WO2014136878A1 - Fastening structure and fastening method - Google Patents

Fastening structure and fastening method Download PDF

Info

Publication number
WO2014136878A1
WO2014136878A1 PCT/JP2014/055784 JP2014055784W WO2014136878A1 WO 2014136878 A1 WO2014136878 A1 WO 2014136878A1 JP 2014055784 W JP2014055784 W JP 2014055784W WO 2014136878 A1 WO2014136878 A1 WO 2014136878A1
Authority
WO
WIPO (PCT)
Prior art keywords
disc spring
tightening
inner peripheral
peripheral side
flat surface
Prior art date
Application number
PCT/JP2014/055784
Other languages
French (fr)
Japanese (ja)
Inventor
俊充 荒木
克彦 岩佐
典拓 田島
光輝 三村
千紘 伊藤
Original Assignee
日本発條株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本発條株式会社 filed Critical 日本発條株式会社
Priority to JP2015504386A priority Critical patent/JPWO2014136878A1/en
Publication of WO2014136878A1 publication Critical patent/WO2014136878A1/en

Links

Images

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B17/00Guiding record carriers not specifically of filamentary or web form, or of supports therefor
    • G11B17/02Details
    • G11B17/022Positioning or locking of single discs
    • G11B17/028Positioning or locking of single discs of discs rotating during transducing operation
    • G11B17/0287Positioning or locking of single discs of discs rotating during transducing operation by permanent connections, e.g. screws, rivets
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16BDEVICES FOR FASTENING OR SECURING CONSTRUCTIONAL ELEMENTS OR MACHINE PARTS TOGETHER, e.g. NAILS, BOLTS, CIRCLIPS, CLAMPS, CLIPS OR WEDGES; JOINTS OR JOINTING
    • F16B31/00Screwed connections specially modified in view of tensile load; Break-bolts
    • F16B31/02Screwed connections specially modified in view of tensile load; Break-bolts for indicating the attainment of a particular tensile load or limiting tensile load
    • F16B31/028Screwed connections specially modified in view of tensile load; Break-bolts for indicating the attainment of a particular tensile load or limiting tensile load with a load-indicating washer or washer assembly
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16BDEVICES FOR FASTENING OR SECURING CONSTRUCTIONAL ELEMENTS OR MACHINE PARTS TOGETHER, e.g. NAILS, BOLTS, CIRCLIPS, CLAMPS, CLIPS OR WEDGES; JOINTS OR JOINTING
    • F16B2/00Friction-grip releasable fastenings
    • F16B2/02Clamps, i.e. with gripping action effected by positive means other than the inherent resistance to deformation of the material of the fastening
    • F16B2/06Clamps, i.e. with gripping action effected by positive means other than the inherent resistance to deformation of the material of the fastening external, i.e. with contracting action
    • F16B2/065Clamps, i.e. with gripping action effected by positive means other than the inherent resistance to deformation of the material of the fastening external, i.e. with contracting action using screw-thread elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F1/00Springs
    • F16F1/02Springs made of steel or other material having low internal friction; Wound, torsion, leaf, cup, ring or the like springs, the material of the spring not being relevant
    • F16F1/32Belleville-type springs

Definitions

  • the present invention relates to a tightening structure and a tightening method for assembling a member in an apparatus with a predetermined load using a clamp member, and more particularly to an improvement of a tightening technique using a disc spring as a clamp member.
  • a clamp member is used to assemble a member with a predetermined load in the device.
  • a clamp member for example, a disc spring or a ring (resin ring or metal ring) is used.
  • a clamp member is used to press and hold the disk against a hub with a constant load (for example, Patent Document 1).
  • HDD hard disk drive
  • the clamp member has an area where the load change with respect to the deflection amount is small in the load characteristics.
  • the disc spring 11 when used as a clamp member as shown in FIG. 8A, the disc spring 11 has a region (for example, a substantially flat region) where the load change with respect to the deflection amount is small as shown in FIG. 8B, for example. Since the non-linear load characteristic is shown, the disk 2 can be held with respect to the hub 1 in a region where the load change with respect to the deflection amount is small. This facilitates holding of the disk 2 with a constant load. Moreover, compared with the case where another elastic member is used, it can satisfy
  • Reference numeral 3 denotes a fixing member.
  • Reference numeral O denotes a rotation center axis (a chain line).
  • the contact between the ring 12 and the disk 2 is a surface contact, so that the contact area becomes large.
  • the load characteristic of the ring 12 exhibits linearity, for example, as shown in FIG. 9B, and its spring constant increases.
  • the spring constant is high, the load fluctuation becomes large with respect to the small fluctuation of the deflection amount as shown in FIG.
  • the spring constant is high, after assembling, for example, when the fixing condition by the fixing member 3 is weakened with time, the distance between the disk 2 and the fixing member 3 is increased, and the amount of deflection is reduced.
  • FIG. 9 (B) the load fluctuation increases with a small decrease in the deflection amount.
  • an object of the present invention is to provide a technique capable of suppressing the occurrence of the above-described problems that occur when a conventional disc spring or ring is used in a structure in which members are assembled with a predetermined load in the apparatus.
  • the inventor interposes a clamping member for pressing the pressed member between the tightening member and the pressed member (for example, a disk in the case of a hard disk device), and presses the clamped member by tightening the clamping member.
  • a clamping member for pressing the pressed member between the tightening member and the pressed member (for example, a disk in the case of a hard disk device)
  • fastening technology fastening method and fastening structure
  • a clamp member for pressing the pressed member is interposed between the tightening member and the pressed member, and the pressed member is clamped to the support member by tightening the tightening member.
  • a clamping structure for pressing and holding wherein a disc spring is used as a clamp member, and the disc spring is formed on the outer peripheral end side of the concave surface and is inclined with respect to one surface on the inner peripheral side of the concave surface
  • the disc spring is arranged such that the concave surface faces the pressed member and the convex surface faces the clamping member.
  • the deflection amount of the disc spring is such that the support point of the concave surface is flat. It is set so that it may be located in an inner peripheral side edge part or the inner peripheral side rather than it.
  • the disc spring as the clamp member is disposed such that the concave surface faces the pressed member and the convex surface faces the tightening member.
  • the flat surface inclined with respect to one surface on the inner peripheral side of the concave surface is provided on the outer peripheral end portion side of the concave surface of the disc spring facing the pressed member side, on which deformation at the time of occurrence of impact is preferably suppressed. Is formed. Since such a flat surface can come into surface contact with the pressed member when an impact occurs, the contact area between the disc spring and the pressed member is increased. As a result, it is possible to suppress the deformation of the pressed member when an impact occurs.
  • the surface contact between the flat surface of the disc spring and the pressed member may or may not be realized when the tightening of the tightening member is completed, and it is important that it can be realized when an impact occurs. It is.
  • the load characteristics (load / deflection amount characteristic curve) of the disc spring the area where the above-mentioned surface contact can be realized when an impact occurs is within a predetermined range of the deflection amount. Strict control over quantity is not required.
  • the pressed member is supported in the load characteristic with a small load change area with respect to the deflection amount. Against and can be held. This facilitates holding the pressed member with a constant load.
  • the tightening by the tightening member tends to be weakened with time when the apparatus is used after the tightening of the tightening member is completed. Since it is set so as to be located on the inner peripheral side end portion of the surface or on the inner peripheral side thereof, it is stronger than the case where the surface contact is completely realized to the extent that the pressed member is not defective. Can be tightened. Thereby, even if the tightening condition becomes weak as described above, the pressed member can be held with a constant load.
  • the amount of deflection is set when the tightening of the tightening member is completed, the set amount of deflection is within the increase range of the amount of fluctuation in the load.
  • the load fluctuation amount as an index in controlling the tightening amount with a torque wrench, the tightening amount can be easily controlled.
  • the fastening structure of the present invention can use various configurations.
  • the flat surface of a disc spring can use the aspect formed by plate
  • the flat surface of a disc spring can also be made into the aspect formed by bending the boundary part of an inner peripheral side edge part and the site
  • the flat surface of the disc spring can be obtained by bending, and the cost can be reduced as compared with the case where polishing or the like is used. Therefore, the cost of the tightening structure can be reduced.
  • the disc spring can use a mode having a recess for accommodating the top of the fastening member.
  • further space saving of the tightening structure can be achieved as compared with the normal disc spring shape.
  • the disc spring can use a multistage shape in the axial cross section.
  • the shape of the disc spring can be easily matched to the shape of the support member, so that space saving of the tightening structure can be achieved.
  • the fastening method of the present invention is one form of a method for obtaining the tightening structure of the present invention. That is, according to the tightening method of the present invention, a clamp member for pressing the pressed member is interposed between the tightening member and the pressed member, and the pressed member is attached to the support member by tightening the tightening member.
  • the outer peripheral end of the flat surface of the concave surface of the disc spring is brought into contact with the pressed member, and the inner peripheral side end of the convex surface of the disc spring is brought into contact with the tightening member
  • the deflection amount of the disc spring is set so that the support point of the concave surface of the disc spring is located on the inner peripheral side end of the flat surface or on the inner peripheral side thereof.
  • the fastening method of the present invention can use various configurations.
  • a disc spring having a positioning hole is used as a disc spring
  • a support member having a positioning concave portion is used as a support member
  • the positioning member is used for positioning the disc spring before tightening. It is possible to use a mode in which the positioning member is engaged with the positioning recess of the support member through the hole and the positioning member is detached from the positioning recess and the positioning hole after the tightening of the tightening member is completed.
  • the tightening member when the tightening member is tightened, it is possible to suppress the disc spring from moving relative to the pressed member in conjunction with a movement such as rotation of the tightening member. Thereby, the generation
  • the tightening structure or the tightening method of the present invention it is possible to suppress the deformation of the pressed member when an impact occurs, and the pressed member is supported in a region where the load change with respect to the deflection amount is small in the load characteristics.
  • maintain with respect to a member can be acquired.
  • FIG. 1 shows a partial configuration of a tightening structure according to a first embodiment of the present invention, in which (A) is an enlarged sectional view in an axial direction at the start of tightening of a tightening member, and (B) is when tightening of the tightening member is completed.
  • FIG. 3C is an enlarged sectional view in the axial direction when an impact is generated when the apparatus is used. It is a figure showing an example of the load characteristic of the disc spring of the clamping structure shown in FIG.
  • FIG. 2A shows a partial configuration of a tightening structure according to a second embodiment of the present invention, in which FIG. 3A is an enlarged cross-sectional view in the axial direction at the start of tightening of the tightening member, and FIG. FIG. 3C is an enlarged sectional view in the axial direction when an impact is generated when the apparatus is used.
  • FIG. 5 is an enlarged cross-sectional view in the axial direction at the start of tightening of the tightening member, showing a partial configuration of a modification of the tightening structure according to the first embodiment of the present invention.
  • FIG. 6 is a partial enlarged cross-sectional view illustrating a partial configuration of a modification example of the tightening structure according to the second embodiment of the present invention at the start of tightening of the tightening member. It is an axial direction sectional view showing the right half of a schematic configuration of a conventional hard disk device using a disc spring as a clamp member. It is an axial direction sectional view showing the right half of a schematic configuration of a conventional hard disk device using a ring as a clamp member.
  • FIG. 1 is an axial sectional view showing the right half of the schematic configuration of the fastening structure according to the first embodiment of the present invention.
  • 2A and 2B show a partial configuration of the tightening structure according to the first embodiment of the present invention, in which FIG. 2A is an enlarged sectional view in the axial direction at the start of tightening of the tightening member, and FIG. FIG. 4C is an enlarged sectional view in the axial direction at the time of completion of tightening, and FIG. FIG. 1 shows a state in which the disc spring is in surface contact with a disk which is a pressed member in the tightening structure.
  • Reference symbol O denotes a rotation center axis (a one-dot chain line). Regarding the description of the direction, a direction parallel to the rotation center axis O is expressed as an axis direction, and a direction perpendicular to the direction of the rotation center axis O is expressed as a horizontal direction.
  • the tightening structure 100 is applied to a hard disk device.
  • the tightening structure 100 includes, for example, a hub 101 (support member).
  • the upper portion of the hub 101 has, for example, a male screw portion 101A on the outer peripheral portion, and a support portion 101B protruding in the horizontal direction is formed at the lower end portion of the male screw portion 101A, for example.
  • a disk 102 (member to be pressed) is supported on the upper surface of the support portion 101B of the hub 101.
  • a nut 103 (tightening member) is fastened to the male screw portion 101A of the hub 101.
  • the inner peripheral surface of the nut 103 has a female screw portion 103 ⁇ / b> A that engages with the male screw portion 101 ⁇ / b> A of the hub 101, for example.
  • a disc spring 110 is disposed between the upper surface of the disk 102 and the lower surface of the nut 103. The nut 103 presses the disc 102 against the support portion 101 ⁇ / b> B of the hub 101 through the disc spring 110 by tightening, for example.
  • the disc spring disc spring 110 applies a predetermined load to the disc 102 by, for example, pressing the disc 102.
  • the disc spring 110 includes a main body 111 having, for example, a disc shape (substantially conical shape).
  • a hole 111A having a circular cross section, for example, is formed in the central portion of the main body 111, and the main body 111 has a ring shape when viewed from the upper surface of the main body 111, for example.
  • the male screw portion 101A of the hub 101 is inserted into the hole portion 111A.
  • the main body 111 has, for example, a convex surface 112 (upper surface, front surface) and a concave surface 113 (lower surface, rear surface).
  • the convex surface 112 of the main body 111 is, for example, a linear surface that is inclined with respect to the horizontal direction in the axial cross section.
  • the concave surface 113 of the main body 111 has, for example, an inclined surface 113A parallel to the convex surface 112 on the inner peripheral end portion side in the axial cross section.
  • On the outer peripheral end side of the concave surface 113 of the main body 111 a flat surface 113B that is inclined at a predetermined angle with respect to the inclined surface 113A on the inner peripheral side is formed.
  • the corner formed by the inclined surface 113A and the flat surface 113B is, for example, an obtuse angle.
  • the flat surface 113B extends linearly in, for example, the axial cross section.
  • An inner peripheral end 113C of the flat surface 113B is connected to an outer peripheral end of the inclined surface 113A, and an outer peripheral end 113D of the flat surface 113B constitutes an outer peripheral end of the concave surface 113.
  • the flat surface 113B is a flat surface capable of surface contact with the disk 102 as shown in FIGS.
  • the flat surface 113B is formed, for example, by reducing the plate thickness from the inner peripheral end 113C toward the outer peripheral end 113D.
  • the flat surface 113B may be formed by performing polishing, cutting, pressing, or the like on a plate-shaped material before performing dish molding, or polishing to a dish-shaped material after performing dish molding. Alternatively, it may be formed by performing cutting, pressing, or the like.
  • the elastic deformation and load characteristics (load / deflection characteristic curve) of the disc spring 110 will be described with reference to FIG. 3, for example.
  • the amount of deflection is the difference between the height in the initial state (free state) where the disc spring 110 is not pressed and the height in the state where the disc spring 110 is pressed.
  • the height of the disc spring 110 is the height from the lowest point of the concave surface 113 to the highest point of the convex surface 112 in the axial direction.
  • a region where the entire flat surface 113B can be in surface contact with the mating member when an impact is generated in the use state of the apparatus is referred to as a surface contactable region, and the other region is referred to as a line contact region.
  • the inner peripheral end of the convex surface 112 of the disc spring 110 is brought into contact with the upper member (in the example of FIG. 1, the nut 103), and the outer peripheral end 113D of the flat surface 113B of the concave 113 is set to the lower member (example of FIG. 1). Then, in the state of contact with the disk 102), the outer peripheral side end 113D of the flat surface 113B is in line contact with the lower member.
  • the support point P of the concave surface 113 of the disc spring 110 is the outer peripheral side end 113D of the flat surface 113B.
  • 3 is a deflection amount when the support point P of the concave surface 113 of the disc spring 110 shifts from the outer peripheral end 113D to the inner peripheral end 113C.
  • An arrow N in FIG. 3 indicates a region where the support point P of the concave surface 113 of the disc spring 110 is located on the inner peripheral side end 113C or on the inner peripheral side (inclined surface 113A side).
  • the flat surface 113B of the concave 113 comes into surface contact with the lower member.
  • the surface contact in this case includes not only surface contact of the entire flat surface 113B of the concave surface 113 but also surface contact of at least a part of the concave surface 113.
  • the main body 111 of the disc spring 110 is elastically deformed and further bent, and the support point P of the concave surface 113 of the disc spring 110 is a flat surface 113B of the concave surface 113. It moves to the inner peripheral side end 113C or the inclined surface 113A side.
  • the load characteristic of the disc spring 110 that performs such elastic deformation shows a substantially step-like nonlinearity.
  • the amount of deflection is large in the load characteristics until the support point P of the concave surface 113 of the disc spring 110 shifts from the outer peripheral side end 113D to the inner peripheral side end 113C of the flat surface 113B of the concave 113.
  • the load change becomes smaller and becomes flat.
  • the support point P of the concave surface 113 of the disc spring 110 shifts to the inner peripheral side end 113C of the flat surface 113B or to the inner peripheral side (inclined surface 113A side) than that, the load change with respect to the deflection amount increases.
  • the load characteristic of the disc spring 110 exhibits a substantially step-like nonlinearity.
  • the disc spring 110 is disposed on the upper surface of the disk 102 provided on the support portion 101 ⁇ / b> B of the hub 101.
  • the male screw portion 101A of the hub 101 is inserted into the hole portion 111A of the disc spring 110.
  • the concave surface 113 of the disc spring 110 is opposed to the upper surface of the disk 102, and the outer peripheral side end 113D of the flat surface 113B of the concave surface 113 is in contact with the upper surface of the disk 102 and is in line contact with the upper surface of the disk 102.
  • the disc spring 110 is not applied with a load, and is in an initial state in which the amount of deflection is zero in the load characteristics shown in FIG.
  • the female screw portion 103A of the nut 103 is screwed onto the upper end portion of the male screw portion 101A of the hub 101, and tightening of the nut 103 is started.
  • the convex surface 112 of the disc spring 110 is opposed to the lower surface of the nut 103, the inner peripheral end portion of the convex surface 112 is in contact with the lower surface of the nut 103, and the outer peripheral side end portion 113D of the flat surface 113B of the concave surface 113 is In line contact with the upper surface of the disk 102.
  • the support point P of the concave surface 113 of the disc spring 110 is the outer peripheral side end 113D of the flat surface 113B.
  • the nut 103 is continuously tightened, and the disc 102 is pressed against the support portion 101B of the hub 101 via the disc spring 110.
  • the load change decreases as the deflection amount increases.
  • the support point P of the concave surface 113 of the disc spring 110 shifts to the inner peripheral side end 113C of the flat surface 113B or to the inner peripheral side (inclined surface 113A side) than that, the load change with respect to the deflection amount increases.
  • the deflection amount of the disc spring 110 is such that the support point P of the concave surface 113 of the disc spring 110 is within the flat surface 113B when the tightening of the nut 103 is completed. It is set so as to be located on the circumferential end 113C or on the inner circumferential side (inclined surface 113A side). In this case, in the load characteristics shown in FIG. 3, the deflection amount is set in a region (a region indicated by an arrow N) that is greater than or equal to the deflection amount S. As a result, the fastening structure 100 in which the disc 102 is held by the disc spring 110 with a predetermined load is obtained. After completing the tightening of the nut 103, a cover (not shown) may be appropriately attached to the upper surface of the tightening structure 100.
  • the flat surface 113B when the support point P of the concave surface 113 of the disc spring 110 is located on the inner peripheral side end 113C of the flat surface 113B or on the inner peripheral side thereof, the flat surface 113B. Is slightly lifted from the upper surface of the disk 102.
  • the load characteristics when using a region where the load change with respect to the deflection amount is small (for example, a region around a substantially flat region where the load change with respect to the deflection amount is zero or substantially zero), compared to the conventional ring. Since a sufficient effect can be obtained, there is no problem when using a region where the load change with respect to the deflection amount is small.
  • the disk 102 When such a tightening structure 100 is used, the disk 102 may be deformed when an impact is applied to the hard disk device including the tightening structure 100.
  • the flat surface 113B is formed on the outer peripheral end side of the concave surface 113 of the disc spring 110 adjacent to the upper surface of the disk 102, when the disk 102 is deformed, for example, as shown in FIG.
  • the upper surface can come into surface contact with the flat surface 113B of the disc spring 110, and as a result, the deformation amount of the disk 102 can be suppressed.
  • the flat surface 113B of the disc spring 110 can come into surface contact with the disc 102 when an impact occurs, so the contact area between the disc spring 110 and the disc 102 is widened. As a result, it is possible to suppress the deformation of the disk 102 when an impact occurs.
  • the surface contact between the flat surface 113B of the disc spring 110 and the disk 102 may or may not be realized when the tightening of the nut 103 is completed, and can be realized when an impact occurs. is important.
  • the region where the surface contact can be realized when an impact occurs is within a predetermined range of the deflection amount, it is not necessary to strictly control the deflection amount when the nut 103 is completely tightened. .
  • the disc spring 110 showing a non-linear load characteristic having a small load change region with respect to the deflection amount in the load characteristic is used as the clamp member, the disc 102 is placed in the hub 101 in the load characteristic small change region with respect to the deflection amount. It is possible to press and hold the support portion 101B. This facilitates holding of the disk 102 with a constant load.
  • the deflection amount of the disc spring 110 is set so that the support point P of the concave surface 113 is positioned on the inner peripheral side end portion 113C of the flat surface 113B or on the inner peripheral side thereof.
  • the disc 102 can be tightened to such an extent that no trouble occurs. Thereby, for example, even when the tightening condition by the nut 103 becomes weak due to a change with time when the apparatus is used after the nut 103 is completely tightened, the disk 102 can be held with a constant load.
  • the amount of deflection is set when the tightening of the nut 103 is completed, the set amount of deflection is within an increase region of the amount of fluctuation of the load. Therefore, when the nut 103 is tightened with a torque wrench, a torque wrench is used. By using the load fluctuation amount as an index in the tightening amount control, the tightening amount can be easily controlled.
  • FIG. 4 is an axial sectional view showing the right half of the schematic configuration of the fastening structure according to the second embodiment of the present invention.
  • 5A and 5B show a partial configuration of a tightening structure according to the second embodiment of the present invention, in which FIG. 5A is an enlarged sectional view in the axial direction at the start of tightening of the tightening member, and FIG. FIG. 4C is an enlarged sectional view in the axial direction at the time of completion of tightening, and FIG. FIG. 4 shows a state in which the disc spring is in surface contact with a disk as a pressed member in the tightening structure.
  • the tightening structure 200 is applied to a hard disk device.
  • the disc spring 210 is correspondingly different from the disc spring 110 of the first embodiment.
  • the tightening structure 200 includes, for example, a spacer 201A and a hub 201B (support member).
  • a disk 202A (member to be pressed) is supported on the upper surface of the spacer 201A.
  • a hub 201B is provided on the inner peripheral side surface of the spacer 201A.
  • a positioning recess 201C is formed on the upper surface of the hub 201B.
  • An inner peripheral recess 201D corresponding to the shape of the recess 211C of the disc spring 210 is formed in a portion where the inner peripheral end of the disc spring 210 is disposed on the upper surface of the hub 201B.
  • a support portion 201E protruding in the horizontal direction is formed at the lower end of the hub 201B.
  • the disc 202B is sandwiched between the lower surface of the spacer 201A and the upper surface of the support portion 201E of the hub 201B.
  • the inner peripheral portion of the hub 201B has a female screw portion (not shown).
  • a bolt 203 (tightening member) is fastened to the female screw portion of the hub 201B.
  • the small diameter portion of the bolt 203 has a male screw portion (not shown) that is screwed into the female screw portion of the hub 201B.
  • a disc spring 210 is disposed on the upper surfaces of the spacer 201A and the hub 201B.
  • the large diameter portion (top portion) of the bolt 203 presses the disc 202A against the spacer 201A via the disc spring 210 by tightening, for example.
  • the disc spring disc spring 210 applies a predetermined load to the disc 202A by pressing the disc 202A, for example.
  • the disc spring 210 has a main body 211 having a shape corresponding to the shape of the upper surface of the bolt 203 as a fastening member, the spacer 201 ⁇ / b> A as a support member, and the hub 201 ⁇ / b> B.
  • a hole 211A having a circular cross section, for example, is formed in the central portion of the main body 211, and the main body 211 has a substantially ring shape when viewed from the upper surface of the main body 211, for example.
  • a small diameter portion of the bolt 203 is inserted into the hole 211 ⁇ / b> A of the disc spring 210.
  • the inner peripheral side end of the main body 211 is formed with a bolt recess 211C (a tightening member recess) in which the large diameter portion of the bolt 203 is accommodated when the tightening is completed.
  • a positioning hole 211B is formed at a location corresponding to the positioning recess 201C of the hub 201B. It is sufficient that at least one positioning hole 211B and positioning recess 201C are formed.
  • the main body 211 has, for example, a convex surface 212 (upper surface, front surface) and a concave surface 213 (lower surface, rear surface).
  • the concave surface 213 of the main body 211 has an inclined surface 213A that is inclined with respect to the horizontal direction in the axial cross section.
  • the inclined surface 213A is curved, for example, in the axial cross section, and may include a linear portion.
  • a flat surface 213B that is inclined at a predetermined angle with respect to the inclined surface 213A is formed on the outer peripheral end side of the concave surface 213 of the main body 211.
  • the flat surface 213B extends linearly, for example, in the axial cross section.
  • the inner peripheral side end 213C of the flat surface 213B is connected to the outer peripheral side end of the inclined surface 213A.
  • the flat surface 213B is a flat surface capable of surface contact with the disk 202A as shown in FIGS. 4 and 5C, for example.
  • a curved surface 213E is formed on the outer peripheral side end 213D of the flat surface 213B.
  • the curved surface 213E is curved, for example, in the axial cross section, and may include a linear portion.
  • the curved surface 213E is set so as to move away from the disk 202A toward the outer peripheral side and to increase the distance from the disk 202A.
  • a horizontal surface 213F extending to the inner peripheral side in the horizontal direction is formed at the inner peripheral end of the inclined surface 213A.
  • the inclined surface 213A, flat surface 213B, inner peripheral end 213C, and outer peripheral end 213D of the concave surface 213 are the inclined surface 113A, flat surface 113B, inner peripheral end 113C, and outer periphery of the first embodiment. It corresponds to the side end 113D and has the same function as the corresponding part.
  • the disc spring 210 has a non-linearity in the load characteristics, and has a region that exhibits substantially the same load characteristics as the disc spring 110.
  • FIGS. 5 (A) to 5 (C) correspond to FIGS. 2 (A) to 2 (C) used in the description of the assembly procedure of the first embodiment, and the inclined surface 213A of the concave surface 213 is flat.
  • the surface 213B, the inner peripheral end 213C, and the outer peripheral end 213D are the inclined surface 113A, the flat surface 113B, the inner peripheral end 113C, and the outer peripheral end 113D of the first embodiment as described above. And has the same functions as those corresponding parts, and therefore the description regarding the load characteristics is omitted.
  • the disk 202B is sandwiched between the lower surface of the spacer 201A and the upper surface of the support portion 201E of the hub 201B, the disk 202A is disposed on the upper surface of the spacer 201A, and then the disc spring 210 is disposed on the upper surfaces of the disk 202A and the hub 201B. .
  • a portion of the hub 201B where the bolt 203 is disposed is located in the hole 211A of the disc spring 210.
  • the inner peripheral side end (the inclined surface 213A, the flat surface 213B, the inner peripheral side end 213C, the outer peripheral side end 213D, and the curved surface 213E) of the disc spring 210 is disposed on the upper surface of the disk 202A.
  • the other inner peripheral side portion of the disc spring 210 is disposed on the upper surface of the hub 201B.
  • the outer peripheral end 213D of the flat surface 213B of the concave surface 213 is in contact with the upper surface of the disk 202A and is in line contact with the upper surface of the disk 202A.
  • the male screw portion of the bolt 203 is screwed onto the upper end portion of the female screw portion of the hub 201B, and tightening of the bolt 203 is started.
  • the inner peripheral end portion of the convex surface 212 of the disc spring 210 is in contact with the lower surface of the bolt 203
  • the outer peripheral end portion 213D of the flat surface 213B of the concave surface 213 is in line contact with the upper surface of the disk 202A.
  • the support point P of the concave surface 213 of the disc spring 210 is the outer peripheral side end 213D of the flat surface 213B.
  • the deflection amount of the disc spring 210 is such that the support point P of the concave surface 213 of the disc spring 210 is the inner end 213C of the flat surface 213B. Or it is set so that it may be located in the inner peripheral side (inclined surface 213A side) rather than it.
  • the large diameter portion of the bolt 203 is accommodated in the bolt recess 211 ⁇ / b> C of the disc spring 210.
  • the tightening structure 200 in which the disc 202A is held by the disc spring 210 with a predetermined load is obtained.
  • the positioning member may be removed from the positioning recess 201C and the positioning hole 211B, and a cover (not shown) may be appropriately attached to the upper surface of the tightening structure 200.
  • the positioning member Before the tightening of the bolt 203, the positioning member is inserted into the positioning hole 211B of the disc spring 210 and engaged with the positioning recess 201C of the hub 201B. It is possible to suppress the disc spring 210 from moving relative to the disc 202A in conjunction with a movement such as rotation. Thereby, scratches on the surface of the disk 202A, occurrence of contamination, and the like can be suppressed.
  • the disc spring 210 has a main body 211 having a shape corresponding to the shape of the bolt 203, the spacer 201A, and the hub 201B, further space saving of the tightening structure 200 can be achieved.
  • the flat surface 113B is formed by decreasing the plate thickness from the inner peripheral end 113C toward the outer peripheral end 113D.
  • the flat surface 113B can be formed by bending the boundary portion between the inner peripheral side end portion 113C and the inclined surface 113A.
  • the convex surface 112P is parallel to the concave surface 113, for example, in the axial cross section.
  • the flat surface 113B can be obtained by bending, and the cost can be reduced as compared with the case where polishing or the like is used. Therefore, the cost of the fastening structure 100 can be reduced.
  • the disc spring 210 having the main body 211 having a shape corresponding to the shape of the bolt 203, the spacer 201A, and the hub 201B is used.
  • the disc spring can have various shapes that can correspond to the shape of the mating member on which the disc spring is disposed.
  • the disc spring 210A shown in FIG. 7 has a convex surface 212P and a concave surface 213P that are multi-staged in the cross section in the axial direction. In this aspect, the space for the tightening structure 200 can be further reduced.

Abstract

Provided are a fastening structure and a fastening method that are able to suppress the occurrence of defects arising when using a conventional disc spring or ring in the case of attaching a member in a device at a predetermined load. In the fastening structure (100), a nut (103) presses a disc (102) against the support section (101B) of a hub (101) with a disc spring (110) therebetween by means of the fastening thereof, for example. The disc spring (110) imparts a predetermined load to the disc (102). A flat surface (113B) that is inclined with respect to an inclined surface (113A) is formed at the outer peripheral portion of a concavity (113) of the main body (111) of the disc spring (110). The flat surface (113B) can contact the surface of the disc (102) when an impact arises. The amount of deflection of the disc spring (110) is, as indicated in fig. 2(B), set in a manner so that when the fastening of the nut (103) is complete, the support point (P) of the concavity (113) of the disc spring (110) is positioned at the inner peripheral portion (113C) of the flat surface (113B) or at the inner peripheral side thereof.

Description

締付構造および締付方法Tightening structure and tightening method
 本発明は、クランプ部材を用いて所定荷重で部材を装置内に組み付けるための締付構造および締付方法に係り、特に、クランプ部材として皿ばねを用いた締付技術の改良に関する。  The present invention relates to a tightening structure and a tightening method for assembling a member in an apparatus with a predetermined load using a clamp member, and more particularly to an improvement of a tightening technique using a disc spring as a clamp member.
 各種装置では、装置内に所定荷重で部材を組み付けるためにクランプ部材を用いている。クランプ部材としては、たとえば皿ばねやリング(樹脂製リングあるいは金属製リング)等が使用されている。たとえばハードディスク装置(HDD)では、装置内にディスクを組み付ける際、クランプ部材を用いて、一定荷重でディスクをハブに対して押圧して保持している(たとえば特許文献1)。 In various devices, a clamp member is used to assemble a member with a predetermined load in the device. As the clamp member, for example, a disc spring or a ring (resin ring or metal ring) is used. For example, in a hard disk drive (HDD), when a disk is assembled in the apparatus, a clamp member is used to press and hold the disk against a hub with a constant load (for example, Patent Document 1).
特開2006-65959号公報JP 2006-65959 A
 ハードディスク装置(HDD)では、衝撃発生時のディスク変形を抑制するために、ディスクとハブとの接触面積を大きく設定することが望ましい。また、一定荷重でディスクを押圧して保持するために、クランプ部材は、荷重特性においてたわみ量に対する荷重変化の小さな領域を有することが望ましい。しかしながら、従来の皿ばねやリングでは、上記要求特性を両立することが困難であった。 In a hard disk drive (HDD), it is desirable to set a large contact area between the disk and the hub in order to suppress disk deformation when an impact occurs. Further, in order to press and hold the disk with a constant load, it is desirable that the clamp member has an area where the load change with respect to the deflection amount is small in the load characteristics. However, it has been difficult for conventional disk springs and rings to satisfy both of the required characteristics.
 たとえば図8(A)に示すようにクランプ部材として皿ばね11を用いる場合、皿ばね11はたとえば図8(B)に示すようにたわみ量に対する荷重変化の小さな領域(たとえば略フラット領域)を有する非線形な荷重特性を示すから、荷重特性においてたわみ量に対する荷重変化の小さな領域でディスク2をハブ1に対して保持することができる。これにより、一定荷重でのディスク2の保持が容易となる。また、その他の弾性部材を用いる場合と比較して、省スペースで要求される荷重を満たすことができる。ところが、皿ばね11の外周下端部とディスク2との接触は、線接触となるため、その接触面積は小さくなってしまう。なお、符号3は、固定部材である。符号Oは回転中心軸線(一点鎖線)である。 For example, when the disc spring 11 is used as a clamp member as shown in FIG. 8A, the disc spring 11 has a region (for example, a substantially flat region) where the load change with respect to the deflection amount is small as shown in FIG. 8B, for example. Since the non-linear load characteristic is shown, the disk 2 can be held with respect to the hub 1 in a region where the load change with respect to the deflection amount is small. This facilitates holding of the disk 2 with a constant load. Moreover, compared with the case where another elastic member is used, it can satisfy | fill the load requested | required by space saving. However, since the contact between the lower end of the outer periphery of the disc spring 11 and the disk 2 is a line contact, the contact area becomes small. Reference numeral 3 denotes a fixing member. Reference numeral O denotes a rotation center axis (a chain line).
 たとえば図9(A)に示すようにクランプ部材としてリング12を用いる場合、リング12とディスク2との接触は面接触となるため、その接触面積は大きくなる。ところが、リング12の荷重特性は、たとえば図9(B)に示すように線形性を示し、そのばね定数が高くなる。ばね定数が高い場合、組付時には、図9(B)に示すようにたわみ量の小さな変動に対して荷重変動が大きくなってしまう。また、ばね定数が高い場合、組付後には、たとえば経時変化で固定部材3による固定具合が弱くなり、ディスク2と固定部材3との間の間隔が増大し、たわみ量が小さくなるとき、図9(B)に示すようにたわみ量の小さな減少に対して荷重変動が大きくなってしまう。このようなリング12のようにばね定数が高い場合では、一定荷重でディスク2を保持することが困難であった。 For example, as shown in FIG. 9A, when the ring 12 is used as the clamp member, the contact between the ring 12 and the disk 2 is a surface contact, so that the contact area becomes large. However, the load characteristic of the ring 12 exhibits linearity, for example, as shown in FIG. 9B, and its spring constant increases. When the spring constant is high, the load fluctuation becomes large with respect to the small fluctuation of the deflection amount as shown in FIG. Also, when the spring constant is high, after assembling, for example, when the fixing condition by the fixing member 3 is weakened with time, the distance between the disk 2 and the fixing member 3 is increased, and the amount of deflection is reduced. As shown in FIG. 9 (B), the load fluctuation increases with a small decrease in the deflection amount. When such a ring 12 has a high spring constant, it is difficult to hold the disk 2 with a constant load.
 従って、本発明は、装置内に所定荷重で部材を組み付ける構造において、従来の皿ばねやリングを用いた場合に生じる上記不具合の発生を抑制することができる技術を提供することを目的としている。 Therefore, an object of the present invention is to provide a technique capable of suppressing the occurrence of the above-described problems that occur when a conventional disc spring or ring is used in a structure in which members are assembled with a predetermined load in the apparatus.
 本発明者は、締付部材と被押圧部材(たとえばハードディスク装置の場合にはディスク)との間に被押圧部材を押圧するためのクランプ部材を介在させて、締付部材の締付によって被押圧部材を支持部材に対して押圧して保持する締付技術(締付方法および締付構造)について鋭意検討を行った。具体的には、そのような締付技術において、クランプ部材として一定荷重で被押圧部材(たとえばディスク)を押圧して保持することが可能な皿ばねを用いた形態について、従来の皿ばねの上記不具合発生の抑制を鋭意検討した。その結果、皿ばねの凹面の外周側端部の形状に改良を加えるだけでなく、組付完了時の皿ばねの状態を工夫することにより、従来の皿ばねの上記不具合発生の抑制を図ることができるとの知見を得、本発明の完成に至った。 The inventor interposes a clamping member for pressing the pressed member between the tightening member and the pressed member (for example, a disk in the case of a hard disk device), and presses the clamped member by tightening the clamping member. We have intensively studied the fastening technology (fastening method and fastening structure) for pressing and holding the member against the support member. Specifically, in such a tightening technique, the above-described conventional disc spring is described with respect to a configuration using a disc spring that can press and hold a pressed member (for example, a disk) with a constant load as a clamp member. We intensively studied how to suppress the occurrence of defects. As a result, not only the shape of the outer peripheral side end of the concave surface of the disc spring is improved, but also the state of the disc spring at the time of completion of assembly is devised to suppress the occurrence of the above problems of the conventional disc spring. As a result, the present invention has been completed.
 本発明の締付構造は、締付部材と被押圧部材との間に被押圧部材を押圧するためのクランプ部材を介在させて、締付部材の締付によって被押圧部材を支持部材に対して押圧して保持する締付構造であって、クランプ部材として、皿ばねを用い、皿ばねは、凹面の外周端部側に形成されるとともに、凹面の内周側の一面に対して傾斜している平坦面を有し、皿ばねは、凹面が被押圧部材に対向するとともに、凸面が締付部材に対向するようにして配置され、皿ばねのたわみ量は、凹面の支持点が平坦面の内周側端部あるいはそれよりも内周側に位置するように設定されていることを特徴とする。 In the tightening structure of the present invention, a clamp member for pressing the pressed member is interposed between the tightening member and the pressed member, and the pressed member is clamped to the support member by tightening the tightening member. A clamping structure for pressing and holding, wherein a disc spring is used as a clamp member, and the disc spring is formed on the outer peripheral end side of the concave surface and is inclined with respect to one surface on the inner peripheral side of the concave surface The disc spring is arranged such that the concave surface faces the pressed member and the convex surface faces the clamping member. The deflection amount of the disc spring is such that the support point of the concave surface is flat. It is set so that it may be located in an inner peripheral side edge part or the inner peripheral side rather than it.
 本発明の締付構造では、クランプ部材としての皿ばねは、凹面が被押圧部材に対向するとともに、凸面が締付部材に対向するようにして配置されている。この場合、衝撃発生時の変形が抑制されるのが望ましい被押圧部材側に対向する皿ばねの凹面の外周端部側には、凹面の内周側の一面に対して傾斜している平坦面が形成されている。このような平坦面は、衝撃発生時に被押圧部材に面接触することができるから、皿ばねと被押圧部材との接触面積が広くなる。その結果、衝撃発生時の被押圧部材の変形の抑制を図ることができる。 In the tightening structure of the present invention, the disc spring as the clamp member is disposed such that the concave surface faces the pressed member and the convex surface faces the tightening member. In this case, the flat surface inclined with respect to one surface on the inner peripheral side of the concave surface is provided on the outer peripheral end portion side of the concave surface of the disc spring facing the pressed member side, on which deformation at the time of occurrence of impact is preferably suppressed. Is formed. Since such a flat surface can come into surface contact with the pressed member when an impact occurs, the contact area between the disc spring and the pressed member is increased. As a result, it is possible to suppress the deformation of the pressed member when an impact occurs.
 ここで本発明では、皿ばねの平坦面と被押圧部材との面接触は、締付部材の締付完了時に実現していてもしていなくてもよく、衝撃発生時に実現可能であることが重要である。皿ばねの荷重特性(荷重/たわみ量の特性曲線)では、衝撃発生時に上記面接触が実現可能な領域がたわみ量の所定範囲に存在しているから、締付部材の締付完了時には、たわみ量について厳密な管理は不要である。 Here, in the present invention, the surface contact between the flat surface of the disc spring and the pressed member may or may not be realized when the tightening of the tightening member is completed, and it is important that it can be realized when an impact occurs. It is. In the load characteristics (load / deflection amount characteristic curve) of the disc spring, the area where the above-mentioned surface contact can be realized when an impact occurs is within a predetermined range of the deflection amount. Strict control over quantity is not required.
 また、荷重特性においてたわみ量に対する荷重変化の小さな領域を有する非線形な荷重特性を示す皿ばねをクランプ部材として用いているから、荷重特性においてたわみ量に対する荷重変化の小さな領域で被押圧部材を支持部材に対して押圧して保持することができる。これにより、一定荷重での被押圧部材の保持が容易となる。なお、荷重特性では、たわみ量に対する荷重変化が0あるいは略0となる略フラット領域を用いることが最も望ましいが、必ずしも略フラット領域で用いる必要はなく、その周辺の領域を使う場合にも、従来のリングの場合と比較して、十分な効果が得られる。 In addition, since a disc spring showing a non-linear load characteristic having a small load change area with respect to the deflection amount in the load characteristic is used as the clamp member, the pressed member is supported in the load characteristic with a small load change area with respect to the deflection amount. Against and can be held. This facilitates holding the pressed member with a constant load. In the load characteristics, it is most desirable to use a substantially flat region in which the load change with respect to the deflection amount is 0 or substantially 0. However, it is not always necessary to use the substantially flat region. A sufficient effect can be obtained as compared with the case of the ring.
 ここで本発明では、締付部材の締付完了後の装置の使用時に経時変化で締付部材による締付具合が弱くなる傾向があるが、皿ばねのたわみ量は、凹面の支持点が平坦面の内周側端部あるいはそれよりも内周側に位置するように設定されているから、上記面接触が完全に実現されている場合よりも、被押圧部材に不具合が生じない程度に強く締め付けることができる。これにより、上記のように締付具合が弱くなっても、一定荷重での被押圧部材の保持が可能となる。 Here, in the present invention, there is a tendency that the tightening by the tightening member tends to be weakened with time when the apparatus is used after the tightening of the tightening member is completed. Since it is set so as to be located on the inner peripheral side end portion of the surface or on the inner peripheral side thereof, it is stronger than the case where the surface contact is completely realized to the extent that the pressed member is not defective. Can be tightened. Thereby, even if the tightening condition becomes weak as described above, the pressed member can be held with a constant load.
 加えて、締付部材の締付完了時に上記たわみ量に設定すると、その設定たわみ量は、上記荷重の変動量の増大領域内にあるから、トルクレンチで締付部材を締め付ける場合には、トルクレンチによる締付量の制御で上記荷重の変動量を指標として用いることにより、その締付量の制御が容易となる。 In addition, if the amount of deflection is set when the tightening of the tightening member is completed, the set amount of deflection is within the increase range of the amount of fluctuation in the load. By using the load fluctuation amount as an index in controlling the tightening amount with a torque wrench, the tightening amount can be easily controlled.
 本発明の締付構造は、種々の構成を用いることができる。たとえば皿ばねの平坦面は、内周側から外周側に向かうに従って板厚が減少することにより形成されている態様を用いることができる。また、皿ばねの平坦面を、内周側端部とそれと隣接する部位との境界部を折り曲げることにより形成されている態様とすることもできる。この態様では、皿ばねの平坦面を曲げ成形により得ることができ、研磨等を用いる場合と比較して低価格化を図ることができるから、締付構造の低価格を図ることができる。 The fastening structure of the present invention can use various configurations. For example, the flat surface of a disc spring can use the aspect formed by plate | board thickness reducing as it goes to an outer peripheral side from an inner peripheral side. Moreover, the flat surface of a disc spring can also be made into the aspect formed by bending the boundary part of an inner peripheral side edge part and the site | part which adjoins it. In this aspect, the flat surface of the disc spring can be obtained by bending, and the cost can be reduced as compared with the case where polishing or the like is used. Therefore, the cost of the tightening structure can be reduced.
 たとえば皿ばねは、締付部材の頂部を収容するための凹部を有する態様を用いることができる。この態様では、通常の皿ばね形状よりも更に締付構造の更なる省スペース化を図ることができる。たとえば皿ばねは、軸線方向断面において、多段状をなしている態様を用いることができる。この態様では、たとえば支持部材が皿ばねの凹面に対向する場合、皿ばねの形状を支持部材の形状に容易に対応させることができるから、締付構造の省スペース化を図ることができる。 For example, the disc spring can use a mode having a recess for accommodating the top of the fastening member. In this aspect, further space saving of the tightening structure can be achieved as compared with the normal disc spring shape. For example, the disc spring can use a multistage shape in the axial cross section. In this aspect, for example, when the support member is opposed to the concave surface of the disc spring, the shape of the disc spring can be easily matched to the shape of the support member, so that space saving of the tightening structure can be achieved.
 本発明の締付方法は、本発明の締付構造を得るための方法の一形態である。すなわち、本発明の締付方法は、締付部材と被押圧部材との間に被押圧部材を押圧するためのクランプ部材を介在させて、締付部材の締付によって被押圧部材を支持部材に対して押圧して保持する締付方法であって、クランプ部材として、凹面の外周端部側に形成されるとともに、凹面の内周側の一面に対して傾斜している平坦面を有する皿ばねを用い、締付部材の締付開始時に、皿ばねの凹面の平坦面の外周側端部を被押圧部材に当接させ、皿ばねの凸面の内周側端部を締付部材に当接させ、締付部材の締付完了時に、皿ばねのたわみ量を、皿ばねの凹面の支持点が平坦面の内周側端部あるいはそれよりも内周側に位置するように設定することを特徴とする。 The fastening method of the present invention is one form of a method for obtaining the tightening structure of the present invention. That is, according to the tightening method of the present invention, a clamp member for pressing the pressed member is interposed between the tightening member and the pressed member, and the pressed member is attached to the support member by tightening the tightening member. A clamping method for pressing and holding a disc spring having a flat surface as a clamp member that is formed on the outer peripheral end portion side of the concave surface and is inclined with respect to one surface on the inner peripheral side of the concave surface When the tightening of the tightening member is started, the outer peripheral end of the flat surface of the concave surface of the disc spring is brought into contact with the pressed member, and the inner peripheral side end of the convex surface of the disc spring is brought into contact with the tightening member When the tightening of the tightening member is completed, the deflection amount of the disc spring is set so that the support point of the concave surface of the disc spring is located on the inner peripheral side end of the flat surface or on the inner peripheral side thereof. Features.
 本発明の締付方法は、種々の構成を用いることができる。たとえば皿ばねとして、位置決め用孔部を有する皿ばねを用い、支持部材として、位置決め用凹部が形成された支持部材を用い、締付部材の締付前に、位置決め部材を、皿ばねの位置決め用孔部を通じて支持部材の位置決め用凹部に係合させ、締付部材の締付完了後に、位置決め部材を、位置決め用凹部および位置決め用孔部から取り外す態様を用いることができる。この態様では、締付部材の締付時に、締付部材の回転等の動きと連動して皿ばねが被押圧部材に対して相対的に移動することを抑制することができる。これにより、被押圧部材表面の傷付きやコンタミの発生等を抑制することができる。 The fastening method of the present invention can use various configurations. For example, a disc spring having a positioning hole is used as a disc spring, a support member having a positioning concave portion is used as a support member, and the positioning member is used for positioning the disc spring before tightening. It is possible to use a mode in which the positioning member is engaged with the positioning recess of the support member through the hole and the positioning member is detached from the positioning recess and the positioning hole after the tightening of the tightening member is completed. In this aspect, when the tightening member is tightened, it is possible to suppress the disc spring from moving relative to the pressed member in conjunction with a movement such as rotation of the tightening member. Thereby, the generation | occurrence | production of the damage, contamination, etc. of the to-be-pressed member surface can be suppressed.
 本発明の締付構造あるいは締付方法によれば、衝撃発生時の被押圧部材の変形の抑制を図ることができ、かつ、荷重特性においてたわみ量に対する荷重変化の小さな領域で被押圧部材を支持部材に対して押圧して保持することができる等の効果を得ることができる。 According to the tightening structure or the tightening method of the present invention, it is possible to suppress the deformation of the pressed member when an impact occurs, and the pressed member is supported in a region where the load change with respect to the deflection amount is small in the load characteristics. The effect that it can press and hold | maintain with respect to a member can be acquired.
本発明の第1実施形態に係る締付構造の概略構成の右半分を表す軸線方向断面図である。It is an axial direction sectional view showing the right half of the schematic structure of the fastening structure concerning a 1st embodiment of the present invention. 本発明の第1実施形態に係る締付構造の一部構成を表し、(A)は締付部材の締付開始時の軸線方向拡大断面図、(B)は締付部材の締付完了時の軸線方向拡大断面図、(C)は装置使用での衝撃発生時の軸線方向拡大断面図である。1 shows a partial configuration of a tightening structure according to a first embodiment of the present invention, in which (A) is an enlarged sectional view in an axial direction at the start of tightening of a tightening member, and (B) is when tightening of the tightening member is completed. FIG. 3C is an enlarged sectional view in the axial direction when an impact is generated when the apparatus is used. 図1に示す締付構造の皿ばねの荷重特性の一例を表す図である。It is a figure showing an example of the load characteristic of the disc spring of the clamping structure shown in FIG. 本発明の第2実施形態に係る締付構造の概略構成の右半分を表す軸線方向断面図である。It is an axial direction sectional view showing the right half of the schematic structure of the fastening structure concerning a 2nd embodiment of the present invention. 本発明の第2実施形態に係る締付構造の一部構成を表し、(A)は締付部材の締付開始時の軸線方向拡大断面図、(B)は締付部材の締付完了時の軸線方向拡大断面図、(C)は装置使用での衝撃発生時の軸線方向拡大断面図である。FIG. 2A shows a partial configuration of a tightening structure according to a second embodiment of the present invention, in which FIG. 3A is an enlarged cross-sectional view in the axial direction at the start of tightening of the tightening member, and FIG. FIG. 3C is an enlarged sectional view in the axial direction when an impact is generated when the apparatus is used. 本発明の第1実施形態に係る締付構造の変形例の一部構成を表し、締付部材の締付開始時の軸線方向拡大断面図である。FIG. 5 is an enlarged cross-sectional view in the axial direction at the start of tightening of the tightening member, showing a partial configuration of a modification of the tightening structure according to the first embodiment of the present invention. 本発明の第2実施形態に係る締付構造の変形例の一部構成を表し、締付部材の締付開始時の軸線方向拡大断面図である。FIG. 6 is a partial enlarged cross-sectional view illustrating a partial configuration of a modification example of the tightening structure according to the second embodiment of the present invention at the start of tightening of the tightening member. クランプ部材として皿ばねを用いた従来のハードディスク装置の概略構成の右半分を表す軸線方向断面図である。It is an axial direction sectional view showing the right half of a schematic configuration of a conventional hard disk device using a disc spring as a clamp member. クランプ部材としてリングを用いた従来のハードディスク装置の概略構成の右半分を表す軸線方向断面図である。It is an axial direction sectional view showing the right half of a schematic configuration of a conventional hard disk device using a ring as a clamp member.
 100,200…締付構造、101,201B…ハブ(支持部材)、201A…スペーサ(支持部材)、101B…支持部、102,202A…ディスク(被押圧部材)、103…ナット(締付部材)、110,110A,210,210A…皿ばね、111,211…本体、111A,211A…孔部、112,112P,212,212P…凸面、113,213,213P…凹面、113A,213A…傾斜面(内周側の一面)、113B,213B…平坦面、113C,213C…内周側端部、113D,213D…外周側端部、201C…位置決め用凹部、201D…内周側凹部、203…ボルト(締付部材)、211B…位置決め用孔部、211C…ボルト用凹部(締付部材用凹部)、213E…湾曲面、213F…水平面、P…凹面の支持点。 DESCRIPTION OF SYMBOLS 100,200 ... Clamping structure 101,201B ... Hub (support member), 201A ... Spacer (support member), 101B ... Support part, 102,202A ... Disc (pressed member), 103 ... Nut (clamp member) 110, 110A, 210, 210A ... disc spring, 111, 211 ... main body, 111A, 211A ... hole, 112, 112P, 212, 212P ... convex surface, 113, 213, 213P ... concave surface, 113A, 213A ... inclined surface ( 113B, 213B ... flat surface, 113C, 213C ... inner peripheral side end, 113D, 213D ... outer peripheral side end, 201C ... positioning recess, 201D ... inner peripheral side recess, 203 ... bolt ( Tightening member), 211B ... positioning hole, 211C ... bolt recess (tightening member recess), 213E ... curved surface, 213F ... horizontal surface, ... concave surface of the support points.
(1)第1実施形態
(1A)締付構造
 以下、本発明の第1実施形態について図面を参照して説明する。図1は、本発明の第1実施形態に係る締付構造の概略構成の右半分を表す軸線方向断面図である。図2は、本発明の第1実施形態に係る締付構造の一部構成を表し、(A)は締付部材の締付開始時の軸線方向拡大断面図、(B)は締付部材の締付完了時の軸線方向拡大断面図、(C)は装置使用での衝撃発生時の軸線方向拡大断面図である。なお、図1は、締付構造において皿ばねが被押圧部材であるディスクと面接触している状態を表している。符号Oは、回転中心軸線(一点鎖線)である。方向の記載について、回転中心軸線Oと平行な方向を軸線方向と表記し、回転中心軸線Oの方向に垂直な方向を水平方向と表記している。
(1) First embodiment
(1A) Tightening structure Hereinafter, a first embodiment of the present invention will be described with reference to the drawings. FIG. 1 is an axial sectional view showing the right half of the schematic configuration of the fastening structure according to the first embodiment of the present invention. 2A and 2B show a partial configuration of the tightening structure according to the first embodiment of the present invention, in which FIG. 2A is an enlarged sectional view in the axial direction at the start of tightening of the tightening member, and FIG. FIG. 4C is an enlarged sectional view in the axial direction at the time of completion of tightening, and FIG. FIG. 1 shows a state in which the disc spring is in surface contact with a disk which is a pressed member in the tightening structure. Reference symbol O denotes a rotation center axis (a one-dot chain line). Regarding the description of the direction, a direction parallel to the rotation center axis O is expressed as an axis direction, and a direction perpendicular to the direction of the rotation center axis O is expressed as a horizontal direction.
 第1実施形態では、たとえば締付構造100をハードディスク装置に適用している。締付構造100は、たとえばハブ101(支持部材)を備えている。ハブ101の上部は、たとえば外周部に雄ネジ部101Aを有し、雄ネジ部101Aの下端部には、たとえば水平方向に突出する支持部101Bが形成されている。 In the first embodiment, for example, the tightening structure 100 is applied to a hard disk device. The tightening structure 100 includes, for example, a hub 101 (support member). The upper portion of the hub 101 has, for example, a male screw portion 101A on the outer peripheral portion, and a support portion 101B protruding in the horizontal direction is formed at the lower end portion of the male screw portion 101A, for example.
 ハブ101の支持部101Bの上面には、たとえばディスク102(被押圧部材)が支持されている。ハブ101の雄ネジ部101Aには、たとえばナット103(締付部材)が締め付けられている。ナット103の内周面は、たとえばハブ101の雄ネジ部101Aに螺合する雌ネジ部103Aを有している。ディスク102の上面とナット103の下面との間には、たとえば皿ばね110が配置されている。ナット103は、たとえばその締付によって皿ばね110を介して、ディスク102をハブ101の支持部101Bに対して押圧している。 For example, a disk 102 (member to be pressed) is supported on the upper surface of the support portion 101B of the hub 101. For example, a nut 103 (tightening member) is fastened to the male screw portion 101A of the hub 101. The inner peripheral surface of the nut 103 has a female screw portion 103 </ b> A that engages with the male screw portion 101 </ b> A of the hub 101, for example. For example, a disc spring 110 is disposed between the upper surface of the disk 102 and the lower surface of the nut 103. The nut 103 presses the disc 102 against the support portion 101 </ b> B of the hub 101 through the disc spring 110 by tightening, for example.
(1B)皿ばね
 皿ばね110は、たとえばディスク102を押圧することにより、ディスク102に所定荷重を付与している。皿ばね110は、たとえば皿形状(略円錐形状)をなす本体111を備えている。本体111の中央部には、たとえば断面円形状をなす孔部111Aが形成され、本体111は、たとえば本体111の上面から見た場合、リング状をなしている。孔部111A内には、ハブ101の雄ネジ部101Aが挿入される。本体111は、たとえば凸面112(上面、表面)および凹面113(下面、裏面)を有している。
(1B) The disc spring disc spring 110 applies a predetermined load to the disc 102 by, for example, pressing the disc 102. The disc spring 110 includes a main body 111 having, for example, a disc shape (substantially conical shape). A hole 111A having a circular cross section, for example, is formed in the central portion of the main body 111, and the main body 111 has a ring shape when viewed from the upper surface of the main body 111, for example. The male screw portion 101A of the hub 101 is inserted into the hole portion 111A. The main body 111 has, for example, a convex surface 112 (upper surface, front surface) and a concave surface 113 (lower surface, rear surface).
 具体的には、本体111の凸面112は、たとえば軸線方向断面において、水平方向に対して傾斜している直線状の一面である。本体111の凹面113は、たとえば軸線方向断面において、凸面112と平行な傾斜面113Aを内周端部側に有している。本体111の凹面113の外周端部側には、内周側の傾斜面113Aに対して所定角度で傾斜している平坦面113Bが形成されている。傾斜面113Aと平坦面113Bで形成される角部は、たとえば鈍角である。 Specifically, the convex surface 112 of the main body 111 is, for example, a linear surface that is inclined with respect to the horizontal direction in the axial cross section. The concave surface 113 of the main body 111 has, for example, an inclined surface 113A parallel to the convex surface 112 on the inner peripheral end portion side in the axial cross section. On the outer peripheral end side of the concave surface 113 of the main body 111, a flat surface 113B that is inclined at a predetermined angle with respect to the inclined surface 113A on the inner peripheral side is formed. The corner formed by the inclined surface 113A and the flat surface 113B is, for example, an obtuse angle.
 平坦面113Bは、たとえば軸線方向断面において、直線状に延在している。平坦面113Bの内周側端部113Cは、傾斜面113Aの外周側端部に接続され、平坦面113Bの外周側端部113Dは、凹面113の外周端部を構成している。平坦面113Bは、たとえば図1,2(C)に示すようにディスク102との面接触が可能な平坦面である。平坦面113Bは、たとえば内周側端部113Cから外周側端部113Dに向かうに従って板厚が減少することにより形成されている。この場合、平坦面113Bは、皿成形を行う前の板状の素材に研磨や切削、プレス加工等を行うことにより形成してもよいし、皿成形を行った後の皿形状の素材に研磨や切削、プレス加工等を行うことにより形成してもよい。 The flat surface 113B extends linearly in, for example, the axial cross section. An inner peripheral end 113C of the flat surface 113B is connected to an outer peripheral end of the inclined surface 113A, and an outer peripheral end 113D of the flat surface 113B constitutes an outer peripheral end of the concave surface 113. The flat surface 113B is a flat surface capable of surface contact with the disk 102 as shown in FIGS. The flat surface 113B is formed, for example, by reducing the plate thickness from the inner peripheral end 113C toward the outer peripheral end 113D. In this case, the flat surface 113B may be formed by performing polishing, cutting, pressing, or the like on a plate-shaped material before performing dish molding, or polishing to a dish-shaped material after performing dish molding. Alternatively, it may be formed by performing cutting, pressing, or the like.
 皿ばね110の弾性変形および荷重特性(荷重/たわみ量の特性曲線)について、たとえば図3を参照して説明する。たわみ量は、皿ばね110を押圧していない初期状態(自由状態)の高さと皿ばね110を押圧した状態の高さとの差である。皿ばね110の高さは、軸線方向における凹面113の最下点から凸面112の最上点までの高さである。図3では、装置の使用状態での衝撃発生時に平坦面113Bの全面が相手部材に面接触可能な領域を面接触可能領域と表記し、それ以外の領域を線接触領域と表記している。 The elastic deformation and load characteristics (load / deflection characteristic curve) of the disc spring 110 will be described with reference to FIG. 3, for example. The amount of deflection is the difference between the height in the initial state (free state) where the disc spring 110 is not pressed and the height in the state where the disc spring 110 is pressed. The height of the disc spring 110 is the height from the lowest point of the concave surface 113 to the highest point of the convex surface 112 in the axial direction. In FIG. 3, a region where the entire flat surface 113B can be in surface contact with the mating member when an impact is generated in the use state of the apparatus is referred to as a surface contactable region, and the other region is referred to as a line contact region.
 たとえば皿ばね110の凸面112の内周端部を上側部材(図1の例では、ナット103)に当接させ、凹面113の平坦面113Bの外周端部113Dを下側部材(図1の例では、ディスク102)に当接させた状態では、平坦面113Bの外周側端部113Dは下側部材と線接触している。この場合、皿ばね110の凹面113の支持点Pは、平坦面113Bの外周側端部113Dである。 For example, the inner peripheral end of the convex surface 112 of the disc spring 110 is brought into contact with the upper member (in the example of FIG. 1, the nut 103), and the outer peripheral end 113D of the flat surface 113B of the concave 113 is set to the lower member (example of FIG. 1). Then, in the state of contact with the disk 102), the outer peripheral side end 113D of the flat surface 113B is in line contact with the lower member. In this case, the support point P of the concave surface 113 of the disc spring 110 is the outer peripheral side end 113D of the flat surface 113B.
 上側部材を下側部材に向けて移動させていくと、皿ばね110は軸線方向に押圧され、皿ばね110の本体111は、弾性変形してたわんでいく。図3の符号Sは、皿ばね110の凹面113の支持点Pが外周側端部113Dから内周側端部113Cに移行するときのたわみ量である。図3の矢印Nは、皿ばね110の凹面113の支持点Pが内周側端部113Cあるいはそれよりも内周側(傾斜面113A側)に位置している状態の領域を示している。 When the upper member is moved toward the lower member, the disc spring 110 is pressed in the axial direction, and the main body 111 of the disc spring 110 is elastically deformed and bent. 3 is a deflection amount when the support point P of the concave surface 113 of the disc spring 110 shifts from the outer peripheral end 113D to the inner peripheral end 113C. An arrow N in FIG. 3 indicates a region where the support point P of the concave surface 113 of the disc spring 110 is located on the inner peripheral side end 113C or on the inner peripheral side (inclined surface 113A side).
 皿ばね110の凹面113の支持点Pが外周側端部113Dから内周側端部113Cに移行する間、凹面113の平坦面113Bが下側部材と面接触する。この場合の面接触は、凹面113の平坦面113Bの全面の面接触だけでなく、凹面113の少なくとも一部の面接触も含む。 While the support point P of the concave surface 113 of the disc spring 110 moves from the outer peripheral end 113D to the inner peripheral end 113C, the flat surface 113B of the concave 113 comes into surface contact with the lower member. The surface contact in this case includes not only surface contact of the entire flat surface 113B of the concave surface 113 but also surface contact of at least a part of the concave surface 113.
 上側部材を下側部材に向けて引き続き移動させていくと、皿ばね110の本体111は、弾性変形して更にたわんでいき、皿ばね110の凹面113の支持点Pが凹面113の平坦面113Bの内周側端部113Cあるいは傾斜面113A側に移動する。 When the upper member is continuously moved toward the lower member, the main body 111 of the disc spring 110 is elastically deformed and further bent, and the support point P of the concave surface 113 of the disc spring 110 is a flat surface 113B of the concave surface 113. It moves to the inner peripheral side end 113C or the inclined surface 113A side.
 このような弾性変形を行う皿ばね110の荷重特性は、略階段状の非線形性を示す。具体的には、皿ばね110の凹面113の支持点Pが凹面113の平坦面113Bの外周側端部113Dから内周側端部113Cに移行するまでの間、荷重特性では、たわみ量が大きくなるに従って荷重変化が小さくなり、フラットになっていく。皿ばね110の凹面113の支持点Pが平坦面113Bの内周側端部113Cあるいはそれよりも内周側(傾斜面113A側)に移行すると、たわみ量に対する荷重変化が増大する。このように皿ばね110の荷重特性は、略階段状の非線形性を示す。 The load characteristic of the disc spring 110 that performs such elastic deformation shows a substantially step-like nonlinearity. Specifically, the amount of deflection is large in the load characteristics until the support point P of the concave surface 113 of the disc spring 110 shifts from the outer peripheral side end 113D to the inner peripheral side end 113C of the flat surface 113B of the concave 113. As it becomes, the load change becomes smaller and becomes flat. When the support point P of the concave surface 113 of the disc spring 110 shifts to the inner peripheral side end 113C of the flat surface 113B or to the inner peripheral side (inclined surface 113A side) than that, the load change with respect to the deflection amount increases. As described above, the load characteristic of the disc spring 110 exhibits a substantially step-like nonlinearity.
(1C)締付方法
 締付構造100の組立手順について、おもに図2(A)~2(C)を参照して説明する。まず、ハブ101の支持部101Bに設けられたディスク102の上面に、皿ばね110を配置する。この場合、皿ばね110の孔部111A内にハブ101の雄ネジ部101Aを挿入する。皿ばね110の凹面113をディスク102の上面に対向させ、凹面113の平坦面113Bの外周側端部113Dがディスク102の上面に当接してディスク102の上面と線接触している。皿ばね110には、荷重が付与されていなく、図3に示す荷重特性において、たわみ量が0である初期状態にある。
(1C) Tightening Method The assembly procedure of the tightening structure 100 will be described mainly with reference to FIGS. 2 (A) to 2 (C). First, the disc spring 110 is disposed on the upper surface of the disk 102 provided on the support portion 101 </ b> B of the hub 101. In this case, the male screw portion 101A of the hub 101 is inserted into the hole portion 111A of the disc spring 110. The concave surface 113 of the disc spring 110 is opposed to the upper surface of the disk 102, and the outer peripheral side end 113D of the flat surface 113B of the concave surface 113 is in contact with the upper surface of the disk 102 and is in line contact with the upper surface of the disk 102. The disc spring 110 is not applied with a load, and is in an initial state in which the amount of deflection is zero in the load characteristics shown in FIG.
 次いで、たとえば図2(A)に示すように、ナット103の雌ネジ部103Aをハブ101の雄ネジ部101Aの上端部に螺合させて取り付け、ナット103の締付を開始する。この場合、皿ばね110の凸面112をナット103の下面に対向させ、凸面112の内周端部は、ナット103の下面に当接しており、凹面113の平坦面113Bの外周側端部113Dは、ディスク102の上面と線接触している。皿ばね110の凹面113の支持点Pは、平坦面113Bの外周側端部113Dである。 Next, for example, as shown in FIG. 2A, the female screw portion 103A of the nut 103 is screwed onto the upper end portion of the male screw portion 101A of the hub 101, and tightening of the nut 103 is started. In this case, the convex surface 112 of the disc spring 110 is opposed to the lower surface of the nut 103, the inner peripheral end portion of the convex surface 112 is in contact with the lower surface of the nut 103, and the outer peripheral side end portion 113D of the flat surface 113B of the concave surface 113 is In line contact with the upper surface of the disk 102. The support point P of the concave surface 113 of the disc spring 110 is the outer peripheral side end 113D of the flat surface 113B.
 続いて、ナット103の締付を引き続き行い、皿ばね110を介して、ディスク102をハブ101の支持部101Bに対して押圧する。この場合、荷重特性では、たとえば図3に示すように、たわみ量が大きくなるに従って荷重変化が小さくなっていく。皿ばね110の凹面113の支持点Pが平坦面113Bの内周側端部113Cあるいはそれよりも内周側(傾斜面113A側)に移行すると、たわみ量に対する荷重変化が増大する。 Subsequently, the nut 103 is continuously tightened, and the disc 102 is pressed against the support portion 101B of the hub 101 via the disc spring 110. In this case, in the load characteristics, for example, as shown in FIG. 3, the load change decreases as the deflection amount increases. When the support point P of the concave surface 113 of the disc spring 110 shifts to the inner peripheral side end 113C of the flat surface 113B or to the inner peripheral side (inclined surface 113A side) than that, the load change with respect to the deflection amount increases.
 ここで第1実施形態では、皿ばね110のたわみ量は、たとえば図2(B)に示すように、ナット103の締付完了時に皿ばね110の凹面113の支持点Pが平坦面113Bの内周側端部113Cあるいはそれよりも内周側(傾斜面113A側)に位置するように設定されている。この場合、図3の荷重特性では、たわみ量がたわみ量S以上の領域(矢印Nで示される領域)に設定される。これにより、ディスク102は、皿ばね110により所定荷重で保持された締付構造100が得られる。ナット103の締付完了後に、締付構造100の上面にカバー(図示略)を適宜取り付けてもよい。 Here, in the first embodiment, as shown in FIG. 2B, for example, the deflection amount of the disc spring 110 is such that the support point P of the concave surface 113 of the disc spring 110 is within the flat surface 113B when the tightening of the nut 103 is completed. It is set so as to be located on the circumferential end 113C or on the inner circumferential side (inclined surface 113A side). In this case, in the load characteristics shown in FIG. 3, the deflection amount is set in a region (a region indicated by an arrow N) that is greater than or equal to the deflection amount S. As a result, the fastening structure 100 in which the disc 102 is held by the disc spring 110 with a predetermined load is obtained. After completing the tightening of the nut 103, a cover (not shown) may be appropriately attached to the upper surface of the tightening structure 100.
 なお、たとえば図2(B)に示すように皿ばね110の凹面113の支持点Pが平坦面113Bの内周側端部113Cあるいはそれよりも内周側に位置する場合には、平坦面113Bがディスク102の上面から若干浮いている状態となる。荷重特性では、たわみ量に対する荷重変化の小さな領域(たとえば、たわみ量に対する荷重変化が0あるいは略0となる略フラット領域の周辺の領域)を使う場合にも、従来のリングの場合と比較して、十分な効果が得られるから、たわみ量に対する荷重変化の小さな領域を使う場合には不具合は生じない。 For example, as shown in FIG. 2B, when the support point P of the concave surface 113 of the disc spring 110 is located on the inner peripheral side end 113C of the flat surface 113B or on the inner peripheral side thereof, the flat surface 113B. Is slightly lifted from the upper surface of the disk 102. In the load characteristics, when using a region where the load change with respect to the deflection amount is small (for example, a region around a substantially flat region where the load change with respect to the deflection amount is zero or substantially zero), compared to the conventional ring. Since a sufficient effect can be obtained, there is no problem when using a region where the load change with respect to the deflection amount is small.
 このような締付構造100の使用では、締付構造100を備えたハードディスク装置に衝撃が加わったとき、ディスク102が変形する虞がある。しかしながら、ディスク102の上面に近接する皿ばね110の凹面113の外周端部側に平坦面113Bが形成されているから、ディスク102の変形時には、たとえば図2(C)に示すようにディスク102の上面は、皿ばね110の平坦面113Bと面接触することができ、その結果、ディスク102の変形量を抑制することができる。 When such a tightening structure 100 is used, the disk 102 may be deformed when an impact is applied to the hard disk device including the tightening structure 100. However, since the flat surface 113B is formed on the outer peripheral end side of the concave surface 113 of the disc spring 110 adjacent to the upper surface of the disk 102, when the disk 102 is deformed, for example, as shown in FIG. The upper surface can come into surface contact with the flat surface 113B of the disc spring 110, and as a result, the deformation amount of the disk 102 can be suppressed.
 以上のように第1実施形態では、皿ばね110の平坦面113Bは、衝撃発生時にディスク102に面接触することができるから、皿ばね110とディスク102との接触面積が広くなる。その結果、衝撃発生時のディスク102の変形の抑制を図ることができる。 As described above, in the first embodiment, the flat surface 113B of the disc spring 110 can come into surface contact with the disc 102 when an impact occurs, so the contact area between the disc spring 110 and the disc 102 is widened. As a result, it is possible to suppress the deformation of the disk 102 when an impact occurs.
 ここで第1実施形態では、皿ばね110の平坦面113Bとディスク102との面接触は、ナット103の締付完了時に実現していてもしていなくてもよく、衝撃発生時に実現可能であることが重要である。皿ばね110の荷重特性では、衝撃発生時に上記面接触が実現可能な領域がたわみ量の所定範囲に存在しているから、ナット103の締付完了時には、たわみ量について厳密な管理は不要である。 Here, in the first embodiment, the surface contact between the flat surface 113B of the disc spring 110 and the disk 102 may or may not be realized when the tightening of the nut 103 is completed, and can be realized when an impact occurs. is important. In the load characteristic of the disc spring 110, since the region where the surface contact can be realized when an impact occurs is within a predetermined range of the deflection amount, it is not necessary to strictly control the deflection amount when the nut 103 is completely tightened. .
 また、荷重特性においてたわみ量に対する荷重変化の小さな領域を有する非線形な荷重特性を示す皿ばね110をクランプ部材として用いているから、荷重特性においてたわみ量に対する荷重変化の小さな領域でディスク102をハブ101の支持部101Bに対して押圧して保持することができる。これにより、一定荷重でのディスク102の保持が容易となる。 In addition, since the disc spring 110 showing a non-linear load characteristic having a small load change region with respect to the deflection amount in the load characteristic is used as the clamp member, the disc 102 is placed in the hub 101 in the load characteristic small change region with respect to the deflection amount. It is possible to press and hold the support portion 101B. This facilitates holding of the disk 102 with a constant load.
 ここで第1実施形態では、皿ばね110のたわみ量は、凹面113の支持点Pが平坦面113Bの内周側端部113Cあるいはそれよりも内周側に位置するように設定されているから、ディスク102に不具合が生じない程度に強く締め付けることができる。これにより、たとえばナット103の締付完了後の装置の使用時に経時変化でナット103による締付具合が弱くなったとしても、一定荷重でのディスク102の保持が可能となる。 Here, in the first embodiment, the deflection amount of the disc spring 110 is set so that the support point P of the concave surface 113 is positioned on the inner peripheral side end portion 113C of the flat surface 113B or on the inner peripheral side thereof. The disc 102 can be tightened to such an extent that no trouble occurs. Thereby, for example, even when the tightening condition by the nut 103 becomes weak due to a change with time when the apparatus is used after the nut 103 is completely tightened, the disk 102 can be held with a constant load.
 加えて、ナット103の締付完了時に上記たわみ量に設定すると、その設定たわみ量は、上記荷重の変動量の増大領域内にあるから、トルクレンチでナット103を締め付ける場合には、トルクレンチによる締付量の制御で上記荷重の変動量を指標として用いることにより、その締付量の制御が容易となる。 In addition, when the amount of deflection is set when the tightening of the nut 103 is completed, the set amount of deflection is within an increase region of the amount of fluctuation of the load. Therefore, when the nut 103 is tightened with a torque wrench, a torque wrench is used. By using the load fluctuation amount as an index in the tightening amount control, the tightening amount can be easily controlled.
(2)第2実施形態
(2A)締付構造
 図4は、本発明の第2実施形態に係る締付構造の概略構成の右半分を表す軸線方向断面図である。図5は、本発明の第2実施形態に係る締付構造の一部構成を表し、(A)は締付部材の締付開始時の軸線方向拡大断面図、(B)は締付部材の締付完了時の軸線方向拡大断面図、(C)は装置使用での衝撃発生時の軸線方向拡大断面図である。なお、図4は、締付構造において皿ばねが被押圧部材であるディスクと面接触している状態を表している。
(2) Second embodiment
(2A) Fastening structure FIG. 4 is an axial sectional view showing the right half of the schematic configuration of the fastening structure according to the second embodiment of the present invention. 5A and 5B show a partial configuration of a tightening structure according to the second embodiment of the present invention, in which FIG. 5A is an enlarged sectional view in the axial direction at the start of tightening of the tightening member, and FIG. FIG. 4C is an enlarged sectional view in the axial direction at the time of completion of tightening, and FIG. FIG. 4 shows a state in which the disc spring is in surface contact with a disk as a pressed member in the tightening structure.
 本発明の第2実施形態では、たとえば締付構造200をハードディスク装置に適用している。第2実施形態では、ハードディスク装置の態様が第1実施形態のものとは異なるから、締付構造200では、それに対応して皿ばね210が第1実施形態の皿ばね110とは異なっている。 In the second embodiment of the present invention, for example, the tightening structure 200 is applied to a hard disk device. In the second embodiment, since the aspect of the hard disk device is different from that of the first embodiment, in the tightening structure 200, the disc spring 210 is correspondingly different from the disc spring 110 of the first embodiment.
 締付構造200は、たとえばスペーサ201Aおよびハブ201B(支持部材)を備えている。スペーサ201Aの上面には、ディスク202A(被押圧部材)が支持されている。スペーサ201Aの内周側側面には、ハブ201Bが設けられている。ハブ201Bの上面には、位置決め用凹部201Cが形成されている。ハブ201Bの上面における皿ばね210の内周端部が配置される部分には、皿ばね210の凹部211Cの形状に対応する内周側凹部201Dが形成されている。ハブ201Bの下端部には、たとえば水平方向に突出する支持部201Eが形成されている。スペーサ201Aの下面とハブ201Bの支持部201Eの上面とにより、ディスク202Bが挟持されている。 The tightening structure 200 includes, for example, a spacer 201A and a hub 201B (support member). A disk 202A (member to be pressed) is supported on the upper surface of the spacer 201A. A hub 201B is provided on the inner peripheral side surface of the spacer 201A. A positioning recess 201C is formed on the upper surface of the hub 201B. An inner peripheral recess 201D corresponding to the shape of the recess 211C of the disc spring 210 is formed in a portion where the inner peripheral end of the disc spring 210 is disposed on the upper surface of the hub 201B. At the lower end of the hub 201B, for example, a support portion 201E protruding in the horizontal direction is formed. The disc 202B is sandwiched between the lower surface of the spacer 201A and the upper surface of the support portion 201E of the hub 201B.
 ハブ201Bの内周部は、雌ネジ部(図示略)を有している。ハブ201Bの雌ネジ部には、たとえばボルト203(締付部材)が締め付けられる。ボルト203の小径部は、ハブ201Bの雌ネジ部に螺合する雄ネジ部(図示略)を有している。スペーサ201Aおよびハブ201Bの上面には、皿ばね210が配置されている。ボルト203の大径部(頂部)は、たとえば締付によって皿ばね210を介して、ディスク202Aをスペーサ201Aに対して押圧している。 The inner peripheral portion of the hub 201B has a female screw portion (not shown). For example, a bolt 203 (tightening member) is fastened to the female screw portion of the hub 201B. The small diameter portion of the bolt 203 has a male screw portion (not shown) that is screwed into the female screw portion of the hub 201B. A disc spring 210 is disposed on the upper surfaces of the spacer 201A and the hub 201B. The large diameter portion (top portion) of the bolt 203 presses the disc 202A against the spacer 201A via the disc spring 210 by tightening, for example.
(2B)皿ばね
 皿ばね210は、たとえばディスク202Aを押圧することにより、ディスク202Aに所定荷重を付与している。皿ばね210は、たとえば図4に示すように締結部材であるボルト203および支持部材であるスペーサ201Aおよびハブ201Bの上面の形状に対応した形状をなす本体211を有している。本体211の中央部には、たとえば断面円形状をなす孔部211Aが形成され、本体211は、たとえば本体211の上面から見た場合、略リング状をなしている。皿ばね210の孔部211A内にはボルト203の小径部が挿入される。
(2B) The disc spring disc spring 210 applies a predetermined load to the disc 202A by pressing the disc 202A, for example. For example, as shown in FIG. 4, the disc spring 210 has a main body 211 having a shape corresponding to the shape of the upper surface of the bolt 203 as a fastening member, the spacer 201 </ b> A as a support member, and the hub 201 </ b> B. A hole 211A having a circular cross section, for example, is formed in the central portion of the main body 211, and the main body 211 has a substantially ring shape when viewed from the upper surface of the main body 211, for example. A small diameter portion of the bolt 203 is inserted into the hole 211 </ b> A of the disc spring 210.
 本体211の内周側端部には、締付完了時にボルト203の大径部が収容されるボルト用凹部211C(締付部材用凹部)が形成されている。本体211には、たとえばハブ201Bの位置決め用凹部201Cに対応する箇所に、位置決め用孔部211Bが形成されている。位置決め用孔部211Bおよび位置決め用凹部201Cは、少なくとも1個形成されていればよい。 The inner peripheral side end of the main body 211 is formed with a bolt recess 211C (a tightening member recess) in which the large diameter portion of the bolt 203 is accommodated when the tightening is completed. In the main body 211, for example, a positioning hole 211B is formed at a location corresponding to the positioning recess 201C of the hub 201B. It is sufficient that at least one positioning hole 211B and positioning recess 201C are formed.
 本体211は、たとえば凸面212(上面、表面)および凹面213(下面、裏面)を有している。具体的には、本体211の凹面213は、軸線方向断面において、水平方向に対して傾斜している傾斜面213Aを有する。傾斜面213Aは、たとえば軸線方向断面において、湾曲しており、直線状部分を含んでいてもよい。本体211の凹面213の外周端部側には、傾斜面213Aに対して所定角度で傾斜している平坦面213Bが形成されている。平坦面213Bは、たとえば軸線方向断面において、直線状に延在している。平坦面213Bの内周側端部213Cは、傾斜面213Aの外周側端部に接続されている。平坦面213Bは、たとえば図4,5(C)に示すようにディスク202Aとの面接触が可能な平坦面である。 The main body 211 has, for example, a convex surface 212 (upper surface, front surface) and a concave surface 213 (lower surface, rear surface). Specifically, the concave surface 213 of the main body 211 has an inclined surface 213A that is inclined with respect to the horizontal direction in the axial cross section. The inclined surface 213A is curved, for example, in the axial cross section, and may include a linear portion. A flat surface 213B that is inclined at a predetermined angle with respect to the inclined surface 213A is formed on the outer peripheral end side of the concave surface 213 of the main body 211. The flat surface 213B extends linearly, for example, in the axial cross section. The inner peripheral side end 213C of the flat surface 213B is connected to the outer peripheral side end of the inclined surface 213A. The flat surface 213B is a flat surface capable of surface contact with the disk 202A as shown in FIGS. 4 and 5C, for example.
 平坦面213Bの外周側端部213Dには、湾曲面213Eが形成されている。湾曲面213Eは、たとえば軸線方向断面において、湾曲しており、直線状部分を含んでいてもよい。湾曲面213Eは、外周側に向かうに従ってディスク202Aから離間し、ディスク202Aとの間隔が大きくなるように設定されている。傾斜面213Aの内周側端部には、水平方向内周側に延在する水平面213Fが形成されている。 A curved surface 213E is formed on the outer peripheral side end 213D of the flat surface 213B. The curved surface 213E is curved, for example, in the axial cross section, and may include a linear portion. The curved surface 213E is set so as to move away from the disk 202A toward the outer peripheral side and to increase the distance from the disk 202A. A horizontal surface 213F extending to the inner peripheral side in the horizontal direction is formed at the inner peripheral end of the inclined surface 213A.
 凹面213の傾斜面213A、平坦面213B、内周側端部213C、および、外周側端部213Dは、第1実施形態の傾斜面113A、平坦面113B、内周側端部113C、および、外周側端部113Dに対応しており、それら対応部位と同様な機能を有している。これにより、皿ばね210は、荷重特性において非線形性を示し、皿ばね110と略同様な荷重特性を示す領域を有している。 The inclined surface 213A, flat surface 213B, inner peripheral end 213C, and outer peripheral end 213D of the concave surface 213 are the inclined surface 113A, flat surface 113B, inner peripheral end 113C, and outer periphery of the first embodiment. It corresponds to the side end 113D and has the same function as the corresponding part. As a result, the disc spring 210 has a non-linearity in the load characteristics, and has a region that exhibits substantially the same load characteristics as the disc spring 110.
(2C)締付方法
 締付構造200の組立手順について、おもに図5(A)~5(C)を参照して説明する。なお、図5(A)~5(C)は、第1実施形態の組立手順の説明に用いた図2(A)~2(C)に対応しており、凹面213の傾斜面213A、平坦面213B、内周側端部213C、および、外周側端部213Dは、上記のように第1実施形態の傾斜面113A、平坦面113B、内周側端部113C、および、外周側端部113Dに対応しており、それら対応部位と同様な機能を有しているから、荷重特性に関する説明は省略している。
(2C) Tightening method The assembly procedure of the tightening structure 200 will be described with reference mainly to FIGS. 5 (A) to 5 (C). 5 (A) to 5 (C) correspond to FIGS. 2 (A) to 2 (C) used in the description of the assembly procedure of the first embodiment, and the inclined surface 213A of the concave surface 213 is flat. The surface 213B, the inner peripheral end 213C, and the outer peripheral end 213D are the inclined surface 113A, the flat surface 113B, the inner peripheral end 113C, and the outer peripheral end 113D of the first embodiment as described above. And has the same functions as those corresponding parts, and therefore the description regarding the load characteristics is omitted.
 まず、スペーサ201Aの下面とハブ201Bの支持部201Eの上面とによってディスク202Bを挟持し、スペーサ201Aの上面にディスク202Aを配置した後、ディスク202Aおよびハブ201Bの上面に、皿ばね210を配置する。この場合、皿ばね210の孔部211A内には、ハブ201Bにおけるボルト203が配置される部分が位置している。皿ばね210の内周側端部(傾斜面213A、平坦面213B、内周側端部213C、および、外周側端部213D、および、湾曲面213Eを含む部分)がディスク202Aの上面に配置され、皿ばね210のそれ以外の内周側部分は、ハブ201Bの上面に配置されている。この場合、皿ばね210は、凹面213の平坦面213Bの外周端部213Dがディスク202Aの上面に当接し、ディスク202Aの上面と線接触している。 First, the disk 202B is sandwiched between the lower surface of the spacer 201A and the upper surface of the support portion 201E of the hub 201B, the disk 202A is disposed on the upper surface of the spacer 201A, and then the disc spring 210 is disposed on the upper surfaces of the disk 202A and the hub 201B. . In this case, a portion of the hub 201B where the bolt 203 is disposed is located in the hole 211A of the disc spring 210. The inner peripheral side end (the inclined surface 213A, the flat surface 213B, the inner peripheral side end 213C, the outer peripheral side end 213D, and the curved surface 213E) of the disc spring 210 is disposed on the upper surface of the disk 202A. The other inner peripheral side portion of the disc spring 210 is disposed on the upper surface of the hub 201B. In this case, in the disc spring 210, the outer peripheral end 213D of the flat surface 213B of the concave surface 213 is in contact with the upper surface of the disk 202A and is in line contact with the upper surface of the disk 202A.
 次いで、たとえば図5(A)に示すように、ボルト203の雄ネジ部をハブ201Bの雌ネジ部の上端部に螺合させて取り付け、ボルト203の締付を開始する。この場合、皿ばね210の凸面212の内周端部は、ボルト203の下面に当接し、凹面213の平坦面213Bの外周側端部213Dは、ディスク202Aの上面と線接触している。皿ばね210の凹面213の支持点Pは、平坦面213Bの外周側端部213Dである。ボルト203の締付開始前に、位置決め部材(図示略)を、皿ばね210の位置決め用孔部211Bに挿入し、ハブ201Bの位置決め用凹部201Cに係合させることが好適である。 Next, for example, as shown in FIG. 5 (A), the male screw portion of the bolt 203 is screwed onto the upper end portion of the female screw portion of the hub 201B, and tightening of the bolt 203 is started. In this case, the inner peripheral end portion of the convex surface 212 of the disc spring 210 is in contact with the lower surface of the bolt 203, and the outer peripheral end portion 213D of the flat surface 213B of the concave surface 213 is in line contact with the upper surface of the disk 202A. The support point P of the concave surface 213 of the disc spring 210 is the outer peripheral side end 213D of the flat surface 213B. Before starting the tightening of the bolt 203, it is preferable to insert a positioning member (not shown) into the positioning hole 211B of the disc spring 210 and engage with the positioning recess 201C of the hub 201B.
 続いて、ボルト203の締付を引き続き行い、皿ばね210を介して、ディスク202Aをスペーサ201Aに対して押圧する。 Subsequently, the bolt 203 is continuously tightened, and the disc 202A is pressed against the spacer 201A via the disc spring 210.
 この場合、皿ばね210のたわみ量は、たとえば図5(B)に示すように、ボルト203の締付完了時に皿ばね210の凹面213の支持点Pが平坦面213Bの内周側端部213Cあるいはそれよりも内周側(傾斜面213A側)に位置するように設定されている。ボルト203の締付完了時には、皿ばね210のボルト用凹部211Cに、ボルト203の大径部が収容される。これにより、ディスク202Aは、皿ばね210により所定荷重で保持された締付構造200が得られる。ボルト203の締付完了後に、位置決め部材を位置決め用凹部201Cおよび位置決め用孔部211Bから取り外し、締付構造200の上面にカバー(図示略)を適宜取り付けてもよい。 In this case, as shown in FIG. 5B, for example, the deflection amount of the disc spring 210 is such that the support point P of the concave surface 213 of the disc spring 210 is the inner end 213C of the flat surface 213B. Or it is set so that it may be located in the inner peripheral side (inclined surface 213A side) rather than it. When the tightening of the bolt 203 is completed, the large diameter portion of the bolt 203 is accommodated in the bolt recess 211 </ b> C of the disc spring 210. Thus, the tightening structure 200 in which the disc 202A is held by the disc spring 210 with a predetermined load is obtained. After completion of tightening the bolt 203, the positioning member may be removed from the positioning recess 201C and the positioning hole 211B, and a cover (not shown) may be appropriately attached to the upper surface of the tightening structure 200.
 第2実施形態では、第1実施形態と同様な効果を得ることができることに加えて、以下の効果を得ることができる。 In the second embodiment, the following effects can be obtained in addition to the same effects as the first embodiment.
 ボルト203の締付開始前に、位置決め部材を、皿ばね210の位置決め用孔部211Bに挿入し、ハブ201Bの位置決め用凹部201Cに係合させることにより、ボルト203の締付時に、ボルト203の回転等の動きと連動して皿ばね210がディスク202Aに対して相対的に移動することを抑制することができる。これにより、ディスク202A表面の傷付きやコンタミの発生等を抑制することができる。 Before the tightening of the bolt 203, the positioning member is inserted into the positioning hole 211B of the disc spring 210 and engaged with the positioning recess 201C of the hub 201B. It is possible to suppress the disc spring 210 from moving relative to the disc 202A in conjunction with a movement such as rotation. Thereby, scratches on the surface of the disk 202A, occurrence of contamination, and the like can be suppressed.
 また、ボルト203の締付完了時には、皿ばね210のボルト用凹部211Cにボルト203の大径部が収容されるから、締付構造200の省スペース化を図ることができる。皿ばね210は、ボルト203、スペーサ201A、および、ハブ201Bの形状に対応した形状をなす本体211を有しているから、締付構造200の更なる省スペース化を図ることができる。 Moreover, when the bolt 203 is completely tightened, the large diameter portion of the bolt 203 is accommodated in the bolt recess 211C of the disc spring 210, so that the space for the tightening structure 200 can be saved. Since the disc spring 210 has a main body 211 having a shape corresponding to the shape of the bolt 203, the spacer 201A, and the hub 201B, further space saving of the tightening structure 200 can be achieved.
(3)変形例
 上記実施形態を用いて本発明を説明したが、本発明は上記実施形態に限定されるものではなく、上記実施形態は、各部材の構成や形状等について本発明範囲内で種々の変形が可能である。
(3) Modification Although the present invention has been described using the above embodiment, the present invention is not limited to the above embodiment, and the above embodiment is within the scope of the present invention with respect to the configuration and shape of each member. Various modifications are possible.
 たとえば第1実施形態では、平坦面113Bは、内周側端部113Cから外周側端部113Dに向かうに従って板厚が減少することにより形成されている態様を用いたが、平坦面113Bの形成手法は、その態様に限定されるものではない。たとえば図6に示す皿ばね110Aでは、平坦面113Bは、内周側端部113Cと傾斜面113Aとの境界部を折り曲げることにより形成されている態様を用いることができる。この場合、凸面112Pは、たとえば軸線方向断面において、凹面113と平行となる。この態様では、たとえば平坦面113Bを曲げ成形により得ることができ、研磨等を用いる場合と比較して低価格化を図ることができるから、締付構造100の低価格化を図ることができる。 For example, in the first embodiment, the flat surface 113B is formed by decreasing the plate thickness from the inner peripheral end 113C toward the outer peripheral end 113D. Is not limited to this embodiment. For example, in the disc spring 110A shown in FIG. 6, the flat surface 113B can be formed by bending the boundary portion between the inner peripheral side end portion 113C and the inclined surface 113A. In this case, the convex surface 112P is parallel to the concave surface 113, for example, in the axial cross section. In this aspect, for example, the flat surface 113B can be obtained by bending, and the cost can be reduced as compared with the case where polishing or the like is used. Therefore, the cost of the fastening structure 100 can be reduced.
 また、たとえば第2実施形態では、ボルト203、スペーサ201A、および、ハブ201Bの形状に対応した形状をなす本体211を有する皿ばね210を用いたが、その形状に限定されるものではなく、凹面213の平坦面213Bが衝撃発生時に相手部材に面接触可能な形態であれば、皿ばねは、それが配置される相手部材の形状に対応可能な各種形状を用いることができる。たとえば図7に示す皿ばね210Aは、軸線方向断面において、多段状をなしている凸面212Pおよび凹面213Pを有している。この態様では、締付構造200の更なる省スペース化を図ることができる。 Further, for example, in the second embodiment, the disc spring 210 having the main body 211 having a shape corresponding to the shape of the bolt 203, the spacer 201A, and the hub 201B is used. As long as the flat surface 213B of 213 can be brought into surface contact with the mating member when an impact occurs, the disc spring can have various shapes that can correspond to the shape of the mating member on which the disc spring is disposed. For example, the disc spring 210A shown in FIG. 7 has a convex surface 212P and a concave surface 213P that are multi-staged in the cross section in the axial direction. In this aspect, the space for the tightening structure 200 can be further reduced.
 加えて、第1,2実施形態およびそれら変形例を適宜組み合わせてよいのは言うまでもないことである。 In addition, it goes without saying that the first and second embodiments and their modifications may be combined as appropriate.

Claims (7)

  1.  締付部材と被押圧部材との間に被押圧部材を押圧するためのクランプ部材を介在させて、前記締付部材の締付によって前記被押圧部材を支持部材に対して押圧して保持する締付構造において、
     前記クランプ部材として、皿ばねを用い、
     前記皿ばねは、凹面の外周端部側に形成されるとともに、前記凹面の内周側の一面に対して傾斜している平坦面を有し、
     前記皿ばねは、凹面が前記被押圧部材に対向するとともに、凸面が前記締付部材に対向するようにして配置され、
     前記皿ばねのたわみ量は、前記凹面の支持点が前記平坦面の内周側端部あるいはそれよりも内周側に位置するように設定されていることを特徴とする締付構造。
    A clamping member for pressing the pressed member is interposed between the clamping member and the pressed member, and the clamped member presses and holds the pressed member against the support member by clamping the clamping member. In the attached structure,
    A disc spring is used as the clamp member,
    The disc spring is formed on the outer peripheral end side of the concave surface, and has a flat surface that is inclined with respect to one surface on the inner peripheral side of the concave surface,
    The disc spring is disposed such that a concave surface faces the pressed member and a convex surface faces the fastening member,
    The tightening structure, wherein the deflection amount of the disc spring is set so that the support point of the concave surface is located on the inner peripheral side end portion of the flat surface or on the inner peripheral side thereof.
  2.  前記皿ばねの前記平坦面は、内周側から外周側に向かうに従って板厚が減少することにより形成されていることを特徴とする請求項1に記載の締付構造。 2. The tightening structure according to claim 1, wherein the flat surface of the disc spring is formed by decreasing the plate thickness from the inner peripheral side toward the outer peripheral side.
  3.  前記皿ばねの前記平坦面は、前記内周側端部とそれと隣接する部位との境界部を折り曲げることにより形成されていることを特徴とする請求項1に記載の締付構造。 2. The tightening structure according to claim 1, wherein the flat surface of the disc spring is formed by bending a boundary portion between the inner peripheral side end portion and a portion adjacent thereto.
  4.  前記皿ばねは、前記締付部材の頂部を収容するための凹部を有することを特徴とする請求項1~3のいずれかに記載の締付構造。 The tightening structure according to any one of claims 1 to 3, wherein the disc spring has a recess for accommodating a top portion of the tightening member.
  5.  前記皿ばねは、軸線方向断面において、多段状をなしていることを特徴とする請求項1~4のいずれかに記載の締付構造。 The tightening structure according to any one of claims 1 to 4, wherein the disc spring has a multi-stage shape in an axial cross section.
  6.  締付部材と被押圧部材との間に被押圧部材を押圧するためのクランプ部材を介在させて、前記締付部材の締付によって前記被押圧部材を支持部材に対して押圧して保持する締付方法において、
     前記クランプ部材として、凹面の外周端部側に形成されるとともに、前記凹面の内周側の一面に対して傾斜している平坦面を有する皿ばねを用い、
     前記締付部材の締付開始時に、前記皿ばねの前記凹面の前記平坦面の外周側端部を前記被押圧部材に当接させ、前記皿ばねの凸面の内周側端部を前記締付部材に当接させ、
     前記締付部材の締付完了時に、前記皿ばねのたわみ量を、前記皿ばねの前記凹面の支持点が前記平坦面の内周側端部あるいはそれよりも内周側に位置するように設定することを特徴とする締付方法。
    A clamping member for pressing the pressed member is interposed between the clamping member and the pressed member, and the clamped member presses and holds the pressed member against the support member by clamping the clamping member. In the attached method,
    As the clamp member, a disc spring having a flat surface that is formed on the outer peripheral end side of the concave surface and is inclined with respect to one surface on the inner peripheral side of the concave surface,
    At the start of tightening of the tightening member, the outer peripheral end of the flat surface of the concave surface of the disc spring is brought into contact with the pressed member, and the inner peripheral end of the convex surface of the disc spring is tightened. Abut against the member,
    When the tightening of the tightening member is completed, the amount of deflection of the disc spring is set so that the support point of the concave surface of the disc spring is located on the inner peripheral end of the flat surface or on the inner peripheral side thereof. A tightening method characterized by:
  7.  前記皿ばねとして、位置決め用孔部を有する皿ばねを用い、
     前記支持部材として、位置決め用凹部が形成された支持部材を用い、
     前記締付部材の締付前に、位置決め部材を、前記皿ばねの前記位置決め用孔部を通じて前記支持部材の前記位置決め用凹部に係合させ、
     前記締付部材の締付完了後に、前記位置決め部材を、前記位置決め用凹部および前記位置決め用孔部から取り外すことを特徴とする請求項6に記載の締付方法。
    As the disc spring, a disc spring having a positioning hole is used,
    As the support member, a support member in which a positioning recess is formed,
    Prior to tightening of the tightening member, a positioning member is engaged with the positioning recess of the support member through the positioning hole of the disc spring,
    The fastening method according to claim 6, wherein after the fastening of the fastening member is completed, the positioning member is removed from the positioning recess and the positioning hole.
PCT/JP2014/055784 2013-03-08 2014-03-06 Fastening structure and fastening method WO2014136878A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015504386A JPWO2014136878A1 (en) 2013-03-08 2014-03-06 Tightening structure and tightening method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013046694 2013-03-08
JP2013-046694 2013-03-08

Publications (1)

Publication Number Publication Date
WO2014136878A1 true WO2014136878A1 (en) 2014-09-12

Family

ID=51491386

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/055784 WO2014136878A1 (en) 2013-03-08 2014-03-06 Fastening structure and fastening method

Country Status (2)

Country Link
JP (1) JPWO2014136878A1 (en)
WO (1) WO2014136878A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6401881B1 (en) * 2018-04-08 2018-10-10 合同会社Matsumoto Washer

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004280966A (en) * 2003-03-17 2004-10-07 Hitachi Ltd Magnetic disk unit
JP2008016070A (en) * 2006-06-30 2008-01-24 Toshiba Corp Disk drive and its assembling method

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004280966A (en) * 2003-03-17 2004-10-07 Hitachi Ltd Magnetic disk unit
JP2008016070A (en) * 2006-06-30 2008-01-24 Toshiba Corp Disk drive and its assembling method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6401881B1 (en) * 2018-04-08 2018-10-10 合同会社Matsumoto Washer
WO2019198649A1 (en) * 2018-04-08 2019-10-17 合同会社Matsumoto Washer

Also Published As

Publication number Publication date
JPWO2014136878A1 (en) 2017-02-16

Similar Documents

Publication Publication Date Title
US7957103B2 (en) Fixing of components
US8418576B2 (en) Device for pressing on a gear rack
US9109619B2 (en) Screw having a screw head, a screw shank and a corrugated conical flange
US20120170146A1 (en) Mirror for vehicle
JP2012251583A (en) Part fastening structure
WO2014136878A1 (en) Fastening structure and fastening method
JP2008191412A (en) Lens mirror frame
JP2003148298A (en) Solenoid valve
WO2014057779A1 (en) Dust cover for ball joint
WO2018116724A1 (en) Male threaded member
US9903428B2 (en) Connecting means for brake disc assembly
CN110873137A (en) Rear disc for a stack of aircraft carbon brake discs with circular discs and brake applying such a rear disc
JPH064718U (en) Optical component holding structure
US20180180835A1 (en) Holding apparatus, lens apparatus, and image pickup apparatus
CN108715150A (en) A kind of microscope base mounting tool
WO2010113621A1 (en) Clutch cover assembly
US9273735B2 (en) Clutch disk
JP2012241761A (en) Vehicle body component fastening structure
JP5316769B2 (en) Flange fastening structure
JP2011047105A (en) Embedded handle for door
JPWO2015141854A1 (en) Tapping screw and its fastening structure
CN215487275U (en) Bearing preloading device and main shaft
JP4261511B2 (en) Liquid crystal display
JP2016136056A (en) Nut dropout prevention mechanism
JP4894346B2 (en) Vehicle steering system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14759464

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015504386

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14759464

Country of ref document: EP

Kind code of ref document: A1