WO2014136848A1 - Optical connector - Google Patents

Optical connector Download PDF

Info

Publication number
WO2014136848A1
WO2014136848A1 PCT/JP2014/055673 JP2014055673W WO2014136848A1 WO 2014136848 A1 WO2014136848 A1 WO 2014136848A1 JP 2014055673 W JP2014055673 W JP 2014055673W WO 2014136848 A1 WO2014136848 A1 WO 2014136848A1
Authority
WO
WIPO (PCT)
Prior art keywords
fiber
optical
thermoplastic resin
optical connector
polymer alloy
Prior art date
Application number
PCT/JP2014/055673
Other languages
French (fr)
Japanese (ja)
Inventor
登志久 佐藤
服部 知之
大村 真樹
蔀 龍彦
Original Assignee
住友電気工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友電気工業株式会社 filed Critical 住友電気工業株式会社
Priority to CN201480010367.XA priority Critical patent/CN105026967A/en
Publication of WO2014136848A1 publication Critical patent/WO2014136848A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/36Mechanical coupling means
    • G02B6/38Mechanical coupling means having fibre to fibre mating means
    • G02B6/3807Dismountable connectors, i.e. comprising plugs
    • G02B6/3833Details of mounting fibres in ferrules; Assembly methods; Manufacture
    • G02B6/3846Details of mounting fibres in ferrules; Assembly methods; Manufacture with fibre stubs
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/36Mechanical coupling means
    • G02B6/38Mechanical coupling means having fibre to fibre mating means
    • G02B6/3801Permanent connections, i.e. wherein fibres are kept aligned by mechanical means
    • G02B6/3806Semi-permanent connections, i.e. wherein the mechanical means keeping the fibres aligned allow for removal of the fibres
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/36Mechanical coupling means
    • G02B6/38Mechanical coupling means having fibre to fibre mating means
    • G02B6/3807Dismountable connectors, i.e. comprising plugs
    • G02B6/381Dismountable connectors, i.e. comprising plugs of the ferrule type, e.g. fibre ends embedded in ferrules, connecting a pair of fibres
    • G02B6/3818Dismountable connectors, i.e. comprising plugs of the ferrule type, e.g. fibre ends embedded in ferrules, connecting a pair of fibres of a low-reflection-loss type
    • G02B6/382Dismountable connectors, i.e. comprising plugs of the ferrule type, e.g. fibre ends embedded in ferrules, connecting a pair of fibres of a low-reflection-loss type with index-matching medium between light guides

Definitions

  • the present invention relates to an optical connector for connecting optical fibers.
  • an optical connector described in Patent Document 1 is known as a conventional optical connector.
  • the optical connector described in Patent Document 1 includes a ferrule that holds a built-in optical fiber, and a connection mechanism (mechanical splice) that extends to the opposite side of the connection end surface of the ferrule.
  • the connection mechanism includes a base in which a positioning groove for positioning the optical fiber connected to the built-in optical fiber is formed, a lid portion facing the base, and a C-shaped leaf spring that elastically clamps the base and the lid portion. It is comprised by.
  • An object of the present invention is to provide an optical connector that can suppress connection loss of optical fibers when optical fibers are mechanically connected to each other.
  • the optical connector according to the present invention is an optical connector provided with a fiber connecting member for mechanically connecting optical fibers.
  • the fiber connection member has a base portion having a fiber groove that accommodates the optical fiber, and a lid portion that presses the optical fiber accommodated in the fiber groove against the base portion.
  • At least one of the base portion and the lid portion is formed from a polymer alloy of a first thermoplastic resin composed of a basic unit having an aromatic ring and an ether bond and a second thermoplastic resin different from the first thermoplastic resin.
  • the glass transition temperature of the polymer alloy is 140 ° C. or higher.
  • connection loss of optical fibers can be suppressed when optical fibers are mechanically connected. As a result, it is possible to improve the reliability of the optical fiber while ensuring the necessary characteristics when mechanically connecting the optical fibers.
  • FIG. 1 is a schematic cross-sectional view showing an embodiment of an optical connector.
  • FIG. 2 is a cross-sectional view showing an open / close state of the mechanical splice with a ferrule shown in FIG.
  • FIG. 3 is a graph showing the relationship between the glass transition temperature of the polymer alloy and the initial loss.
  • the optical connector which concerns on 1 side of this invention is an optical connector provided with the fiber connection member for connecting optical fibers mechanically.
  • the fiber connection member has a base portion having a fiber groove that accommodates the optical fiber, and a lid portion that presses the optical fiber accommodated in the fiber groove against the base portion.
  • At least one of the base portion and the lid portion is formed from a polymer alloy of a first thermoplastic resin composed of a basic unit having an aromatic ring and an ether bond and a second thermoplastic resin different from the first thermoplastic resin.
  • the glass transition temperature of the polymer alloy is 140 ° C. or higher.
  • the first thermoplastic resin may be a polyphenylene ether resin.
  • Polyphenylene ether resins are relatively high in heat resistance among common polymers and have a high deflection temperature under load. For this reason, the polyphenylene ether resin can be used as a polymer alloy for forming a fiber connecting member.
  • the second thermoplastic resin may be a polystyrene-based resin or a polyphenylene sulfide-based resin.
  • a polymer alloy obtained by adding a polystyrene-based resin is excellent in ease of coloring, a good balance of mechanical properties, ease of flame retardancy improvement, and the like.
  • the polystyrene resin has good compatibility with the polyphenylene ether resin. Therefore, for example, when a polystyrene-based resin is mixed with a polyphenylene ether-based resin, a polymer alloy in which physical properties such as heat resistance and mechanical properties are complemented without impairing excellent moldability can be obtained.
  • a polymer alloy obtained by adding a polyphenylene sulfide resin is excellent in heat resistance.
  • a polymer alloy in which the creep phenomenon is more difficult to proceed can be obtained. Therefore, the fiber connecting member can be formed from a polymer alloy having desired physical properties.
  • the ratio of the first thermoplastic resin to the total of the first thermoplastic resin and the second thermoplastic resin may be 25 wt% or more and 75 wt% or less.
  • a polymer alloy excellent in molding processability and supplemented with physical properties such as heat resistance and mechanical properties can be obtained. Therefore, the fiber connecting member can be formed from a polymer alloy having desired physical properties.
  • a filler may be added to the polymer alloy by 10% by weight or more.
  • the filler may be, for example, a fibrous filler made of glass fiber.
  • the physical properties such as the bending elastic modulus or the drawing property of the polymer alloy are controlled to an appropriate value, so that the rigidity of the fiber connecting member is ensured.
  • a ferrule that holds a built-in optical fiber constituting one of the optical fibers may be fixed to the base portion.
  • the optical connector can be used as an on-site optical connector.
  • FIG. 1 is a schematic sectional view showing an embodiment of an optical connector according to the present invention.
  • the optical connector 1 of this embodiment is a mechanical splice type optical connector.
  • the optical connector 1 includes a mechanical splice 2 with a ferrule that mechanically connects and fixes optical fibers, and a housing (not shown) that covers the mechanical splice 2 with a ferrule.
  • the mechanical splice 2 with a ferrule is accommodated in the fiber groove 4 and a base portion 5 having a fiber groove 4 having a V-shaped cross section for positioning and accommodating the optical fiber 3.
  • the optical fiber 3 has a lid portion 6 that presses against the base portion 5.
  • the mechanical splice 2 has a clamp spring 7 having a U-shaped cross section that sandwiches the base portion 5 and the lid portion 6.
  • the base portion 5 and the lid portion 6 constitute a resin fiber connection member 8.
  • the end portion of the optical fiber 3 is removed from the coating to expose the bare fiber 3a.
  • the bare fiber 3a is made of, for example, quartz glass.
  • a ferrule 9 is fixed to the front end portion of the base portion 5.
  • the ferrule 9 holds a short built-in fiber 10.
  • the built-in fiber 10 has the same configuration as that of the bare fiber 3 a and extends from the front end surface (connection end surface) of the ferrule 9 to the fiber groove 4 of the fiber connection member 8.
  • a plurality of wedge insertion recesses 12 into which the wedge members 11 are inserted are provided at the boundary portion between the base portion 5 and the lid portion 6 in the fiber connection member 8.
  • the fiber connection member 8 is sandwiched between the clamp springs 7 from the opposite side of the wedge insertion recess 12.
  • the optical fiber 3 is introduced into the fiber connecting member 8 from the rear side of the mechanical splice 2 with a ferrule, and the tip surface of the optical fiber 3 is abutted against the built-in fiber 10.
  • the fiber connection member 8 is filled with a refractive index matching agent S for eliminating optical discontinuity between the optical fiber 3 and the built-in fiber 10.
  • the wedge member 11 is removed from the wedge insertion recess 12 as shown in FIG. Then, the base portion 5 and the lid portion 6 are closed by the urging force of the clamp spring 7, and the optical fiber 3 and the built-in fiber 10 are optically connected via the refractive index matching agent S, and both are in the base portion. 5 and the lid 6 are pressed and fixed.
  • the base portion 5 and the lid portion 6 are formed from a polymer alloy of a first thermoplastic resin composed of a basic unit having an aromatic ring and an ether bond and a second thermoplastic resin different from the first thermoplastic resin. ing.
  • the glass transition temperature of this polymer alloy is 140 ° C. or higher.
  • the upper limit of the glass transition temperature is not particularly limited, but is usually about 200 ° C.
  • the glass transition temperature of this polymer alloy is preferably 140 ° C. or higher and 190 ° C. or lower, for example.
  • thermoplastic resin As the first thermoplastic resin, it is preferable to use a polyphenylene ether (PPE) resin.
  • PPE polyphenylene ether
  • second thermoplastic resin As the second thermoplastic resin, it is preferable to use a polystyrene (PS) resin or a polyphenylene sulfide (PPS) resin.
  • PS polystyrene
  • PPS polyphenylene sulfide
  • the ratio of the 1st thermoplastic resin with respect to a 1st thermoplastic resin and a 2nd thermoplastic resin is 25 to 75 weight%. It is preferable that 10% by weight or more of filler is added to the polymer alloy.
  • the fiber connecting member 8 was formed by a polymer alloy mainly composed of polyphenylene ether and polystyrene, and various properties were actually evaluated. The evaluation results are described below.
  • the relationship between the glass transition temperature of the polymer alloy, the deflection temperature under load, the connection loss of the optical fiber, and the creep strain was evaluated. Specifically, a plurality of polymer alloys having different ratios of polyphenylene ether to polyphenylene ether and polystyrene were molded. A fiber connecting member 8 was formed from the plurality of polymer alloys.
  • Table 1 shows the results obtained for the glass transition temperature (° C.) of the polymer alloy, the deflection temperature under load of the polymer alloy (° C.), the connection loss of the polymer alloy, and the creep strain.
  • the following could be confirmed in a plurality of polymer alloys having different ratios of polyphenylene ether to polyphenylene ether and polystyrene. It was confirmed that the deflection temperature under load of the polymer alloy increases as the glass transition temperature of the polymer alloy increases. It was confirmed that the creep strain value decreased as the glass transition temperature of the polymer alloy increased. In particular, when the glass transition temperature of the polymer alloy was 140 ° C. or higher, it was confirmed that the creep strain value was smaller than 3.0. Moreover, when the glass transition temperature of the polymer alloy was 140 ° C. or higher, it was confirmed that the creep strain value was smaller than 3.0.
  • connection loss As shown in FIG. 3, when the glass transition temperature exceeded 140 ° C., it was confirmed that the connection loss was less than 0.25 dB. Furthermore, it was confirmed that the connection loss was less than 0.17 dB when the glass transition temperature was about 160 ° C. That is, it was found that the connection loss is suppressed when the glass transition temperature is approximately 140 ° C. or higher and 160 ° C. or lower.
  • the characteristics of a plurality of polymer alloys having different ratios of polyphenylene ether to polyphenylene ether and polystyrene were evaluated using a plurality of types of samples. Specifically, seven polymer alloy samples having different ratios of polyphenylene ether and polyphenylene ether to polystyrene were prepared, and in each sample, moldability was evaluated and an environmental test was performed. The obtained results are shown in Table 2. In Table 2, A is all good, B is all bad, and C is a state where good and bad are mixed.
  • the criteria for determining whether the moldability is good are as follows.
  • a dimensional error of a finished product when molding is performed under a predetermined condition that is, a deviation from a design value is not more than a predetermined value is determined as good.
  • the criteria for determining whether or not the environmental test result is good are as follows. The case where the maximum value of the change amount of the connection loss during the test is 0.4 dB or less with respect to the connection loss before the start of the test is considered good. From the connection loss evaluation results shown in Table 1, polymers having a polyphenylene ether / polystyrene ratio of 40% to 70%, 30% to 60%, and 30% to 70% by weight based on polyphenylene ether and polystyrene are shown. The alloy was found to have a glass transition temperature of 140 ° C. or higher.
  • Test 1 high temperature test
  • Test 2 wet heat test
  • test 3 heat cycle test
  • holding in an environment of ⁇ 40 ° C. for 1 hour and holding in an environment of 75 ° C. for 1 hour were alternately performed 6 times.
  • the maximum value of change in connection loss was evaluated after the end of Test 3 and before the start of Test 1.
  • the fibrous filler in addition to potassium titanate whiskers (KTW) and KTW, needle fillers such as wollastonite, aluminum borate, basic magnesium sulfate (MOS), zonolite, and zinc oxide may be used.
  • a plate-like or spherical filler having a small Mohs hardness may be added.
  • the Mohs hardness is an index representing the hardness of a substance, and a substance having a lower hardness is obtained when the minerals are rubbed against each other and scratched.
  • the fibrous filler those having a Mohs hardness smaller than that of quartz glass forming the optical fiber 3 or those having a Mohs hardness smaller than 5 may be used.
  • the fibrous filler can be employed because it is sufficiently softer than the optical fiber.
  • a polymer alloy having a high glass transition temperature is formed, and a polymer alloy in which physical properties such as heat resistance and mechanical properties are complemented while maintaining excellent molding processability is obtained.
  • the fiber connection member 8 formed of such a polymer alloy has improved creep characteristics. Therefore, even if time elapses, the optical fiber 3 is less likely to be misaligned with respect to the internal fiber 10. Thereby, the connection loss of the optical fiber 3 can be suppressed.
  • both the base part 5 and the cover part 6 which comprise the fiber connection member 8 are the 1st thermoplastic resin and 1st thermoplastic resin which consist of a basic unit which has an aromatic ring and an ether bond.
  • the present invention is not limited to this, and at least one of the base portion 5 and the lid portion 6 may be formed of such a material.
  • the optical connector 1 of the above embodiment is a mechanical splice type optical connector that connects the optical fiber 3 to the built-in fiber 10.
  • the present invention introduces two optical fibers into the mechanical splice from both sides. It can also be applied to a type that is connected and fixed.
  • the present invention can be applied to an optical connector such as an MT connector ferrule or an optical positioning member in addition to a mechanical splice that mechanically connects and fixes optical fibers.
  • the present invention can be used for an optical connector for connecting optical fibers.
  • SYMBOLS 1 Optical connector, 2 ... Mechanical splice, 3 ... Optical fiber, 4 ... Fiber groove, 5 ... Base part, 6 ... Cover part, 8 ... Fiber connection member, 9 ... Ferrule, 10 ... Built-in fiber.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Mechanical Coupling Of Light Guides (AREA)

Abstract

An optical connector (1) is provided with a fibre connection member (8) for mechanically connecting optical fibres together. The fibre connection member (8) is provided with: a base part (5) provided with a fibre groove for accommodating an optical fibre (3); and a lid part (6) which presses the optical fibre (3) accommodated in the fibre groove, against the base part (5). The base part (5) and/or the lid part (6) are/is formed from a polymer alloy of: a first thermoplastic resin comprising basic units having an aromatic ring and an ether bond; and a second thermoplastic resin different to the first thermoplastic resin. The glass transition temperature of the polymer alloy is at least 140˚C.

Description

光接続器Optical connector
 本発明は、光ファイバ同士を接続するための光接続器に関するものである。 The present invention relates to an optical connector for connecting optical fibers.
 従来の光接続器として、例えば特許文献1に記載されている光コネクタが知られている。特許文献1に記載の光コネクタは、内蔵光ファイバを保持したフェルールと、このフェルールの接続端面と反対側に延出する接続機構(メカニカルスプライス)とを備えている。接続機構は、内蔵光ファイバに接続される光ファイバを位置決めする位置決め溝が形成されたベースと、このベースに対向する蓋部と、ベースと蓋部とを弾性的にクランプするC形の板バネとにより構成されている。 For example, an optical connector described in Patent Document 1 is known as a conventional optical connector. The optical connector described in Patent Document 1 includes a ferrule that holds a built-in optical fiber, and a connection mechanism (mechanical splice) that extends to the opposite side of the connection end surface of the ferrule. The connection mechanism includes a base in which a positioning groove for positioning the optical fiber connected to the built-in optical fiber is formed, a lid portion facing the base, and a C-shaped leaf spring that elastically clamps the base and the lid portion. It is comprised by.
特開2010-186058号公報JP 2010-186058 A
 上記特許文献1に記載の光コネクタを用いて、2本の光ファイバを接続する場合、まず、2本の光ファイバをベース部の位置決め溝に沿ってベース部と蓋部との隙間に挿入して、互いに突き合わせる。その後、C型バネの押圧力により当該隙間を閉じ、互いに突き合わされた状態の2本の光ファイバをベース部と蓋部とで押圧することにより固定する。このとき、時間の経過によって、ベース部及び蓋部を形成する材料のクリープ現象が進行することにより、光ファイバの位置がずれる場合がある。よって、接続された光ファイバ同士の軸ずれが発生するため接続ロスが大きくなり、結果的に通信品質を損なう虞がある。 When connecting two optical fibers using the optical connector described in Patent Document 1, first, the two optical fibers are inserted into the gap between the base portion and the lid portion along the positioning groove of the base portion. And match each other. Thereafter, the gap is closed by the pressing force of the C-type spring, and the two optical fibers in a state of being butted against each other are fixed by pressing them with the base portion and the lid portion. At this time, the position of the optical fiber may shift due to the progress of creep of the material forming the base portion and the lid portion over time. As a result, the axes of the connected optical fibers are misaligned, resulting in an increase in connection loss, and as a result, communication quality may be impaired.
 本発明の目的は、光ファイバ同士を機械的に接続する際に、光ファイバの接続ロスを抑制することができる光接続器を提供することである。 An object of the present invention is to provide an optical connector that can suppress connection loss of optical fibers when optical fibers are mechanically connected to each other.
 本発明に係る光接続器は、光ファイバ同士を機械的に接続するためのファイバ接続部材を備えた光接続器である。この光接続器において、ファイバ接続部材は、光ファイバを収容するファイバ溝を有するベース部と、ファイバ溝に収容された光ファイバをベース部に対して押さえる蓋部とを有している。ベース部及び蓋部の少なくとも一方は、芳香族環及びエーテル結合を有する基本単位からなる第1の熱可塑性樹脂と第1の熱可塑性樹脂とは異なる第2の熱可塑性樹脂とのポリマーアロイから形成されている。ポリマーアロイのガラス転移温度は140℃以上である。 The optical connector according to the present invention is an optical connector provided with a fiber connecting member for mechanically connecting optical fibers. In this optical connector, the fiber connection member has a base portion having a fiber groove that accommodates the optical fiber, and a lid portion that presses the optical fiber accommodated in the fiber groove against the base portion. At least one of the base portion and the lid portion is formed from a polymer alloy of a first thermoplastic resin composed of a basic unit having an aromatic ring and an ether bond and a second thermoplastic resin different from the first thermoplastic resin. Has been. The glass transition temperature of the polymer alloy is 140 ° C. or higher.
 本発明によれば、光ファイバ同士を機械的に接続する際に、光ファイバの接続ロスを抑制することができる。これにより、光ファイバ同士を機械的に接続する際に必要な特性を確保しつつ、光ファイバの信頼性を向上させることが可能となる。 According to the present invention, connection loss of optical fibers can be suppressed when optical fibers are mechanically connected. As a result, it is possible to improve the reliability of the optical fiber while ensuring the necessary characteristics when mechanically connecting the optical fibers.
図1は、光接続器の一実施形態を示す概略断面図である。FIG. 1 is a schematic cross-sectional view showing an embodiment of an optical connector. 図2は、図1に示したフェルール付きメカニカルスプライスの開閉状態を示す断面図である。FIG. 2 is a cross-sectional view showing an open / close state of the mechanical splice with a ferrule shown in FIG. 図3は、ポリマーアロイのガラス転移温度と初期ロスとの関係を示すグラフである。FIG. 3 is a graph showing the relationship between the glass transition temperature of the polymer alloy and the initial loss.
 [本願発明の実施形態の説明]
最初に本願発明の実施態様を列記して説明する。本発明の一側面に係る光接続器は、光ファイバ同士を機械的に接続するためのファイバ接続部材を備えた光接続器である。この光接続器において、ファイバ接続部材は、光ファイバを収容するファイバ溝を有するベース部と、ファイバ溝に収容された光ファイバをベース部に対して押さえる蓋部とを有している。ベース部及び蓋部の少なくとも一方は、芳香族環及びエーテル結合を有する基本単位からなる第1の熱可塑性樹脂と第1の熱可塑性樹脂とは異なる第2の熱可塑性樹脂とのポリマーアロイから形成されている。ポリマーアロイのガラス転移温度は140℃以上である。
[Description of Embodiment of Present Invention]
First, embodiments of the present invention will be listed and described. The optical connector which concerns on 1 side of this invention is an optical connector provided with the fiber connection member for connecting optical fibers mechanically. In this optical connector, the fiber connection member has a base portion having a fiber groove that accommodates the optical fiber, and a lid portion that presses the optical fiber accommodated in the fiber groove against the base portion. At least one of the base portion and the lid portion is formed from a polymer alloy of a first thermoplastic resin composed of a basic unit having an aromatic ring and an ether bond and a second thermoplastic resin different from the first thermoplastic resin. Has been. The glass transition temperature of the polymer alloy is 140 ° C. or higher.
 このような光接続器においては、ポリマーアロイのガラス転移温度が140℃以上と高いため、ポリマーアロイの荷重たわみ温度が高くなる。このため、ポリマーアロイは、高温時又は長時間の荷重負荷に対するクリープ現象が進行しにくい状態となる。従って、このようなポリマーアロイから形成されるファイバ接続部材のクリープ特性が改善される。即ち、ベース部及び蓋部におけるクリープ現象の進行が抑制され、ベース部及び蓋部における単位時間当たりのクリープ歪が小さくなる。よって、時間の経過により生じる光ファイバの軸ずれが抑えられるため、光ファイバの接続ロスを抑制することができる。 In such an optical connector, since the glass transition temperature of the polymer alloy is as high as 140 ° C. or higher, the deflection temperature under load of the polymer alloy becomes high. For this reason, a polymer alloy will be in the state which the creep phenomenon with respect to the load load of a high temperature or a long time does not advance easily. Accordingly, the creep characteristics of the fiber connecting member formed from such a polymer alloy are improved. That is, the progress of the creep phenomenon in the base portion and the lid portion is suppressed, and the creep strain per unit time in the base portion and the lid portion is reduced. Therefore, since the optical fiber misalignment caused by the passage of time can be suppressed, the connection loss of the optical fiber can be suppressed.
 一形態に係る光接続器では、第1の熱可塑性樹脂はポリフェニレンエーテル系樹脂であってもよい。ポリフェニレンエーテル系樹脂は、一般的なポリマーの中でも比較的耐熱性が高く、荷重たわみ温度も高い。このため、ポリフェニレンエーテル系樹脂は、ファイバ接続部材を形成するポリマーアロイとして使用することができる。 In the optical connector according to one aspect, the first thermoplastic resin may be a polyphenylene ether resin. Polyphenylene ether resins are relatively high in heat resistance among common polymers and have a high deflection temperature under load. For this reason, the polyphenylene ether resin can be used as a polymer alloy for forming a fiber connecting member.
 一形態に係る光接続器では、第2の熱可塑性樹脂はポリスチレン系樹脂又はポリフェニレンサルファイド系樹脂であってもよい。ポリスチレン系樹脂を加えて得られるポリマーアロイは、着色の容易さ、機械的性質のバランスの良さ、及び、難燃化改良の容易さ等に優れる。また、ポリスチレン系樹脂は、ポリフェニレンエーテル系樹脂と相溶性が良好である。従って、例えばポリスチレン系樹脂をポリフェニレンエーテル系樹脂に混合した場合、優れた成形性を損なうことなく、耐熱性又は機械的性質等の物性が補完されたポリマーアロイが得られる。また、ポリフェニレンサルファイド系樹脂を加えて得られるポリマーアロイは耐熱性に優れる。これにより、一層クリープ現象が進行しにくいポリマーアロイが得られる。よって、ファイバ接続部材を所望の物性を有するポリマーアロイから成形することができる。 In the optical connector according to one aspect, the second thermoplastic resin may be a polystyrene-based resin or a polyphenylene sulfide-based resin. A polymer alloy obtained by adding a polystyrene-based resin is excellent in ease of coloring, a good balance of mechanical properties, ease of flame retardancy improvement, and the like. In addition, the polystyrene resin has good compatibility with the polyphenylene ether resin. Therefore, for example, when a polystyrene-based resin is mixed with a polyphenylene ether-based resin, a polymer alloy in which physical properties such as heat resistance and mechanical properties are complemented without impairing excellent moldability can be obtained. In addition, a polymer alloy obtained by adding a polyphenylene sulfide resin is excellent in heat resistance. Thereby, a polymer alloy in which the creep phenomenon is more difficult to proceed can be obtained. Therefore, the fiber connecting member can be formed from a polymer alloy having desired physical properties.
 一形態に係る光接続器では、第1の熱可塑性樹脂及び第2の熱可塑性樹脂の合計に対する第1の熱可塑性樹脂の割合は、25重量%以上75重量%以下であってもよい。この場合、成形加工性に優れ、かつ、耐熱性又は機械的性質等の物性が補完されたポリマーアロイが得られる。よって、ファイバ接続部材を所望の物性を有するポリマーアロイから成形することができる。 In the optical connector according to one aspect, the ratio of the first thermoplastic resin to the total of the first thermoplastic resin and the second thermoplastic resin may be 25 wt% or more and 75 wt% or less. In this case, a polymer alloy excellent in molding processability and supplemented with physical properties such as heat resistance and mechanical properties can be obtained. Therefore, the fiber connecting member can be formed from a polymer alloy having desired physical properties.
 一形態に係る光接続器では、ポリマーアロイには、フィラーが10重量%以上添加されていてもよい。フィラーは、例えば、ガラス繊維からなる繊維状フィラーであってもよい。この場合、ポリマーアロイにガラス繊維が配合されることにより、ポリマーアロイの曲げ弾性率又は引抜特性といった物性が適切な値に制御されるため、ファイバ接続部材の剛性が確保される。 In the optical connector according to one embodiment, a filler may be added to the polymer alloy by 10% by weight or more. The filler may be, for example, a fibrous filler made of glass fiber. In this case, since the glass alloy is mixed with the polymer alloy, the physical properties such as the bending elastic modulus or the drawing property of the polymer alloy are controlled to an appropriate value, so that the rigidity of the fiber connecting member is ensured.
 一形態に係る光接続器では、ベース部には、光ファイバの一つを構成する内蔵光ファイバを保持するフェルールが固定されていてもよい。この場合、光接続器を現地付け光コネクタとして使用することができる。 In the optical connector according to one aspect, a ferrule that holds a built-in optical fiber constituting one of the optical fibers may be fixed to the base portion. In this case, the optical connector can be used as an on-site optical connector.
 [本願発明の実施形態の詳細]
以下、本発明に係る光接続器の実施形態について、図面を参照して詳細に説明する。
[Details of the embodiment of the present invention]
DESCRIPTION OF EMBODIMENTS Hereinafter, embodiments of an optical connector according to the present invention will be described in detail with reference to the drawings.
 図1は、本発明に係わる光接続器の一実施形態を示す概略断面図である。同図において、本実施形態の光接続器1は、メカニカルスプライス(Mechanical splice)型の光コネクタである。 FIG. 1 is a schematic sectional view showing an embodiment of an optical connector according to the present invention. In the figure, the optical connector 1 of this embodiment is a mechanical splice type optical connector.
 光接続器1は、光ファイバ同士を機械的に接続し、固定するフェルール付きメカニカルスプライス2と、このフェルール付きメカニカルスプライス2を覆うハウジング(図示せず)とを備えている。 The optical connector 1 includes a mechanical splice 2 with a ferrule that mechanically connects and fixes optical fibers, and a housing (not shown) that covers the mechanical splice 2 with a ferrule.
 フェルール付きメカニカルスプライス2は、図1及び図2の(a)に示されるように、光ファイバ3を位置決め及び収容する断面V字状のファイバ溝4を有するベース部5と、ファイバ溝4に収容された光ファイバ3をベース部5に対して押さえる蓋部6を有している。更に、メカニカルスプライス2は、ベース部5及び蓋部6を挟み込む断面U字状のクランプバネ7を有している。ベース部5及び蓋部6は、樹脂製のファイバ接続部材8を構成している。光ファイバ3の先端部分は、被覆除去されて裸ファイバ3aが露出している。裸ファイバ3aは、例えば石英ガラスで形成されている。 As shown in FIGS. 1 and 2A, the mechanical splice 2 with a ferrule is accommodated in the fiber groove 4 and a base portion 5 having a fiber groove 4 having a V-shaped cross section for positioning and accommodating the optical fiber 3. The optical fiber 3 has a lid portion 6 that presses against the base portion 5. Further, the mechanical splice 2 has a clamp spring 7 having a U-shaped cross section that sandwiches the base portion 5 and the lid portion 6. The base portion 5 and the lid portion 6 constitute a resin fiber connection member 8. The end portion of the optical fiber 3 is removed from the coating to expose the bare fiber 3a. The bare fiber 3a is made of, for example, quartz glass.
 ベース部5の前端部にはフェルール9が固定されている。フェルール9は、短尺状の内蔵ファイバ10を保持している。内蔵ファイバ10は、裸ファイバ3aと同じ構成であり、フェルール9の前端面(接続端面)からファイバ接続部材8のファイバ溝4まで延びている。 A ferrule 9 is fixed to the front end portion of the base portion 5. The ferrule 9 holds a short built-in fiber 10. The built-in fiber 10 has the same configuration as that of the bare fiber 3 a and extends from the front end surface (connection end surface) of the ferrule 9 to the fiber groove 4 of the fiber connection member 8.
 ファイバ接続部材8におけるベース部5と蓋部6との境界部分には、楔部材11が挿入される複数の楔挿入凹部12が設けられている。ファイバ接続部材8は、楔挿入凹部12の反対側からクランプバネ7に挟み込まれている。 A plurality of wedge insertion recesses 12 into which the wedge members 11 are inserted are provided at the boundary portion between the base portion 5 and the lid portion 6 in the fiber connection member 8. The fiber connection member 8 is sandwiched between the clamp springs 7 from the opposite side of the wedge insertion recess 12.
 このような光接続器1において、フェルール9に保持された内蔵ファイバ10に光ファイバ3を接続するときは、図2の(b)に示されるように、楔部材11をファイバ接続部材8の楔挿入凹部12に挿入する。これによりベース部5及び蓋部6がクランプバネ7の付勢力に抗して開いた状態となる。 In such an optical connector 1, when the optical fiber 3 is connected to the built-in fiber 10 held by the ferrule 9, the wedge member 11 is connected to the wedge of the fiber connection member 8 as shown in FIG. Insert into the insertion recess 12. As a result, the base portion 5 and the lid portion 6 are opened against the urging force of the clamp spring 7.
 そして、図1に示されるように、フェルール付きメカニカルスプライス2の後側から光ファイバ3をファイバ接続部材8内に導入し、光ファイバ3の先端面を内蔵ファイバ10に突き当てる。ファイバ接続部材8の内部には、光ファイバ3と内蔵ファイバ10との間での光学的な不連続性を無くすための屈折率整合剤Sが充填されている。 Then, as shown in FIG. 1, the optical fiber 3 is introduced into the fiber connecting member 8 from the rear side of the mechanical splice 2 with a ferrule, and the tip surface of the optical fiber 3 is abutted against the built-in fiber 10. The fiber connection member 8 is filled with a refractive index matching agent S for eliminating optical discontinuity between the optical fiber 3 and the built-in fiber 10.
 その状態で、図2の(c)に示されるように、楔部材11を楔挿入凹部12から抜去する。すると、ベース部5及び蓋部6がクランプバネ7の付勢力により閉じられ、光ファイバ3と内蔵ファイバ10とが屈折率整合剤Sを介して光学的に接続された状態で、両者がベース部5及び蓋部6により押圧固定されることとなる。 In this state, the wedge member 11 is removed from the wedge insertion recess 12 as shown in FIG. Then, the base portion 5 and the lid portion 6 are closed by the urging force of the clamp spring 7, and the optical fiber 3 and the built-in fiber 10 are optically connected via the refractive index matching agent S, and both are in the base portion. 5 and the lid 6 are pressed and fixed.
 ベース部5及び蓋部6は、芳香族環及びエーテル結合を有する基本単位からなる第1の熱可塑性樹脂と第1の熱可塑性樹脂とは異なる第2の熱可塑性樹脂とのポリマーアロイから形成されている。このポリマーアロイのガラス転移温度は140℃以上である。このガラス転移温度の上限は特に制限されないが、通常、200℃程度である。このポリマーアロイのガラス転移温度は、例えば140℃以上、190℃以下であることが好ましい。 The base portion 5 and the lid portion 6 are formed from a polymer alloy of a first thermoplastic resin composed of a basic unit having an aromatic ring and an ether bond and a second thermoplastic resin different from the first thermoplastic resin. ing. The glass transition temperature of this polymer alloy is 140 ° C. or higher. The upper limit of the glass transition temperature is not particularly limited, but is usually about 200 ° C. The glass transition temperature of this polymer alloy is preferably 140 ° C. or higher and 190 ° C. or lower, for example.
 第1の熱可塑性樹脂としては、ポリフェニレンエーテル(PPE)系樹脂を用いるのが好ましい。第2の熱可塑性樹脂としては、ポリスチレン(PS)系樹脂又はポリフェニレンサルファイド(PPS)系樹脂を用いるのが好ましい。さらに、第1の熱可塑性樹脂及び第2の熱可塑性樹脂に対する第1の熱可塑性樹脂の割合は、25重量%以上75重量%以下であることが好ましい。上記ポリマーアロイには、フィラーが10重量%以上添加されていることが好ましい。 As the first thermoplastic resin, it is preferable to use a polyphenylene ether (PPE) resin. As the second thermoplastic resin, it is preferable to use a polystyrene (PS) resin or a polyphenylene sulfide (PPS) resin. Furthermore, it is preferable that the ratio of the 1st thermoplastic resin with respect to a 1st thermoplastic resin and a 2nd thermoplastic resin is 25 to 75 weight%. It is preferable that 10% by weight or more of filler is added to the polymer alloy.
 ここで、主にポリフェニレンエーテルとポリスチレンとからなるポリマーアロイによりファイバ接続部材8を成形し、実際に各種特性の評価を行った。以下、その評価結果について述べる。 Here, the fiber connecting member 8 was formed by a polymer alloy mainly composed of polyphenylene ether and polystyrene, and various properties were actually evaluated. The evaluation results are described below.
 まず、ポリマーアロイのガラス転移温度、荷重たわみ温度、光ファイバの接続ロス、及びクリープ歪の関係について評価した。具体的には、ポリフェニレンエーテル及びポリスチレンに対するポリフェニレンエーテルの割合が異なる複数のポリマーアロイを成形した。これら複数のポリマーアロイからファイバ接続部材8を成形した。 First, the relationship between the glass transition temperature of the polymer alloy, the deflection temperature under load, the connection loss of the optical fiber, and the creep strain was evaluated. Specifically, a plurality of polymer alloys having different ratios of polyphenylene ether to polyphenylene ether and polystyrene were molded. A fiber connecting member 8 was formed from the plurality of polymer alloys.
 そして、ファイバ接続部材8のファイバ溝4に光ファイバ3をセットすることにより、蓋部6により光ファイバ3をベース部5に対して押さえた状態に組み立てた。その後、一度光ファイバ3のみを除去し、三日間経過した後に再び光ファイバ3をセットするとともに、波長1.31μmにて接続ロスの値を測定した。また、同じ環境条件に保持して三日間経過したファイバ接続部材8のクリープ歪を測定した。この測定によって得られた結果を図3及び表1に示す。 Then, by setting the optical fiber 3 in the fiber groove 4 of the fiber connection member 8, the optical fiber 3 was assembled against the base portion 5 by the lid portion 6. Thereafter, only the optical fiber 3 was removed once, and after 3 days, the optical fiber 3 was set again, and the connection loss value was measured at a wavelength of 1.31 μm. In addition, the creep strain of the fiber connection member 8 which was kept under the same environmental conditions and passed for 3 days was measured. The results obtained by this measurement are shown in FIG.
 ポリマーアロイのガラス転移温度(℃)、ポリマーアロイの荷重たわみ温度(℃)、ポリマーアロイの接続ロス、及びクリープ歪について、得られた結果を表1に示す。
Figure JPOXMLDOC01-appb-T000001
Table 1 shows the results obtained for the glass transition temperature (° C.) of the polymer alloy, the deflection temperature under load of the polymer alloy (° C.), the connection loss of the polymer alloy, and the creep strain.
Figure JPOXMLDOC01-appb-T000001
 表1に示されるように、ポリフェニレンエーテル及びポリスチレンに対するポリフェニレンエーテルの割合が異なる複数のポリマーアロイにおいて、以下のことが確認できた。ポリマーアロイのガラス転移温度が高くなるにつれ、当該ポリマーアロイの荷重たわみ温度が高くなることが確認できた。ポリマーアロイのガラス転移温度が高くなるにつれ、クリープ歪の値が小さくなることが確認できた。特に、ポリマーアロイのガラス転移温度が140℃以上の場合、クリープ歪の値が3.0より小さい値であることが確認できた。また、ポリマーアロイのガラス転移温度が140℃以上の場合、クリープ歪の値が3.0より小さい値であることが確認できた。 As shown in Table 1, the following could be confirmed in a plurality of polymer alloys having different ratios of polyphenylene ether to polyphenylene ether and polystyrene. It was confirmed that the deflection temperature under load of the polymer alloy increases as the glass transition temperature of the polymer alloy increases. It was confirmed that the creep strain value decreased as the glass transition temperature of the polymer alloy increased. In particular, when the glass transition temperature of the polymer alloy was 140 ° C. or higher, it was confirmed that the creep strain value was smaller than 3.0. Moreover, when the glass transition temperature of the polymer alloy was 140 ° C. or higher, it was confirmed that the creep strain value was smaller than 3.0.
 また、表1に示された結果のうち、ポリマーアロイのガラス転移温度(℃)と、当該ポリマーアロイから成形されたファイバ接続部材8を用いた光接続器1の接続ロスとの関係を図3に示す。 Further, among the results shown in Table 1, the relationship between the glass transition temperature (° C.) of the polymer alloy and the connection loss of the optical connector 1 using the fiber connection member 8 formed from the polymer alloy is shown in FIG. Shown in
 図3に示されたように、ガラス転移温度が140℃を超えた場合において、接続ロスが0.25dBを下回ることが確認できた。更に、ガラス転移温度が略160℃の場合において、接続ロスが0.17dBを下回ることが確認できた。すなわち、ガラス転移温度が略140℃以上160℃以下の場合において、接続ロスが抑制されることが分かった。 As shown in FIG. 3, when the glass transition temperature exceeded 140 ° C., it was confirmed that the connection loss was less than 0.25 dB. Furthermore, it was confirmed that the connection loss was less than 0.17 dB when the glass transition temperature was about 160 ° C. That is, it was found that the connection loss is suppressed when the glass transition temperature is approximately 140 ° C. or higher and 160 ° C. or lower.
 次に、ポリフェニレンエーテル及びポリスチレンに対するポリフェニレンエーテルの割合が異なる複数のポリマーアロイの特性について、複数種類のサンプルを用いて評価した。具体的には、ポリフェニレンエーテル及びポリスチレンに対するポリフェニレンエーテルの割合が異なる複数のポリマーアロイのサンプルを7つ用意し、各サンプルにおいて、成形性を評価するとともに、環境試験を行った。得られた結果を表2に示す。表2において、Aは全数良好、Bは全数不良、Cは良好と不良が混在した状態を示す。ここで、成形性が良好か否かの判定基準は、次のとおりである。所定の条件において成形を行った際の完成品の寸法誤差、即ち、設計値からのずれが所定値以下のものを良好とする。また、環境試験の結果における良好か否かの判定基準は、次の通りである。試験開始前の接続ロスに対し、試験中における接続ロスの変化量の最大値が0.4dB以下の場合を良好とする。なお、表1に示す接続ロスの評価結果から、ポリフェニレンエーテル及びポリスチレンに対するポリフェニレンエーテルの割合が40重要%~70重量%、30重量%~60重量%、及び、30重要%~70重量%のポリマーアロイは、ガラス転移温度が140℃以上であることが分かった。
Figure JPOXMLDOC01-appb-T000002
Next, the characteristics of a plurality of polymer alloys having different ratios of polyphenylene ether to polyphenylene ether and polystyrene were evaluated using a plurality of types of samples. Specifically, seven polymer alloy samples having different ratios of polyphenylene ether and polyphenylene ether to polystyrene were prepared, and in each sample, moldability was evaluated and an environmental test was performed. The obtained results are shown in Table 2. In Table 2, A is all good, B is all bad, and C is a state where good and bad are mixed. Here, the criteria for determining whether the moldability is good are as follows. A dimensional error of a finished product when molding is performed under a predetermined condition, that is, a deviation from a design value is not more than a predetermined value is determined as good. The criteria for determining whether or not the environmental test result is good are as follows. The case where the maximum value of the change amount of the connection loss during the test is 0.4 dB or less with respect to the connection loss before the start of the test is considered good. From the connection loss evaluation results shown in Table 1, polymers having a polyphenylene ether / polystyrene ratio of 40% to 70%, 30% to 60%, and 30% to 70% by weight based on polyphenylene ether and polystyrene are shown. The alloy was found to have a glass transition temperature of 140 ° C. or higher.
Figure JPOXMLDOC01-appb-T000002
 表2に示されるように、ポリフェニレンエーテル及びポリスチレンの合計に対するポリフェニレンエーテルの割合が25重量%以上かつ75重量%より少ない場合において、成形性がよいことが確認できた。また、ポリマーアロイのガラス転移温度が140℃以上の場合、ポリフェニレンエーテル及びポリスチレンに対するポリフェニレンエーテルの割合が25重量%以上75重量%以下、好ましくは、30重量%以上70重量%以下であれば、優れた成形加工性を保ちつつ、環境試験において良好な評価結果が得られた。 As shown in Table 2, it was confirmed that the moldability was good when the ratio of polyphenylene ether to the total of polyphenylene ether and polystyrene was 25% by weight or more and less than 75% by weight. Further, when the glass transition temperature of the polymer alloy is 140 ° C. or higher, the ratio of the polyphenylene ether to the polyphenylene ether and polystyrene is 25% by weight to 75% by weight, preferably 30% by weight to 70% by weight. Good evaluation results were obtained in an environmental test while maintaining good moldability.
 尚、上記環境試験は、以下に示す試験1~試験3を連続して行った。試験1(高温試験)は85℃の環境下に50時間保持した。試験2(湿熱試験)は60℃且つ湿度93%の環境下に50時間保持した。試験3(ヒートサイクル試験)は-40℃の環境下に1時間保持すること及び75℃の環境下に1時間保持することを交互に6回行った。試験3の終了後と試験1の開始前とにおいて接続ロスの変化量の最大値を評価した。 In addition, the above-described environmental test was performed continuously by the following Test 1 to Test 3. Test 1 (high temperature test) was held in an environment of 85 ° C. for 50 hours. Test 2 (wet heat test) was held for 50 hours in an environment of 60 ° C. and 93% humidity. In test 3 (heat cycle test), holding in an environment of −40 ° C. for 1 hour and holding in an environment of 75 ° C. for 1 hour were alternately performed 6 times. The maximum value of change in connection loss was evaluated after the end of Test 3 and before the start of Test 1.
 そして、繊維状のフィラーを添加したポリマーアロイの特性について評価した。具体的には、ポリフェニレンエーテル及びポリスチレンに対するポリフェニレンエーテルの割合が異なる複数のポリマーアロイに対して、ガラス繊維からなる繊維状のフィラーを添加した。ガラス状のフィラーを添加した場合及び繊維状のフィラーを添加しない場合において、曲げ弾性率及び引抜力を測定した。得られた結果を表3に示す。
Figure JPOXMLDOC01-appb-T000003
And the characteristic of the polymer alloy which added the fibrous filler was evaluated. Specifically, fibrous fillers made of glass fibers were added to a plurality of polymer alloys having different ratios of polyphenylene ether and polystyrene relative to polystyrene. The bending elastic modulus and pulling force were measured when a glassy filler was added and when a fibrous filler was not added. The obtained results are shown in Table 3.
Figure JPOXMLDOC01-appb-T000003
 表3に示されるように、繊維状のフィラーを添加したポリマーアロイは、曲げ弾性率の値が大きいこと及び引抜力の値が大きいことが確認できた。従って、ポリマーアロイに繊維状のフィラーを添加することにより、ポリマーアロイの剛性が確保されることが確認できた。 As shown in Table 3, it was confirmed that the polymer alloy to which the fibrous filler was added had a large flexural modulus value and a large pulling force value. Therefore, it was confirmed that the rigidity of the polymer alloy was ensured by adding a fibrous filler to the polymer alloy.
 なお、繊維状フィラーとして、チタン酸カリウムウィスカ(KTW)、KTWの他、ワラストナイト、ホウ酸アルミニウム、塩基性硫酸マグネシウム(MOS)、ゾノライト、酸化亜鉛等の針状フィラーを用いても良いし、また他の特性を付与するためにモース硬度が小さい板状又は球状のフィラーを加えても良い。モース硬度は、物質の硬さを表わす指標であり、鉱物同士を擦り付けて傷が付いたほうが硬度の小さい物質となる。 As the fibrous filler, in addition to potassium titanate whiskers (KTW) and KTW, needle fillers such as wollastonite, aluminum borate, basic magnesium sulfate (MOS), zonolite, and zinc oxide may be used. In order to impart other characteristics, a plate-like or spherical filler having a small Mohs hardness may be added. The Mohs hardness is an index representing the hardness of a substance, and a substance having a lower hardness is obtained when the minerals are rubbed against each other and scratched.
 また、繊維状フィラーとして、モース硬度が光ファイバ3を形成する石英ガラスよりも小さいもの、又はモース硬度が5よりも小さいものが用いられてもよい。この場合、繊維状フィラーが光ファイバに比べて十分軟らかくなるため、採用することができる。 Further, as the fibrous filler, those having a Mohs hardness smaller than that of quartz glass forming the optical fiber 3 or those having a Mohs hardness smaller than 5 may be used. In this case, the fibrous filler can be employed because it is sufficiently softer than the optical fiber.
 以上、本実施形態によれば、ガラス転移温度が高いポリマーアロイが形成され、優れた成形加工性を保ちつつ、耐熱性又は機械的性質等の物性が補完されたポリマーアロイが得られる。このようなポリマーアロイから形成されるファイバ接続部材8は、クリープ特性が改善される。従って、時間が経過しても光ファイバ3が内蔵ファイバ10に対して軸ずれしにくくなる。これにより、光ファイバ3の接続ロスを抑制することができる。 As described above, according to this embodiment, a polymer alloy having a high glass transition temperature is formed, and a polymer alloy in which physical properties such as heat resistance and mechanical properties are complemented while maintaining excellent molding processability is obtained. The fiber connection member 8 formed of such a polymer alloy has improved creep characteristics. Therefore, even if time elapses, the optical fiber 3 is less likely to be misaligned with respect to the internal fiber 10. Thereby, the connection loss of the optical fiber 3 can be suppressed.
 なお、本発明は、上記実施形態に限定されるものではない。例えば、上記実施形態では、ファイバ接続部材8を構成するベース部5及び蓋部6の両方を、芳香族環及びエーテル結合を有する基本単位からなる第1の熱可塑性樹脂と第1の熱可塑性樹脂とは異なる第2の熱可塑性樹脂とのポリマーアロイから形成したが、特にそれには限られず、ベース部5及び蓋部6の少なくとも一方を、そのような材料で形成してもよい。 Note that the present invention is not limited to the above embodiment. For example, in the said embodiment, both the base part 5 and the cover part 6 which comprise the fiber connection member 8 are the 1st thermoplastic resin and 1st thermoplastic resin which consist of a basic unit which has an aromatic ring and an ether bond. However, the present invention is not limited to this, and at least one of the base portion 5 and the lid portion 6 may be formed of such a material.
 また、上記実施形態の光接続器1は、光ファイバ3を内蔵ファイバ10に接続するメカニカルスプライス型の光コネクタであるが、本発明は、2本の光ファイバを両側からメカニカルスプライス内に導入して接続及び固定するタイプのものにも適用可能である。 The optical connector 1 of the above embodiment is a mechanical splice type optical connector that connects the optical fiber 3 to the built-in fiber 10. However, the present invention introduces two optical fibers into the mechanical splice from both sides. It can also be applied to a type that is connected and fixed.
 また、本発明は、光ファイバ同士を機械的に接続及び固定するメカニカルスプライス以外に、MTコネクタフェルール又は光学位置決め部材等の光接続器にも適用可能である。 Further, the present invention can be applied to an optical connector such as an MT connector ferrule or an optical positioning member in addition to a mechanical splice that mechanically connects and fixes optical fibers.
 本発明は、光ファイバ同士を接続する光接続器に用いることができる。 The present invention can be used for an optical connector for connecting optical fibers.
 1…光接続器、2…メカニカルスプライス、3…光ファイバ、4…ファイバ溝、5…ベース部、6…蓋部、8…ファイバ接続部材、9…フェルール、10…内蔵ファイバ。 DESCRIPTION OF SYMBOLS 1 ... Optical connector, 2 ... Mechanical splice, 3 ... Optical fiber, 4 ... Fiber groove, 5 ... Base part, 6 ... Cover part, 8 ... Fiber connection member, 9 ... Ferrule, 10 ... Built-in fiber.

Claims (6)

  1.  光ファイバ同士を機械的に接続するためのファイバ接続部材を備えた光接続器において、
     前記ファイバ接続部材は、前記光ファイバを収容するファイバ溝を有するベース部と、前記ファイバ溝に収容された前記光ファイバを前記ベース部に対して押さえる蓋部と、を有し、
     前記ベース部及び前記蓋部の少なくとも一方は、芳香族環及びエーテル結合を有する基本単位からなる第1の熱可塑性樹脂と前記第1の熱可塑性樹脂とは異なる第2の熱可塑性樹脂とのポリマーアロイから形成されており、
     前記ポリマーアロイのガラス転移温度は、140℃以上である、光接続器。
    In an optical connector provided with a fiber connection member for mechanically connecting optical fibers,
    The fiber connection member includes a base portion having a fiber groove that accommodates the optical fiber, and a lid portion that presses the optical fiber accommodated in the fiber groove against the base portion,
    At least one of the base part and the lid part is a polymer of a first thermoplastic resin comprising a basic unit having an aromatic ring and an ether bond and a second thermoplastic resin different from the first thermoplastic resin. Formed from alloys,
    The glass transition temperature of the said polymer alloy is an optical connector which is 140 degreeC or more.
  2.  前記第1の熱可塑性樹脂は、ポリフェニレンエーテル系樹脂である、請求項1記載の光接続器。 The optical connector according to claim 1, wherein the first thermoplastic resin is a polyphenylene ether resin.
  3.  前記第2の熱可塑性樹脂は、ポリスチレン系樹脂又はポリフェニレンサルファイド系樹脂である、請求項1又は2に記載の光接続器。 The optical connector according to claim 1 or 2, wherein the second thermoplastic resin is a polystyrene resin or a polyphenylene sulfide resin.
  4.  前記第1の熱可塑性樹脂及び前記第2の熱可塑性樹脂の合計に対する前記第1の熱可塑性樹脂の割合は、25重量%以上75重量%以下である、請求項2又は3に記載の光接続器。 The optical connection according to claim 2 or 3, wherein a ratio of the first thermoplastic resin to a total of the first thermoplastic resin and the second thermoplastic resin is 25% by weight or more and 75% by weight or less. vessel.
  5.  前記ポリマーアロイには、フィラーが10重量%以上添加されている、請求項1~4の何れか一項に記載の光接続器。 The optical connector according to any one of claims 1 to 4, wherein a filler is added to the polymer alloy in an amount of 10% by weight or more.
  6.  前記ベース部には、前記光ファイバの一つを構成する内蔵光ファイバを保持するフェルールが固定されている、請求項1~5の何れか一項に記載の光接続器。 6. The optical connector according to claim 1, wherein a ferrule that holds a built-in optical fiber that constitutes one of the optical fibers is fixed to the base portion.
PCT/JP2014/055673 2013-03-07 2014-03-05 Optical connector WO2014136848A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201480010367.XA CN105026967A (en) 2013-03-07 2014-03-05 Optical connector

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013045840 2013-03-07
JP2013-045840 2013-03-07

Publications (1)

Publication Number Publication Date
WO2014136848A1 true WO2014136848A1 (en) 2014-09-12

Family

ID=51491357

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/055673 WO2014136848A1 (en) 2013-03-07 2014-03-05 Optical connector

Country Status (3)

Country Link
JP (1) JP2014197188A (en)
CN (1) CN105026967A (en)
WO (1) WO2014136848A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113050223A (en) * 2019-12-26 2021-06-29 中兴通讯股份有限公司 Polymer waveguide connector, manufacturing method thereof and connector set

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01287605A (en) * 1988-01-15 1989-11-20 E I Du Pont De Nemours & Co Optical fiber connector assembly and manufacture thereof
JPH0519131A (en) * 1990-08-17 1993-01-29 Furukawa Electric Co Ltd:The Optical parts
JPH07278435A (en) * 1994-04-13 1995-10-24 Mitsubishi Chem Corp Thermoplastic resin composition
JPH07316419A (en) * 1994-05-24 1995-12-05 Otsuka Chem Co Ltd Polyphenylene ether/polyphenylene sulfide alloy resin composition
JPH1095926A (en) * 1996-09-25 1998-04-14 Nippon G Ii Plast Kk Resin composition
EP1039324A1 (en) * 1999-03-23 2000-09-27 W.L. GORE & ASSOCIATES GmbH Conductor guiding device for connector plug
JP2001302916A (en) * 2000-04-25 2001-10-31 Asahi Kasei Corp Polyphenylene sulfide based polymer alloy
JP2005082760A (en) * 2003-09-10 2005-03-31 Asahi Kasei Chemicals Corp Resin composition for precision molded article
JP2005264124A (en) * 2004-03-22 2005-09-29 Asahi Kasei Chemicals Corp Polyphenylene sulfide resin composition
JP2006291054A (en) * 2005-04-12 2006-10-26 Asahi Kasei Chemicals Corp Resin composition
JP2012014159A (en) * 2010-06-02 2012-01-19 Furukawa Electric Co Ltd:The Optical connector and jig for mounting optical fiber
JP2013003222A (en) * 2011-06-14 2013-01-07 Furukawa Electric Co Ltd:The Optical connector

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2231579T3 (en) * 2000-10-31 2005-05-16 Viasystems Group, Inc. FIBER OPTICAL CIURCUIT PLATE CONNECTOR.
GB0325697D0 (en) * 2003-11-04 2003-12-10 Tyco Electronics Raychem Nv Optical fibre connector
JP5034650B2 (en) * 2007-04-23 2012-09-26 住友電気工業株式会社 Optical fiber connector and optical cable
CN102558825A (en) * 2010-12-30 2012-07-11 合肥杰事杰新材料股份有限公司 Glass-fiber-reinforced polyphenylene oxide/polystyrene (PPO/PS) alloy composition and preparation method thereof

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01287605A (en) * 1988-01-15 1989-11-20 E I Du Pont De Nemours & Co Optical fiber connector assembly and manufacture thereof
JPH0519131A (en) * 1990-08-17 1993-01-29 Furukawa Electric Co Ltd:The Optical parts
JPH07278435A (en) * 1994-04-13 1995-10-24 Mitsubishi Chem Corp Thermoplastic resin composition
JPH07316419A (en) * 1994-05-24 1995-12-05 Otsuka Chem Co Ltd Polyphenylene ether/polyphenylene sulfide alloy resin composition
JPH1095926A (en) * 1996-09-25 1998-04-14 Nippon G Ii Plast Kk Resin composition
EP1039324A1 (en) * 1999-03-23 2000-09-27 W.L. GORE & ASSOCIATES GmbH Conductor guiding device for connector plug
JP2001302916A (en) * 2000-04-25 2001-10-31 Asahi Kasei Corp Polyphenylene sulfide based polymer alloy
JP2005082760A (en) * 2003-09-10 2005-03-31 Asahi Kasei Chemicals Corp Resin composition for precision molded article
JP2005264124A (en) * 2004-03-22 2005-09-29 Asahi Kasei Chemicals Corp Polyphenylene sulfide resin composition
JP2006291054A (en) * 2005-04-12 2006-10-26 Asahi Kasei Chemicals Corp Resin composition
JP2012014159A (en) * 2010-06-02 2012-01-19 Furukawa Electric Co Ltd:The Optical connector and jig for mounting optical fiber
JP2013003222A (en) * 2011-06-14 2013-01-07 Furukawa Electric Co Ltd:The Optical connector

Also Published As

Publication number Publication date
JP2014197188A (en) 2014-10-16
CN105026967A (en) 2015-11-04

Similar Documents

Publication Publication Date Title
US20080159696A1 (en) Optical Connector
JP5497332B2 (en) Optical connector
RU2451956C2 (en) Fibre-optic cable connector having removable fixing clamp
JP4048564B2 (en) Optical element coupling structure and optical fiber structure
JP7056871B2 (en) Optically coupled device with waveguide alignment
JP4660351B2 (en) Optical connector
US7583877B2 (en) Optical fiber, optical fiber connection structure and optical connector
WO2014136848A1 (en) Optical connector
JP5727266B2 (en) Optical connector
JP2008151931A (en) Ferrule for optical connector, optical connector and method for manufacturing optical connector
JP5074806B2 (en) Assembly method of mechanical splice
CN203025378U (en) Multipurpose optical fiber fixture, optical fiber cutter knife, and optical fiber splicing machine
KR101203170B1 (en) Optical connector for assembling in the field
WO2022260068A1 (en) Multicore optical connector ferrule and optical module
JP2007298783A (en) Optical fiber connector
JP6998855B2 (en) Optical connection parts
JP2008256866A (en) Mechanical splice and assembling method of mechanical splice
JP3282106B2 (en) Plastic split sleeve for optical connector and method of manufacturing the same
JP5041452B2 (en) Optical connector
Serin et al. Field Installable LC Connector and Mechanical Splice
JP3983377B2 (en) Optical fiber connector
WO2023074563A1 (en) Optical connector and plug
JP2007298784A (en) Optical fiber connector
JP4923294B2 (en) Mechanical splice
JP5815657B2 (en) Optical connector

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480010367.X

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14760859

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14760859

Country of ref document: EP

Kind code of ref document: A1