WO2014137197A2 - 뉴 캐리어 타입인 캐리어에서 복조참조신호를 전송 및 수신하는 방법과 장치 - Google Patents
뉴 캐리어 타입인 캐리어에서 복조참조신호를 전송 및 수신하는 방법과 장치 Download PDFInfo
- Publication number
- WO2014137197A2 WO2014137197A2 PCT/KR2014/001912 KR2014001912W WO2014137197A2 WO 2014137197 A2 WO2014137197 A2 WO 2014137197A2 KR 2014001912 W KR2014001912 W KR 2014001912W WO 2014137197 A2 WO2014137197 A2 WO 2014137197A2
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- reference signal
- demodulation reference
- carrier
- subframe
- sss
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L5/00—Arrangements affording multiple use of the transmission path
- H04L5/003—Arrangements for allocating sub-channels of the transmission path
- H04L5/0048—Allocation of pilot signals, i.e. of signals known to the receiver
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L5/00—Arrangements affording multiple use of the transmission path
- H04L5/0001—Arrangements for dividing the transmission path
- H04L5/0014—Three-dimensional division
- H04L5/0016—Time-frequency-code
Definitions
- the present invention relates to an NCT in which a control region including a PDCCH does not exist. More particularly, the present invention relates to a method and an apparatus for transmitting and receiving a demodulation reference signal in a carrier that is an NCT.
- LTE Long Term Evolution
- LTE-A Long Term Advanced
- 3GPP series High-speed and large-capacity communication systems that can transmit and receive various data such as video and wireless data, beyond voice-oriented services. Therefore, there is a demand for developing a technology capable of transmitting a large amount of data corresponding to a wired communication network.
- a method of efficiently transmitting data through a plurality of CCs may be used.
- time-frequency resources may be divided into an area for transmitting a control channel (for example, a physical downlink control channel) and an area for transmitting a data channel (for example, a physical downlink shared channel (PDSCH)).
- a control channel for example, a physical downlink control channel
- a data channel for example, a physical downlink shared channel (PDSCH)
- MIMO multiple-input multiple-output
- CoMP coordinated multi-point transmission / reception
- NCT New Carrier Type
- PDCCH Physical Downlink Control Channel
- DM-RS collision issues which are major issues in NCT (New Carrier Type) where the control area including PDCCH added as a new work item in 3GPP Rel-12 does not exist
- RRM measurement for NCT We are discussing Radio Resource Management measurement, a synchronized new carrier (NC).
- the present invention provides a method for changing the position or transmission pattern of the DM-RS to avoid collision with the DM-RS when the PSS / SSS is present in the NCT.
- the present invention provides a way to avoid the collision of the PSS / SSS and DM-RS while maintaining the same position as the conventional PSS / SSS and DM-RS.
- a method of transmitting a demodulation reference signal having an orthogonality in a carrier having an NCT includes a demodulation reference signal to be mapped to a symbol overlapping a PSS and an SSS disposed in a downlink subframe of the carrier. Performing code division multiplexing using an orthogonal code, and transmitting a downlink including a demodulation reference signal to which the code division multiplexing is applied.
- a method for receiving a demodulation reference signal having an orthogonality in a carrier that is an NCT includes receiving a downlink including a demodulation reference signal, and using an orthogonal code of the carrier. And identifying a demodulation reference signal arranged in a downlink subframe, wherein the demodulation reference signal is mapped to a symbol superimposed with a PSS and an SSS arranged in a downlink subframe of the carrier, and the demodulation reference signal is mapped to the PSS and the SSS.
- the reference signal may be code division multiplexed.
- a base station transmitting a demodulation reference signal having an orthogonality in a carrier which is an NCT
- a base station transmitting a demodulation reference signal having an orthogonality in a carrier which is an NCT
- a method for transmitting a demodulation reference signal in a carrier having an NCT maps a demodulation reference signal to symbols of different times on a time axis from PSS and SSS disposed in a downlink subframe of the carrier. And transmitting a downlink including the mapped demodulation reference signal.
- a method for receiving a demodulation reference signal from a carrier of an NCT terminal receiving a downlink including a demodulation reference signal, and the downlink sub- Identifying a demodulation reference signal mapped to a symbol of a different time on a time axis from a PSS and an SSS arranged in a frame.
- a demodulation reference signal is mapped to symbols of different times on a time axis from PSS and SSS arranged in a downlink subframe of the carrier.
- collision of PSS / SSS and DM-RS can be avoided by code division multiplexing PSS / SSS and DM-RS without changing the position of PSS / SSS or DM-RS in NCT.
- the collision between the PSS / SSS and the DM-RS may be avoided by changing the location where the DM-RS is mapped.
- FIG. 1 illustrates a communication system to which embodiments of the present invention are applied.
- FIG. 2 illustrates a control region in which a control channel including a PDCCH, a PCFICH, and a PHICH is transmitted in one subframe, and a data region in which a data channel including a PDSCH is transmitted.
- 3 is an ePDCCH implementation scheme to apply an embodiment of the present specification.
- FIG. 5 shows the positions of the PSS / SSS on the symbol of OFDM in the case of FDD and TDD.
- FIG. 7 shows the positions of subcarriers (resource elements) of PSS / SSS and PBCH for the entire band of 20 MHz, 10 MHz, 5 MHz, 3 MHz, and 1.4 MHz, respectively.
- FIG. 8 illustrates a symbol-based cyclic shifted eREG indexing for a PRB pair for a PRB pair when CRS port 0 is configured when used as an EPDCCH as an NCT structure.
- FIG. 10 illustrates code divisional multiplexing of PSS / SSS and DM-RS according to an embodiment of the present invention.
- FIG. 11 is a view showing an operation of a base station according to an embodiment of the present invention.
- FIG. 12 is a view showing an operation of a terminal according to an embodiment of the present invention.
- FIG. 13 is a view showing the configuration of a base station according to an embodiment of the present invention.
- FIG. 14 is a view showing the configuration of a user terminal according to another embodiment of the present invention.
- 15 is a diagram illustrating a process of transmitting a demodulation reference signal in a base station according to another embodiment of the present invention.
- 16 is a diagram illustrating a process of receiving a demodulation reference signal in a terminal according to another embodiment of the present invention.
- FIG. 17 illustrates intra-frequency RRM measurement with two neighboring NCT cells having a 5 ms TRS transmission period with a 2 ms on duration and a DRX period of 40 ms.
- FIG. 18 is a diagram illustrating a DM-RS pattern for a normal CP according to another embodiment of the present invention.
- 19 to 21 illustrate CSI-RS patterns in which CSI-RSs are set.
- FIG. 22 is a diagram illustrating a DM-RS pattern for a normal CP and an extended CP in the case of FDD according to another embodiment of the present invention.
- 23 and 24 exemplarily illustrate DM-RS patterns for a normal CP and an extended CP in the case of TDD according to another embodiment of the present invention.
- 25 is a diagram showing the configuration of a base station according to another embodiment of the present invention.
- 26 is a diagram showing the configuration of a user terminal according to another embodiment of the present invention.
- FIG. 1 illustrates a communication system to which embodiments of the present invention are applied.
- Communication systems are widely deployed to provide various communication services such as voice, packet data, and the like.
- a communication system includes a user equipment (UE) 10 and a transmission point 20 that performs uplink and downlink communication with the terminal 10.
- UE user equipment
- transmission point 20 that performs uplink and downlink communication with the terminal 10.
- the terminal 10 or a user equipment is a comprehensive concept that means a user terminal in wireless communication.
- UE user equipment
- WCDMA Wideband Code Division Multiple Access
- LTE Long Term Evolution
- HSPA mobile station
- GSM UT
- SS subscriber station
- wireless device a wireless device that includes a user terminal, a subscriber station (SS), and a wireless device.
- the transmitting end 20 or cell generally refers to a station communicating with the terminal 10, and includes a base station, a node-B, an evolved node-B, and a base transceiver. Other terms may be referred to as a system, an access point, a relay node, a remote radio head (RRH), a radio unit (RU), and the like.
- RRH remote radio head
- RU radio unit
- the transmission terminal 20 or a cell should be interpreted in a comprehensive sense indicating a part of a region covered by a base station controller (BSC) in a CDMA, a NodeB of a WCDMA, etc., and a radio remote connected to a base station.
- BSC base station controller
- Comprehensive means any type of device that can communicate with a single terminal, such as a head, relay node, a sector of a macro cell, a site, or a micro cell such as a femtocell or picocell. Used as a concept.
- the terminal 10 and the transmitting terminal 20 are used as a transmitting and receiving entity used in implementing the technology or the technical idea described in this specification in a comprehensive sense and are not limited to the terms or words specifically referred to.
- one terminal 10 and one transmission terminal 20 are shown in FIG. 1, the present invention is not limited thereto. It is possible for one transmission terminal 20 to communicate with the plurality of terminals 10, and one terminal 10 may communicate with the plurality of transmission terminals 20.
- CDMA code division multiple access
- TDMA time division multiple access
- FDMA frequency division multiple access
- OFDMA orthogonal frequency division multiple access
- OFDM OFDM
- the present invention is a combination of the TDD (Time Division Duplex) method is transmitted using a different time, uplink transmission and downlink transmission, FDD (Frequency Division Duplex) method is transmitted using a different frequency, combining the TDD and FDD Applicable to hybrid duplexing method.
- TDD Time Division Duplex
- FDD Frequency Division Duplex
- embodiments of the present invention provide asynchronous wireless communication that evolves into Long Term Evolution (LTE) and LTE-Advanced (LTE-A) through GSM, WCDMA, and HSPA, and synchronous evolution into CDMA, CDMA-2000, and UMB. It can be applied to the field of wireless communication.
- LTE Long Term Evolution
- LTE-A LTE-Advanced
- GSM Global System for Mobile communications
- WCDMA Wideband Code Division Multiple Access
- HSPA High Speed Downlink Packet Access
- CDMA-2000 Code Division Multiple Access-2000
- UMB Universal Mobile Broadband
- the terminal 10 and the transmitter 20 may communicate in uplink and downlink.
- the transmitting end 20 performs downlink transmission to the terminal 10.
- the transmitter 20 may transmit a physical downlink shared channel (PDSCH), which is a main physical channel for unicast transmission.
- PDSCH physical downlink shared channel
- the transmitting end 20 grants scheduling control for transmission on downlink control information such as scheduling required for reception of the PDSCH and uplink data channel (for example, a physical uplink shared channel (PUSCH)).
- Physical Downlink Control Channel (PDCCH) for transmitting information
- Physical Control Format Indicator Channel (PCFICH) for transmitting an indicator for distinguishing regions of PDSCH and PDCCH
- uplink transmission A control channel such as a physical HARQ indicator channel (PHICH) for transmitting a HARQ (Hybrid Automatic Repeat reQuest) confirmation may be transmitted.
- PHICH physical HARQ indicator channel
- HARQ Hybrid Automatic Repeat reQuest
- the transmitter 20 transmits a Cell-Specific Reference Signal (CRS), a MBSFN Reference Signal (MBSFN-RS), and a UE-Specific Reference Signal (UE) in the downlink.
- CRS Cell-Specific Reference Signal
- MBSFN-RS MBSFN Reference Signal
- UE UE-Specific Reference Signal
- Specific Reference Signal DM-RS
- PRS Positioning Reference Signal
- CSI Reference Signal Channel State Information Reference Signal
- one radio frame or radio frame consists of 10 subframes, and one subframe consists of two slots.
- the radio frame has a length of 10 ms and the subframe has a length of 1.0 ms.
- the basic unit of data transmission is a subframe unit, and downlink or uplink scheduling is performed on a subframe basis.
- One slot may have a plurality of OFDM symbols in the time domain and include at least one subcarrier in the frequency domain.
- a slot may include seven OFDM symbols (in the case of the Normal Cyclic Prefix) or six OFDM symbols in the time domain and may include 12 subcarriers in the frequency domain.
- the time-frequency domain defined as one slot may be referred to as a resource block (RB), but is not limited thereto.
- FIG. 2 illustrates a control region 201 in which a control channel including PDCCH, PCFICH and PHICH is transmitted and a data region 202 in which a data channel including PDSCH are transmitted in one subframe.
- the horizontal axis represents time and the vertical axis represents frequency. 2 shows one subframe (1 ms) on the time axis and one channel (eg, 1.4, 3, 5, 10, 15, or 20 MHz) on the frequency axis.
- the PCFICH is composed of two bits of information corresponding to an OFDM symbol that is the size of the control region 201, which is encoded into a 32-bit codeword.
- the coded bits are scrambled using cell-specific and subframe-specific scrambling codes to randomize intercell interference, and then modulated with Quadrature Phase Shift Keying (QPSK) into 16 resource elements. Mapped.
- PCFICH is always mapped to the first OFDM symbol of each subframe. When the PCFICH is mapped to the first ODFM symbol of the subframe, it is divided into four groups, and each group is well separated and mapped in the frequency domain so as to obtain overall excellent diversity.
- PDCCH control information
- DCI downlink control information
- DCI format 0 and DCI format 4 are used for uplink grant.
- DCI format 1 / 1A / 1B / 1C / 1D / 2 / 2A / 2B / 2C is used for downlink scheduling assignment.
- DCI format 3 / 3A is used for power control.
- Each DCI message payload has a Cyclic Redundancy Check (CRC), and a Radio Network Temporary Identifier (RNTI) for identifying a UE is included in the CRC calculation process.
- CRC Cyclic Redundancy Check
- RNTI Radio Network Temporary Identifier
- the PDCCH may be transmitted in a common search space or UE specific search space of the control region 201.
- Each terminal 10 searches for a PDCCH through blind decoding in a common search space commonly assigned to terminals in a cell and a UE-specific search space assigned to the terminal, and when the reception of the PDCCH is confirmed, the terminal 10 detects the PDCCH. Control may be performed based on the control information transmitted through the control information.
- the LTE / LTE-A system defines the use of a component carrier (CC), which is a plurality of unit carriers, as a method for extending a system requirement, that is, a bandwidth for satisfying a high data rate.
- CC component carrier
- one CC may have a bandwidth of up to 20 MHz, and resources may be allocated within 20 MHz according to a corresponding service, but this is only one embodiment according to a process of implementing a system, and a bandwidth of 20 MHz or more may be determined according to the implementation of the system. Can be set to have.
- MIMO Multiple Input / Multiple Output
- CoMP Coordinated Multiple Point
- wireless relay node In order to apply, it is necessary to transmit more control information in a transmission terminal such as a base station.
- a method for increasing the transmission capacity of the PDCCH a method of transmitting control information to be transmitted through the PDCCH in the data region in which the PDSCH is transmitted may be considered.
- This method can support large PDCCH capacity without reducing the reception reliability of the PDCCH.
- the control information corresponding to the PDCCH transmitted in the data region, for example, the PDSCH region may be called extended control information (Extended PDCCH, ePDCCH, X-PDCCH), PDCCH-A (PDCCH-Advanced), Hereinafter will be described collectively as ePDCCH.
- the ePDCCH is equally used for the R-PDCCH which is a control channel for relay.
- the ePDCCH is a concept including both a control channel for relay and a control channel for inter-cell interference coordination.
- the ePDCCH may be resource allocated to a data region (data channel region) of any subframe.
- ePDCCH is a type of new PDCCH considered in the Rel-11 LTE system, and resource allocation of uplink control information (ie, PUCCH) that may be caused by introducing this is required.
- PUCCH uplink control information
- 3 is an ePDCCH implementation scheme to apply an embodiment of the present specification.
- the legacy PDCCH for the existing Rel-8 / 9/10 UE is transmitted to the legacy PDCCH region, and the higher layer signaling or system information (SI) is transmitted from the Rel-11 UE.
- SI system information
- the ePDCCH for multi-output may be allocated to a physical downlink shared channel (PDSCH) which is a data region.
- PDSCH physical downlink shared channel
- allocating control information is used in the same sense as allocating a control channel.
- the allocation of the control channel in the present specification means allocating control information to resource elements.
- the control channel is allocated in units of two physical slots, that is, a physical resource block (PRB) pair corresponding to one subframe, and a PDSCH and an ePDCCH may not be simultaneously allocated to one PRB pair.
- PRB physical resource block
- PDSCH and ePDCCH cannot be multiplexed in one PRB pair.
- control information or control channels of two or more terminals may be allocated to two or more PRB pairs or may be allocated within one PRB pair to multiplex the control information of the terminals.
- one eCCE may be allocated to two or more PRB pairs distributed or localized within one PRB pair.
- the former case is called distributed transmission or distributed type (410 of FIG. 4) and the latter case is called centralized transmission or concentrated type (420 of FIG. 4).
- a common search space may be supported in relation to a search space.
- a common RNTI may be transmitted, and SI-RNTI, P-RNTI, RA-RNTI, TPC-PUCCH-RNTI, and TPC-PUSCH-RNTI may be used.
- NCT new carrier type
- a primary CC (PC) of primary component carriers (CC), which is merged through a carrier aggregation (CA) technique is called a CC.
- PC primary component carriers
- CA carrier aggregation
- a secondary CC that reduces overhead to increase the payload size of the secondary CC (scell), that is, a component carrier that does not include a control region.
- NCTs are classified into standalone NCT (S-NCT) and non-standalone NCT (NS-NCT) types, and in the case of non-standalone NCT (NS-NCT) type, synchronous carriers (Synchronized) Carrier (NCT) and Unsynchronized Carrier (NCT) NCT are further divided into NCT, which includes Physical Downlink Control Channel (PDCCH), Physical HARQ Indicator Channel (PHICH), Physical Control Format Indicator Channel (PCFICH), and Cell-specific Reference Signal (CRS). Control signals are not to be transmitted.
- S-NCT S-NCT
- NCT synchronous carriers
- PHICH Physical HARQ Indicator Channel
- PCFICH Physical Control Format Indicator Channel
- CRS Cell-specific Reference Signal
- the transmitter 20 transmits a Cell-Specific Reference Signal (CRS), an MBSFN Reference Signal (MBSFN-RS), a UE-Specific Reference Signal in the downlink of the LCT.
- CRS Cell-Specific Reference Signal
- MBSFN-RS MBSFN Reference Signal
- UE-Specific Reference Signal DM-RS
- PRS Positioning Reference Signal
- CSI-RS Channel State Information Reference Signal
- the transmitter 20 transmits a primary synchronization signal (PSS) and a secondary synchronization signal (SSS) for synchronization with the base station and cell identification.
- PSS primary synchronization signal
- SSS secondary synchronization signal
- an SSS is allocated to at least one specific resource block (RB) in at least one subframe of one radio frame.
- the transmitter 20 may cause side effects such as interference with an LTE user equipment (UE), collision with a setting of a demodulation reference signal (DM-RS), or a DMRS (DMRS).
- UE LTE user equipment
- DM-RS demodulation reference signal
- DMRS DMRS
- the position of the PSS / SSS for the asynchronous NCT which is one of the CCs not including the control region, may be changed on the time axis.
- the transmitter 20 will not transmit a cell-specific reference signal (CRS) in the downlink of the NCT. Instead, the transmitter 20 may transmit a tracking reference signal (TRS).
- TRS is a kind of reduced CRS (Reduced CRS) transmitted in 5ms period based on the antenna port 0 and Rel.8 sequence of the conventional CRS.
- the transmitter 20 may transmit a UE-Specific Reference Signal (DM-RS) and a Channel State Information Reference Signal (CSI-RS) in the NCT.
- DM-RS UE-Specific Reference Signal
- CSI-RS Channel State Information Reference Signal
- FIG. 5 shows the positions of the PSS / SSS on the symbol of OFDM in the case of FDD and TDD.
- the PSS is transmitted in the last symbol of the first slot of subframes 0 and 5, and the SSS is transmitted in the last to second symbol of the same slot.
- the PSS is transmitted in the third symbol of subframes 1 and 6 (ie, DwPTS), and the SSS is transmitted in the last symbol of subframes 0 and 5.
- the PBCH is mapped to four subframes.
- the PBCH is mapped to the first four symbols of the second slot of subframe 0 of each radio frame in a normal CP and an extended CP.
- FIG. 7 shows the positions of subcarriers (resource elements) of PSS / SSS and PBCH for the entire band of 20 MHz, 10 MHz, 5 MHz, 3 MHz, and 1.4 MHz, respectively.
- the PSS is matched to 72 subcarriers in the middle of the entire band. Therefore, the PSS occupies 72 resource elements in the middle of the subframes 0 and 5 except for the DC subcarrier.
- the SSS occupies 72 resource elements in the middle of the subframes 0 and 5 except for the DC subcarrier.
- the PSS occupies 72 resource elements in the middle of the subframes 1 and 6 except for the DC subcarrier. Similar to the FDD, the SSS occupies 72 resource elements in the middle of the subframes 0 and 5 except for the DC subcarrier.
- the PBCH is transmitted over 72 subcarriers in the middle of the entire band in the first four symbols of the second slot of subframe zero.
- the terminal transmits a master information block (MIB), which is system information, through a PBCH (Physical Broadcast Channel) among control signals after the cell discovery process, and after the system information is received and decoded, the terminal performs a random-access process.
- MIB master information block
- PBCH Physical Broadcast Channel
- FIG. 8 illustrates a symbol-based cyclic shifted eREG indexing for a PRB pair for a PRB pair when CRS port 0 is set when used as an EPDCCH as an NCT structure.
- symbol-based cyclic shifted eREG indexing for a PRB pair may be performed as shown in FIG. 7 regardless of the number or position of REs on the CRS.
- the NCT is classified into a standalone NCT (S-NCT) and a non-standalone NCT (NS-NCT) type. Synchronized Carrier NCT and Unsynchronized Carrier NCT are further divided.
- S-NCT standalone NCT
- NS-NCT non-standalone NCT
- Synchronized Carrier NCT and Unsynchronized Carrier NCT are further divided.
- synchronization might be provided by the legacy carrier.
- the New Carrier Type needs to provide appropriate synchronization signals for discovery or time / frequency tracking operation the New Carrier Type needs to provide a proper synchronization signal for discovery and time / frequency tracking).
- the CRS since the CRS is not transmitted in the NCT, a problem may occur in reception and demodulation of a control channel such as a conventional PBCH based on the CRS.
- the above-described TRS may be transmitted by transmitting the CRS every 5ms, only in a specific frequency band, or a combination of both.
- the PBCH is transmitted on the center 6PRB of the second slot of subframe 0 of each radio frame.
- the UE is not only connected to the system for the first time, but also a plurality of elements merged through a handover for supporting cell reselection and mobility, and carrier aggregation (CA).
- CA carrier aggregation
- the cell access procedure is also performed to find synchronization for carriers (Component Carrier (CC), hereinafter referred to as 'CC').
- CC Component Carrier
- the cell search process consists of a PSS detection and SSS detection step for acquiring frequency and symbol synchronization for a cell, thereby acquiring frame / slot synchronization of the cell and determining a cell ID.
- this process may be performed in parallel with the PSS / SSS or through another signal.
- a step of confirming whether the corresponding cell is an NCT or an LCT is performed and a TRS is checked, thereby performing RRM measurement or PBCH channel demodulation.
- PBCH channel demodulation is performed based on the DM-RS.
- the PBCH channel contains system information.
- PSS / SSS detection and PBCH detection are the basis in the cell access process according to the cell search.
- the position of the PSS / SSS may be moved on the time axis or DM-RS puncturing may be performed.
- a channel estimation error may occur due to this.
- such a channel estimation error may be serious for a terminal moving at high speed.
- One way to solve this channel estimation error may be a method of changing the PBCH channel mapping position on the time axis.
- the present invention if there is a PSS / SSS in the NCT in order to avoid collision with the DM-RS, whether to move to another OFDM symbol position and DM-RS puncturing and PBCH transmission pattern according to the DM-RS pattern different from the existing
- the interference / collision problem of the PSS / SSS and the DM-RS occurs due to the same position / position overlap.
- the DM-RS and the PSS / SSS in subframe 0/5 of 920 illustrated in 910 of FIG. 9 are allocated to symbols on the same time axis.
- a scheme of transmitting a signal so as to distinguish a signal instead of changing the position of the DM-RS may be considered.
- PSS / SSS and DM-RS collide by code division multiplexing PSS / SSS and DM-RS without changing the position of PSS / SSS or DM-RS in NCT. Suggest ways to avoid this.
- multiplexing is performed using an orthogonal sequence when mapping DM-RS to complex demodulation symbols.
- Antenna port (applies substantially the same for antenna port 5)
- the sequence r (m) of the DM-RS related to the PDSCH may be defined as in Equation 1 below.
- Equation 1 May be 110 as a maximum downlink bandwidth in RB units.
- the pseudo-random sequence c (i) may be initialized as in Equation 2 below.
- n s may have a value of 0 to 19 as a slot number.
- n SCID may have a value of 0 or 1 as a scrambling identity. The value of If the value of is not provided by a higher layer or if DCI format 1A is used as the DCI, then the cell ID ( ), Otherwise to be.
- the DM-RS may have pseudo orthogonality when the values of n SCID are different from each other.
- Frequency domain index for antenna port (applies substantially the same for antenna port 5)
- N part of DM-RS in PRB Physical Resource Block ( PRB ) r (m) is mapped to the complex demodulation symbols of Equation 3 below in a subframe according to a normal cyclic prefix (CP).
- CP normal cyclic prefix
- the symbol number l and the subcarrier number k of the resource element RE to which the sequence r (m) of the DM-RS related to the PDSCH is mapped may be determined as in Equation 4 below.
- Equation (4) Is a resource block size in the frequency domain expressed by the number of subcarriers, n PRB is a physical resource block number, and n s is a slot number.
- Orthogonal sequence Can be given in Table 1 below.
- part of DM-RS r (m) is mapped to the complex demodulation symbols of Equation 5 below in a subframe according to an extended cyclic prefix (CP).
- CP extended cyclic prefix
- the symbol number l and the subcarrier number k of the resource element RE to which the sequence r (m) of the DM-RS related to the PDSCH is mapped may be determined as in Equation 6 below.
- the orthogonal sequence can be given in Table 2 below.
- the present invention can avoid collision of PSS / SSS and DM-RS by code divisional multiplexing PSS / SSS and DM-RS without changing the position of PSS / SSS or DM-RS in NCT.
- an orthogonal sequence may be additionally used to map the DM-RS to complex demodulation symbols in case of overlapping / collision of the PSS / SSS and the DM-RS.
- the present invention proposes a method of changing the position of the DM-RS overlapping the PSS / SSS in the NCT.
- code division multiplexing is as follows.
- FIG. 10 illustrates code divisional multiplexing of PSS / SSS and DM-RS according to an embodiment of the present invention.
- FIG. 10 shows the orthogonality between the signal of the DM-RS and the PSS / SSS by applying the OCC of Table 1 to the DM-RS when the PSS / SSS and the DM-RS are mapped to the same symbols as shown in FIG. 9. To eliminate interference. As a result, even if the DM-RS and the PSS / SSS are provided in the same symbol, the UE can distinguish them.
- DM-RS Is mapped to the complex demodulation symbols of Equation 7 below in a subframe according to a normal cyclic prefix (CP).
- CP normal cyclic prefix
- W (l) is w (x, y), where x is a position of a symbol of a corresponding slot in a corresponding subframe, and y is a position of a subcarrier.
- W (l) is w (x, y), where x is a position of a symbol of a corresponding slot in a corresponding subframe, and y is a position of a subcarrier.
- w (x, y) is w (5,0), w (6,0), w (5,1), w (6,1) or w (x, y) is w (5,0) 5), w (6,5), w (5,6), w (6,6) or w (x, y) is w (5,10), w (6,10), w (5 , 11), w (6,11) Since an additional orthogonal sequence, for example, [1,1, -1, -1], is further multiplied by the complex demodulation symbols, the DM-RS can be code-multiplexed with the PSS / SSS.
- the transmitting end may transmit the orthogonal codes used for the code division multiplexing of the DM-RS and PSS / SSS to the terminal, either implicitly or explicitly (such as RRC signaling or system information), but the terminal does not transmit the orthogonal code.
- Orthogonal codes may be blind decoded sequentially. In other words, when the code division multiplexing of the DM-RS and the PSS / SSS is performed using eight orthogonal codes as shown in FIG. 10, eight orthogonal codes may be sequentially used for blind decoding.
- the code division multiplexing of FIG. 10 may be applied only to some DM-RSs or may be applied to a position-shifted DM-RS.
- the terminal may be transmitted by including the blind decoding method and the information on the orthogonal code to be transmitted sequentially using eight orthogonal codes for the DM-RS located in the same position as the PSS / SSS.
- the blind decoding method sequentially confirms that the UE is decoded by applying one of the eight orthogonal codes of Table 1, which may bring a temporal load on the UE side.
- An embodiment of the antenna port and the orthogonal code is shown in Table 1 described above.
- the orthogonal code may be included in the RRC.
- information indicating an orthogonal code may be included in the RRC.
- the terminal may perform blind decoding using only the orthogonal code information of the part. This can be seen as sending an orthogonal code group. That is, only the information on the orthogonal codes of some of Table 1 may be generated as orthogonal code groups and included in the RRC to reduce the number of times the terminal performs blind decoding.
- the terminal may perform blind decoding using only the orthogonal codes of Table 3. In this case, the number of blind decoding can be reduced up to four times. Thereafter, the terminal may perform blind decoding using Table 3 before transmitting the orthogonal codes to the RRC.
- Table 3 contains only some orthogonal code information. As shown in Table 1 or Table 3, orthogonal code group information including an orthogonal code may be transmitted, and the terminal may perform blind decoding. In addition, by explicitly including the information indicating the orthogonal code to the terminal in the RRC, the terminal can identify the DM-RS using the orthogonal code.
- the base station may perform a process of selecting a sequence assignable to a corresponding terminal for a certain period of time in the future.
- the sequence can be selected by selecting a DM-RS suitable for the terminal and considering the orthogonal code to be applied to the PSS / SSS of the overlapped positions.
- the method of selecting and transmitting a group from the sequences of Table 1 may vary according to the appointment of the base station and the terminal or the situation of the terminal.
- FIG. 11 is a view showing an operation of a base station according to an embodiment of the present invention.
- the base station checks the type of the carrier to transmit the demodulation reference signal (S1110). If the result of the check is NCT (S1120), an orthogonal code to be applied to the demodulation reference signal is selected (S1130), and the demodulation reference signal is code-division multiplexed and mapped using the selected orthogonal code (S1140).
- This process means that code division multiplexing is performed using an orthogonal code on a demodulation reference signal to be mapped to a symbol overlapping a PSS and an SSS disposed in a downlink subframe of the carrier.
- the base station transmits a downlink including the mapped demodulation reference signal (S1150). That is, the base station transmits a downlink including the demodulation reference signal to which the code division multiplexing is applied.
- the NCT is not mapped to the demodulation reference signal in a legacy method (S1160).
- the base station when the base station transmits information indicating the orthogonal code, the base station may include the information indicating the orthogonal code in the RRC.
- the base station may transmit an orthogonal code group. That is, when two or more orthogonal code group information including the orthogonal code is included in the RRC and transmitted, the terminal may perform blind decoding using only the orthogonal code in the group.
- the orthogonal code may be one of orthogonal sequences of Table 1.
- FIG. 12 is a view showing an operation of a terminal according to an embodiment of the present invention.
- the terminal of FIG. 12 illustrates a process of receiving a demodulation reference signal from a carrier which is an NCT.
- the terminal receives a downlink including a demodulation reference signal (S1210).
- S1220 a type of the carrier on which the demodulation reference signal is transmitted is checked.
- the UE checks by applying an orthogonal code to the demodulation reference signal included in the downlink subframe (S1240).
- the demodulation reference signal is mapped to a symbol overlapped with the PSS and SSS disposed in the downlink subframe of the carrier, and the PSS and SSS and the demodulation reference signal are code division multiplexed.
- the orthogonal code may be used. That is, the terminal may receive the RRC including the information indicating the orthogonal code and check the demodulation reference signal using the orthogonal code of the indication information. If one orthogonal code is not indicated or there is no indication information, the terminal should perform blind decoding. Accordingly, the checking of the S1240 includes a blind decoding process of the demodulation reference signal by using a plurality of orthogonal codes. When the base station transmits the orthogonal code group as shown in Table 3, the number of blind decoding is reduced.
- the terminal when the terminal receives the RRC including the orthogonal code group information for the plurality of orthogonal codes to be blindly decoded before the checking, the terminal performs blind decoding only among the orthogonal codes in the groups.
- the demodulation reference signal can be confirmed.
- the orthogonal code may be one of orthogonal sequences of Table 1.
- FIG. 13 is a view showing the configuration of a base station according to an embodiment of the present invention.
- the base station 1300 includes a controller 1310, a transmitter 1320, and a receiver 1330.
- the controller 1310 controls the overall operation of the base station according to the structure and operation of the NCT required to perform the above-described present invention.
- the transmitter 1320 and the receiver 1330 are used to transmit and receive signals, messages, and data necessary for carrying out the present invention.
- the base station of FIG. 13 transmits a demodulation reference signal having orthogonality in the carrier, which is the NCT described with reference to FIGS. 10 and 11.
- the receiving unit 1330 receives a signal from a terminal, and the control unit 1310 uses code division multiplexing using an orthogonal code for a demodulation reference signal to be mapped to a symbol overlapping a PSS and an SSS disposed in a downlink subframe of the carrier.
- Perform The transmitter 1320 transmits a downlink including a demodulation reference signal to which the code division multiplexing is applied.
- FIG. 14 is a view showing the configuration of a user terminal according to another embodiment of the present invention.
- a user terminal 1400 according to another embodiment, that is, the terminal includes a receiver 1430, a controller 1410, and a transmitter 1420.
- the receiver 1430 receives downlink control information, data, and a message from a base station through a corresponding channel.
- control unit 1410 controls the overall operation of the terminal according to the structure and operation of the NCT to perform the above-described present invention.
- the transmitter 1420 transmits downlink control information, data, and a message to a base station through a corresponding channel.
- the user terminal of FIG. 14 receives an demodulation reference signal having orthogonality from a carrier, which is the NCT described above with reference to FIGS. 10 and 12, and performs an operation of confirming it.
- the receiver 1330 receives a downlink including a demodulation reference signal
- the controller 1410 checks a demodulation reference signal disposed in a downlink subframe of the carrier using an orthogonal code.
- the demodulation reference signal is mapped to a symbol superimposed with the PSS and SSS disposed in the downlink subframe of the carrier, and the PSS and SSS and the demodulation reference signal are code division multiplexed.
- the transmitter 1420 transmits a signal to the base station.
- 15 is a diagram illustrating a process of transmitting a demodulation reference signal in a base station according to another embodiment of the present invention.
- the base station checks the type of the carrier to transmit the demodulation reference signal (DM-RS) (S1510).
- the base station determines a symbol in which the PSS and the SSS are arranged in the downlink subframe (S1530). This is to map a demodulation reference signal to symbols of different times on the time axis from the PSS and SSS arranged in the downlink subframe of the carrier.
- the base station maps a demodulation reference signal to a symbol having a different time based on the identified symbol position and time axis (S1540).
- the base station transmits a downlink including the mapped demodulation reference signal (S1550).
- the NCT is not mapped to the demodulation reference signal in a legacy method (S1560).
- symbols having different times on the time axis from the PSS / SSS may be variously selected according to an implementation scheme.
- the downlink subframe includes two slots, and the demodulation reference signal is located at the third and fourth symbols on the time axis in each of the two slots, or on the time axis in the first slot. Located at the third and fourth symbols and selectable to be located at the sixth and seventh symbols on the time axis in the second slot. In this case, it looks at in more detail in FIG.
- the demodulation reference signal DM-RS may overlap with the CSI reference signal (CSI-RS). This situation is presented in FIGS. 19-21.
- the base station may reschedule the CSI-RS.
- the rescheduled CSI-RS may be transmitted at another location.
- the selection of a symbol of a different time on the time axis from the PSS / SSS may be implemented as follows in case of FDD.
- the demodulation reference signal In a subframe consisting of two slots, when the subframe is a normal cyclic prefix (CP), the demodulation reference signal is located at first and second symbols on a time axis in each of the two slots, and the subframe In the extended cyclic prefix (CP), the demodulation reference signal can be controlled by the base station to be located in the second and third symbols on the time axis in each of the two slots. This will be described in detail with reference to FIG. 22.
- the demodulation reference signal is mapped to a position other than the last symbol on the time axis of the second slot of the subframe.
- the base station may control the demodulation reference signal to be mapped to a position other than the third symbol on the time axis of the first slot of the subframe.
- FIG. 23 shows a case of a normal CP
- FIG. 24 shows a case of an extended CP.
- 16 is a diagram illustrating a process of receiving a demodulation reference signal in a terminal according to another embodiment of the present invention.
- the terminal receives a downlink including a demodulation reference signal (DM-RS) (S1610).
- DM-RS demodulation reference signal
- operation S1620 the type of the carrier on which the demodulation reference signal is transmitted is checked.
- the demodulation reference signal is checked in a symbol in which PSS and SSS are not disposed in a downlink subframe (S1640).
- the terminal identifies the demodulation reference signal mapped to the PSS and SSS arranged in the downlink subframe of the carrier and symbols of different times on the time axis.
- the demodulation reference signal is checked in the legacy method (S1650).
- the positions of symbols having different times on the time axis from the PSS / SSS may vary depending on implementation.
- the downlink subframe includes two slots, and the demodulation reference signal is located at the third and fourth symbols on the time axis in each of the two slots, or on the time axis in the first slot. Located in the third and fourth symbols and may be located in the sixth and seventh symbols on the time axis in the second slot. In this case, it looks at in more detail in FIG.
- the demodulation reference signal DM-RS may overlap with the CSI reference signal (CSI-RS). This situation is presented in FIGS. 19-21. In this case, the base station reschedules the CSI-RS, and the terminal checks the rescheduled CSI-RS.
- CSI-RS CSI reference signal
- the demodulation reference signal when the position of a symbol having a time different from the PSS / SSS on the time axis is FDD, it may be applied as follows.
- a subframe consisting of two slots when the subframe is a normal cyclic prefix (CP), the demodulation reference signal is located at first and second symbols on a time axis in each of the two slots, and the subframe
- CP Extended Cyclic Prefix
- the demodulation reference signal is located at the second and third symbols on the time axis in each of the two slots, and the UE can identify the DM-RS at the position. This will be described in detail with reference to FIG. 22.
- the demodulation reference signal is mapped to a position other than the last symbol on the time axis of the second slot of the subframe.
- the demodulation reference signal is mapped to a position other than the third symbol on the time axis of the first slot of the subframe, and the terminal identifies the DM-RS at the position.
- FIG. 23 shows a case of a normal CP
- FIG. 24 shows a case of an extended CP.
- FIG. 17 illustrates intra-frequency RRM measurement with two neighboring NCT cells having a 5 ms TRS transmission period with a 2 ms on duration and a DRX period of 40 ms.
- the on duration of the DRX may be set not to be less than 5ms so that at least one TRS can be transmitted during the activation time.
- RRM measurement may be considered to increase measurement accuracy based on multiple CSI-RS resources for one NCT cell.
- the TRS based RRM measurement may be performed.
- the CSI-RS based RRM measurement may be performed.
- synchronous NCT synchronous information is transmitted from a legacy carrier. Therefore, transmission of the PSS / SSS / TRS may not be performed on the synchronization carrier. In this case, CSI-RS based RRM measurement may be used.
- FIG. 18 is a diagram illustrating a DM-RS pattern for a normal CP according to an embodiment of the present invention.
- FIG. 18 show a reduced CRS and a DM-RS located on a time axis according to an embodiment of the present invention.
- the moved DM-RS is moved so as not to overlap with the PSS / SSS, and the position of the moved symbol may be variously applied according to an embodiment of the present invention.
- the DM-RS pattern may be located at four resource elements at both ends and the center of the resource block on the frequency axis of the third and fourth symbols of each slot.
- w (x, y) is w (3,0), w (4,0), w (3,1), w (4,1) or w (3,5) in each slot.
- w (4,5), w (3,6), w (4,6) or w (3,10), w (4,10), w (3,11), w (4,11) Can be.
- the DM-RS pattern according to another embodiment is located at four resource elements at both ends and the center of the resource block in terms of frequency in the third and fourth symbols of the first slot, and the sixth and seventh symbols of the second slot. It may be designed to be located at the four resource elements at both ends and the center of the resource block on the frequency side of each other.
- the third and fourth symbols of the first slot and the third and fourth symbols of the second slot or the sixth and seventh symbols are moved and mapped to avoid collision with the PSS / SSS.
- 19 to 21 illustrate CSI-RS patterns in which CSI-RSs are set.
- 19 to 21 illustrate CSI-RS patterns in which CSI-RSs are configured in resource elements of third and fourth symbols of a second slot.
- CSI-RSs may be configured for resource elements of the third and fourth symbols of the second slot, so that when the DM-RS pattern shown in 1810 of FIG. Can overlap on the resource elements of the fourth symbol. Therefore, the base station (per transmission or serving cell) can be scheduled to configure the CSI-RS so as not to overlap with the DM-RS pattern shown in FIG. 18 when using the DM-RS pattern shown in 1810 of FIG.
- DM-RS resources are uniformly positioned in the center of each slot while solving a problem of overlapping / collision with PSS / SSS in NCT without a control region. Therefore, the demodulation efficiency of the entire resource block can be improved.
- the DM-RS pattern according to another embodiment shown in 1810 of FIG. 18 may overlap with the CSI-RS resources in the second slot, but the base station (transmitter or serving cell) may use the DM-RS pattern shown in FIG. 18.
- the CSI-RS may be scheduled to be configured not to overlap with the CSI-RS.
- the DM-RS pattern according to another embodiment shown in 1820 of FIG. 18 also solves the overlapping / collision problem with the PSS / SSS in the NCT in which the control region does not exist, and thus does not cause the overlapping / collision problem with the CSI-RS resource.
- Resources may be freely scheduled when allocating resources of a transmitting end or a serving cell.
- FIG. 22 is a diagram illustrating a DM-RS pattern for a normal CP and an extended CP in the case of FDD according to an embodiment of the present invention.
- a DM-RS pattern may include a first slot (even-numbered slot) and a second slot (odd-numbered slot) for a normal CP, as shown in 2010 of FIG. 22. odd-numbered slot)
- Each of the first and second symbols may be located on the four resource elements at both ends and the center of the resource block on the frequency side.
- w (x, y) is w (0,0), w (1,0), w (0, 1), w (1,1) or w (0,5), w (1,5), w (0,6), w (1,6) or w (0,10), w (1,10 ), w (0,11), w (1,11).
- the second, fifth, eighth, eleventh resource elements are located in the second and third symbols of the first slot in terms of frequency, and the DM-RS resources are located in the second and third symbols of the second slot.
- the first, fourth, seventh, and tenth resource elements may be located in the DM-RS resources.
- the SSS and the PSS do not collide with the DM-RS because they are located in the sixth and seventh symbols of the first slot.
- the SSS and the PSS are located in the fifth and sixth symbols of the first slot and thus do not collide with the DM-RS.
- FIG. 23 and 24 exemplarily illustrate DM-RS patterns for a normal CP and an extended CP in the case of TDD according to an embodiment of the present invention.
- the DM-RS in the normal subframe, since the SSS / PSS is positioned in the last symbol on the time axis of the second slot of the subframe, the DM-RS may be mapped to a symbol other than this position.
- the special subframe since the SSS / PSS is located in the third symbol on the time axis of the first slot of the subframe, the DM-RS may be mapped to a symbol other than this position.
- FIG. 23 corresponds to a normal CP.
- the DM-RS pattern collides with the SSS and PSS signals in the last symbol of the normal subframe and the third symbols of the special subframe in the case of TDD.
- DM-RS pattern can be designed to avoid.
- the DM-RS in the normal subframe, may be located at four resource elements at both ends and the center of the resource block on the frequency side among the fifth and sixth symbols on the time axis of the first and second slots.
- the DM-RS may be located at four resource elements at both ends and the center of the resource block on the frequency side with respect to the first, second and sixth and seventh symbols on the time axis of the first slot. .
- FIG. 24 corresponds to an extended CP.
- SSS / PSS signals are located in the last symbol and the third symbol of each of a normal subframe and a special subframe.
- DM-RS patterns can be designed to avoid collisions.
- the DM-RS resources are located in the second, fifth, eighth, and eleventh resource elements on the frequency side with respect to the second and third symbols on the time axis of the first slot.
- DM-RS resources may be located in the first, fourth, seventh, and tenth resource elements on the frequency side of the second and third symbols on the time axis of the slot.
- the second, fifth, eighth, and eleventh resource elements are located in the fifth and sixth symbols on the time axis of the first slot in terms of frequency.
- RRM measurement for NCT is not for mobility (handover or cell (re) selection) but the ability of the transmitting end (base station) to determine the addition or removal of NCT with the SCell based on RRM measurement reports by the terminal. It is for.
- RRM measurement for NCT can be applied only to RRC connected terminals for inter-frequency as well as intra-frequency measurement. In other words, the RRM measurement for idle mode is not necessary.
- RRM measurements can be applied to both synchronous and asynchronous NCTs.
- RSRQ and RSRQ matrices can be defined for NCT RRM measurement.
- RRM measurement models and procedures defined for the CA for the addition / removal of the SCell can be reused for the NCT.
- NCT does not transmit legacy CRS. Therefore, another RS for measuring RRM for NCT needs to be used.
- RS transmission on the NCT includes CSI-RS, DM-RS and PSS / SSS.
- the NCT can carry 1RS port (composed of Rel-8 CRS port 0 REs and Rel-8 sequence per PRB) in one subframe at 5ms period.
- Only at least one of the CSI-RS and the TRS (or a combination thereof) of the signals transmitted on the NCT may be considered as RSs for RRM measurement.
- the TRS When the TRS is used for both synchronous and asynchronous carriers, the TRS may be used as an RS for RRM measurement. At this time, the same RRM measurement method can be applied to the synchronous and asynchronous NCT.
- the UE In order to select subframes among TRS subframes for RRM measurement through periodic TRS transmission, the UE must know when the TRS is transmitted. For serving cell RRM measurement, the UE must acquire system information such as a cell type (eg, Legacy Cell Type (LCT) or NCT) and a subframe offset of TRS subframes (if configured). For intra-frequency RRM measurement, information of TRS subframes of a neighbor cell may not always be known to the UE. Meanwhile, when the terminal is configured to have a measurement object, the measurement request may include information of a cell type of the target cell or TRS.
- a cell type eg, Legacy Cell Type (LCT) or NCT
- a subframe offset of TRS subframes if configured.
- the measurement request
- the on duration of the DRX may be set not to be less than 5ms so that at least one TRS can be transmitted during the activation time.
- RRM measurement may be considered to increase measurement accuracy based on multiple CSI-RS resources for one NCT cell.
- the TRS based RRM measurement may be performed.
- the CSI-RS based RRM measurement may be performed.
- synchronous NCT synchronous information is transmitted from a legacy carrier. Therefore, transmission of the PSS / SSS / TRS may not be performed on the synchronization carrier. In this case, CSI-RS based RRM measurement may be used.
- Synchronized new carriers may be limited to the case of continuous intra-band contiguous carrier aggregation (CA) using a single RF front end.
- the CRS may be transmitted for the purpose of RRM measurement regardless of time / frequency tracking. Meanwhile, the PSS / SSS can be removed.
- RSs for time / frequency synchronization and tracking of the synchronized NCT may be signaled (transmitted / delivered) to the terminal by higher layer signaling.
- PSS / SSS / CRS / TRS may not be transmitted for the synchronized NCT.
- a segment may be in the same band as a backward compatible carrier (BCC) only for downlink.
- BCC backward compatible carrier
- the BCC and segments can be synchronized in time / frequency. PSS / SSS / PBCH / SIBs are not transmitted on the segment.
- a single (E) PDCCH DCI indicates a BCC and a segment. One HARQ for BCC and segment may be used. The maximum resource allocation size of the BCC and the segment may be 110 PRB pairs (20 MHz).
- a segment can only support unicast PDSCH. CRS is transmitted on the segment and TM1-10 may be supported. There may be a guard band between the BCC and the segment. The segment may be on one edge or both edges of the BCC.
- the base station and the terminal described below may perform the structure and transmission method of the above-described NCT.
- 25 is a diagram showing the configuration of a base station according to another embodiment of the present invention. 25 is a device for implementing the embodiment described above with reference to FIGS. 15 and 18 to 24.
- the base station 2300 includes a controller 2310, a transmitter 2320, and a receiver 2330.
- the controller 2310 controls the overall operation of the base station according to the structure and operation of the NCT required to perform the above-described present invention.
- the transmitter 2320 and the receiver 2330 are used to transmit and receive signals, messages, and data necessary for carrying out the above-described present invention.
- the base station transmits a demodulation reference signal in a carrier that is an NCT
- the controller 2310 transmits a demodulation reference signal to symbols of different times on a time axis from PSS and SSS disposed in a downlink subframe of the carrier. Map it.
- the transmitter 2320 transmits a downlink including the mapped demodulation reference signal
- the receiver 2330 receives a signal from a terminal that receives the downlink.
- mapping a demodulation reference signal to symbols of different times on a time axis so as not to collide with the PSS and SSS has been described above with reference to FIGS. 15 and 18 to 24.
- 26 is a diagram showing the configuration of a user terminal according to another embodiment of the present invention.
- a user terminal 2400 includes a receiver 2430, a controller 2410, and a transmitter 2420.
- FIG. 26 is a device for implementing the embodiment described above with reference to FIGS. 16 and 18 to 24.
- the receiver 2430 receives downlink control information, data, and a message from a base station through a corresponding channel.
- control unit 2410 controls the overall operation of the terminal according to the structure and operation of the NCT to perform the above-described present invention.
- the transmitter 2420 transmits downlink control information, data, and a message to a base station through a corresponding channel.
- the receiver 2430 of the terminal 2400 receives a downlink including a demodulation reference signal, and the controller 2410 has a time different from that of the PSS and SSS disposed in the downlink subframe of the carrier. Check the demodulation reference signal mapped to the symbol. Thereafter, the transmitter 2420 transmits a signal to the base station.
- the demodulation reference signal mapped to the symbol refer to the embodiment described above with reference to FIGS. 16 and 18 to 24.
- the DM-RS may be allocated only to the frequency band, not to the frequency band to which the PSS / SSS is assigned. For example, if PSS / SSS is allocated to six RBs of a center frequency, the DM-RS to be mapped to this position does not map to this position, but instead is mapped to another frequency band of the corresponding time axis, for example, the PSS / SSS. May be implemented such that the DM-RS is allocated to a frequency band adjacent to the mapped frequency band. That is, when PSS / SSS is allocated to six RBs, DM-RSs may be mapped to RBs in adjacent frequency bands.
- a method of puncturing the DM-RS at the frequency at which the DM-RS collides with the PSS / SSS may be considered.
- a method of puncturing the PSS / SSS may be considered.
- the frequency domain of the DM-RS is maintained and the time domain is shifted or the time domain is partially maintained while the frequency domain is maintained in consideration of the time axis and frequency axis of the symbol to which the PSS / SSS is assigned.
- the interference between the two signals can be eliminated by puncturing the DM-RS or PSS / SSS while maintaining the domain and the time base domain.
Landscapes
- Engineering & Computer Science (AREA)
- Signal Processing (AREA)
- Computer Networks & Wireless Communication (AREA)
- Mobile Radio Communication Systems (AREA)
Abstract
본 발명은 PDCCH를 포함하는 제어영역이 존재하지 않는 NCT에 관한 것으로 본 발명의 일 실시예에 의한 기지국이 NCT인 캐리어에서 직교성을 가지는 복조참조신호를 전송하는 방법은 상기 캐리어의 하향링크 서브프레임에 배치되는 PSS 및 SSS와 중첩되는 심볼에 매핑될 복조참조신호에 대해 직교코드를 이용하여 코드분할다중화를 수행하는 단계, 및 상기 코드분할다중화가 적용된 복조참조신호를 포함하는 하향링크를 전송하는 단계를 포함한다.
Description
본 발명은 PDCCH를 포함하는 제어영역이 존재하지 않는 NCT에 관한 것으로 보다 상세하게는 NCT인 캐리어에서 복조참조신호를 전송 및 수신하는 방법과 장치에 관한 발명이다.
통신 시스템이 발전해나감에 따라 사업체들 및 개인들과 같은 소비자들은 매우 다양한 무선 단말기들을 사용하게 되었다. 현재의 3GPP 계열의 LTE(Long Term Evolution), LTE-A(LTE Advanced)등의 이동 통신 시스템에서는 음성 위주의 서비스를 벗어나 영상, 무선 데이터 등의 다양한 데이터를 송수신 할 수 있는 고속 대용량의 통신 시스템으로서, 유선 통신 네트워크에 준하는 대용량 데이터를 전송할 수 있는 기술 개발이 요구되고 있다. 대용량의 데이터를 전송하기 위한 하나의 방법으로서 다수의 요소 반송파를 통하여 데이터를 효율적으로 전송하는 방법이 사용될 수 있다.
이러한 시스템에서 시간-주파수 자원은 제어 채널(예를 들면, PDCCH(Physical Downlink Control CHannel))을 전송하는 영역과 데이터 채널(예를 들면, PDSCH(Physical Downlink Shared CHannel))을 전송하는 영역으로 구분될 수 있다.
무선 통신 시스템의 성능을 향상시키기 위해 MIMO(Multiple-Input Multiple-Output), CoMP(Coordinated Multi-Point Transmission/Reception) 등의 기술이 고려되고 있다.
3GPP Rel-12에 새로운 워크 아이템(work item)으로 추가된 PDCCH를 포함하는 제어영역이 존재하지 않는 NCT(New Carrier Type)에서 주요 이슈인 PSS/SSS와 DM-RS 충돌 문제, NCT에 대한 RRM 측정(Radio Resource Management measurement, 동기화된 NC(synchronised new carrier)에 대해 논의 중이다.
본 발명은 NCT에 PSS/SSS가 존재하는 경우 DM-RS와의 충돌을 회피하기 위해 DM-RS의 위치 변경 또는 전송 패턴 변경 방안을 제공한다.
또한, 본 발명은 PSS/SSS와 DM-RS를 기존과 동일한 위치를 유지하면서 PSS/SSS와 DM-RS의 충돌을 회피할 수 있는 방안을 제공한다.
본 발명의 일 실시예에 의한 기지국이 NCT인 캐리어에서 직교성을 가지는 복조참조신호를 전송하는 방법은 상기 캐리어의 하향링크 서브프레임에 배치되는 PSS 및 SSS와 중첩되는 심볼에 매핑될 복조참조신호에 대해 직교코드를 이용하여 코드분할다중화를 수행하는 단계, 및 상기 코드분할다중화가 적용된 복조참조신호를 포함하는 하향링크를 전송하는 단계를 포함한다.
본 발명의 다른 실시예에 의한 단말이 NCT인 캐리어(carrier)에서 직교성을 가지는 복조참조신호를 수신하는 방법은 복조참조신호를 포함하는 하향링크를 수신하는 단계, 및 직교코드를 이용하여 상기 캐리어의 하향링크 서브프레임에 배치된 복조참조신호를 확인하는 단계를 포함하며, 상기 복조참조신호는 상기 캐리어의 하향링크 서브프레임에 배치되는 PSS 및 SSS와 중첩된 심볼에 매핑되며 상기 PSS 및 SSS와 상기 복조참조신호는 코드분할 다중화된 것을 특징으로 한다.
본 발명의 또 다른 실시예에 의한 NCT인 캐리어에서 직교성을 가지는 복조참조신호(Demodulation Reference Signal)를 전송하는 기지국은 단말로부터 신호를 수신하는 수신부, 상기 캐리어의 하향링크 서브프레임에 배치되는 PSS 및 SSS와 중첩되는 심볼에 매핑될 복조참조신호에 대해 직교코드를 이용하여 코드분할다중화를 수행하는 제어부, 및 상기 코드분할다중화가 적용된 복조참조신호를 포함하는 하향링크를 전송하는 송신부를 포함한다.
본 발명의 또 다른 실시예에 의한 기지국이 NCT인 캐리어에서 복조참조신호를 전송하는 방법은 상기 캐리어의 하향링크 서브프레임에 배치되는 PSS 및 SSS와 시간 축으로 상이한 시간의 심볼에 복조참조신호를 매핑하는 단계, 및 상기 매핑된 복조참조신호를 포함하는 하향링크를 전송하는 단계를 포함한다.
본 발명의 또 다른 실시예에 의한 단말이 NCT인 캐리어에서 복조참조신호(Demodulation Reference Signal)를 수신하는 방법에 있어서, 복조참조신호를 포함하는 하향링크를 수신하는 단계, 및 상기 캐리어의 하향링크 서브프레임에 배치되는 PSS 및 SSS와 시간 축으로 상이한 시간의 심볼에 매핑된 복조참조신호를 확인하는 단계를 포함한다.
본 발명의 또 다른 실시예에 의한 NCT인 캐리어에서 복조참조신호를 전송하는 기지국에 있어서, 상기 캐리어의 하향링크 서브프레임에 배치되는 PSS 및 SSS와 시간 축으로 상이한 시간의 심볼에 복조참조신호를 매핑하는 제어부, 상기 매핑된 복조참조신호를 포함하는 하향링크를 전송하는 송신부, 및 상기 하향링크를 수신한 단말로부터 신호를 수신하는 수신부를 포함한다.
본 발명에 따르면, NCT에 PSS/SSS 또는 DM-RS의 위치를 변경하지 않고도 PSS/SSS 및 DM-RS를 코드 분할 다중화함으로써 PSS/SSS와 DM-RS의 충돌을 회피할 수 있다.
또는, NCT에 PSS/SSS가 존재하는 경우 DM-RS가 매핑되는 위치를 변경함으로써 PSS/SSS와 DM-RS의 충돌을 회피할 수 있다.
도 1은 본 발명의 실시예들이 적용되는 통신 시스템을 도시한다.
도 2는 하나의 서브프레임에서 PDCCH, PCFICH, PHICH를 포함하는 제어 채널이 전송되는 제어 영역과 PDSCH를 포함하는 데이터 채널이 전송되는 데이터 영역을 도시한다.
도 3은 본 명세서의 일 실시예를 적용하게 되는 ePDCCH 구현 방식이다.
도 4는 ePDCCH의 분산형 전송과 집중형 전송을 도시하고 있다.
도 5는 FDD와 TDD의 경우에 OFDM의 심볼상 PSS/SSS의 위치들을 도시하고 있다.
도 6은 OFDM의 심볼상 PBCH의 위치들을 도시하고 있다.
도 7은 전체 대역이 20MHz, 10MHz, 5MHz, 3MHz, 1.4MHz 각각에 대해 PSS/SSS, PBCH의 서브캐리어(자원요소)의 위치들을 도시하고 있다.
도 8은 NCT의 구조로 EPDCCH로 사용될 경우 CRS 포트 0가 설정된 경우 PRB 쌍에 대한 심볼 기반 사이클릭 시프트된 eREG 인덱스(Symbol-based cyclic shifted eREG indexing for a PRB pair)를 도시하고 있다.
도 9는 PSS/SSS 및 DM-RS의 충돌을 도시하고 있다.
도 10은 본 발명의 일 실시예에 의한 PSS/SSS 및 DM-RS를 코드 분할 다중화(code divisional multiplexing)를 도시하고 있다.
도 11은 본 발명의 일 실시예에 의한 기지국의 동작 과정을 보여주는 도면이다.
도 12는 본 발명의 일 실시예에 의한 단말의 동작 과정을 보여주는 도면이다.
도 13은 본 발명의 일실시예에 의한 기지국의 구성을 보여주는 도면이다.
도 14는 본 발명의 다른 실시예에 의한 사용자 단말의 구성을 보여주는 도면이다.
도 15는 본 발명의 또 다른 실시예에 의한 기지국에서 복조참조신호를 전송하는 과정을 보여주는 도면이다.
도 16은 본 발명의 또 다른 실시예에 의한 단말에서 복조참조신호를 수신하는 과정을 보여주는 도면이다.
도 17은 5ms TRS 전송주기를 갖는 두 개의 이웃하는 NCT 셀들로 2ms 온 듀레이션(on duration)과 40ms의 DRX 주기를 가진 주파수내(intra-frequency) RRM 측정을 도시한 도면이다.
도 18은 본 발명의 또 다른 실시예에 따른 노멀 CP에 대한 DM-RS 패턴을 예시적으로 도시한 도면이다.
도 19 내지 도 21은 CSI-RS가 설정된 CSI-RS 패턴을 도시한 도면이다.
도 22는 본 발명의 또 다른 실시예에 의한 FDD의 경우에 노멀 CP와 확장 CP에 대한 DM-RS 패턴을 예시적으로 도시한 도면이다.
도 23 및 도 24는 본 발명의 또 다른 실시예에 의한 TDD의 경우에 노멀 CP와 확장 CP에 대한 DM-RS 패턴을 예시적으로 도시한 도면이다.
도 25는 본 발명의 또 다른 실시예에 의한 기지국의 구성을 보여주는 도면이다.
도 26은 본 발명의 또 다른 실시예에 의한 사용자 단말의 구성을 보여주는 도면이다.
이하, 본 발명의 일부 실시 예들을 예시적인 도면을 통해 상세하게 설명한다. 각 도면의 구성요소들에 참조부호를 부가함에 있어서, 동일한 구성요소들에 대해서는 비록 다른 도면상에 표시되더라도 가능한 한 동일한 부호를 가지도록 하고 있음에 유의해야 한다. 또한, 본 발명을 설명함에 있어, 관련된 공지 구성 또는 기능에 대한 구체적인 설명이 본 발명의 요지를 흐릴 수 있다고 판단되는 경우에는 그 상세한 설명은 생략한다.
이하, 본 발명의 일부 실시 예들을 예시적인 도면을 통해 상세하게 설명한다. 각 도면의 구성요소들에 참조부호를 부가함에 있어서, 동일한 구성요소들에 대해서는 비록 다른 도면상에 표시되더라도 가능한 한 동일한 부호를 가지도록 하고 있음에 유의해야 한다. 또한, 본 발명을 설명함에 있어, 관련된 공지 구성 또는 기능에 대한 구체적인 설명이 본 발명의 요지를 흐릴 수 있다고 판단되는 경우에는 그 상세한 설명은 생략한다.
도 1은 본 발명의 실시예들이 적용되는 통신 시스템을 도시한다.
통신 시스템은 음성, 패킷 데이터 등과 같은 다양한 통신 서비스를 제공하기 위해 널리 배치된다.
도 1을 참조하면, 통신 시스템은 단말(10; User Equipment, UE) 및 단말(10)과 상향 링크 및 하향 링크 통신을 수행하는 전송단(20; Transmission Point)을 포함한다.
본 명세서에서의 단말(10) 또는 UE(User Equipment)는 무선 통신에서의 사용자 단말을 의미하는 포괄적 개념으로서, WCDMA 및 LTE, HSPA 등에서의 UE는 물론, GSM에서의 MS(Mobile Station), UT(User Terminal), SS(Subscriber Station), 무선기기(wireless device) 등을 모두 포함하는 개념으로 해석되어야 할 것이다.
전송단(20) 또는 셀(cell)은 일반적으로 단말(10)과 통신하는 지점(station)을 말하며, 기지국, 노드-B(Node-B), eNB(evolved Node-B), BTS(Base Transceiver System), 액세스 포인트(Access Point), 릴레이 노드(Relay Node), RRH(Remote Radio Head), RU(Radio Unit) 등 다른 용어로 불릴 수 있다.
본 명세서에서 전송단(20) 또는 셀(cell)은 CDMA에서의 BSC(Base Station Controller), WCDMA의 NodeB 등이 커버하는 일부 영역을 나타내는 포괄적인 의미로 해석되어야 하며, 기지국과 연결된 RRH(Radio Remote Head), 릴레이 노드(relay node), 매크로 셀의 섹터(sector), 사이트(site), 기타 펨토셀, 피코셀 등과 같은 마이크로 셀 등 하나의 단말과 통신할 수 있는 모든 형태의 장치를 의미하는 포괄적인 개념으로 사용된다.
본 명세서에서 단말(10)과 전송단(20)은 본 명세서에서 기술되는 기술 또는 기술적 사상을 구현하는데 사용되는 송수신 주체로 포괄적인 의미로 사용되며 특정하게 지칭되는 용어 또는 단어에 한정되지 않는다.
도 1에서 하나의 단말(10)과 하나의 전송단(20)이 도시되었지만 본 발명은 이에 제한되지 않는다. 하나의 전송단(20)이 복수의 단말(10)과 통신하는 것이 가능하고, 또한 하나의 단말(10)이 복수의 전송단(20)과 통신하는 것이 가능하다.
통신 시스템에 적용되는 다중 접속 기법에는 제한이 없으며, 본 발명은 CDMA(Code Division Multiple Access), TDMA(Time Division Multiple Access), FDMA(Frequency Division Multiple Access), OFDMA(Orthogonal Frequency Division Multiple Access), OFDM-FDMA, OFDM-TDMA, OFDM-CDMA와 같은 다양한 다중 접속 기법에 적용 가능하다.
또한, 본 발명은 상향링크 전송 및 하향링크 전송은 서로 다른 시간을 사용하여 전송되는 TDD(Time Division Duplex) 방식, 서로 다른 주파수를 사용하여 전송되는 FDD(Frequency Division Duplex) 방식, TDD와 FDD를 결합한 하이브리드 듀플렉싱(Hybrid Duplexing) 방식에 적용 가능하다.
구체적으로, 본 발명의 실시예는 GSM, WCDMA, HSPA를 거쳐 LTE(Long Term Evolution) 및 LTE-A(LTE-advanced)로 진화하는 비동기 무선 통신과, CDMA, CDMA-2000 및 UMB로 진화하는 동기식 무선 통신 분야 등에 적용될 수 있다. 이러한 본 발명은 특정한 무선 통신 분야에 한정되거나 제한되어 해석되어서는 아니되고, 본 발명의 사상이 적용될 수 있는 모든 기술분야를 포함하는 것으로 해석되어야 할 것이다.
도 1을 참조하면, 단말(10)과 전송단(20)은 상향링크 및 하향링크 통신할 수 있다.
전송단(20)은 단말(10)로 하향링크 전송을 수행한다. 전송단(20)은 유니캐스트 전송(unicast transmission)을 위한 주 물리 채널인 물리 하향링크 공유채널(Physical Downlink Shared Channel, PDSCH)을 전송할 수 있다. 또한, 전송단(20)은 PDSCH의 수신에 필요한 스케줄링 등의 하향링크 제어 정보 및 상향링크 데이터 채널(예를 들면 물리 상향링크 공유채널(Physical Uplink Shared Channel, PUSCH))에서의 전송을 위한 스케줄링 승인 정보를 전송하기 위한 물리 하향링크 제어채널(Physical Downlink Control Channel, PDCCH), PDSCH와 PDCCH의 영역을 구분하는 지시자를 전송하기 위한 물리 제어 포맷 지시자 채널(Physical Control Format Indicator Channel, PCFICH), 상향 링크 전송에 대한 HARQ(Hybrid Automatic Repeat reQuest) 확인의 전송을 위한 물리 HARQ 지시자 채널(Physical HARQ Indicator Channel, PHICH) 등의 제어 채널을 전송할 수 있다. 이하에서는, 각 채널을 통해 신호가 송수신되는 것을 해당 채널이 송수신되는 형태로 기재하기로 한다.
전송단(20)은 하향 링크에서 셀-특정 기준 신호(Cell-Specific Reference Signal, CRS), MBSFN 기준 신호(Multicast/Broadcast over Single Frequency Network Reference Signal, MBSFN-RS), 단말-특정 기준 신호(UE-Specific Reference Signal, DM-RS), 위치 기준 신호(Positioning Reference Signal, PRS), 및 CSI 기준 신호(Channel State Information Reference Signal, CSI-RS)를 전송할 수 있다.
한편, 하나의 라디오프레임(Radio frame) 또는 무선 프레임은 10개의 서브프레임(subframe)으로 구성되고, 하나의 서브프레임은 2개의 슬롯(slot)으로 구성된다. 무선 프레임은 10ms의 길이를 갖고, 서브프레임은 1.0ms의 길이를 갖는다. 일반적으로, 데이터 송신의 기본 단위는 서브프레임 단위가 되고, 서브프레임 단위로 하향링크 또는 상향링크의 스케줄링이 이루어진다.
하나의 슬롯은 시간 영역에서 복수의 OFDM 심볼을 갖고 주파수 영역에서 적어도 하나의 부반송파(subcarrier)를 포함할 수 있다. 예를 들면, 슬롯은 시간 영역에서 7개(Normal Cyclic Prefix인 경우) 또는 6개(Extended Cyclic Prefix인 경우)의 OFDM 심볼을 포함하고 주파수 영역에서 12개의 부반송파를 포함할 수 있다. 이렇게 하나의 슬롯으로 정의되는 시간-주파수 영역을 자원 블록(Resource Block, RB)로 부를 수 있으나, 이에 한정되는 것은 아니다.
도 2는 하나의 서브프레임에서 PDCCH, PCFICH, PHICH를 포함하는 제어 채널이 전송되는 제어 영역(201)과 PDSCH를 포함하는 데이터 채널이 전송되는 데이터 영역(202)을 도시한다. 도 2에서 가로축은 시간을 나타내고 세로축은 주파수를 나타낸다. 도 2는 시간 축으로 하나의 서브프레임(1ms), 주파수 축으로 하나의 채널(예를 들면, 1.4, 3, 5, 10, 15, 또는 20MHz)을 도시한다.
PCFICH는 제어 영역(201)의 크기인 OFDM 심볼에 해당하는 2비트의 정보로 구성되고, 이는 32비트의 코드워드로 부호화된다. 부호화된 비트는 셀간 간섭을 랜덤화하기 위해 셀-특정 및 서브프레임-특정의 스크램블링(scrambling) 코드를 사용하여 스크램블링된 후 QPSK(Quadrature Phase Shift Keying)로 변조되어 16개의 자원 요소(resource element)로 매핑된다. PCFICH는 항상 각 서브프레임의 첫 번째 OFDM 심볼에 매핑된다. 서브프레임의 첫 번째 ODFM 심볼에 PCFICH를 맵핑할 때에는 4개의 그룹으로 나누어, 전체적으로 우수한 다이버시티를 얻도록 각 그룹을 주파수 영역에서 잘 분리하여 맵핑한다.
PDCCH(제어 정보)는 스케줄링 결정과 전력 제어 명령과 같은 하향링크 제어 정보(Downlink Control Information, DCI)를 전송하는데 사용된다. 일 예로서 LTE/LTE-A에서, DCI 포맷 0과 DCI 포맷4는 상향링크 승인(uplink grant)을 위해 사용된다. DCI 포맷 1/1A/1B/1C/1D/2/2A/2B/2C는 하향링크 스케줄링 할당(downlink scheduling assignment)을 위해 사용된다. 그리고, DCI 포맷 3/3A는 전력 제어를 위해 사용된다.
각 DCI 메시지 페이로드에는 순환 중복 검사(Cyclic Redundancy Check, CRC)가 붙고, 단말을 식별하기 위한 RNTI(Radio Network Temporary Identifier)는 CRC 계산 과정에 포함된다. CRC를 붙인 후에 비트들은 테일-바이팅 콘볼류셔날 코드(Tail-Biting Convolutional Code)로 부호화되며, 레이트 매칭(rate matching)을 통해 PDCCH 전송에 사용되는 자원의 양에 맞춰진다.
PDCCH는 제어 영역(201)의 공통 탐색 공간(common search space) 또는 단말 특정 탐색 공간(UE specific search space) 내에서 전송될 수 있다. 각 단말(10)은 셀 내의 단말들에게 공통으로 할당된 공통 탐색 공간 및 자신에게 할당된 단말 특정 탐색 공간 내에서 블라인드 복호(blind decoding)를 통해 PDCCH를 검색하고, PDCCH 수신을 확인하면 그 PDCCH를 통해 전달된 제어 정보에 기초하여 제어를 할 수 있다.
한편, LTE/LTE-A 시스템은, 시스템 요구 사항, 즉 높은 데이터 전송률을 만족시키기 위한 대역폭을 확장하기 위한 방안으로서, 다수개의 단위 반송파인 요소 반송파(Component Carrier, CC)의 사용을 정의하고 있다. 여기에서, 하나의 CC는 최대 20MHz의 대역폭을 가질 수 있으며, 해당 서비스에 따라 20MHz 이내에서 자원 할당이 가능하지만, 이는 시스템을 구현하는 과정에 따른 일 실시예일뿐이고 시스템의 구현에 따라 20MHz 이상의 대역폭을 가지도록 설정할 수 있다.
한편, 데이터 전송 속도 향상을 높이기 위해 다중 입출력(Multiple Input/Multiple Output, MIMO), 협력형 다중 통신(Coordinated Multiple Point, CoMP), 무선 중계기(relay node) 등의 기술이 제안되고 있는데, 이러한 기술들을 적용하기 위해서는 기지국과 같은 전송단에서 더 많은 제어 정보를 전송하는 것이 필요하다.
그러나, PDCCH가 전송되는 제어 영역의 크기가 한정된 경우, PDCCH의 전송 용량을 증가시키기 위한 방법으로, PDSCH가 전송되는 데이터 영역 내에 PDCCH를 통해 전송될 제어 정보를 전송하는 방안을 고려할 수 있다. 이러한 방법은 PDCCH의 수신 신뢰도를 감소시키지 않으면서 큰 PDCCH 용량을 지원할 수 있다. 데이터 영역, 예를 들어 PDSCH 영역에서 전송되는 PDCCH에 해당하는 제어 정보를 확장 제어 정보(확장 PDCCH(Extended-PDCCH, ePDCCH, X-PDCCH), PDCCH-A (PDCCH-Advanced))라고 부를 수 있고, 이하에서는 ePDCCH로 통칭하여 설명하고자 한다. ePDCCH는 릴레이를 위한 제어 채널인 R-PDCCH에도 동일하게 사용된다. 즉, ePDCCH는 릴레이를 위한 제어 채널 및 셀간 간섭 조정을 위한 제어 채널을 모두 포함하는 개념이다. 본 발명의 일 실시예에 따르면, ePDCCH는 임의의 서브 프레임의 데이터 영역(데이터 채널 영역)에 자원 할당될 수 있다.
전술한 ePDCCH는 Rel-11 LTE 시스템에서 고려되는 새로운 PDCCH의 유형인데, 이를 도입함으로 인해 야기될 수 있는 상향링크 제어 정보(즉, PUCCH)의 자원 할당이 필요하다.
도 3은 본 명세서의 일 실시예를 적용하게 되는 ePDCCH 구현 방식이다.
기존의 PDCCH 영역(legacy PDCCH region)에는 기존의 Rel-8/9/10 UE를 위한 레가시(legacy) PDCCH가 전송이 되고, Rel-11 UE부터는 상위 레이어 시그널링 또는 시스템정보(System information, SI)를 통해서 ePDCCH 영역(E-PDCCH region)만 블라인드 복호를 수행하는 모드가 고려될 수 있다.
본 실시예들에 따라 3GPP LTE/LTE-Advanced에서 반송화 집적화(Carrier Aggregation; CA)시 새로운 타입 캐리어(New Type Carrier; NTC), CoMP(Coordinated Multipoint Transmission/Reception), 하향링크 MIMO (Multi-input Multi-output)을 위한 ePDCCH를 데이터 영역인 PDSCH(Physical Downlink Shared Channel)에 할당할 수 있다.
본 명세서에서 제어정보를 할당하는 것을 제어채널을 할당하는 것과 동일한 의미로 사용한다. 다시 말해 본 명세서에서 제어채널의 할당은 자원요소들에 제어정보를 할당하는 것을 의미한다.
이때 제어채널의 할당은 2 슬롯들, 다시 말해 1 서브프레임에 해당되는 PRB(Physical Resource Block) 쌍 단위로 할당되고, 한 PRB 쌍에 PDSCH와 ePDCCH가 동시에 할당될 수 없다. 다시 말해 한 PRB 쌍에 PDSCH와 ePDCCH를 다중화(multiplexing)할 수 없다.
한편 둘 이상의 단말들의 제어정보들 또는 제어채널들을 둘 이상의 PRB 쌍에 할당하거나 하나의 PRB 쌍 내에 할당하여 단말들의 제어정보들을 다중화할 수 있다.
도 4는 ePDCCH의 분산형 전송과 집중형 전송을 도시하고 있다.
도 4를 참조하면, 단말들의 제어정보들을 다중화할 때 하나의 eCCE가 둘 이상의 PRB 쌍에 분산형(distributed)으로 할당하거나 하나의 PRB 쌍 내에 집중형(localized)으로 할당할 수 있다. 전자의 경우를 분산형 전송 또는 분산형 타입(도 4의 410)이라고 부르고 후자의 경우를 집중형 전송 또는 집중형 타입(도 4의 420)이라고 부른다.
단말들의 제어정보들을 다중화하여 집중형 및 분산형 전송을 모두 지원할 수 있는데 집중형 전송(localized transmission)은 저속 이동 시 성능이 향상되고 분산형 전송(Distributed transmission)은 고속 이동 시 제어영역에 제어정보를 전송한 기존 PDCCH보다 성능이 향상된다.
한편 검색공간(Search Space)과 관련하여 CSS(common search space)를 지원할 수도 있다. 이때 공통 RNTI(Common RNTI)를 전송할 수 있는데 SI-RNTI, P-RNTI, RA-RNTI, TPC-PUCCH-RNTI 및 TPC-PUSCH-RNTI를 이용할 수 있다.
3GPP LTE-Advanced 표준화 동향에 따르면 캐리어에 관한 다양한 논의가 진행되고 있으며, 그 중 한 아이템으로 새로운 타입 캐리어 타입(New Carrier Type (NCT), 이하 'NCT'라 함)가 있다.
NCT는 캐리어 집적화(Carrier aggregation(CA), 이하 'CA'라 함) 기법을 통해 병합되는 요소반송파(Component Carrier(CC), 이하 'CC'라 함)들 중 주 CC (primary CC, Pcell)가 아닌 부 CC (secondary CC, Scell)에서의 페이로드 크기(payload size)를 늘리기 위해 오버헤드(overhead)를 줄인 부 CC, 즉 제어영역을 포함하지 않는 요소반송파를 말한다.
이러한 NCT는 자립형 타입(Standalone NCT, 이하 S-NCT)과 비 자립형(Non-standalone NCT: NS-NCT) 타입으로 구분되고 비 자립형(Non-standalone NCT: NS-NCT) 타입의 경우 동기 캐리어(Synchronized Carrier) NCT와 비동기 캐리어(Unsynchronized Carrier) NCT로 다시 구분되며, NCT에서는 PDCCH(Physical Downlink Control Channel), PHICH(Physical HARQ Indicator Channel), PCFICH(Physical Control Format Indicator Channel), CRS(Cell-specific Reference Signal) 등의 제어 신호들이 전송되지 않을 예정이다.
전송단(20)은 LCT의 하향 링크에서 셀-특정 참조신호(Cell-Specific Reference Signal, CRS), MBSFN 참조신호(Multicast/Broadcast over Single Frequency Network Reference Signal, MBSFN-RS), 단말-특정 참조신호(UE-Specific Reference Signal, DM-RS), 위치 참조신호(Positioning Reference Signal, PRS), 및 CSI 참조신호(Channel State Information Reference Signal, CSI-RS)를 전송할 수 있다.
전송단(20)은 기지국과의 동기화 및 해당 기지국 셀 확인 (cell identification)를 위해 주 동기신호(Primary Synchronization Signal(PSS), 이하 'PSS'라 함)와 부 동기신호(Secondary Synchronization Signal(SSS), 이하 'SSS'라 함)를 하나의 무선프레임의 적어도 하나의 서브프레임에 적어도 하나의 특정 RB(Resource Block)에 할당한다. 이때 전송단(20)은 LTE 사용자 단말(user equipment(UE))과의 간섭제거(ICIC), DM-RS(Demodulation Reference Signal, 복조참조신호, 또는 DMRS)의 설정과의 충돌 등의 부작용이 발생하지 않도록 아래에서 설명한 바와 같이 제어영역을 포함하지 않는 CC 중 하나인 비동기 NCT에 대한 PSS/SSS의 위치를 시간(심볼)축상으로 변경할 수 있다.
한편, 전송단(20)은 NCT의 하향 링크에서 셀-특정 참조신호(Cell-Specific Reference Signal, CRS)를 전송하지 않을 예정이다. 대신에 전송단(20)은 트래킹 참조신호(Tracking Reference Signal, TRS)를 전송할 수 있다. TRS는 기존의 CRS의 안테나 포트 0와 Rel.8 시퀀스를 기반으로 5ms 주기로 전송되는 일종의 축소된 CRS(Reduced CRS)라고 볼 수 있다. 전송단(20)은 NCT에서도 단말-특정 참조신호(UE-Specific Reference Signal, DM-RS) 및 CSI 참조신호(Channel State Information Reference Signal, CSI-RS)는 전송할 수 있다.
따라서, CRS가 전송되지 않음에 따라, 기본적인 복조는 DM-RS를 기반으로 수행될 수 있어 PSS/SSS와 DM-RS의 충돌 문제를 해결하기 위해 PSS/SSS의 위치를 다른 OFDM 심볼로 이동시킬 수 있다. 또한 DM-RS를 기반으로 하는 PBCH 전송 패턴에 대해 이하 상세히 설명한다.
도 5는 FDD와 TDD의 경우에 OFDM의 심볼상 PSS/SSS의 위치들을 도시하고 있다.
도 5를 참조하면, FDD의 경우 PSS는 서브프레임 0 번과 5번의 첫번째 슬롯의 마지막 심볼에 전송되며, SSS는 동일 슬롯의 마지막에서 두번째 심볼에 전송된다.
TDD의 경우 PSS는 서브프레임 1번과 6번의 세번째 심볼(즉, DwPTS)에 전송되며, SSS는 서브프레임 0번과 5번의 마지막 심볼에 전송된다.
도 6은 OFDM의 심볼상 PBCH의 위치들을 도시하고 있다.
도 6을 참조하면 PBCH는 4개의 서브프레임들에 매핑된다. PBCH는 노멀 CP(normal CP) 및 확장 CP(extended CP)에서 각 라디오 프레임의 서브프레임 0번의 두번째 슬롯의 처음 4개의 심볼들에 매핑된다.
도 7은 전체 대역이 20MHz, 10MHz, 5MHz, 3MHz, 1.4MHz 각각에 대해 PSS/SSS, PBCH의 서브캐리어(자원요소)의 위치들을 도시하고 있다.
도 5 및 도 7을 참조하면 FDD의 경우에 PSS는 전체 대역의 한가운데 72개의 서브캐리어에 매칭된다. 따라서 PSS는 서브프레임 0번과 5번에서 DC 서브캐리어를 제외한 한가운데 72개의 자원요소(Resource Element)를 점유한다. SSS는 서브프레임 0과 5에서 DC 서브캐리어를 제외한 한가운데 72개의 자원요소(Resource Element)를 점유한다.
TDD의 경우 PSS는 서브프레임 1번과 6번에서 DC 서브캐리어를 제외한 한가운데 72개의 자원요소(Resource Element)를 점유한다. FDD와 동일하게 TDD의 경우에도 SSS는 서브프레임 0과 5에서 DC 서브캐리어를 제외한 한가운데 72개의 자원요소(Resource Element)를 점유한다.
도 6 및 도 7을 참조하면, PBCH는 서브프레임 0번의 두번째 슬롯의 처음 4개의 심볼들에서 전체 대역의 한가운데 72개의 서브캐리어들에 걸쳐 전송된다.
그러나 단말은 셀 탐색 과정 이후 제어 신호 중 PBCH(Physical Broadcast Channel)를 통해 시스템 정보인 MIB(Master Information Block)를 전송하며, 시스템 정보가 수신 및 복호되어야 이후 단말이 랜덤 액세스(random-access) 과정을 통해 셀에 접속할 수 있다.
도 8은 NCT의 구조로 EPDCCH로 사용될 경우 CRS 포트(port) 0가 설정된 경우 PRB 쌍에 대한 심볼 기반 사이클릭 시프트된 eREG 인덱스(Symbol-based cyclic shifted eREG indexing for a PRB pair)를 도시하고 있다.
다른 CRS 포트가 설정된 경우에도 CRS의 RE상 위치나 개수와 무관하게 도 7에 도시한 바와 동일하게 심볼 기반 사이클릭 시프트된 eREG 인덱스(Symbol-based cyclic shifted eREG indexing for a PRB pair)될 수도 있다.
전술한 바와 같이 NCT는 자립형 타입(Standalone NCT, 이하 S-NCT)과 비 자립형(Non-standalone NCT: NS-NCT) 타입으로 구분되고 비 자립형(Non-standalone NCT: NS-NCT) 타입의 경우 동기 캐리어(Synchronized Carrier) NCT와 비동기 캐리어(Unsynchronized Carrier) NCT로 다시 구분된다. NCT가 인접 기존 캐리어(adjacent legacy carrier)와 집합화될 경우에 동기는 기존 캐리어에 의해 제공될 수 있다(When the New Carrier Type is aggregated with an adjacent legacy carrier, synchronization might be provided by the legacy carrier). 비인접 캐리어와 집합화의 경우와 자립형 동작의 경우에 NCT는 디스커버리나 시간/주파수 트래킹을 위해 적절한 동기신호를 제공할 필요가 있다(At least in the case of aggregating non-adjacent carriers and in case of standalone operation the New Carrier Type needs to provide a proper synchronization signal for discovery and time/frequency tracking).
1. PSS/SSS 세부 내용(details)
그러나 NCT에서는 CRS가 전송되지 않음에 따라, CRS를 기반으로 하던 종래의 PBCH 등의 제어 채널의 수신 및 복조에 문제가 발생할 수 있다. 다만, CRS를 5ms 주기로 전송하거나 특정한 주파수 대역에서만 전송하거나 양자를 조합한 전술한 TRS를 전송할 수 있다.
한편 PBCH는 각 무선 프레임(radio frame)의 서브프레임 0번의 두 번째 슬롯의 중심 6PRB 상에서 전송된다.
단말은 최초로 시스템에 접속할 때뿐만 아니라 셀 재선택(cell reselection) 및 이동성을 지원하기 위한 핸드오버, 그리고 캐리어 집적화(Carrier aggregation(CA), 이하 'CA'라 함) 기법을 통해 병합되는 복수의 요소반송파(Component Carrier(CC), 이하 'CC'라 함)들에 대한 동기를 찾을 때도 셀 액세스 절차를 수행한다.
셀 탐색 과정은 셀에 대한 주파수 및 심볼 동기를 획득하기 위한 PSS 검출 및 SSS 검출 단계로 이루어지며 이에 따라 셀의 프레임/슬롯 동기를 획득하고 셀 ID를 결정하게 된다. 한편 NCT에서는 PSS/SSS와 병행하여 또는 다른 신호를 통해 이 과정을 수행할 수도 있다.
셀 동기를 획득하고 셀 ID를 결정하면 해당 셀이 NCT인지 LCT인지에 대한 확인 단계가 수행되고 TRS를 확인하며, 이에 따라 RRM 측정(measurement) 또는 PBCH 채널 복조가 수행된다. 전술한 바와 같이 CRS가 전송되지 않는 경우에는 DM-RS를 기반으로 PBCH 채널 복조가 수행된다. PBCH 채널은 시스템 정보(system information)을 포함하고 있다.
따라서 PSS/SSS 검출과 PBCH 검출은 셀 탐색에 따른 셀 액세스 과정에서 기초가 된다.
PSS/SSS와 DM-RS의 충돌을 회피하기 위해 PSS/SSS의 위치를 시간 축 상에서 이동시키거나 DM-RS 펑쳐링(puncturing)을 수행할 수 있다.
그런데 DM-RS가 펑처링되면 DM-RS를 기반으로 채널을 추정하는 PBCH의 경우, 이로 인해 채널 추정 오류가 발생할 수 있으며 특히 고속으로 이동하는 단말에게 이러한 채널 추정 오류는 심각할 수 있다. 이러한 채널 추정 오류를 해결하기 위한 하나의 방안으로 PBCH 채널 매핑 위치를 시간 축 상에서 변경하는 방식이 있을 수 있다.
NCT에 PSS/SSS가 존재하는 경우 DM-RS와의 충돌을 회피하기 위해 다른 OFDM 심볼 위치로의 이동 여부 및 DM-RS 펑처링 그리고 기존과 다른 DM-RS 패턴에 따른 PBCH 전송 패턴의 예들을 제시하고 있다. 구체적으로 PSS/SSS와 DM-RS 사이 충돌을 회피하기 위해 PSS/SSS를 이동하는 방안으로 PSS/SSS의 상대적인 위치를 유지하는 방법과 PSS/SSS의 상대적인 위치를 변경하는 방법이 있다. 한편 DM-RS 펑처링하는 방법과 별도로 PSS/SSS를 갖는 PRB들(예를 들어 중심 주파수를 중심으로 6개의 PRB들)에서 PDSCH 전송을 금지하는 방법이 있다. 레거시 제어영역의 부재시 PDSCH 복조의 향상된 성능을 제공하기 위해 NCT 상에 DM-RS 패턴(예를 들어 모든 서브프레임들에서)을 변경할 수 있다.
아울러 본 발명은 NCT에 PSS/SSS가 존재하는 경우 DM-RS와의 충돌을 회피하기 위해 다른 OFDM 심볼 위치로의 이동 여부 및 DM-RS 펑처링 그리고 기존과 다른 DM-RS 패턴에 따른 PBCH 전송 패턴을 사용하는 방안과 더불어, PSS/SSS와 DM-RS를 기존과 동일한 위치를 유지하면서 PSS/SSS와 DM-RS의 충돌을 회피할 수 있는 방안을 제시한다.
도 9는 PSS/SSS 및 DM-RS의 충돌을 도시하고 있다.
도 9에 도시한 바와 같이 동일한 위치/위치 중복에 따라 PSS/SSS와 DM-RS의 간섭/충돌 문제가 발생한다. 즉, 도 9의 910에 도시된 DM-RS와 920의 0/5번 서브프레임에서의 PSS/SSS는 동일한 시간 축 상의 심볼들에 할당된다. 한편, PSS/SSS 또는 DM-RS의 위치를 변경하므로 이러한 문제를 회피할 수 있는 방안들이 제시되고 있다. 물론, 이와 다른 실시예로 DM-RS의 위치 변경 대신 신호를 구분할 수 있도록 전송하는 방안도 고려할 수 있다.
따라서, 본 발명의 일실시예에서는 NCT에 PSS/SSS 또는 DM-RS의 위치를 변경하지 않고 PSS/SSS 및 DM-RS를 코드 분할 다중화(code divisional multiplexing)함으로 PSS/SSS와 DM-RS의 충돌을 회피할 수 있는 방안을 제시한다.
아래에 상세히 설명하는 바와 같이 MU-MIMO을 지원하기 위해 DM-RS를 복소 복조심볼들에 매핑할 때 직교 시퀀스를 사용하여 다중화하였다.
수학식 1에서 은 자원 블록(Resource Block, RB) 단위로 최대 하향링크 대역폭(bandwidth)으로서, 110일 수 있다. 유사-랜덤 시퀀스(pseudo-random sequence) c(i)는 다음의 수학식 2와 같이 초기화될 수 있다.
수학식 2에서 ns는 슬롯 넘버로서 0 내지 19의 값을 가질 수 있다. nSCID는 스크램블링 아이디(scrambling identity)로서 0 또는 1의 값을 가질 수 있다. 의 값은 의 값이 상위계층에 의해 제공되지 않거나 DCI로서 DCI 포맷 1A가 사용되는 경우 셀 아이디()이고, 다른 경우에는 이다. 수학식 1 및 2에 따르면, DM-RS는 nSCID의 값이 서로 다를 때 유사 직교성(pseudo orthogonality)을 가질 수 있다.
안테나 포트(안테나 포트 5에 대해서도 실질적으로 동일하게 적용함)에 대해, 주파수 도메인 인덱스를 갖는 nPRB PRB(Physical Resource Block)에서 DM-RS의 일부 r(m)은 노멀 CP(Normal cyclic prefix)에 따른 서브프레임에서 아래 수학식 3의 복소 복조 심볼들에 매핑된다.
PDSCH에 관련된 DM-RS의 시퀀스(r(m))가 매핑되는 자원 요소(resource element, RE)의 심볼 넘버(l) 및 서브캐리어 넘버(k)는 다음의 수학식 4과 같이 결정될 수 있다.
수학식 4에서 는 서브캐리어의 개수로 표현되는 주파수 도메인에서 자원 블록 크기이고, nPRB는 물리적 자원 블록 넘버이며, ns는 슬롯 넘버이다. 이때 직교 시퀀스 은 아래 표 1로 주어질 수 있다.
PDSCH에 관련된 DM-RS의 시퀀스(r(m))가 매핑되는 자원 요소(resource element, RE)의 심볼 넘버(l) 및 서브캐리어 넘버(k)는 다음의 수학식 6과 같이 결정될 수 있다.
이때 직교 시퀀스 은 아래 표 2로 주어질 수 있다.
본 발명은 NCT에 PSS/SSS 또는 DM-RS의 위치를 변경하지 않고 PSS/SSS 및 DM-RS를 코드 분할 다중화(code divisional multiplexing)함으로 PSS/SSS와 DM-RS의 충돌을 회피할 수 있는 방안을 제시한다. 예를 들어 PSS/SSS 및 DM-RS의 위치 중복/충돌시 DM-RS을 복소 복조심볼들에 매핑할 때 직교 시퀀스(orthogonal sequence)를 추가로 사용할 수 있다. 또한, 본 발명은 NCT에 PSS/SSS와 중첩되는 DM-RS의 위치를 변경하는 방안을 제시한다.
우선 코드 분할 다중화에 대해 살펴보면 다음과 같다.
도 10은 본 발명의 일 실시예에 의한 PSS/SSS 및 DM-RS를 코드 분할 다중화(code divisional multiplexing)를 도시하고 있다. 도 10은 도 9에서 살펴본 상황과 같이 PSS/SSS와 DM-RS가 동일한 심볼들에 매핑될 때, DM-RS에 표 1의 OCC를 적용하여 DM-RS의 신호와 PSS/SSS간에 직교성을 제공하여 간섭을 제거시킨다. 그 결과 동일한 심볼에 DM-RS와 PSS/SSS가 제공되어도 단말이 이를 구분할 수 있다.
도 9와 비교할 때, 코드 분할 다중화를 적용하므로 동일한 심볼에 위치하는 DM-RS와 PSS/SSS 간의 간섭을 회피할 수 있다.
수학식 7에서 W(l)은 w(x,y)로 x는 해당 서브프레임에서 해당 슬롯의 심볼의 위치를, y는 서브캐리어의 위치를 의미한다.
수학식 7에서 W(l)은 w(x,y)로 x는 해당 서브프레임에서 해당 슬롯의 심볼의 위치를, y는 서브캐리어의 위치를 의미한다.
따라서, w(x,y)가 w(5,0), w(6,0), w(5,1), w(6,1)인 경우나 w(x,y)가 w(5,5), w(6,5), w(5,6), w(6,6)인 경우나 w(x,y)가 w(5,10), w(6,10), w(5,11), w(6,11)인 경우에 추가적인 직교시퀀스, 예를 들어 [1,1,-1,-1]을 복소 복조 심볼들에 추가로 곱하므로, DM-RS를 PSS/SSS와 코드분할다중화할 수 있다.
전송단은 DM-RS 및 PSS/SSS의 코드분할다중화에 사용된 직교코드를 단말에게 묵시적으로 또는 명시적으로(RRC signaling 또는 시스템 정보 등) 전송할 수 있으나, 이 직교코드를 전송하지 않고 단말이 후보 직교코드들을 순차적으로 블라인드 디코딩할 수도 있다. 다시 말해 도 10에 도시한 바와 같이 8개의 직교코드를 이용하여 DM-RS 및 PSS/SSS의 코드분할다중화한 경우 8개의 직교코드를 순차적으로 사용하여 블라인드 디코딩할 수 있다. 도 10의 코드 분할 다중화는 일부 DM-RS에 대해서만 적용할 수도 있고, 위치 이동된 DM-RS에 대해서도 적용할 수 있다.
또한, 단말은 PSS/SSS와 동일한 위치에 있는 DM-RS에 대해 8개의 직교코드를 이용하여 순차적으로 블라인드 디코딩하는 방식과 전송할 직교코드에 대한 정보를 포함시켜 전송되도록 할 수 있다.
순차적으로 블라인드 디코딩하는 방식은 단말이 표 1의 8개의 직교코드를 하나씩 적용하여 디코딩 되는 것을 확인하는 것으로, 이는 단말 측의 시간적 부하를 가져올 수 있다. 안테나 포트와 직교코드의 일 실시예는 앞서 살펴본 표 1과 같으며, RRC 등과 같이 명시적으로 지시할 경우에는 직교코드가 RRC 내에 포함될 수 있다.
명시적으로 직교코드를 전송하는 방식의 실시예로는 직교코드를 지시하는 정보를 RRC 내에 포함시킬 수 있다. 다음으로 표 8개의 직교코드들 중 일부의 직교코드 정보들만 RRC로 포함시켜 전송한 후, 단말은 상기 일부의 직교코드 정보들만 이용하여 블라인드 디코딩을 수행할 수 있다. 이를 직교코드 그룹을 전송하는 것으로 살펴볼 수 있다. 즉, 상기 표 1 중 일부의 직교코드에 대한 정보만 직교코드 그룹으로 생성하여 이를 RRC에 포함시켜서 단말이 블라인드 디코딩을 수행하는 횟수를 줄일 수 있다. 예를 들어, 기지국이 표 1의 8개의 직교코드 중 아래의 표 3과 같이 일부의 직교코드들만 RRC로 전송하면 단말은 표 3의 직쿄코드들만 이용하여 블라인드 디코딩할 수 있다. 이 경우 블라인드 디코딩의 횟수를 최대 4회로 줄일 수 있다. 이후 다시 RRC로 직교코드들을 전송하기 전까지 단말은 표 3을 이용하여 블라인드 디코딩을 수행할 수 있다.
상기 표 1과 비교할 때 표 3은 일부의 직교코드 정보들만 포함되어 있다. 표 1 또는 표 3과 같이 직교코드를 포함하는 직교코드 그룹 정보를 전송하고, 단말이 블라인드 디코딩을 수행할 수 있다. 또한 단말에게 직교코드를 지시하는 정보를 명시적으로 RRC 내에 포함시켜 단말이 해당 직교코드를 이용하여 DM-RS를 확인할 수 있다.
표 1에서 표 3과 같은 그룹을 산출하기 위해서 해당 단말에게 향후 일정기간 동안 할당가능한 시퀀스를 선택하는 과정을 기지국에서 수행할 수 있다. 시퀀스의 선택은 단말에 적합한 DM-RS를 선택할 수 있으며, 또한 중복된 위치의 PSS/SSS에 적용할 직교코드까지 고려하여 선택할 수 있다. 표 1의 시퀀스들 중에서 그룹을 선택하여 전송하는 방식은 기지국과 단말의 약속 또는 단말의 상황에 따라 달라질 수 있다.
도 11은 본 발명의 일 실시예에 의한 기지국의 동작 과정을 보여주는 도면이다.
도 11의 기지국은 NCT인 캐리어에서 복조참조신호를 전송하는 과정을 제시한다. 기지국은 복조참조신호를 전송할 캐리어의 타입을 확인한다(S1110). 확인 결과 NCT인 경우(S1120), 복조참조신호에 적용할 직교코드를 선택하고(S1130), 상기 선택된 직교코드를 이용하여 복조참조신호를 코드 분할 다중화하여 매핑한다(S1140). 이 과정은 상기 캐리어의 하향링크 서브프레임에 배치되는 PSS 및 SSS와 중첩되는 심볼에 매핑될 복조참조신호에 대해 직교코드를 이용하여 코드분할다중화를 수행하는 것을 의미한다. 기지국은 매핑된 복조참조신호를 포함하는 하향링크를 전송한다(S1150). 즉, 기지국은 상기 코드분할다중화가 적용된 복조참조신호를 포함하는 하향링크를 전송하게 된다. 반면 NCT가 아닌 경우 레가시 방식으로 복조참조신호를 매핑하게 된다(S1160).
도 11의 과정을 좀더 자세히 살펴보면, 기지국이 직교코드를 지시하는 정보를 전송하는 경우, 기지국은 상기 직교코드를 지시하는 정보를 RRC에 포함시켜 전송할 수 있다. 또한, 앞서 표 3의 실시예에서 살펴본 바와 같이 기지국이 직교코드 그룹을 전송할 수 있다. 즉, 상기 직교코드를 포함하는 둘 이상의 직교코드 그룹 정보를 RRC에 포함시켜 전송할 경우, 단말은 상기 그룹 내의 직교코드만을 이용하여 블라인드 디코딩을 할 수 있다.
여기서 직교코드는 표 1의 직교 시퀀스들 중 하나가 될 수 있다.
도 12는 본 발명의 일 실시예에 의한 단말의 동작 과정을 보여주는 도면이다. 도 12의 단말은 NCT인 캐리어에서 복조참조신호를 수신하는 과정을 제시한다.
단말은 복조참조신호를 포함하는 하향링크를 수신한다(S1210). 그리고 복조참조신호가 전송된 캐리어의 타입을 확인한다(S1220). NCT인 경우(S1230), 단말은 하향링크 서브프레임에 포함된 복조참조신호에 직교코드를 적용하여 확인한다(S1240). 여기서 상기 복조참조신호는 상기 캐리어의 하향링크 서브프레임에 배치되는 PSS 및 SSS와 중첩된 심볼에 매핑되며 상기 PSS 및 SSS와 상기 복조참조신호는 코드분할 다중화되어 있다.
상기 S1240의 직교코드를 이용하여 상기 캐리어의 하향링크 서브프레임에 배치된 복조참조신호를 확인하는 과정에 대해 보다 상세히 살펴보면 다음과 같다.
먼저, 기지국이 직교코드를 지시하는 정보를 전송하는 경우에는 해당 직교코드를 이용할 수 있다. 즉, 단말은 상기 직교코드를 지시하는 정보가 포함된 RRC를 수신하고 이 지시 정보의 직교코드를 이용하여 복조참조신호를 확인할 수 있다. 만약, 하나의 직교코드를 지시하지 않거나 지시 정보가 없다면 단말은 블라인드 디코딩을 수행해야 한다. 따라서, 상기 S1240의 확인 단계는 단말이 다수의 직교코드를 이용하여 상기 복조참조신호를 블라인드 디코딩하는 과정을 포함한다. 표 3과 같이 기지국이 직교코드 그룹을 전송하는 경우 블라인드 디코딩 횟수는 줄어든다. 즉, 단말이 상기 확인하는 단계 이전에 상기 블라인드 디코딩을 하게 될 다수의 직교코드에 대한 직교코드 그룹 정보가 포함된 RRC를 수신한 경우, 단말은 상기 그룹 들 내의 직교코드들 중에서만 블라인드 디코딩을 수행하여 복조참조신호를 확인할 수 있다.
여기서 직교코드는 표 1의 직교 시퀀스들 중 하나가 될 수 있다.
도 13은 본 발명의 일실시예에 의한 기지국의 구성을 보여주는 도면이다.
도 13을 참조하면, 또 다른 실시예에 의한 기지국(1300)은 제어부(1310)과 송신부(1320), 수신부(1330)를 포함한다.
제어부(1310)는 전술한 본 발명을 수행하기에 필요한 NCT의 구조 및 동작에 따른 전반적인 기지국의 동작을 제어한다.
송신부(1320)와 수신부(1330)는 전술한 본 발명을 수행하기에 필요한 신호나 메시지, 데이터를 단말과 송수신하는데 사용된다.
보다 상세히 살펴보면 도 13의 기지국은 앞서 도 10 및 도 11에서 살펴본 NCT인 캐리어에서 직교성을 가지는 복조참조신호를 전송한다. 수신부(1330)는 단말로부터 신호를 수신하며, 제어부(1310)는 상기 캐리어의 하향링크 서브프레임에 배치되는 PSS 및 SSS와 중첩되는 심볼에 매핑될 복조참조신호에 대해 직교코드를 이용하여 코드분할다중화를 수행한다. 그리고 송신부(1320)는 상기 코드분할다중화가 적용된 복조참조신호를 포함하는 하향링크를 전송한다.
도 14는 본 발명의 다른 실시예에 의한 사용자 단말의 구성을 보여주는 도면이다.
도 14를 참조하면, 또 다른 실시예에 의한 사용자 단말(1400), 즉 단말은 수신부(1430) 및 제어부(1410), 송신부(1420)을 포함한다.
수신부(1430)는 기지국으로부터 하향링크 제어정보 및 데이터, 메시지를 해당 채널을 통해 수신한다.
또한 제어부(1410)는 전술한 본 발명을 수행하기에 NCT의 구조 및 동작에 따른 전반적인 단말의 동작을 제어한다.
송신부(1420)는 기지국에 하향링크 제어정보 및 데이터, 메시지를 해당 채널을 통해 전송한다.
보다 상세히 살펴보면 도 14의 사용자 단말은 앞서 도 10 및 도 12에서 살펴본 NCT인 캐리어에서 직교성을 가지는 복조참조신호를 수신하여 이를 확인하는 동작을 수행한다. 수신부(1330)는 복조참조신호를 포함하는 하향링크를 수신하며, 제어부(1410)는 직교코드를 이용하여 상기 캐리어의 하향링크 서브프레임에 배치된 복조참조신호를 확인한다. 이때, 상기 복조참조신호는 상기 캐리어의 하향링크 서브프레임에 배치되는 PSS 및 SSS와 중첩된 심볼에 매핑되며 상기 PSS 및 SSS와 상기 복조참조신호는 코드분할 다중화된 것을 특징으로 한다. 송신부(1420)은 기지국에 신호를 송신한다.
지금까지 살펴본 본 발명의 실시예인 복조참조신호가 PSS/SSS와 같은 신호와 중첩될 경우 직교코드를 적용하여 코드분할 다중화를 수행할 경우, 복조참조신호와 PSS/SSS 신호의 간섭을 해결할 수 있다. 즉, 본 발명을 구현함으로써 PSS/SSS와 DM-RS를 기존과 동일한 위치를 유지하면서 PSS/SSS와 DM-RS의 충돌을 회피할 수 있다.
이하, NCT에 PSS/SSS가 존재하는 경우 DM-RS와의 충돌을 회피하기 위해 DM-RS(복조참조신호)가 매핑되는 위치를 변경하는 과정을 살펴보고자 한다.
도 15는 본 발명의 또 다른 실시예에 의한 기지국에서 복조참조신호를 전송하는 과정을 보여주는 도면이다.
기지국은 복조참조신호(DM-RS)를 전송할 캐리어의 타입을 확인한다(S1510). NCT인 경우(S1520), 기지국은 하향링크 서브프레임에 PSS 및 SSS가 배치되는 심볼을 파악한다(S1530). 이는 상기 캐리어의 하향링크 서브프레임에 배치되는 PSS 및 SSS와 시간 축으로 상이한 시간의 심볼에 복조참조신호를 매핑하기 위해서이다. 기지국은 상기 파악된 심볼의 위치와 시간축으로 상이한 시간의 심볼에 복조참조신호를 매핑한다(S1540). 그리고 기지국은 상기 매핑된 복조참조신호를 포함하는 하향링크를 전송한다(S1550). 반면, NCT가 아닌 경우 레가시 방식으로 복조참조신호를 매핑한다(S1560).
S1530 및 S1540에서 상기 PSS/SSS와 시간축으로 상이한 시간의 심볼은 구현 방식에 따라 다양하게 선택될 수 있다. 예를 들어, 상기 하향링크 서브프레임은 두 개의 슬롯으로 구성되며, 상기 복조참조신호는 상기 두 개의 슬롯 각각에서 시간 축으로 세 번째와 네 번째 심볼들에 위치하거나 또는 상기 첫 번째 슬롯에서 시간 축으로 세 번째와 네 번째 심볼들에 위치하며 상기 두 번째 슬롯에서 시간 축으로 여섯 번째와 일곱 번째 심볼들에 위치하도록 선택할 수 있다. 이 경우, 도 18에서 보다 상세히 살펴본다. 한편, 복조참조신호인 DM-RS의 위치 이동으로 인해 CSI 기준신호(CSI-RS)와 중첩될 수 있다. 이러한 상황은 도 19 내지 도 21에서 제시되어 있다. 이 경우 기지국은 상기 CSI-RS를 재스케쥴링할 수 있다. 재스케쥴링한 CSI-RS는 다른 위치에서 전송될 수 있다.
S1530 및 S1540에서 상기 PSS/SSS와 시간 축으로 상이한 시간의 심볼의 선택은 FDD인 경우 다음과 같이 구현될 수 있다. 두 개의 슬롯으로 구성되는 서브프레임에서 상기 서브프레임이 노멀 CP(normal Cyclic Prefix)인 경우 상기 복조참조신호는 상기 두 개의 슬롯 각각에서 시간 축으로 첫 번째와 두 번째 심볼들에 위치하며, 상기 서브프레임이 확장 CP(extended Cyclic Prefix)인 경우 상기 복조참조신호는 상기 두 개의 슬롯 각각에서 시간 축으로 두 번째와 세 번째 심볼들에 위치하도록 기지국이 제어할 수 있다. 이는 도 22에서 상세히 살펴본다.
또한 TDD인 경우, 역시 두 개의 슬롯으로 구성되는 서브프레임 중 노멀 서브프레임(normal subframe)인 경우, 상기 복조참조신호는 상기 서브프레임의 두 번째 슬롯의 시간 축으로 마지막 심볼이 아닌 위치에 매핑되며, 스페셜 서브프레임(special subframe)인 경우, 상기 복조참조신호는 상기 서브프레임의 첫 번째 슬롯의 시간 축으로 세 번째 심볼이 아닌 위치에 매핑되도록 기지국이 제어할 수 있다. 도 23은 노멀 CP인 경우이며 도 24는 확장 CP인 경우를 보여준다.
도 16은 본 발명의 또 다른 실시예에 의한 단말에서 복조참조신호를 수신하는 과정을 보여주는 도면이다.
단말은 복조참조신호(DM-RS)를 포함하는 하향링크를 수신한다(S1610). 그리고 복조참조신호가 전송된 캐리어의 타입을 확인한다(S1620). 확인 결과 NCT인 경우(S1630), 하향링크 서브프레임에 PSS 및 SSS가 배치되지 않은 심볼에서 복조참조신호를 확인한다(S1640). 다시 설명하면, 단말은 상기 캐리어의 하향링크 서브프레임에 배치되는 PSS 및 SSS와 시간 축으로 상이한 시간의 심볼에 매핑된 복조참조신호를 확인하게 된다.
반면 NCT 타입이 아닌 경우 레가시 방식으로 복조참조신호를 확인한다(S1650).
S1640에서 상기 PSS/SSS와 시간축으로 상이한 시간의 심볼의 위치는 구현 방식에 따라 다양하다. 예를 들어, 상기 하향링크 서브프레임은 두 개의 슬롯으로 구성되며, 상기 복조참조신호는 상기 두 개의 슬롯 각각에서 시간 축으로 세 번째와 네 번째 심볼들에 위치하거나 또는 상기 첫 번째 슬롯에서 시간 축으로 세 번째와 네 번째 심볼들에 위치하며 상기 두 번째 슬롯에서 시간 축으로 여섯 번째와 일곱 번째 심볼들에 위치할 수 있다. 이 경우, 도 18에서 보다 상세히 살펴본다. 한편, 복조참조신호인 DM-RS의 위치 이동으로 인해 CSI 기준신호(CSI-RS)와 중첩될 수 있다. 이러한 상황은 도 19 내지 도 21에서 제시되어 있다. 이 경우 기지국은 상기 CSI-RS를 재스케쥴링하게 되며, 단말은 재스케쥴링된 CSI-RS를 확인하게 된다.
S1640에서 상기 PSS/SSS와 시간축으로 상이한 시간의 심볼의 위치는 FDD인 경우 다음과 같이 적용될 수 있다. 두 개의 슬롯으로 구성되는 서브프레임에서 상기 서브프레임이 노멀 CP(normal Cyclic Prefix)인 경우 상기 복조참조신호는 상기 두 개의 슬롯 각각에서 시간 축으로 첫 번째와 두 번째 심볼들에 위치하며, 상기 서브프레임이 확장 CP(extended Cyclic Prefix)인 경우 상기 복조참조신호는 상기 두 개의 슬롯 각각에서 시간 축으로 두 번째와 세 번째 심볼들에 위치하며 단말은 상기 위치에서 DM-RS를 확인할 수 있다. 이는 도 22에서 상세히 살펴본다.
또한 TDD인 경우, 역시 두 개의 슬롯으로 구성되는 서브프레임 중 노멀 서브프레임(normal subframe)인 경우, 상기 복조참조신호는 상기 서브프레임의 두 번째 슬롯의 시간 축으로 마지막 심볼이 아닌 위치에 매핑되며, 스페셜 서브프레임(special subframe)인 경우, 상기 복조참조신호는 상기 서브프레임의 첫 번째 슬롯의 시간 축으로 세 번째 심볼이 아닌 위치에 매핑되고, 단말은 상기 위치에서 DM-RS를 확인할 있다. 도 23은 노멀 CP인 경우이며 도 24는 확장 CP인 경우를 보여준다.
도 17은 5ms TRS 전송주기를 갖는 두 개의 이웃하는 NCT 셀들로 2ms 온 듀레이션(on duration)과 40ms의 DRX 주기를 가진 주파수내(intra-frequency) RRM 측정을 도시한 도면이다.
도 17에 도시한 바와 같이, 5ms TRS 전송주기를 갖는 두 개의 이웃하는 NCT 셀들로 2ms on duration과 40ms의 DRX 주기를 가진 intra-frequency RRM 측정을 가정한다. 도 17의 왼쪽 서클에 도시한 바와 같이 DRX 주기의 활성화 시간동안 전송되는 TRS가 없으므로 단말은 DRX 주기에 NCT 캐리어의 RSRP 측정을 할 수 없다. 따라서 이러한 경우에 DRX의 활성화 시간(on duration)을 적어도 하나의 TRS가 활성화 시간동안 전송될 수 있도록 5ms보다 작지 않게 설정할 수 있다.
한편 CSI-RS 기반 RRM 측정시 하나의 NCT 셀을 위한 다중 CSI-RS 자원(multiple CRI-RS resource)에 기초로 RRM 측정이 측정 정확도를 증가시키기 위해 고려될 수 있다.
한편 TRS가 전송되는 경우 TRS 기반 RRM 측정이 수행되고 TRS가 전송되지 않는 경우 CSI-RS 기반 RRM 측정이 수행될 수 있다. 예를 들어 동기화 NCT의 경우 동기 정보가 레거시 캐리어로부터 전달된다. 따라서 동기화 캐리어 상에 PSS/SSS/TRS의 전송이 수행되지 않을 수 있다. 이 경우에 CSI-RS 기반 RRM 측정이 사용될 수 있다.
도 18은 본 발명의 일 실시예에 따른 노멀 CP에 대한 DM-RS 패턴을 예시적으로 도시한 도면이다.
도 18의 1810 및 1820에는 축소된 CRS(Reduced CRS)와 본 발명의 실시예에 따라 시간 축 상으로 이동하여 위치된 DM-RS를 보여주고 있다. 이동하여 위치된 DM-RS는 PSS/SSS와 중첩되지 않도록 이동되며, 이동하게 되는 심볼의 위치는 발명의 실시예에 따라 다양하게 적용될 수 있다.
도 18의 1810을 참조하면, 다른 실시예에 따른 DM-RS 패턴은 각 슬롯의 세번째와 네번째 심볼들에 주파수축상으로 자원블럭의 양쪽 끝과 중앙의 4개의 자원요소에 위치할 수 있다. 구체적으로 수학식 7에서 각 슬롯에서 w(x,y)가 w(3,0), w(4,0), w(3,1), w(4,1) 또는 w(3,5), w(4,5), w(3,6), w(4,6) 또는 w(3,10), w(4,10), w(3,11), w(4,11)일 수 있다.
1820을 참조하면 다른 실시예에 따른 DM-RS 패턴은 첫번째 슬롯의 세번째와 네번째 심볼들에 주파수측상으로 자원블럭의 양쪽 끝과 중앙의 4개의 자원요소에 위치하고, 두번째 슬롯의 여섯번째와 일곱번째 심볼들의 주파수측상으로 자원블럭의 양쪽 끝과 중앙의 4개의 자원요소에 위치하도록 설계할 수도 있다. 구체적으로 수학식 7에서 첫번째 슬롯(ns=0)에서 w(x,y)가 w(3,0), w(4,0), w(3,1), w(4,1) 또는 w(3,5), w(4,5), w(3,6), w(4,6) 또는 w(3,10), w(4,10), w(3,11), w(4,11)이고, 두번째 슬롯(ns=1)에서, w(x,y)가 w(5,0), w(6,0), w(5,1), w(6,1) 또는 w(5,5), w(6,5), w(5,6), w(6,6) 또는 w(5,10), w(6,10), w(5,11), w(6,11)일 수 있다.
도 18에서의 DM-RS 패턴은 첫번째 슬롯의 경우 세번째와 네번째, 두번째 슬롯의 경우는 세번째와 네번째이거나 또는 여섯번째와 일곱번째 심볼들이 PSS/SSS와의 충돌을 회피하도록 이동하여 매핑한 것이다.
도 19 내지 도 21은 CSI-RS가 설정된 CSI-RS 패턴을 도시한 도면이다.
도 19 내지 도 21은 두번째 슬롯의 세번째와 네번째 심볼들의 자원요소들에는 CSI-RS가 설정된 CSI-RS 패턴을 도시하고 있다.
도 19 내지 도 21에 도시한 바와 같이 두번째 슬롯의 세번째와 네번째 심볼들의 자원요소들에는 CSI-RS가 설정될 수 있어, 도 18의 1810에 도시한 DM-RS 패턴을 사용할 경우 두번째 슬롯의 세번째와 네번째 심볼들의 자원요소들 상 중첩될 수 있다. 따라서 기지국(전송당 또는 서빙 셀)은 도 18의 1810에 도시한 DM-RS 패턴을 사용할 경우 도 18에 도시한 DM-RS 패턴과 중첩되지 않도록 CSI-RS를 구성하도록 스케줄링할 수 있다.
도 18의 1810에 도시한 다른 실시예에 따른 DM-RS 패턴은 제어영역이 존재하지 않은 NCT에서 PSS/SSS와 중첩/충돌문제도 해결하면서 각 슬롯의 중앙부분에 균일하게 DM-RS 자원들이 위치하므로 자원블럭 전체의 복조효율을 향상시킬 수 있다. 다만 도 18의 1810에 도시한 다른 실시예에 따른 DM-RS 패턴은 두번째 슬롯에서 CSI-RS 자원들과 중첩될 수 있으나, 기지국(전송단 또는 서빙 셀)은 도 18에 도시한 DM-RS 패턴과 중첩되지 않도록 CSI-RS를 구성하도록 스케줄링할 수 있다.
도 18의 1820에 도시한 다른 실시예에 따른 DM-RS 패턴은 제어영역이 존재하지 않은 NCT에서 PSS/SSS와 중첩/충돌문제도 해결하면서 CSI-RS 자원과 중첩/충돌 문제도 발생하지 않아 기지국(전송단 또는 서빙 셀)의 자원 할당시 자유롭게 자원들을 스케줄링할 수 있다.
도 22는 본 발명의 일 실시예에 의한 FDD의 경우에 노멀 CP와 확장 CP에 대한 DM-RS 패턴을 예시적으로 도시한 도면이다.
도 22를 참조하면, 또 다른 실시예에 따른 DM-RS 패턴은 도 22의 2010에 도시한 바와 같이 노멀 CP에 대해 첫번째 슬롯(짝수번째 슬롯, even-numbered slot)와 두번째 슬롯(홀수번째 슬롯, odd-numbered slot) 각각의 첫번째와 두번째 심볼들에 주파수측상으로 자원블럭의 양쪽 끝과 중앙의 4개의 자원요소에 위치할 수 있다. 구체적으로 수학식 7에서 첫번째 슬롯(ns=0)와 두번째 슬롯 두번째 슬롯(ns=1)에서 w(x,y)가 w(0,0), w(1,0), w(0,1), w(1,1) 또는 w(0,5), w(1,5), w(0,6), w(1,6) 또는 w(0,10), w(1,10), w(0,11), w(1,11)일 수 있다. 2020에 도시한 바와 같이 확장 CP에 대해 첫번째 슬롯의 두번째와 세번째 심볼들에 주파수측상으로 두번째, 다섯번째, 여덟번째, 열한번째의 자원요소들이 DM-RS 자원들이 위치하고, 두번째 슬롯의 두번째와 세번째 심볼들에 주파수측상으로 첫번째, 네번째, 일곱번째, 열번째의 자원요소들이 DM-RS 자원들이 위치할 수 있다.
도 22에서 2010에서는 SSS와 PSS는 첫번째 슬롯의 6, 7번째 심볼들에 위치하므로 DM-RS와 충돌하지 않는다. 마찬가지로 2020에서는 SSS와 PSS는 첫번째 슬롯의 5, 6번째 심볼들에 위치하므로 DM-RS와 충돌하지 않는다.
도 23 및 도 24는 본 발명의 일 실시예에 의한 TDD의 경우에 노멀 CP와 확장 CP에 대한 DM-RS 패턴을 예시적으로 도시한 도면이다. 도 23 및 도 24에서는 TDD 인 경우, 노멀 서브프레임에서는 상기 서브프레임의 두 번째 슬롯의 시간 축으로 마지막 심볼에 SSS/PSS가 위치하므로 이 위치가 아닌 심볼에 DM-RS를 매핑할 수 있다. 마찬가지로 스페셜 서브프레임에서는 상기 서브프레임의 첫 번째 슬롯의 시간 축으로 세 번째 심볼에 SSS/PSS가 위치하므로 이 위치가 아닌 심볼에 DM-RS를 매핑할 수 있다.
도 23은 노멀 CP에 해당하며 도면을 참조하면, DM-RS 패턴은 TDD의 경우 노멀 서브프레임의 마지막 심볼과 스페셜 서브프레임(special subframe)의 세번째 심볼들에 SSS와 PSS 신호들이 위치하므로 이들과 충돌하지 않도록 DM-RS 패턴을 설계할 수 있다. 도 23에서 DM-RS는 노멀 서브프레임인 경우 첫번째 및 두번째 슬롯의 시간 축으로 다섯번째, 여섯번째 심볼들 중에 주파수측상으로 자원블럭의 양쪽 끝과 중앙의 4개의 자원요소에 위치할 수 있다. 또한 DM-RS는 스페셜 서브프레임의 경우, 첫번째 슬롯의 시간 축으로 첫번째, 두번째 심볼과 여섯번째, 일곱번째 심볼에 대해 주파수측상으로 자원블럭의 양쪽 끝과 중앙의 4개의 자원요소에 위치할 수 있다.
도 24는 확장 CP에 해당하며 도면을 참조하면, DM-RS 패턴은 TDD의 경우 노멀 서브프레임과 스페셜 서브프레임(special subframe) 각각의 마지막 심볼과 세번째 심볼들에 SSS/PSS 신호들이 위치하므로 이들과 충돌하지 않도록 DM-RS 패턴을 설계할 수 있다. 도 24에서 DM-RS는 노멀 서브프레임인 경우 첫 번째 슬롯의 시간 축으로 두번째 및 세번째 심볼들에 대해 주파수측상으로 두번째, 다섯번째, 여덟번째, 열한번째의 자원요소들이 DM-RS 자원들이 위치하고, 두번째 슬롯의 시간 축으로 두번째와 세번째 심볼들에 주파수측상으로 첫번째, 네번째, 일곱번째, 열번째의 자원요소들이 DM-RS 자원들이 위치할 수 있다.
한편 DM-RS는 스페셜 서브프레임인 경우, 첫번째 슬롯의 시간 축으로 다섯번째 및 여섯번째 심볼들에 주파수측상으로 두번째, 다섯번째, 여덟번째, 열한번째의 자원요소들이 DM-RS 자원들이 위치한다.
2. NCT를 위한 RRM 측정(RRM measurements for NCT)
NCT를 위한 RRM 측정의 기능은 이동성(핸드오버 또는 셀 (재)선택)을 위한 것이 아니라 단말에 의한 RRM 측정 리포트들에 기초하여 SCell로써 NCT의 추가 또는 제거를 결정하는데 전송단(기지국)의 성능을 위한 것이다. NCT를 위한 RRM 측정은 주파수 간(inter-frequency) 뿐만 아니라 주파수 내(intra-frequency) 측정을 위해 RRC 연결된(RRC connected) 단말들에만 적용할 수 있다. 다시말해 아이들(idle) 모드에 대한 RRM 측정은 필요하지 않다. RRM 측정은 동기화 NCT와 비동기화 NCT 모두에 적용할 수 있다. CA와 마찬가지로 RSRQ와 RSRQ 행렬들이 NCT RRM 측정을 위해 정의될 수 있다. SCell의 추가/제거를 위해 CA에 대해 정의한 RRM 측정 모델 및 절차들이 NCT에 대해 재사용될 수 있다.
NCT는 정의상 레거시 CRS를 전송하지 않는다. 따라서 NCT를 위한 RRM 측정을 위한 다른 RS가 사용될 필요가 있다. NCT 상에 RS 전송은 CSI-RS, DM-RS 및 PSS/SSS를 포함한다. 주파수 및 시간 동기를 목적으로 NCT는 5ms 주기로 하나의 서브프레임에 1RS 포트(PRB당 Rel-8 CRS 포트 0 RE들 및 Rel-8 시퀀스로 구성된)을 운반할 수 있다.
NCT 상에 전송되는 신호들 중 단지 CSI-RS 및 TRS(또는 이들의 조합) 중 적어도 하나만이 RRM 측정을 위한 RS들로 고려될 수 있다.
TRS가 동기화 및 비동기화 캐리어들 모두에 사용될 경우 TRS가 RRM 측정을 위한 RS로 사용될 수 있다. 이때 동일한 RRM 측정 방법이 동기화 및 비동기화 NCT에 적용될 수 있다. 주기적 TRS 전송으로 RRM 측정을 위한 TRS 서브프레임들 중 서브프레임들을 선택하기 위해 단말은 TRS가 언제 전송되는지 알아야 한다. 서빙 셀 RRM 측정을 위해, 단말은 셀 타입(예를 들어 Legacy Cell Type(LCT) 또는 NCT)와 TRS 서브프레임들(구성되었다면)의 서브프레임 오프셋과 같은 시스템 정보를 획득해야 한다. 주파수 내(Intra-frequency) RRM 측정을 위해, 이웃 셀의 TRS 서브프레임들의 정보가 항상 단말에 알려질 수 없다. 한편 단말은 측정 객체(measurement object)를 갖도록 구성된 경우 측정 요구(measurement request)는 타켓 셀의 셀 타입 또는 TRS의 정보를 포함할 수 있다.
앞서 도 17에 도시한 바와 같이, 5ms TRS 전송주기를 갖는 두 개의 이웃하는 NCT 셀들로 2ms 온 듀레이션(on duration)과 40ms의 DRX 주기를 가진 주파수 내(intra-frequency) RRM 측정을 가정한다. 도 17의 왼쪽 서클에 도시한 바와 같이 DRX 주기의 활성화 시간동안 전송되는 TRS가 없으므로 단말은 DRX 주기에 NCT 캐리어의 RSRP 측정을 할 수 없다. 따라서 이러한 경우에 DRX의 활성화 시간(on duration)을 적어도 하나의 TRS가 활성화 시간동안 전송될 수 있도록 5ms보다 작지 않게 설정할 수 있다.
한편 CSI-RS 기반 RRM 측정시 하나의 NCT 셀을 위한 다중 CSI-RS 자원(multiple CRI-RS resource)에 기초로 RRM 측정이 측정 정확도를 증가시키기 위해 고려될 수 있다.
한편 TRS가 전송되는 경우 TRS 기반 RRM 측정이 수행되고 TRS가 전송되지 않는 경우 CSI-RS 기반 RRM 측정이 수행될 수 있다. 예를 들어 동기화 NCT의 경우 동기 정보가 레거시 캐리어로부터 전달된다. 따라서 동기화 캐리어 상에 PSS/SSS/TRS의 전송이 수행되지 않을 수 있다. 이 경우에 CSI-RS 기반 RRM 측정이 사용될 수 있다.
3. 동기화 NCT들(Synchronised new carriers)
동기화 NCT들(Synchronised new carriers)은 단일 RF 프론트 엔드(front end)를 사용하는 밴드 내 연속된 CA(intra-band contiguous carrier aggregation)의 경우로 한정될 수 있다. CRS는 시간/주파수 트래킹(tracking)에 무관하게 RRM 측정을 목적으로 전송될 수 있다. 한편 PSS/SSS는 제거될 수 있다.
반면에, 동기화 NCT의 시간/주파수 동기 및 트래킹을 위한 RS들은 상위계층 시그널링에 의해 단말에 시그널링(전송/전달)될 수 있다. 이 경우 PSS/SSS/CRS/TRS들은 동기화 NCT에 대해 전송되지 않을 수 있다.
세그먼트가, 하향링크에 대해서만, 백워드 컴패터블 캐리어(backward compatible carrier(BCC))와 동일 밴드에 있을 수 있다. 이때 세그먼트 크기는 BCC 이하일 수 있다. BCC와 세그먼트는 시간/주파수상 동기화될 수 있다. PSS/SSS/PBCH/SIBs은 세그먼트에 전송되지 않는다. 단일 (E)PDCCH DCI는 BCC와 세그먼트를 지시한다. BCC와 세그먼트를 위한 하나의 HARQ가 사용될 수 있다. BCC와 세그먼트의 최대 자원할당 크기는 110PRB 쌍(20MHz)일 수 있다. 세그먼트는 단지 유니캐스트(unicast) PDSCH를 지원할 수 있다. CRS는 세그먼트 상에 전송되고 TM1-10이 지원될 수 있다. BCC와 세그먼트 사이 가드 밴드(guard band)가 있을 수 있다. 세그먼트는 BCC의 한쪽 에지(edge) 또는 양쪽 에지들에 존재할 수 있다.
이상 NCT의 구조 및 전송방법에 대해 설명하였으나 이하에서 설명하는 기지국 및 단말은 전술한 NCT의 구조 및 전송방법을 수행할 수 있다.
도 25는 본 발명의 또 다른 실시예에 의한 기지국의 구성을 보여주는 도면이다. 도 25는 앞서 도 15 및 도 18 내지 도 24에서 살펴본 실시예를 구현하는 장치이다.
도 25를 참조하면, 또 다른 실시예에 의한 기지국(2300)은 제어부(2310)와 송신부(2320), 수신부(2330)를 포함한다.
제어부(2310)는 전술한 본 발명을 수행하기에 필요한 NCT의 구조 및 동작에 따른 전반적인 기지국의 동작을 제어한다.
송신부(2320)와 수신부(2330)는 전술한 본 발명을 수행하기에 필요한 신호나 메시지, 데이터를 단말과 송수신하는데 사용된다.
보다 상세히 살펴보면, 기지국은 NCT인 캐리어에서 복조참조신호를 전송하며, 이를 위해 제어부(2310)는 상기 캐리어의 하향링크 서브프레임에 배치되는 PSS 및 SSS와 시간 축으로 상이한 시간의 심볼에 복조참조신호를 매핑한다. 상기 송신부(2320)는 상기 매핑된 복조참조신호를 포함하는 하향링크를 전송하며, 상기 수신부(2330)는 상기 하향링크를 수신한 단말로부터 신호를 수신한다. 상기 PSS 및 SSS와 충돌하지 않도록 시간 축으로 상이한 시간의 심볼에 복조참조신호를 매핑하는 세부적인 실시예는 앞서 도 15 및 도 18 내지 도 24에서 살펴보았다.
도 26은 본 발명의 또 다른 실시예에 의한 사용자 단말의 구성을 보여주는 도면이다.
도 26을 참조하면, 또 다른 실시예에 의한 사용자 단말(2400)은 수신부(2430) 및 제어부(2410), 송신부(2420)을 포함한다. 도 26은 앞서 도 16 및 도 18 내지 도 24에서 살펴본 실시예를 구현하는 장치이다.
수신부(2430)는 기지국으로부터 하향링크 제어정보 및 데이터, 메시지를 해당 채널을 통해 수신한다.
또한 제어부(2410)는 전술한 본 발명을 수행하기에 NCT의 구조 및 동작에 따른 전반적인 단말의 동작을 제어한다.
송신부(2420)는 기지국에 하향링크 제어정보 및 데이터, 메시지를 해당 채널을 통해 전송한다.
보다 상세히 살펴보면 단말(2400)의 수신부(2430)는 복조참조신호를 포함하는 하향링크를 수신하며, 제어부(2410)는 상기 캐리어의 하향링크 서브프레임에 배치되는 PSS 및 SSS와 시간 축으로 상이한 시간의 심볼에 매핑된 복조참조신호를 확인한다. 이후 송신부(2420)는 상기 기지국에게 신호를 송신한다. 상기 심볼에 매핑되는 복조참조신호의 실시예는 앞서 도 16 및 도 18 내지 도 24에서 살펴본 실시예를 참고한다.
지금까지 살펴본 시간축을 기준으로 충돌을 회피하는 DM-RS 신호의 매핑 위치를 변경하는 방식 이외에도 PSS/SSS가 할당된 주파수 대역이 아닌 주파수 대역에만 DM-RS가 할당되도록 할 수 있다. 예를 들어, 중심 주파수의 6개의 RB에 PSS/SSS가 할당된 경우, 이 위치에 매핑될 DM-RS는 이 위치에는 매핑시키지 않는 대신, 해당 시간축의 다른 주파수 대역, 예를 들어 상기 PSS/SSS가 매핑된 주파수 대역에 인접한 주파수 대역에 DM-RS가 할당되도록 구현할 수 있다. 즉, 6개의 RB에 PSS/SSS가 할당된 경우 인접한 주파수 대역의 RB에 DM-RS를 매핑할 수 있다.
또한, 앞서 살펴본 바와 같이 DM-RS와 PSS/SSS가 충돌되는 주파수에서 DM-RS를 펑쳐링(puncturing) 하는 방식도 고려할 수 있으며, 이와 반대로 PSS/SSS를 펑처링하는 방안도 고려할 수 있다.
본 발명의 다양한 실시예에서는 PSS/SSS가 할당되는 심볼의 시간축 및 주파수 축을 고려하여 DM-RS의 주파수 영역을 유지하며 시간축을 이동시키거나, 또는 시간축을 유지하며 주파수 영역을 일부 이동시키거나 또는 주파수 영역과 시간축 영역을 유지하며 DM-RS 또는 PSS/SSS를 펑처링하여 두 신호의 간섭을 제거할 수 있다.
이상의 설명은 본 발명의 기술 사상을 예시적으로 설명한 것에 불과한 것으로서, 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자라면 본 발명의 본질적인 특성에서 벗어나지 않는 범위에서 다양한 수정 및 변형이 가능할 것이다. 따라서, 본 발명에 개시된 실시 예들은 본 발명의 기술 사상을 한정하기 위한 것이 아니라 설명하기 위한 것이고, 이러한 실시 예에 의하여 본 발명의 기술 사상의 범위가 한정되는 것은 아니다. 본 발명의 보호 범위는 아래의 청구범위에 의하여 해석되어야 하며, 그와 동등한 범위 내에 있는 모든 기술 사상은 본 발명의 권리범위에 포함되는 것으로 해석되어야 할 것이다.
Claims (21)
- 기지국이 NCT(New Carrier Type)인 캐리어(carrier)에서 직교성을 가지는 복조참조신호(Demodulation Reference Signal)를 전송하는 방법에 있어서,상기 캐리어의 하향링크 서브프레임(Downlink Subframe)에 배치되는 PSS(Primary Synchronization Signal) 및 SSS(Secondary Synchronization Signal)와 중첩되는 심볼에 매핑될 복조참조신호에 대해 직교코드를 이용하여 코드분할다중화를 수행하는 단계; 및상기 코드분할다중화가 적용된 복조참조신호를 포함하는 하향링크를 전송하는 단계를 포함하는 방법.
- 제 1 항에 있어서,상기 직교코드를 지시하는 정보를 RRC(Radio Resource Control)에 포함시켜 전송하는 단계를 더 포함하는 방법.
- 제 1 항에 있어서,상기 직교코드를 포함하는 둘 이상의 직교코드 그룹 정보를 RRC(Radio Resource Control)에 포함시켜 전송하는 단계를 더 포함하는 방법.
- 단말이 NCT(New Carrier Type)인 캐리어(carrier)에서 직교성을 가지는 복조참조신호(Demodulation Reference Signal)를 수신하는 방법에 있어서,복조참조신호를 포함하는 하향링크를 수신하는 단계; 및직교코드를 이용하여 상기 캐리어의 하향링크 서브프레임(Downlink Subframe)에 배치된 복조참조신호를 확인하는 단계를 포함하며,상기 복조참조신호는 상기 캐리어의 하향링크 서브프레임에 배치되는 PSS(Primary Synchronization Signal) 및 SSS(Secondary Synchronization Signal)와 중첩된 심볼에 매핑되며 상기 PSS 및 SSS와 상기 복조참조신호는 코드분할 다중화된 것을 특징으로 하는 방법.
- 제 5 항에 있어서,상기 직교코드를 지시하는 정보가 포함된 RRC(Radio Resource Control)를 수신하는 단계를 더 포함하는 방법.
- 제 5항에 있어서,상기 확인하는 단계는 다수의 직교코드를 이용하여 상기 복조참조신호를 블라인드 디코딩(Blind Decoding)하는 단계를 더 포함하는 방법.
- 제 7 항에 있어서,상기 확인하는 단계 이전에상기 블라인드 디코딩을 하게 될 다수의 직교코드에 대한 직교코드 그룹 정보가 포함된 RRC(Radio Resource Control)를 수신하는 단계를 더 포함하는 방법.
- NCT(New Carrier Type)인 캐리어(carrier)에서 직교성을 가지는 복조참조신호(Demodulation Reference Signal)를 전송하는 기지국에 있어서,단말로부터 신호를 수신하는 수신부;상기 캐리어의 하향링크 서브프레임(Downlink Subframe)에 배치되는 PSS(Primary Synchronization Signal) 및 SSS(Secondary Synchronization Signal)와 중첩되는 심볼에 매핑될 복조참조신호에 대해 직교코드를 이용하여 코드분할다중화를 수행하는 제어부; 및상기 코드분할다중화가 적용된 복조참조신호를 포함하는 하향링크를 전송하는 송신부를 포함하는 기지국.
- 기지국이 NCT(New Carrier Type)인 캐리어(carrier)에서 복조참조신호(Demodulation Reference Signal)를 전송하는 방법에 있어서,상기 캐리어의 하향링크 서브프레임(Downlink Subframe)에 배치되는 PSS(Primary Synchronization Signal) 및 SSS(Secondary Synchronization Signal)와 시간 축으로 상이한 시간의 심볼에 복조참조신호를 매핑하는 단계; 및상기 매핑된 복조참조신호를 포함하는 하향링크를 전송하는 단계를 포함하는 방법.
- 제 11항에 있어서,상기 하향링크 서브프레임은 두 개의 슬롯으로 구성되며,상기 복조참조신호는 상기 두 개의 슬롯 각각에서 시간 축으로 세 번째와 네 번째 심볼들에 위치하거나 또는 상기 첫 번째 슬롯에서 시간 축으로 세 번째와 네 번째 심볼들에 위치하며 상기 두 번째 슬롯에서 시간 축으로 여섯 번째와 일곱 번째 심볼들에 위치하는 것을 특징으로 하는 방법.
- 제 11항에 있어서,상기 하향링크 서브프레임의 CSI 기준신호(Channel State Information Reference Signal)가 상기 복조참조신호와 심볼이 중첩될 경우 상기 CSI-RS를 재스케쥴링하는 단계를 더 포함하는 방법.
- 제 11항에 있어서,상기 하향링크 서브프레임은 FDD(Frequency Division Duplex)방식으로 두 개의 슬롯으로 구성되며,상기 서브프레임이 노멀 CP(normal Cyclic Prefix)인 경우 상기 복조참조신호는 상기 두 개의 슬롯 각각에서 시간 축으로 첫 번째와 두 번째 심볼들에 위치하며,상기 서브프레임이 확장 CP(extended Cyclic Prefix)인 경우 상기 복조참조신호는 상기 두 개의 슬롯 각각에서 시간 축으로 두 번째와 세 번째 심볼들에 위치하는 것을 특징으로 하는 방법.
- 제 11항에 있어서,상기 하향링크 서브프레임은 TDD(Time Division Duplex)방식으로 두 개의 슬롯으로 구성되며,상기 하향링크 서브프레임이 노멀 서브프레임(normal subframe)인 경우, 상기 복조참조신호는 상기 서브프레임의 두 번째 슬롯의 시간 축으로 마지막 심볼이 아닌 위치에 매핑되며,상기 하향링크 서브프레임이 스페셜 서브프레임(special subframe)인 경우, 상기 복조참조신호는 상기 서브프레임의 첫 번째 슬롯의 시간 축으로 세 번째 심볼이 아닌 위치에 매핑되는 것을 특징으로 하는 방법.
- 단말이 NCT(New Carrier Type)인 캐리어(carrier)에서 복조참조신호(Demodulation Reference Signal)를 수신하는 방법에 있어서,복조참조신호를 포함하는 하향링크를 수신하는 단계; 및상기 캐리어의 하향링크 서브프레임(Downlink Subframe)에 배치되는 PSS(Primary Synchronization Signal) 및 SSS(Secondary Synchronization Signal)와 시간 축으로 상이한 시간의 심볼에 매핑된 복조참조신호를 확인하는 단계를 포함하는 방법.
- 제 16항에 있어서,상기 하향링크 서브프레임은 두 개의 슬롯으로 구성되며,상기 복조참조신호는 상기 두 개의 슬롯 각각에서 시간 축으로 세 번째와 네 번째 심볼들에 위치하거나 또는 상기 첫 번째 슬롯에서 시간 축으로 세 번째와 네 번째 심볼들에 위치하며 상기 두 번째 슬롯에서 시간 축으로 여섯 번째와 일곱 번째 심볼들에 위치하는 것을 특징으로 하는 방법.
- 제 16항에 있어서,상기 하향링크 서브프레임의 CSI 기준신호(Channel State Information Reference Signal)가 상기 복조참조신호와 심볼이 중첩될 경우 상기 CSI-RS는 재스케쥴링된 것을 특징으로 하는 방법.
- 제 16항에 있어서,상기 하향링크 서브프레임은 FDD(Frequency Division Duplex)방식으로 두 개의 슬롯으로 구성되며,상기 서브프레임이 노멀 CP(normal Cyclic Prefix)인 경우 상기 복조참조신호는 상기 두 개의 슬롯 각각에서 시간 축으로 첫 번째와 두 번째 심볼들에 위치하며,상기 서브프레임이 확장 CP(extended Cyclic Prefix)인 경우 상기 복조참조신호는 상기 두 개의 슬롯 각각에서 시간 축으로 두 번째와 세 번째 심볼들에 위치하는 것을 특징으로 하는 방법.
- 제 16항에 있어서,상기 하향링크 서브프레임은 TDD(Time Division Duplex)방식으로 두 개의 슬롯으로 구성되며,상기 하향링크 서브프레임이 노멀 서브프레임(normal subframe)인 경우, 상기 복조참조신호는 상기 서브프레임의 두 번째 슬롯의 시간 축으로 마지막 심볼이 아닌 위치에 매핑되며,상기 하향링크 서브프레임이 스페셜 서브프레임(special subframe)인 경우, 상기 복조참조신호는 상기 서브프레임의 첫 번째 슬롯의 시간 축으로 세 번째 심볼이 아닌 위치에 매핑되는 것을 특징으로 하는 방법.
- NCT(New Carrier Type)인 캐리어(carrier)에서 복조참조신호(Demodulation Reference Signal)를 전송하는 기지국에 있어서,상기 캐리어의 하향링크 서브프레임(Downlink Subframe)에 배치되는 PSS(Primary Synchronization Signal) 및 SSS(Secondary Synchronization Signal)와 시간 축으로 상이한 시간의 심볼에 복조참조신호를 매핑하는 제어부;상기 매핑된 복조참조신호를 포함하는 하향링크를 전송하는 송신부; 및상기 하향링크를 수신한 단말로부터 신호를 수신하는 수신부를 포함하는 기지국.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US14/773,672 US20160043848A1 (en) | 2013-03-08 | 2014-03-07 | Method and device for sending and receiving demodulation reference signal on new carrier type (nct) carrier |
Applications Claiming Priority (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR10-2013-0024910 | 2013-03-08 | ||
KR20130024910 | 2013-03-08 | ||
KR10-2013-0045501 | 2013-04-24 | ||
KR1020130045501A KR20140110676A (ko) | 2013-03-08 | 2013-04-24 | NCT(New Carrier Type)인 캐리어에서 복조참조신호를 전송 및 수신하는 방법과 장치 |
KR1020130046670A KR20140096945A (ko) | 2013-01-28 | 2013-04-26 | NCT(New Carrier Type)인 캐리어에서 직교성을 가지는 복조참조신호를 전송 및 수신하는 방법과 장치 |
KR10-2013-0046670 | 2013-04-26 |
Publications (2)
Publication Number | Publication Date |
---|---|
WO2014137197A2 true WO2014137197A2 (ko) | 2014-09-12 |
WO2014137197A3 WO2014137197A3 (ko) | 2015-12-03 |
Family
ID=51492075
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/KR2014/001912 WO2014137197A2 (ko) | 2013-03-08 | 2014-03-07 | 뉴 캐리어 타입인 캐리어에서 복조참조신호를 전송 및 수신하는 방법과 장치 |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2014137197A2 (ko) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2017188545A1 (ko) * | 2016-04-27 | 2017-11-02 | 엘지전자 주식회사 | 무선 통신 시스템에서 동기 신호를 수신하는 방법 및 장치 |
CN110892689A (zh) * | 2017-07-13 | 2020-03-17 | 株式会社Ntt都科摩 | 用户终端以及无线通信方法 |
CN111034099A (zh) * | 2017-08-11 | 2020-04-17 | 高通股份有限公司 | 与解调参考信号设计和相关信令有关的方法和装置 |
CN111971927A (zh) * | 2018-04-16 | 2020-11-20 | 高通股份有限公司 | 同步信号块与下行链路信道复用 |
EP3681224A4 (en) * | 2017-09-08 | 2021-06-09 | Sharp Kabushiki Kaisha | TERMINAL DEVICE AND COMMUNICATION PROCESS |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101789621B1 (ko) * | 2010-01-19 | 2017-10-25 | 엘지전자 주식회사 | 하향링크 데이터 전송방법 및 기지국과, 하향링크 데이터 수신방법 및 사용자기기 |
CN102148659B (zh) * | 2010-02-10 | 2018-01-30 | 中兴通讯股份有限公司 | 解调参考信号的发送功率配置方法及装置 |
CN102237945A (zh) * | 2010-05-06 | 2011-11-09 | 松下电器产业株式会社 | 基于正交编码的码分复用方法、码分复用设备和解复用设备 |
US8842620B2 (en) * | 2010-08-24 | 2014-09-23 | Alcatel Lucent | Method for accommodating overlapping reference signal patterns |
EP2685691A4 (en) * | 2011-03-11 | 2015-12-30 | Lg Electronics Inc | METHOD FOR RECEIVING DOWNLINK SIGNAL AND METHOD FOR TRANSMITTING SAID SIGNAL, AND DEVICE FOR RECEIVING THIS SIGNAL AND DEVICE FOR TRANSMITTING SAID SIGNAL |
-
2014
- 2014-03-07 WO PCT/KR2014/001912 patent/WO2014137197A2/ko active Application Filing
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2017188545A1 (ko) * | 2016-04-27 | 2017-11-02 | 엘지전자 주식회사 | 무선 통신 시스템에서 동기 신호를 수신하는 방법 및 장치 |
CN110892689A (zh) * | 2017-07-13 | 2020-03-17 | 株式会社Ntt都科摩 | 用户终端以及无线通信方法 |
CN111034099A (zh) * | 2017-08-11 | 2020-04-17 | 高通股份有限公司 | 与解调参考信号设计和相关信令有关的方法和装置 |
CN111034099B (zh) * | 2017-08-11 | 2022-04-12 | 高通股份有限公司 | 与解调参考信号设计和相关信令有关的方法和装置 |
US11528110B2 (en) | 2017-08-11 | 2022-12-13 | Qualcomm Incorporated | Methods and apparatus related to demodulation reference signal design and related signaling |
EP3681224A4 (en) * | 2017-09-08 | 2021-06-09 | Sharp Kabushiki Kaisha | TERMINAL DEVICE AND COMMUNICATION PROCESS |
CN111971927A (zh) * | 2018-04-16 | 2020-11-20 | 高通股份有限公司 | 同步信号块与下行链路信道复用 |
CN111971927B (zh) * | 2018-04-16 | 2023-06-30 | 高通股份有限公司 | 同步信号块与下行链路信道复用 |
Also Published As
Publication number | Publication date |
---|---|
WO2014137197A3 (ko) | 2015-12-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2014185674A1 (ko) | 캐리어 타입을 고려한 통신 방법 및 이를 위한 장치 | |
WO2017160100A2 (ko) | 무선 통신 시스템에서 제어 정보를 송수신 하는 방법 및 이를 위한 장치 | |
WO2014073865A1 (en) | Method and apparatus for transmitting and receiving data in a wireless communication system | |
WO2013151395A1 (ko) | 하향링크 데이터 수신 방법 및 이를 이용한 무선기기 | |
WO2014116074A1 (ko) | 무선 통신 시스템에서 단말이 하향링크 제어 정보를 수신하는 방법 및 이를 위한 장치 | |
WO2014137105A1 (ko) | Epdcch를 통한 제어 정보 수신 방법 | |
WO2014208940A1 (ko) | Mtc 기기의 동작 방법 | |
WO2016022000A1 (ko) | D2d 통신에서의 단말의 송신 자원 블록 풀의 결정 방법 및 이를 위한 장치 | |
WO2013147532A1 (ko) | 무선 통신 시스템에서 트래킹 참조 신호를 이용한 채널 측정 방법 및 이를 이용하는 장치 | |
WO2014054887A1 (ko) | 하향링크 신호 및 채널의 전송방법 및 수신방법, 그 단말, 그 기지국 | |
WO2013141654A1 (ko) | 무선 통신 시스템에서 제어정보 수신 방법 및 장치 | |
WO2019074338A1 (ko) | 무선 통신 시스템에서 초기 접속을 수행하는 방법 및 장치 | |
WO2013157894A1 (en) | Method and apparatus for receiving downlink data in a wireless communication system | |
WO2016117968A1 (ko) | 무선 통신 시스템에서의 상향링크 mimo 통신 방법 및 이를 위한 장치 | |
WO2011013989A2 (en) | Method and apparatus for transmitting reference signal in multiple input multiple output communication system | |
WO2019208994A1 (en) | Method and apparatus for supporting integrated backhaul and access link in wireless communication system | |
WO2017047971A1 (ko) | 복조 참조 신호 송수신 방법 및 이를 이용한 장치 | |
WO2016122242A2 (ko) | 하향링크 제어 정보 수신 방법 및 사용자기기와, 하향링크 제어 정보 전송 방법 및 기지국 | |
WO2016056805A1 (ko) | 매시브 mimo를 지원하는 무선 통신 시스템에서 참조 신호의 생성 방법 | |
WO2016052911A1 (ko) | 탐색 신호에 기반한 소규모 셀 측정 방법 및 사용자 장치 | |
WO2016060466A1 (ko) | Fdr 전송을 지원하는 무선 통신 시스템에서 디바이스 간 간섭을 측정하는 방법 및 이를 위한 장치 | |
WO2016072765A2 (ko) | 소규모 셀 측정 방법 및 사용자 장치 | |
WO2015115742A1 (ko) | 측정 수행 방법 | |
WO2014046425A2 (en) | Transmission and reception of control information | |
WO2019045141A1 (ko) | 위치 참조 신호를 전송하는 방법 및 장치 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
NENP | Non-entry into the national phase in: |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 14773672 Country of ref document: US |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 14760076 Country of ref document: EP Kind code of ref document: A2 |