WO2014136618A1 - Apparatus for producing hydroxylammonium salt - Google Patents

Apparatus for producing hydroxylammonium salt Download PDF

Info

Publication number
WO2014136618A1
WO2014136618A1 PCT/JP2014/054535 JP2014054535W WO2014136618A1 WO 2014136618 A1 WO2014136618 A1 WO 2014136618A1 JP 2014054535 W JP2014054535 W JP 2014054535W WO 2014136618 A1 WO2014136618 A1 WO 2014136618A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas supply
acidic medium
reaction tank
reaction vessel
reaction
Prior art date
Application number
PCT/JP2014/054535
Other languages
French (fr)
Japanese (ja)
Inventor
浩三 大西
藤田 和夫
矢野 昌也
Original Assignee
住友化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友化学株式会社 filed Critical 住友化学株式会社
Publication of WO2014136618A1 publication Critical patent/WO2014136618A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B21/00Nitrogen; Compounds thereof
    • C01B21/082Compounds containing nitrogen and non-metals and optionally metals
    • C01B21/14Hydroxylamine; Salts thereof
    • C01B21/1409Preparation
    • C01B21/1418Preparation by catalytic reduction of nitrogen oxides or nitrates with hydrogen
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
    • B01J23/42Platinum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/54Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/56Platinum group metals

Definitions

  • the present invention relates to a production apparatus for producing a hydroxylammonium salt.
  • Hydroxyl ammonium salt is used as a raw material for producing cyclohexanone oxime for producing caprolactam, in addition to uses such as antioxidants, stabilizers, fiber dyes and analytical reagents.
  • Hydroxyl ammonium salt can be produced by reducing nitric oxide with hydrogen in an acidic medium such as an aqueous sulfuric acid solution in the presence of a catalyst (see Patent Document 1).
  • the reaction tank in which the reduction reaction is performed needs to be formed of a material having excellent sulfuric acid resistance.
  • Stainless steel such as SUS304 and SUS316, depending on the type, conditions, etc., at a temperature near room temperature (25 ° C.), sulfuric acid having a low concentration of 5 to 10% by mass and a high concentration of 90% by mass or more Has corrosion resistance.
  • Stainless steel has corrosion resistance to sulfuric acid in a wide temperature range and concentration range.
  • Examples of such materials include warsite (22Cr-22Ni-2.2Mo-1.6Cu), carpenter 20 (20Cr-29Ni-2.3Mo-3.5Cu), iridium R (22Cr-64Ni-4Mo-2.5Cu).
  • relatively low-cost DIN4577 25Cr-25Ni-2Mo-0.3Ti
  • DIN4577 25Cr-25Ni-2Mo-0.3Ti
  • DIN4577 25Cr-25Ni-2Mo-0.3Ti
  • an object of the present invention is to produce a hydroxylammonium salt in a production apparatus for producing a hydroxylammonium salt, in which the corrosion of the reaction tank in which the reduction reaction is performed is suppressed and the performance deterioration due to the corrosion is suppressed. It is providing the manufacturing apparatus which can do.
  • the present invention relates to a production apparatus for producing a hydroxylammonium salt by reducing nitric oxide with hydrogen in an acidic medium in the presence of a catalyst.
  • a reaction tank for storing an acidic medium in which a catalyst is dispersed, wherein at least a portion in contact with the acidic medium is formed from a duplex stainless steel;
  • a first gas supply unit for supplying nitric oxide to the reaction vessel;
  • a second gas supply unit for supplying hydrogen to the reaction vessel;
  • a temperature adjusting unit for adjusting the reaction vessel to a predetermined temperature.
  • the acidic medium is preferably sulfuric acid.
  • the duplex stainless steel is preferably a material containing, by mass, Cr: 23 to 30%, Ni: 3 to 8%, and Mo: 1 to 5%.
  • the predetermined temperature is preferably 30 to 50 ° C.
  • a production apparatus for producing a hydroxylammonium salt by reducing nitric oxide with hydrogen in an acidic medium in the presence of a catalyst.
  • the manufacturing apparatus includes a reaction tank, a first gas supply unit, a second gas supply unit, and a temperature adjustment unit.
  • the reaction tank stores an acidic medium in which a catalyst is dispersed, and a reduction reaction is performed. At least a portion in contact with the acidic medium is formed from duplex stainless steel.
  • the first gas supply unit supplies nitric oxide to the reaction tank, and the second gas supply unit supplies hydrogen to the reaction tank.
  • the temperature adjusting unit adjusts the reaction vessel to a predetermined temperature.
  • the acidic medium in which the catalyst is dispersed is stored, and in the reaction tank adjusted to a predetermined temperature by the temperature adjustment unit, the nitric oxide and the first gas supply unit and the second gas supply unit Hydrogen is supplied.
  • a reduction reaction for reducing nitric oxide with hydrogen is performed in the reaction vessel, and a hydroxylammonium salt can be produced.
  • the reaction tank in which such a reduction reaction is performed at least a portion that contacts the acidic medium is formed of duplex stainless steel, so that corrosion of the reaction tank due to the reduction reaction can be suppressed. Therefore, it is possible to produce a hydroxylammonium salt in which performance deterioration due to corrosion of the reaction vessel is suppressed.
  • the acidic medium is preferably sulfuric acid.
  • sulfuric acid As the acidic medium, hydroxylammonium sulfate can be produced as the hydroxylammonium salt.
  • sulfuric acid is used as the acidic medium, the corrosion of the reaction tank becomes significant, but even in such a case, at least the portion that contacts the acidic medium is formed by the duplex stainless steel. Corrosion of the reaction tank due to the reaction can be suppressed.
  • the duplex stainless steel is preferably a material containing, by mass, Cr: 23 to 30%, Ni: 3 to 8%, and Mo: 1 to 5%.
  • the duplex stainless steel having such a composition is a material having a high effect of suppressing corrosion due to a reduction reaction. Therefore, by using the duplex stainless steel having the above composition as the material constituting the reaction tank, corrosion of the reaction tank due to the reduction reaction can be suppressed over a long period of time.
  • the temperature adjusting unit adjusts the temperature of the reaction vessel during the reduction reaction to 30 to 50 ° C.
  • the effect of suppressing the corrosion due to the reduction reaction of the duplex stainless steel is more remarkable at 30 to 50 ° C. in a relatively low temperature range. Therefore, by adjusting the temperature of the reaction vessel to 30 to 50 ° C. during the reduction reaction, corrosion of the reaction vessel due to the reduction reaction can be suppressed over a long period of time.
  • FIG. 1 is a diagram showing a configuration of a manufacturing apparatus 100 according to an embodiment of the present invention.
  • the production apparatus 100 is an apparatus for producing a hydroxylammonium salt by reducing nitric oxide with hydrogen in an acidic medium in the presence of a catalyst.
  • the manufacturing apparatus 100 includes a reaction tank 1, a first gas supply unit 2, a second gas supply unit 3, and a temperature adjustment unit 4.
  • the reaction tank 1 stores an acidic medium in which a catalyst is dispersed, and a reduction reaction is performed. At least a portion in contact with the acidic medium is formed from duplex stainless steel.
  • the reaction vessel 1 may be entirely formed from duplex stainless steel, or only the inner layer portion may be formed from duplex stainless steel.
  • the reaction tank 1 is formed in a bottomed cylindrical shape (for example, a bottomed cylindrical shape), and includes a main body 12 that houses an acidic medium in which a catalyst is dispersed, and a lid that is detachably provided at an opening of the main body 12. Part 11.
  • a gas supply opening 121 is provided on the side wall of the main body 12.
  • the gas supply opening 121 forms an opening through which nitrogen monoxide derived from the first gas supply unit 2 described later and hydrogen derived from the second gas supply unit 3 are supplied into the reaction tank 1. .
  • Nitric oxide and hydrogen supplied from the gas supply opening 121 are injected into an acidic medium accommodated in the main body 12 and in which the catalyst is dispersed.
  • the lid portion 11 is provided with an exhaust gas opening 111.
  • the exhaust gas opening 111 forms an opening for discharging the exhaust gas generated when the reduction reaction of nitrogen monoxide with hydrogen is performed in the reaction tank 1 to the outside of the reaction tank 1.
  • the reaction tank 1 is provided with a stirring unit 13 for stirring the acidic medium accommodated in the main body unit 12.
  • the stirring portion 13 is provided at a rod-shaped shaft portion 131 provided through the lid portion 11, a stirring blade 132 fixed to one end portion of the shaft portion 131, and the other end portion of the shaft portion 131.
  • a stirring drive unit 133 that rotates 131.
  • the stirring blade 132 rotates as the shaft portion 131 is rotated by the stirring driving unit 133, thereby stirring the acidic medium accommodated in the main body unit 12.
  • the catalyst is dispersed in the acidic medium.
  • the pressure in the reaction tank 1 is normally maintained at atmospheric pressure, but is maintained at a pressure of 4 MPa or less. Also good.
  • a mineral acid such as sulfuric acid, nitric acid, hydrochloric acid, or phosphoric acid is used as the acidic medium stored in the reaction tank 1 and coexisting in the reduction reaction.
  • the concentration of the free acid is preferably 0.1 to 5N.
  • sulfuric acid is preferable among the mineral acids.
  • hydroxylammonium sulfate can be produced as the hydroxylammonium salt.
  • examples of the catalyst used in the reduction reaction include platinum catalysts supported on a support such as graphite, activated carbon, silica, and alumina.
  • a platinum catalyst can be prepared by using a thiosulfate such as sodium thiosulfate or a mixture of thiosulfate and an alkali metal sulfide such as sodium sulfide as described in JP-A-1-15956. It is preferable to use a catalyst prepared by reducing a platinum compound in the presence of a support.
  • the hydroxylammonium salt can be obtained with high selectivity even if the catalyst is used as it is, but further reduction may be carried out with a reducing agent.
  • a reducing agent hydrogen, alcohol, formic acid, hydrazine or the like is used.
  • a method of reducing a platinum compound in the presence of the third component metal salt may be applied.
  • metal salts such as gold, silver, iridium, mercury, lead, arsenic, antimony, bismuth, selenium or tellurium are used.
  • salts of various metals hydrochloride, nitrate, sulfate and the like are used. The amount used is not particularly limited, but is selected from the range of 0.001 to 0.2 in terms of the atomic ratio of metal to platinum.
  • the first gas supply unit 2 derives nitric oxide and supplies the derived nitric oxide to the reaction tank 1.
  • the 1st piping 5 in which the 1st flow control part 51 and the 2nd flow control part 52 were provided is connected.
  • the first flow rate adjustment unit 51 is arranged on the first gas supply unit 2 side
  • the second flow rate adjustment unit 52 is arranged on the reaction tank 1 side.
  • the flow rate of the nitric oxide derived from the first gas supply unit 2 is adjusted by the first flow rate adjustment unit 51 and the second flow rate adjustment unit 52 and flows through the first pipe 5.
  • the second gas supply unit 3 derives hydrogen and supplies the derived hydrogen to the reaction tank 1. Between the 2nd gas supply part 3 and the 1st piping 5, the 2nd piping 6 in which the 3rd flow volume adjustment part 61 was provided is connected. In the second pipe 6, one end is connected to the second gas supply unit 3, and the other end is connected between the first flow rate adjustment unit 51 and the second flow rate adjustment unit 52 in the first pipe 5.
  • the hydrogen derived from the second gas supply unit 3 has its flow rate adjusted by the third flow rate adjustment unit 61 and flows through the second pipe 6, and further flows into the first pipe 5 from the other end of the second pipe 6. And flows through the first pipe 5 and is supplied into the reaction tank 1 through the gas supply opening 121.
  • nitrogen monoxide derived from the first gas supply unit 2 and hydrogen derived from the second gas supply unit 3 are mixed in the first pipe 5 to supply gas. It is supplied into the reaction tank 1 through the opening 121.
  • the temperature adjusting unit 4 is provided so as to cover the main body 12 of the reaction vessel 1 from the outside, and adjusts the reaction vessel 1 to a predetermined temperature.
  • the temperature adjustment unit 4 preferably adjusts the temperature (reaction temperature) of the reaction vessel 1 during the reduction reaction of nitric oxide with hydrogen to 30 to 50 ° C.
  • the effect of suppressing the corrosion due to the reduction reaction of the duplex stainless steel is more remarkable at 30 to 50 ° C. in a relatively low temperature range. Therefore, by adjusting the temperature of the reaction tank 1 to 30 to 50 ° C. during the reduction reaction, corrosion of the reaction tank 1 due to the reduction reaction can be suppressed over a long period of time.
  • the acidic medium in which the catalyst is dispersed is stored, and nitrogen monoxide is supplied by the first gas supply unit 2 into the reaction tank 1 adjusted to a predetermined temperature by the temperature adjustment unit 4. Then, hydrogen is supplied by the second gas supply unit 3.
  • the reduction reaction which reduces nitric oxide with hydrogen is performed in the reaction tank 1, and a hydroxylammonium salt can be manufactured.
  • the reaction tank 1 in which such a reduction reaction is performed at least a portion in contact with the acidic medium is formed of duplex stainless steel, so that corrosion of the reaction tank 1 due to the reduction reaction can be suppressed. Therefore, a hydroxylammonium salt in which performance deterioration due to corrosion of the reaction tank 1 is suppressed can be produced.
  • reaction vessel 1 As described above, in the reaction vessel 1, at least a portion in contact with the acidic medium is formed from duplex stainless steel.
  • the duplex stainless steel constituting the reaction tank 1 is preferably a material containing Cr: 23 to 30%, Ni: 3 to 8%, and Mo: 1 to 5%.
  • Examples of the duplex stainless steel having such a composition include SAF2507, SAF2707, and DP-3.
  • the duplex stainless steel having the above composition is a material having a high effect of suppressing corrosion due to a reduction reaction. Therefore, by using the duplex stainless steel having the above composition as the material constituting the reaction tank 1, corrosion of the reaction tank 1 due to the reduction reaction can be suppressed over a long period of time.
  • the corrosion resistance of such duplex stainless steel is based on the following experimental results.
  • test piece (size: 40 mm x 40 mm x 2 mm) of each steel material shown in Table 1 was installed in the reaction tank 1 for one year.
  • Table 1 shows the composition of each steel material used in the experiment in mass%.
  • the duplex stainless steel SAF2507 used as a test piece is in mass%, C: 0.016%, S: 0.00. Contains 0002%, Cr: 24.64%, Ni: 6.76%, Mo: 3.78%, Cu: 0.095%, N: 0.25%, the balance being the composition of Fe and inevitable impurities It has a steel material.
  • the duplex stainless steel SAF2707 is, in mass%, C: 0.014%, S: 0.0005%, Cr: 26.49%, Ni: 6.48%, Mo: 4.81%, N: The steel material contains 0.41%, Co: 0.94%, and the balance is the composition of Fe and inevitable impurities.
  • duplex stainless steel DP-3 is, by mass%, C: 0.034%, S: 0.011%, Cr: 25.04%, Ni: 6.9%, Mo: 3.35%, It is a steel material containing Cu: 0.56%, N: 0.142%, W: 0.2%, and the balance having a composition of Fe and inevitable impurities.
  • the first corrosion rate (g ⁇ m ⁇ 2 ⁇ h ⁇ 1 ) was calculated from the weight loss (g), the surface area of the test piece (m 2 ), and the test time (h). A value obtained by multiplying the first corrosion rate by (8.76 / density) was calculated as a second corrosion rate (mm ⁇ yr ⁇ 1 ).
  • the duplex stainless steels SAF2507, SAF2707, and DP-3 have a smaller weight loss and a lower corrosion rate than other steel materials.
  • the duplex stainless steel is a material having a high anti-corrosion effect during the reduction reaction of nitrogen monoxide with hydrogen. Therefore, by using duplex stainless steel as a material constituting the reaction tank 1, corrosion of the reaction tank 1 due to a reduction reaction can be suppressed over a long period of time.

Abstract

The present invention is a production apparatus for producing a hydroxylammonium salt, whereby it becomes possible to prevent the corrosion of a reaction vessel in which a reduction reaction is to be carried out and therefore it becomes possible to produce a hydroxylammonium salt that does not undergo the deterioration in performance which is caused by the aforementioned corrosion. A production apparatus (100) according to the present invention is an apparatus for producing a hydroxylammonium salt by reducing nitrogen monoxide with hydrogen in an acidic medium in the presence of a catalyst. The production apparatus (100) is equipped with a reaction vessel (1), a first gas supply section (2), a second gas supply section (3) and a temperature control section (4). The reaction vessel (1) is so adapted as to store an acidic medium in which a catalyst is dispersed, and is also so adapted that a reduction reaction can be carried out therein. In the reaction vessel (1), at least a part which contacts with the acidic medium is formed from a two-phase stainless steel. The first gas supply section (2) can supply nitrogen monoxide to the reaction vessel (1), and the second gas supply section (3) can supply hydrogen to the reaction vessel (1). The temperature control section (4) can adjust the temperature in the reaction vessel (1) to a predetermined temperature.

Description

ヒドロキシルアンモニウム塩の製造装置Hydroxyl ammonium salt production equipment
 本発明は、ヒドロキシルアンモニウム塩を製造するための製造装置に関する。 The present invention relates to a production apparatus for producing a hydroxylammonium salt.
 ヒドロキシルアンモニウム塩は、酸化防止剤、安定剤、繊維の染色剤、分析試薬等の用途のほか、カプロラクタムを製造するためのシクロヘキサノンオキシムの製造原料として利用される。 Hydroxyl ammonium salt is used as a raw material for producing cyclohexanone oxime for producing caprolactam, in addition to uses such as antioxidants, stabilizers, fiber dyes and analytical reagents.
 ヒドロキシルアンモニウム塩は、触媒の存在下に、たとえば硫酸水溶液等の酸性媒体中で一酸化窒素を水素で還元することによって製造することができる(特許文献1参照)。 Hydroxyl ammonium salt can be produced by reducing nitric oxide with hydrogen in an acidic medium such as an aqueous sulfuric acid solution in the presence of a catalyst (see Patent Document 1).
 たとえば、酸性媒体として硫酸が用いられ、ヒドロキシルアンモニウム塩としてヒドロキシルアンモニウム硫酸塩を製造する場合、還元反応が行われる反応槽は、耐硫酸性に優れた材料によって形成される必要がある。 For example, when sulfuric acid is used as the acidic medium and hydroxylammonium sulfate is produced as the hydroxylammonium salt, the reaction tank in which the reduction reaction is performed needs to be formed of a material having excellent sulfuric acid resistance.
 SUS304やSUS316等のステンレス鋼は、その種類、条件等にもよるが、常温(25℃)付近の温度で、5~10質量%の低濃度および90質量%以上の高濃度の硫酸には、耐食性を有している。 Stainless steel such as SUS304 and SUS316, depending on the type, conditions, etc., at a temperature near room temperature (25 ° C.), sulfuric acid having a low concentration of 5 to 10% by mass and a high concentration of 90% by mass or more Has corrosion resistance.
 Si、MoやCuの含有量が高い材料を用いることによって、耐食性を有する硫酸の濃度範囲が広がり、高NiでMo、Cuを含有する主要成分が18Cr-18Ni-2Mo-2Cu(数値は質量%を表し、残部はFeおよび不可避不純物である。)であるステンレス鋼は、広い温度範囲、濃度範囲で硫酸に対する耐食性を有している。 By using a material having a high content of Si, Mo and Cu, the concentration range of sulfuric acid having corrosion resistance is expanded, and the main component containing Mo and Cu at high Ni is 18Cr-18Ni-2Mo-2Cu (the numerical value is mass% The remainder is Fe and inevitable impurities.) Stainless steel has corrosion resistance to sulfuric acid in a wide temperature range and concentration range.
 このような材料として、ウォーサイト(22Cr-22Ni-2.2Mo-1.6Cu)、カーペンター20(20Cr-29Ni-2.3Mo-3.5Cu)、イリウムR(22Cr-64Ni-4Mo-2.5Cu)等が挙げられるが、50℃以下の低温度の硫酸に対しては比較的安価なDIN4577(25Cr-25Ni-2Mo-0.3Ti)が使用可能である。なお、「DIN」はドイツ工業規格を表す記号である。 Examples of such materials include warsite (22Cr-22Ni-2.2Mo-1.6Cu), carpenter 20 (20Cr-29Ni-2.3Mo-3.5Cu), iridium R (22Cr-64Ni-4Mo-2.5Cu). However, relatively low-cost DIN4577 (25Cr-25Ni-2Mo-0.3Ti) can be used for sulfuric acid having a low temperature of 50 ° C. or lower. “DIN” is a symbol representing the German Industrial Standard.
特開平8-34610号公報JP-A-8-34610
 しかしながら、ヒドロキシルアンモニウム塩を製造する際に、還元反応が行われる反応槽として、DIN4577によって形成される反応槽を用いた場合、長期間にわたって使用していると、理由は定かではないが、使用条件の振れによって耐食性を有する境界の濃度、温度に近づくためか、腐食が発生していることがある。このようにして反応槽に腐食が発生した場合、その腐食に起因して、製造目的物であるヒドロキシルアンモニウム塩の性能劣化に繋がるおそれがある。 However, when producing a hydroxylammonium salt, when a reaction vessel formed by DIN4577 is used as a reaction vessel in which a reduction reaction is performed, the reason is not clear if it is used over a long period of time. Corrosion may occur due to the approaching concentration and temperature of the boundary having corrosion resistance due to the fluctuation of the surface. Thus, when corrosion generate | occur | produces in a reaction tank, it may lead to the performance deterioration of the hydroxylammonium salt which is a manufacturing target object resulting from the corrosion.
 したがって本発明の目的は、ヒドロキシルアンモニウム塩を製造するための製造装置において、還元反応が行われる反応槽の腐食を抑制し、その腐食に起因した性能劣化が抑制されたヒドロキシルアンモニウム塩を製造することができる製造装置を提供することである。 Therefore, an object of the present invention is to produce a hydroxylammonium salt in a production apparatus for producing a hydroxylammonium salt, in which the corrosion of the reaction tank in which the reduction reaction is performed is suppressed and the performance deterioration due to the corrosion is suppressed. It is providing the manufacturing apparatus which can do.
 本発明は、触媒の存在下に酸性媒体中で一酸化窒素を水素で還元することによってヒドロキシルアンモニウム塩を製造するための製造装置において、
 触媒が分散された酸性媒体を貯留する反応槽であって、少なくとも酸性媒体と接触する部分が二相ステンレス鋼から形成される反応槽と、
 前記反応槽に一酸化窒素を供給する第1気体供給部と、
 前記反応槽に水素を供給する第2気体供給部と、
 前記反応槽を、所定の温度に調整する温度調整部と、を備えることを特徴とするヒドロキシルアンモニウム塩の製造装置である。
 また本発明において、前記酸性媒体は、硫酸であることが好ましい。
The present invention relates to a production apparatus for producing a hydroxylammonium salt by reducing nitric oxide with hydrogen in an acidic medium in the presence of a catalyst.
A reaction tank for storing an acidic medium in which a catalyst is dispersed, wherein at least a portion in contact with the acidic medium is formed from a duplex stainless steel;
A first gas supply unit for supplying nitric oxide to the reaction vessel;
A second gas supply unit for supplying hydrogen to the reaction vessel;
And a temperature adjusting unit for adjusting the reaction vessel to a predetermined temperature.
In the present invention, the acidic medium is preferably sulfuric acid.
 また本発明において、前記二相ステンレス鋼は、質量%で、Cr:23~30%、Ni:3~8%、Mo:1~5%を含有する材料であることが好ましい。 In the present invention, the duplex stainless steel is preferably a material containing, by mass, Cr: 23 to 30%, Ni: 3 to 8%, and Mo: 1 to 5%.
 また本発明において、前記所定の温度は、30~50℃であることが好ましい。 In the present invention, the predetermined temperature is preferably 30 to 50 ° C.
 本発明によれば、触媒の存在下に酸性媒体中で一酸化窒素を水素で還元することによってヒドロキシルアンモニウム塩を製造するための製造装置である。この製造装置は、反応槽と、第1気体供給部と、第2気体供給部と、温度調整部とを備える。反応槽は、触媒が分散された酸性媒体を貯留し、還元反応が行われるものであり、少なくとも酸性媒体と接触する部分が二相ステンレス鋼から形成されている。第1気体供給部は、反応槽に一酸化窒素を供給し、第2気体供給部は、反応槽に水素を供給する。温度調整部は、反応槽を所定の温度に調整する。 According to the present invention, there is provided a production apparatus for producing a hydroxylammonium salt by reducing nitric oxide with hydrogen in an acidic medium in the presence of a catalyst. The manufacturing apparatus includes a reaction tank, a first gas supply unit, a second gas supply unit, and a temperature adjustment unit. The reaction tank stores an acidic medium in which a catalyst is dispersed, and a reduction reaction is performed. At least a portion in contact with the acidic medium is formed from duplex stainless steel. The first gas supply unit supplies nitric oxide to the reaction tank, and the second gas supply unit supplies hydrogen to the reaction tank. The temperature adjusting unit adjusts the reaction vessel to a predetermined temperature.
 本発明の製造装置では、触媒が分散された酸性媒体が貯留され、温度調整部によって所定の温度に調整された反応槽内に、第1気体供給部および第2気体供給部によって一酸化窒素および水素が供給される。これによって、一酸化窒素を水素で還元する還元反応が反応槽内で行われ、ヒドロキシルアンモニウム塩を製造することができる。このような還元反応が行われる反応槽において、少なくとも酸性媒体と接触する部分が二相ステンレス鋼によって形成されているので、還元反応による反応槽の腐食を抑制することができる。そのため、反応槽の腐食に起因した性能劣化が抑制されたヒドロキシルアンモニウム塩を製造することができる。 In the production apparatus of the present invention, the acidic medium in which the catalyst is dispersed is stored, and in the reaction tank adjusted to a predetermined temperature by the temperature adjustment unit, the nitric oxide and the first gas supply unit and the second gas supply unit Hydrogen is supplied. Thereby, a reduction reaction for reducing nitric oxide with hydrogen is performed in the reaction vessel, and a hydroxylammonium salt can be produced. In the reaction tank in which such a reduction reaction is performed, at least a portion that contacts the acidic medium is formed of duplex stainless steel, so that corrosion of the reaction tank due to the reduction reaction can be suppressed. Therefore, it is possible to produce a hydroxylammonium salt in which performance deterioration due to corrosion of the reaction vessel is suppressed.
 また本発明によれば、酸性媒体は硫酸であることが好ましい。酸性媒体として硫酸を用いることによって、ヒドロキシルアンモニウム塩としてヒドロキシルアンモニウム硫酸塩を製造することができる。酸性媒体として硫酸を用いた場合には、反応槽の腐食が顕著になるが、このような場合であっても、少なくとも酸性媒体と接触する部分が二相ステンレス鋼によって形成されているので、還元反応による反応槽の腐食を抑制することができる。 Also according to the invention, the acidic medium is preferably sulfuric acid. By using sulfuric acid as the acidic medium, hydroxylammonium sulfate can be produced as the hydroxylammonium salt. When sulfuric acid is used as the acidic medium, the corrosion of the reaction tank becomes significant, but even in such a case, at least the portion that contacts the acidic medium is formed by the duplex stainless steel. Corrosion of the reaction tank due to the reaction can be suppressed.
 また本発明によれば、二相ステンレス鋼は、質量%で、Cr:23~30%、Ni:3~8%、Mo:1~5%を含有する材料であることが好ましい。このような組成の二相ステンレス鋼は、還元反応による腐食の抑制効果が高い材料である。そのため、反応槽を構成する材料として、上記組成の二相ステンレス鋼を用いることによって、長期間にわたって、還元反応による反応槽の腐食を抑制することができる。 Further, according to the present invention, the duplex stainless steel is preferably a material containing, by mass, Cr: 23 to 30%, Ni: 3 to 8%, and Mo: 1 to 5%. The duplex stainless steel having such a composition is a material having a high effect of suppressing corrosion due to a reduction reaction. Therefore, by using the duplex stainless steel having the above composition as the material constituting the reaction tank, corrosion of the reaction tank due to the reduction reaction can be suppressed over a long period of time.
 また本発明によれば、温度調整部は、還元反応時における反応槽の温度を、30~50℃に調整することが好ましい。二相ステンレス鋼の、還元反応による腐食の抑制効果は、比較的低温度範囲の30~50℃でより顕著である。そのため、還元反応時において反応槽の温度が30~50℃に調整されることによって、長期間にわたって、還元反応による反応槽の腐食を抑制することができる。 Further, according to the present invention, it is preferable that the temperature adjusting unit adjusts the temperature of the reaction vessel during the reduction reaction to 30 to 50 ° C. The effect of suppressing the corrosion due to the reduction reaction of the duplex stainless steel is more remarkable at 30 to 50 ° C. in a relatively low temperature range. Therefore, by adjusting the temperature of the reaction vessel to 30 to 50 ° C. during the reduction reaction, corrosion of the reaction vessel due to the reduction reaction can be suppressed over a long period of time.
 本発明の目的、特色、および利点は、下記の詳細な説明と図面とからより明確になるであろう。 The objects, features and advantages of the present invention will become more apparent from the following detailed description and drawings.
本発明の実施形態に係る製造装置100の構成を示す図である。It is a figure which shows the structure of the manufacturing apparatus 100 which concerns on embodiment of this invention.
 以下図面を参考にして本発明の好適な実施形態を詳細に説明する。
 図1は、本発明の実施形態に係る製造装置100の構成を示す図である。製造装置100は、触媒の存在下に酸性媒体中で一酸化窒素を水素で還元することによってヒドロキシルアンモニウム塩を製造するための装置である。
Preferred embodiments of the present invention will be described below in detail with reference to the drawings.
FIG. 1 is a diagram showing a configuration of a manufacturing apparatus 100 according to an embodiment of the present invention. The production apparatus 100 is an apparatus for producing a hydroxylammonium salt by reducing nitric oxide with hydrogen in an acidic medium in the presence of a catalyst.
 製造装置100は、反応槽1と、第1気体供給部2と、第2気体供給部3と、温度調整部4とを備える。 The manufacturing apparatus 100 includes a reaction tank 1, a first gas supply unit 2, a second gas supply unit 3, and a temperature adjustment unit 4.
 反応槽1は、触媒が分散された酸性媒体を貯留し、還元反応が行われるものであり、少なくとも酸性媒体と接触する部分が二相ステンレス鋼から形成されている。反応槽1は、全体が二相ステンレス鋼から形成されていてもよいし、内層部分のみが二相ステンレス鋼から形成されていてもよい。この反応槽1は、有底筒状(たとえば、有底円筒状)に形成され、触媒が分散された酸性媒体を収容する本体部12と、本体部12の開口部に着脱自在に設けられる蓋部11とを備える。 The reaction tank 1 stores an acidic medium in which a catalyst is dispersed, and a reduction reaction is performed. At least a portion in contact with the acidic medium is formed from duplex stainless steel. The reaction vessel 1 may be entirely formed from duplex stainless steel, or only the inner layer portion may be formed from duplex stainless steel. The reaction tank 1 is formed in a bottomed cylindrical shape (for example, a bottomed cylindrical shape), and includes a main body 12 that houses an acidic medium in which a catalyst is dispersed, and a lid that is detachably provided at an opening of the main body 12. Part 11.
 反応槽1において本体部12の側壁部には、気体供給開口部121が設けられている。この気体供給開口部121は、後述する第1気体供給部2から導出された一酸化窒素、および第2気体供給部3から導出された水素が、反応槽1内に供給される開口を形成する。気体供給開口部121から供給される一酸化窒素および水素は、本体部12内に収容された、触媒が分散された酸性媒体中に注入される。 In the reaction tank 1, a gas supply opening 121 is provided on the side wall of the main body 12. The gas supply opening 121 forms an opening through which nitrogen monoxide derived from the first gas supply unit 2 described later and hydrogen derived from the second gas supply unit 3 are supplied into the reaction tank 1. . Nitric oxide and hydrogen supplied from the gas supply opening 121 are injected into an acidic medium accommodated in the main body 12 and in which the catalyst is dispersed.
 また、反応槽1において蓋部11には、排ガス開口部111が設けられている。この排ガス開口部111は、水素による一酸化窒素の還元反応が反応槽1内で行われたときに発生する排ガスを、反応槽1外に放出するための開口を形成する。 Further, in the reaction tank 1, the lid portion 11 is provided with an exhaust gas opening 111. The exhaust gas opening 111 forms an opening for discharging the exhaust gas generated when the reduction reaction of nitrogen monoxide with hydrogen is performed in the reaction tank 1 to the outside of the reaction tank 1.
 また、反応槽1には、本体部12内に収容される酸性媒体を撹拌するための撹拌部13が設けられている。撹拌部13は、蓋部11を貫通して設けられる棒状の軸部131と、軸部131の一方端部に固定される撹拌羽根132と、軸部131の他方端部に設けられ、軸部131を回転させる撹拌駆動部133とを備える。撹拌部13では、撹拌駆動部133によって軸部131が回転することにともなって撹拌羽根132が回転し、これによって本体部12内に収容される酸性媒体を撹拌する。この撹拌部13による酸性媒体の撹拌によって、酸性媒体中に触媒が分散された状態になる。 Further, the reaction tank 1 is provided with a stirring unit 13 for stirring the acidic medium accommodated in the main body unit 12. The stirring portion 13 is provided at a rod-shaped shaft portion 131 provided through the lid portion 11, a stirring blade 132 fixed to one end portion of the shaft portion 131, and the other end portion of the shaft portion 131. And a stirring drive unit 133 that rotates 131. In the stirring unit 13, the stirring blade 132 rotates as the shaft portion 131 is rotated by the stirring driving unit 133, thereby stirring the acidic medium accommodated in the main body unit 12. By stirring the acidic medium by the stirring unit 13, the catalyst is dispersed in the acidic medium.
 さらにまた、水素による一酸化窒素の還元反応が反応槽1内で行われるときには、反応槽1内の圧力は、通常大気圧に保持されるが、4MPa以下の加圧下に保持されるようにしてもよい。 Furthermore, when the reduction reaction of nitric oxide with hydrogen is performed in the reaction tank 1, the pressure in the reaction tank 1 is normally maintained at atmospheric pressure, but is maintained at a pressure of 4 MPa or less. Also good.
 ここで、反応槽1内に貯留され、還元反応時に共存させる酸性媒体としては、硫酸、硝酸、塩酸、またはリン酸等の鉱酸が使用される。遊離酸の濃度としては、0.1~5Nであることが好ましい。酸性媒体としては、前記の鉱酸の中でも、硫酸であることが好ましい。酸性媒体として硫酸を用いることによって、ヒドロキシルアンモニウム塩としてヒドロキシルアンモニウム硫酸塩を製造することができる。酸性媒体として硫酸を用いた場合には、反応槽1の腐食が顕著になるが、このような場合であっても、少なくとも酸性媒体と接触する部分が二相ステンレス鋼によって形成されているので、還元反応による反応槽1の腐食を抑制することができる。 Here, a mineral acid such as sulfuric acid, nitric acid, hydrochloric acid, or phosphoric acid is used as the acidic medium stored in the reaction tank 1 and coexisting in the reduction reaction. The concentration of the free acid is preferably 0.1 to 5N. As the acidic medium, sulfuric acid is preferable among the mineral acids. By using sulfuric acid as the acidic medium, hydroxylammonium sulfate can be produced as the hydroxylammonium salt. When sulfuric acid is used as the acidic medium, the corrosion of the reaction tank 1 becomes significant, but even in such a case, at least a portion in contact with the acidic medium is formed of the duplex stainless steel. Corrosion of the reaction tank 1 due to the reduction reaction can be suppressed.
 また、還元反応時に使用する触媒としては、グラファイト、活性炭、シリカ、アルミナ等の担体上に担持された白金触媒を挙げることができる。かかる白金触媒としては、特開平1-159056号公報に記載されているような、チオ硫酸ナトリウム等のチオ硫酸塩、または、チオ硫酸塩と硫化ナトリウム等のアルカリ金属硫化物との混合物により、触媒担体の存在下に白金化合物を還元処理して調製された触媒を使用することが好ましい。 Further, examples of the catalyst used in the reduction reaction include platinum catalysts supported on a support such as graphite, activated carbon, silica, and alumina. Such a platinum catalyst can be prepared by using a thiosulfate such as sodium thiosulfate or a mixture of thiosulfate and an alkali metal sulfide such as sodium sulfide as described in JP-A-1-15956. It is preferable to use a catalyst prepared by reducing a platinum compound in the presence of a support.
 触媒はこのままでもヒドロキシルアンモニウム塩を高選択率で得ることができるが、還元剤により、さらに仕上げの還元を実施してもよい。還元剤としては、水素、アルコール、蟻酸、ヒドラジン等が使用される。また、第三成分金属塩の存在下に白金化合物を還元する方法を適用してもよい。第三成分としては、金、銀、イリジウム、水銀、鉛、砒素、アンチモン、ビスマス、セレンまたはテルル等の金属の塩類が使用される。各種金属の塩類としては、塩酸塩、硝酸塩、硫酸塩等が使用される。使用される量は特に制限されないが、白金に対し金属の原子比で0.001~0.2の範囲から選ばれる。 The hydroxylammonium salt can be obtained with high selectivity even if the catalyst is used as it is, but further reduction may be carried out with a reducing agent. As the reducing agent, hydrogen, alcohol, formic acid, hydrazine or the like is used. Further, a method of reducing a platinum compound in the presence of the third component metal salt may be applied. As the third component, metal salts such as gold, silver, iridium, mercury, lead, arsenic, antimony, bismuth, selenium or tellurium are used. As salts of various metals, hydrochloride, nitrate, sulfate and the like are used. The amount used is not particularly limited, but is selected from the range of 0.001 to 0.2 in terms of the atomic ratio of metal to platinum.
 第1気体供給部2は、一酸化窒素を導出し、その導出した一酸化窒素を反応槽1に供給する。第1気体供給部2と反応槽1の気体供給開口部121との間には、第1流量調節部51および第2流量調節部52が設けられた第1配管5が接続されている。第1配管5において、第1流量調節部51は第1気体供給部2側に配置され、第2流量調節部52は反応槽1側に配置されている。第1気体供給部2から導出された一酸化窒素は、第1流量調節部51および第2流量調節部52によって流量が調節されて第1配管5内を流過し、気体供給開口部121を介して反応槽1内に供給される。 The first gas supply unit 2 derives nitric oxide and supplies the derived nitric oxide to the reaction tank 1. Between the 1st gas supply part 2 and the gas supply opening part 121 of the reaction tank 1, the 1st piping 5 in which the 1st flow control part 51 and the 2nd flow control part 52 were provided is connected. In the first pipe 5, the first flow rate adjustment unit 51 is arranged on the first gas supply unit 2 side, and the second flow rate adjustment unit 52 is arranged on the reaction tank 1 side. The flow rate of the nitric oxide derived from the first gas supply unit 2 is adjusted by the first flow rate adjustment unit 51 and the second flow rate adjustment unit 52 and flows through the first pipe 5. Through the reaction tank 1.
 第2気体供給部3は、水素を導出し、その導出した水素を反応槽1に水素を供給する。第2気体供給部3と第1配管5との間には、第3流量調節部61が設けられた第2配管6が接続されている。第2配管6において、一端部は第2気体供給部3に接続され、他端部は第1配管5における第1流量調節部51と第2流量調節部52との間に接続されている。第2気体供給部3から導出された水素は、第3流量調節部61によって流量が調節されて第2配管6内を流過し、さらに第2配管6の他端部から第1配管5内に流れ込んで、その第1配管5内を流過し、気体供給開口部121を介して反応槽1内に供給される。 The second gas supply unit 3 derives hydrogen and supplies the derived hydrogen to the reaction tank 1. Between the 2nd gas supply part 3 and the 1st piping 5, the 2nd piping 6 in which the 3rd flow volume adjustment part 61 was provided is connected. In the second pipe 6, one end is connected to the second gas supply unit 3, and the other end is connected between the first flow rate adjustment unit 51 and the second flow rate adjustment unit 52 in the first pipe 5. The hydrogen derived from the second gas supply unit 3 has its flow rate adjusted by the third flow rate adjustment unit 61 and flows through the second pipe 6, and further flows into the first pipe 5 from the other end of the second pipe 6. And flows through the first pipe 5 and is supplied into the reaction tank 1 through the gas supply opening 121.
 本実施形態の製造装置100では、第1気体供給部2から導出された一酸化窒素と、第2気体供給部3から導出された水素とが、第1配管5内において混合されて、気体供給開口部121を介して反応槽1内に供給される。反応槽1内に供給される一酸化窒素と水素とのモル比は、一酸化窒素:水素=1:1~1:6の範囲、好ましくは1:1.5~1:5の範囲である。 In the manufacturing apparatus 100 of the present embodiment, nitrogen monoxide derived from the first gas supply unit 2 and hydrogen derived from the second gas supply unit 3 are mixed in the first pipe 5 to supply gas. It is supplied into the reaction tank 1 through the opening 121. The molar ratio of nitric oxide and hydrogen supplied into the reaction tank 1 is in the range of nitric oxide: hydrogen = 1: 1 to 1: 6, preferably 1: 1.5 to 1: 5. .
 温度調整部4は、反応槽1の本体部12を外方から覆うように設けられ、反応槽1を所定の温度に調整する。温度調整部4は、水素による一酸化窒素の還元反応時における反応槽1の温度(反応温度)を、30~50℃に調整することが好ましい。二相ステンレス鋼の、還元反応による腐食の抑制効果は、比較的低温度範囲の30~50℃でより顕著である。そのため、還元反応時において反応槽1の温度が30~50℃に調整されることによって、長期間にわたって、還元反応による反応槽1の腐食を抑制することができる。 The temperature adjusting unit 4 is provided so as to cover the main body 12 of the reaction vessel 1 from the outside, and adjusts the reaction vessel 1 to a predetermined temperature. The temperature adjustment unit 4 preferably adjusts the temperature (reaction temperature) of the reaction vessel 1 during the reduction reaction of nitric oxide with hydrogen to 30 to 50 ° C. The effect of suppressing the corrosion due to the reduction reaction of the duplex stainless steel is more remarkable at 30 to 50 ° C. in a relatively low temperature range. Therefore, by adjusting the temperature of the reaction tank 1 to 30 to 50 ° C. during the reduction reaction, corrosion of the reaction tank 1 due to the reduction reaction can be suppressed over a long period of time.
 本実施形態の製造装置100では、触媒が分散された酸性媒体が貯留され、温度調整部4によって所定の温度に調整された反応槽1内に、第1気体供給部2によって一酸化窒素が供給され、第2気体供給部3によって水素が供給される。これによって、一酸化窒素を水素で還元する還元反応が反応槽1内で行われ、ヒドロキシルアンモニウム塩を製造することができる。このような還元反応が行われる反応槽1において、少なくとも酸性媒体と接触する部分が二相ステンレス鋼によって形成されているので、還元反応による反応槽1の腐食を抑制することができる。そのため、反応槽1の腐食に起因した性能劣化が抑制されたヒドロキシルアンモニウム塩を製造することができる。 In the manufacturing apparatus 100 of this embodiment, the acidic medium in which the catalyst is dispersed is stored, and nitrogen monoxide is supplied by the first gas supply unit 2 into the reaction tank 1 adjusted to a predetermined temperature by the temperature adjustment unit 4. Then, hydrogen is supplied by the second gas supply unit 3. Thereby, the reduction reaction which reduces nitric oxide with hydrogen is performed in the reaction tank 1, and a hydroxylammonium salt can be manufactured. In the reaction tank 1 in which such a reduction reaction is performed, at least a portion in contact with the acidic medium is formed of duplex stainless steel, so that corrosion of the reaction tank 1 due to the reduction reaction can be suppressed. Therefore, a hydroxylammonium salt in which performance deterioration due to corrosion of the reaction tank 1 is suppressed can be produced.
 次に、反応槽1を構成する材料について説明する。前述したように、反応槽1は、少なくとも酸性媒体と接触する部分が二相ステンレス鋼から形成されている。 Next, materials constituting the reaction tank 1 will be described. As described above, in the reaction vessel 1, at least a portion in contact with the acidic medium is formed from duplex stainless steel.
 反応槽1を構成する二相ステンレス鋼は、Cr:23~30%、Ni:3~8%、Mo:1~5%を含有する材料であることが好ましい。このような組成の二相ステンレス鋼としては、たとえば、SAF2507、SAF2707、およびDP-3などを挙げることができる。上記組成の二相ステンレス鋼は、還元反応による腐食の抑制効果が高い材料である。そのため、反応槽1を構成する材料として、上記組成の二相ステンレス鋼を用いることによって、長期間にわたって、還元反応による反応槽1の腐食を抑制することができる。このような二相ステンレス鋼の耐腐食性は、以下の実験結果に基づくものである。 The duplex stainless steel constituting the reaction tank 1 is preferably a material containing Cr: 23 to 30%, Ni: 3 to 8%, and Mo: 1 to 5%. Examples of the duplex stainless steel having such a composition include SAF2507, SAF2707, and DP-3. The duplex stainless steel having the above composition is a material having a high effect of suppressing corrosion due to a reduction reaction. Therefore, by using the duplex stainless steel having the above composition as the material constituting the reaction tank 1, corrosion of the reaction tank 1 due to the reduction reaction can be suppressed over a long period of time. The corrosion resistance of such duplex stainless steel is based on the following experimental results.
 (実験条件)
 図1に示される製造装置100を、以下の条件で稼働させた。
  ・酸性媒体:0.3~4.6N硫酸
  ・触媒:白金触媒
  ・反応槽1の温度:40~45℃
(Experimental conditions)
The manufacturing apparatus 100 shown in FIG. 1 was operated under the following conditions.
・ Acid medium: 0.3-4.6N sulfuric acid ・ Catalyst: Platinum catalyst ・ Reactor 1 temperature: 40-45 ° C.
 そして、反応槽1内に、表1に示される各鋼材の試験片(大きさ:40mm×40mm×2mm)を1年間設置した。 And the test piece (size: 40 mm x 40 mm x 2 mm) of each steel material shown in Table 1 was installed in the reaction tank 1 for one year.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1は、実験に用いた各鋼材の組成を質量%で示すものであり、たとえば、試験片として用いた二相ステンレス鋼SAF2507は、質量%で、C:0.016%、S:0.0002%、Cr:24.64%、Ni:6.76%、Mo:3.78%、Cu:0.095%、N:0.25%を含有し、残部がFeおよび不可避不純物の組成を有する鋼材である。また、二相ステンレス鋼SAF2707は、質量%で、C:0.014%、S:0.0005%、Cr:26.49%、Ni:6.48%、Mo:4.81%、N:0.41%、Co:0.94%を含有し、残部がFeおよび不可避不純物の組成を有する鋼材である。また、二相ステンレス鋼DP-3は、質量%で、C:0.034%、S:0.011%、Cr:25.04%、Ni:6.9%、Mo:3.35%、Cu:0.56%、N:0.142%、W:0.2%を含有し、残部がFeおよび不可避不純物の組成を有する鋼材である。 Table 1 shows the composition of each steel material used in the experiment in mass%. For example, the duplex stainless steel SAF2507 used as a test piece is in mass%, C: 0.016%, S: 0.00. Contains 0002%, Cr: 24.64%, Ni: 6.76%, Mo: 3.78%, Cu: 0.095%, N: 0.25%, the balance being the composition of Fe and inevitable impurities It has a steel material. Further, the duplex stainless steel SAF2707 is, in mass%, C: 0.014%, S: 0.0005%, Cr: 26.49%, Ni: 6.48%, Mo: 4.81%, N: The steel material contains 0.41%, Co: 0.94%, and the balance is the composition of Fe and inevitable impurities. Further, the duplex stainless steel DP-3 is, by mass%, C: 0.034%, S: 0.011%, Cr: 25.04%, Ni: 6.9%, Mo: 3.35%, It is a steel material containing Cu: 0.56%, N: 0.142%, W: 0.2%, and the balance having a composition of Fe and inevitable impurities.
 (評価方法)
 反応槽1内に1年間設置した後の各鋼材の試験片について、重量減少および腐食速度を評価した。
(Evaluation methods)
About the test piece of each steel material after installing in the reaction tank 1 for one year, weight reduction and the corrosion rate were evaluated.
 <重量減少>
 実験前後の重量測定結果より、各鋼材の試験片の重量減少(g)を算出した。
<Weight reduction>
The weight reduction (g) of the test piece of each steel material was calculated from the weight measurement results before and after the experiment.
 <腐食速度>
 重量減少(g)、試験片の表面積(m)、および試験時間(h)より、第1腐食速度(g・m-2・h-1)を算出した。また、前記第1腐食速度に(8.76/密度)を乗じた値を、第2腐食速度(mm・yr-1)として算出した。
<Corrosion rate>
The first corrosion rate (g · m −2 · h −1 ) was calculated from the weight loss (g), the surface area of the test piece (m 2 ), and the test time (h). A value obtained by multiplying the first corrosion rate by (8.76 / density) was calculated as a second corrosion rate (mm · yr −1 ).
 (実験結果)
 実験結果を表2に示す。
(Experimental result)
The experimental results are shown in Table 2.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 表2の実験結果から明らかなように、二相ステンレス鋼であるSAF2507、SAF2707、およびDP-3は、他の鋼材に比べて、重量減少が小さく、かつ腐食速度が低減されている。 As is clear from the experimental results in Table 2, the duplex stainless steels SAF2507, SAF2707, and DP-3 have a smaller weight loss and a lower corrosion rate than other steel materials.
 この結果より、二相ステンレス鋼は、水素による一酸化窒素の還元反応時の腐食抑制効果が高い材料であることがわかる。そのため、反応槽1を構成する材料として、二相ステンレス鋼を用いることによって、長期間にわたって、還元反応による反応槽1の腐食を抑制することができる。 From this result, it can be seen that the duplex stainless steel is a material having a high anti-corrosion effect during the reduction reaction of nitrogen monoxide with hydrogen. Therefore, by using duplex stainless steel as a material constituting the reaction tank 1, corrosion of the reaction tank 1 due to a reduction reaction can be suppressed over a long period of time.
 本発明は前述の実施形態に限定されるものではなく、本発明の要旨を逸脱しない範囲において種々の変形や変更が可能である。さらに、請求の範囲に属する変形や変更は全て本発明の範囲内のものである。 The present invention is not limited to the above-described embodiment, and various modifications and changes can be made without departing from the scope of the present invention. Further, all modifications and changes belonging to the claims are within the scope of the present invention.
 1 反応槽
 2 第1気体供給部
 3 第2気体供給部
 4 温度調整部
 5 第1配管
 6 第2配管
 11 蓋部
 12 本体部
 13 撹拌部
 51 第1流量調節部
 52 第2流量調節部
 61 第3流量調節部
 100 製造装置
 111 排ガス開口部
 121 気体供給開口部
 131 軸部
 132 撹拌羽根
 133 撹拌駆動部
DESCRIPTION OF SYMBOLS 1 Reaction tank 2 1st gas supply part 3 2nd gas supply part 4 Temperature adjustment part 5 1st piping 6 2nd piping 11 Cover part 12 Main body part 13 Stirring part 51 1st flow control part 52 2nd flow control part 61 1st 3 Flow Control Unit 100 Manufacturing Device 111 Exhaust Gas Opening Portion 121 Gas Supply Opening Portion 131 Shaft Portion 132 Stirring Blade 133 Stirring Driving Unit

Claims (4)

  1.  触媒の存在下に酸性媒体中で一酸化窒素を水素で還元することによってヒドロキシルアンモニウム塩を製造するための製造装置において、
     触媒が分散された酸性媒体を貯留する反応槽であって、少なくとも酸性媒体と接触する部分が二相ステンレス鋼から形成される反応槽と、
     前記反応槽に一酸化窒素を供給する第1気体供給部と、
     前記反応槽に水素を供給する第2気体供給部と、
     前記反応槽を、所定の温度に調整する温度調整部と、を備えることを特徴とするヒドロキシルアンモニウム塩の製造装置。
    In a production apparatus for producing a hydroxylammonium salt by reducing nitric oxide with hydrogen in an acidic medium in the presence of a catalyst,
    A reaction tank for storing an acidic medium in which a catalyst is dispersed, wherein at least a portion in contact with the acidic medium is formed from a duplex stainless steel;
    A first gas supply unit for supplying nitric oxide to the reaction vessel;
    A second gas supply unit for supplying hydrogen to the reaction vessel;
    An apparatus for producing a hydroxylammonium salt, comprising: a temperature adjusting unit that adjusts the reaction tank to a predetermined temperature.
  2.  前記酸性媒体は、硫酸であることを特徴とする請求項1に記載のヒドロキシルアンモニウム塩の製造装置。 The apparatus for producing hydroxylammonium salt according to claim 1, wherein the acidic medium is sulfuric acid.
  3.  前記二相ステンレス鋼は、Cr:23~30%、Ni:3~8%、Mo:1~5%を含有する材料であることを特徴とする請求項1または2に記載のヒドロキシルアンモニウム塩の製造装置。 3. The hydroxylammonium salt according to claim 1, wherein the duplex stainless steel is a material containing Cr: 23 to 30%, Ni: 3 to 8%, and Mo: 1 to 5%. Manufacturing equipment.
  4.  前記所定の温度は、30~50℃であることを特徴とする請求項1~3のいずれか1つに記載のヒドロキシルアンモニウム塩の製造装置。 The apparatus for producing a hydroxylammonium salt according to any one of claims 1 to 3, wherein the predetermined temperature is 30 to 50 ° C.
PCT/JP2014/054535 2013-03-08 2014-02-25 Apparatus for producing hydroxylammonium salt WO2014136618A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-047017 2013-03-08
JP2013047017A JP2014172786A (en) 2013-03-08 2013-03-08 Apparatus for producing hydroxylammonium salt

Publications (1)

Publication Number Publication Date
WO2014136618A1 true WO2014136618A1 (en) 2014-09-12

Family

ID=51491139

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/054535 WO2014136618A1 (en) 2013-03-08 2014-02-25 Apparatus for producing hydroxylammonium salt

Country Status (2)

Country Link
JP (1) JP2014172786A (en)
WO (1) WO2014136618A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5454999A (en) * 1977-09-27 1979-05-01 Basf Ag Preparation of hydroxyammoniun salts
JPS5532792A (en) * 1978-08-17 1980-03-07 Stamicarbon Preparing hydroxyl amine
JP2011127186A (en) * 2009-12-18 2011-06-30 Sumitomo Metal Ind Ltd Duplex stainless steel for urea production plant, and urea production plant

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5454999A (en) * 1977-09-27 1979-05-01 Basf Ag Preparation of hydroxyammoniun salts
JPS5532792A (en) * 1978-08-17 1980-03-07 Stamicarbon Preparing hydroxyl amine
JP2011127186A (en) * 2009-12-18 2011-06-30 Sumitomo Metal Ind Ltd Duplex stainless steel for urea production plant, and urea production plant

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
"Niso Stainless Hagane Kako Manual - SECOND EDITION", 2009, pages 6, 13 *
"Niso-kei Stainless Hagane SUS329J4L", SANYO TECHNICAL REPORT, vol. 16, no. 1, 2009, pages 81 - 83 *

Also Published As

Publication number Publication date
JP2014172786A (en) 2014-09-22

Similar Documents

Publication Publication Date Title
Love et al. The catalytic decomposition of ammonia over iron synthetic ammonia catalysts
CA3028948C (en) Austenitic alloy material and austenitic alloy pipe
HU228480B1 (en) Catalyst for decomposing nitrous oxide and method for performing processes comprising formation of nitrous oxide
JP7448474B2 (en) Duplex stainless steels and their uses
Loto Effect of elevated temperature variations on the corrosion resistance of S31603 and SS2562 austenitic stainless steels in chloride-sulphate environments
JP2002059176A (en) Treatment of water containing organic waste water by ammonium nitrate
WO2014136618A1 (en) Apparatus for producing hydroxylammonium salt
CN103140275A (en) Catalyst for direct decomposition of nitric oxide and method of manufacturing the catalyst
Haycock High‐Temperature Sulfiding of Iron Alloys in Hydrogen Sulfide‐Hydrogen Mixtures
Suresh et al. Corrosion assessment of type 304L stainless steel in nitric acid
JP4991175B2 (en) Hydrogen production method and hydrogen production apparatus
JP2008144237A (en) gamma&#39; PHASE STRENGTHENED FeNi BASED ALLOY
UA97368C2 (en) Steel composition with high conditions of high-temperature corrosion by oxidizing environments (variants) and its use, seamless pipe or armature is formed of this steel
JP2018015746A (en) Han-based propellant decomposition catalyst, method of producing the same, and monopropellant thruster employing the same
EP1849769A2 (en) Process for producing methionine
US5569334A (en) Stainless steel member for semiconductor fabrication equipment and surface treatment method therefor
CN106311228A (en) Silver catalyst, preparation method thereof and application thereof
US5843394A (en) Catalyst for the oxidation of gaseous sulphur compounds
JP2009542907A (en) Use of austenitic stainless steel and electrolytic cells made from such steel
JP6844486B2 (en) Manufacturing method of austenite alloy material
Ved et al. Electrodeposition of functional cobalt-silver and cobalt-tungsten alloys
Mikhalenko et al. Characteristics of hydrogen sorption/desorption for palladium foil doped by yttrium
CN101745392B (en) Catalyst composition for preparing hydroxylammonium salt
JP2009047543A (en) Zirconium crucible
JPH0770730A (en) Pitting corrosion resistant stainless steel

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14759443

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14759443

Country of ref document: EP

Kind code of ref document: A1