016-08-11 2019-07-09 Chesapeake Energy Corporation Three-dimensional ultrasonic wave velocity test system
CN109781354B (zh) * 2018-04-04 2021-04-23 水利部交通运输部国家能源局南京水利科学研究院 一种基于流速感应的坝体渗漏水下探测系统
CN108828262B (zh) * 2018-05-29 2024-09-13 中国地质调查局武汉地质调查中心 一种宽量程地下水流速流向测试装置及方法
CN109178305B (zh) * 2018-09-11 2021-08-24 武汉云衡智能科技有限公司 一种水文监测水陆两栖无人机以及水文监测方法
CN110057741B (zh) * 2019-04-29 2021-09-21 华北水利水电大学 一种含水层底部疏放水井渗流试验模型装置
JP7111652B2 (ja) * 2019-05-09 2022-08-02 株式会社Kansoテクノス 地下水マルチ検層装置及び検層方法
CN110716065B (zh) * 2019-10-31 2022-01-25 湖南长城海盾光纤科技有限公司 一种基于光纤矢量水听器的流速测量系统及测量方法
CN111175532B (zh) * 2020-01-14 2021-07-23 沧州昊海水利工程质量检测有限公司 一种水利检测用的便携式水流速测量装置

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000230879A (ja) * 1999-02-09 2000-08-22 Kubota Corp 水道管路の漏水探知方法および装置
JP2004226330A (ja) * 2003-01-27 2004-08-12 Tobishima Corp トレーサ及びトレーサを使用した地下水流動測定方法
CN201974527U (zh) * 2011-01-31 2011-09-14 南京帝坝工程科技有限公司 渗漏水库声纳探测仪
CN102445307A (zh) * 2011-07-20 2012-05-09 南京帝坝工程科技有限公司 单井地下水流速流向及水库渗漏点测量方法及其测量装置
CN202471203U (zh) * 2012-03-23 2012-10-03 山东农业大学 土水重量及渗滤水质实时监测装置
CN102721722A (zh) * 2012-06-20 2012-10-10 扬州大学 一种地下岩土分层热物性现场热响应测试方法
CN103148992A (zh) * 2013-03-11 2013-06-12 南京帝坝工程科技有限公司 三维流速矢量能量与质量测量仪

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3603145A (en) * 1969-06-23 1971-09-07 Western Co Of North America Monitoring fluids in a borehole
GB8813640D0 (en) * 1988-06-09 1988-07-13 Gill M J Speed measurement device
DE4308877C1 (de) * 1993-03-19 1994-05-26 Testoterm Fritzsching Gmbh & C Vorrichtung zur Bestimmung der Strömungsgeschwindigkeit und Strömungsrichtung von Gasen oder Flüssigkeiten
CN1073707C (zh) * 1998-09-28 2001-10-24 江苏省农业科学院原子能农业利用研究所 智能化单井地下水动态参数测试仪
CN2589983Y (zh) * 2002-12-31 2003-12-03 扬州大学 新型水流场探针测量装置
CN201107416Y (zh) * 2007-10-22 2008-08-27 苏州圣庄伟业岩土科技有限公司 基于压力示踪的基础工程地下水参数测量系统
US7950451B2 (en) * 2009-04-10 2011-05-31 Bp Corporation North America Inc. Annulus mud flow rate measurement while drilling and use thereof to detect well dysfunction

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000230879A (ja) * 1999-02-09 2000-08-22 Kubota Corp 水道管路の漏水探知方法および装置
JP2004226330A (ja) * 2003-01-27 2004-08-12 Tobishima Corp トレーサ及びトレーサを使用した地下水流動測定方法
CN201974527U (zh) * 2011-01-31 2011-09-14 南京帝坝工程科技有限公司 渗漏水库声纳探测仪
CN102445307A (zh) * 2011-07-20 2012-05-09 南京帝坝工程科技有限公司 单井地下水流速流向及水库渗漏点测量方法及其测量装置
CN202471203U (zh) * 2012-03-23 2012-10-03 山东农业大学 土水重量及渗滤水质实时监测装置
CN102721722A (zh) * 2012-06-20 2012-10-10 扬州大学 一种地下岩土分层热物性现场热响应测试方法
CN103148992A (zh) * 2013-03-11 2013-06-12 南京帝坝工程科技有限公司 三维流速矢量能量与质量测量仪

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
DU, GUOPING ET AL.: "the application of the tracing technology in the leakage beneath the dam of reservoir", GROUNDWATER, vol. 20, no. 4, December 1998 (1998-12-01), pages 172 - 177 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI747357B (zh) * 2020-04-21 2021-11-21 國立陽明交通大學 超音波流量計之流量量測方法
CN111965386A (zh) * 2020-09-17 2020-11-20 上海同晟环保科技有限公司 一种水流流向监测仪及其控制方法

Also Published As

Publication number Publication date
CN103148992A (zh) 2013-06-12
US20150160091A1 (en) 2015-06-11
US9568489B2 (en) 2017-02-14
CN103148992B (zh) 2015-07-08

Similar Documents

Publication Publication Date Title
WO2014139236A1 (zh) 三维流速矢量能量与质量测量仪
US11480050B2 (en) Device and method for measuring flow velocity and flow direction and geological parameters of groundwater through cross holes of deep wells
Post et al. Hydraulic head measurements-new technologies, classic pitfalls
CN102445307B (zh) 单井地下水流速流向及水库渗漏点测量方法及其测量装置
Bolèkve et al. Preferential fluid flow pathways in embankment dams imaged by self‐potential tomography
CN106437844B (zh) 一种超前预报隧道涌水位置的方法
WO2017162094A1 (zh) 低流速声纳测量方法、装置及应用
CN105239611B (zh) 确定基坑开挖面下方止水帷幕渗漏对周边环境影响的方法
Su et al. Dam seepage monitoring based on distributed optical fiber temperature system
Dong et al. Delineation of leakage pathways in an earth and rockfill dam using multi-tracer tests
Hu et al. Comprehensive investigation of leakage problems for concrete gravity dams with penetrating cracks based on detection and monitoring data: a case study
Weller et al. Geotechnical and geophysical long-term monitoring at a levee of Red River in Vietnam
Lee et al. Permeability evaluation for artificial single rock fracture according to geometric aperture variation using electrical resistivity
Zhang et al. Buoyancy force acting on underground structures considering seepage of confined water
CN103276713B (zh) 一种可原位评价饱和土渗透特征的环境孔压静力触探探头
Zhao et al. Flow Field Fitting Method and Acoustic Doppler Velocity Measurement: A New Approach for Detecting Leakage Pathways in Concrete‐Face Rockfill Dams
Yang et al. Analytical method for estimating leakage of reservoir basins for pumped storage power stations
Zhu et al. Seepage and settlement monitoring for earth embankment dams using fully distributed sensing along optical fibers
CN203229939U (zh) 一种可原位评价饱和土渗透特征的环境孔压静力触探探头
CN105386430A (zh) 一种止水帷幕作用下止水帷幕两侧水位差的确定方法
Zhao et al. A new calculation method for hydrogeological parameters from unsteady-flow pumping tests with a circular constant water-head boundary of finite scale
Huang et al. Detection of leakage paths at the Wanyao dam body in Southwest China by hydrochemical analysis and tracer testing
CN210487976U (zh) 地下空间工程渗漏声纳检测装置
Yousefi et al. Seepage investigation of embankment dams using numerical modelling of temperature field
AU2021103928A4 (en) A Low-flow Velocity Sonar Measurement Method, And Its Device And Application

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13878479

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14403031

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 19-02-2016)

122 Ep: pct application non-entry in european phase

Ref document number: 13878479

Country of ref document: EP

Kind code of ref document: A1