WO2014136574A1 - Method for concentrating microalga culture fluid and apparatus therefor - Google Patents

Method for concentrating microalga culture fluid and apparatus therefor Download PDF

Info

Publication number
WO2014136574A1
WO2014136574A1 PCT/JP2014/053868 JP2014053868W WO2014136574A1 WO 2014136574 A1 WO2014136574 A1 WO 2014136574A1 JP 2014053868 W JP2014053868 W JP 2014053868W WO 2014136574 A1 WO2014136574 A1 WO 2014136574A1
Authority
WO
WIPO (PCT)
Prior art keywords
microalgae
light
culture solution
wavelength
light irradiation
Prior art date
Application number
PCT/JP2014/053868
Other languages
French (fr)
Japanese (ja)
Inventor
橋本 和仁
龍平 中村
英史 大岡
巌 上田
整 松田
Original Assignee
国立大学法人 東京大学
Jx日鉱日石エネルギー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人 東京大学, Jx日鉱日石エネルギー株式会社 filed Critical 国立大学法人 東京大学
Publication of WO2014136574A1 publication Critical patent/WO2014136574A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M33/00Means for introduction, transport, positioning, extraction, harvesting, peeling or sampling of biological material in or from the apparatus
    • C12M33/22Settling tanks; Sedimentation by gravity
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M21/00Bioreactors or fermenters specially adapted for specific uses
    • C12M21/02Photobioreactors
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M31/00Means for providing, directing, scattering or concentrating light
    • C12M31/02Means for providing, directing, scattering or concentrating light located outside the reactor
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • C12N1/02Separating microorganisms from their culture media
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • C12N1/12Unicellular algae; Culture media therefor
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N13/00Treatment of microorganisms or enzymes with electrical or wave energy, e.g. magnetism, sonic waves

Definitions

  • the present invention relates to a method and apparatus for concentrating a microalgae culture solution containing microalgae.
  • microalgae In addition to being able to be used as a dietary supplement and supplement material, microalgae can be used as a biofuel material because it produces oil and fat when growing by immobilizing CO 2 by photosynthesis. , Attention is growing. In order to use such microalgae, it is necessary to separate and extract the microalgae from the microalgae culture solution containing the microalgae after culturing the microalgae.
  • a method for separating microalgae from a microalgae culture solution for example, a method of separating by forming a floc of microalgae by sedimentation by adding a flocculant and a method of performing centrifugation using a centrifuge are known. It has been.
  • Patent Document 1 JP-A-7-289240.
  • This publication states that “in the light irradiation tank 16 provided with the light source 18, the algal culture solution is irradiated with light having a light intensity stronger than the optimal light intensity for the growth of the algae, thereby improving the sedimentation properties of the alga bodies. Is separated from the culture medium ”(see summary).
  • the sedimentation separation method using a flocculant not only increases the running cost, but the recovered microalgae may not be used as they are because the flocculant is mixed in the collected microalgae, and The culture solution cannot be reused as a culture medium because the flocculant remains, and processing costs are also required when it is discharged. Further, in the centrifugal separation method, a great amount of energy is consumed for the operation of the centrifugal separator.
  • Patent Document 1 is a method for improving the separation property of microalgae by irradiating the algae culture solution with strong light, and has to rely on the natural sedimentation action, and is not necessarily efficient. May not be able to be separated. Moreover, since the algae culture solution is irradiated with intense light, energy consumption increases and there is a possibility of adversely affecting the microalgae.
  • the present invention has been made in view of such circumstances, and can be used to concentrate a microalgae culture solution containing microalgae efficiently at a low cost. It is an object of the present invention to provide a method and apparatus for concentrating a microalgae culture solution that enables effective use of the solution.
  • a method for concentrating a microalgae culture solution includes a light irradiation step of irradiating a microalgae culture solution containing microalgae with light having a wavelength that attracts the microalgae, An extraction step of extracting a portion of the microalgae culture solution in which the concentration of the microalgae is increased by light irradiation.
  • the light having a wavelength that the microalgae repels is simultaneously with the irradiation with the light having a wavelength that attracts the microalgae, or before or after the irradiation with the light having a wavelength that attracts the microalgae. It is preferable to irradiate from the side opposite to the side irradiated with light having a wavelength that attracts microalgae. Moreover, in the said light irradiation process, it is preferable that the light of the wavelength which attracts the said micro algae is irradiated to this micro algae culture solution from the lower side of a micro algae culture solution.
  • the said micro algae produce
  • the microalgae is preferably Euglena.
  • the light having a wavelength that attracts the microalgae is preferably light containing a wavelength component in the range of 500 nm to 550 nm.
  • the method for concentrating a microalgae culture solution according to the present invention includes a light irradiation step of irradiating a microalgae culture solution containing microalgae with light having a wavelength that the microalgae avoids, and the microalgae culture solution. And taking out a portion where the concentration of the microalgae is increased by the light irradiation.
  • the apparatus for concentrating a microalgae culture solution attracts the microalgae to a storage unit that stores a microalgae culture solution containing microalgae, and the microalgae culture solution that is stored in the storage unit. And an attracting wavelength light irradiating unit for irradiating light having a wavelength to be extracted, and an extraction unit for extracting a portion of the microalgae culture solution in which the concentration of the microalgae has increased due to light irradiation.
  • the microalgae culture solution stored in the storage unit is irradiated with light having a wavelength that the microalgae repels, and the side of the microalgae culture solution that is irradiated with light having a wavelength that induces the microalgae. It is preferable to further have a repelling wavelength light irradiating part for irradiating from.
  • the micro algae which can concentrate the micro algae culture solution containing a micro algae efficiently at low cost, and enable the effective utilization of the micro algae and culture solution which are concentrated and collect
  • a method and apparatus for concentrating a culture solution can be provided.
  • FIG. 1 is a schematic configuration diagram of a microalgae separation and recovery system to which a microalgae culture broth concentration apparatus according to an embodiment of the present invention is applied. It is a flowchart which shows the procedure of the isolation
  • FIG. 1 is a schematic configuration diagram of a microalgae separation and recovery system 100 to which a microalgae culture solution concentrating device 20 according to an embodiment of the present invention is applied.
  • a microalgae separation and recovery system 100 includes a culture tank 10, a microalgae culture liquid concentrator (hereinafter also simply referred to as “concentrator”) 20, a separated water recovery tank 30, and a centrifuge 40.
  • the dryer 50 and the alga body collection tank 60 are mainly provided.
  • the culture tank 10 is a tank for cultivating microalgae and contains a microalgae culture solution containing microalgae in a culture solution (medium).
  • a pipe line 11 extending from the inside of the culture tank 10 is connected to the concentrating device 20, and a first control valve 71 and a first pump 81 are installed in the pipe line 11.
  • microalgae examples include Euglena.
  • Euglena is a group of flagellates, including Euglena, which is famous as a motile algae. Most Euglena has a chloroplast and photosynthetizes for an autotrophic life, but some are predatory and some are absorptive.
  • Euglena is a genus classified into both zoology and botany. In zoology, there are Euglenida in the eyes belonging to Protozoa's Mastigophorea and Phytomastigophorea, which are three sub-Euglenoidina, Peranemoidina It consists of Petalomonadoidina.
  • Euglenoidina includes Euglena, Trachelemonas, Strombonas, Phacus, Lepocinelis, Astasia and Colacium as genera.
  • Euglenophyta is the Euglenophyta, followed by Euglenophyceae and Euglenales, and the genera included in this eye is similar to that of the Euglena and the animal taxonomy. is there.
  • cyanobacteria examples include Chroococcacae, Stigonematacae, Mastigocladacae, and Oscillatroriacae.
  • Synechococcus such as Synechococcus lividus and Synechococcus elongatus
  • Synechocystis such as Synechocystis minervae
  • Mastigocladus such as Mastigocladus laminosus
  • Phormidium such as Phormidium laminosus
  • Fisherella and the like.
  • green algae and treboxya include aerial algae such as chlorella (including phylogenetically separated parachlorella), Chlamydomonas, Donariella, Senedesmus, Botryococcus, Sticococcus, Nannochloris, and Desmodemus Can do.
  • aerial algae such as chlorella (including phylogenetically separated parachlorella), Chlamydomonas, Donariella, Senedesmus, Botryococcus, Sticococcus, Nannochloris, and Desmodemus Can do.
  • the basic properties such as Chlorella ⁇ ⁇ ⁇ vulgaris and Chlorella saccharophila (Chlorella), Dunaliella salina, Dunaliella tertiolecta, and photosynthesis are the same, but are classified as treboxya algae by molecular phylogenetic analysis.
  • Parachlorella kessleri Chlorella kessleri
  • Chlamydomonas reinhardtii Chlamydomonas moewusii, Chlamydomonas eugametos, Chlamydomonas eugametos, Chlamydomonas doms ⁇ Obricks (Senedesmus obliquus), Stichococcus ampliformis belonging to the genus Stichococcus, Nannochloris bacillaris belonging to the genus Nannochloris, and desmodes mus Desmodesmus subspicatus belonging to the genus can be mentioned.
  • examples of the plasino algae include tetracermis
  • examples of the primordial red algae include cyanidiozone, cyanidium, gardi area, porphyridium, and the like.
  • the microalgae that can be used in the present invention can be any oils and carbohydrates that can be produced by photosynthesis and accumulated in cells, and any carbohydrate that accumulates in cells can be oiled. Anything can be used and is not limited to those described above.
  • the culture solution is a culture solution to which nutrient salts such as a nitrogen source, a phosphorus source, and a mineral are added, for example, a modified Cramer-Myers medium ((NH 4 ) 2 HPO 4 1.0 g / L, KH 2 PO 4 1.0 g / L, MgSO 4 ⁇ 7H 2 O 0.2 g / L, CaCl 2 ⁇ 2H 2 O 0.02 g / L, Fe 2 (SO 4 ) 3 ⁇ 7H 2 O 3 mg / L , MnCl 2 ⁇ 4H 2 O 1.8 mg / L, CoSO 4 ⁇ 7H 2 O 1.5 mg / L, ZnSO 4 ⁇ 7H 2 O 0.4 mg / L, Na 2 MoO 4 ⁇ 2H 2 O 0.2 mg / L CuSO 4 .5H 2 O 0.02 mg / L, thiamine hydrochloride (vitamin B 1 ) 0.1 mg
  • a modified Cramer-Myers medium ((NH 4
  • the concentration device 20 has a separation tank (accommodating unit) 21 that accommodates a microalgae culture solution containing microalgae sent from the culture tank 10, and a wavelength that attracts the microalgae to the microalgae culture solution that is accommodated in the separation tank 21.
  • An attracting wavelength light irradiating unit 22 that irradiates the light
  • a repelling wavelength light irradiating unit 23 that irradiates the microalgae culture solution accommodated in the separation tank 21 with a wavelength at which the microalgae repels, and a fine in the separation tank 21.
  • light irradiation means at least one of light irradiation by the attracting wavelength light irradiation unit 22 and light irradiation by the repelling wavelength light irradiation unit 23.
  • At least the bottom wall 211 of the separation tank 21 is formed of a transparent member that can transmit light emitted from the attracting wavelength light irradiation unit 22.
  • the separation tank 21 is made of, for example, resin, glass or the like.
  • the separation tank 21 may be formed of an opaque member such as a metal other than the bottom wall formed of a transparent member.
  • the shape and size of the separation tank 21 are not particularly limited and can be set as appropriate.
  • a transparent member may be fitted into a part of the bottom wall 211.
  • the attracting wavelength light irradiation unit 22 is disposed below the separation tank 21.
  • the attracting wavelength light irradiation unit 22 irradiates the microalgae culture solution with light having a wavelength that attracts microalgae from the lower side of the microalgae culture solution accommodated in the separation tank 21.
  • the attracting wavelength light irradiation unit 22 is installed on a support member 25 fixed to the separation tank 21.
  • the induction wavelength light irradiation unit 22 may be installed through the bottom wall 211 of the separation tank 21 so that the light emitting part at the tip of the induction wavelength light irradiation unit 22 faces the separation tank 21.
  • a member that emits light on the inner surface of the bottom wall 211 of the separation tank 21 may be laid as the attracting wavelength light irradiation unit 22.
  • light having a wavelength that attracts microalgae light containing a wavelength component in the range of 500 nm to 550 nm, preferably monochromatic light (green light) of 530 nm is used.
  • the light source of the attracting wavelength light irradiation unit 22 is not particularly limited.
  • one or more light sources such as an LED illumination device, a xenon lamp, and an organic EL illumination device are used, and a filter,
  • a wavelength adjusting member such as a spectroscope may be used.
  • the repelling wavelength light irradiation unit 23 is disposed on the opposite side of the attracting wavelength light irradiation unit 22, that is, above the liquid surface of the microalgae culture solution, with the microalgae culture solution accommodated in the separation tank 21 interposed therebetween. .
  • the repelling wavelength light irradiation unit 23 irradiates the microalgae culture solution with light having a wavelength that the microalgae repels from above the microalgae culture solution accommodated in the separation tank 21.
  • the repelling wavelength light irradiation unit 23 is installed on a support member 26 fixed to the separation tank 21.
  • the light having a wavelength that the microalgae avoids light having a wavelength component in the range of 400 nm to 450 nm is preferable, and monochromatic light having a wavelength of 400 nm is more preferable.
  • the light source of the repelling wavelength light irradiation unit 23 is not particularly limited.
  • one or more light sources such as an LED lighting device and a xenon (Xe) lamp are used, and wavelength adjusting members such as a filter and a spectroscope are used. Can be used.
  • the extraction pipe 24 is connected to the bottom wall 211 of the separation tank 21.
  • An extraction pipe 24 extending from the bottom wall 211 of the separation tank 21 is connected to the centrifuge 40, and a second control valve 72 and a second pump 82 are installed in the extraction pipe 24.
  • the separation tank 21 is connected to a first separated water recovery pipe 28 for collecting a culture solution that is a portion other than the concentrated culture solution of the microalga culture solution after the light irradiation as separated water.
  • the first separation water recovery pipe 28 extends through the side wall 27 of the separation tank 21 into the separation tank 21, and the end of the first separation water recovery pipe 28 in the separation tank 21 has a water
  • a separation water recovery port portion having a structure floating on the surface is provided.
  • a drainage nozzle configured to be positioned below the water surface is provided in the separation water recovery port portion.
  • the piping part in the separation tank 21 of the first separated water recovery pipe 28 has a flexible structure having mobility in the separation tank 21, for example, a flexible hose and a plurality of tubes of different diameters are nested.
  • Those that move flexibly as the water level rises and lowers are preferred. According to such a configuration, even if the water decreases as the separated water is collected and the water level falls, the separated water can be collected continuously.
  • a state in which the drainage nozzle descends as the water level of the separated water descends is indicated by a downward white arrow.
  • the configuration of the end of the first separated water recovery pipe 28 on the separation tank 21 side is not limited to the above-described configuration.
  • the first separated water recovery pipe 28 has a plurality of branched pipes, and a separation water recovery port portion is provided at an end of each branch pipe located in the separation tank 21, and the water surface is A structure in which the separation water recovery port portion is switched as it descends may be used.
  • An end of the first separated water recovery pipe 28 extending from the separation tank 21 on the side opposite to the separation tank 21 is opened toward the separated water collection tank 30, and the first separated water collection pipe 28 includes a first A third control valve 73 and a third pump 83 are installed.
  • the centrifuge 40 centrifuges microalgae from the concentrated culture solution via the extraction tube 24.
  • the centrifuge 40 include, but are not limited to, a separation plate type centrifuge, a cylindrical centrifuge, and the like.
  • the centrifuge 40 can be omitted when a concentrated culture solution having a predetermined concentration or more is obtained by the concentrator 20, for example.
  • the centrifuge 40 includes a first transfer path 41 for transferring the microalgae centrifuged from the concentrated culture solution, and a second separation for recovering the separated water after the microalgae are centrifuged from the concentrated culture solution.
  • a water recovery pipe 42 is connected.
  • a first transfer path 41 extending from the centrifuge 40 is connected to the dryer 50.
  • the end of the second separated water recovery pipe 42 extending from the centrifuge 40 opens toward the separated water recovery tank 30.
  • the separated water recovery tank 30 is a tank that collects and stores the culture solution after separating the microalgae from the microalgae culture solution stored in the separation tank 21 as separated water.
  • the separated water collected in the separated water collection tank 30 can be returned to the culture tank 10 and reused.
  • the dryer 50 dries microalgae containing moisture.
  • Examples of the dryer 50 include dryers using waste heat from facilities such as factories, but are not limited thereto, and commercially available hot air dryers, spray dryers, slurry dryers, freeze dryers, etc. Furthermore, drying by sun drying is also possible.
  • a second transfer path 51 for transferring dried microalgae is connected to the dryer 50, and the end of the second transfer path 51 extending from the dryer 50 is in the alga body collection tank 60. It is arranged to face.
  • the algal body collection tank 60 is a tank that collects and stores the microalgae (algae) separated from the microalgae culture solution stored in the separation tank 21.
  • FIG. 2 is a flowchart showing the procedure of the microalgae separation and recovery method.
  • microalgae are cultured in a culture solution (medium) in a culture tank 10 (step S10).
  • the culture of microalgae in this step S10 can also be performed in the air atmosphere, but in order to increase the amount of oil and fat and carbohydrate produced by photosynthesis, carbon dioxide gas is actively supplied to the culture solution. It is preferable to carry out at a dissolved carbon dioxide concentration higher than air aeration.
  • the microalga culture solution containing the microalgae in the culture tank 10 opens the first control valve 71 and operates the first pump 81, thereby separating the concentrator 20 from the culture tank 10 via the pipe line 11. It is sent into the tank 21.
  • step S20 the microalgae culture solution is concentrated by the concentration device 20 (step S20).
  • step S ⁇ b> 20 the attracting wavelength light irradiation unit 22 irradiates the microalgae culture solution with light having a wavelength that attracts microalgae from the lower side of the microalgae culture solution accommodated in the separation tank 21.
  • the repellent wavelength light irradiation unit 23 irradiates the microalgae culture solution with light having a wavelength that the microalgae repels from above the microalgae culture solution accommodated in the separation tank 21.
  • the microalgae in the microalgae culture solution are collected in the lower part of the separation tank 21 due to the phototaxis of the microalgae that the microalgae move by the light of a specific wavelength.
  • the concentrated culture solution which is a part where the density
  • the concentrated culture solution formed in the separation tank 21 is taken out from the lower part in the separation tank 21 through the extraction pipe 24 by opening the second control valve 72 and operating the second pump 82, and then centrifuged. Sent to machine 40.
  • the concentrated culture solution in the separation tank 21 is taken out after being left for a predetermined time in a state in which the microalgae culture solution is irradiated with light by the attracting wavelength light irradiation unit 22 and the repelling wavelength light irradiation unit 23, for example. Is called. However, light irradiation may be performed while the concentrated culture solution is being taken out via the take-out tube 24. In this way, it is possible to take out a concentrated culture solution having a higher concentration.
  • the culture solution which is a part other than the concentrated culture solution in the microalga culture solution in the separation tank 21 serves as the separation water, and the third control valve 73 is opened and the third pump 83 is operated. It is sent from the inside through the first separated water collection pipe 28 and collected in the separated water collection tank 30 (step S30). At this time, it is sequentially recovered from the upper layer of the culture solution in the separation tank 21 through the drain nozzle of the collection port provided at the end of the first separation water recovery pipe 28 on the separation tank 21 side, as shown in FIG. As indicated by the white arrow, as the liquid level in the separation tank 21 is lowered, the drain nozzle is also lowered to continuously collect the separated water.
  • the take-out pipe 24 it is preferable to start taking out the concentrated culture broth through the take-out pipe 24 after the operation of collecting the culture broth (separated water) in the separation tank 21 into the separated water collection tank 30 is started or completed. By doing so, it is possible to take out the separated water at the time of taking out the concentrated culture solution through the take-out tube 24, so that a concentrated culture solution having a higher concentration can be taken out.
  • step S40 centrifugation by the centrifuge 40 is performed. That is, microalgae are centrifuged from the concentrated culture solution sent from the lower part in the separation tank 21. Thereby, the density
  • the microalgae culture solution is concentrated in advance by the concentrating device 20, less energy is consumed in the operation of the centrifuge 40. As described above, the centrifugation in step S40 can be omitted.
  • the microalgae centrifuged from the concentrated culture solution are sent to the dryer 50 via the first transfer path 41.
  • the culture solution after centrifuging microalgae from the concentrated culture solution is sent as separated water through the second separated water recovery pipe 42 and recovered in the separated water recovery tank 30 (step S30).
  • the separated water collected in the separated water collection tank 30 may be returned to the culture tank 10 and mixed. In this way, the separated water can be effectively reused as a culture medium. Further, the non-concentrated microalgae remaining in the separated water can be cultured again.
  • step S50 drying by the dryer 50 is performed. That is, the microalgae containing moisture are dried. Thereby, the water
  • the dried microalgae are sent through the second transfer path 51 and are collected in the alga body collection tank 60 (step S60).
  • the oil is collected (S70).
  • S70 fats and oils are extracted and recovered from the cells of the microalgae recovered in the alga body recovery tank 60. Extraction of fats and oils from the cells of microalgae can be performed by, for example, a solvent extraction method using an organic solvent or a supercritical CO 2 extraction method.
  • biofuels such as light oil and jet fuel can be manufactured by refining and reforming the recovered oils and fats.
  • microalgae from which fats and oils have been extracted have protein and pigment components that are cell components remaining, and solubilize or dry organic matter as it is or biologically and / or chemically. Therefore, it can be used as a raw material for biomass such as feed, fertilizer, solid fuel, and raw materials for chemical products.
  • the concentration device 20 has a separation tank 21 that contains a microalgae culture solution containing microalgae, and a wavelength that attracts the microalgae to the microalgae culture solution that is contained in the separation tank 21. It has the attracting wavelength light irradiation part 22 which irradiates light, and the extraction tube 24 which takes out the concentrated culture solution which is a part where the density
  • the method of concentrating the microalgae culture solution performed in the concentration device 20 includes a light irradiation step of irradiating the microalgae culture solution containing microalgae with light having a wavelength that attracts microalgae, and a microalgae culture solution. And taking out a portion where the concentration of microalgae is increased by the light irradiation.
  • the microalgae in the microalgae culture solution are attracted to the side irradiated with the light of the wavelength that attracts the microalgae due to the phototaxis of the microalgae that the microalgae move by the light of the specific wavelength.
  • the concentrated culture solution which is the part where the density
  • taking out a portion having a high concentration of microalgae also includes obtaining a portion having a high concentration of microalgae by removing a portion having a low concentration of microalgae. It is a concept.
  • the present embodiment does not depend solely on the natural sedimentation action, and enables efficient concentration by irradiation with light of a specific wavelength, and does not adversely affect microalgae.
  • the flocculant since the flocculant is not used, the collected microalga can be effectively used without being mixed with the flocculant, and the culture liquid (separated water) after the microalgae recovery is as follows.
  • the flocculant does not remain and can be reused as a culture medium, and the processing becomes simple even when discharged.
  • the microalgae culture solution is concentrated in advance by the concentrating device 20, even if the centrifuge 40 is used, less energy is consumed in the operation.
  • the microalgae culture solution containing microalgae can be efficiently concentrated at low cost, and the microalgae and culture solution collected after concentration can be effectively used. It is possible to provide a method and apparatus for concentrating a microalgae culture solution.
  • the light having a wavelength that the microalgae avoids is emitted from the microalgae culture solution at the same time as the irradiation with the light having the wavelength that attracts the microalgae, or before or after the irradiation with the light having the wavelength that attracts the microalgae. Irradiated from the side opposite to the side irradiated with light having a wavelength that attracts microalgae. According to such a configuration, since the microalgae in the microalgae culture solution escape from the side irradiated with the light of the wavelength repelled by the microalgae, the light of the wavelength attracting the microalgae is irradiated.
  • microalgae in the microalgae culture are collected.
  • the light of the wavelength that attracts microalgae is gradually blocked by the microalgae that gathered and hardly reaches the back side.
  • the trapping action of collecting microalgae in the microalgae culture solution can be supplemented by the repellent action of microalgae by the light of the wavelength that microalgae avoids. . Therefore, the microalgae culture solution can be concentrated more efficiently.
  • the light of the wavelength which attracts a micro algae is irradiated to this micro algae culture solution from the lower side of a micro algae culture solution.
  • a natural sedimentation action is also exhibited.
  • the micro algae in a micro algae culture solution can be collected more efficiently in the lower part in the separation tank 21.
  • the separated water can be collected from the upper side in the separation tank 21, the separated water can be efficiently collected without drawing the concentrated culture solution as much as possible.
  • microalgae can be used as a material such as a nutritional supplement or a biofuel material.
  • Euglena can be used as the microalgae. Euglena has a high ability to immobilize CO 2 by photosynthesis, and at the same time has abundant nutrients, so it is highly useful as a nutritional supplement, etc.
  • oil refined from fats and oils extracted from cells is light. Therefore, it has the advantage of being suitable for jet fuel.
  • light having a wavelength component in the range of 500 nm to 550 nm, more preferably 530 nm monochromatic light (green light) is used as the light having a wavelength that attracts microalgae.
  • the microalgae culture solution can be concentrated more efficiently.
  • the concentration device 20 includes both the attracting wavelength light irradiation unit 22 and the repelling wavelength light irradiation unit 23, but either the attraction wavelength light irradiation unit 22 or the repelling wavelength light irradiation unit 23 is used. It is also possible to be configured so that one is provided. Even in this case, a predetermined effect can be expected because, for example, the collection action of collecting the microalgae in the microalgae culture solution can be exhibited in the lower part of the separation tank 21.
  • light having a wavelength that repels microalgae is irradiated simultaneously with irradiation of light having a wavelength that attracts microalgae, but the present invention is limited to this. is not.
  • it may be configured to irradiate light having a wavelength that the microalgae avoid before or after irradiation with light having a wavelength that attracts the microalgae.
  • start timing of light irradiation in the above-described embodiment, it is assumed that light irradiation by the attracting wavelength light irradiation unit 22 and light irradiation by the repelling wavelength light irradiation unit 23 are started simultaneously.
  • light irradiation by the repelling wavelength light irradiation unit 23 may be started after the light irradiation by the attracting wavelength light irradiation unit 22 is started, or vice versa. Furthermore, the light irradiation by the attracting wavelength light irradiation unit 22 and the light irradiation by the repelling wavelength light irradiation unit 23 may be performed alternately.
  • light having a wavelength that attracts microalgae is irradiated to the microalgae culture solution from below the microalgae culture solution, but the present invention is not limited to this. What is necessary is just to comprise so that the light of the wavelength which attracts a micro algae may be irradiated from either one of the circumference
  • a concentration sensor such as a spectrophotometer is attached to the separation tank 21 of the concentrator 20 to measure the concentration of microalgae in the portion of the microalgae culture solution where the concentration of microalgae has increased due to light irradiation. It is also possible to configure as described above. If the concentration sensor detects a concentration equal to or higher than a predetermined value, the concentrated algae culture solution can be concentrated more efficiently if the concentrated culture solution is taken out.
  • FIG. 3 is a schematic plan view for explaining a light irradiation method in a microalgal phototaxis experiment in a two-dimensional plate.
  • the direction perpendicular to the light irradiation direction is the X-axis direction
  • the direction along the light irradiation direction is the Y-axis direction (the same applies to FIG. 4).
  • Absorbance is expressed by the logarithm of the ratio of incident light intensity to transmitted light intensity when light of a specific wavelength (here, wavelength of 680 nm due to light absorption of chlorophyll) is applied to each measurement unit, and the larger the value, the greater the value. Indicates that the concentration is high.
  • a specific wavelength here, wavelength of 680 nm due to light absorption of chlorophyll
  • Such light irradiation by the Xe lamp 3 was performed using light (monochromatic light) of wavelengths of 400 nm, 500 nm, 530 nm, 550 nm, 600 nm, 640 nm, 680 nm, and 700 nm, and the absorbance was measured for each.
  • FIG. 4 is a three-dimensional graph showing the experimental results of the microalgae phototaxis in the plate when light having a wavelength of 530 nm is used.
  • the X-axis direction and the Y-axis direction shown in FIG. 4 correspond to FIG. 3, and the XY plane formed by the plane including the X-axis and the Y-axis represents the surface of the plate 1.
  • the Z-axis direction represents the cell presence rate (%) in each of the 96 measurement units.
  • the cell abundance (%) indicates what percentage of the microalgae (cells) in the entire plate 1 is present in the corresponding measurement part, and the absorbance in each measurement part relative to the total absorbance of all measurement parts. Given in proportion.
  • the peak P in the graph of FIG. 4 indicates the highest cell existence rate (maximum cell existence rate) among all the measurement units.
  • FIG. 5 is a graph showing the relationship between the wavelength of irradiated light and the maximum cell existence rate. As shown in FIG. 5, it can be seen that light having a wavelength of 530 nm has the greatest attracting action of microalgae. Moreover, it turns out that the attracting action of micro algae is comparatively large also for the light of each wavelength of 500 nm and 550 nm.
  • FIG. 6 is a schematic plan view for explaining the state of light irradiation in a microalgal phototaxis experiment in a two-dimensional petri dish.
  • a microalgae culture solution (algae suspension) containing microalgae cultured by autotroph was poured.
  • the Xe lamp 3 from the side was left for 24 hours while being irradiated with light having a wavelength of 400 nm at 20 mW / cm 2 .
  • the same light irradiation was performed using light having a wavelength of 530 nm.
  • FIG. 7 is a schematic diagram for explaining liquid sampling from a vial bottle. As shown in FIG. 7, sampling was performed by moving from the upper layer of the liquid in the vial 6 in order from the upper left to the lower right of the plurality of recesses 8 formed in the microplate 7.
  • Sampling of the liquid is performed approximately 0.5 ml each in the case of no light and in the case of using green light, and the absorbance of each sample at 680 nm (wavelength due to light absorption of chlorophyll) is measured with a plate reader (TECAN Infinite M200PRO). ).
  • FIG. 8 is a graph showing the absorbance of each sample arranged in the sampling order when an experiment using green light is performed. That is, FIG. 8 shows the concentration distribution of microalgae in the liquid in the vial 6 when an experiment using green light is performed.
  • sample No. in FIG. Indicates a sampling order number (the same applies to FIGS. 9 and 11). As shown in FIG. 8, when an experiment using green light was performed, the last four samples in the sampling order showed extremely high absorbance, and the concentrated culture was a portion where the concentration of microalgae was high. It can be seen that a liquid is formed.
  • FIG. 9 is a graph showing the absorbance of each sample arranged in the sampling order when an experiment without light is performed. That is, FIG.
  • FIG. 9 shows the concentration distribution of microalgae in the liquid in the vial 6 when an experiment without light is performed. As shown in FIG. 9, when an experiment without light is performed, the absorbance of each sample is not entirely different, and it is understood that the microalgae are not concentrated.
  • FIG. 10 is a chart showing the experimental results of the phototaxis of microalgae in a three-dimensional vial. The absorbance (initial value) is obtained by measuring the absorbance before the treatment. Absorbance (after treatment, concentrated portion) indicates the average absorbance of a sample group (concentrated portion) having a high concentration near the end in the sampling order after treatment.
  • the concentration part is not formed when the experiment without light is performed, but the calculation was performed assuming the same number of sample groups as the concentration part when the experiment using green light was performed.
  • Absorbance (after treatment, upper part) indicates the average absorbance of the sample group (upper part) other than the concentrated part after treatment.
  • the degree of concentration (fold) is a value indicating how many times the concentration has been increased, and is obtained by dividing the absorbance (after treatment, the concentrated portion) by the absorbance (initial value).
  • the concentrated volume ratio (%) indicates the ratio of the volume of the concentrated portion to the total volume.
  • the collection rate (%) indicates the ratio of the number of microalgae in the above-described concentration part to the total number of microalgae. As shown in FIG. 10, when green light is used, for example, the concentration is as high as about 9 times, and it can be understood that the microalgae culture solution can be concentrated more efficiently.
  • FIG. 11 is a graph showing the absorbance of each sample arranged in the sampling order when an experiment was performed in which green light was irradiated from below toward the bottom of a graduated cylinder having a large capacity.
  • the sample group near the end in the sampling order shows extremely high absorbance, and the concentrated culture solution is a portion where the concentration of microalgae has increased. It can be seen that is formed. Further, a high value of about 8 times the degree of enrichment was obtained.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Organic Chemistry (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Genetics & Genomics (AREA)
  • Biotechnology (AREA)
  • General Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Biochemistry (AREA)
  • Microbiology (AREA)
  • General Health & Medical Sciences (AREA)
  • Sustainable Development (AREA)
  • Medicinal Chemistry (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Virology (AREA)
  • Molecular Biology (AREA)
  • Botany (AREA)
  • Cell Biology (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Abstract

This apparatus (20) for concentrating a microalga culture fluid has: a separation tank (21) for holding a microalga culture fluid which contains a microalga; a light irradiation unit (22) for irradiating the microalga culture fluid held in the separation tank (21) with a ray of light having a wavelength capable of attracting the microalga; and a take-out pipe (24) for taking out a concentrated culture fluid, namely, a microalga-rich part which is a part of the resulting microalga culture fluid and which has a microalga concentration enhanced by light irradiation. Thus, the present invention makes it possible to concentrate a microalgae culture fluid which contains a microalga at a low cost and with high efficiency, thereby enabling effective utilization of the microalga and culture fluid recovered after separation subsequent to the concentration.

Description

微細藻類培養液の濃縮方法および装置Method and apparatus for concentrating microalgae culture solution
 本発明は、微細藻類を含有する微細藻類培養液の濃縮方法および装置に関する。 The present invention relates to a method and apparatus for concentrating a microalgae culture solution containing microalgae.
 温室効果ガスの一つとされ、地球温暖化の要因とされているCOの濃度を低減するために、微細藻類を培養し、この微細藻類を用いて光合成によりCOを固定化する技術が知られている。 In order to reduce the concentration of CO 2 , one of the greenhouse gases and the cause of global warming, a technology for culturing microalgae and immobilizing CO 2 by photosynthesis using these microalgae is known. It has been.
 また、微細藻類は、栄養補助食品やサプリメントの素材として利用可能であることに加え、光合成によりCOを固定化して成長する際に油脂分を作り出すため、バイオ燃料の素材としても利用可能であり、注目が高まっている。このような微細藻類を利用するためには、微細藻類を培養した後に、微細藻類を含有する微細藻類培養液から、微細藻類を分離して取り出す必要がある。 In addition to being able to be used as a dietary supplement and supplement material, microalgae can be used as a biofuel material because it produces oil and fat when growing by immobilizing CO 2 by photosynthesis. , Attention is growing. In order to use such microalgae, it is necessary to separate and extract the microalgae from the microalgae culture solution containing the microalgae after culturing the microalgae.
 従来、微細藻類培養液から微細藻類を分離する方法として、例えば凝集剤の添加により微細藻類のフロックを形成して沈降させることにより分離する方法、遠心分離機を用いて遠心分離する方法等が知られている。 Conventionally, as a method for separating microalgae from a microalgae culture solution, for example, a method of separating by forming a floc of microalgae by sedimentation by adding a flocculant and a method of performing centrifugation using a centrifuge are known. It has been.
 また、微細藻類培養液から微細藻類(藻体)を分離する他の方法として、特開平7-289240号公報(特許文献1)に記載の方法がある。この公報には、「光源18を備えた光照射槽16において、藻類培養液に、藻類の増殖に最適な光量より強い光量の光を照射することにより藻体の沈降性を向上させ、藻体と培地とを分離する。」と記載されている(要約参照)。 Further, as another method for separating microalgae (algae) from the microalgae culture solution, there is a method described in JP-A-7-289240 (Patent Document 1). This publication states that “in the light irradiation tank 16 provided with the light source 18, the algal culture solution is irradiated with light having a light intensity stronger than the optimal light intensity for the growth of the algae, thereby improving the sedimentation properties of the alga bodies. Is separated from the culture medium ”(see summary).
特開平7-289240号公報JP 7-289240 A
 しかしながら、凝集剤による沈降分離方法では、ランニングコストが増大するだけでなく、回収した微細藻類に凝集剤が混入するために回収後の微細藻類をそのまま利用できない場合があるとともに、微細藻類回収後の培養液は、凝集剤が残存するために培地として再利用することができず、排出する際にも処理にコストがかかる。また、遠心分離方法では、遠心分離機の運転に多大なエネルギーが消費されてしまう。 However, the sedimentation separation method using a flocculant not only increases the running cost, but the recovered microalgae may not be used as they are because the flocculant is mixed in the collected microalgae, and The culture solution cannot be reused as a culture medium because the flocculant remains, and processing costs are also required when it is discharged. Further, in the centrifugal separation method, a great amount of energy is consumed for the operation of the centrifugal separator.
 また、特許文献1に記載の方法は、藻類培養液に強光を照射することにより微細藻類の沈降性を向上させて分離する方法であって、自然沈降作用に頼らざるを得ず、必ずしも効率的な分離ができないおそれがある。また、藻類培養液に強光を照射するため、エネルギー消費が増大するとともに、微細藻類に悪影響を与えるおそれもある。 In addition, the method described in Patent Document 1 is a method for improving the separation property of microalgae by irradiating the algae culture solution with strong light, and has to rely on the natural sedimentation action, and is not necessarily efficient. May not be able to be separated. Moreover, since the algae culture solution is irradiated with intense light, energy consumption increases and there is a possibility of adversely affecting the microalgae.
 本発明は、このような事情に鑑みてなされたものであり、微細藻類を含有する微細藻類培養液を低コストで効率よく濃縮することができ、濃縮して分離後に回収される微細藻類および培養液の有効な利用を可能にする微細藻類培養液の濃縮方法および装置を提供することを課題とする。 The present invention has been made in view of such circumstances, and can be used to concentrate a microalgae culture solution containing microalgae efficiently at a low cost. It is an object of the present invention to provide a method and apparatus for concentrating a microalgae culture solution that enables effective use of the solution.
 前記目的を達成するために、本発明に係る微細藻類培養液の濃縮方法は、微細藻類を含有する微細藻類培養液に、前記微細藻類を誘引する波長の光を照射する光照射工程と、前記微細藻類培養液のうちの光照射により前記微細藻類の濃度が高くなった部分を取り出す取出工程と、を有することを特徴とする。 In order to achieve the above object, a method for concentrating a microalgae culture solution according to the present invention includes a light irradiation step of irradiating a microalgae culture solution containing microalgae with light having a wavelength that attracts the microalgae, An extraction step of extracting a portion of the microalgae culture solution in which the concentration of the microalgae is increased by light irradiation.
 また、前記微細藻類を誘引する波長の光の照射と同時に、あるいは前記微細藻類を誘引する波長の光の照射前または後に、前記微細藻類が忌避する波長の光が、前記微細藻類培養液の前記微細藻類を誘引する波長の光が照射される側と反対側から照射されることが好ましい。
 また、前記光照射工程において、前記微細藻類を誘引する波長の光は、微細藻類培養液の下側から該微細藻類培養液に照射されることが好ましい。
 また、前記微細藻類は、光合成により油脂および炭水化物を生成し、細胞内に蓄積するものであることが好ましい。
 また、前記微細藻類は、ユーグレナであることが好ましい。
 また、前記微細藻類を誘引する波長の光は、500nm~550nmの範囲内の波長成分を含む光であることが好ましい。
The light having a wavelength that the microalgae repels is simultaneously with the irradiation with the light having a wavelength that attracts the microalgae, or before or after the irradiation with the light having a wavelength that attracts the microalgae. It is preferable to irradiate from the side opposite to the side irradiated with light having a wavelength that attracts microalgae.
Moreover, in the said light irradiation process, it is preferable that the light of the wavelength which attracts the said micro algae is irradiated to this micro algae culture solution from the lower side of a micro algae culture solution.
Moreover, it is preferable that the said micro algae produce | generates fats and carbohydrates by photosynthesis, and accumulate | stores in a cell.
The microalgae is preferably Euglena.
The light having a wavelength that attracts the microalgae is preferably light containing a wavelength component in the range of 500 nm to 550 nm.
 また、本発明に係る微細藻類培養液の濃縮方法は、微細藻類を含有する微細藻類培養液に、前記微細藻類が忌避する波長の光を照射する光照射工程と、前記微細藻類培養液のうちの光照射により前記微細藻類の濃度が高くなった部分を取り出す取出工程と、を有することを特徴とする。 Further, the method for concentrating a microalgae culture solution according to the present invention includes a light irradiation step of irradiating a microalgae culture solution containing microalgae with light having a wavelength that the microalgae avoids, and the microalgae culture solution. And taking out a portion where the concentration of the microalgae is increased by the light irradiation.
 また、本発明に係る微細藻類培養液の濃縮装置は、微細藻類を含有する微細藻類培養液を収容する収容部と、前記収容部に収容される前記微細藻類培養液に、前記微細藻類を誘引する波長の光を照射する誘引波長光照射部と、前記微細藻類培養液のうちの光照射により前記微細藻類の濃度が高くなった部分を取り出す取出部と、を有することを特徴とする。
 また、前記収容部に収容される前記微細藻類培養液に、前記微細藻類が忌避する波長の光を、前記微細藻類培養液の前記微細藻類を誘引する波長の光が照射される側と反対側から照射する忌避波長光照射部をさらに有することが好ましい。
The apparatus for concentrating a microalgae culture solution according to the present invention attracts the microalgae to a storage unit that stores a microalgae culture solution containing microalgae, and the microalgae culture solution that is stored in the storage unit. And an attracting wavelength light irradiating unit for irradiating light having a wavelength to be extracted, and an extraction unit for extracting a portion of the microalgae culture solution in which the concentration of the microalgae has increased due to light irradiation.
Further, the microalgae culture solution stored in the storage unit is irradiated with light having a wavelength that the microalgae repels, and the side of the microalgae culture solution that is irradiated with light having a wavelength that induces the microalgae. It is preferable to further have a repelling wavelength light irradiating part for irradiating from.
 本発明によれば、微細藻類を含有する微細藻類培養液を低コストで効率よく濃縮することができ、濃縮して分離後に回収される微細藻類および培養液の有効な利用を可能にする微細藻類培養液の濃縮方法および装置を提供できる。 ADVANTAGE OF THE INVENTION According to this invention, the micro algae which can concentrate the micro algae culture solution containing a micro algae efficiently at low cost, and enable the effective utilization of the micro algae and culture solution which are concentrated and collect | recovered after isolation | separation A method and apparatus for concentrating a culture solution can be provided.
本発明の一実施形態に係る微細藻類培養液の濃縮装置が適用された微細藻類の分離回収システムの概略構成図である。1 is a schematic configuration diagram of a microalgae separation and recovery system to which a microalgae culture broth concentration apparatus according to an embodiment of the present invention is applied. 微細藻類の分離回収方法の手順を示すフローチャートである。It is a flowchart which shows the procedure of the isolation | separation collection method of a micro algae. 2次元のプレート内での微細藻類の走光性の実験における光照射方法を説明するための模式的な平面図である。It is a typical top view for demonstrating the light irradiation method in the experiment of the phototaxis of the micro algae in a two-dimensional plate. 530nmの波長の光を用いた場合のプレート内での微細藻類の走光性の実験結果を示すグラフである。It is a graph which shows the experimental result of the phototaxis of the micro algae in the plate at the time of using the light of a wavelength of 530 nm. 照射される光の波長とセル存在率最大値との関係を示すグラフである。It is a graph which shows the relationship between the wavelength of the irradiated light, and a cell existence rate maximum value. 2次元のシャーレ内での微細藻類の走光性の実験における光照射の様子を説明するための模式的な平面図である。It is a typical top view for demonstrating the mode of light irradiation in the experiment of the phototaxis of the micro algae in a two-dimensional petri dish. ヴァイアル瓶からの液サンプリングを説明するための模式図である。It is a schematic diagram for demonstrating the liquid sampling from a vial bottle. 緑色光(530nmの波長の光)を用いた実験を行った場合のサンプリング順に並べた各サンプルの吸光度を示すグラフである。It is a graph which shows the light absorbency of each sample arranged in the order of sampling at the time of conducting experiment using green light (light with a wavelength of 530 nm). 光なしでの実験を行った場合のサンプリング順に並べた各サンプルの吸光度を示すグラフである。It is a graph which shows the light absorbency of each sample arranged in the order of sampling at the time of conducting experiment without light. 3次元のヴァイアル瓶内での微細藻類の走光性の実験結果を示す図表である。It is a graph which shows the experimental result of the phototaxis of the micro algae in a three-dimensional vial. 容量の大きいメスシリンダの底部に向けて下側から緑色光(530nmの波長の光)を照射した実験を行った場合のサンプリング順に並べた各サンプルの吸光度を示すグラフである。It is a graph which shows the light absorbency of each sample arranged in the order of sampling at the time of performing experiment which irradiated green light (light with a wavelength of 530 nm) toward the bottom part of a measuring cylinder with a large capacity | capacitance from the lower side.
 次に、本発明の実施形態について適宜図面を参照しながら詳細に説明する。なお、以下に示す図面において、部材のサイズおよび形状は、説明の便宜のため、変形または誇張して模式的に表す場合がある。 Next, embodiments of the present invention will be described in detail with reference to the drawings as appropriate. In the drawings shown below, the size and shape of the members may be schematically represented by being modified or exaggerated for convenience of explanation.
 図1は、本発明の一実施形態に係る微細藻類培養液の濃縮装置20が適用された微細藻類の分離回収システム100の概略構成図である。
 図1に示すように、微細藻類の分離回収システム100は、培養槽10、微細藻類培養液の濃縮装置(以下、単に「濃縮装置」ともいう)20、分離水回収槽30、遠心分離機40、乾燥機50、および藻体回収槽60を主に備えている。
FIG. 1 is a schematic configuration diagram of a microalgae separation and recovery system 100 to which a microalgae culture solution concentrating device 20 according to an embodiment of the present invention is applied.
As shown in FIG. 1, a microalgae separation and recovery system 100 includes a culture tank 10, a microalgae culture liquid concentrator (hereinafter also simply referred to as “concentrator”) 20, a separated water recovery tank 30, and a centrifuge 40. The dryer 50 and the alga body collection tank 60 are mainly provided.
 培養槽10は、微細藻類を培養する槽であり、微細藻類を培養液(培地)に含有させた微細藻類培養液を収容する。培養槽10内から延伸する管路11は、濃縮装置20に接続されており、管路11には、第1制御弁71、および第1ポンプ81が設置されている。 The culture tank 10 is a tank for cultivating microalgae and contains a microalgae culture solution containing microalgae in a culture solution (medium). A pipe line 11 extending from the inside of the culture tank 10 is connected to the concentrating device 20, and a first control valve 71 and a first pump 81 are installed in the pipe line 11.
 本発明で用いることのできる微細藻類としては、ユーグレナ(Euglena)を挙げることができる。ユーグレナは鞭毛虫の一群で、運動性のある藻類として有名なミドリムシを含む。大部分のユーグレナは、葉緑体を持っており、光合成を行って独立栄養生活を行うが、捕食性のものや吸収栄養性のものもある。
 ユーグレナは、動物学と植物学の双方に分類される属である。
 動物学では、原生動物門(Protozoa)の鞭毛虫綱(Mastigophorea)、植物鞭毛虫亜綱(Phytomastigophorea)に属する目の中にミドリムシ目(Euglenida)があり、これは三つの亜目、Euglenoidina、Peranemoidina、Petalomonadoidinaよりなる。
 Euglenoidinaには、属としてEuglena、Trachelemonas、Strombonas、Phacus、Lepocinelis、Astasia、Colaciumが含まれる。
 植物学では、ミドリムシ植物門(Euglenophyta)があり、その下にミドリムシ藻類綱(Euglenophyceae)、ミドリムシ目(Euglenales)があって、この目に含まれる属としてはEuglenaの他、動物分類表と同様である。
 これ以外にも、シアノバクテリア、緑藻およびトレボキシア、プラシノ藻(緑色藻類)、原始紅藻類、珪藻、円石藻、渦べん毛藻、真眼点藻、黄金色藻などから1種または2種以上を選択して用いることができる。
Examples of microalgae that can be used in the present invention include Euglena. Euglena is a group of flagellates, including Euglena, which is famous as a motile algae. Most Euglena has a chloroplast and photosynthetizes for an autotrophic life, but some are predatory and some are absorptive.
Euglena is a genus classified into both zoology and botany.
In zoology, there are Euglenida in the eyes belonging to Protozoa's Mastigophorea and Phytomastigophorea, which are three sub-Euglenoidina, Peranemoidina It consists of Petalomonadoidina.
Euglenoidina includes Euglena, Trachelemonas, Strombonas, Phacus, Lepocinelis, Astasia and Colacium as genera.
In botany, Euglenophyta is the Euglenophyta, followed by Euglenophyceae and Euglenales, and the genera included in this eye is similar to that of the Euglena and the animal taxonomy. is there.
In addition to this, one or two species from cyanobacteria, green algae and treboxya, plastino algae (green algae), primordial red algae, diatoms, round stone algae, dinoflagellate algae, golden spot algae, etc. The above can be selected and used.
 なお、シアノバクテリアとしては、例えば、Chroococcacae、Stigonematacae、MastigocladacaeおよびOscillatroriacaeを挙げることができる。また、その他にも、Synechococcus lividusおよびSynechococcus elongatusなどのSynechococcusや、Synechocystis minervaeなどのSynechocystisや、Mastigocladus laminosusなどのMastigocladusや、Phormidium laminosusなどのPhormidiumや、Symploca thermalisなどのSymplocaや、Aphanocapsa thermalisなどのAphanocapsaや、Fisherellaなどを挙げることができる。
 さらには、アナべナ(Anabaena)属に属するアナべナ・バリアビリス(Anabanena variabilis)ATCC 29413、シアノテセ(Cyanothece)属のCyanothece sp. ATCC 51142、シネココッカス(Synechococcus)属に属するSynechococcus sp. PCC 7942およびアナシスティス(Anacystis)属に属するアナシスティス・ニデュランス(Anacystis nidulans)および好熱性シアノバクテリアなどを用いることができる。
Examples of cyanobacteria include Chroococcacae, Stigonematacae, Mastigocladacae, and Oscillatroriacae. In addition, Synechococcus such as Synechococcus lividus and Synechococcus elongatus; Synechocystis such as Synechocystis minervae; Mastigocladus such as Mastigocladus laminosus; Phormidium such as Phormidium laminosus; , Fisherella and the like.
Furthermore, Anabanena variabilis belonging to the genus Anabaena ATCC 29413, Cyanothece sp. Belonging to the genus Cyanothece sp. ATCC 51142, Synechococcus sp. PCC 7942 belonging to the genus Synechococcus and Anastis Anacystis nidulans belonging to the genus (Anacystis), thermophilic cyanobacteria and the like can be used.
 緑藻およびトレボキシアとしては、例えば、クロレラ(系統学的に分けられたパラクロレラを含む)、クラミドモナス、ドナリエラ、セネデスムス、ボトリオコッカス、スティココッカス、ナンノクロリス、およびデスモデスムスなどの気生藻を挙げることができる。具体的には、Chlorella vulgarisおよびChlorella saccharophilaなどのクロレラ(Chlorella)、Dunaliella salina、Dunaliella tertiolectaなどのDunaliella、並びに光合成などの基本的な性質は同じであるが、分子系統解析によりトレボキシア藻網として分類されるParachlorella kessleri(Chlorella kessleri)を挙げることができる。また、クラミドモナス(Chlamydomonas)属に属するクラミドモナス・ラインハルディ(Chlamydomonas reinhardtii)、クラミドモナス・モエブシィ(Chlamydomonas moewusii)、クラミドモナス・ユーガメタス(Chlamydomonas eugametos)、クラミドモナス・セグニス(Chlamydomonas segnis)、セネデスムス(Senedesmus)属に属するセネデスムス・オブリクス(Senedesmus obliquus)、スティココッカス(Stichococcus)属に属するスティココッカス・アンプリフォルミス(Stichococcus ampliformis)、ナンノクロリス(Nannochloris)属に属するナンノクロリス・バシラリス(Nannochloris bacillaris)、およびデスモデスムス(Desmodesmus)属に属するデスモデスムス・スブスピカツス(Desmodesmus subspicatus)などを挙げることができる。 Examples of green algae and treboxya include aerial algae such as chlorella (including phylogenetically separated parachlorella), Chlamydomonas, Donariella, Senedesmus, Botryococcus, Sticococcus, Nannochloris, and Desmodemus Can do. Specifically, the basic properties such as Chlorella お よ び vulgaris and Chlorella saccharophila (Chlorella), Dunaliella salina, Dunaliella tertiolecta, and photosynthesis are the same, but are classified as treboxya algae by molecular phylogenetic analysis. Parachlorella kessleri (Chlorella kessleri). In addition, Chlamydomonas reinhardtii, Chlamydomonas moewusii, Chlamydomonas eugametos, Chlamydomonas eugametos, Chlamydomonas doms・ Obricks (Senedesmus obliquus), Stichococcus ampliformis belonging to the genus Stichococcus, Nannochloris bacillaris belonging to the genus Nannochloris, and desmodes mus Desmodesmus subspicatus belonging to the genus can be mentioned.
 また、プラシノ藻(緑色藻類)としては、例えば、テトラセルミスなどを挙げることができ、原始紅藻類としては、例えば、シアニディオシゾン、シアニディウム、ガルディエリア、ポルフィリディウムなどを挙げることができる。
 なお、本発明で用いることのできる微細藻類は、光合成により油脂および炭水化物を生成し、細胞内に蓄積することができ、細胞内に蓄積した炭水化物を油脂化することのできるものであればどのようなものでも用いることができ、前記したものに限定されるものではない。
In addition, examples of the plasino algae (green algae) include tetracermis, and examples of the primordial red algae include cyanidiozone, cyanidium, gardi area, porphyridium, and the like.
The microalgae that can be used in the present invention can be any oils and carbohydrates that can be produced by photosynthesis and accumulated in cells, and any carbohydrate that accumulates in cells can be oiled. Anything can be used and is not limited to those described above.
 培養液は、例えば、微細藻類としてユーグレナを用いる場合、窒素源、リン源、ミネラルなどの栄養塩類を添加した培養液、例えば、改変Cramer-Myers培地((NH42HPO4 1.0g/L、KH2PO4 1.0g/L、MgSO4・7H2O 0.2g/L、CaCl2・2H2O 0.02g/L、Fe2(SO43・7H2O 3mg/L、MnCl2・4H2O 1.8mg/L、CoSO4・7H2O 1.5mg/L、ZnSO4・7H2O 0.4mg/L、Na2MoO4・2H2O 0.2mg/L、CuSO4・5H2O 0.02mg/L、チアミン塩酸塩(ビタミンB1) 0.1mg/L、シアノコバラミン(ビタミンB12)0.0005mg/L、(pH3.5))を用いることができる。なお、(NH42HPO4は、(NH42SO4やNH3aqに変換することも可能である。
 なお、培養液は、培養する微細藻類に適した培地を用いればよく、これに限定されるものでないことはいうまでもない。
For example, when Euglena is used as the microalgae, the culture solution is a culture solution to which nutrient salts such as a nitrogen source, a phosphorus source, and a mineral are added, for example, a modified Cramer-Myers medium ((NH 4 ) 2 HPO 4 1.0 g / L, KH 2 PO 4 1.0 g / L, MgSO 4 · 7H 2 O 0.2 g / L, CaCl 2 · 2H 2 O 0.02 g / L, Fe 2 (SO 4 ) 3 · 7H 2 O 3 mg / L , MnCl 2 · 4H 2 O 1.8 mg / L, CoSO 4 · 7H 2 O 1.5 mg / L, ZnSO 4 · 7H 2 O 0.4 mg / L, Na 2 MoO 4 · 2H 2 O 0.2 mg / L CuSO 4 .5H 2 O 0.02 mg / L, thiamine hydrochloride (vitamin B 1 ) 0.1 mg / L, cyanocobalamin (vitamin B 12 ) 0.0005 mg / L, (pH 3.5)) . Note that (NH 4 ) 2 HPO 4 can be converted to (NH 4 ) 2 SO 4 or NH 3 aq.
Needless to say, the culture solution is not limited to a medium suitable for the microalgae to be cultured.
 濃縮装置20は、培養槽10から送られる微細藻類を含有する微細藻類培養液を収容する分離槽(収容部)21と、分離槽21に収容される微細藻類培養液に微細藻類を誘引する波長の光を照射する誘引波長光照射部22と、分離槽21に収容される微細藻類培養液に微細藻類が忌避する波長の光を照射する忌避波長光照射部23と、分離槽21内の微細藻類培養液のうちの光照射により微細藻類の濃度が高くなった部分である濃縮培養液を取り出す取出管(取出部)24とを有している。なお、本発明において、光照射とは、誘引波長光照射部22による光照射、および忌避波長光照射部23による光照射の、少なくとも一方をいう。 The concentration device 20 has a separation tank (accommodating unit) 21 that accommodates a microalgae culture solution containing microalgae sent from the culture tank 10, and a wavelength that attracts the microalgae to the microalgae culture solution that is accommodated in the separation tank 21. An attracting wavelength light irradiating unit 22 that irradiates the light, a repelling wavelength light irradiating unit 23 that irradiates the microalgae culture solution accommodated in the separation tank 21 with a wavelength at which the microalgae repels, and a fine in the separation tank 21. It has an extraction tube (extraction unit) 24 for extracting the concentrated culture solution, which is a portion of the algae culture solution in which the concentration of microalgae has increased due to light irradiation. In the present invention, light irradiation means at least one of light irradiation by the attracting wavelength light irradiation unit 22 and light irradiation by the repelling wavelength light irradiation unit 23.
 分離槽21の少なくとも底壁211は、誘引波長光照射部22から照射される光を透過可能な透明部材から形成されている。分離槽21は、例えば樹脂、ガラス等から形成される。ただし、分離槽21は、透明部材から形成される底壁以外が例えば金属等の不透明部材から形成されていてもよい。また、分離槽21の形状や大きさは、特に限定されるものではなく適宜設定可能である。例えば、底壁211の一部に透明部材が嵌め込まれるように構成されてもよい。 At least the bottom wall 211 of the separation tank 21 is formed of a transparent member that can transmit light emitted from the attracting wavelength light irradiation unit 22. The separation tank 21 is made of, for example, resin, glass or the like. However, the separation tank 21 may be formed of an opaque member such as a metal other than the bottom wall formed of a transparent member. The shape and size of the separation tank 21 are not particularly limited and can be set as appropriate. For example, a transparent member may be fitted into a part of the bottom wall 211.
 誘引波長光照射部22は、分離槽21の下方に配置されている。誘引波長光照射部22は、微細藻類を誘引する波長の光を、分離槽21に収容される微細藻類培養液の下側から該微細藻類培養液に照射するものである。この誘引波長光照射部22は、分離槽21に固定された支持部材25に設置されている。ただし、誘引波長光照射部22の先端の発光部が分離槽21内に臨むように、誘引波長光照射部22が分離槽21の底壁211を貫通して設置されていてもよい。さらには、分離槽21の底壁211の内面に面発光する部材が、誘引波長光照射部22として敷かれていてもよい。 The attracting wavelength light irradiation unit 22 is disposed below the separation tank 21. The attracting wavelength light irradiation unit 22 irradiates the microalgae culture solution with light having a wavelength that attracts microalgae from the lower side of the microalgae culture solution accommodated in the separation tank 21. The attracting wavelength light irradiation unit 22 is installed on a support member 25 fixed to the separation tank 21. However, the induction wavelength light irradiation unit 22 may be installed through the bottom wall 211 of the separation tank 21 so that the light emitting part at the tip of the induction wavelength light irradiation unit 22 faces the separation tank 21. Furthermore, a member that emits light on the inner surface of the bottom wall 211 of the separation tank 21 may be laid as the attracting wavelength light irradiation unit 22.
 微細藻類を誘引する波長の光として、好ましくは500nm~550nmの範囲内の波長成分を含む光、より好ましくは530nmの単色光(緑色光)が使用される。誘引波長光照射部22の光源は特に限定されるものではなく、例えば、LED照明装置、キセノンランプ、有機EL照明装置等の面発光照明装置などの光源が一つ以上使用されるとともに、フィルタ、分光器等の波長調整部材が用いられ得る。また、波長調整部材を用いて太陽光を利用することも可能である。 As light having a wavelength that attracts microalgae, light containing a wavelength component in the range of 500 nm to 550 nm, preferably monochromatic light (green light) of 530 nm is used. The light source of the attracting wavelength light irradiation unit 22 is not particularly limited. For example, one or more light sources such as an LED illumination device, a xenon lamp, and an organic EL illumination device are used, and a filter, A wavelength adjusting member such as a spectroscope may be used. Moreover, it is also possible to utilize sunlight using a wavelength adjusting member.
 忌避波長光照射部23は、分離槽21に収容される微細藻類培養液を間に挟んで、誘引波長光照射部22と反対側、すなわち微細藻類培養液の液面の上方に配置されている。忌避波長光照射部23は、微細藻類が忌避する波長の光を、分離槽21に収容される微細藻類培養液の上側から該微細藻類培養液に照射するものである。この忌避波長光照射部23は、分離槽21に固定された支持部材26に設置されている。 The repelling wavelength light irradiation unit 23 is disposed on the opposite side of the attracting wavelength light irradiation unit 22, that is, above the liquid surface of the microalgae culture solution, with the microalgae culture solution accommodated in the separation tank 21 interposed therebetween. . The repelling wavelength light irradiation unit 23 irradiates the microalgae culture solution with light having a wavelength that the microalgae repels from above the microalgae culture solution accommodated in the separation tank 21. The repelling wavelength light irradiation unit 23 is installed on a support member 26 fixed to the separation tank 21.
 微細藻類が忌避する波長の光として、好ましくは400nm~450nmの範囲内の波長成分からなる光、より好ましくは400nmの単色光が使用される。忌避波長光照射部23の光源は特に限定されるものではなく、例えば、LED照明装置、キセノン(Xe)ランプ等の光源が一つ以上使用されるとともに、フィルタ、分光器等の波長調整部材が用いられ得る。また、波長調整部材を用いて太陽光を利用することも可能である。 As the light having a wavelength that the microalgae avoids, light having a wavelength component in the range of 400 nm to 450 nm is preferable, and monochromatic light having a wavelength of 400 nm is more preferable. The light source of the repelling wavelength light irradiation unit 23 is not particularly limited. For example, one or more light sources such as an LED lighting device and a xenon (Xe) lamp are used, and wavelength adjusting members such as a filter and a spectroscope are used. Can be used. Moreover, it is also possible to utilize sunlight using a wavelength adjusting member.
 取出管24は、分離槽21の底壁211に接続されている。分離槽21の底壁211から延伸する取出管24は、遠心分離機40に接続されており、取出管24には、第2制御弁72、および第2ポンプ82が設置されている。 The extraction pipe 24 is connected to the bottom wall 211 of the separation tank 21. An extraction pipe 24 extending from the bottom wall 211 of the separation tank 21 is connected to the centrifuge 40, and a second control valve 72 and a second pump 82 are installed in the extraction pipe 24.
 分離槽21には、光照射後の微細藻類培養液のうちの濃縮培養液以外の部分である培養液を分離水として回収するための第1分離水回収管28が接続されている。ここで、第1分離水回収管28は、分離槽21の側壁27を貫通して分離槽21内に延びており、第1分離水回収管28の分離槽21内の端部には、水に浮く構造となっている分離水の回収口部分が設けられている。この分離水の回収口部分には、水面下に位置するように構成された排水ノズルが備えられている。第1分離水回収管28の分離槽21内の配管部分は、分離槽21内において可動性を有するフレキシブルな構造となっており、例えば可撓性を有するホース、径違いの複数の筒が入れ子式に接続された伸縮自在な筒構造体等の、水面の昇降にともなってフレキシブルに動くものが好ましい。このような構成によれば、分離水が回収されるにつれて減少しその水面が下降しても、連続して分離水の回収が可能である。図1では、下向きの白抜き矢印で分離水の水面が下降するに合わせて排水ノズルが下降する様子を示してある。ただし、第1分離水回収管28の分離槽21側の端部の構成は、前記した構成に限定されるものではない。例えば、第1分離水回収管28が分岐した複数の分岐管を有し、分離槽21内に位置される各分岐管の端部にそれぞれ分離水の回収口部分が設けられていて、水面が下降するにつれて分離水の回収口部分を切り替える構造であってもよい。分離槽21から延伸する第1分離水回収管28の分離槽21と反対側の端部は、分離水回収槽30内に向けて開口しており、第1分離水回収管28には、第3制御弁73、および第3ポンプ83が設置されている。 The separation tank 21 is connected to a first separated water recovery pipe 28 for collecting a culture solution that is a portion other than the concentrated culture solution of the microalga culture solution after the light irradiation as separated water. Here, the first separation water recovery pipe 28 extends through the side wall 27 of the separation tank 21 into the separation tank 21, and the end of the first separation water recovery pipe 28 in the separation tank 21 has a water A separation water recovery port portion having a structure floating on the surface is provided. A drainage nozzle configured to be positioned below the water surface is provided in the separation water recovery port portion. The piping part in the separation tank 21 of the first separated water recovery pipe 28 has a flexible structure having mobility in the separation tank 21, for example, a flexible hose and a plurality of tubes of different diameters are nested. Those that move flexibly as the water level rises and lowers, such as a stretchable tubular structure connected in a formula, are preferred. According to such a configuration, even if the water decreases as the separated water is collected and the water level falls, the separated water can be collected continuously. In FIG. 1, a state in which the drainage nozzle descends as the water level of the separated water descends is indicated by a downward white arrow. However, the configuration of the end of the first separated water recovery pipe 28 on the separation tank 21 side is not limited to the above-described configuration. For example, the first separated water recovery pipe 28 has a plurality of branched pipes, and a separation water recovery port portion is provided at an end of each branch pipe located in the separation tank 21, and the water surface is A structure in which the separation water recovery port portion is switched as it descends may be used. An end of the first separated water recovery pipe 28 extending from the separation tank 21 on the side opposite to the separation tank 21 is opened toward the separated water collection tank 30, and the first separated water collection pipe 28 includes a first A third control valve 73 and a third pump 83 are installed.
 遠心分離機40は、取出管24を経て濃縮培養液から微細藻類を遠心分離するものである。遠心分離機40としては、例えば分離板型遠心分離機、円筒型遠心分離機等が挙げられるが、これに限定されるものではない。ただし、遠心分離機40は、例えば濃縮装置20により所定濃度以上の濃縮培養液が得られる場合には、省略することも可能である。 The centrifuge 40 centrifuges microalgae from the concentrated culture solution via the extraction tube 24. Examples of the centrifuge 40 include, but are not limited to, a separation plate type centrifuge, a cylindrical centrifuge, and the like. However, the centrifuge 40 can be omitted when a concentrated culture solution having a predetermined concentration or more is obtained by the concentrator 20, for example.
 遠心分離機40には、濃縮培養液から遠心分離した微細藻類を移送するための第1移送路41と、濃縮培養液から微細藻類を遠心分離した後の分離水を回収するための第2分離水回収管42とが接続されている。遠心分離機40から延伸する第1移送路41は、乾燥機50に接続されている。遠心分離機40から延伸する第2分離水回収管42の端部は、分離水回収槽30内に向けて開口している。分離水回収槽30は、分離槽21内に収容されていた微細藻類培養液から微細藻類を分離した後の培養液を分離水として回収して収容する槽である。分離水回収槽30内に回収された分離水は、培養槽10に戻して再利用することも可能である。 The centrifuge 40 includes a first transfer path 41 for transferring the microalgae centrifuged from the concentrated culture solution, and a second separation for recovering the separated water after the microalgae are centrifuged from the concentrated culture solution. A water recovery pipe 42 is connected. A first transfer path 41 extending from the centrifuge 40 is connected to the dryer 50. The end of the second separated water recovery pipe 42 extending from the centrifuge 40 opens toward the separated water recovery tank 30. The separated water recovery tank 30 is a tank that collects and stores the culture solution after separating the microalgae from the microalgae culture solution stored in the separation tank 21 as separated water. The separated water collected in the separated water collection tank 30 can be returned to the culture tank 10 and reused.
 乾燥機50は、水分を含む微細藻類を乾燥させるものである。乾燥機50としては、例えば工場等の施設からの廃熱を利用した乾燥機が挙げられるが、これに限定されるものではなく、市販の熱風乾燥機、スプレードライヤー、スラリードライヤー、凍結乾燥機等を用いることもでき、さらには、天日干しによる乾燥も可能である。 The dryer 50 dries microalgae containing moisture. Examples of the dryer 50 include dryers using waste heat from facilities such as factories, but are not limited thereto, and commercially available hot air dryers, spray dryers, slurry dryers, freeze dryers, etc. Furthermore, drying by sun drying is also possible.
 乾燥機50には、乾燥後の微細藻類を移送するための第2移送路51が接続されており、乾燥機50から延伸する第2移送路51の端部は、藻体回収槽60内に向かうように配置されている。藻体回収槽60は、分離槽21内に収容されていた微細藻類培養液から分離された微細藻類(藻体)を回収して収容する槽である。 A second transfer path 51 for transferring dried microalgae is connected to the dryer 50, and the end of the second transfer path 51 extending from the dryer 50 is in the alga body collection tank 60. It is arranged to face. The algal body collection tank 60 is a tank that collects and stores the microalgae (algae) separated from the microalgae culture solution stored in the separation tank 21.
 次に、図1に加え、図2を参照して、前記したように構成された微細藻類の分離回収システム100の動作について説明する。
 図2は、微細藻類の分離回収方法の手順を示すフローチャートである。
Next, the operation of the microalgae separation and recovery system 100 configured as described above will be described with reference to FIG. 2 in addition to FIG.
FIG. 2 is a flowchart showing the procedure of the microalgae separation and recovery method.
 図2に示すように、まず、培養槽10内において微細藻類が培養液(培地)で培養される(ステップS10)。このステップS10における微細藻類の培養は、大気雰囲気下で行うこともできるが、光合成による油脂と炭水化物の生成量をより多くするために、二酸化炭素ガスを積極的に供給し、培養液中への空気ばっ気よりも高い溶存二酸化炭素濃度で行うようにするのが好ましい。 As shown in FIG. 2, first, microalgae are cultured in a culture solution (medium) in a culture tank 10 (step S10). The culture of microalgae in this step S10 can also be performed in the air atmosphere, but in order to increase the amount of oil and fat and carbohydrate produced by photosynthesis, carbon dioxide gas is actively supplied to the culture solution. It is preferable to carry out at a dissolved carbon dioxide concentration higher than air aeration.
 そして、培養槽10内の微細藻類を含有する微細藻類培養液が、第1制御弁71を開いて第1ポンプ81を動作させることにより、培養槽10から管路11を経て濃縮装置20の分離槽21内に送られる。 Then, the microalga culture solution containing the microalgae in the culture tank 10 opens the first control valve 71 and operates the first pump 81, thereby separating the concentrator 20 from the culture tank 10 via the pipe line 11. It is sent into the tank 21.
 続いて、濃縮装置20による微細藻類培養液の濃縮が行われる(ステップS20)。このステップS20では、誘引波長光照射部22により、微細藻類を誘引する波長の光が、分離槽21に収容される微細藻類培養液の下側から該微細藻類培養液に照射される。また、忌避波長光照射部23により、微細藻類が忌避する波長の光が、分離槽21に収容される微細藻類培養液の上側から該微細藻類培養液に照射される。したがって、微細藻類が特定の波長の光によって移動する微細藻類の走光性により、分離槽21内の下部に微細藻類培養液中の微細藻類が集められる。これにより、分離槽21内の微細藻類培養液のうちに、微細藻類の濃度が高くなった部分である濃縮培養液が形成される。 Subsequently, the microalgae culture solution is concentrated by the concentration device 20 (step S20). In step S <b> 20, the attracting wavelength light irradiation unit 22 irradiates the microalgae culture solution with light having a wavelength that attracts microalgae from the lower side of the microalgae culture solution accommodated in the separation tank 21. Further, the repellent wavelength light irradiation unit 23 irradiates the microalgae culture solution with light having a wavelength that the microalgae repels from above the microalgae culture solution accommodated in the separation tank 21. Therefore, the microalgae in the microalgae culture solution are collected in the lower part of the separation tank 21 due to the phototaxis of the microalgae that the microalgae move by the light of a specific wavelength. Thereby, the concentrated culture solution which is a part where the density | concentration of the micro algae became high is formed in the micro algae culture solution in the separation tank 21. FIG.
 そして、分離槽21内に形成された濃縮培養液が、第2制御弁72を開いて第2ポンプ82を動作させることにより、分離槽21内の下部から取出管24を経て取り出され、遠心分離機40に向けて送られる。 Then, the concentrated culture solution formed in the separation tank 21 is taken out from the lower part in the separation tank 21 through the extraction pipe 24 by opening the second control valve 72 and operating the second pump 82, and then centrifuged. Sent to machine 40.
 なお、分離槽21内の濃縮培養液の取出しは、例えば誘引波長光照射部22および忌避波長光照射部23による微細藻類培養液への光照射が行われている状態で所定時間放置した後に行われる。ただし、濃縮培養液が取出管24を経て取り出されている間にも、光照射が行われていてもよい。このようにすれば、より高濃度の濃縮培養液を取り出すことが可能となる。 The concentrated culture solution in the separation tank 21 is taken out after being left for a predetermined time in a state in which the microalgae culture solution is irradiated with light by the attracting wavelength light irradiation unit 22 and the repelling wavelength light irradiation unit 23, for example. Is called. However, light irradiation may be performed while the concentrated culture solution is being taken out via the take-out tube 24. In this way, it is possible to take out a concentrated culture solution having a higher concentration.
 一方、分離槽21内の微細藻類培養液のうちの濃縮培養液以外の部分である培養液が分離水として、第3制御弁73を開いて第3ポンプ83を動作させることにより、分離槽21内から第1分離水回収管28を経て送られて、分離水回収槽30内に回収される(ステップS30)。このとき、第1分離水回収管28の分離槽21側の端部に設けられた回収口部分の排水ノズルを介して、分離槽21内の培養液の上層部から順次回収され、図1の白抜き矢印で示すように分離槽21内の液面が下降するにしたがって排水ノズルも下降して分離水を連続的に回収する。 On the other hand, the culture solution which is a part other than the concentrated culture solution in the microalga culture solution in the separation tank 21 serves as the separation water, and the third control valve 73 is opened and the third pump 83 is operated. It is sent from the inside through the first separated water collection pipe 28 and collected in the separated water collection tank 30 (step S30). At this time, it is sequentially recovered from the upper layer of the culture solution in the separation tank 21 through the drain nozzle of the collection port provided at the end of the first separation water recovery pipe 28 on the separation tank 21 side, as shown in FIG. As indicated by the white arrow, as the liquid level in the separation tank 21 is lowered, the drain nozzle is also lowered to continuously collect the separated water.
 なお、分離槽21内の培養液(分離水)を分離水回収槽30内へ回収する動作の開始後あるいは完了後に、濃縮培養液の取出管24を経た取出しを開始することが好ましい。このようにすれば、濃縮培養液の取出管24を経た取出しの際に分離水を引き込むことが抑制されるため、より高濃度の濃縮培養液を取り出すことができる。 In addition, it is preferable to start taking out the concentrated culture broth through the take-out pipe 24 after the operation of collecting the culture broth (separated water) in the separation tank 21 into the separated water collection tank 30 is started or completed. By doing so, it is possible to take out the separated water at the time of taking out the concentrated culture solution through the take-out tube 24, so that a concentrated culture solution having a higher concentration can be taken out.
 ステップS40では、遠心分離機40による遠心分離が行われる。すなわち、分離槽21内の下部から送られた濃縮培養液から、微細藻類が遠心分離される。これにより、濃縮培養液の濃度をさらに高くすることができる。ここで、前もって濃縮装置20による微細藻類培養液の濃縮が行われるため、遠心分離機40の運転で消費されるエネルギーは少なくて済む。なお、前記したようにステップS40の遠心分離を省略することもできる。 In step S40, centrifugation by the centrifuge 40 is performed. That is, microalgae are centrifuged from the concentrated culture solution sent from the lower part in the separation tank 21. Thereby, the density | concentration of a concentrated culture solution can be made still higher. Here, since the microalgae culture solution is concentrated in advance by the concentrating device 20, less energy is consumed in the operation of the centrifuge 40. As described above, the centrifugation in step S40 can be omitted.
 そして、濃縮培養液から遠心分離された微細藻類が、第1移送路41を経て乾燥機50に送られる。一方、濃縮培養液から微細藻類を遠心分離した後の培養液が分離水として、第2分離水回収管42を経て送られて、分離水回収槽30内に回収される(ステップS30)。 Then, the microalgae centrifuged from the concentrated culture solution are sent to the dryer 50 via the first transfer path 41. On the other hand, the culture solution after centrifuging microalgae from the concentrated culture solution is sent as separated water through the second separated water recovery pipe 42 and recovered in the separated water recovery tank 30 (step S30).
 分離水回収槽30内に回収された分離水は、培養槽10に戻して混合するとよい。このようにすれば、分離水を培地として有効に再利用することができる。また、分離水に残存する濃縮されなかった微細藻類を再び培養することができる。 The separated water collected in the separated water collection tank 30 may be returned to the culture tank 10 and mixed. In this way, the separated water can be effectively reused as a culture medium. Further, the non-concentrated microalgae remaining in the separated water can be cultured again.
 ステップS50では、乾燥機50による乾燥が行われる。すなわち、水分を含む微細藻類が乾燥させられる。これにより、後記するステップS70における油脂の回収の妨げとなる水分が除去される。 In step S50, drying by the dryer 50 is performed. That is, the microalgae containing moisture are dried. Thereby, the water | moisture content which becomes obstructive of the collection | recovery of fats and oils in step S70 mentioned later is removed.
 そして、乾燥された微細藻類が、第2移送路51を経て送られて、藻体回収槽60内に回収される(ステップS60)。 Then, the dried microalgae are sent through the second transfer path 51 and are collected in the alga body collection tank 60 (step S60).
 続いて、油脂の回収が行われる(S70)。このステップS70では、藻体回収槽60内に回収された微細藻類の細胞内から油脂が抽出されて回収される。微細藻類の細胞内からの油脂の抽出は、例えば、有機溶媒を用いた溶媒抽出法や超臨界CO2抽出法等により行うことができる。 Subsequently, the oil is collected (S70). In this step S70, fats and oils are extracted and recovered from the cells of the microalgae recovered in the alga body recovery tank 60. Extraction of fats and oils from the cells of microalgae can be performed by, for example, a solvent extraction method using an organic solvent or a supercritical CO 2 extraction method.
 そして、回収された油脂を精製・改質することにより、軽油やジェット燃料といったバイオ燃料を製造することができる。また、油脂が抽出された微細藻類は、細胞構成成分であるタンパク質や色素成分が残存しており、そのまま、もしくは、生物的および/または化学的に有機物を可溶化したり、乾燥等したりすることで飼料、肥料、固形燃料、化学製品の原料など、バイオマス原料として利用することができる。 And, biofuels such as light oil and jet fuel can be manufactured by refining and reforming the recovered oils and fats. In addition, microalgae from which fats and oils have been extracted have protein and pigment components that are cell components remaining, and solubilize or dry organic matter as it is or biologically and / or chemically. Therefore, it can be used as a raw material for biomass such as feed, fertilizer, solid fuel, and raw materials for chemical products.
 前記したように本実施形態に係る濃縮装置20は、微細藻類を含有する微細藻類培養液を収容する分離槽21と、分離槽21に収容される微細藻類培養液に微細藻類を誘引する波長の光を照射する誘引波長光照射部22と、微細藻類培養液のうちの光照射により微細藻類の濃度が高くなった部分である濃縮培養液を取り出す取出管24とを有している。すなわち、濃縮装置20において行われる微細藻類培養液の濃縮方法は、微細藻類を含有する微細藻類培養液に、微細藻類を誘引する波長の光を照射する光照射工程と、微細藻類培養液のうちの光照射により微細藻類の濃度が高くなった部分を取り出す取出工程とを有している。 As described above, the concentration device 20 according to the present embodiment has a separation tank 21 that contains a microalgae culture solution containing microalgae, and a wavelength that attracts the microalgae to the microalgae culture solution that is contained in the separation tank 21. It has the attracting wavelength light irradiation part 22 which irradiates light, and the extraction tube 24 which takes out the concentrated culture solution which is a part where the density | concentration of the micro algae became high by light irradiation among the micro algae culture solutions. That is, the method of concentrating the microalgae culture solution performed in the concentration device 20 includes a light irradiation step of irradiating the microalgae culture solution containing microalgae with light having a wavelength that attracts microalgae, and a microalgae culture solution. And taking out a portion where the concentration of microalgae is increased by the light irradiation.
 したがって本実施形態によれば、微細藻類が特定の波長の光によって移動する微細藻類の走光性により、微細藻類を誘引する波長の光が照射される側に微細藻類培養液中の微細藻類が誘引されて集められる。これにより、分離槽21内の微細藻類培養液のうちに、微細藻類の濃度が高くなった部分である濃縮培養液が形成され、この濃縮培養液を取り出すことができる。なお、本発明において、微細藻類の濃度が高くなった部分を取り出すということは、微細藻類の濃度が低くなった部分を除くことで、微細藻類の濃度が高くなった部分を取得することも含む概念である。
 また、本実施形態は、自然沈降作用に専ら依存するものではなく、特定の波長の光の照射により効率的な濃縮が可能になるとともに、微細藻類に悪影響を与えることもない。
 また、凝集剤を使用しないため、回収した微細藻類に凝集剤が混入することがなく回収後の微細藻類を有効に利用することができるとともに、微細藻類回収後の培養液(分離水)は、凝集剤が残存せず培地として再利用することができ、排出する場合であっても処理が簡単となる。さらに、前もって濃縮装置20による微細藻類培養液の濃縮が行われるため、遠心分離機40を用いたとしても運転で消費されるエネルギーは少なくて済む。
 すなわち、本実施形態によれば、微細藻類を含有する微細藻類培養液を低コストで効率よく濃縮することができ、濃縮して分離後に回収される微細藻類および培養液の有効な利用を可能にする微細藻類培養液の濃縮方法および装置を提供できる。
Therefore, according to the present embodiment, the microalgae in the microalgae culture solution are attracted to the side irradiated with the light of the wavelength that attracts the microalgae due to the phototaxis of the microalgae that the microalgae move by the light of the specific wavelength. To be collected. Thereby, the concentrated culture solution which is the part where the density | concentration of the micro algae became high is formed in the micro algae culture solution in the separation tank 21, and this concentrated culture solution can be taken out. In the present invention, taking out a portion having a high concentration of microalgae also includes obtaining a portion having a high concentration of microalgae by removing a portion having a low concentration of microalgae. It is a concept.
In addition, the present embodiment does not depend solely on the natural sedimentation action, and enables efficient concentration by irradiation with light of a specific wavelength, and does not adversely affect microalgae.
In addition, since the flocculant is not used, the collected microalga can be effectively used without being mixed with the flocculant, and the culture liquid (separated water) after the microalgae recovery is as follows. The flocculant does not remain and can be reused as a culture medium, and the processing becomes simple even when discharged. Furthermore, since the microalgae culture solution is concentrated in advance by the concentrating device 20, even if the centrifuge 40 is used, less energy is consumed in the operation.
That is, according to this embodiment, the microalgae culture solution containing microalgae can be efficiently concentrated at low cost, and the microalgae and culture solution collected after concentration can be effectively used. It is possible to provide a method and apparatus for concentrating a microalgae culture solution.
 また、本実施形態では、微細藻類を誘引する波長の光の照射と同時に、あるいは微細藻類を誘引する波長の光の照射前または後に、微細藻類が忌避する波長の光が、微細藻類培養液の微細藻類を誘引する波長の光が照射される側と反対側から照射される。このような構成によれば、微細藻類が忌避する波長の光が照射される側から微細藻類培養液中の微細藻類が逃げていくため、微細藻類を誘引する波長の光が照射される側に微細藻類培養液中の微細藻類がより多く集められる。一方、微細藻類を誘引する波長の光が照射される側に微細藻類が集まってくると、微細藻類を誘引する波長の光が、集まった微細藻類自身によって徐々に遮られて奥側に届きにくくなる。このため、微細藻類の誘引作用が減少するおそれがあるが、微細藻類が忌避する波長の光による微細藻類の忌避作用によって、微細藻類培養液中の微細藻類を集める捕集作用を補うことができる。したがって、微細藻類培養液をより効率よく濃縮することができる。 Further, in the present embodiment, the light having a wavelength that the microalgae avoids is emitted from the microalgae culture solution at the same time as the irradiation with the light having the wavelength that attracts the microalgae, or before or after the irradiation with the light having the wavelength that attracts the microalgae. Irradiated from the side opposite to the side irradiated with light having a wavelength that attracts microalgae. According to such a configuration, since the microalgae in the microalgae culture solution escape from the side irradiated with the light of the wavelength repelled by the microalgae, the light of the wavelength attracting the microalgae is irradiated. More microalgae in the microalgae culture are collected. On the other hand, when microalgae gather on the side irradiated with light of a wavelength that attracts microalgae, the light of the wavelength that attracts microalgae is gradually blocked by the microalgae that gathered and hardly reaches the back side. Become. For this reason, there is a possibility that the attracting action of microalgae may be reduced, but the trapping action of collecting microalgae in the microalgae culture solution can be supplemented by the repellent action of microalgae by the light of the wavelength that microalgae avoids. . Therefore, the microalgae culture solution can be concentrated more efficiently.
 また、本実施形態では、微細藻類を誘引する波長の光は、微細藻類培養液の下側から該微細藻類培養液に照射される。このような構成によれば、光の照射による微細藻類の捕集作用に加えて、自然沈降作用も発揮される。これにより、分離槽21内の下部に微細藻類培養液中の微細藻類をより効率よく集めることができる。また、分離槽21内の上側から分離水を回収できるため、濃縮培養液を極力引き込まないで分離水を効率よく回収することができる。 Moreover, in this embodiment, the light of the wavelength which attracts a micro algae is irradiated to this micro algae culture solution from the lower side of a micro algae culture solution. According to such a configuration, in addition to the action of collecting microalgae by light irradiation, a natural sedimentation action is also exhibited. Thereby, the micro algae in a micro algae culture solution can be collected more efficiently in the lower part in the separation tank 21. Further, since the separated water can be collected from the upper side in the separation tank 21, the separated water can be efficiently collected without drawing the concentrated culture solution as much as possible.
 また、微細藻類として、光合成により油脂および炭水化物を生成し、細胞内に蓄積するものが使用され得る。このような微細藻類は、栄養補助食品等の素材、バイオ燃料の素材として利用可能となる。
 また、微細藻類として例えばユーグレナが使用され得る。ユーグレナは、光合成によりCOを固定化する能力が高いと同時に、豊富な栄養素を持つので栄養補助食品等としての利用価値が高く、しかも、細胞内から抽出される油脂から精製したオイルが軽質であるためジェット燃料に適しているという利点を有している。
Moreover, what produces | generates fats and carbohydrates by photosynthesis and accumulate | stores in a cell as a micro algae can be used. Such microalgae can be used as a material such as a nutritional supplement or a biofuel material.
Further, for example, Euglena can be used as the microalgae. Euglena has a high ability to immobilize CO 2 by photosynthesis, and at the same time has abundant nutrients, so it is highly useful as a nutritional supplement, etc. In addition, oil refined from fats and oils extracted from cells is light. Therefore, it has the advantage of being suitable for jet fuel.
 また、本実施形態では、微細藻類を誘引する波長の光として、好ましくは500nm~550nmの範囲内の波長成分を含む光、より好ましくは530nmの単色光(緑色光)が使用される。このような構成によれば、微細藻類を誘引する波長の光による微細藻類の誘引作用がより大きいため、微細藻類培養液をより効率よく濃縮することができる。 In this embodiment, light having a wavelength component in the range of 500 nm to 550 nm, more preferably 530 nm monochromatic light (green light) is used as the light having a wavelength that attracts microalgae. According to such a structure, since the attracting action of the microalgae by the light of the wavelength attracting the microalgae is larger, the microalgae culture solution can be concentrated more efficiently.
 以上、本発明について、実施形態に基づいて説明したが、本発明は、前記した実施形態に記載した構成に限定されるものではなく、実施形態に記載した構成を適宜組み合わせ乃至選択することを含め、その趣旨を逸脱しない範囲において適宜その構成を変更することができるものである。また、前記した実施形態の構成の一部について、追加、削除、置換をすることができる。 As mentioned above, although this invention was demonstrated based on embodiment, this invention is not limited to the structure described in above-described embodiment, The combination thru | or selecting suitably the structure described in embodiment is included. The configuration can be changed as appropriate without departing from the spirit of the invention. Further, a part of the configuration of the above-described embodiment can be added, deleted, or replaced.
 例えば、前記した実施形態では、濃縮装置20に誘引波長光照射部22および忌避波長光照射部23の両方が備えられているが、誘引波長光照射部22および忌避波長光照射部23のいずれか一方が備えられるように構成されることも可能である。この場合でも、分離槽21内の例えば下部に微細藻類培養液中の微細藻類を集める捕集作用を発揮できるため所定の効果が期待できる。 For example, in the above-described embodiment, the concentration device 20 includes both the attracting wavelength light irradiation unit 22 and the repelling wavelength light irradiation unit 23, but either the attraction wavelength light irradiation unit 22 or the repelling wavelength light irradiation unit 23 is used. It is also possible to be configured so that one is provided. Even in this case, a predetermined effect can be expected because, for example, the collection action of collecting the microalgae in the microalgae culture solution can be exhibited in the lower part of the separation tank 21.
 また、前記した実施形態では、微細藻類を誘引する波長の光の照射と同時に、微細藻類が忌避する波長の光が照射されることが想定されているが、本発明はこれに限定されるものではない。例えば微細藻類を誘引する波長の光の照射前または後に、微細藻類が忌避する波長の光が照射されるように構成されてもよい。
 また、光照射の開始タイミングに関して言えば、前記した実施形態では、誘引波長光照射部22による光照射と忌避波長光照射部23による光照射とが同時に開始されることが想定されているが、本発明はこれに限定されるものではない。例えば誘引波長光照射部22による光照射の開始後に忌避波長光照射部23による光照射が開始されてもよいし、その逆であってもよい。さらには、誘引波長光照射部22による光照射と忌避波長光照射部23による光照射とが交互に行われてもよい。
Further, in the above-described embodiment, it is assumed that light having a wavelength that repels microalgae is irradiated simultaneously with irradiation of light having a wavelength that attracts microalgae, but the present invention is limited to this. is not. For example, it may be configured to irradiate light having a wavelength that the microalgae avoid before or after irradiation with light having a wavelength that attracts the microalgae.
Further, regarding the start timing of light irradiation, in the above-described embodiment, it is assumed that light irradiation by the attracting wavelength light irradiation unit 22 and light irradiation by the repelling wavelength light irradiation unit 23 are started simultaneously. The present invention is not limited to this. For example, light irradiation by the repelling wavelength light irradiation unit 23 may be started after the light irradiation by the attracting wavelength light irradiation unit 22 is started, or vice versa. Furthermore, the light irradiation by the attracting wavelength light irradiation unit 22 and the light irradiation by the repelling wavelength light irradiation unit 23 may be performed alternately.
 また、前記した実施形態では、微細藻類を誘引する波長の光は、微細藻類培養液の下側から該微細藻類培養液に照射されるが、本発明はこれに限定されるものではない。分離槽21に収容される微細藻類培養液の周囲(上下左右前後)のいずれか一方側から微細藻類を誘引する波長の光を照射するように構成すればよく、この場合でも、微細藻類培養液中の微細藻類が周囲(上下左右前後)のいずれか一方の側に集められるため、濃縮培養液を形成して取り出すことができる。 In the above-described embodiment, light having a wavelength that attracts microalgae is irradiated to the microalgae culture solution from below the microalgae culture solution, but the present invention is not limited to this. What is necessary is just to comprise so that the light of the wavelength which attracts a micro algae may be irradiated from either one of the circumference | surroundings (upper / lower / left / right front / rear) of the micro algae culture solution accommodated in the separation tank 21. Since the microalgae inside are collected on either one of the surroundings (up, down, left and right, back and forth), a concentrated culture solution can be formed and taken out.
 また、濃縮装置20の分離槽21に例えば分光光度計等の濃度センサを付設して、微細藻類培養液のうちの光照射により微細藻類の濃度が高くなった部分における微細藻類の濃度を測定するように構成することも可能である。そして、濃度センサにより所定値以上の濃度が検知された場合に、濃縮培養液の取出しを実行するようにすれば、より効率のよい微細藻類培養液の濃縮が可能となる。 In addition, a concentration sensor such as a spectrophotometer is attached to the separation tank 21 of the concentrator 20 to measure the concentration of microalgae in the portion of the microalgae culture solution where the concentration of microalgae has increased due to light irradiation. It is also possible to configure as described above. If the concentration sensor detects a concentration equal to or higher than a predetermined value, the concentrated algae culture solution can be concentrated more efficiently if the concentrated culture solution is taken out.
[実験例]
 次に、本発明の効果について以下の実験例を用いて説明する。但し、本発明の技術的範囲が以下の実験例によって限定されるものではない。
[Experimental example]
Next, the effect of the present invention will be described using the following experimental example. However, the technical scope of the present invention is not limited by the following experimental examples.
<実験1>2次元のプレート内での微細藻類の走光性の実験
(実験方法)
(1)前提条件
 2次元(水平面内)のプレート内での微細藻類の走光性の実験を、アルミホイルをかぶせたシールドボックス内で、Xeランプ以外の光源がない状態で行った。
(2)微細藻類
 微細藻類としてユーグレナを用いた。
(3)培養条件
 培養液にはCM(Cramer-Myers)培地を用いた。培養中は蛍光灯の光を照射した。CO濃度は5%(空気中)とした。温度は32℃とした。また、攪拌子により攪拌を行った。
(4)実験用プレート作成手順
(a)CM培地からビタミン類を除いたものを2倍濃度に調整した溶液(溶液A)を作成した。
(b)2g/Lのバクトアガー溶液(溶液B)を作成した。
(c)溶液Aと溶液Bとをそれぞれオートクレーブにかけた。なお、溶液Aと溶液Bとを別々にオートクレーブにかけたのは、糖の一種であるバクトアガーは酸性条件下で加温すると分解してしまうからである。
(d)熱いうちに溶液Aと溶液Bとを1:1の割合で混合した。
(e)混合液をクリーンベンチ内でプレートリーダ用のプレートに薄く注ぎ、室温放置で冷却した。
(f)プレート内で固化した寒天培地を冷蔵保存した。
<Experiment 1> Experiment on the phototaxis of microalgae in a two-dimensional plate (experimental method)
(1) Preconditions Experiments on the phototaxis of microalgae in a two-dimensional (horizontal plane) plate were carried out in a shield box covered with aluminum foil and without a light source other than the Xe lamp.
(2) Microalgae Euglena was used as a microalgae.
(3) Culture conditions CM (Cramer-Myers) medium was used for the culture solution. During the culture, light from a fluorescent lamp was irradiated. The CO 2 concentration was 5% (in air). The temperature was 32 ° C. Moreover, it stirred with the stirring bar.
(4) Experimental plate preparation procedure (a) A solution (solution A) prepared by removing the vitamins from the CM medium to a double concentration was prepared.
(B) A 2 g / L bactagar solution (solution B) was prepared.
(C) Solution A and solution B were each autoclaved. The reason why the solution A and the solution B were separately subjected to autoclaving is that bactagar, a kind of sugar, is decomposed when heated under acidic conditions.
(D) While hot, Solution A and Solution B were mixed at a ratio of 1: 1.
(E) The mixed solution was thinly poured on a plate for a plate reader in a clean bench and allowed to cool at room temperature.
(F) The agar medium solidified in the plate was stored refrigerated.
(5)濃縮時の光照射および吸光度の計測
 図3は、2次元のプレート内での微細藻類の走光性の実験における光照射方法を説明するための模式的な平面図である。なお、説明を明確にするため、図3に示すように、光照射方向に垂直な方向(図3の紙面における上下方向)をX軸方向、光照射方向に沿う方向(図3の紙面における左右方向)をY軸方向とする(図4でも同様)。
 図3に示すように、プレート1内に作成された寒天培地2の上に、独立栄養で培養された微細藻類を含有する微細藻類培養液(藻体懸濁液)を15~20mlほど注いだ。
 そして、横(図3では右横)からXeランプ3により単色光を20mW/cmで矢印4方向に照射した状態で24時間放置した。
 続いて、プレートリーダ(TECAN社製インフィニットM200PRO)を用いて、プレート1をX方向に8分割しY方向に12分割して形成される96箇所の吸光度を計測した。吸光度は、各測定部に特定波長(ここではクロロフィルの光吸収に起因する680nmの波長)の光を当て入射光強度と透過光強度の比の対数で表されるものであり、値が大きいほど濃度が高いことを示す。
 このようなXeランプ3による光照射を、400nm、500nm、530nm、550nm、600nm、640nm、680nm、および700nmの各波長の光(単色光)を用いて行い、それぞれについて吸光度の計測を行った。
(5) Measurement of Light Irradiation and Absorbance During Concentration FIG. 3 is a schematic plan view for explaining a light irradiation method in a microalgal phototaxis experiment in a two-dimensional plate. For the sake of clarity, as shown in FIG. 3, the direction perpendicular to the light irradiation direction (up and down direction in the plane of FIG. 3) is the X-axis direction, and the direction along the light irradiation direction (left and right in the plane of FIG. 3). Direction) is the Y-axis direction (the same applies to FIG. 4).
As shown in FIG. 3, on the agar medium 2 prepared in the plate 1, about 15 to 20 ml of a microalgae culture solution (algae suspension) containing microalgae cultured in autotroph was poured. .
Then, the monochromatic light was irradiated from the side (right side in FIG. 3) with the Xe lamp 3 at 20 mW / cm 2 in the direction of arrow 4 and left for 24 hours.
Subsequently, using a plate reader (TECAN Infinite M200PRO), the absorbance at 96 locations formed by dividing the plate 1 into 8 parts in the X direction and 12 parts in the Y direction was measured. Absorbance is expressed by the logarithm of the ratio of incident light intensity to transmitted light intensity when light of a specific wavelength (here, wavelength of 680 nm due to light absorption of chlorophyll) is applied to each measurement unit, and the larger the value, the greater the value. Indicates that the concentration is high.
Such light irradiation by the Xe lamp 3 was performed using light (monochromatic light) of wavelengths of 400 nm, 500 nm, 530 nm, 550 nm, 600 nm, 640 nm, 680 nm, and 700 nm, and the absorbance was measured for each.
(6)実験結果
 図4は、530nmの波長の光を用いた場合のプレート内での微細藻類の走光性の実験結果を示す立体的なグラフである。
 図4に示すX軸方向およびY軸方向は、図3に対応しており、X軸およびY軸を含む平面で形成されるX-Y平面は、プレート1の表面を表している。そして、Z軸方向は、96箇所の各測定部におけるセル存在率(%)を表している。セル存在率(%)は、プレート1全体における微細藻類(セル)のうちの何%が該当する測定部に存在しているかを示すものであり、全測定部の合計吸光度に対する各測定部における吸光度の割合で与えられる。
(6) Experimental Results FIG. 4 is a three-dimensional graph showing the experimental results of the microalgae phototaxis in the plate when light having a wavelength of 530 nm is used.
The X-axis direction and the Y-axis direction shown in FIG. 4 correspond to FIG. 3, and the XY plane formed by the plane including the X-axis and the Y-axis represents the surface of the plate 1. The Z-axis direction represents the cell presence rate (%) in each of the 96 measurement units. The cell abundance (%) indicates what percentage of the microalgae (cells) in the entire plate 1 is present in the corresponding measurement part, and the absorbance in each measurement part relative to the total absorbance of all measurement parts. Given in proportion.
 図4に示すように、530nmの波長の光を用いた場合には、殆ど全ての微細藻類が光の照射部付近に集められており、一方、プレート1における光の照射部と反対側には、微細藻類が殆ど存在していないことがわかる。このように、530nmの波長の光は、微細藻類の誘引作用が極めて大きいことがわかる。ここで、図4のグラフにおけるピークPは、全測定部のうちで最も高いセル存在率(セル存在率最大値)を示している。 As shown in FIG. 4, when light having a wavelength of 530 nm is used, almost all the microalgae are collected near the light irradiation part, while on the opposite side of the plate 1 from the light irradiation part. It can be seen that there are almost no microalgae. Thus, it can be seen that light having a wavelength of 530 nm has an extremely large attracting action for microalgae. Here, the peak P in the graph of FIG. 4 indicates the highest cell existence rate (maximum cell existence rate) among all the measurement units.
 図5は、照射される光の波長とセル存在率最大値との関係を示すグラフである。
 図5に示すように、530nmの波長の光が微細藻類の誘引作用が最も大きいことがわかる。また、500nm、および550nmの各波長の光も微細藻類の誘引作用が比較的大きいことがわかる。
FIG. 5 is a graph showing the relationship between the wavelength of irradiated light and the maximum cell existence rate.
As shown in FIG. 5, it can be seen that light having a wavelength of 530 nm has the greatest attracting action of microalgae. Moreover, it turns out that the attracting action of micro algae is comparatively large also for the light of each wavelength of 500 nm and 550 nm.
<実験2>2次元のシャーレ内での微細藻類の走光性の実験
(実験方法)
(1)前提条件
 2次元(水平面内)のシャーレ内での微細藻類の走光性の実験を、アルミホイルをかぶせたシールドボックス内で行い、Xeランプ以外の光源はない状態で行った。
(2)微細藻類、および(3)培養条件は、実験1と同様である。
(4)実験用シャーレ作成手順
 プレートの代わりに、滅菌シャーレを用いること以外は、実験1の実験用プレート作成手順と同様である。
(5)濃縮時の光照射
 図6は、2次元のシャーレ内での微細藻類の走光性の実験における光照射の様子を説明するための模式的な平面図である。
 図6に示すように、シャーレ5内に作成された寒天培地2aの上に、独立栄養で培養した微細藻類を含有する微細藻類培養液(藻体懸濁液)を注いだ。そして、横(図6では左横)からXeランプ3により400nmの波長の光を20mW/cmで照射した状態で24時間放置した。また、別のシャーレ5で、530nmの波長の光を用いて同様の光照射を行った。
(6)実験結果
 図6に示すように、400nmの波長の光を用いた場合には、微細藻類が光の照射部付近から逃げていることがわかる。このように、400nmの波長の光は、微細藻類の忌避作用が極めて大きいことがわかる。一方、530nmの波長の光を用いた場合には、殆ど全ての微細藻類が光の照射部付近に集められており、微細藻類の誘引作用が極めて大きいことがわかる。
<Experiment 2> Experiment on the phototaxis of microalgae in a two-dimensional petri dish (experiment method)
(1) Preconditions Experiments on the phototaxis of microalgae in a two-dimensional (horizontal plane) petri dish were performed in a shield box covered with aluminum foil, with no light source other than the Xe lamp.
(2) Microalgae and (3) Culture conditions are the same as in Experiment 1.
(4) Experimental Petri dish Preparation Procedure The same procedure as the experimental plate preparation procedure of Experiment 1 is used except that a sterile petri dish is used instead of the plate.
(5) Light Irradiation During Concentration FIG. 6 is a schematic plan view for explaining the state of light irradiation in a microalgal phototaxis experiment in a two-dimensional petri dish.
As shown in FIG. 6, on the agar medium 2a created in the petri dish 5, a microalgae culture solution (algae suspension) containing microalgae cultured by autotroph was poured. Then, the Xe lamp 3 from the side (left side in FIG. 6) was left for 24 hours while being irradiated with light having a wavelength of 400 nm at 20 mW / cm 2 . Further, in another petri dish 5, the same light irradiation was performed using light having a wavelength of 530 nm.
(6) Experimental Results As shown in FIG. 6, it can be seen that when a light having a wavelength of 400 nm is used, microalgae escape from the vicinity of the light irradiation portion. Thus, it can be seen that light with a wavelength of 400 nm has an extremely large repellent effect on microalgae. On the other hand, when light having a wavelength of 530 nm is used, almost all the microalgae are collected in the vicinity of the light-irradiated part, and it can be seen that the attracting action of the microalgae is extremely large.
<実験3>3次元のヴァイアル瓶内での微細藻類の走光性の実験
(実験方法)
(1)前提条件
 3次元(空間内)のヴァイアル瓶内での微細藻類の走光性の実験を、光照射の場合にはアルミホイルをかぶせたシールドボックス内で行い、Xeランプ以外の光源はない状態で行った。
(2)微細藻類、および(3)培養条件は、実験1と同様である。
(4)実験用ヴァイアル瓶作成手順
 20mlのヴァイアル瓶に、独立栄養で培養された微細藻類を含有する微細藻類培養液(藻体懸濁液)を15ml(光なしの場合/緑色光を用いた場合)入れた。
(5)濃縮時の光照射および吸光度の計測
 光なしでの実験では、ヴァイアル瓶の全体をアルミホイルでくるんで遮光して24時間放置した。また、緑色光(530nmの波長の光)を用いた実験では、ヴァイアル瓶の底面に向けてヴァイアル瓶の下側に設置した光源から、対応する光を20mW/cmで照射して24時間放置した。
 図7は、ヴァイアル瓶からの液サンプリングを説明するための模式図である。
 図7に示すように、ヴァイアル瓶6内の液の上層から順に、マイクロプレート7に形成された複数の凹部8の左上から右下の方に移して、サンプリングを行った。液のサンプリングは、光なしの場合と緑色光を用いた場合とでは約0.5mlずつ行い、各サンプルの680nm(クロロフィルの光吸収に起因する波長)の吸光度をプレートリーダ(TECAN社製インフィニットM200PRO)で測定した。
<Experiment 3> Experiment on phototaxis of microalgae in 3D vial (experimental method)
(1) Prerequisites Experiments on the phototaxis of microalgae in a three-dimensional (in space) vial are conducted in a shield box covered with aluminum foil in the case of light irradiation, and there is no light source other than the Xe lamp. Went in state.
(2) Microalgae and (3) Culture conditions are the same as in Experiment 1.
(4) Procedure for making vials for experiments 15 ml of microalga culture solution (algae suspension) containing microalga cultured in autotroph in a 20 ml vial was used (without light / green light was used) Case).
(5) Measurement of light irradiation and absorbance during concentration In the experiment without light, the entire vial was wrapped with aluminum foil and shielded from light for 24 hours. In an experiment using green light (light having a wavelength of 530 nm), the corresponding light is irradiated at 20 mW / cm 2 from the light source installed on the lower side of the vial toward the bottom of the vial, and left for 24 hours. did.
FIG. 7 is a schematic diagram for explaining liquid sampling from a vial bottle.
As shown in FIG. 7, sampling was performed by moving from the upper layer of the liquid in the vial 6 in order from the upper left to the lower right of the plurality of recesses 8 formed in the microplate 7. Sampling of the liquid is performed approximately 0.5 ml each in the case of no light and in the case of using green light, and the absorbance of each sample at 680 nm (wavelength due to light absorption of chlorophyll) is measured with a plate reader (TECAN Infinite M200PRO). ).
(6)実験結果
 図8は、緑色光を用いた実験を行った場合のサンプリング順に並べた各サンプルの吸光度を示すグラフである。つまり、図8は、緑色光を用いた実験を行った場合のヴァイアル瓶6内の液における微細藻類の濃度分布を表す。なお、図8中のサンプルNo.は、サンプリング順の番号を示す(図9、図11でも同様)。図8に示すように、緑色光を用いた実験を行った場合には、サンプリング順で最後の4サンプルが、極めて高い吸光度を示しており、微細藻類の濃度が高くなった部分である濃縮培養液が形成されていることがわかる。
 図9は、光なしでの実験を行った場合のサンプリング順に並べた各サンプルの吸光度を示すグラフである。つまり、図9は、光なしでの実験を行った場合のヴァイアル瓶6内の液における微細藻類の濃度分布を表す。図9に示すように、光なしでの実験を行った場合には、各サンプルの吸光度は全体的に差異がなく、微細藻類の濃縮が行われていないことがわかる。
 図10は、3次元のヴァイアル瓶内での微細藻類の走光性の実験結果を示す図表である。吸光度(初期値)は、処理前の吸光度を計測したものである。吸光度(処理後、濃縮部)は、処理後におけるサンプリング順で最後付近の濃度の高いサンプル群(濃縮部)の平均吸光度を示す。なお、光なしでの実験を行った場合には濃縮部が形成されないが、緑色光を用いた実験を行った場合の濃縮部のサンプル数と同数のサンプル群を濃縮部と仮定して算出した。吸光度(処理後、上部)は、処理後における濃縮部以外のサンプル群(上部)の平均吸光度を示す。濃縮度(倍)は、濃度が何倍になったかを示す値であり、吸光度(処理後、濃縮部)を吸光度(初期値)で除することにより求められる。濃縮体積率(%)は、全体積に対する前記した濃縮部の体積の割合を示す。捕集率(%)は、微細藻類の総数に対する前記した濃縮部における微細藻類の数の割合を示す。図10に示すように、緑色光を用いた場合には、例えば濃縮度が約9倍と高く、より効率のよい微細藻類培養液の濃縮が可能となることがわかる。
(6) Experimental Results FIG. 8 is a graph showing the absorbance of each sample arranged in the sampling order when an experiment using green light is performed. That is, FIG. 8 shows the concentration distribution of microalgae in the liquid in the vial 6 when an experiment using green light is performed. In addition, sample No. in FIG. Indicates a sampling order number (the same applies to FIGS. 9 and 11). As shown in FIG. 8, when an experiment using green light was performed, the last four samples in the sampling order showed extremely high absorbance, and the concentrated culture was a portion where the concentration of microalgae was high. It can be seen that a liquid is formed.
FIG. 9 is a graph showing the absorbance of each sample arranged in the sampling order when an experiment without light is performed. That is, FIG. 9 shows the concentration distribution of microalgae in the liquid in the vial 6 when an experiment without light is performed. As shown in FIG. 9, when an experiment without light is performed, the absorbance of each sample is not entirely different, and it is understood that the microalgae are not concentrated.
FIG. 10 is a chart showing the experimental results of the phototaxis of microalgae in a three-dimensional vial. The absorbance (initial value) is obtained by measuring the absorbance before the treatment. Absorbance (after treatment, concentrated portion) indicates the average absorbance of a sample group (concentrated portion) having a high concentration near the end in the sampling order after treatment. In addition, the concentration part is not formed when the experiment without light is performed, but the calculation was performed assuming the same number of sample groups as the concentration part when the experiment using green light was performed. . Absorbance (after treatment, upper part) indicates the average absorbance of the sample group (upper part) other than the concentrated part after treatment. The degree of concentration (fold) is a value indicating how many times the concentration has been increased, and is obtained by dividing the absorbance (after treatment, the concentrated portion) by the absorbance (initial value). The concentrated volume ratio (%) indicates the ratio of the volume of the concentrated portion to the total volume. The collection rate (%) indicates the ratio of the number of microalgae in the above-described concentration part to the total number of microalgae. As shown in FIG. 10, when green light is used, for example, the concentration is as high as about 9 times, and it can be understood that the microalgae culture solution can be concentrated more efficiently.
<実験4>3次元のメスシリンダ内での微細藻類の走光性の実験
(実験方法)
 ヴァイアル瓶の代わりに比較的容量の大きい200mlのメスシリンダを使用し、緑色光(530nmの波長の光)を用いた実験を行った。実験3と比べて全体として液量が多いため、最後の10mlほどまでは、サンプリング間隔を大きくして5.3ml毎に0.3mlのサンプリングを行った。それ以外は実験3に準じた。
(6)実験結果
 図11は、容量の大きいメスシリンダの底部に向けて下側から緑色光を照射した実験を行った場合のサンプリング順に並べた各サンプルの吸光度を示すグラフである。図11に示すように、容量の大きいメスシリンダを用いた場合でも、サンプリング順で最後付近のサンプル群が、極めて高い吸光度を示しており、微細藻類の濃度が高くなった部分である濃縮培養液が形成されていることがわかる。また、濃縮度が約8倍と高い値が得られた。
<Experiment 4> Experiment on the phototaxis of microalgae in a three-dimensional measuring cylinder (experimental method)
A 200 ml measuring cylinder having a relatively large capacity was used instead of the vial, and an experiment using green light (light having a wavelength of 530 nm) was performed. Since the liquid volume as a whole is larger than in Experiment 3, the sampling interval was increased up to the last 10 ml, and 0.3 ml was sampled every 5.3 ml. Otherwise, it was according to Experiment 3.
(6) Experimental Results FIG. 11 is a graph showing the absorbance of each sample arranged in the sampling order when an experiment was performed in which green light was irradiated from below toward the bottom of a graduated cylinder having a large capacity. As shown in FIG. 11, even in the case of using a graduated cylinder with a large capacity, the sample group near the end in the sampling order shows extremely high absorbance, and the concentrated culture solution is a portion where the concentration of microalgae has increased. It can be seen that is formed. Further, a high value of about 8 times the degree of enrichment was obtained.
 20  濃縮装置
 21  分離槽(収容部)
 22  誘引波長光照射部
 23  忌避波長光照射部
 24  取出管(取出部)
20 Concentrator 21 Separation tank (container)
22 Attracting wavelength light irradiation unit 23 Repelling wavelength light irradiation unit 24 Extraction pipe (extraction unit)

Claims (9)

  1.  微細藻類を含有する微細藻類培養液に、前記微細藻類を誘引する波長の光を照射する光照射工程と、
     前記微細藻類培養液のうちの光照射により前記微細藻類の濃度が高くなった部分を取り出す取出工程と、
    を有することを特徴とする微細藻類培養液の濃縮方法。
    A light irradiation step of irradiating the microalgae culture solution containing microalgae with light having a wavelength that attracts the microalgae,
    An extraction step of taking out the portion of the microalgae culture solution in which the concentration of the microalgae is increased by light irradiation;
    A method for concentrating a microalgae culture solution, comprising:
  2.  前記微細藻類を誘引する波長の光の照射と同時に、あるいは前記微細藻類を誘引する波長の光の照射前または後に、前記微細藻類が忌避する波長の光が、前記微細藻類培養液の前記微細藻類を誘引する波長の光が照射される側と反対側から照射されることを特徴とする請求項1に記載の微細藻類培養液の濃縮方法。 At the same time as the irradiation with light having a wavelength that attracts the microalgae, or before or after the irradiation with light having a wavelength that attracts the microalgae, the light having a wavelength that the microalgae repels is the microalgae in the microalgae culture solution. The method for concentrating a microalgae culture solution according to claim 1, wherein irradiation is performed from a side opposite to the side irradiated with light having a wavelength that attracts the algae.
  3.  前記光照射工程において、前記微細藻類を誘引する波長の光は、微細藻類培養液の下側から該微細藻類培養液に照射されることを特徴とする請求項1または請求項2に記載の微細藻類培養液の濃縮方法。 The fine light according to claim 1 or 2, wherein, in the light irradiation step, the light having a wavelength that attracts the microalgae is irradiated to the microalgae culture solution from below the microalgae culture solution. Concentration method of algae culture solution.
  4.  前記微細藻類は、光合成により油脂および炭水化物を生成し、細胞内に蓄積するものであることを特徴とする請求項1~請求項3に記載の微細藻類培養液の濃縮方法。 The method for concentrating a microalgae culture solution according to any one of claims 1 to 3, wherein the microalgae produce fats and carbohydrates by photosynthesis and accumulate in the cells.
  5.  前記微細藻類は、ユーグレナであることを特徴とする請求項1~請求項4に記載の微細藻類培養液の濃縮方法。 5. The method for concentrating a microalgae culture solution according to any one of claims 1 to 4, wherein the microalgae is Euglena.
  6.  前記微細藻類を誘引する波長の光は、500nm~550nmの範囲内の波長成分を含む光であることを特徴とする請求項1~請求項5に記載の微細藻類培養液の濃縮方法。 6. The method for concentrating a microalgae culture solution according to any one of claims 1 to 5, wherein the light having a wavelength that attracts the microalgae is light containing a wavelength component in a range of 500 nm to 550 nm.
  7.  微細藻類を含有する微細藻類培養液に、前記微細藻類が忌避する波長の光を照射する光照射工程と、
     前記微細藻類培養液のうちの光照射により前記微細藻類の濃度が高くなった部分を取り出す取出工程と、
    を有することを特徴とする微細藻類培養液の濃縮方法。
    A light irradiation step of irradiating a microalgae culture solution containing microalgae with light of a wavelength that the microalgae avoids;
    An extraction step of taking out the portion of the microalgae culture solution in which the concentration of the microalgae is increased by light irradiation;
    A method for concentrating a microalgae culture solution, comprising:
  8.  微細藻類を含有する微細藻類培養液を収容する収容部と、
     前記収容部に収容される前記微細藻類培養液に、前記微細藻類を誘引する波長の光を照射する誘引波長光照射部と、
     前記微細藻類培養液のうちの光照射により前記微細藻類の濃度が高くなった部分を取り出す取出部と、
    を有することを特徴とする微細藻類培養液の濃縮装置。
    A storage section for storing a microalgae culture solution containing microalgae;
    An attracting wavelength light irradiating unit that irradiates light of a wavelength that attracts the microalgae to the microalgae culture solution accommodated in the accommodating unit;
    An extraction portion for taking out the portion of the microalgae culture solution in which the concentration of the microalgae has been increased by light irradiation;
    A device for concentrating a microalgae culture solution, comprising:
  9.  前記収容部に収容される前記微細藻類培養液に、前記微細藻類が忌避する波長の光を、前記微細藻類培養液の前記微細藻類を誘引する波長の光が照射される側と反対側から照射する忌避波長光照射部をさらに有することを特徴とする請求項8に記載の微細藻類培養液の濃縮装置。 Irradiating the microalgae culture solution stored in the storage unit with light having a wavelength that the microalgae repels from a side opposite to a side of the microalgae culture solution that is irradiated with light having a wavelength that induces the microalgae. The apparatus for concentrating a microalgae culture solution according to claim 8, further comprising a repelling wavelength light irradiation unit.
PCT/JP2014/053868 2013-03-04 2014-02-19 Method for concentrating microalga culture fluid and apparatus therefor WO2014136574A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-041487 2013-03-04
JP2013041487A JP6183825B2 (en) 2013-03-04 2013-03-04 Method and apparatus for concentrating microalgae culture solution

Publications (1)

Publication Number Publication Date
WO2014136574A1 true WO2014136574A1 (en) 2014-09-12

Family

ID=51491097

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/053868 WO2014136574A1 (en) 2013-03-04 2014-02-19 Method for concentrating microalga culture fluid and apparatus therefor

Country Status (3)

Country Link
JP (1) JP6183825B2 (en)
TW (1) TW201526790A (en)
WO (1) WO2014136574A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015190116A1 (en) * 2014-06-13 2015-12-17 株式会社デンソー Microalgae culture method, microalgae, and fat/oil production method
EP3929274A1 (en) * 2020-06-23 2021-12-29 National University of Ireland, Galway Method and apparatus for cultivating microalgae
US11473051B2 (en) 2019-02-27 2022-10-18 Nichia Corporation Method of cultivating algae and photobioreactor

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6704562B2 (en) * 2014-12-26 2020-06-03 国立研究開発法人水産研究・教育機構 Method of inducing light-escape behavior of red tide-caused rafido algae
JP6979849B2 (en) * 2017-10-20 2021-12-15 清水建設株式会社 Culture solution sterilization method and culture solution sterilizer
CN113481141B (en) * 2021-08-04 2024-02-13 华东理工大学 Method for directionally culturing and enriching high-value microalgae biomass by coupling sludge extracting solution with CO2 and directional microalgae culturing device

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0394623A (en) * 1989-09-07 1991-04-19 Hitachi Plant Eng & Constr Co Ltd Cultivation apparatus for algae
CA2756035A1 (en) * 2009-03-20 2010-09-23 Algal Scientific Corporation System and method for treating wastewater via phototactic heterotrophic microorganism growth
JP2011246605A (en) * 2010-05-26 2011-12-08 Hitachi Plant Technologies Ltd Method for producing biofuel

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
IMAI I. ET AL.: "A simple technique for establishing axenic cultures of phytoflagellates.", BULL. JAP. SOC. MICROB. ECOL., vol. 9, no. 1, 1994, pages 15 - 17 *
NAKAJIMA T. ET AL.: "A photo-bioreactor using algal phototaxis for solids-liquid separation.", WAT. RES., vol. 25, no. 10, 1991, pages 1243 - 1247 *
TOSHIYUKI NAKAJIMA: "The research on light bioreactor using phototaxis of algae", EISEI KOGAKU KENKYU TORONKAI KOENSHU, vol. 26, 1990, pages 52 - 54 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015190116A1 (en) * 2014-06-13 2015-12-17 株式会社デンソー Microalgae culture method, microalgae, and fat/oil production method
US11473051B2 (en) 2019-02-27 2022-10-18 Nichia Corporation Method of cultivating algae and photobioreactor
EP3929274A1 (en) * 2020-06-23 2021-12-29 National University of Ireland, Galway Method and apparatus for cultivating microalgae
WO2021259752A1 (en) * 2020-06-23 2021-12-30 National University Of Ireland, Galway Method and apparatus for cultivating microalgae

Also Published As

Publication number Publication date
TW201526790A (en) 2015-07-16
JP2014168409A (en) 2014-09-18
JP6183825B2 (en) 2017-08-23

Similar Documents

Publication Publication Date Title
JP6183825B2 (en) Method and apparatus for concentrating microalgae culture solution
US8951773B2 (en) Production method for biofuel
Wen et al. Effective cultivation of microalgae for biofuel production: a pilot-scale evaluation of a novel oleaginous microalga Graesiella sp. WBG-1
ES2406189B2 (en) Procedure for the extraction of lipids from algal biomass.
Klinthong et al. A review: microalgae and their applications in CO2 capture and renewable energy
Mata et al. Effect of the culture nutrients on the biomass and lipid productivities of microalgae Dunaliella tertiolecta
ES2364768B2 (en) PROCEDURE FOR THE EXTRACTION OF FATTY ACIDS FROM ALGAE BIOMASS.
Kowthaman et al. A comprehensive insight from microalgae production process to characterization of biofuel for the sustainable energy
ES2674668T3 (en) Procedure for the extraction of lipids and sugars from algae biomass
Lee et al. Coagulation-membrane filtration of Chlorella vulgaris
Marjakangas et al. Selecting an indigenous microalgal strain for lipid production in anaerobically treated piggery wastewater
Hasan et al. Bioremediation of swine wastewater and biofuel potential by using Chlorella vulgaris, Chlamydomonas reinhardtii, and Chlamydomonas debaryana
Kumar et al. Algae oil as future energy source in Indian perspective
Kabir et al. Screening of native hyper-lipid producing microalgae strains for biomass and lipid production
Martín et al. Hybrid two-stage culture of Halamphora coffeaeformis for biodiesel production: Growth phases, nutritional stages and biorefinery approach
WO2019095280A1 (en) Production of Algae-Derived Polyunsaturated Fatty Acids
Ahmad et al. A critical overview of upstream cultivation and downstream processing of algae-based biofuels: Opportunity, technological barriers and future perspective
Wang et al. Resourceful treatment of cane sugar industry wastewater by Tribonema minus towards the production of valuable biomass
Aishvarya et al. Microalgae: cultivation and application
CN104388315A (en) Scnedesmus quadricauda for efficiently treating typical domestic sewage, and culture method and application thereof
Indrayani Isolation and characterization of microalgae with commercial potential
Al-Naimi et al. Biocrude oil and high-value metabolite production potential of the Nitzschia sp.
WO2011072699A1 (en) Recycling of carbon dioxid by cultivating algae
Ganesan et al. Algal biodiesel: technology, hurdles, and future directions
US20230313096A1 (en) Methods, apparatus, and systems for forming discrete biomass receptacles from a base material that is created via cultivating or processing algae for biofuel production

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14759797

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14759797

Country of ref document: EP

Kind code of ref document: A1