WO2014136913A1 - Device for separating and extracting biomolecules, method for manufacturing same, and method for separating and extracting biomolecules - Google Patents

Device for separating and extracting biomolecules, method for manufacturing same, and method for separating and extracting biomolecules Download PDF

Info

Publication number
WO2014136913A1
WO2014136913A1 PCT/JP2014/055867 JP2014055867W WO2014136913A1 WO 2014136913 A1 WO2014136913 A1 WO 2014136913A1 JP 2014055867 W JP2014055867 W JP 2014055867W WO 2014136913 A1 WO2014136913 A1 WO 2014136913A1
Authority
WO
WIPO (PCT)
Prior art keywords
microchannel
nanowire
separation
sample
catalyst
Prior art date
Application number
PCT/JP2014/055867
Other languages
French (fr)
Japanese (ja)
Inventor
隆雄 安井
剛 柳田
範匡 加地
川合 知二
馬場 嘉信
Original Assignee
国立大学法人名古屋大学
国立大学法人大阪大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人名古屋大学, 国立大学法人大阪大学 filed Critical 国立大学法人名古屋大学
Publication of WO2014136913A1 publication Critical patent/WO2014136913A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/502Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
    • B01L3/5027Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip
    • B01L3/502707Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip characterised by the manufacture of the container or its components
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/502Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
    • B01L3/5027Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip
    • B01L3/502753Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip characterised by bulk separation arrangements on lab-on-a-chip devices, e.g. for filtration or centrifugation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2200/00Solutions for specific problems relating to chemical or physical laboratory apparatus
    • B01L2200/06Fluid handling related problems
    • B01L2200/0631Purification arrangements, e.g. solid phase extraction [SPE]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/06Auxiliary integrated devices, integrated components
    • B01L2300/0681Filter
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/08Geometry, shape and general structure
    • B01L2300/0809Geometry, shape and general structure rectangular shaped
    • B01L2300/0816Cards, e.g. flat sample carriers usually with flow in two horizontal directions
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/10Processes for the isolation, preparation or purification of DNA or RNA
    • C12N15/1003Extracting or separating nucleic acids from biological samples, e.g. pure separation or isolation methods; Conditions, buffers or apparatuses therefor

Definitions

  • the present invention relates to a device for separating and extracting biomolecules, a method for producing the same, and a method for separating and extracting biomolecules.
  • Non-Patent Document 2 a DNA extension technique for extending a long-chain DNA into a single DNA for use as a sample for single-molecule analysis like the technique described in Non-Patent Document 1 is also known (Non-Patent Document 2 “Yasui”). Et al., “DNA analysis using nanostructures”, NEW GLASS, 2009, Vol. 24, No. 1, p22-27 ”).
  • the conventional DNA stretching technique combines a nanochannel on quartz glass with electron beam lithography and photolithography to form a bamboo-like shape made of SiO 2 having a diameter of about 500 nm and a height of about 4000 nm, called a nanopillar. A thing is formed by a fine processing technique (top-down method).
  • Non-Patent Document 2 in which nanowires are grown randomly or radially by bottom-up using a catalyst in a microchannel provided on a substrate, It has been found that nucleic acids can be extracted directly from cells and the like, and a patent application has been filed (see Patent Document 1 “Japanese Patent Application No. 2012-236451”).
  • Non-Patent Document 3 “Seung Hwan Ko et al.,“ Nanoforest of Hydrologically Thermal ZnONanohilophia ”. Efficiency Dye-Sensitized Solar Cell “Nano Lett. 2011, 11, 666-671” and Non-Patent Document 4 “Maththew J. Bierman1 et al.,“ Dislocation-DrivenNowirwNowerWhirthow ”. No. 5879, 23 May 2008, pp. 1060-1063)).
  • Patent Document 1 is intended to extract nucleic acids directly from cells and the like themselves without going through a pretreatment step such as cell lysis, and is more than nucleic acids extracted from cells. There is a problem that short nucleic acid fragments cannot be selectively separated and extracted.
  • the nanowire described in Non-Patent Document 3 is intended to increase the efficiency of solar cells, and does not pay attention to application to separation and extraction of nucleic acids.
  • since nanowires are grown by a hydrothermal method it is difficult to form nanowires having branched chains at desired spatial positions, particularly at specific positions such as microchannels. It is.
  • Non-Patent Document 4 merely discloses that a nanowire having a branched chain can be formed. Therefore, even in the technique described in Non-Patent Document 4, no attention is paid to the application of nanowires to separation and extraction of nucleic acids, and the density of nanowires cannot be controlled.
  • the present invention has been made in order to solve the above-mentioned conventional problems, and as a result of intensive research, the method described in Patent Document 1 is further improved so that the inside of the microchannel provided on the substrate can be improved.
  • the density of the nanowire formed in the microchannel can be controlled, and separated and extracted.
  • the present inventors have newly found that the size of a biomolecule can be changed, thereby completing the present invention.
  • an object of the present invention is to provide a device for separating and extracting biomolecules, a method for producing the same, and a method for separating and extracting biomolecules.
  • the present invention relates to a device for separating and extracting biomolecules, a method for producing the same, and a method for separating and extracting biomolecules as described below.
  • a biomolecule separation / extraction device in which a separation part including a nanowire having a branched chain having one or more branches is formed on a microchannel provided on a substrate.
  • Device for separation and extraction (4) The living body according to any one of (1) to (3), wherein a sample input unit for supplying a sample solution and a separated sample recovery unit for recovering a separated sample are provided in the microchannel.
  • Device for separation and extraction of molecules are provided in the microchannel.
  • forming a microchannel on a substrate depositing a catalyst on the microchannel, forming a nanowire from the catalyst, depositing a catalyst on the nanowire, and forming a nanowire from the catalyst Including the steps of: A method for producing a device for separating and extracting biomolecules, comprising the steps of depositing a catalyst on the nanowire and forming the nanowire from the catalyst one or more times. (6) For separation and extraction of biomolecules according to (5), further comprising the steps of forming a sample input part for supplying a sample solution to the microchannel and a separated sample recovery part for recovering a separated sample. Device manufacturing method.
  • the device for separating and extracting a biomolecule of the present invention forms a nanowire having a branched chain in a microchannel on a substrate, and controls the number of the branch chain forming steps, thereby controlling the nanowire formed in the microchannel.
  • the density can be controlled. Therefore, separation and extraction according to the size of the biomolecule to be separated and extracted are possible.
  • the device for separating and extracting biomolecules of the present invention can inject and move a sample solution containing biomolecules to a separation part where nanowires are densely applied by applying an electric field. Therefore, compared with the conventional separation / extraction method using nanostructures produced by the top-down method, separation / extraction method using gel, and separation / extraction method using polymer solution, the time for separating and extracting biomolecules is reduced. It can be shortened.
  • FIG. 1 is a conceptual diagram illustrating an example of a biomolecule separation / extraction method using the biomolecule separation / extraction device of Embodiment 1.
  • FIG. 6 is a conceptual diagram illustrating an example of a biomolecule separation and extraction method using the biomolecule separation and extraction device of Embodiment 2.
  • FIG. 2 is an optical photograph of the device produced in Example 1. It is the microscope picture which expanded the vicinity where the microchannel of Drawing 4A intersects.
  • 4 is an FESEM photograph in which a separation portion of the device manufactured in Example 1 is enlarged.
  • 4 is an FESEM photograph in which a separation portion of the device manufactured in Example 2 is enlarged.
  • FIG. 4 is an FESEM photograph in which a separation portion of the device manufactured in Example 3 is enlarged. It is the FESEM photograph which expanded the isolation
  • FIG. 6 is an FESEM photograph in which a separation portion of the device produced in Example 5 is enlarged. It is a graph which shows that T4 and (lambda) DNA were isolate
  • branched chain means a nanowire branched from a formed nanowire. Therefore, the nanowire branched from the nanowire first formed on the substrate is the “branched chain” of the present embodiment, and the nanowire further branched from the “branched chain” is also the “branched chain” of the present embodiment.
  • stem or “nanowire to be a trunk” means a nanowire formed first on a substrate.
  • the “number of branches” means the number of repeated branches from the formed nanowires.
  • a nanowire with a branch number of 1 means a nanowire in which a branched chain is formed on a trunk nanowire
  • a nanowire with a branch number of 2 means that a branched chain is further formed on a branched chain branched from the trunk nanowire.
  • the “branched chain forming step” means a step for forming a branched chain.
  • a catalyst is deposited on the formed nanowire, and the nanowire is formed from the catalyst. Therefore, for example, when the branch chain forming process is performed twice, the catalyst is deposited on the main nanowire in the first branch chain forming process, but the catalyst may not be deposited on all the nanowires.
  • the formed nanowire includes (1) a nanowire in which a branched chain is formed on the trunk, and (2) a trunk in which a branched chain is not formed.
  • the catalyst is deposited on the trunk and the branched chain of (1) and the trunk on which the branched chain of (2) is not formed, but the catalyst is still not deposited. It may contain a trunk.
  • a nanowire in which a branched chain is further formed on a branched chain branched from the trunk (b) a nanowire in which a branched chain is formed from the trunk, and (c) a nanowire in which the trunk is mixed can be formed. There is sex.
  • a-2) a branched chain branched from the trunk may be formed. Therefore, in the present embodiment, when the “branched chain forming step” is described as n times, it is sufficient that the formed nanowire includes at least a nanowire having n branches, and includes a nanowire having a branch number smaller than n. It may be. Similarly, when “branch number n” is described, it is only necessary to include nanowires having n branches, and nanowires having a branch number smaller than n may be included. In the following description, when nanowires having 0 to n branches are described without distinction, they may be simply referred to as nanowires.
  • biomolecule in the present embodiment means a biomolecule such as DNA, RNA, protein and the like, and is not particularly limited as long as it can be separated and extracted by the nanowire of the present embodiment.
  • FIG. 1 is a conceptual diagram showing an example of a biomolecule separation and extraction method using the biomolecule separation and extraction device (hereinafter also simply referred to as “device 1”) according to Embodiment 1 of the present invention. is there.
  • a first microchannel 20 is formed on the substrate 10 of the device 1, and a sample input unit 21 and a separated sample collection unit 22 are formed in the first microchannel 20.
  • the first microchannel 20 is formed with a separation unit 30 in which nanowires having branched chains are in a dense state.
  • the sample solution 40 containing biomolecules is input to the sample input unit 21 and an external electric field is applied to the first microchannel 20, whereby the input sample solution 40 moves toward the separated sample recovery unit 22.
  • the sample solution 40 is size-separated by the separation unit 30 and collected by the separated sample collection unit 22.
  • the device 1 continues to flow the sample solution 40 containing biomolecules, and the biomolecules of a predetermined size or larger are captured by the separation unit 30 and do not flow downstream, but only the biomolecules of a predetermined size or smaller are selectively used. It is effective when separating and extracting.
  • FIG. 2 shows a device for separating and extracting biomolecules according to Embodiment 2 of the present invention (hereinafter, simply referred to as “device 2”. Note that when devices 1 and 2 are described without distinction, “ It is a conceptual diagram which shows an example of the isolation
  • a first microchannel 20 and a second microchannel 50 that intersects the first microchannel 20 are formed on the substrate 10 of the device 2.
  • a separated sample collection unit 22 and a separation unit 30 are formed in the first microchannel 20.
  • a sample input unit 21 and a sample recovery unit 51 for recovering the input unseparated sample solution are formed.
  • the sample solution 40 containing the biomolecule is introduced into the sample introduction unit 21 and an external electric field is applied to the second microchannel 50, whereby the introduced sample solution 40 is supplied to the sample recovery unit 51 as shown in FIG. Move in the direction of.
  • the second microchannel 50 is stopped and the external electric field is applied to the first microchannel 20, as shown in FIG. 2B, the first microchannel 20 and the second microchannel Only the sample solution 40 corresponding to the volume of the portion where the paths 50 intersect moves in the direction of the separation unit 30.
  • the sample solution 40 is size-separated by the separation unit 30 and can be collected from the separated sample collection unit 22 of the first microchannel 20.
  • the device 2 can switch the micro flow path to which an external voltage is applied at regular intervals and flow the sample solution 40 having a predetermined volume to the separation unit 30 for separation and extraction, the biomolecule contained in the sample solution 40 It is also useful for statistically examining the size distribution of
  • the substrate 10 used for forming the device of the present embodiment includes PDMS (poly (dimethylsiloxane)), PMMA (poly (methyl methacrylate)), PC (polycarbonate), plastic made of hard polyethylene, silicon, glass, and the like. There is no particular limitation as long as a path can be formed and nanowires can be grown.
  • the first microchannel 20 and the second microchannel 50 can be manufactured by using a photolithography technique described later.
  • the width and depth of the first microchannel 20 and the second microchannel 50 are not particularly limited as long as the sample solution 40 containing biomolecules can flow and nanowires having branched chains can be grown sufficiently. .
  • the sample solution 40 can be directly input to the first microchannel 20 on the substrate 10 and the separated sample separated by the separation unit 30 can be directly recovered, the sample introduction unit 21 and the separation completed There is no particular need to provide the sample collection unit 22.
  • the sample solution 40 can be directly input into the second microchannel 50, and the unseparated sample solution and the separated sample solution can be directly recovered, the sample input unit 21, the separated There is no need to provide the sample collection unit 22 and the sample collection unit 51 in particular.
  • the size, shape, etc. are not particularly limited as long as they are provided so as to be connected to the microchannel, and may be formed by an ultrasonic drill, a sand blaster, or the like.
  • FIG. 3 is a diagram showing an example of the manufacturing procedure of the device of this embodiment, and shows an example in which the branch chain forming step is performed three times.
  • the device separation portion 30 is shown in an enlarged manner. A device manufacturing procedure will be described below with reference to (1) to (13) of FIG.
  • a Cr layer is deposited on the substrate 10 by sputtering.
  • a positive photoresist is applied by a spin coater, and then, by photolithography, the first microchannel 20 in the case of the device 1 and the first microchannel 20 and the second microchannel 50 in the case of the device 2 Create a pattern.
  • the Cr layer of the first microchannel 20 or the first microchannel 20 and the second microchannel 50 is etched with a Cr etchant solution.
  • the first micro-channel 20 or the first micro-channel 20 and the second micro-channel 50 are produced by a method of selectively etching only the substrate 10, and then the resist on the substrate 10 is removed. .
  • Electrode hole a through hole for forming an electrode (hereinafter referred to as “electrode hole”) may be described at the end of the first microchannel 20 on the opposite side of the separated sample collection unit 22 as necessary. Is formed by an ultrasonic drill or the like.
  • a nanowire growth catalyst is deposited on the surface of the microchannel forming the separation part 30 by sputtering. The catalyst is preferably deposited only in the microchannel, but even if deposited on the substrate and nanowires are formed from the deposited catalyst as shown in the figures after (5) of FIG.
  • Nanowires are formed from the catalyst deposited in (4) above.
  • a catalyst is deposited on the nanowire formed in (5) above by sputtering. In the step (5), nanowires are formed in random directions. Therefore, in the step (6), when the catalyst is sputtered, the catalyst is deposited around the side surface of the nanowire in the direction in which the catalyst flies.
  • a nanowire is formed from the portion where the catalyst is deposited in the above (6), and a nanowire having 1 branch is formed.
  • a catalyst is deposited on the nanowire having 1 branch formed in the above (7) by sputtering.
  • a nanowire is formed from the portion where the catalyst is deposited in (8) above, and a nanowire having two branches is formed.
  • a catalyst is deposited on the nanowire having two branches formed in (9) by sputtering.
  • a nanowire is formed from the portion where the catalyst is deposited in the above (10), and a nanowire having 3 branches is formed.
  • (12) Etching Cr stacked on a substrate portion other than the microchannel with a Cr etchant solution to remove nanowires formed in the portion other than the microchannel. (13) If necessary, the sample input part 21 formed in (3) above, the separated sample recovery part 22, and the through hole part for the sample recovery part 51, and in the case of the device 2, the first microchannel Electrodes are formed in the 20 electrode holes.
  • a cover glass covers the surface on which the first microchannel 20 or the first microchannel 20 and the second microchannel 50 are formed.
  • the above procedure shows an example in which the number of branch chain forming steps is three.
  • the deposition of the catalyst on the nanowire and the formation of the nanowire from the catalyst take into consideration the size of the biomolecule to be separated, etc. What is necessary is just to repeat the frequency
  • the positive photoresist in the above procedure is not particularly limited as long as it is generally used in the semiconductor manufacturing field, such as TSMR V50, PMER.
  • a negative type photoresist may be used instead of the positive type, and in this case, there is no particular limitation as long as it is generally used in the semiconductor manufacturing field, such as SU-8 and KMPR.
  • the etchant solution is not particularly limited as long as it can etch Cr, such as H 2 O: Ce (NH 4 ) 2 (NO 3 ) 6 : HClO 4 .
  • depositing on the substrate in step (1) is not limited to Cr, and a material other than Cr may be deposited and used in combination with an etchant that can etch the material. .
  • the substrate 10 As a method for selectively etching the substrate 10, for example, when quartz glass is used for the substrate, it may be etched with CF 4 gas, SF 6 gas or the like using a reactive ion etching apparatus. When a material other than quartz glass is used as the substrate, the material may be etched by a method that can selectively etch the material.
  • the catalyst for growing the nanowire is not particularly limited as long as it is a liquid metal, and examples thereof include gold, platinum, aluminum, copper, iron, cobalt, silver, tin, indium, zinc, and gallium. Further, as will be described later, the nanowire of the present embodiment grows in a bottom-up manner, but the diameter of the nanowire serving as a trunk is almost the same as that of one molecule of the catalyst. What is necessary is just to select a catalyst suitably.
  • the nanowire of the separation part 30 is formed by growing from the catalyst deposited in the microchannel as described above by the bottom-up method, and first, the nanowire as a trunk is formed.
  • the formation of the nanowire is not particularly limited as long as it is a general physical vapor deposition method such as pulsed laser deposition or VLS (Vapor-Liquid-Solid) method.
  • the core nanowire is a nanowire having the same diameter as one catalyst molecule and grows from the separation part 30 with the catalyst facing upward.
  • the temperature is preferably 400 to 900 ° C. and the pressure is preferably 0.1 to 10 Pa.
  • the branched chain can be produced by depositing a catalyst on the formed nanowires by sputtering and forming nanowires from the catalyst as shown in the procedure for producing the separation and extraction device.
  • the material, conditions, and the like that form the branched chain may be the same as those of the nanowire serving as the trunk.
  • the lengths of the nanowires and the branched chains that are trunks are not particularly limited, and may be appropriately adjusted in consideration of the depth of the separation unit 30 and the number of branch chain forming steps.
  • the length of the branched chain can be adjusted by changing the deposition time.
  • the material forming the nanowire SiO 2, Li 2 O, MgO, Al 2 O 3, CaO, TiO 2, Mn 2 O 3, Fe 2 O 3, CoO, NiO, CuO, ZnO, Ga 2 O 3, SrO , In 2 O 3 , SnO 2 , Sm 2 O 3 , EuO and the like.
  • the diameter of the nanowire formed depends on the size of the catalyst. Therefore, the diameter of the nanowire does not change even if the number of branch chain forming steps changes. Therefore, by adjusting the vapor deposition time and the number of branch chain forming steps in each branched chain forming step, and further by changing the time for sputtering the catalyst and adjusting the amount of catalyst to be deposited, the desired density can be separated.
  • the portion 30 can be formed.
  • a coating layer may be formed around the nanowire with n branches.
  • the coating layer is not particularly limited as long as it is a general vapor deposition method such as sputtering, EB vapor deposition, PVD, or ALD.
  • As coating conditions it is necessary to carry out under a temperature condition in which the nanowire does not melt, and it is desirable to carry out at 800 ° C. or less although it depends on the nanowire material. What is necessary is just to adjust the thickness of a coating layer suitably by changing vapor deposition time.
  • the coating layer is preferably formed from a material having an isoelectric point lower than that of nucleic acid, and among these materials, SiO 2 and TiO 2 are preferable.
  • a nanowire having a branched chain having n branches is formed in a dense state in the separation unit 30, thereby forming a filter made of nanowires having a branched chain.
  • the nanowire having a branched chain increases the number of times the branched chain forming step is performed, thereby further forming a branched chain from the branched chain, and a space through which the biomolecule in the separation unit 30 passes. Becomes dense. Also, increasing the amount of catalyst deposited can increase the nanowire density per unit volume, resulting in a dense space. Furthermore, the diameter of each nanowire can be adjusted by changing the thickness of the coating layer of the nanowire. Therefore, in the nanowire having a branched chain formed in the separation unit 30 of the present embodiment, the number of nanowire branches, the nanowire density per unit volume, and the thickness of the coating layer of the nanowire so that an intended sample size can be separated. May be adjusted as appropriate. Moreover, the separation part 30 may be formed from nanowires with n branches, or a plurality of separation parts 30 may be provided, and each may be formed from nanowires with different branch numbers n.
  • the electrode to be provided in the sample input part 21, the separated sample recovery part 22, the through hole for the sample recovery part 51, and the electrode hole is not particularly limited as long as it is a commonly used electrode material such as platinum or gold. There is no.
  • the sample solution 40 is prepared by extracting the nucleic acid from cultured cells or the like by a known method and adding it to the solution.
  • the solution is not particularly limited as long as it is a solution capable of suppressing nucleic acid degradation, such as TE buffer.
  • the sample solution 40 is loaded into the sample loading unit 21 and a voltage is applied so that the sample loading unit 21 is negative and the separated sample collection unit 22 is positive. Then, the nucleic acid in the sample solution 40 is subjected to size separation while passing through the separation unit 30, and then collected from the separated sample collection unit 22.
  • the sample solution 40 is loaded into the sample loading unit 21, and a voltage is applied so that the sample loading unit 21 is negative and the sample collection unit 51 that collects an unseparated sample is positive.
  • the application of voltage is stopped at an arbitrary timing when the sample solution 40 passes through a portion intersecting the first microchannel 20.
  • a voltage is applied so that the separated sample recovery unit 22 is positive and the end of the first microchannel 20 opposite to the separated sample recovery unit 22 is negative.
  • the sample solution 40 corresponding to the volume of the portion where the first microchannel 20 and the second microchannel 50 intersect moves in the direction of the separated sample collection unit 22, and the nucleic acid in the sample solution 40 is separated by the separation unit 30.
  • the size separation is performed while passing the sample, and thereafter, the sample is collected from the separated sample collection unit 22.
  • the separation and extraction of the nucleic acid contained in the same sample solution 40 are repeatedly performed by repeatedly switching the voltage application to the first microchannel 20 and the second microchannel 50. Can do.
  • the voltage to be applied is not particularly limited as long as the nucleic acid can migrate, and may be, for example, 1 V / mm or more.
  • a negatively charged nucleic acid is separated and extracted as a biomolecule.
  • a positively charged biomolecule such as a protein
  • voltage application is applied to the nucleic acid.
  • separation and extraction are possible.
  • a coating layer is provided on the nanowire, it is desirable to provide the coating layer with a positively charged material such as nickel oxide so that positively charged biomolecules are not adsorbed on the nanowire.
  • the device of the present invention was produced by the following procedure. First, a Cr layer with a thickness of 250 nm was deposited on quartz glass (Crystal Base Co.) using an RF sputtering apparatus (SVC-700LRF, Sanyu Denshi). Next, a positive type photoresist (TSMR V50, Tokyo Ohka Kogyo Co.) was applied by a spin coater. Thereafter, intersecting microchannel patterns having a width of 25 ⁇ m were produced by photolithography.
  • SVC-700LRF RF sputtering apparatus
  • Two microchannels intersecting each other with a depth of 2 ⁇ m were produced by CF 4 gas using a reactive ion etching apparatus (RIE-10NR, Samco Co.).
  • RIE-10NR reactive ion etching apparatus
  • the resist was peeled off using a resist removing solution (NMD3, Tokyo Ohka Kogyo Co.).
  • a sample insertion part, a separated sample recovery part, a sample recovery part, and an electrode hole having a diameter of 1.5 mm were produced by an ultrasonic drill (SOM-121, Shinoda Co.).
  • a gold catalyst was deposited over the entire microchannel by sputtering, and pulsed laser deposition was performed using SnO 2 as a material at room temperature for 10 Pa for 60 minutes, thereby producing a nanowire serving as a trunk.
  • a gold catalyst was deposited on the prepared nanowires by sputtering, and a branched chain forming step was performed by performing pulse laser deposition for 60 minutes at room temperature at 10 Pa using SnO 2 as a material, thereby producing nanowires having 1 branch.
  • the device of the present invention was manufactured by covering the surface on which the microchannel was formed with a quartz cover glass having a thickness of 130 ⁇ m. The diameter of the produced nanowire was about 10 nm.
  • FIG. 4A is an optical photograph of the device produced in Example 1, showing the overall appearance of the device.
  • FIG. 4B is an enlarged micrograph of the vicinity where the microchannels of FIG. 4A intersect, and the width L of the first microchannel and the second microchannel is about 25 ⁇ m.
  • the length of the separation portion was 4 mm.
  • the depth of the microchannel was 2 ⁇ m.
  • FIG. 5A is an FESEM photograph in which a separation portion of the device manufactured in Example 1 is enlarged.
  • Example 2 A nanowire device having 2 branches was prepared in the same procedure as in Example 1 except that the branch chain forming step in Example 1 was repeated twice.
  • FIG. 5B is an FESEM photograph in which a separation portion of the device produced in Example 2 is enlarged.
  • Example 3 A nanowire device having 3 branches was prepared in the same procedure as in Example 1 except that the branch chain forming step in Example 1 was performed 3 times.
  • FIG. 5C is an FESEM photograph in which a separation portion of the device manufactured in Example 3 is enlarged.
  • Example 4 A nanowire device having 4 branches was prepared in the same procedure as in Example 1 except that the branch chain formation step in Example 1 was performed 4 times.
  • FIG. 5D is an FESEM photograph in which a separation portion of the device manufactured in Example 4 is enlarged.
  • Example 5 A nanowire device having 5 branches was prepared in the same procedure as in Example 1 except that the branch chain forming step in Example 1 was performed 5 times.
  • FIG. 5E is an enlarged FESEM photograph of the separation portion of the device produced in Example 5.
  • Example 6 The device (number of branches) prepared in 0.9 ⁇ l of the DNA sample solution prepared so that the concentration of T4 (about 166 kbp) was 20 ng / ⁇ l and the concentration of ⁇ DNA (about 48.5 kbp) was 50 ng / ⁇ l was prepared in Example 1 above.
  • the sample was introduced into the sample introduction part of 1).
  • a voltage of 20 V / mm was applied to the platinum electrode inserted into the sample input part and the sample recovery part so that the sample input part was negative and the sample recovery part was positive.
  • the voltage application to the sample input part and the sample recovery part is stopped, and the electrode hole is connected to the platinum electrode inserted into the separated sample recovery part and the electrode hole. Is negative, and the separated sample recovery part is positive, and a voltage of 6.67 V / mm is applied for about 2 seconds.
  • FIG. 6 is a graph showing that T4 and ⁇ DNA were separated in the separation part in the separation experiment of Example 6.
  • the horizontal axis represents the distance from the end of the separation unit on the side where the sample solution flows
  • the vertical axis represents the fluorescence intensity at the distance.
  • Example 7 Using 38 kbp DNA with a concentration of 39 ng / ⁇ l and 10 kbp DNA with a concentration of 10 ng / ⁇ l as a sample, applying the device prepared in Example 2 (number of branches 2) to the separated sample collection part and the platinum electrode inserted into the electrode hole The sample was separated in the same manner as in Example 6 except that was set to about 3 seconds.
  • FIG. 7 is a graph showing that 38 kbp DNA and 10 kbp DNA were separated in the separation part by the separation experiment of Example 7. As is apparent from FIG. 7, when 38 kbp DNA and 10 kbp DNA sample solution are allowed to flow into the separation part containing nanowires with 2 branches, 38 kbp DNA and 10 kbp DNA are accurately separated with a moving distance of less than 300 ⁇ m for only about 3 seconds. I was able to.
  • Example 8 Samples were separated in the same manner as in Example 6 except that 10 kbp DNA with a concentration of 15 ng / ⁇ l and 1 kbp DNA with a concentration of 20 ng / ⁇ l were used and the device (number of branches 4) prepared in Example 4 was used.
  • FIG. 8 is a graph showing that 10 kbp DNA and 1 kbp DNA were separated in the separation part by the separation experiment of Example 8. As is clear from FIG. 8, when 10 kbp DNA and 1 kbp DNA sample solution are allowed to flow into the separation part containing nanowires having 4 branches, 10 kbp DNA and 1 kbp DNA are separated accurately with a moving distance of less than 150 ⁇ m for only about 2 seconds. I was able to.
  • a sample can be separated with high accuracy in a short time by using a biomolecule separation / extraction device in which a separation part including a nanowire having a branched chain is formed on a microchannel provided on a substrate.
  • a biomolecule separation / extraction device in which a separation part including a nanowire having a branched chain is formed on a microchannel provided on a substrate.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • Hematology (AREA)
  • Clinical Laboratory Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Molecular Biology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)
  • Automatic Analysis And Handling Materials Therefor (AREA)
  • Investigating Or Analysing Biological Materials (AREA)

Abstract

Provided is a device for efficiently separating and extracting biomolecules having a short fragment length within a short period of time. The device for separating and extracting biomolecules comprises a separation part, which contains nanowires having a branched chain with one or more branches, formed on a microchannel that is provided on a substrate.

Description

生体分子の分離抽出用デバイス及びその製造方法、並びに生体分子の分離抽出方法Biomolecule separation and extraction device, method for producing the same, and biomolecule separation and extraction method
 本発明は、生体分子の分離抽出用デバイス及びその製造方法、並びに生体分子の分離抽出方法に関する。 The present invention relates to a device for separating and extracting biomolecules, a method for producing the same, and a method for separating and extracting biomolecules.
 近年、分子生物学の進歩により、病院等の医療機関の現場では、遺伝子欠失や薬剤感受性SNP(Single Nucleotide Polymorphism)などの遺伝子診断、病原菌等による感染症の診断やアレルゲンの診断等、遺伝子解析に基づく診断等が広がりつつある。そこで、細胞等から遺伝子である核酸を効率的且つ簡便な操作で抽出し、そして遺伝子解析する方法が求められている。抽出された核酸の解析は、酵素法、化学分解法等が知られており、現在はこれらの原理を使用した自動シークエンスキット等も販売されている。 In recent years, due to advances in molecular biology, genetic analysis such as gene diagnosis such as gene deletion and drug susceptibility SNP (Single Nucleotide Polymorphism), diagnosis of infectious diseases due to pathogenic bacteria, and allergen diagnosis in hospitals and other medical institutions Diagnosis based on this is spreading. Therefore, there is a need for a method for extracting a nucleic acid, which is a gene, from a cell or the like by an efficient and simple operation and analyzing the gene. For the analysis of the extracted nucleic acid, an enzymatic method, a chemical decomposition method, and the like are known, and an automatic sequencing kit using these principles is currently on the market.
 ところで、DNA塩基配列の超高速解析、ウィルスの超微量かつ超高速検出、花粉などのアレルゲンの超高感度かつ超高速検出などは、安心、安全、及び健康社会実現のためには必要不可欠な技術である。しかしながら、従来の技術では、解析すべきDNAのPCR等を用いた増幅工程が必要であり、迅速にDNA解析をすることができなかった。その問題点を解決する技術として、ナノポアシーケンサにより1本のDNAから塩基識別できる1分子解析技術(非特許文献1「M. Tsutsui et al.,“Identifying single nucleotides by tunnelling current”, Nat. Nanotech., 2010,5,286-290.」参照)が知られている。 By the way, ultra-high-speed analysis of DNA base sequences, ultra-trace and ultra-high-speed detection of viruses, ultra-sensitive and ultra-high-speed detection of allergens such as pollen, etc. are indispensable technologies for realizing a safe, secure, and healthy society. It is. However, the conventional technique requires an amplification step using PCR or the like of the DNA to be analyzed, and the DNA analysis cannot be performed quickly. As a technique for solving this problem, a single molecule analysis technique (Non-patent Document 1 “M. Tsutsui et al.,“ Identifying single nucleotides by tunneling current ”, Nat. Nanotech. , 2010, 5, 286-290.).
 また、非特許文献1に記載の技術のような1分子解析のサンプルとして使用するために、長鎖DNAを一本のDNAに伸長させるDNA伸長技術も知られている(非特許文献2「安井等、「ナノ構造体を用いたDNA解析」、NEW GLASS、2009、Vol.24、No.1、p22-27」参照)。従来のDNA伸長技術は、石英ガラス上のナノ流路に電子線リソグラフィとフォトリソグラフィとを組み合わせて、ナノピラーと呼ばれる直径が約500nm、高さが約4000nmのSiO2からなる竹林のような形状のものを、微細加工技術(トップダウン方式)で形成する。そして、細胞等から抽出した長鎖DNAを、ナノピラーの間を通過させることで、1分子解析に使用することが可能な伸長されたDNAを得る技術である。しかしながら、上記のナノピラーはトップダウン方式で形成されるため、ナノピラーを細径化することが難しく、その結果、断片長の短い核酸を分離及び抽出することは困難であるという問題がある。 In addition, a DNA extension technique for extending a long-chain DNA into a single DNA for use as a sample for single-molecule analysis like the technique described in Non-Patent Document 1 is also known (Non-Patent Document 2 “Yasui”). Et al., “DNA analysis using nanostructures”, NEW GLASS, 2009, Vol. 24, No. 1, p22-27 ”). The conventional DNA stretching technique combines a nanochannel on quartz glass with electron beam lithography and photolithography to form a bamboo-like shape made of SiO 2 having a diameter of about 500 nm and a height of about 4000 nm, called a nanopillar. A thing is formed by a fine processing technique (top-down method). And it is the technique of obtaining the extended | stretched DNA which can be used for single molecule analysis by allowing the long-chain DNA extracted from the cell etc. to pass through between nano pillars. However, since the nanopillar is formed in a top-down manner, it is difficult to reduce the diameter of the nanopillar. As a result, it is difficult to separate and extract a nucleic acid having a short fragment length.
 一方、本発明者らは、基板上に設けたマイクロ流路内に、触媒を用いてボトムアップでナノワイヤをランダム又は放射状に成長させた非特許文献2に記載のナノピラーより細いナノワイヤを用いて、細胞等から直接核酸を抽出できることを見出し、特許出願を行っている(特許文献1「特願2012-236451号公報」参照)。 On the other hand, the present inventors used nanowires thinner than the nanopillars described in Non-Patent Document 2 in which nanowires are grown randomly or radially by bottom-up using a catalyst in a microchannel provided on a substrate, It has been found that nucleic acids can be extracted directly from cells and the like, and a patent application has been filed (see Patent Document 1 “Japanese Patent Application No. 2012-236451”).
 ところで、ナノワイヤの分野においては、幹となるナノワイヤから更にナノワイヤの分岐鎖を形成できることは知られている(非特許文献3「Seung Hwan Ko et al.,“Nanoforest of Hydrothermally Grown Hierarchical ZnO Nanowires for a High Efficiency Dye-Sensitized Solar Cell” Nano Lett. 2011, 11, 666-671」及び非特許文献4「Matthew J. Bierman1 et al.,“Dislocation-Driven Nanowire Growth and Eshelby Twist”,Science, Vol.320, No.5879, 23 May 2008,pp.1060-1063」参照)。 By the way, in the field of nanowires, it is known that a branched chain of nanowires can be further formed from a core nanowire (Non-Patent Document 3 “Seung Hwan Ko et al.,“ Nanoforest of Hydrologically Thermal ZnONanohilophia ”. Efficiency Dye-Sensitized Solar Cell “Nano Lett. 2011, 11, 666-671” and Non-Patent Document 4 “Maththew J. Bierman1 et al.,“ Dislocation-DrivenNowirwNowerWhirthow ”. No. 5879, 23 May 2008, pp. 1060-1063)).
 しかしながら、特許文献1に記載されている発明は、細胞の溶解等の前処理工程を経ずに、細胞等自体から直接核酸を抽出することが目的であり、細胞から抽出した状態の核酸より更に短い核酸断片を選択的に分離及び抽出することはできないという問題がある。
 また、非特許文献3に記載されているナノワイヤは、太陽電池の効率化を目的としたものであり、核酸の分離及び抽出に適用することには全く着目していない。さらに、非特許文献3の技術では、熱水方法によりナノワイヤを成長させているため、空間的に所望の位置、特にマイクロ流路等の特定の位置に分岐鎖を有するナノワイヤを形成することは困難である。
 また、非特許文献4は、分岐鎖がスクリュー状のナノワイヤが形成できることを単に開示しているものである。従って、非特許文献4に記載の技術においても、ナノワイヤを核酸の分離及び抽出に適用することには全く着目しておらず、且つナノワイヤの密度を制御することはできないものである。
 本発明は、上記従来の問題を解決するためになされた発明であり、鋭意研究を行ったところ、特許文献1に記載されている手法を更に改良することで、基板に設けたマイクロ流路内に分岐鎖を有するナノワイヤを形成し、更に、この分岐鎖を形成する分岐鎖形成工程の回数を制御することで、マイクロ流路に形成するナノワイヤの密度を制御することができ、分離及び抽出する生体分子のサイズを変えることができることを新たに見出し、本発明を完成した。
However, the invention described in Patent Document 1 is intended to extract nucleic acids directly from cells and the like themselves without going through a pretreatment step such as cell lysis, and is more than nucleic acids extracted from cells. There is a problem that short nucleic acid fragments cannot be selectively separated and extracted.
In addition, the nanowire described in Non-Patent Document 3 is intended to increase the efficiency of solar cells, and does not pay attention to application to separation and extraction of nucleic acids. Furthermore, in the technique of Non-Patent Document 3, since nanowires are grown by a hydrothermal method, it is difficult to form nanowires having branched chains at desired spatial positions, particularly at specific positions such as microchannels. It is.
Non-Patent Document 4 merely discloses that a nanowire having a branched chain can be formed. Therefore, even in the technique described in Non-Patent Document 4, no attention is paid to the application of nanowires to separation and extraction of nucleic acids, and the density of nanowires cannot be controlled.
The present invention has been made in order to solve the above-mentioned conventional problems, and as a result of intensive research, the method described in Patent Document 1 is further improved so that the inside of the microchannel provided on the substrate can be improved. By forming a nanowire having a branched chain on the surface, and further controlling the number of branch chain forming steps for forming the branched chain, the density of the nanowire formed in the microchannel can be controlled, and separated and extracted. The present inventors have newly found that the size of a biomolecule can be changed, thereby completing the present invention.
 すなわち、本発明の目的は、生体分子の分離抽出用デバイス及びその製造方法、並びに生体分子の分離抽出方法を提供することである。 That is, an object of the present invention is to provide a device for separating and extracting biomolecules, a method for producing the same, and a method for separating and extracting biomolecules.
 本発明は、以下に示す、生体分子の分離抽出用デバイス及びその製造方法、並びに生体分子の分離抽出方法に関する。 The present invention relates to a device for separating and extracting biomolecules, a method for producing the same, and a method for separating and extracting biomolecules as described below.
(1)基板上に設けたマイクロ流路上に、分岐数が1以上の分岐鎖を有するナノワイヤを含む分離部が形成された生体分子の分離抽出用デバイス。
(2)前記分岐鎖が、ナノワイヤに堆積した触媒から成長したナノワイヤである上記(1)に記載の生体分子の分離抽出用デバイス。
(3)前記マイクロ流路が、交差する2本のマイクロ流路から形成され、前記分離部が1本のマイクロ流路のみに形成された上記(1)又は(2)に記載の生体分子の分離抽出用デバイス。
(4)前記マイクロ流路に、サンプル溶液を投入するサンプル投入部、及び分離済みサンプルを回収する分離済みサンプル回収部が設けられた上記(1)~(3)の何れか一に記載の生体分子の分離抽出用デバイス。
(5)基板上にマイクロ流路を形成する工程と、前記マイクロ流路に触媒を堆積する工程と、前記触媒からナノワイヤを形成する工程と、前記ナノワイヤに触媒を堆積し該触媒からナノワイヤを形成する工程と、を含み、
 前記ナノワイヤに触媒を堆積し該触媒からナノワイヤを形成する工程が、1回以上含まれる生体分子の分離抽出用デバイスの製造方法。
(6)前記マイクロ流路に、サンプル溶液を投入するサンプル投入部、及び分離済みサンプルを回収する分離済みサンプル回収部を形成する工程を更に含む上記(5)に記載の生体分子の分離抽出用デバイスの製造方法。
(7)基板上に設けたマイクロ流路上に、分岐数が1以上の分岐鎖を有するナノワイヤを含む分離部を形成した生体分子の分離抽出用デバイスのマイクロ流路の一端にサンプルを投入する工程と、
 前記マイクロ流路に電場を印加する工程と、
 前記分離部で生体分子を分離する工程と、
 を含む生体分子の分離抽出方法。
(8)基板上に設けた交差するマイクロ流路の一方のマイクロ流路上に、分岐数が1以上の分岐鎖を有するナノワイヤを含む分離部を形成した生体分子の分離抽出用デバイスの分離部が形成されていないマイクロ流路の一端にサンプルを投入する工程と、
 前記分離部が形成されていないマイクロ流路に電場を印加する工程と、
 前記分離部が形成されていないマイクロ流路への電場の印加を止め、分離部が形成されているマイクロ流路に電場を印加する工程と、
 前記分離部で生体分子を分離する工程と、
 を含む生体分子の分離抽出方法。
(1) A biomolecule separation / extraction device in which a separation part including a nanowire having a branched chain having one or more branches is formed on a microchannel provided on a substrate.
(2) The device for separating and extracting a biomolecule according to (1), wherein the branched chain is a nanowire grown from a catalyst deposited on the nanowire.
(3) The biomolecule according to (1) or (2), wherein the microchannel is formed of two intersecting microchannels, and the separation part is formed only in one microchannel. Device for separation and extraction.
(4) The living body according to any one of (1) to (3), wherein a sample input unit for supplying a sample solution and a separated sample recovery unit for recovering a separated sample are provided in the microchannel. Device for separation and extraction of molecules.
(5) forming a microchannel on a substrate, depositing a catalyst on the microchannel, forming a nanowire from the catalyst, depositing a catalyst on the nanowire, and forming a nanowire from the catalyst Including the steps of:
A method for producing a device for separating and extracting biomolecules, comprising the steps of depositing a catalyst on the nanowire and forming the nanowire from the catalyst one or more times.
(6) For separation and extraction of biomolecules according to (5), further comprising the steps of forming a sample input part for supplying a sample solution to the microchannel and a separated sample recovery part for recovering a separated sample. Device manufacturing method.
(7) A step of putting a sample into one end of a microchannel of a biomolecule separation / extraction device in which a separation part including a nanowire having a branched chain with one or more branches is formed on a microchannel provided on a substrate When,
Applying an electric field to the microchannel;
Separating biomolecules in the separation unit;
A method for separating and extracting biomolecules.
(8) The separation unit of the biomolecule separation / extraction device in which a separation unit including a nanowire having a branched chain having a branch number of 1 or more is formed on one of the intersecting microchannels provided on the substrate. Introducing a sample into one end of a microchannel that is not formed;
Applying an electric field to the microchannel where the separation part is not formed;
Stopping the application of the electric field to the microchannel where the separation part is not formed, and applying the electric field to the microchannel where the separation part is formed;
Separating biomolecules in the separation unit;
A method for separating and extracting biomolecules.
 本発明の生体分子の分離抽出用デバイスは、基板上のマイクロ流路内に分岐鎖を有するナノワイヤを形成し、この分岐鎖形成工程の回数を制御することにより、マイクロ流路に形成するナノワイヤの密度を制御することができる。したがって、分離及び抽出したい生体分子のサイズに応じた分離及び抽出が可能となる。また、本発明の生体分子の分離抽出用デバイスは、電場を印加することにより、生体分子を含むサンプル溶液を、ナノワイヤが密集した分離部に流入及び移動させることができる。そのため、従来のトップダウン方式で作製したナノ構造体を用いた分離抽出方法、ゲルを用いた分離抽出方法、ポリマー溶液を用いた分離抽出方法と比較して、生体分子を分離及び抽出する時間を短縮することができる。 The device for separating and extracting a biomolecule of the present invention forms a nanowire having a branched chain in a microchannel on a substrate, and controls the number of the branch chain forming steps, thereby controlling the nanowire formed in the microchannel. The density can be controlled. Therefore, separation and extraction according to the size of the biomolecule to be separated and extracted are possible. Moreover, the device for separating and extracting biomolecules of the present invention can inject and move a sample solution containing biomolecules to a separation part where nanowires are densely applied by applying an electric field. Therefore, compared with the conventional separation / extraction method using nanostructures produced by the top-down method, separation / extraction method using gel, and separation / extraction method using polymer solution, the time for separating and extracting biomolecules is reduced. It can be shortened.
実施形態1の生体分子の分離抽出用デバイスを用いた生体分子の分離抽出方法の一例を示す概念図である。1 is a conceptual diagram illustrating an example of a biomolecule separation / extraction method using the biomolecule separation / extraction device of Embodiment 1. FIG. 実施形態2の生体分子の分離抽出用デバイスを用いた生体分子の分離抽出方法の一例を示す概念図である。6 is a conceptual diagram illustrating an example of a biomolecule separation and extraction method using the biomolecule separation and extraction device of Embodiment 2. FIG. 生体分子の分離抽出用デバイスの作製手順の一例を示す図である。It is a figure which shows an example of the preparation procedures of the device for isolation | separation extraction of a biomolecule. 実施例1で作製したデバイスの光学写真である。2 is an optical photograph of the device produced in Example 1. 図4Aのマイクロ流路が交差する付近を拡大した顕微鏡写真である。It is the microscope picture which expanded the vicinity where the microchannel of Drawing 4A intersects. 実施例1で作製したデバイスの分離部部分を拡大したFESEM写真である。4 is an FESEM photograph in which a separation portion of the device manufactured in Example 1 is enlarged. 実施例2で作製したデバイスの分離部部分を拡大したFESEM写真である。4 is an FESEM photograph in which a separation portion of the device manufactured in Example 2 is enlarged. 実施例3で作製したデバイスの分離部部分を拡大したFESEM写真である。4 is an FESEM photograph in which a separation portion of the device manufactured in Example 3 is enlarged. 実施例4で作製したデバイスの分離部部分を拡大したFESEM写真である。It is the FESEM photograph which expanded the isolation | separation part part of the device produced in Example 4. FIG. 実施例5で作製したデバイスの分離部部分を拡大したFESEM写真である。6 is an FESEM photograph in which a separation portion of the device produced in Example 5 is enlarged. 実施例6の分離実験により、分離部でT4及びλDNAが分離されたことを示すグラフである。It is a graph which shows that T4 and (lambda) DNA were isolate | separated by the isolation | separation part by the isolation | separation experiment of Example 6. FIG. 実施例7の分離実験により、分離部で38kbpDNA及び10kbpDNAが分離されたことを示すグラフである。It is a graph which shows that 38 kbpDNA and 10 kbpDNA were isolate | separated by the isolation | separation part by the isolation | separation experiment of Example 7. FIG. 実施例8の分離実験により、分離部で10kbpDNA及び1kbpDNAが分離されたことを示すグラフである。It is a graph which shows that 10 kbpDNA and 1 kbpDNA were isolate | separated by the isolation | separation part by the isolation | separation experiment of Example 8. FIG.
 以下に、本発明の実施形態に係る生体分子の分離抽出用デバイス及びその製造方法、並びに生体分子の分離抽出方法について詳しく説明する。 Hereinafter, a device for separating and extracting a biomolecule according to an embodiment of the present invention, a method for manufacturing the same, and a method for separating and extracting a biomolecule will be described in detail.
 先ず、本実施形態において、「分岐鎖」とは、形成済みのナノワイヤから分岐したナノワイヤを意味する。したがって、基板に最初に形成したナノワイヤから分岐したナノワイヤは本実施形態の「分岐鎖」であり、「分岐鎖」から更に分岐したナノワイヤも本実施形態の「分岐鎖」である。また、本実施形態において、「幹」又は「幹となるナノワイヤ」とは、基板上に最初に形成したナノワイヤを意味する。 First, in the present embodiment, “branched chain” means a nanowire branched from a formed nanowire. Therefore, the nanowire branched from the nanowire first formed on the substrate is the “branched chain” of the present embodiment, and the nanowire further branched from the “branched chain” is also the “branched chain” of the present embodiment. In the present embodiment, “stem” or “nanowire to be a trunk” means a nanowire formed first on a substrate.
 また、本実施形態において「分岐数」とは、形成済みナノワイヤからの分岐を繰り返した数を意味する。例えば、分岐数1のナノワイヤとは、幹となるナノワイヤに分岐鎖が形成されたナノワイヤを意味し、分岐数2のナノワイヤとは、幹となるナノワイヤから分岐した分岐鎖に更に分岐鎖が形成されたナノワイヤを意味する。 In the present embodiment, the “number of branches” means the number of repeated branches from the formed nanowires. For example, a nanowire with a branch number of 1 means a nanowire in which a branched chain is formed on a trunk nanowire, and a nanowire with a branch number of 2 means that a branched chain is further formed on a branched chain branched from the trunk nanowire. Means nanowire.
 更に、本実施形態において、「分岐鎖形成工程」とは、分岐鎖を形成するための工程を意味する。なお、本実施形態では、後述するように、形成済みのナノワイヤに触媒を堆積させ、当該触媒からナノワイヤを形成する。そのため、例えば、分岐鎖形成工程が2回の場合、1回目の分岐鎖形成工程において、触媒を幹となるナノワイヤに堆積させるが、触媒が全てのナノワイヤに堆積しない場合もある。その結果、形成されたナノワイヤには、(1)幹に分岐鎖が形成されたナノワイヤ、及び(2)分岐鎖が形成されていない幹、が含まれる。そして、2回目の分岐鎖形成工程では、触媒は、前記(1)の幹及び分岐鎖と、前記(2)の分岐鎖が形成されていない幹とに堆積するが、依然として、触媒が堆積しない幹が含まれる可能性がある。その結果、(a)幹から分岐した分岐鎖に更に分岐鎖が形成されたナノワイヤ、(b)幹から分岐鎖が形成されたナノワイヤ、及び(c)幹、が混在したナノワイヤが形成される可能性がある。更に、前記(a)の幹から分岐した分岐鎖に更に分岐鎖が形成されたナノワイヤにおいては、一本のナノワイヤの中に、(a-1)幹から分岐した分岐鎖に形成された分岐鎖、及び(a-2)幹から分岐した分岐鎖、が形成される可能性がある。したがって、本実施形態において、「分岐鎖形成工程」がn回と記載した場合、形成されたナノワイヤに少なくとも分岐数がnのナノワイヤが含まれていればよく、分岐数がnより小さなナノワイヤが含まれていてもよい。同様に、「分岐数n」と記載した場合も、分岐数がnのナノワイヤが含まれていればよく、分岐数がnより小さなナノワイヤが含まれていてもよい。なお、以下においては、分岐数が0~nのナノワイヤを区別なく説明する場合には、単にナノワイヤと記載することもある。 Furthermore, in the present embodiment, the “branched chain forming step” means a step for forming a branched chain. In this embodiment, as will be described later, a catalyst is deposited on the formed nanowire, and the nanowire is formed from the catalyst. Therefore, for example, when the branch chain forming process is performed twice, the catalyst is deposited on the main nanowire in the first branch chain forming process, but the catalyst may not be deposited on all the nanowires. As a result, the formed nanowire includes (1) a nanowire in which a branched chain is formed on the trunk, and (2) a trunk in which a branched chain is not formed. In the second branched chain formation step, the catalyst is deposited on the trunk and the branched chain of (1) and the trunk on which the branched chain of (2) is not formed, but the catalyst is still not deposited. It may contain a trunk. As a result, (a) a nanowire in which a branched chain is further formed on a branched chain branched from the trunk, (b) a nanowire in which a branched chain is formed from the trunk, and (c) a nanowire in which the trunk is mixed can be formed. There is sex. Further, in the nanowire in which a branched chain is further formed on the branched chain branched from the trunk of (a), the branched chain formed on the branched chain branched from the trunk (a-1) in one nanowire. And (a-2) a branched chain branched from the trunk may be formed. Therefore, in the present embodiment, when the “branched chain forming step” is described as n times, it is sufficient that the formed nanowire includes at least a nanowire having n branches, and includes a nanowire having a branch number smaller than n. It may be. Similarly, when “branch number n” is described, it is only necessary to include nanowires having n branches, and nanowires having a branch number smaller than n may be included. In the following description, when nanowires having 0 to n branches are described without distinction, they may be simply referred to as nanowires.
 本実施形態における「生体分子」とは、DNA、RNA、タンパク質等の生体分子を意味し、本実施形態のナノワイヤにより分離及び抽出できるものであれば特に制限は無い。 The “biomolecule” in the present embodiment means a biomolecule such as DNA, RNA, protein and the like, and is not particularly limited as long as it can be separated and extracted by the nanowire of the present embodiment.
 図1は、本発明の実施形態1の生体分子の分離抽出用デバイス(以下、単に「デバイス1」と記載することもある。)を用いた生体分子の分離抽出方法の一例を示す概念図である。デバイス1の基板10上には、第1マイクロ流路20が形成され、第1マイクロ流路20には、サンプル投入部21及び分離済みサンプル回収部22が形成されている。また、第1マイクロ流路20には、分岐鎖を有するナノワイヤが密集状態になっている分離部30が形成されている。生体分子を含むサンプル溶液40をサンプル投入部21に投入し、第1マイクロ流路20に外部電場をかけることにより、投入されたサンプル溶液40は分離済みサンプル回収部22の方向に移動する。そして、サンプル溶液40は、分離部30においてサイズ分離され、分離済みサンプル回収部22で回収される。デバイス1は、例えば、生体分子を含むサンプル溶液40を流し続け、所定の大きさ以上の生体分子は分離部30で補足させ下流に流さず、所定の大きさ以下の生体分子のみを選択的に分離して抽出する際に有効である。 FIG. 1 is a conceptual diagram showing an example of a biomolecule separation and extraction method using the biomolecule separation and extraction device (hereinafter also simply referred to as “device 1”) according to Embodiment 1 of the present invention. is there. A first microchannel 20 is formed on the substrate 10 of the device 1, and a sample input unit 21 and a separated sample collection unit 22 are formed in the first microchannel 20. In addition, the first microchannel 20 is formed with a separation unit 30 in which nanowires having branched chains are in a dense state. The sample solution 40 containing biomolecules is input to the sample input unit 21 and an external electric field is applied to the first microchannel 20, whereby the input sample solution 40 moves toward the separated sample recovery unit 22. The sample solution 40 is size-separated by the separation unit 30 and collected by the separated sample collection unit 22. For example, the device 1 continues to flow the sample solution 40 containing biomolecules, and the biomolecules of a predetermined size or larger are captured by the separation unit 30 and do not flow downstream, but only the biomolecules of a predetermined size or smaller are selectively used. It is effective when separating and extracting.
 図2は、本発明の実施形態2の生体分子の分離抽出用デバイス(以下、単に「デバイス2」と記載することもある。なお、デバイス1及び2を区別なく説明する場合には、単に「デバイス」と記載することがある。)を用いた生体分子の分離抽出方法の一例を示す概念図である。図2に示すように、デバイス2の基板10上には、第1マイクロ流路20、及び第1マイクロ流路20と交差する第2マイクロ流路50が形成されている。第1マイクロ流路20には、分離済みサンプル回収部22及び分離部30が形成されている。第2マイクロ流路50には、サンプル投入部21、及び投入した未分離のサンプル溶液を回収するサンプル回収部51が形成されている。生体分子を含むサンプル溶液40をサンプル投入部21に投入し、第2マイクロ流路50に外部電場をかけることにより、図2のAに示すように、投入されたサンプル溶液40はサンプル回収部51の方向に移動する。次いで、第2マイクロ流路50への外部電場の印加を止め、第1マイクロ流路20へ外部電場を印加すると、図2のBに示すように、第1マイクロ流路20及び第2マイクロ流路50が交差する部分の体積に相当するサンプル溶液40のみが、分離部30の方向へ移動する。そして、サンプル溶液40は、分離部30においてサイズ分離され、第1マイクロ流路20の分離済みサンプル回収部22から回収することができる。デバイス2は、一定間隔毎に外部電圧を印加するマイクロ流路を切り替え、決まった体積のサンプル溶液40を分離部30に流して分離及び抽出すことができるので、サンプル溶液40に含まれる生体分子のサイズ分布を統計的に調べる際にも有用である。 FIG. 2 shows a device for separating and extracting biomolecules according to Embodiment 2 of the present invention (hereinafter, simply referred to as “device 2”. Note that when devices 1 and 2 are described without distinction, “ It is a conceptual diagram which shows an example of the isolation | separation extraction method of the biomolecule using the "device". As shown in FIG. 2, a first microchannel 20 and a second microchannel 50 that intersects the first microchannel 20 are formed on the substrate 10 of the device 2. A separated sample collection unit 22 and a separation unit 30 are formed in the first microchannel 20. In the second microchannel 50, a sample input unit 21 and a sample recovery unit 51 for recovering the input unseparated sample solution are formed. The sample solution 40 containing the biomolecule is introduced into the sample introduction unit 21 and an external electric field is applied to the second microchannel 50, whereby the introduced sample solution 40 is supplied to the sample recovery unit 51 as shown in FIG. Move in the direction of. Next, when the application of the external electric field to the second microchannel 50 is stopped and the external electric field is applied to the first microchannel 20, as shown in FIG. 2B, the first microchannel 20 and the second microchannel Only the sample solution 40 corresponding to the volume of the portion where the paths 50 intersect moves in the direction of the separation unit 30. The sample solution 40 is size-separated by the separation unit 30 and can be collected from the separated sample collection unit 22 of the first microchannel 20. Since the device 2 can switch the micro flow path to which an external voltage is applied at regular intervals and flow the sample solution 40 having a predetermined volume to the separation unit 30 for separation and extraction, the biomolecule contained in the sample solution 40 It is also useful for statistically examining the size distribution of
 本実施形態のデバイスの形成に用いられる基板10は、PDMS(poly(dimethylsiloxane))、PMMA(Poly(methyl methacrylate))、PC(polycarbonate)、硬質ポリエチレン製等のプラスチック、シリコン、ガラス等、マイクロ流路が形成でき、ナノワイヤが成長できるものであれば特に制限はない。 The substrate 10 used for forming the device of the present embodiment includes PDMS (poly (dimethylsiloxane)), PMMA (poly (methyl methacrylate)), PC (polycarbonate), plastic made of hard polyethylene, silicon, glass, and the like. There is no particular limitation as long as a path can be formed and nanowires can be grown.
 第1マイクロ流路20及び第2マイクロ流路50は、後述するフォトリソグラフィ技術を用いて作製することができる。第1マイクロ流路20及び第2マイクロ流路50の幅及び深さは、生体分子を含むサンプル溶液40を流すことができ、分岐鎖を有するナノワイヤが十分成長できるサイズであれば特に制限はない。 The first microchannel 20 and the second microchannel 50 can be manufactured by using a photolithography technique described later. The width and depth of the first microchannel 20 and the second microchannel 50 are not particularly limited as long as the sample solution 40 containing biomolecules can flow and nanowires having branched chains can be grown sufficiently. .
 デバイス1においては、基板10上の第1マイクロ流路20にサンプル溶液40を直接投入でき、分離部30で分離された分離済みサンプルを直接回収することができれば、サンプル投入部21、及び分離済みサンプル回収部22を特に設ける必要はない。また、デバイス2においては、第2マイクロ流路50にサンプル溶液40を直接投入でき、また、未分離のサンプル溶液及び分離済みのサンプル溶液を直接回収することができれば、サンプル投入部21、分離済みサンプル回収部22、及びサンプル回収部51を特に設ける必要はない。それらを設ける場合は、マイクロ流路と接続するように設けられていれば、サイズ、形状等は特に制限はなく、超音波ドリル、サンドブラスター等で形成すればよい。 In the device 1, if the sample solution 40 can be directly input to the first microchannel 20 on the substrate 10 and the separated sample separated by the separation unit 30 can be directly recovered, the sample introduction unit 21 and the separation completed There is no particular need to provide the sample collection unit 22. Further, in the device 2, if the sample solution 40 can be directly input into the second microchannel 50, and the unseparated sample solution and the separated sample solution can be directly recovered, the sample input unit 21, the separated There is no need to provide the sample collection unit 22 and the sample collection unit 51 in particular. When these are provided, the size, shape, etc. are not particularly limited as long as they are provided so as to be connected to the microchannel, and may be formed by an ultrasonic drill, a sand blaster, or the like.
 本実施形態のデバイスは、電子線リソグラフィ及びフォトリソグラフィ技術を用いて作製することができる。図3は、本実施形態のデバイスの作製手順の一例を示した図で、分岐鎖形成工程が3回の例を示している。なお、図3では、デバイスの分離部30部分を拡大して示している。以下、図3の(1)~(13)に従って、デバイスの作製手順について説明する。 The device of the present embodiment can be manufactured using electron beam lithography and photolithography techniques. FIG. 3 is a diagram showing an example of the manufacturing procedure of the device of this embodiment, and shows an example in which the branch chain forming step is performed three times. In FIG. 3, the device separation portion 30 is shown in an enlarged manner. A device manufacturing procedure will be described below with reference to (1) to (13) of FIG.
(1)基板10上にCr層をスパッタで堆積する。
(2)ポジ型フォトレジストをスピンコータで塗布し、次いで、フォトリソグラフィにより、デバイス1の場合は第1マイクロ流路20、デバイス2の場合は第1マイクロ流路20及び第2マイクロ流路50のパターンを作製する。レジストを現像した後、Crエッチャント液にて、第1マイクロ流路20、又は第1マイクロ流路20及び第2マイクロ流路50のCr層をエッチングする。
(3)基板10のみを選択的にエッチングする手法により、第1マイクロ流路20、又は第1マイクロ流路20及び第2マイクロ流路50を作製し、次いで、基板10上のレジストを除去する。その後、必要に応じてサンプル投入部21、分離済みサンプル回収部22、及びサンプル回収部51用の貫通孔を、超音波ドリル等により形成する。更に、デバイス2の場合は、必要に応じて第1マイクロ流路20の分離済みサンプル回収部22の反対側の端部に電極形成用の貫通孔(以下、「電極孔」と記載することがある。)を、超音波ドリル等により形成する。
(4)ナノワイヤ成長用の触媒を、分離部30を形成するマイクロ流路面上にスパッタリングにより堆積させる。なお、触媒は、マイクロ流路内のみに堆積されることが好ましいが、基板上にも堆積され、堆積した触媒から図3の(5)以降の図で示すようにナノワイヤが形成されても、後述する工程で除去できるので特に問題ではない。
(5)上記(4)で堆積した触媒からナノワイヤを形成する。
(6)スパッタリングにより、上記(5)で形成したナノワイヤに触媒を堆積する。なお、上記(5)の工程では、ナノワイヤはランダムな方向に形成される。したがって、工程(6)において、触媒をスパッタリングすると、触媒が飛んでくる方向のナノワイヤの側面を中心に触媒が堆積する。
(7)上記(6)で触媒を堆積した箇所からナノワイヤを形成し、分岐数1のナノワイヤを形成する。
(8)スパッタリングにより、上記(7)で形成した分岐数1のナノワイヤに触媒を堆積する。
(9)上記(8)で触媒を堆積した箇所からナノワイヤを形成し、分岐数2のナノワイヤを形成する。
(10)スパッタリングにより、上記(9)で形成した分岐数2のナノワイヤに触媒を堆積する。
(11)上記(10)で触媒を堆積した箇所からナノワイヤを形成し、分岐数3のナノワイヤを形成する。
(12)Crエッチャント液にて、マイクロ流路以外の基板部分に積層されているCrをエッチングすることで、マイクロ流路以外の部分に形成されたナノワイヤを除去する。
(13)必要に応じて、上記(3)で形成されたサンプル投入部21、分離済みサンプル回収部22、及びサンプル回収部51用の貫通孔部分、更にデバイス2の場合は第1マイクロ流路20の電極孔に電極を形成する。そして、カバーガラスで第1マイクロ流路20、又は第1マイクロ流路20及び第2マイクロ流路50を形成した面に蓋をする。
 なお、上記の手順は分岐鎖形成工程数が3回の例を示したものであるが、触媒のナノワイヤへの堆積及び該触媒からのナノワイヤの形成は、分離する生体分子のサイズ等を考慮し、1以上の回数で所望とする回数を繰り返せばよい。
(1) A Cr layer is deposited on the substrate 10 by sputtering.
(2) A positive photoresist is applied by a spin coater, and then, by photolithography, the first microchannel 20 in the case of the device 1 and the first microchannel 20 and the second microchannel 50 in the case of the device 2 Create a pattern. After developing the resist, the Cr layer of the first microchannel 20 or the first microchannel 20 and the second microchannel 50 is etched with a Cr etchant solution.
(3) The first micro-channel 20 or the first micro-channel 20 and the second micro-channel 50 are produced by a method of selectively etching only the substrate 10, and then the resist on the substrate 10 is removed. . Thereafter, if necessary, through holes for the sample loading unit 21, the separated sample collection unit 22, and the sample collection unit 51 are formed by an ultrasonic drill or the like. Furthermore, in the case of the device 2, a through hole for forming an electrode (hereinafter referred to as “electrode hole”) may be described at the end of the first microchannel 20 on the opposite side of the separated sample collection unit 22 as necessary. Is formed by an ultrasonic drill or the like.
(4) A nanowire growth catalyst is deposited on the surface of the microchannel forming the separation part 30 by sputtering. The catalyst is preferably deposited only in the microchannel, but even if deposited on the substrate and nanowires are formed from the deposited catalyst as shown in the figures after (5) of FIG. 3, Since it can be removed in a process described later, there is no particular problem.
(5) Nanowires are formed from the catalyst deposited in (4) above.
(6) A catalyst is deposited on the nanowire formed in (5) above by sputtering. In the step (5), nanowires are formed in random directions. Therefore, in the step (6), when the catalyst is sputtered, the catalyst is deposited around the side surface of the nanowire in the direction in which the catalyst flies.
(7) A nanowire is formed from the portion where the catalyst is deposited in the above (6), and a nanowire having 1 branch is formed.
(8) A catalyst is deposited on the nanowire having 1 branch formed in the above (7) by sputtering.
(9) A nanowire is formed from the portion where the catalyst is deposited in (8) above, and a nanowire having two branches is formed.
(10) A catalyst is deposited on the nanowire having two branches formed in (9) by sputtering.
(11) A nanowire is formed from the portion where the catalyst is deposited in the above (10), and a nanowire having 3 branches is formed.
(12) Etching Cr stacked on a substrate portion other than the microchannel with a Cr etchant solution to remove nanowires formed in the portion other than the microchannel.
(13) If necessary, the sample input part 21 formed in (3) above, the separated sample recovery part 22, and the through hole part for the sample recovery part 51, and in the case of the device 2, the first microchannel Electrodes are formed in the 20 electrode holes. Then, a cover glass covers the surface on which the first microchannel 20 or the first microchannel 20 and the second microchannel 50 are formed.
The above procedure shows an example in which the number of branch chain forming steps is three. However, the deposition of the catalyst on the nanowire and the formation of the nanowire from the catalyst take into consideration the size of the biomolecule to be separated, etc. What is necessary is just to repeat the frequency | count desired as the frequency | count of 1 or more.
 上記手順におけるポジ型フォトレジストは、TSMR V50、PMER等、半導体製造分野で一般的に使用されているものであれば特に制限はない。また、ポジ型に代え、ネガティブ型のフォトレジストを用いてもよく、この場合も、SU-8、KMPR等、半導体製造分野で一般的に使用されているものであれば特に制限はない。 The positive photoresist in the above procedure is not particularly limited as long as it is generally used in the semiconductor manufacturing field, such as TSMR V50, PMER. In addition, a negative type photoresist may be used instead of the positive type, and in this case, there is no particular limitation as long as it is generally used in the semiconductor manufacturing field, such as SU-8 and KMPR.
 エッチャント液は、H2O:Ce(NH42(NO36:HClO4等、Crをエッチングできるものであれば特に制限はない。また、本実施形態において、手順(1)で基板上に堆積するのはCrに限定されるものではなく、Cr以外の材料を堆積し、該材料をエッチングできるエッチャント液と組み合わせて用いてもよい。 The etchant solution is not particularly limited as long as it can etch Cr, such as H 2 O: Ce (NH 4 ) 2 (NO 3 ) 6 : HClO 4 . In this embodiment, depositing on the substrate in step (1) is not limited to Cr, and a material other than Cr may be deposited and used in combination with an etchant that can etch the material. .
 基板10を選択的にエッチングする手法としては、例えば、基板に石英ガラスを用いた場合は、反応性イオンエッチング装置を用いて、CF4ガス、SF6ガス等でエッチングすればよい。基板として石英ガラス以外の材料を用いた場合は、当該材料を選択的にエッチングできる方法でエッチングすればよい。 As a method for selectively etching the substrate 10, for example, when quartz glass is used for the substrate, it may be etched with CF 4 gas, SF 6 gas or the like using a reactive ion etching apparatus. When a material other than quartz glass is used as the substrate, the material may be etched by a method that can selectively etch the material.
 ナノワイヤを成長させるための触媒としては、液体になる金属であれば特に制限はなく、金、プラチナ、アルミ、銅、鉄、コバルト、銀、錫、インジウム、亜鉛、ガリウム等が挙げられる。また、後述するように、本実施形態のナノワイヤはボトムアップ方式で成長するが、幹となるナノワイヤの直径は触媒1分子とほぼ同じ大きさになることから、所望のナノワイヤの直径を考慮し、触媒を適宜選択すればよい。 The catalyst for growing the nanowire is not particularly limited as long as it is a liquid metal, and examples thereof include gold, platinum, aluminum, copper, iron, cobalt, silver, tin, indium, zinc, and gallium. Further, as will be described later, the nanowire of the present embodiment grows in a bottom-up manner, but the diameter of the nanowire serving as a trunk is almost the same as that of one molecule of the catalyst. What is necessary is just to select a catalyst suitably.
 分離部30のナノワイヤは、上記のとおりマイクロ流路に堆積した触媒からボトムアップ方式で成長させることで形成され、先ず幹となるナノワイヤが形成される。ナノワイヤの形成は、パルスレーザーデポジション、VLS(Vapor-Liquid-Solid)法等、一般的な物理蒸着法であれば特に制限はない。 The nanowire of the separation part 30 is formed by growing from the catalyst deposited in the microchannel as described above by the bottom-up method, and first, the nanowire as a trunk is formed. The formation of the nanowire is not particularly limited as long as it is a general physical vapor deposition method such as pulsed laser deposition or VLS (Vapor-Liquid-Solid) method.
 幹となるナノワイヤは、触媒1分子とほぼ同じ直径のナノワイヤが分離部30から触媒を上にして成長する。ナノワイヤの直径をコントロールするには、所望の大きさとなる触媒分子を選択するとともに、触媒が無くならない温度及び圧力で幹となるナノワイヤを成長させる必要がある。触媒により異なるものの、温度は400~900℃、圧力は0.1~10Paにすることが好ましい。 The core nanowire is a nanowire having the same diameter as one catalyst molecule and grows from the separation part 30 with the catalyst facing upward. In order to control the diameter of the nanowire, it is necessary to select a catalyst molecule having a desired size and to grow a nanowire serving as a trunk at a temperature and pressure at which the catalyst does not disappear. Although it varies depending on the catalyst, the temperature is preferably 400 to 900 ° C. and the pressure is preferably 0.1 to 10 Pa.
 分岐鎖は、上記の分離抽出用デバイスの作製手順に示したとおり、形成したナノワイヤにスパッタリングにより触媒を堆積し、該触媒からナノワイヤを形成することで作製できる。分岐鎖を形成する材料、条件等は、幹となるナノワイヤと同じでよい。また、幹となるナノワイヤ及び分岐鎖の長さは特に制限は無く、分離部30の深さ及び分岐鎖形成工程回数を考慮しながら適宜調整すればよい。分岐鎖の長さは、蒸着時間を変えることで調整することができる。 The branched chain can be produced by depositing a catalyst on the formed nanowires by sputtering and forming nanowires from the catalyst as shown in the procedure for producing the separation and extraction device. The material, conditions, and the like that form the branched chain may be the same as those of the nanowire serving as the trunk. Further, the lengths of the nanowires and the branched chains that are trunks are not particularly limited, and may be appropriately adjusted in consideration of the depth of the separation unit 30 and the number of branch chain forming steps. The length of the branched chain can be adjusted by changing the deposition time.
 ナノワイヤを形成する材料は、SiO2、Li2O、MgO、Al23、CaO、TiO2、Mn23、Fe23、CoO、NiO、CuO、ZnO、Ga23、SrO、In23、SnO2、Sm23、EuO等が挙げられる。 The material forming the nanowire, SiO 2, Li 2 O, MgO, Al 2 O 3, CaO, TiO 2, Mn 2 O 3, Fe 2 O 3, CoO, NiO, CuO, ZnO, Ga 2 O 3, SrO , In 2 O 3 , SnO 2 , Sm 2 O 3 , EuO and the like.
 形成されるナノワイヤの直径は、触媒の大きさに依存することから、分岐鎖形成工程の回数が変化してもナノワイヤの直径は変化しない。したがって、各分岐鎖形成工程の蒸着時間及び分岐鎖形成工程の回数を調整すること、更に、触媒をスパッタリングする時間を変化させ、堆積する触媒の量を調整することで、所望の密集度の分離部30を形成することができる。 The diameter of the nanowire formed depends on the size of the catalyst. Therefore, the diameter of the nanowire does not change even if the number of branch chain forming steps changes. Therefore, by adjusting the vapor deposition time and the number of branch chain forming steps in each branched chain forming step, and further by changing the time for sputtering the catalyst and adjusting the amount of catalyst to be deposited, the desired density can be separated. The portion 30 can be formed.
 一方、所望回数の分岐鎖形成工程を経て分岐数nのナノワイヤを形成した後、形成した分岐数nのナノワイヤの周りに被覆層を形成することもできる。被覆層は、スパッタリング、EB蒸着、PVD、ALD等の一般的な蒸着法であれば特に制限はない。被覆条件としては、ナノワイヤが溶けない温度条件で行う必要があり、ナノワイヤの材料によるものの、800℃以下で行うことが望ましい。被覆層の厚さは、蒸着時間を変えることで適宜調整すればよい。例えば、生体分子として核酸を分離及び抽出する場合、核酸が静電的相互作用によりナノワイヤの表面に吸着しない方が好ましい。そのため、被覆層は、核酸の等電点より低い等電点の材料から形成されることが好ましく、それら材料の中でも、SiO2、TiO2が好ましい。 On the other hand, after forming a nanowire with n branches through a desired number of branch chain formation steps, a coating layer may be formed around the nanowire with n branches. The coating layer is not particularly limited as long as it is a general vapor deposition method such as sputtering, EB vapor deposition, PVD, or ALD. As coating conditions, it is necessary to carry out under a temperature condition in which the nanowire does not melt, and it is desirable to carry out at 800 ° C. or less although it depends on the nanowire material. What is necessary is just to adjust the thickness of a coating layer suitably by changing vapor deposition time. For example, when nucleic acid is separated and extracted as a biomolecule, it is preferable that the nucleic acid is not adsorbed on the surface of the nanowire by electrostatic interaction. Therefore, the coating layer is preferably formed from a material having an isoelectric point lower than that of nucleic acid, and among these materials, SiO 2 and TiO 2 are preferable.
 本実施形態では、分岐数nの分岐鎖を有するナノワイヤを分離部30に密集状態に作製することで、分岐鎖を有するナノワイヤによるフィルターが形成される。これにより、クロマトグラフィーの原理と同様に、サイズの小さな生体分子は早く分離部30を通過するが、サイズの大きな生体分子は分離部30を通過するのに時間がかかるか、又はナノワイヤフィルターにより移動を阻止される。結果として、サンプル溶液40に含まれる生体分子を、サイズに応じて分離することができる。上記のとおり、本実施形態の分岐鎖を有するナノワイヤは、分岐鎖形成工程を実施する回数を増加することで、分岐鎖から更に分岐鎖を形成し、分離部30内の生体分子が通過する空間が緻密になる。また、触媒を堆積する量を多くすることによっても、単位体積当たりのナノワイヤ密度を増加させることができ、空間が緻密になる。さらに、ナノワイヤの被覆層の厚さを変えることで個々のナノワイヤの直径を調整することもできる。したがって、本実施形態の分離部30に形成する分岐鎖を有するナノワイヤは、所期のサンプルサイズが分離できるように、ナノワイヤの分岐数、単位体積当たりのナノワイヤ密度、及びナノワイヤの被覆層の厚さを適宜調整すればよい。また、分離部30は、分岐数nのナノワイヤから形成してもよいし、分離部30を複数設け、それぞれで、分岐数nの異なるナノワイヤから形成してもよい。 In this embodiment, a nanowire having a branched chain having n branches is formed in a dense state in the separation unit 30, thereby forming a filter made of nanowires having a branched chain. As a result, similar to the principle of chromatography, small-sized biomolecules pass through the separation unit 30 quickly, but large-sized biomolecules take time to pass through the separation unit 30 or are moved by the nanowire filter. Is prevented. As a result, biomolecules contained in the sample solution 40 can be separated according to size. As described above, the nanowire having a branched chain according to the present embodiment increases the number of times the branched chain forming step is performed, thereby further forming a branched chain from the branched chain, and a space through which the biomolecule in the separation unit 30 passes. Becomes dense. Also, increasing the amount of catalyst deposited can increase the nanowire density per unit volume, resulting in a dense space. Furthermore, the diameter of each nanowire can be adjusted by changing the thickness of the coating layer of the nanowire. Therefore, in the nanowire having a branched chain formed in the separation unit 30 of the present embodiment, the number of nanowire branches, the nanowire density per unit volume, and the thickness of the coating layer of the nanowire so that an intended sample size can be separated. May be adjusted as appropriate. Moreover, the separation part 30 may be formed from nanowires with n branches, or a plurality of separation parts 30 may be provided, and each may be formed from nanowires with different branch numbers n.
 サンプル投入部21、分離済みサンプル回収部22、サンプル回収部51用の貫通孔、及び電極孔に設ける電極としては、白金、金等、一般的に用いられている電極の材料であれば特に制限はない。 The electrode to be provided in the sample input part 21, the separated sample recovery part 22, the through hole for the sample recovery part 51, and the electrode hole is not particularly limited as long as it is a commonly used electrode material such as platinum or gold. There is no.
 次に、本実施形態のデバイスを用いた生体分子の分離抽出方法について説明する。例えば、生体分子として核酸を用いる場合は、培養した細胞等から公知の方法により核酸を抽出して溶液に添加してサンプル溶液40を作製する。溶液としては、TEバッファー等、核酸の分解を抑えることができる溶液であれば特に限定はない。デバイス1を用いる場合は、サンプル投入部21にサンプル溶液40を投入し、サンプル投入部21がマイナス、分離済みサンプル回収部22がプラスとなるように電圧を印加する。すると、サンプル溶液40中の核酸は分離部30を通過する間にサイズ分離が行われ、その後、分離済みサンプル回収部22から回収される。 Next, a method for separating and extracting biomolecules using the device of this embodiment will be described. For example, when a nucleic acid is used as a biomolecule, the sample solution 40 is prepared by extracting the nucleic acid from cultured cells or the like by a known method and adding it to the solution. The solution is not particularly limited as long as it is a solution capable of suppressing nucleic acid degradation, such as TE buffer. When the device 1 is used, the sample solution 40 is loaded into the sample loading unit 21 and a voltage is applied so that the sample loading unit 21 is negative and the separated sample collection unit 22 is positive. Then, the nucleic acid in the sample solution 40 is subjected to size separation while passing through the separation unit 30, and then collected from the separated sample collection unit 22.
 一方、デバイス2を用いる場合は、サンプル投入部21にサンプル溶液40を投入し、サンプル投入部21がマイナス、未分離のサンプルを回収するサンプル回収部51がプラスとなるように電圧を印加する。サンプル溶液40が、第1マイクロ流路20と交差する部分を通過している任意のタイミングで電圧の印加を中止する。次いで、分離済みサンプル回収部22がプラス、第1マイクロ流路20の分離済みサンプル回収部22とは反対側の端部をマイナスとなるように電圧を印加する。すると、第1マイクロ流路20及び第2マイクロ流路50が交差する部分の体積に相当するサンプル溶液40が分離済みサンプル回収部22の方向に移動し、サンプル溶液40中の核酸は分離部30を通過する間にサイズ分離が行われ、その後、分離済みサンプル回収部22から回収される。デバイス2を用いた場合は、第1マイクロ流路20及び第2マイクロ流路50への電圧の印加の切り替えを繰り返すことで、同一サンプル溶液40中に含まれる核酸の分離及び抽出を繰り返し行うことができる。印加する電圧は、核酸が泳動可能な電圧であれば特に制限はなく、例えば、1V/mm以上であればよい。 On the other hand, when the device 2 is used, the sample solution 40 is loaded into the sample loading unit 21, and a voltage is applied so that the sample loading unit 21 is negative and the sample collection unit 51 that collects an unseparated sample is positive. The application of voltage is stopped at an arbitrary timing when the sample solution 40 passes through a portion intersecting the first microchannel 20. Next, a voltage is applied so that the separated sample recovery unit 22 is positive and the end of the first microchannel 20 opposite to the separated sample recovery unit 22 is negative. Then, the sample solution 40 corresponding to the volume of the portion where the first microchannel 20 and the second microchannel 50 intersect moves in the direction of the separated sample collection unit 22, and the nucleic acid in the sample solution 40 is separated by the separation unit 30. The size separation is performed while passing the sample, and thereafter, the sample is collected from the separated sample collection unit 22. When the device 2 is used, the separation and extraction of the nucleic acid contained in the same sample solution 40 are repeatedly performed by repeatedly switching the voltage application to the first microchannel 20 and the second microchannel 50. Can do. The voltage to be applied is not particularly limited as long as the nucleic acid can migrate, and may be, for example, 1 V / mm or more.
 なお、上記の例は、生体分子としてマイナスに帯電する核酸を分離及び抽出する場合であるが、例えば、正に帯電するタンパク質等の生体分子を分離及び抽出する場合は、電圧の印加を核酸の場合とは逆にすることで、分離及び抽出することが可能である。また、ナノワイヤに被覆層を設ける場合は、正に帯電する生体分子がナノワイヤに吸着しないように、酸化ニッケル等の正に帯電する材料で被覆層を設けることが望ましい。 In the above example, a negatively charged nucleic acid is separated and extracted as a biomolecule. For example, when a positively charged biomolecule such as a protein is separated and extracted, voltage application is applied to the nucleic acid. By reversing the case, separation and extraction are possible. Further, when a coating layer is provided on the nanowire, it is desirable to provide the coating layer with a positively charged material such as nickel oxide so that positively charged biomolecules are not adsorbed on the nanowire.
 以下に実施例を掲げ、本発明を具体的に説明するが、この実施例は単に本発明の説明のため、その具体的な態様の参考のために提供されているものである。これらの例示は本発明の特定の具体的な態様を説明するためのものであるが、本願で開示する発明の範囲を限定したり、あるいは制限したりすることを表すものではない。 Hereinafter, the present invention will be specifically described with reference to examples. However, these examples are provided merely for the purpose of explaining the present invention and for reference to specific embodiments thereof. These exemplifications are for explaining specific specific embodiments of the present invention, but are not intended to limit or limit the scope of the invention disclosed in the present application.
〔デバイスの作製〕
<実施例1>
 本発明のデバイスは以下の手順により作製した。先ず、RFスパッタ装置(SVC-700LRF、Sanyu Denshi)を用いて石英ガラス上(Crystal Base Co.)に250nmの厚さのCr層を堆積させた。次に、ポジ型フォトレジスト(TSMR V50、Tokyo Ohka Kogyo Co.)をスピンコータにより塗布した。その後、フォトリソグラフィにより幅25μmの交差するマイクロ流路パターンを作製した。レジストを現像した後、Crエッチャント液(H2O:Ce(NH42(NO36:HClO4=85:10:5(質量%比))にてCr層を5分間エッチングした。反応性イオンエッチング装置(RIE-10NR、Samco Co.)を用いてCF4ガスにより、深さ2μmの交差する2本のマイクロ流路を作製した。次いで、レジスト除去液(NMD3、Tokyo Ohka Kogyo Co.)を用いてレジストを剥離した。直径1.5mmの、サンプル投入部、分離済みサンプル回収部、サンプル回収部、及び電極孔を、超音波ドリル(SOM-121、Shinoda Co.)により作製した。その後、マイクロ流路内の全体に金触媒をスパッタリングで堆積し、SnO2を材料に、室温で10Pa、60分間パルスレーザーデポジションを行うことで、幹となるナノワイヤを作製した。次いで、作製したナノワイヤに金触媒をスパッタリングで堆積し、SnO2を材料に、室温で10Pa、60分間パルスレーザーデポジションを行うことで分岐鎖形成工程を実施し、分岐数1のナノワイヤを作製した。最後に、厚さ130μmの石英製カバーガラスでマイクロ流路を形成した面に蓋をすることで、本発明のデバイスを作製した。作製したナノワイヤの直径は約10nmであった。
[Production of devices]
<Example 1>
The device of the present invention was produced by the following procedure. First, a Cr layer with a thickness of 250 nm was deposited on quartz glass (Crystal Base Co.) using an RF sputtering apparatus (SVC-700LRF, Sanyu Denshi). Next, a positive type photoresist (TSMR V50, Tokyo Ohka Kogyo Co.) was applied by a spin coater. Thereafter, intersecting microchannel patterns having a width of 25 μm were produced by photolithography. After developing the resist, the Cr layer was etched for 5 minutes with a Cr etchant solution (H 2 O: Ce (NH 4 ) 2 (NO 3 ) 6 : HClO 4 = 85: 10: 5 (mass% ratio)). Two microchannels intersecting each other with a depth of 2 μm were produced by CF 4 gas using a reactive ion etching apparatus (RIE-10NR, Samco Co.). Next, the resist was peeled off using a resist removing solution (NMD3, Tokyo Ohka Kogyo Co.). A sample insertion part, a separated sample recovery part, a sample recovery part, and an electrode hole having a diameter of 1.5 mm were produced by an ultrasonic drill (SOM-121, Shinoda Co.). Thereafter, a gold catalyst was deposited over the entire microchannel by sputtering, and pulsed laser deposition was performed using SnO 2 as a material at room temperature for 10 Pa for 60 minutes, thereby producing a nanowire serving as a trunk. Next, a gold catalyst was deposited on the prepared nanowires by sputtering, and a branched chain forming step was performed by performing pulse laser deposition for 60 minutes at room temperature at 10 Pa using SnO 2 as a material, thereby producing nanowires having 1 branch. . Finally, the device of the present invention was manufactured by covering the surface on which the microchannel was formed with a quartz cover glass having a thickness of 130 μm. The diameter of the produced nanowire was about 10 nm.
 図4Aは、実施例1で作製したデバイスの光学写真で、デバイス全体の外観を示している。図4Bは、図4Aのマイクロ流路が交差する付近を拡大した顕微鏡写真で、第1マイクロ流路及び第2マイクロ流路の幅Lは約25μmであった。また、図4Bには一部しか映っていないが、分離部の長さは4mmであった。また、マイクロ流路の深さは、2μmであった。図5A、は実施例1で作製したデバイスの分離部部分を拡大したFESEM写真である。 FIG. 4A is an optical photograph of the device produced in Example 1, showing the overall appearance of the device. FIG. 4B is an enlarged micrograph of the vicinity where the microchannels of FIG. 4A intersect, and the width L of the first microchannel and the second microchannel is about 25 μm. In addition, although only a part is shown in FIG. 4B, the length of the separation portion was 4 mm. Moreover, the depth of the microchannel was 2 μm. FIG. 5A is an FESEM photograph in which a separation portion of the device manufactured in Example 1 is enlarged.
<実施例2>
 上記実施例1の分岐鎖形成工程を2回とする以外は実施例1と同様の手順で、分岐数2のナノワイヤのデバイスを作製した。図5Bは、実施例2で作製したデバイスの分離部部分を拡大したFESEM写真である。
<Example 2>
A nanowire device having 2 branches was prepared in the same procedure as in Example 1 except that the branch chain forming step in Example 1 was repeated twice. FIG. 5B is an FESEM photograph in which a separation portion of the device produced in Example 2 is enlarged.
<実施例3>
 上記実施例1の分岐鎖形成工程を3回とする以外は実施例1と同様の手順で、分岐数3のナノワイヤのデバイスを作製した。図5Cは、実施例3で作製したデバイスの分離部部分を拡大したFESEM写真である。
<Example 3>
A nanowire device having 3 branches was prepared in the same procedure as in Example 1 except that the branch chain forming step in Example 1 was performed 3 times. FIG. 5C is an FESEM photograph in which a separation portion of the device manufactured in Example 3 is enlarged.
<実施例4>
 上記実施例1の分岐鎖形成工程を4回とする以外は実施例1と同様の手順で、分岐数4のナノワイヤのデバイスを作製した。図5Dは、実施例4で作製したデバイスの分離部部分を拡大したFESEM写真である。
<Example 4>
A nanowire device having 4 branches was prepared in the same procedure as in Example 1 except that the branch chain formation step in Example 1 was performed 4 times. FIG. 5D is an FESEM photograph in which a separation portion of the device manufactured in Example 4 is enlarged.
<実施例5>
 上記実施例1の分岐鎖形成工程を5回とする以外は実施例1と同様の手順で、分岐数5のナノワイヤのデバイスを作製した。図5E、は実施例5で作製したデバイスの分離部部分を拡大したFESEM写真である。
<Example 5>
A nanowire device having 5 branches was prepared in the same procedure as in Example 1 except that the branch chain forming step in Example 1 was performed 5 times. FIG. 5E is an enlarged FESEM photograph of the separation portion of the device produced in Example 5.
 図5A~図5Eの写真から明らかなように、分岐鎖形成工程の回数を増加するにしたがい、分岐鎖を有するナノワイヤが密集した分離部を形成することができた。 As is clear from the photographs of FIGS. 5A to 5E, as the number of branch chain forming steps was increased, it was possible to form a separation part in which nanowires having branched chains were densely packed.
〔サンプル溶液の調整〕
 DNAサンプルとして、T4、λDNA、38kbpDNA、10kbpDNA(何れも、ニッポン・ジーン社製)を準備し、後述する実施例で用いる組合せのDNAサンプルをサンプルチューブに入れ、TE buffer(10mmol/l Tris-HCl (pH8.0)、1mmol/l EDTA (pH8.0);ニッポン・ジーン社製)、及び10mM YOYO-1(ライフテクノロジーズジャパン社製)を添加して、後述する濃度となるように調整して、核酸を染色したサンプル溶液とした。なお、DNAとYOYO-1は、dye:basepare=1:15になるように混合した。
[Preparation of sample solution]
T4, λDNA, 38 kbpDNA, 10 kbpDNA (all manufactured by Nippon Gene) were prepared as DNA samples, and the DNA samples of the combination used in the examples described later were put into a sample tube, and TE buffer (10 mmol / l Tris-HCl was used. (PH 8.0), 1 mmol / l EDTA (pH 8.0); manufactured by Nippon Gene Co., Ltd.) and 10 mM YOYO-1 (manufactured by Life Technologies Japan Co., Ltd.) were added to adjust the concentration to be described later. The sample solution was stained with nucleic acid. DNA and YOYO-1 were mixed so that dye: basepair = 1: 15.
〔核酸の分離実験〕
<実施例6>
 T4(約166kbp)の濃度が20ng/μl、λDNA(約48.5kbp)の濃度が50ng/μlとなるように調整したDNAサンプル溶液0.9μlを、上記実施例1で作製したデバイス(分岐数1)のサンプル投入部に投入した。サンプル投入部及びサンプル回収部に挿入した白金電極に、サンプル投入部がマイナス、サンプル回収部がプラスとなるように、20V/mmの電圧を印加した。サンプルがマイクロ流路の交差する部分を通過しているタイミングで、サンプル投入部及びサンプル回収部への電圧の印加を中止し、分離済みサンプル回収部及び電極孔に挿入した白金電極に、電極孔がマイナス、分離済みサンプル回収部がプラスとなるように、6.67V/mmで約2秒電圧を印加した。
[Nucleic acid separation experiment]
<Example 6>
The device (number of branches) prepared in 0.9 μl of the DNA sample solution prepared so that the concentration of T4 (about 166 kbp) was 20 ng / μl and the concentration of λDNA (about 48.5 kbp) was 50 ng / μl was prepared in Example 1 above. The sample was introduced into the sample introduction part of 1). A voltage of 20 V / mm was applied to the platinum electrode inserted into the sample input part and the sample recovery part so that the sample input part was negative and the sample recovery part was positive. At the timing when the sample passes through the crossing part of the micro flow path, the voltage application to the sample input part and the sample recovery part is stopped, and the electrode hole is connected to the platinum electrode inserted into the separated sample recovery part and the electrode hole. Is negative, and the separated sample recovery part is positive, and a voltage of 6.67 V / mm is applied for about 2 seconds.
 図6は、実施例6の分離実験により、分離部でT4及びλDNAが分離されたことを示すグラフである。図中、横軸は分離部のサンプル溶液が流入する側の端部からの距離を表し、縦軸は当該距離における蛍光強度を表す。図6から明らかなように、分岐数1のナノワイヤを含む分離部にT4及びλDNAを含むサンプル溶液を流入させると、わずか約2秒、150μmに満たない移動距離で、T4とλDNAとを精度よく分離することができた。 FIG. 6 is a graph showing that T4 and λDNA were separated in the separation part in the separation experiment of Example 6. In the figure, the horizontal axis represents the distance from the end of the separation unit on the side where the sample solution flows, and the vertical axis represents the fluorescence intensity at the distance. As is clear from FIG. 6, when a sample solution containing T4 and λDNA is allowed to flow into a separation part containing a nanowire with one branch, T4 and λDNA can be accurately obtained with a moving distance of less than 150 μm for only about 2 seconds. Could be separated.
<実施例7>
 サンプルとして、濃度39ng/μlの38kbpDNA、濃度10ng/μlの10kbpDNAを用い、実施例2で作製したデバイス(分岐数2)を用い、分離済みサンプル回収部及び電極孔に挿入した白金電極への印加を約3秒とした以外は、実施例6と同様にサンプルの分離を行った。
<Example 7>
Using 38 kbp DNA with a concentration of 39 ng / μl and 10 kbp DNA with a concentration of 10 ng / μl as a sample, applying the device prepared in Example 2 (number of branches 2) to the separated sample collection part and the platinum electrode inserted into the electrode hole The sample was separated in the same manner as in Example 6 except that was set to about 3 seconds.
 図7は、実施例7の分離実験により、分離部で38kbpDNA及び10kbpDNAが分離されたことを示すグラフである。図7から明らかなように、分岐数2のナノワイヤを含む分離部に38kbpDNA及び10kbpDNAサンプル溶液を流入させると、わずか約3秒、300μmに満たない移動距離で、38kbpDNAと10kbpDNAとを精度よく分離することができた。 FIG. 7 is a graph showing that 38 kbp DNA and 10 kbp DNA were separated in the separation part by the separation experiment of Example 7. As is apparent from FIG. 7, when 38 kbp DNA and 10 kbp DNA sample solution are allowed to flow into the separation part containing nanowires with 2 branches, 38 kbp DNA and 10 kbp DNA are accurately separated with a moving distance of less than 300 μm for only about 3 seconds. I was able to.
<実施例8>
 サンプルとして、濃度15ng/μlの10kbpDNA、濃度20ng/μlの1kbpDNAを用い、実施例4で作製したデバイス(分岐数4)を用いた以外は、実施例6と同様にサンプルの分離を行った。
<Example 8>
Samples were separated in the same manner as in Example 6 except that 10 kbp DNA with a concentration of 15 ng / μl and 1 kbp DNA with a concentration of 20 ng / μl were used and the device (number of branches 4) prepared in Example 4 was used.
 図8は、実施例8の分離実験により、分離部で10kbpDNA及び1kbpDNAが分離されたことを示すグラフである。図8から明らかなように、分岐数4のナノワイヤを含む分離部に10kbpDNA及び1kbpDNAサンプル溶液を流入させると、わずか約2秒、150μmに満たない移動距離で、10kbpDNAと1kbpDNAとを精度よく分離することができた。 FIG. 8 is a graph showing that 10 kbp DNA and 1 kbp DNA were separated in the separation part by the separation experiment of Example 8. As is clear from FIG. 8, when 10 kbp DNA and 1 kbp DNA sample solution are allowed to flow into the separation part containing nanowires having 4 branches, 10 kbp DNA and 1 kbp DNA are separated accurately with a moving distance of less than 150 μm for only about 2 seconds. I was able to.
 以上の実験結果より、分離部のナノワイヤの分岐数を変化させることで、サイズの異なるサンプルを、短時間で効率よく分離できることが明らかとなった。なお、上記実施例では、より短時間で分離できることを示すため、分離部を移動中のDNAで分離できることを示したが、電圧をかけ続けることで、分離部を通過したサンプルを回収することはもちろん可能である。 From the above experimental results, it was revealed that samples with different sizes can be efficiently separated in a short time by changing the number of nanowire branches in the separation part. In the above example, in order to show that the separation can be performed in a shorter time, it was shown that the separation unit can be separated by the moving DNA, but by continuing to apply voltage, it is possible to recover the sample that has passed through the separation unit. Of course it is possible.
 基板上に設けたマイクロ流路上に、分岐鎖を有するナノワイヤを含む分離部を形成した生体分子の分離抽出用デバイスを用いることで、短時間で精度よくサンプルを分離することができる。また、分岐数を調整することで、所望のサイズの生体分子を分離及び抽出することができることから、医療機関、大学、企業、研究機関等での簡便且つ迅速な生体分子の分離及び抽出に有用である。 A sample can be separated with high accuracy in a short time by using a biomolecule separation / extraction device in which a separation part including a nanowire having a branched chain is formed on a microchannel provided on a substrate. In addition, by adjusting the number of branches, it is possible to separate and extract biomolecules of a desired size, which is useful for easy and rapid separation and extraction of biomolecules at medical institutions, universities, companies, research institutions, etc. It is.

Claims (8)

  1.  基板上に設けたマイクロ流路上に、分岐数が1以上の分岐鎖を有するナノワイヤを含む分離部が形成された生体分子の分離抽出用デバイス。 A device for separation and extraction of biomolecules, in which a separation part including nanowires having a branched chain with one or more branches is formed on a microchannel provided on a substrate.
  2.  前記分岐鎖が、ナノワイヤに堆積した触媒から成長したナノワイヤである請求項1に記載の生体分子の分離抽出用デバイス。 The device for separating and extracting a biomolecule according to claim 1, wherein the branched chain is a nanowire grown from a catalyst deposited on the nanowire.
  3.  前記マイクロ流路が、交差する2本のマイクロ流路から形成され、前記分離部が1本のマイクロ流路のみに形成されている請求項1又は請求項2に記載の生体分子の分離抽出用デバイス。 The biomolecule separation / extraction device according to claim 1 or 2, wherein the microchannel is formed of two intersecting microchannels, and the separation unit is formed only in one microchannel. device.
  4.  前記マイクロ流路に、サンプル溶液を投入するサンプル投入部、及び分離済みサンプルを回収する分離済みサンプル回収部が設けられた請求項1~請求項3の何れか一項に記載の生体分子の分離抽出用デバイス。 The biomolecule separation according to any one of claims 1 to 3, wherein a sample input unit for supplying a sample solution and a separated sample recovery unit for recovering a separated sample are provided in the microchannel. Extraction device.
  5.  基板上にマイクロ流路を形成する工程と、前記マイクロ流路に触媒を堆積する工程と、前記触媒からナノワイヤを形成する工程と、前記ナノワイヤに触媒を堆積し該触媒からナノワイヤを形成する工程と、を含み、
     前記ナノワイヤに触媒を堆積し該触媒からナノワイヤを形成する工程が、1回以上含まれる生体分子の分離抽出用デバイスの製造方法。
    Forming a microchannel on a substrate; depositing a catalyst on the microchannel; forming a nanowire from the catalyst; depositing a catalyst on the nanowire and forming a nanowire from the catalyst; Including,
    A method for producing a device for separating and extracting biomolecules, comprising the steps of depositing a catalyst on the nanowire and forming the nanowire from the catalyst one or more times.
  6.  前記マイクロ流路に、サンプル溶液を投入するサンプル投入部、及び分離済みサンプルを回収する分離済みサンプル回収部を形成する工程を更に含む請求項5に記載の生体分子の分離抽出用デバイスの製造方法。 The method for producing a device for separating and extracting a biomolecule according to claim 5, further comprising a step of forming a sample input unit for introducing a sample solution into the microchannel and a separated sample recovery unit for recovering the separated sample. .
  7.  基板上に設けたマイクロ流路上に、分岐数が1以上の分岐鎖を有するナノワイヤを含む分離部を形成した生体分子の分離抽出用デバイスのマイクロ流路の一端にサンプルを投入する工程と、
     前記マイクロ流路に電場を印加する工程と、
     前記分離部で生体分子を分離する工程と、
     を含む生体分子の分離抽出方法。
    A step of introducing a sample into one end of a microchannel of a biomolecule separation and extraction device in which a separation part including a nanowire having a branched chain having a branch number of 1 or more is formed on a microchannel provided on a substrate;
    Applying an electric field to the microchannel;
    Separating biomolecules in the separation unit;
    A method for separating and extracting biomolecules.
  8.  基板上に設けた交差するマイクロ流路の一方のマイクロ流路上に、分岐数が1以上の分岐鎖を有するナノワイヤを含む分離部を形成した生体分子の分離抽出用デバイスの分離部が形成されていないマイクロ流路の一端にサンプルを投入する工程と、
     前記分離部が形成されていないマイクロ流路に電場を印加する工程と、
     前記分離部が形成されていないマイクロ流路への電場の印加を止め、分離部が形成されているマイクロ流路に電場を印加する工程と、
     前記分離部で生体分子を分離する工程と、
     を含む生体分子の分離抽出方法。
    On one microchannel of the intersecting microchannels provided on the substrate, a separation unit of a biomolecule separation / extraction device in which a separation unit including a nanowire having a branched chain having a branch number of 1 or more is formed. Introducing a sample into one end of a non-microchannel,
    Applying an electric field to the microchannel where the separation part is not formed;
    Stopping the application of the electric field to the microchannel where the separation part is not formed, and applying the electric field to the microchannel where the separation part is formed;
    Separating biomolecules in the separation unit;
    A method for separating and extracting biomolecules.
PCT/JP2014/055867 2013-03-06 2014-03-06 Device for separating and extracting biomolecules, method for manufacturing same, and method for separating and extracting biomolecules WO2014136913A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013044739A JP2016103979A (en) 2013-03-06 2013-03-06 Biomolecule separation/extraction device and production method thereof as well as biomolecule separation/extraction method
JP2013-044739 2013-03-06

Publications (1)

Publication Number Publication Date
WO2014136913A1 true WO2014136913A1 (en) 2014-09-12

Family

ID=51491420

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/055867 WO2014136913A1 (en) 2013-03-06 2014-03-06 Device for separating and extracting biomolecules, method for manufacturing same, and method for separating and extracting biomolecules

Country Status (2)

Country Link
JP (1) JP2016103979A (en)
WO (1) WO2014136913A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017158484A (en) * 2016-03-09 2017-09-14 国立大学法人名古屋大学 Nanowire device, analytical apparatus comprising nanowire device, method for heat treatment of sample, and method for separating sample
WO2021070617A1 (en) * 2019-10-11 2021-04-15 株式会社日立製作所 Biopolymer extraction apparatus and method for extracting biopolymer

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2020054773A1 (en) * 2018-09-11 2021-08-30 国立大学法人東海国立大学機構 Biomolecule separation device and its operation method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005017957A2 (en) * 2003-06-20 2005-02-24 The Regents Of The University Of California Nanowire array and nanowire solar cells and methods for forming the same
JP2010524662A (en) * 2007-04-17 2010-07-22 エヌエックスピー ビー ヴィ Fluid separation structure and manufacturing method of fluid separation structure
JP2012078168A (en) * 2010-09-30 2012-04-19 Nagoya Univ Detection method and detection system using nano structure

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005017957A2 (en) * 2003-06-20 2005-02-24 The Regents Of The University Of California Nanowire array and nanowire solar cells and methods for forming the same
JP2010524662A (en) * 2007-04-17 2010-07-22 エヌエックスピー ビー ヴィ Fluid separation structure and manufacturing method of fluid separation structure
JP2012078168A (en) * 2010-09-30 2012-04-19 Nagoya Univ Detection method and detection system using nano structure

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
BIERMAN M. J. ET AL.: "Dislocation-Driven Nanowire Growth and Eshelby Twist", SCIENCE, vol. 320, 2008, pages 1060 - 1063 *
BIERMAN M. J. ET AL.: "Potential applications of hierarchical branching nanowires in solar energy conversion", ENERGY ENVIRON. SCI., vol. 2, 2009, pages 1050 - 1059 *
KIM J. ET AL.: "Nanowire-integrated microfluidic devices for facile and reagent- freemechanical cell lysis", LAB ON A CHIP, vol. 12, no. 16, 2012, pages 2914 - 2921, XP055224377, DOI: doi:10.1039/c2lc40154a *
KO S. H. ET AL.: "Nanoforest of Hydrothermally Grown Hierarchical ZnO Nanowires for a High Efficiency Dye-Sensitized Solar Cell", NANO LETT., vol. 11, 2011, pages 666 - 671 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017158484A (en) * 2016-03-09 2017-09-14 国立大学法人名古屋大学 Nanowire device, analytical apparatus comprising nanowire device, method for heat treatment of sample, and method for separating sample
WO2017154614A1 (en) * 2016-03-09 2017-09-14 国立大学法人名古屋大学 Nanowire device, analysis apparatus including nanowire device, method for heat-treating sample, and method for separating sample
WO2021070617A1 (en) * 2019-10-11 2021-04-15 株式会社日立製作所 Biopolymer extraction apparatus and method for extracting biopolymer

Also Published As

Publication number Publication date
JP2016103979A (en) 2016-06-09

Similar Documents

Publication Publication Date Title
Reisner et al. DNA confinement in nanochannels: physics and biological applications
US20180305682A1 (en) Microfluidic device for extracting, isolating, and analyzing dna from cells
JP2020103274A (en) Chip for biological molecule extraction and production method for chip for biological molecule extraction
Qu et al. Droplet electroporation in microfluidics for efficient cell transformation with or without cell wall removal
JP7136817B2 (en) Size-selective purification using thermoplastic silica nanomaterials
KR102077037B1 (en) Method and device for extracting nucleic acids using nano-filters
US11198135B2 (en) Hierarchical silica lamella for magnetic nucleic acid extraction
WO2014136913A1 (en) Device for separating and extracting biomolecules, method for manufacturing same, and method for separating and extracting biomolecules
WO2014065192A1 (en) Nucleic acid extraction device and manufacturing method of said device, nucleic acid extraction method and nucleic acid sequence analysis method
Yasui et al. Nanobiodevices for biomolecule analysis and imaging
US20150362459A1 (en) Method and System for Concentrating Particles from a Solution
JP7233632B2 (en) Separation system and method for chiral compounds using magnetic interaction
CN106047706A (en) Chip for implementing cellular localization culture based on single-cell capture and using and preparation method thereof
US20230321653A1 (en) Devices and methods for cytogenetic analysis
Bao et al. Recent advances of liquid biopsy: Interdisciplinary strategies toward clinical decision‐making
Tian et al. A microfluidic synchronizer for fission yeast cells
JP2022536796A (en) Filtration-based system and method for separating clustered particles
Kim et al. Electrokinetic separation of biomolecules through multiple nano-pores on membrane
CN103373733A (en) Rod-shaped material with multiple surface properties and preparation method thereof
CN113039262B (en) Device for capturing extracellular vesicles, method for preserving extracellular vesicles, and method for transferring extracellular vesicles
Moretti et al. An ON/OFF biosensor based on blockade of ionic current passing through a solid-state nanopore
WO2018117726A1 (en) Nucleic acid extraction apparatus and method which use nanofilter
WO2022059762A1 (en) Biomolecule extraction method
Randall et al. Size selective sampling using mobile, 3D nanoporous membranes
Cinque et al. Cell trapping, DNA extraction and Molecular Combing in a microfluidic device for high throughput genetic analysis of human DNA

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14759647

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14759647

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP