WO2014136335A1 - Wiring board and power conversion apparatus using same - Google Patents

Wiring board and power conversion apparatus using same Download PDF

Info

Publication number
WO2014136335A1
WO2014136335A1 PCT/JP2013/082525 JP2013082525W WO2014136335A1 WO 2014136335 A1 WO2014136335 A1 WO 2014136335A1 JP 2013082525 W JP2013082525 W JP 2013082525W WO 2014136335 A1 WO2014136335 A1 WO 2014136335A1
Authority
WO
WIPO (PCT)
Prior art keywords
terminal
module
negative
positive
positive terminal
Prior art date
Application number
PCT/JP2013/082525
Other languages
French (fr)
Japanese (ja)
Inventor
明博 難波
健 徳山
中津 欣也
壮志 松尾
佐藤 俊也
Original Assignee
日立オートモティブシステムズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立オートモティブシステムズ株式会社 filed Critical 日立オートモティブシステムズ株式会社
Publication of WO2014136335A1 publication Critical patent/WO2014136335A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/003Constructional details, e.g. physical layout, assembly, wiring or busbar connections
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/53Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/537Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
    • H02M7/5387Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration

Definitions

  • the present invention relates to a wiring board used for converting DC power into AC power or converting AC power into DC power and a power converter using the wiring board, and more particularly to a wiring board and power used in a hybrid vehicle and an electric vehicle.
  • the present invention relates to a conversion device.
  • Power converters used for hybrid vehicles and electric vehicles are required to increase output power as the driving torque of hybrid vehicles and electric vehicles increases.
  • An increase in output power leads to an increase in energization current, and a wiring board for passing this energization current is required to reduce resistance loss and inductance.
  • the DC terminal of the capacitor module is started up in a stacked state, and then the connection portion located at the tip of the DC terminal of the capacitor module is connected to the DC terminal in the stacked state of the power semiconductor module on both sides. Welding connection with a structure sandwiched from.
  • the narrow DC terminal is raised from the DC wide conductor of the capacitor module to suppress resistance loss and inductance. There is a risk of hindrance.
  • an object of the present invention is to reduce the inductance and loss of the connection conductor connecting the capacitor and the power semiconductor module.
  • the present application includes a plurality of means for solving the above-described problems.
  • the present application includes an electric circuit body to which a direct current is input, and a power board that transmits the direct current to the electric circuit body.
  • the power board includes a positive electrode conductor plate, a negative electrode conductor plate arranged to face the positive electrode conductor plate, a positive electrode terminal connected to the positive electrode conductor plate, and a positive electrode terminal connected to the negative electrode conductor plate.
  • the power board has a through hole, and either the positive terminal or the negative terminal protrudes from one surface of the power board, and the positive terminal The terminal or the other terminal of the negative terminal protrudes from the one surface of the power board through the through hole, and the electric circuit body is electrically connected to the positive terminal and the negative terminal. It is a conversion apparatus.
  • a power converter capable of connecting a power semiconductor module and a laminated DC conductor plate with low inductance and low loss.
  • FIG. 1 In the power converter device of Example 1, it is the figure which showed the cross-sectional shape of the connection part of a positive electrode conductor plate, a negative electrode conductor plate, and a power semiconductor module.
  • the power converter device of Example 1 it is the figure which showed the cross-sectional shape of the connection part of a positive electrode conductor plate, a negative electrode conductor plate, and a capacitor module. It is the figure which showed the flow of the positive electrode current and negative electrode current on a power board of the connection part of a power board and a power semiconductor module. It is an example of the block diagram of the power converter device of Example 2.
  • FIG. It is an example of the electric circuit diagram of the power semiconductor module of Example 3.
  • FIG. 4 is an exploded perspective view showing a process of assembling a module sealing body 191 with the case 103 of the power semiconductor module 100.
  • FIG. 4 is an exploded perspective view of circuit components constituting a series circuit of upper and lower arms of a power semiconductor module 100.
  • FIG. 2 is an external perspective view of a power board 300.
  • FIG. 2 is a top view of a power board 300.
  • FIG. 1 is an example of an electric circuit diagram of the power conversion apparatus 500 of the present embodiment.
  • the operation principle of the power conversion apparatus 500 of this embodiment will be described with reference to FIG.
  • the power conversion apparatus 500 includes a power semiconductor module 100, a capacitor module 200, and a power board 300 (see FIG. 4) configured by laminating a positive conductor plate 310 and a negative conductor plate 320.
  • the power conversion device 500 according to the present embodiment is a power conversion device that converts a direct current into a three-phase alternating current, or converts a three-phase alternating current into a direct current, and includes three power semiconductor modules 100U, 100V, and 100W. Composed.
  • Each power semiconductor module is provided with an AC terminal. That is, the power semiconductor module 100U has a module AC terminal 150U.
  • the power semiconductor module 100V has a module AC terminal 150V.
  • the power semiconductor module 100W has a module AC terminal 150W.
  • Module AC terminals 150U, 150V, and 150W are connected to the three-phase terminals of the motor.
  • the DC input / output positive terminal 319 of the positive conductor plate 310 is connected to the positive terminal of the high voltage battery.
  • the DC input / output negative terminal 329 of the negative conductor plate 320 is connected to the negative terminal of the high voltage battery.
  • the power semiconductor module 100 is composed of an upper arm and a lower arm.
  • an insulated gate bipolar transistor is used as a semiconductor element, and hereinafter abbreviated as IGBT.
  • the upper arm of the power semiconductor module 100 is composed of an IGBT 161 and a diode 162.
  • the upper arm is provided with a control terminal 171 for turning on and off the IGBT 161.
  • the lower arm of the power semiconductor module 100 includes an IGBT 163 and a diode 164.
  • the lower arm is provided with a control terminal 172 for turning on / off the IGBT 163.
  • a first module positive electrode terminal 111 for connection to the positive electrode conductor plate 310 is provided at the collector of the IGBT 161 of the upper arm.
  • the emitter of the lower arm IGBT 163 is provided with a first module negative terminal 121 for connection to the negative conductor plate 320.
  • a module AC terminal 150 is provided between the emitter of the upper arm IGBT 161 and the collector of the lower arm IGBT 163.
  • the power conversion apparatus 500 can convert a direct current into an alternating current or an alternating current into a direct current by switching control signals applied to the control terminal 171 of the upper arm and the control terminal 172 of the lower arm. For example, in a steady state in which the upper arm IGBT 161 of the power semiconductor module 100 is turned on and the lower arm IGBT 163 is turned off, a current flows from the positive conductor plate 310 to the module AC terminal 150 through the first module positive terminal 111. Conversely, in a steady state in which the upper arm IGBT 161 of the power semiconductor module 100 is turned off and the lower arm IGBT 163 is turned on, a current flows from the module AC terminal 150 toward the first module negative terminal 121.
  • FIG. 2 shows an excessive current that flows through the power semiconductor module 100W when the upper arm IGBT 161 is changed from the state in which the upper arm IGBT 161 of the power semiconductor module 100W is on and the state in which the lower arm IGBT 163 is off to the off state.
  • the parasitic inductance 314 is a parasitic inductance of the positive electrode conductor plate 310.
  • the parasitic inductance 324 is a parasitic inductance of the negative electrode conductor plate.
  • the parasitic inductance 114 is a parasitic inductance of a positive electrode connection terminal which is a connection conductor portion between the power semiconductor module 100W and the DC conductor plate 310.
  • the parasitic inductance 124 is a parasitic inductance of a negative electrode connection terminal that is a connection conductor portion between the power semiconductor module 100 ⁇ / b> W and the DC conductor plate 320.
  • a current 411 flows from the positive conductor plate 310 through the upper arm IGBT 161 toward the module AC terminal 150W.
  • the return current 421 flowing from the negative electrode conductor plate 320 through the lower arm diode 164 toward the module AC terminal 150W is zero.
  • FIG. 3 shows a state in which the upper arm IGBT 161 is turned on from the state in which the upper arm IGBT 161 of the power semiconductor module 100W is turned off, the lower arm IGBT 163 is turned off, and the reflux current 421 flows through the lower arm diode 164.
  • It is the electric circuit diagram which showed the transient electric current which flows into the power semiconductor module 100W when it was made to do.
  • the IGBT 161 of the power semiconductor module 100W is in an off state, the current 411 flowing through the upper arm is zero, and the return current 421 flows through the lower arm.
  • the voltage generated in the parasitic inductance due to the state change from on to off or off to on of the IGBT may destroy the IGBT and the diode as a surge voltage. Therefore, it is necessary to suppress the surge voltage to be equal to or lower than the withstand voltage of the IGBT and the diode. Since the surge voltage is determined by the product of the time differential di / dt of the current and the parasitic inductance, it is necessary to reduce this product in order to suppress the surge voltage. The reduction of the current time derivative di / dt is limited because the switching loss of the IGBT increases. Therefore, the reduction of parasitic inductance is an effective means for suppressing surge voltage.
  • a laminated structure in which a positive electrode conductor and a negative electrode conductor are laminated is generally used.
  • the positive electrode conductor and the negative electrode conductor can be opposed to each other over a wide area, and as a result, the mutual inductance can be increased.
  • FIG. 4 is an example of a configuration diagram of the power conversion apparatus 500 of the present embodiment.
  • the power conversion apparatus 500 includes a power board 300 configured by laminating a positive electrode conductor plate 310 and a negative electrode conductor plate 320, a power semiconductor module 100, and a capacitor module 200.
  • the power conversion device 500 is a power conversion device that converts a direct current into a three-phase alternating current, or converts a three-phase alternating current into a direct current, and includes three power semiconductor modules 100.
  • the capacitor module 200 is provided with a positive terminal and a negative terminal that are electrically connected to the power board.
  • the positive terminal of the capacitor module 200 is electrically connected to the positive conductor plate 310.
  • the negative terminal of the capacitor module 200 is electrically connected to the negative conductor plate 320.
  • the through hole 331 is formed in the positive electrode conductor plate 310 constituting the power board 300.
  • the through hole 332 is formed in the negative electrode conductor plate 320.
  • the through holes 331 and 332 are formed so as to overlap each other in a state where the positive electrode conductor plate 310 and the negative electrode conductor plate 320 are laminated.
  • the first positive terminal 311 is formed on the outer edge of the through hole 331.
  • the first negative terminal 321 is formed at the outer edge of the through hole 332.
  • the first module positive terminal 111 of the power semiconductor module 100 is electrically connected to the first positive terminal 311 of the positive conductor plate 310.
  • the first module negative terminal 121 of the power semiconductor module 100 is electrically connected to the first negative terminal 321 of the negative conductor plate 320.
  • FIG. 5 is a diagram showing a cross-sectional shape of a connection portion between the positive electrode conductor plate 310, the negative electrode conductor plate 320, and the power semiconductor module 100.
  • the positive electrode conductor plate 310 and the negative electrode conductor plate 320 are laminated to constitute the power board 300.
  • a through hole 330 including a through hole 331 and a through hole 332 is provided at a connection portion between the power board 300 and the power semiconductor module 100.
  • a surface facing the power semiconductor module 100 is defined as a first surface 341.
  • the negative electrode conductor plate 320 is disposed on the first surface side 341 side of the power board 300.
  • the positive conductor plate 310 is disposed on the power board 300 on the side opposite to the first surface 341.
  • the first positive terminal 311 is formed on the positive conductor plate 310.
  • the first positive electrode terminal 311 is formed to protrude from the first surface 341 via the through hole 332.
  • the first negative terminal 321 of the negative conductor plate 320 is also formed so as to protrude from the first surface 341.
  • the power semiconductor module 100 has a first module positive terminal 111 and a first module negative terminal 121 facing each other.
  • the first module positive terminal 111 and the first module negative terminal 121 are formed so as to protrude from the main body of the power semiconductor module 100 toward the arrangement side of the power board 300.
  • the first module positive terminal 111 is electrically connected to the first positive terminal 311.
  • the first module negative terminal 121 is electrically connected to the first negative terminal 321.
  • a control board 600 as a second electric circuit body is disposed at a position facing the power semiconductor module 100 with the power board 300 interposed therebetween.
  • the control board 600 is connected to the signal terminal of the power semiconductor module 100 and controls the operation of the power semiconductor module 100.
  • FIG. 6 is a diagram showing a cross-sectional shape of a connection portion between the positive electrode conductor plate 310, the negative electrode conductor plate 320, and the capacitor module 200.
  • the positive electrode conductor plate 310 and the negative electrode conductor plate 320 are laminated to constitute the power board 300.
  • a through hole 370 including a through hole 371 and a through hole 372 is provided in the connection part between the power board 300 and the capacitor module 200, similarly to the connection part with the power semiconductor module 100.
  • the capacitor positive terminal 361 is formed on the positive conductor plate 310.
  • the capacitor positive terminal 361 is formed to project from the first surface 341 via the through hole 372.
  • the capacitor negative electrode terminal 362 formed on the negative electrode conductor plate 320 is also formed so as to protrude from the first surface 341.
  • the positive electrode conductor plate 310 forms a capacitor positive electrode terminal 363 at the end of the positive electrode conductor plate 310.
  • the capacitor positive terminal 363 is formed to protrude from the first surface 341 across the end of the negative conductor plate 320.
  • the negative electrode conductor plate 320 forms a capacitor negative electrode terminal 364 at the end of the negative electrode conductor plate 320.
  • the capacitor negative terminal 364 is formed to protrude from the first surface 341.
  • the capacitor module 200 includes a first capacitor 210 and a second capacitor 220.
  • the first capacitor 210 has a first capacitor positive terminal 211 formed on one surface and a first capacitor negative terminal 212 formed on the other surface opposite to the one surface.
  • the second capacitor 220 has a second capacitor positive terminal 221 formed on one surface and a second capacitor negative terminal 222 formed on the other surface opposite to the one surface.
  • the first capacitor 210 is arranged so that the first capacitor positive electrode terminal 211 faces the second capacitor negative electrode terminal 222.
  • the capacitor module 200 is illustrated with two capacitors, but three or more capacitors may be arranged as shown in FIG.
  • the first capacitor positive terminal 211 of the first capacitor 210 is electrically connected to the capacitor positive terminal 361 of the positive conductor plate 310.
  • the first capacitor negative terminal 212 of the first capacitor 210 is electrically connected to the capacitor negative terminal 364 of the negative conductor plate 320.
  • the second capacitor positive terminal 221 of the second capacitor 220 is electrically connected to the capacitor positive terminal 363 of the positive conductor plate 310.
  • the second capacitor negative terminal 222 of the second capacitor 220 is electrically connected to the capacitor negative terminal 362 of the negative conductor plate 320.
  • FIG. 7 shows a connection portion between the power board 300 and the power semiconductor module 100, and is a diagram showing a flow of the first positive current 411 and the first negative current 412 flowing on the power board. The effect of the present embodiment will be described with reference to FIG.
  • the first positive electrode current 411 schematically shows the current on the positive electrode conductor plate 310.
  • the first positive electrode current 411 flows into the first module positive electrode terminal 111 of the power semiconductor module 100 through the first positive electrode terminal 311.
  • the first negative electrode current 412 schematically shows a current on the negative electrode conductor plate 320.
  • the first negative current 412 flows from the first module negative terminal 121 of the power semiconductor module 100 through the first negative terminal 321.
  • the positive electrode conductor plate 310 and the negative electrode conductor plate 320 form a laminated power board 300, and have a region 413 in which the first positive electrode current 411 and the first negative electrode current 412 flow in opposite directions. Therefore, the inductance caused by each current is canceled out, and the parasitic inductance on the power board is reduced.
  • the positive electrode conductor plate 310 and the negative electrode conductor plate 320 cannot be formed in a laminated structure, so that the inductance increases.
  • the first positive electrode terminal 311 is configured through the through hole 330, the current path length that bypasses the through hole 300 can be reduced, and an increase in inductance due to the bypass can be suppressed.
  • the length of the detouring current path can be reduced, loss due to electrical resistance can also be suppressed.
  • connection part between the power board 300 and the power semiconductor module 100 does not only work for the connection part between the power board 300 and the power semiconductor module 100 but also works for the connection part between the power board 300 and the capacitor module 200. That is, since the capacitor positive terminal 361 is configured through the through hole 370 that is a connection portion between the power board 300 and the capacitor module 300, the current path length that bypasses the through hole 370 can be reduced, and the inductance due to the bypass can be reduced. Increase can be suppressed. Furthermore, since the length of the detouring current path can be reduced, loss due to electrical resistance can also be suppressed.
  • either the positive electrode conductor plate or the negative electrode conductor plate constituting the power board is formed so as to protrude from one surface of the power board through the through hole formed in the power board.
  • Parasitic inductance due to current flowing through the plate and the negative electrode conductor plate can be reduced.
  • by arranging the positive terminal and the negative terminal of the power board to face each other currents flowing through the terminals also flow in opposite directions, and parasitic inductance can be reduced. Further, since the current bypass path can be shortened, loss can be reduced.
  • the connection part of the power board terminal and the power semiconductor module terminal is located inside these components.
  • the upper surface of the power board is formed flat, and the upper space of the power board can be widely used.
  • the module positive terminal and the module negative terminal of the power semiconductor module are arranged to face each other, the current flowing through the module positive terminal and the current flowing through the module negative terminal flow in opposite directions. Therefore, an increase in inductance can be suppressed by the mutual inductance canceling effect.
  • the first capacitor and the second capacitor as the capacitor module, even in a capacitor that is an electric circuit body having a large distance between the positive electrode terminal and the negative electrode terminal, the positive electrode terminal and the negative electrode terminal of the power board are brought close to each other. be able to. Therefore, an increase in inductance can be suppressed by the mutual inductance canceling effect.
  • the positive terminal of the first capacitor and the negative terminal of the second capacitor are also arranged to face each other, not only the inductance related to the terminal of the power board but also the inductance related to the terminal of the capacitor, The increase can be suppressed by the current canceling effect.
  • FIG. 8 is an example of a configuration diagram of the power conversion device of the present embodiment.
  • FIG. 9 is a diagram showing a cross-sectional shape of a connection portion between the power board 300 and the power semiconductor module 100.
  • a through hole 330 is provided at a connection portion between the power board 300 and the power semiconductor module 100.
  • the power board 300 is formed with a first positive terminal 311 and a first negative terminal 321.
  • the first positive terminal 311 protrudes on the second surface 342 opposite to the first surface 341 on which the power semiconductor module 100 is disposed.
  • the first negative terminal 321 passes through the through hole 331 and protrudes to the second surface 342.
  • the first module positive terminal 111 and the first module negative terminal 121 of the power semiconductor module 100 are disposed through a through hole 330 formed in the power board. That is, the first module positive terminal 111 and the first module negative terminal 121 are disposed to protrude from the second surface 342.
  • the first module positive terminal 111 is electrically connected to the first positive terminal 311.
  • the second module negative terminal 121 is electrically connected to the first negative terminal 321.
  • the current flow on the power board in the first embodiment is shown in FIG. 7
  • the current flow on the power board 300 in the present embodiment is the same as that in the first embodiment. That is, the path length of the current that bypasses the power board can be reduced, and an increase in inductance due to the bypass can be suppressed. Furthermore, the electrical resistance can be reduced, and an increase in loss can be suppressed.
  • FIG. 9 is a view showing a cross-sectional shape of a connection portion between the power board 300 and the power semiconductor module 100.
  • the current flowing through the first module positive terminal 111, the first module negative terminal 121, the first positive terminal 311, and the first negative terminal 321 which are connection terminals between the power board 300 and the power semiconductor module 100, This is indicated by currents 431-434.
  • a current 431 indicates a positive current that flows through the first positive terminal 311.
  • a current 432 indicates a positive current flowing through the first module positive terminal 111.
  • a current 433 indicates a negative current flowing through the first negative terminal 321.
  • a current 434 indicates a negative current flowing in the first module negative terminal 121.
  • the first module positive terminal 111 and the first module negative terminal 121 of the power semiconductor module 100 are arranged to face each other, the current 432 flowing through the first module positive terminal 111 and the first module negative terminal 121 flow.
  • the current 433 flows in opposite directions. Therefore, an increase in inductance can be suppressed by the mutual inductance canceling effect.
  • either the positive electrode conductor plate or the negative electrode conductor plate constituting the power board is formed to protrude from one surface of the power board through the through hole formed in the power board.
  • the parasitic inductance due to the current flowing through the positive electrode conductor plate and the negative electrode conductor plate can be reduced.
  • by arranging the positive terminal and the negative terminal of the power board to face each other currents flowing through the terminals also flow in opposite directions, and parasitic inductance can be reduced. Further, since the current bypass path can be shortened, loss can be reduced.
  • connection terminals 111, 121, 311, 312 of the power board 300 and the power semiconductor module 100 protrude from the power board second surface 342 on the opposite side of the power semiconductor module 100, Connection is easy.
  • a method of connecting these connection terminals for example, there are welding, clamping by a fixing member, and the like.
  • FIG. 10 is an example of a configuration diagram illustrating the connection between the power board 300 and the power semiconductor module 100 of the power conversion apparatus according to the present embodiment.
  • the power board 300 is provided with a through hole 330 at a connection portion between the power board 300 and the power semiconductor module 100.
  • the positive electrode conductor plate 310 constituting the power board 300 includes a first positive electrode terminal 311 and a second positive electrode terminal 312 that are electrically connected to the positive electrode conductor plate 310.
  • the negative electrode conductor plate 320 includes a first negative electrode terminal 321 and a second negative electrode terminal 322 that are electrically connected to the negative electrode conductor plate 320.
  • the first positive terminal 311, the second positive terminal 312, the first negative terminal 321, and the second negative terminal 322 all protrude from the second surface 342 opposite to the first surface 341 where the power semiconductor module 100 is disposed. .
  • the first negative terminal 321 and the second negative terminal 322 protrude through the through hole 330 to the second surface 342.
  • the first positive electrode terminal 311 and the first negative electrode terminal 321 are installed facing each other with the through hole 330 interposed therebetween.
  • the second positive terminal 312 is disposed on the side of the first negative terminal 321.
  • the second negative terminal 322 is disposed on the side of the first positive terminal 311. In other words, the second positive electrode terminal 312 and the second negative electrode terminal 322 are also installed facing each other with the through hole 330 interposed therebetween.
  • the power semiconductor module 100 of the present embodiment includes a first module positive terminal 111, a first module negative terminal 121, a second module positive terminal 112, and a second module negative terminal 122.
  • the first module positive terminal 111 and the second module positive terminal 112 are electrically connected.
  • the first module negative terminal 121 and the second module negative terminal 122 are electrically connected.
  • the first module positive terminal 111, the first module negative terminal 121, the second module positive terminal 112, and the second module negative terminal 122 are the same as the first module positive terminal 111 and the first module negative terminal 121 in the second embodiment. Similarly, it protrudes from the main body of the power semiconductor module 100 toward the arrangement side of the power board 300 and penetrates the through hole 330.
  • the first module positive terminal 111 is electrically connected to the first positive terminal 311.
  • the first module negative terminal 121 is electrically connected to the first negative terminal 321.
  • the second module positive terminal 112 is electrically connected to the second positive terminal 312.
  • the second module negative terminal 122 is electrically connected to the second negative terminal 322.
  • FIG. 11 is an example of an electric circuit diagram of the power semiconductor module 100 of the present embodiment.
  • the power semiconductor module 100 includes an upper arm IGBT 161 and a diode 162, and a lower arm IGBT 163 and a diode 164.
  • the IGBT 161 of the upper arm is switched between an on state and an off state by a control signal applied to the control terminal 171.
  • the lower arm IGBT 163 is switched between an on state and an off state by a control signal applied to the control terminal 172.
  • the collector of the IGBT 161 on the upper arm is provided with a first module positive terminal 111 and a second positive module terminal 112 for electrical connection with the positive conductor plate 310.
  • the emitter of the lower arm IGBT 163 is provided with a first module negative terminal 121 and a second module negative terminal 122 for electrical connection with the negative conductor plate 320.
  • a module AC terminal 150 is provided between the emitter of the upper arm IGBT 161 and the collector of the lower arm IGBT 163.
  • the effect of this embodiment has the following inductance reduction effect in addition to the effect described in the second embodiment.
  • the current flow on the power board 300 is schematically represented as a first positive current 411, a first negative current 412, a second positive current 421, and a second negative current 422.
  • the positive conductor plate 310 and the negative conductor plate 320 form a laminated power board 300. Therefore, the first positive current 411 and the second positive current 421 flowing on the positive conductor plate 310, and the first negative current 412 and the second negative current 422 flowing on the negative conductor plate 320 are opposite to each other in the region 414. Flowing. Therefore, the parasitic inductance on the power board can be reduced.
  • the first positive electrode terminal 311 and the second negative electrode terminal 322 are disposed adjacent to each other, so that the first positive electrode current 411 flowing into the first positive electrode terminal 311 and the second negative electrode terminal 322 flow out. Since the second negative current 422 flows in opposite directions, the inductance can be reduced.
  • the second positive electrode terminal 312 and the first negative electrode terminal 321 are adjacently disposed, the second positive electrode current 421 flowing into the second positive electrode terminal 322 and the first negative electrode terminal 421 flow out. Since the first negative electrode current 412 flows in opposite directions, the inductance can be reduced.
  • the first positive electrode terminal 311, the second positive electrode terminal 312, the first negative electrode terminal 321, and the second negative electrode terminal 322 penetrate the through hole 330 and protrude from one surface of the power board.
  • the parasitic inductance due to the current flowing through the positive electrode conductor plate and the negative electrode conductor plate can be reduced.
  • the positive terminal and the negative terminal of the power board can face each other, currents flowing through the terminals also flow in opposite directions, and parasitic inductance can be reduced. Further, since the current bypass path can be shortened, loss can be reduced.
  • the inductance canceling effect can be further enhanced by arranging the positive electrode terminal and the negative electrode terminal next to each other.
  • the present Example demonstrated the case where a positive electrode terminal and a negative electrode terminal were comprised by two pairs, the power converter device comprised from two or more pairs of positive electrode terminals and negative electrode terminals may be sufficient.
  • the positive terminals 311 and 312 and the negative terminals 321 and 322 of the power board 300 are formed so as to protrude from the second surface 342 opposite to the side where the power semiconductor module 100 is disposed.
  • the power conversion device in which the terminals 311, 312, 321, and 322 protrude from the power board first surface 341 on the side facing the power semiconductor module 100 may be used.
  • FIG. 12 is an example of a configuration diagram of the power semiconductor module 100 used in the power conversion device of the present embodiment.
  • the power semiconductor module 100 includes an upper arm IGBT 161 and a diode 162, and a lower arm IGBT 163 and a diode 164.
  • the power semiconductor module 100 of this embodiment is molded with resin in order to protect internal IGBTs and diodes.
  • a first module positive terminal 111, a second module positive terminal 112, a first module negative terminal 121, and a second module are connected to the terminals of the power board 300.
  • a negative electrode terminal 122 is provided.
  • These module terminals are alternately provided with positive terminals and negative terminals in order to reduce inductance.
  • the first negative terminal 121, the first positive terminal 111, the second negative terminal 122, and the second positive terminal 112 are arranged in this order.
  • these terminals are arranged so that their main surfaces overlap one virtual plane. .
  • the first positive terminal 111 is electrically connected to the first intermediate positive terminal 131 for connecting to the first positive terminal 311 of the power board 300.
  • the first negative electrode terminal 121 is electrically connected to the first intermediate negative electrode terminal 141 for connecting to the first negative electrode terminal 321 of the power board 300.
  • the second positive terminal 112 is electrically connected to the second intermediate positive terminal 132 for connection to the second positive terminal 312 of the power board 300.
  • the second negative electrode terminal 122 is electrically connected to the second intermediate negative electrode terminal 132 for connecting to the second negative electrode terminal 322 of the power board 300.
  • the first intermediate positive terminal 131 is bent at a part thereof connected to the first positive terminal 111 and on a virtual plane different from a virtual plane overlapping the main surface of the first positive terminal 111. Are formed such that the main surfaces of the two overlap.
  • the main surface of the first intermediate positive terminal 131 is a portion connected to the first positive terminal 311 of the power board 300.
  • the second intermediate negative terminal 142 is bent so that the main surface of the second intermediate negative terminal 142 and the main surface of the first intermediate positive terminal 131 overlap one virtual surface.
  • the first intermediate positive terminal 131 and the second intermediate positive terminal 132 have the sum of the terminal width of the first intermediate positive terminal 131 and the terminal width of the second intermediate positive terminal 132, and the terminal width of the first positive terminal 111 and the second intermediate positive terminal 132. It is formed to be larger than the sum of the terminal widths of the two positive terminals 112.
  • the first intermediate negative terminal 141 and the second intermediate negative terminal 142 are configured such that the sum of the terminal width of the first intermediate negative terminal 141 and the terminal width of the second intermediate negative terminal 142 is equal to the terminal width of the first negative terminal 121 and the second intermediate negative terminal 142.
  • the two negative electrode terminals 122 are formed so as to be larger than the sum of the terminal widths.
  • the power semiconductor module 100 used in the power conversion apparatus of the present embodiment includes a first module positive terminal 111, a second module positive terminal 112, a first module negative terminal 121, and a second module installed on the mold terminal surface 190.
  • Each main surface of the module negative electrode terminal 122 is formed so as to overlap with one virtual surface. Therefore, in the molding process of the power semiconductor module 100, since the shape of the molding jig of the terminal portion can be simplified, the molding process can be facilitated.
  • first module positive terminal 111, second module positive terminal 112, first module negative terminal 121, second module negative terminal 122) installed on the mold terminal surface 190 are connected to the positive terminals (111, 112).
  • the negative terminals (121, 122) are alternately arranged, whereby the inductance can be reduced.
  • the terminal widths of the terminals (the first module positive terminal 111, the second module positive terminal 112, the first module negative terminal 121, the second module negative terminal 122) installed on the mold terminal surface 190 of the power semiconductor module 100 are:
  • the terminal width is increased, the width of the mold terminal surface 190 of the power semiconductor module 100 is increased accordingly, and as a result, the power semiconductor module is increased. Therefore, there is a limit to increasing the terminal width.
  • the power semiconductor module of the present embodiment by connecting the intermediate terminal having a width wider than the terminal width of the terminal of the power semiconductor module, the loss of the connection terminal portion can be reduced without increasing the power semiconductor module. .
  • FIG. 12 the configuration of the power semiconductor module provided with two pairs of intermediate terminals has been described as an example.
  • the power semiconductor module of FIG. 13 is shown as a modification of the power semiconductor module of FIG.
  • FIG. 13 is a configuration example of the power semiconductor module 100 having the first intermediate positive terminal 131 and the first intermediate negative terminal 141.
  • a power semiconductor module 100 shown in FIG. 13 has only one pair as an intermediate terminal unlike FIG. This power semiconductor module can be used for the power converter of Example 1 or Example 2.
  • the first intermediate positive terminal 131 is electrically connected to the first module positive terminal 111 and the second module positive terminal 112 installed on the mold terminal surface 190 of the power semiconductor module 100.
  • the first intermediate negative terminal 141 is electrically connected to the first module negative terminal 121 and the second module negative terminal 122 installed on the mold terminal surface 190.
  • the first intermediate positive terminal 131 is formed such that the terminal width of the first intermediate positive terminal 131 is wider than the sum of the terminal width of the first module positive terminal 111 and the terminal width of the second module positive terminal 112.
  • the first intermediate negative terminal 141 is formed such that the terminal width of the first intermediate negative terminal 141 is wider than the sum of the terminal width of the first module negative terminal 121 and the terminal width of the second module negative terminal 122. .
  • the operational effect of the power semiconductor module shown in FIG. 13 is to reduce the loss due to the electrical resistance of the terminal portion, similar to the power semiconductor module shown in FIG.
  • the power semiconductor module 100 shown in FIG. 12 and the power semiconductor module 100 shown in FIG. 13 are structurally different only in the structure of the intermediate terminal portion, and have the same configuration as the internal structure of the power semiconductor module. Therefore, here, as an example, an embodiment of the power semiconductor module of FIG. 12 will be described with reference to FIG.
  • FIG. 14 is a diagram for explaining an example of a detailed embodiment of the power semiconductor module 100 shown in FIG.
  • FIG. 14A is an external perspective view of the power semiconductor module 100.
  • the power semiconductor module 100 has a case 103 having a fully closed structure except for an opening for outputting terminals.
  • the case 103 includes a frame body 104 that forms side walls and a bottom surface, heat radiation fins 105 that cool the power semiconductor elements, and a flange portion 106.
  • the heat dissipating fins 105 are formed on the widest longitudinal surface orthogonal to the side wall and bottom surface of the case 103.
  • the heat radiating fins 105 are also formed in the same shape on the opposite opposite surfaces.
  • the flange portion 106 plays a role of positioning when the power semiconductor module 100 is assembled to the power conversion device.
  • the power semiconductor module 100 of the present embodiment assumes a power conversion device in which the heat dissipating part where the heat dissipating fins 105 are formed is in direct contact with the refrigerant, and the flange part 106 includes a heat dissipating part in contact with the refrigerant, a terminal part It also plays a role of ensuring airtightness between the two.
  • the groove portion 106 ⁇ / b> A provided in the flange portion 106 a member that ensures airtightness such as an O-ring is disposed.
  • the direct cooling type power conversion device as described above is illustrated and described.
  • the power semiconductor module of the present embodiment is not particularly limited to these applications, and other types of power conversion devices are used. You may use it.
  • the insulating mold terminal 193 includes a first intermediate positive terminal 131, a first intermediate negative terminal 141, a second intermediate positive terminal 132, a second intermediate negative terminal 142, an intermediate AC terminal 151, and intermediate control terminals 173 and 174. And a mold member 194.
  • the intermediate AC terminal 151 is a member that connects the module AC terminal 150 (see FIG. 1) of the power semiconductor module 100 and the AC output terminal of the power converter.
  • the intermediate control terminal 173 connects the control terminal 171 (see FIG. 11) of the power semiconductor module 100 and a control circuit unit installed in the power converter.
  • the intermediate control terminal 174 connects the control terminal 172 (see FIG. 11) of the power semiconductor module 100 and a control circuit unit installed in the power converter.
  • the mold member 194 includes these intermediate terminals (first intermediate positive terminal 131, first intermediate negative terminal 141, second intermediate positive terminal 132, second intermediate negative terminal 142, intermediate AC terminal 151, intermediate control terminals 173, 174. A plurality of through holes are formed. These intermediate terminals are electrically insulated from each other by the mold member 194.
  • a separate insulating plate material may be assembled between the terminals to ensure insulation.
  • FIG. 14B is an exploded perspective view showing a process of assembling the module sealing body 191 with the case 103 of the power semiconductor module 100.
  • the module sealing body 191 that seals and houses the power semiconductor elements (the upper arm IGBT 161 and the diode 162, and the lower arm IGBT 163 and the diode 164) is inserted into the insertion port 107 of the case 103.
  • the insulating member 108 is arranged to face each surface of the module sealing body 191.
  • FIG. 14C is an exploded perspective view of the circuit components constituting the series circuit of the upper and lower arms of the power semiconductor module 100.
  • the sealing material of the module sealing body 191 is not illustrated.
  • the IGBT 161 constituting the upper arm circuit is disposed so that the collector electrode of the IGBT 161 is joined to the conductor plate 181.
  • the diode 162 constituting the upper arm circuit is arranged so that the cathode electrode of the diode 164 is joined to the conductor plate 181.
  • the electrode plate 182 is disposed to face the electrode plate 181 with the IGBT 161 and the diode 162 interposed therebetween.
  • the electrode plate 181 is joined to the emitter electrode of the IGBT 161 and the anode electrode of the diode 162.
  • the power semiconductor elements (IGBT 161 and diode 162) of the upper arm circuit are connected in parallel so as to be sandwiched between the electrode plate 181 and the electrode plate 182 in parallel.
  • the IGBT 163 constituting the lower arm circuit is disposed so that the collector electrode of the IGBT 163 is joined to the conductor plate 184.
  • the diode 164 constituting the lower arm circuit is arranged so that the cathode electrode of the diode 164 is joined to the conductor plate 184.
  • the electrode plate 185 is disposed to face the electrode plate 184 with the IGBT 163 and the diode 164 interposed therebetween. Electrode plate 185 is joined to the emitter electrode of IGBT 163 and the anode electrode of diode 164.
  • the power semiconductor elements (IGBT 163 and diode 164) of the lower arm circuit are connected in parallel so as to be sandwiched between the electrode plate 184 and the electrode plate 185 in parallel.
  • the conductor plate 182 and the conductor plate 184 are connected by metal bonding of the intermediate electrode 183A formed on the conductor plate 182 and the intermediate electrode 183B formed on the conductor plate 184. That is, the power semiconductor element (IGBT 161, diode 162) of the upper arm circuit and the power semiconductor element (IGBT 163, diode 164) of the lower arm circuit constitute a circuit connected in series.
  • the signal terminals 171 and 172 are connected to the gate electrode of the IGBT or the like by a bonding wire (not shown).
  • the conductor plate 182 and the conductor plate 185 are arranged on the same plane. Further, as shown in FIG. 14B, these conductor plates 182 and 185 are exposed so that the surface opposite to the surface where the IGBT and the diode are joined is exposed from the sealing material of the module sealing body 191. Be placed.
  • the conductor plate 181 and the conductor plate 184 are arranged on the same plane. Further, although not shown in FIG. 14B, these conductor plates 181 and 184 are exposed so that the surface opposite to the surface where the IGBT and the diode are joined is exposed from the sealing material of the module sealing body 191. Be placed.
  • the exposed surfaces of the conductor plates 182, 183, 184, and 185 are arranged to face the heat radiating fins 105 of the case 103.
  • first module positive terminal 111, the first module negative terminal 121, the second module positive terminal 112, and the second module negative terminal 122 are arranged so as to protrude from the module terminal surface 190 of the module sealing body 191. As described above, these terminals are arranged so that their main surfaces overlap one virtual surface. Moreover, in order to reduce inductance, the positive electrode terminal and the negative electrode terminal are alternately installed.
  • the case 103 is made of an electrically conductive member, for example, a composite material such as Cu, Cu alloy, Cu—C, Cu—CuO, Al, Al alloy, AlSiC, Al—. It is formed from a composite material such as C.
  • the case 103 is formed by a highly waterproof joining method such as welding, or by forging or casting.
  • a resin based on a novolac-based, polyfunctional, or biphenyl-based epoxy resin can be used, such as ceramics such as SiO 2, Al 2 O 3, AlN, BN, gel, Rubber or the like is included to make the thermal expansion coefficient close to the conductor portions 315, 320, 318, and 319.
  • ceramics such as SiO 2, Al 2 O 3, AlN, BN, gel, Rubber or the like.
  • the difference in thermal expansion coefficient between the members can be reduced, and the thermal stress generated as the temperature rises in the use environment is greatly reduced, so that the life of the power semiconductor module can be extended.
  • a highly heat-resistant thermoplastic resin such as PPS (polyphenyl sulfide) or PBT (polybutylene terephthalate) is suitable.
  • Sn alloy-based soft brazing material solder
  • hard brazing material such as Al alloy / Cu alloy
  • metal nanoparticles / microparticles were used as the metal bonding agent used for bonding the conductive plate and the power semiconductor element.
  • a metal sintered material can be used.
  • FIG. 15A is an external perspective view of the power board 300.
  • the power board 300 includes an insulating coating material 302 that covers the stacked positive electrode conductor plate 310 (not shown) and negative electrode conductor plate 320 (not shown).
  • the insulating covering material 302 electrically insulates the positive electrode conductor plate 310 and the negative electrode conductor plate 320 from each other.
  • the AC conductor plate 350 (not shown) is also covered with the insulating coating material 302 in the same manner as the positive electrode conductor plate 310 and the negative electrode conductor plate 320.
  • the AC conductor plate 350 is a conductor plate connected to the module AC terminal 150 of the power semiconductor module 100.
  • a through hole 330 is formed in the power board 300.
  • a second negative terminal 322 is formed. The first negative electrode terminal 321 and the second negative electrode terminal 322 are formed to protrude from the second surface 342 of the power board 300 through the through hole 330.
  • An AC terminal 351 is formed on the side of the second negative terminal 322.
  • the AC terminal 351 electrically connects the AC conductor plate 350 and the module AC terminal 150 of the power semiconductor module 100.
  • the AC terminal 351 is formed in the through hole 330 in the same manner as the first positive terminal 311, the first negative terminal 321, the second positive terminal 312, and the second negative terminal 322.
  • a through hole for forming the AC terminal 351 may be formed.
  • the power board 300 is formed with a through hole 335 for allowing the control terminal 173 to pass therethrough.
  • the control terminal 174 is configured to penetrate the through hole 330.
  • a configuration may be adopted in which a through hole for penetrating the control terminal 174 is formed separately.
  • the capacitor terminal 360 is also formed on the positive conductor plate 310 and the negative conductor plate 320 of the power board 300 in the same manner as the positive terminal and the negative terminal of the power board 300.
  • the positive electrode conductor plate 310 has a DC input / output positive electrode terminal 319 formed to be exposed from the insulating coating member 302 of the power board 300.
  • the negative electrode conductor plate 320 has a DC input / output negative electrode terminal 329 formed to be exposed from the insulating coating member 302 of the power board 300.
  • the AC conductor plate 350 has an AC input / output terminal 352 formed to be exposed from the insulating coating member 302 of the power board 300.
  • FIG. 15B is a top view of the power board 300.
  • the positive electrode conductor plate 310 among the positive electrode conductor plate 310 and the negative electrode conductor plate 320 covered with the insulating coating member 302 of the power board 300 is illustrated by a dotted line.
  • An AC conductor plate 350 is also illustrated in the same manner.
  • the positive electrode conductor plate 310 includes a DC input / output positive electrode terminal 319, a capacitor terminal 360, a first positive electrode terminal 311, and a second positive electrode terminal 312. Further, the positive electrode conductor plate 310 forms a through hole 330 and a through hole 335.
  • the wiring inductance of the inverter main circuit can be reduced by arranging the positive electrode conductor plate 310 and the negative electrode conductor plate 320 so as to face each other with the insulating coating material 302 interposed therebetween.
  • the insulating coating material 302 can use, for example, a resin based on a novolak, polyfunctional, or biphenyl epoxy resin, and contains ceramics such as SiO2, Al2O3, AlN, BN, gel, rubber, and the like. A material having a thermal expansion coefficient close to that of the conductor portions 315, 320, 318, and 319 can be used.
  • a highly heat-resistant thermoplastic resin such as PPS (polyphenyl sulfide) or PBT (polybutylene terephthalate) may be used.
  • a printed board material such as glass epoxy impregnated with glass cloth may be used.
  • the insulating covering member and the bus bar may be bonded with an adhesive.
  • a material having high thermal conductivity and low electrical resistance, such as Cu alloy and Al alloy is suitable, and the surface is oxidized or roughened in order to improve the adhesive strength with the insulating coating member Processing may be performed.
  • this invention is not limited to the above-mentioned Example, Various modifications are included.
  • the above-described embodiments have been described in detail for easy understanding of the present invention, and are not necessarily limited to those having all the configurations described.
  • a part of the configuration of one embodiment can be replaced with the configuration of another embodiment, and the configuration of another embodiment can be added to the configuration of one embodiment.

Abstract

The purpose of the present invention is to provide a power conversion apparatus wherein a power semiconductor module and a bus bar in a laminated state can be connected to each other with low inductance and low loss. This power conversion apparatus is provided with an electric circuit body having a direct current inputted thereto, and a power board that transmits the direct current to the electric circuit body. The power board has: a positive electrode conductor board; a negative electrode conductor board that is disposed to face the positive electrode conductor board; a positive electrode terminal connected to the positive electrode conductor board; and a negative electrode terminal, which is connected to the negative electrode conductor board, and which faces the positive electrode terminal. The power board forms a through hole, one of the positive electrode terminal and the negative electrode terminal protrudes from one surface of the power board, and the other one of the positive electrode terminal and the negative electrode terminal protrudes from the one surface of the power board through the through hole, and the electric circuit body is electrically connected to the positive electrode terminal and the negative electrode terminal.

Description

配線板およびそれを用いた電力変換装置Wiring board and power conversion device using the same
 本発明は、直流電力を交流電力に変換しあるいは交流電力を直流電力に変換するために使用する配線板およびそれを用いた電力変換装置に関し、特にハイブリッド自動車や電気自動車に用いられる配線板および電力変換装置に関する。 The present invention relates to a wiring board used for converting DC power into AC power or converting AC power into DC power and a power converter using the wiring board, and more particularly to a wiring board and power used in a hybrid vehicle and an electric vehicle. The present invention relates to a conversion device.
 ハイブリッド自動車や電気自動車に用いられる電力変換装置は、ハイブリッド自動車や電気自動車の駆動トルクの増大に伴い出力電力の増大が求められている。出力電力の増大は通電電流の増大に繋がり、この通電電流を流すための配線板は抵抗損失とインダクタンスを低減することが求められる。 Power converters used for hybrid vehicles and electric vehicles are required to increase output power as the driving torque of hybrid vehicles and electric vehicles increases. An increase in output power leads to an increase in energization current, and a wiring board for passing this energization current is required to reduce resistance loss and inductance.
 そこで特許文献1に示されるように、コンデンサモジュールの直流端子を積層状態で立ち上げ、次にコンデンサモジュールの直流端子の先端部に位置する接続部を、パワー半導体モジュールの積層状態の直流端子を両側から挟みこむ構造で溶接接続している。 Therefore, as shown in Patent Document 1, the DC terminal of the capacitor module is started up in a stacked state, and then the connection portion located at the tip of the DC terminal of the capacitor module is connected to the DC terminal in the stacked state of the power semiconductor module on both sides. Welding connection with a structure sandwiched from.
 しかしながら、コンデンサモジュールの直流端子がパワー半導体モジュールの積層状態の直流端子を挟み込むように形成される場合に、コンデンサモジュールの直流幅広導体から立ち上げられ幅狭直流端子が抵抗損失の抑制やインダクタンスの抑制の妨げとなるおそれがある。 However, when the DC terminal of the capacitor module is formed so as to sandwich the stacked DC terminal of the power semiconductor module, the narrow DC terminal is raised from the DC wide conductor of the capacitor module to suppress resistance loss and inductance. There is a risk of hindrance.
特開2011-217550号公報JP 2011-217550 A
 そこで本発明の課題は、コンデンサとパワー半導体モジュールとの間を接続する接続導体のインダクタンスの低減や損失の低減を図ることである。 Therefore, an object of the present invention is to reduce the inductance and loss of the connection conductor connecting the capacitor and the power semiconductor module.
 上記課題を解決するために、例えば特許請求の範囲に記載の構成を採用する。 In order to solve the above problems, for example, the configuration described in the claims is adopted.
 本願は上記課題を解決する手段を複数含んでいるが、その一例を挙げるならば、直流電流が入力される電気回路体と、前記直流電流を前記電気回路体に伝達するパワーボードと、を備え、前記パワーボードは、正極導体板と、該正極導体板と対向して配置される負極導体板と、前記正極導体板に接続される正極端子と、前記負極導体板に接続されかつ前記正極端子と対向する負極端子と、を有し、前記パワーボードには、貫通孔が形成され、前記正極端子または前記負極端子のいずれか一方の端子は、前記パワーボードの一方の面から突出し、前記正極端子または前記負極端子の他方の端子は、前記貫通孔を通って前記パワーボードの前記一方の面から突出し、前記電気回路体は、前記正極端子及び前記負極端子と電気的に接続される電力変換装置である。 The present application includes a plurality of means for solving the above-described problems. For example, the present application includes an electric circuit body to which a direct current is input, and a power board that transmits the direct current to the electric circuit body. The power board includes a positive electrode conductor plate, a negative electrode conductor plate arranged to face the positive electrode conductor plate, a positive electrode terminal connected to the positive electrode conductor plate, and a positive electrode terminal connected to the negative electrode conductor plate. The power board has a through hole, and either the positive terminal or the negative terminal protrudes from one surface of the power board, and the positive terminal The terminal or the other terminal of the negative terminal protrudes from the one surface of the power board through the through hole, and the electric circuit body is electrically connected to the positive terminal and the negative terminal. It is a conversion apparatus.
 本発明によれば、パワー半導体モジュールと積層状態の直流導体板を低インダクタンスかつ低損失で接続できる電力変換装置を提供することができる。 According to the present invention, it is possible to provide a power converter capable of connecting a power semiconductor module and a laminated DC conductor plate with low inductance and low loss.
電力変換装置の電気回路図の例である。It is an example of the electric circuit diagram of a power converter device. 上アームIGBTがオンからオフに変化した時のパワー半導体モジュールに流れる過渡電流を示した電気回路図の例である。It is an example of the electrical circuit diagram which showed the transient electric current which flows into a power semiconductor module when upper arm IGBT changes from ON to OFF. 上アームIGBTがオフからオンに変化した時のパワー半導体モジュールに流れる過渡電流を示した電気回路図の例である。It is an example of the electric circuit diagram which showed the transient electric current which flows into a power semiconductor module when an upper arm IGBT changes from OFF to ON. 実施例1の電力変換装置の構成図の例である。It is an example of the block diagram of the power converter device of Example 1. FIG. 実施例1の電力変換装置において、正極導体板と、負極導体板と、パワー半導体モジュールとの接続部の断面形状を示した図である。In the power converter device of Example 1, it is the figure which showed the cross-sectional shape of the connection part of a positive electrode conductor plate, a negative electrode conductor plate, and a power semiconductor module. 実施例1の電力変換装置において、正極導体板と、負極導体板と、コンデンサモジュールとの接続部の断面形状を示した図である。In the power converter device of Example 1, it is the figure which showed the cross-sectional shape of the connection part of a positive electrode conductor plate, a negative electrode conductor plate, and a capacitor module. パワーボードとパワー半導体モジュールとの接続部の、パワーボード上の正極電流と負極電流の流れを示した図である。It is the figure which showed the flow of the positive electrode current and negative electrode current on a power board of the connection part of a power board and a power semiconductor module. 実施例2の電力変換装置の構成図の例である。It is an example of the block diagram of the power converter device of Example 2. FIG. 実施例2の電力変換装置において、パワーボードとパワー半導体モジュールとの接続部の断面形状を示した図である。In the power converter device of Example 2, it is the figure which showed the cross-sectional shape of the connection part of a power board and a power semiconductor module. 実施例3の電力変換装置のパワーボードとパワー半導体モジュールとの接続を示した構成図の例である。It is the example of the block diagram which showed the connection of the power board and power semiconductor module of the power converter device of Example 3. FIG. 実施例3のパワー半導体モジュールの電気回路図の例である。It is an example of the electric circuit diagram of the power semiconductor module of Example 3. 実施例3のパワー半導体モジュールの構成図の例である。It is an example of a block diagram of the power semiconductor module of Example 3. 1対の中間正極端子と中間負極端子を有するパワー半導体モジュールの構成図の例である。It is an example of the block diagram of the power semiconductor module which has a pair of intermediate | middle positive electrode terminal and an intermediate | middle negative electrode terminal. パワー半導体モジュール100の外観斜視図である。1 is an external perspective view of a power semiconductor module 100. FIG. パワー半導体モジュール100のケース103にモジュール封止体191を組み立てる工程を示す分解斜視図である。4 is an exploded perspective view showing a process of assembling a module sealing body 191 with the case 103 of the power semiconductor module 100. FIG. パワー半導体モジュール100の上下アームの直列回路を構成する回路部品の分解斜視図である。4 is an exploded perspective view of circuit components constituting a series circuit of upper and lower arms of a power semiconductor module 100. FIG. パワーボード300の外観斜視図である。2 is an external perspective view of a power board 300. FIG. パワーボード300の上面図である。2 is a top view of a power board 300. FIG.
 以下、実施例について図面を用いて説明する。 Hereinafter, examples will be described with reference to the drawings.
 本実施例では、パワー半導体モジュールと直流導体板とを低インダクタンスかつ低損失で接続できる電力変換装置の例を説明する。 In this embodiment, an example of a power conversion device capable of connecting a power semiconductor module and a DC conductor plate with low inductance and low loss will be described.
 図1は、本実施例の電力変換装置500の電気回路図の例である。本実施例の電力変換装置500の動作原理について図1を用いて説明する。電力変換装置500は、パワー半導体モジュール100と、コンデンサモジュール200と、正極導体板310と負極導体板320が積層されて構成されるパワーボード300(図4参照)と、から構成される。本実施例の電力変換装置500は、直流電流を3相の交流電流に変換、又は3相の交流電流を直流電流に変換する電力変換装置であり、3つのパワー半導体モジュール100U、100V、100Wから構成される。 FIG. 1 is an example of an electric circuit diagram of the power conversion apparatus 500 of the present embodiment. The operation principle of the power conversion apparatus 500 of this embodiment will be described with reference to FIG. The power conversion apparatus 500 includes a power semiconductor module 100, a capacitor module 200, and a power board 300 (see FIG. 4) configured by laminating a positive conductor plate 310 and a negative conductor plate 320. The power conversion device 500 according to the present embodiment is a power conversion device that converts a direct current into a three-phase alternating current, or converts a three-phase alternating current into a direct current, and includes three power semiconductor modules 100U, 100V, and 100W. Composed.
 それぞれのパワー半導体モジュールには、交流端子が設けられる。すなわち、パワー半導体モジュール100Uは、モジュール交流端子150Uを有する。パワー半導体モジュール100Vは、モジュール交流端子150Vを有する。パワー半導体モジュール100Wは、モジュール交流端子150Wを有する。モジュール交流端子150U、150V、150Wは、モータの3相端子と接続される。 Each power semiconductor module is provided with an AC terminal. That is, the power semiconductor module 100U has a module AC terminal 150U. The power semiconductor module 100V has a module AC terminal 150V. The power semiconductor module 100W has a module AC terminal 150W. Module AC terminals 150U, 150V, and 150W are connected to the three-phase terminals of the motor.
 正極導体板310の直流入出力正極端子319は、高電圧バッテリーの正極端子と接続される。負極導体板320の直流入出力負極端子329は、高電圧バッテリーの負極端子に接続される。 The DC input / output positive terminal 319 of the positive conductor plate 310 is connected to the positive terminal of the high voltage battery. The DC input / output negative terminal 329 of the negative conductor plate 320 is connected to the negative terminal of the high voltage battery.
 パワー半導体モジュール100は、上アームと下アームから構成されている。なお、以下で半導体素子として絶縁ゲート型バイポーラトランジスタを使用しており、以下略してIGBTと記す。パワー半導体モジュール100の上アームは、IGBT161とダイオード162から構成される。また、上アームには、IGBT161をオン・オフするための制御端子171が設けられている。パワー半導体モジュール100の下アームは、IGBT163とダイオード164から構成される。また、下アームには、IGBT163をオン・オフするための制御端子172が設けられている。 The power semiconductor module 100 is composed of an upper arm and a lower arm. In the following description, an insulated gate bipolar transistor is used as a semiconductor element, and hereinafter abbreviated as IGBT. The upper arm of the power semiconductor module 100 is composed of an IGBT 161 and a diode 162. The upper arm is provided with a control terminal 171 for turning on and off the IGBT 161. The lower arm of the power semiconductor module 100 includes an IGBT 163 and a diode 164. The lower arm is provided with a control terminal 172 for turning on / off the IGBT 163.
 上アームのIGBT161のコレクタには、正極導体板310と接続するための第1モジュール正極端子111が設けられている。下アームのIGBT163のエミッタは、負極導体板320と接続するための第1モジュール負極端子121が設けられている。また上アームIGBT161のエミッタと下アームIGBT163のコレクタとの間には、モジュール交流端子150が設けられている。 A first module positive electrode terminal 111 for connection to the positive electrode conductor plate 310 is provided at the collector of the IGBT 161 of the upper arm. The emitter of the lower arm IGBT 163 is provided with a first module negative terminal 121 for connection to the negative conductor plate 320. A module AC terminal 150 is provided between the emitter of the upper arm IGBT 161 and the collector of the lower arm IGBT 163.
 電力変換装置500は、上アームの制御端子171および下アームの制御端子172に印加する制御信号を切り換えることで、直流電流から交流電流、又は交流電流から直流電流に変換できる。例えば、パワー半導体モジュール100の上アームIGBT161をオンにし、下アームIGBT163をオフの定常状態では、正極導体板310から第1モジュール正極端子111を通ってモジュール交流端子150に向かって電流が流れる。逆にパワー半導体モジュール100の上アームIGBT161をオフにし、下アームIGBT163をオンの定常状態では、モジュール交流端子150から第1モジュール負極端子121に向かって電流が流れる。 The power conversion apparatus 500 can convert a direct current into an alternating current or an alternating current into a direct current by switching control signals applied to the control terminal 171 of the upper arm and the control terminal 172 of the lower arm. For example, in a steady state in which the upper arm IGBT 161 of the power semiconductor module 100 is turned on and the lower arm IGBT 163 is turned off, a current flows from the positive conductor plate 310 to the module AC terminal 150 through the first module positive terminal 111. Conversely, in a steady state in which the upper arm IGBT 161 of the power semiconductor module 100 is turned off and the lower arm IGBT 163 is turned on, a current flows from the module AC terminal 150 toward the first module negative terminal 121.
 図2及び図3を用いて、IGBTがオン状態からオフ状態、又はオフ状態からオン状態に変化した際の、過渡状態の例を説明する。図2は、パワー半導体モジュール100Wの上アームIGBT161がオンの状態かつ下アームIGBT163がオフの状態から、上アームIGBT161をオフの状態に変化させたときに、パワー半導体モジュール100Wに流れる過度電流を示した電気回路図である。 2 and 3, an example of a transient state when the IGBT changes from an on state to an off state, or from an off state to an on state will be described. FIG. 2 shows an excessive current that flows through the power semiconductor module 100W when the upper arm IGBT 161 is changed from the state in which the upper arm IGBT 161 of the power semiconductor module 100W is on and the state in which the lower arm IGBT 163 is off to the off state. FIG.
 過渡状態では、配線の寄生インダクタンスが回路動作を表現する上で重要な回路素子となる。そのため図2には、寄生インダクタンス314、324、114、124を追加している。寄生インダクタンス314は、正極導体板310の寄生インダクタンスである。寄生インダクタンス324は、負極導体板の寄生インダクタンスである。寄生インダクタンス114は、パワー半導体モジュール100Wと直流導体板310との接続導体部である正極接続端子の寄生インダクタンスである。寄生インダクタンス124は、パワー半導体モジュール100Wと直流導体板320との接続導体部である負極接続端子の寄生インダクタンスである。 In the transient state, the parasitic inductance of the wiring becomes an important circuit element for expressing the circuit operation. Therefore, parasitic inductances 314, 324, 114, and 124 are added to FIG. The parasitic inductance 314 is a parasitic inductance of the positive electrode conductor plate 310. The parasitic inductance 324 is a parasitic inductance of the negative electrode conductor plate. The parasitic inductance 114 is a parasitic inductance of a positive electrode connection terminal which is a connection conductor portion between the power semiconductor module 100W and the DC conductor plate 310. The parasitic inductance 124 is a parasitic inductance of a negative electrode connection terminal that is a connection conductor portion between the power semiconductor module 100 </ b> W and the DC conductor plate 320.
 パワー半導体モジュール100WのIGBT161をオンの状態では、正極導体板310から上アームIGBT161を通ってモジュール交流端子150Wに向かって電流411が流れる。そして、負極導体板320から下アームダイオード164を通ってモジュール交流端子150Wに向かって流れる還流電流421はゼロである。 In the state where the IGBT 161 of the power semiconductor module 100W is turned on, a current 411 flows from the positive conductor plate 310 through the upper arm IGBT 161 toward the module AC terminal 150W. The return current 421 flowing from the negative electrode conductor plate 320 through the lower arm diode 164 toward the module AC terminal 150W is zero.
 パワー半導体モジュール100WのIGBT161をオンからオフに変化させると、上アームを流れる電流411が減少し、下アームを流れる還流電流421がゼロから増加する。IGBTの特性で決まる過渡状態が終了すると、上アームに流れていた電流411はゼロになり、下アームに流れる還流電流421のみになる。これらの電流変化により、寄生インダクタンス314、114、124、324に電圧が発生する。 When the IGBT 161 of the power semiconductor module 100W is changed from on to off, the current 411 flowing through the upper arm decreases and the return current 421 flowing through the lower arm increases from zero. When the transient state determined by the characteristics of the IGBT ends, the current 411 flowing in the upper arm becomes zero, and only the return current 421 flowing in the lower arm becomes. Due to these current changes, voltages are generated in the parasitic inductances 314, 114, 124, and 324.
 図3は、パワー半導体モジュール100Wの上アームIGBT161がオフの状態かつ下アームIGBT163がオフの状態でかつ下アームダイオード164に還流電流421が流れている状態から、上アームIGBT161をオンの状態に変化させたときに、パワー半導体モジュール100Wに流れる過渡電流を示した電気回路図である。パワー半導体モジュール100WのIGBT161をオフの状態では、上アームを流れる電流411はゼロであり、下アームでは還流電流421が流れている。 FIG. 3 shows a state in which the upper arm IGBT 161 is turned on from the state in which the upper arm IGBT 161 of the power semiconductor module 100W is turned off, the lower arm IGBT 163 is turned off, and the reflux current 421 flows through the lower arm diode 164. It is the electric circuit diagram which showed the transient electric current which flows into the power semiconductor module 100W when it was made to do. When the IGBT 161 of the power semiconductor module 100W is in an off state, the current 411 flowing through the upper arm is zero, and the return current 421 flows through the lower arm.
 IGBT161をオフからオンに変化させると、下アームダイオード164には逆方向バイアス電圧がかかるため、還流電流421は、ダイオード164のリカバリ期間を経てゼロに減少する。一方、上アームIGBT161に流れる電流411はゼロから増加する。これらの電流変化により、寄生インダクタンス314、114、124、324に電圧が発生する。 When the IGBT 161 is changed from OFF to ON, a reverse bias voltage is applied to the lower arm diode 164, so that the return current 421 decreases to zero after the recovery period of the diode 164. On the other hand, the current 411 flowing through the upper arm IGBT 161 increases from zero. Due to these current changes, voltages are generated in the parasitic inductances 314, 114, 124, and 324.
 IGBTのオンからオフ、あるいはオフからオンへの状態変化により寄生インダクタンスに発生する電圧は、サージ電圧としてIGBT及びダイオードを破壊する恐れがある。そのためサージ電圧は、IGBTとダイオードの耐電圧以下になるように抑制する必要がある。サージ電圧は、電流の時間微分di/dtと寄生インダクタンスの積で決まるため、サージ電圧抑制のためにはこの積を低減する必要がある。電流の時間微分di/dtの低減は、IGBTのスイッチング損失が増加するため限界がある。そのため、寄生インダクタンスの低減が、サージ電圧抑制の効果的な手段となる。 The voltage generated in the parasitic inductance due to the state change from on to off or off to on of the IGBT may destroy the IGBT and the diode as a surge voltage. Therefore, it is necessary to suppress the surge voltage to be equal to or lower than the withstand voltage of the IGBT and the diode. Since the surge voltage is determined by the product of the time differential di / dt of the current and the parasitic inductance, it is necessary to reduce this product in order to suppress the surge voltage. The reduction of the current time derivative di / dt is limited because the switching loss of the IGBT increases. Therefore, the reduction of parasitic inductance is an effective means for suppressing surge voltage.
 寄生インダクタンスの低減には、電流経路長を短縮する方法の他に、逆方向に電流が流れる正極配線と負極配線を近接配置する方法がある。これにより相互インダクタンスを増加させ、インダクタンスを打ち消す効果がある。図2および図3では、正極導体板310と負極導体板320との間の相互インダクタンス315の関係を模式的に表現している。同様に、正極接続端子と負極接続端子との間の相互インダクタンス115の関係を模式的に表現している。 In order to reduce the parasitic inductance, there is a method in which a positive electrode wiring and a negative electrode wiring in which current flows in the opposite direction are arranged close to each other in addition to a method of shortening the current path length. This has the effect of increasing the mutual inductance and canceling the inductance. 2 and FIG. 3, the relationship of the mutual inductance 315 between the positive electrode conductor plate 310 and the negative electrode conductor plate 320 is schematically expressed. Similarly, the relationship of the mutual inductance 115 between the positive electrode connection terminal and the negative electrode connection terminal is schematically expressed.
 正極導体板310と負極導体板320との間の相互インダクタンス315を増加させる方法として、正極導体と負極導体を積層した積層構造が一般に使用される。これらの直流導体を積層構造にすることで、正極導体と負極導体を広い面積で対向させることができ、その結果、相互インダクタンスを増加できる。 As a method for increasing the mutual inductance 315 between the positive electrode conductor plate 310 and the negative electrode conductor plate 320, a laminated structure in which a positive electrode conductor and a negative electrode conductor are laminated is generally used. By making these DC conductors have a laminated structure, the positive electrode conductor and the negative electrode conductor can be opposed to each other over a wide area, and as a result, the mutual inductance can be increased.
 しかし、パワー半導体モジュールと直流導体板との従来の接続方法では、その接続部において積層構造にするためには、直流導体板の導体幅と比べて幅の狭い導体を、直流導体板から引き延ばして接続する必要があり、接続部のインダクタンス低減には限界があった。この課題を解決するために、本実施例では図4に示す構成でパワー半導体モジュールと直流導体板を接続する。 However, in the conventional connection method between the power semiconductor module and the DC conductor plate, in order to obtain a laminated structure at the connecting portion, a conductor having a width smaller than the conductor width of the DC conductor plate is extended from the DC conductor plate. It is necessary to connect, and there is a limit to reducing the inductance of the connection part. In order to solve this problem, in this embodiment, the power semiconductor module and the DC conductor plate are connected in the configuration shown in FIG.
 図4は、本実施例の電力変換装置500の構成図の例である。電力変換装置500は、正極導体板310と負極導体板320が積層されて構成されるパワーボード300と、パワー半導体モジュール100と、コンデンサモジュール200と、から構成される。前述のように、電力変換装置500は、直流電流を3相の交流電流に変換、又は3相の交流電流を直流電流に変換する電力変換装置であり、3つのパワー半導体モジュール100を有する。 FIG. 4 is an example of a configuration diagram of the power conversion apparatus 500 of the present embodiment. The power conversion apparatus 500 includes a power board 300 configured by laminating a positive electrode conductor plate 310 and a negative electrode conductor plate 320, a power semiconductor module 100, and a capacitor module 200. As described above, the power conversion device 500 is a power conversion device that converts a direct current into a three-phase alternating current, or converts a three-phase alternating current into a direct current, and includes three power semiconductor modules 100.
 コンデンサモジュール200には、パワーボードと電気的に接続される正極端子及び負極端子が設けられる。コンデンサモジュール200の正極端子は、正極導体板310と電気的に接続される。コンデンサモジュール200の負極端子は、負極導体板320と電気的に接続される。 The capacitor module 200 is provided with a positive terminal and a negative terminal that are electrically connected to the power board. The positive terminal of the capacitor module 200 is electrically connected to the positive conductor plate 310. The negative terminal of the capacitor module 200 is electrically connected to the negative conductor plate 320.
 パワーボード300には、貫通孔331及び332、第1正極端子311、第1負極端子321が形成される。貫通孔331は、パワーボード300を構成する正極導体板310に形成される。貫通孔332は、負極導体板320に形成される。貫通孔331及び332は、正極導体板310と負極導体板320が積層した状態で、各々が重なるように形成される。また、第1正極端子311は、貫通孔331の外縁部に形成される。第1負極端子321は、貫通孔332の外縁部に形成される。 In the power board 300, through holes 331 and 332, a first positive terminal 311, and a first negative terminal 321 are formed. The through hole 331 is formed in the positive electrode conductor plate 310 constituting the power board 300. The through hole 332 is formed in the negative electrode conductor plate 320. The through holes 331 and 332 are formed so as to overlap each other in a state where the positive electrode conductor plate 310 and the negative electrode conductor plate 320 are laminated. The first positive terminal 311 is formed on the outer edge of the through hole 331. The first negative terminal 321 is formed at the outer edge of the through hole 332.
 パワー半導体モジュール100の第1モジュール正極端子111は、正極導体板310の第1正極端子311と電気的に接続される。パワー半導体モジュール100の第1モジュール負極端子121は、負極導体板320の第1負極端子321と電気的に接続される。 The first module positive terminal 111 of the power semiconductor module 100 is electrically connected to the first positive terminal 311 of the positive conductor plate 310. The first module negative terminal 121 of the power semiconductor module 100 is electrically connected to the first negative terminal 321 of the negative conductor plate 320.
 図5は、正極導体板310と、負極導体板320と、パワー半導体モジュール100との接続部の断面形状を示した図である。正極導体板310と負極導体板320とは積層されており、パワーボード300を構成している。パワーボード300には、パワーボード300とパワー半導体モジュール100との接続部に、貫通孔331と貫通孔332とから成る貫通孔330が設けられている。 FIG. 5 is a diagram showing a cross-sectional shape of a connection portion between the positive electrode conductor plate 310, the negative electrode conductor plate 320, and the power semiconductor module 100. The positive electrode conductor plate 310 and the negative electrode conductor plate 320 are laminated to constitute the power board 300. In the power board 300, a through hole 330 including a through hole 331 and a through hole 332 is provided at a connection portion between the power board 300 and the power semiconductor module 100.
 パワーボード300において、パワー半導体モジュール100と対向する面を第1表面341とする。本実施例においては、パワーボード300の第1表面側341側に負極導体板320が配置される。正極導体板310は、パワーボード300において第1表面341とは反対側に配置されている。 In the power board 300, a surface facing the power semiconductor module 100 is defined as a first surface 341. In the present embodiment, the negative electrode conductor plate 320 is disposed on the first surface side 341 side of the power board 300. The positive conductor plate 310 is disposed on the power board 300 on the side opposite to the first surface 341.
 第1正極端子311は、正極導体板310に形成される。第1正極端子311は、貫通孔332を経由し、第1表面341から突出して形成される。また、負極導体板320の第1負極端子321も、第1表面341から突出して形成される。 The first positive terminal 311 is formed on the positive conductor plate 310. The first positive electrode terminal 311 is formed to protrude from the first surface 341 via the through hole 332. Further, the first negative terminal 321 of the negative conductor plate 320 is also formed so as to protrude from the first surface 341.
 パワー半導体モジュール100は、互いに対向する第1モジュール正極端子111と第1モジュール負極端子121とを有する。これら第1モジュール正極端子111及び第1モジュール負極端子121は、パワー半導体モジュール100本体から、パワーボード300の配置側に向かって突出して形成されている。第1モジュール正極端子111は、第1正極端子311と電気的に接続される。第1モジュール負極端子121は、第1負極端子321と電気的に接続される。 The power semiconductor module 100 has a first module positive terminal 111 and a first module negative terminal 121 facing each other. The first module positive terminal 111 and the first module negative terminal 121 are formed so as to protrude from the main body of the power semiconductor module 100 toward the arrangement side of the power board 300. The first module positive terminal 111 is electrically connected to the first positive terminal 311. The first module negative terminal 121 is electrically connected to the first negative terminal 321.
 また、パワーボード300を挟んで、パワー半導体モジュール100と対向する位置には、第2の電気回路体である制御基板600が配置される。制御基板600は、パワー半導体モジュール100の信号端子と接続され、当該パワー半導体モジュール100の動作を制御する。 Further, a control board 600 as a second electric circuit body is disposed at a position facing the power semiconductor module 100 with the power board 300 interposed therebetween. The control board 600 is connected to the signal terminal of the power semiconductor module 100 and controls the operation of the power semiconductor module 100.
 図6は、正極導体板310と、負極導体板320と、コンデンサモジュール200との接続部の断面形状を示した図である。上述のように、正極導体板310と負極導体板320は積層されており、パワーボード300を構成している。パワーボード300には、パワー半導体モジュール100との接続部と同様に、パワーボード300とコンデンサモジュール200との接続部に、貫通孔371と貫通孔372とから成る貫通孔370が設けられている。 FIG. 6 is a diagram showing a cross-sectional shape of a connection portion between the positive electrode conductor plate 310, the negative electrode conductor plate 320, and the capacitor module 200. As described above, the positive electrode conductor plate 310 and the negative electrode conductor plate 320 are laminated to constitute the power board 300. In the power board 300, a through hole 370 including a through hole 371 and a through hole 372 is provided in the connection part between the power board 300 and the capacitor module 200, similarly to the connection part with the power semiconductor module 100.
 コンデンサ正極端子361は、正極導体板310に形成される。コンデンサ正極端子361は、貫通孔372を経由し、第1表面341から突出して形成される。また、負極導体板320に形成されるコンデンサ負極端子362も、第1表面341から突出して形成される。 The capacitor positive terminal 361 is formed on the positive conductor plate 310. The capacitor positive terminal 361 is formed to project from the first surface 341 via the through hole 372. Further, the capacitor negative electrode terminal 362 formed on the negative electrode conductor plate 320 is also formed so as to protrude from the first surface 341.
 また、正極導体板310は、当該正極導体板310の端部にコンデンサ正極端子363を形成する。コンデンサ正極端子363は、負極導体板320の端部を跨いで第1表面341から突出して形成される。負極導体板320は、当該負極導体板320の端部にコンデンサ負極端子364を形成する。コンデンサ負極端子364は、第1表面341から突出して形成される。 Further, the positive electrode conductor plate 310 forms a capacitor positive electrode terminal 363 at the end of the positive electrode conductor plate 310. The capacitor positive terminal 363 is formed to protrude from the first surface 341 across the end of the negative conductor plate 320. The negative electrode conductor plate 320 forms a capacitor negative electrode terminal 364 at the end of the negative electrode conductor plate 320. The capacitor negative terminal 364 is formed to protrude from the first surface 341.
 コンデンサモジュール200は、第1コンデンサ210と、第2コンデンサ220と、を有する。第1コンデンサ210は、一方の面に形成される第1コンデンサ正極端子211と、前記一方の面と対向する他方の面に形成される第1コンデンサ負極端子212とを有する。第2コンデンサ220は、一方の面に形成される第2コンデンサ正極端子221と、前記一方の面と対向する他方の面に形成される第2コンデンサ負極端子222とを有する。 The capacitor module 200 includes a first capacitor 210 and a second capacitor 220. The first capacitor 210 has a first capacitor positive terminal 211 formed on one surface and a first capacitor negative terminal 212 formed on the other surface opposite to the one surface. The second capacitor 220 has a second capacitor positive terminal 221 formed on one surface and a second capacitor negative terminal 222 formed on the other surface opposite to the one surface.
 第1コンデンサ210は、第1コンデンサ正極端子211が第2コンデンサ負極端子222と対向するように、配置される。なお、図6においては、コンデンサモジュール200として、コンデンサが2個の場合で図示したが、図4のように、3個以上を配置しても構わない。 The first capacitor 210 is arranged so that the first capacitor positive electrode terminal 211 faces the second capacitor negative electrode terminal 222. In FIG. 6, the capacitor module 200 is illustrated with two capacitors, but three or more capacitors may be arranged as shown in FIG.
 第1コンデンサ210の第1コンデンサ正極端子211は、正極導体板310のコンデンサ正極端子361と電気的に接続される。第1コンデンサ210の第1コンデンサ負極端子212は、負極導体板320のコンデンサ負極端子364と電気的に接続される。 The first capacitor positive terminal 211 of the first capacitor 210 is electrically connected to the capacitor positive terminal 361 of the positive conductor plate 310. The first capacitor negative terminal 212 of the first capacitor 210 is electrically connected to the capacitor negative terminal 364 of the negative conductor plate 320.
 第2コンデンサ220の第2コンデンサ正極端子221は、正極導体板310のコンデンサ正極端子363と電気的に接続される。第2コンデンサ220の第2コンデンサ負極端子222は、負極導体板320のコンデンサ負極端子362と電気的に接続される。 The second capacitor positive terminal 221 of the second capacitor 220 is electrically connected to the capacitor positive terminal 363 of the positive conductor plate 310. The second capacitor negative terminal 222 of the second capacitor 220 is electrically connected to the capacitor negative terminal 362 of the negative conductor plate 320.
 図7は、パワーボード300とパワー半導体モジュール100との接続部を示しており、パワーボード上に流れる第1正極電流411と第1負極電流412の流れを示した図である。図7を用いて本実施例の作用効果を説明する。 FIG. 7 shows a connection portion between the power board 300 and the power semiconductor module 100, and is a diagram showing a flow of the first positive current 411 and the first negative current 412 flowing on the power board. The effect of the present embodiment will be described with reference to FIG.
 第1正極電流411は、正極導体板310上の電流を模式的に示している。第1正極電流411は、第1正極端子311を通ってパワー半導体モジュール100の第1モジュール正極端子111に流入する。 The first positive electrode current 411 schematically shows the current on the positive electrode conductor plate 310. The first positive electrode current 411 flows into the first module positive electrode terminal 111 of the power semiconductor module 100 through the first positive electrode terminal 311.
 第1負極電流412は、負極導体板320上の電流を模式的に示している。第1負極電流412は、第1負極端子321を通ってパワー半導体モジュール100の第1モジュール負極端子121から流出する。 The first negative electrode current 412 schematically shows a current on the negative electrode conductor plate 320. The first negative current 412 flows from the first module negative terminal 121 of the power semiconductor module 100 through the first negative terminal 321.
 正極導体板310と負極導体板320とは、積層されたパワーボード300を形成しており、第1正極電流411と第1負極電流412が互いに逆向きに流れる領域413を有する。そのため、それぞれの電流に起因するインダクタンスを打ち消し合い、パワーボード上の寄生インダクタンスを低減される。 The positive electrode conductor plate 310 and the negative electrode conductor plate 320 form a laminated power board 300, and have a region 413 in which the first positive electrode current 411 and the first negative electrode current 412 flow in opposite directions. Therefore, the inductance caused by each current is canceled out, and the parasitic inductance on the power board is reduced.
 第1正極端子311と第1負極端子321の周辺部では、正極導体板310と負極導体板320とを積層構造にできないため、インダクタンスが増加する。しかし本実施例では、貫通孔330を通って第1正極端子311が構成されるため、貫通孔300を迂回する電流経路長を小さくすることができ、迂回によるインダクタンス増加を抑制できる。さらに、迂回する電流経路長を小さくすることができるため、電気抵抗による損失も抑制できる。 In the periphery of the first positive electrode terminal 311 and the first negative electrode terminal 321, the positive electrode conductor plate 310 and the negative electrode conductor plate 320 cannot be formed in a laminated structure, so that the inductance increases. However, in this embodiment, since the first positive electrode terminal 311 is configured through the through hole 330, the current path length that bypasses the through hole 300 can be reduced, and an increase in inductance due to the bypass can be suppressed. Furthermore, since the length of the detouring current path can be reduced, loss due to electrical resistance can also be suppressed.
 上記の作用効果は、パワーボード300とパワー半導体モジュール100との接続部についてのみに働くものではなく、パワーボード300とコンデンサモジュール200との接続部についても働く。すなわち、パワーボード300とコンデンサモジュール300との接続部である貫通孔370を通ってコンデンサ正極端子361が構成されるため、貫通孔370を迂回する電流経路長を小さくすることができ、迂回によるインダクタンス増加を抑制できる。さらに、迂回する電流経路長を小さくすることができるため、電気抵抗による損失も抑制できる。 The above effect does not only work for the connection part between the power board 300 and the power semiconductor module 100 but also works for the connection part between the power board 300 and the capacitor module 200. That is, since the capacitor positive terminal 361 is configured through the through hole 370 that is a connection portion between the power board 300 and the capacitor module 300, the current path length that bypasses the through hole 370 can be reduced, and the inductance due to the bypass can be reduced. Increase can be suppressed. Furthermore, since the length of the detouring current path can be reduced, loss due to electrical resistance can also be suppressed.
 以上のように、パワーボードを構成する正極導体板と負極導体板のいずれか一方を、パワーボードに形成された貫通孔を通ってパワーボードの一方の面から突出して形成させることで、正極導体板と負極導体板とを流れる電流による寄生インダクタンスを低減することができる。また、パワーボードの正極端子と負極端子とを対向して配置することで、それぞれの端子を流れる電流も互いに逆向きに流れ、寄生インダクタンスを低減することができる。また、電流の迂回経路を短くすることができるため、損失も低減することができる。 As described above, either the positive electrode conductor plate or the negative electrode conductor plate constituting the power board is formed so as to protrude from one surface of the power board through the through hole formed in the power board. Parasitic inductance due to current flowing through the plate and the negative electrode conductor plate can be reduced. Further, by arranging the positive terminal and the negative terminal of the power board to face each other, currents flowing through the terminals also flow in opposite directions, and parasitic inductance can be reduced. Further, since the current bypass path can be shortened, loss can be reduced.
 また、パワーボードの正極端子と負極端子を、パワー半導体モジュールの配置側へ突出させることで、パワーボード端子とパワー半導体モジュール端子の接続部が、これらの部品の内側に位置することになる。これによりパワーボード上面は平坦に形成され、パワーボード上部空間が広く利用することができる。 In addition, by projecting the positive terminal and the negative terminal of the power board to the arrangement side of the power semiconductor module, the connection part of the power board terminal and the power semiconductor module terminal is located inside these components. Thereby, the upper surface of the power board is formed flat, and the upper space of the power board can be widely used.
 また、パワー半導体モジュールのモジュール正極端子及びモジュール負極端子は互いに対向して配置されるため、モジュール正極端子を流れる電流と、モジュール負極端子を流れる電流とは、互いに逆向きに流れる。したがって、相互インダクタンスの打ち消し効果により、インダクタンスの増加を抑制できる。 Also, since the module positive terminal and the module negative terminal of the power semiconductor module are arranged to face each other, the current flowing through the module positive terminal and the current flowing through the module negative terminal flow in opposite directions. Therefore, an increase in inductance can be suppressed by the mutual inductance canceling effect.
 また、コンデンサモジュールとして、第1コンデンサと第2コンデンサを用いることにより、正極端子と負極端子の間隔距離が大きい電気回路体であるコンデンサにおいても、パワーボードの正極端子と負極端子を近づけて対向させることができる。したがって、相互インダクタンスの打ち消し効果により、インダクタンスの増加を抑制できる。 Further, by using the first capacitor and the second capacitor as the capacitor module, even in a capacitor that is an electric circuit body having a large distance between the positive electrode terminal and the negative electrode terminal, the positive electrode terminal and the negative electrode terminal of the power board are brought close to each other. be able to. Therefore, an increase in inductance can be suppressed by the mutual inductance canceling effect.
 さらに本実施例においては、第1コンデンサの正極端子と、第2コンデンサの負極端子も、対向して配置されるため、パワーボードの端子に係るインダクタンスだけでなく、コンデンサの端子に係るインダクタンスも、電流の打ち消し効果により増加を抑制できる。 Further, in this embodiment, since the positive terminal of the first capacitor and the negative terminal of the second capacitor are also arranged to face each other, not only the inductance related to the terminal of the power board but also the inductance related to the terminal of the capacitor, The increase can be suppressed by the current canceling effect.
 本実施例では、インダクタンスの低減と損失の低減だけでなく、パワーボードとパワー半導体モジュールの電気的接続を容易に行える電力変換装置の例を説明する。 In this embodiment, an example of a power conversion device that can easily connect the power board and the power semiconductor module as well as reduce inductance and loss will be described.
 本実施例の電力変換装置の構成を、図8と図9を用いて説明する。ただし、実施例1で既に説明した図1に示された同一の符号を付された構成と、同一の機能を有する部分については、説明を省略する。 The configuration of the power conversion apparatus according to this embodiment will be described with reference to FIGS. 8 and 9. However, the description of the components having the same functions as those shown in FIG. 1 already described in the first embodiment will be omitted.
 図8は、本実施例の電力変換装置の構成図の例である。また図9は、パワーボード300とパワー半導体モジュール100との接続部の断面形状を示した図である。パワーボード300は、パワーボード300とパワー半導体モジュール100との接続部に、貫通孔330が設けられている。また、パワーボード300には、第1正極端子311と第1負極端子321とが形成される。 FIG. 8 is an example of a configuration diagram of the power conversion device of the present embodiment. FIG. 9 is a diagram showing a cross-sectional shape of a connection portion between the power board 300 and the power semiconductor module 100. In the power board 300, a through hole 330 is provided at a connection portion between the power board 300 and the power semiconductor module 100. Further, the power board 300 is formed with a first positive terminal 311 and a first negative terminal 321.
 本実施例では、第1正極端子311は、パワー半導体モジュール100が配置される第1表面341とは反対側の第2表面342に突出する。第1負極端子321は、貫通孔331を通り、第2表面342に突出する。 In the present embodiment, the first positive terminal 311 protrudes on the second surface 342 opposite to the first surface 341 on which the power semiconductor module 100 is disposed. The first negative terminal 321 passes through the through hole 331 and protrudes to the second surface 342.
 パワー半導体モジュール100の第1モジュール正極端子111及び第1モジュール負極端子121は、パワーボードに形成された貫通孔330を貫通して配置される。すなわち、第1モジュール正極端子111及び第1モジュール負極端子121は、第2表面342に突出して配置される。そして、第1モジュール正極端子111は、第1正極端子311と電気的に接続される。第2モジュール負極端子121は、第1負極端子321と電気的に接続される。 The first module positive terminal 111 and the first module negative terminal 121 of the power semiconductor module 100 are disposed through a through hole 330 formed in the power board. That is, the first module positive terminal 111 and the first module negative terminal 121 are disposed to protrude from the second surface 342. The first module positive terminal 111 is electrically connected to the first positive terminal 311. The second module negative terminal 121 is electrically connected to the first negative terminal 321.
 次に本実施例の作用効果を説明する。実施例1におけるパワーボード上の電流の流れを図7に示したが、本実施例におけるパワーボード300上の電流の流れ方は実施例1と同様である。つまり、パワーボード上を迂回する電流の経路長を小さくすることができ、迂回によるインダクタンスの増加を抑制できる。さらに電気抵抗を小さくすることができ、損失の増大も抑制できる。 Next, the function and effect of this embodiment will be described. Although the current flow on the power board in the first embodiment is shown in FIG. 7, the current flow on the power board 300 in the present embodiment is the same as that in the first embodiment. That is, the path length of the current that bypasses the power board can be reduced, and an increase in inductance due to the bypass can be suppressed. Furthermore, the electrical resistance can be reduced, and an increase in loss can be suppressed.
 図9はパワーボード300とパワー半導体モジュール100との接続部の断面形状を示した図である。本実施例における、パワーボード300とパワー半導体モジュール100との接続端子である、第1モジュール正極端子111、第1モジュール負極端子121、第1正極端子311、第1負極端子321に流れる電流を、電流431~434で示す。電流431は、第1正極端子311に流れる正極電流を示す。電流432は、第1モジュール正極端子111に流れる正極電流を示す。電流433は、第1負極端子321に流れる負極電流を示す。電流434は、第1モジュール負極端子121に流れる負極電流を示す。 FIG. 9 is a view showing a cross-sectional shape of a connection portion between the power board 300 and the power semiconductor module 100. In the present embodiment, the current flowing through the first module positive terminal 111, the first module negative terminal 121, the first positive terminal 311, and the first negative terminal 321 which are connection terminals between the power board 300 and the power semiconductor module 100, This is indicated by currents 431-434. A current 431 indicates a positive current that flows through the first positive terminal 311. A current 432 indicates a positive current flowing through the first module positive terminal 111. A current 433 indicates a negative current flowing through the first negative terminal 321. A current 434 indicates a negative current flowing in the first module negative terminal 121.
 電流431と電流432は同強度で逆向きであるため、電流431と電流432との間の相互インダクタンスによる打ち消し効果により、端子111、131のインダクタンスの増加を抑制できる。同様に、負極電流433と434は同強度で逆向きであるため打ち消し効果により、端子121、321のインダクタンスの増加を抑制できる。 Since the current 431 and the current 432 have the same strength and opposite directions, an increase in the inductance of the terminals 111 and 131 can be suppressed by the canceling effect due to the mutual inductance between the current 431 and the current 432. Similarly, since the negative currents 433 and 434 have the same strength and opposite directions, an increase in the inductance of the terminals 121 and 321 can be suppressed due to the cancellation effect.
 また、パワー半導体モジュール100の第1モジュール正極端子111及び第1モジュール負極端子121は互いに対向して配置されるため、第1モジュール正極端子111を流れる電流432と、第1モジュール負極端子121を流れる電流433とは、互いに逆向きに流れる。したがって、相互インダクタンスの打ち消し効果により、インダクタンスの増加を抑制できる。 Further, since the first module positive terminal 111 and the first module negative terminal 121 of the power semiconductor module 100 are arranged to face each other, the current 432 flowing through the first module positive terminal 111 and the first module negative terminal 121 flow. The current 433 flows in opposite directions. Therefore, an increase in inductance can be suppressed by the mutual inductance canceling effect.
 以上のように、本実施例によると、パワーボードを構成する正極導体板と負極導体板のいずれか一方を、パワーボードに形成された貫通孔を通ってパワーボードの一方の面から突出して形成させることで、正極導体板と負極導体板とを流れる電流による寄生インダクタンスを低減することができる。また、パワーボードの正極端子と負極端子とを対向して配置することで、それぞれの端子を流れる電流も互いに逆向きに流れ、寄生インダクタンスを低減することができる。また、電流の迂回経路を短くすることができるため、損失も低減することができる。 As described above, according to the present embodiment, either the positive electrode conductor plate or the negative electrode conductor plate constituting the power board is formed to protrude from one surface of the power board through the through hole formed in the power board. By doing so, the parasitic inductance due to the current flowing through the positive electrode conductor plate and the negative electrode conductor plate can be reduced. Further, by arranging the positive terminal and the negative terminal of the power board to face each other, currents flowing through the terminals also flow in opposite directions, and parasitic inductance can be reduced. Further, since the current bypass path can be shortened, loss can be reduced.
 さらに本実施例では、パワーボード300とパワー半導体モジュール100の接続端子111、121、311、312が、パワー半導体モジュール100とは反対側のパワーボード第2表面342に突出するため、これら端子の電気的接続が容易にできる。これらの接続端子を接続する方法としては、例えば、溶接、固定部材による挟持などがある。 Further, in the present embodiment, the connection terminals 111, 121, 311, 312 of the power board 300 and the power semiconductor module 100 protrude from the power board second surface 342 on the opposite side of the power semiconductor module 100, Connection is easy. As a method of connecting these connection terminals, for example, there are welding, clamping by a fixing member, and the like.
 本実施例では、インダクタンスを更に低減できる電力変換装置の例を説明する。ただし、実施例1又は2で既に説明した構成と同一の符号を付された構成と、同一の機能を有する部分については、説明を省略する。 In this embodiment, an example of a power conversion device that can further reduce the inductance will be described. However, the description of the components having the same reference numerals as those already described in the first or second embodiment and portions having the same functions will be omitted.
 本実施例の電力変換装置の構成を、図10と図11を用いて説明する。図10は、本実施例の電力変換装置のパワーボード300とパワー半導体モジュール100との接続を示した構成図の例である。 The configuration of the power conversion apparatus according to this embodiment will be described with reference to FIGS. 10 and 11. FIG. 10 is an example of a configuration diagram illustrating the connection between the power board 300 and the power semiconductor module 100 of the power conversion apparatus according to the present embodiment.
 パワーボード300は、パワーボード300とパワー半導体モジュール100との接続部に、貫通孔330が設けられている。パワーボード300を構成する正極導体板310は、当該正極導体板310と電気的に接続された第1正極端子311と第2正極端子312とを有する。また、負極導体板320は、当該負極導体板320と電気的に接続された第1負極端子321と第2負極端子322とを有する。 The power board 300 is provided with a through hole 330 at a connection portion between the power board 300 and the power semiconductor module 100. The positive electrode conductor plate 310 constituting the power board 300 includes a first positive electrode terminal 311 and a second positive electrode terminal 312 that are electrically connected to the positive electrode conductor plate 310. The negative electrode conductor plate 320 includes a first negative electrode terminal 321 and a second negative electrode terminal 322 that are electrically connected to the negative electrode conductor plate 320.
 第1正極端子311、第2正極端子312、第1負極端子321、第2負極端子322は、すべてパワー半導体モジュール100が配置される第1表面341とは反対側の第2表面342に突出する。そして、第1負極端子321及び第2負極端子322は、貫通孔330を通って第2表面342に突出する。 The first positive terminal 311, the second positive terminal 312, the first negative terminal 321, and the second negative terminal 322 all protrude from the second surface 342 opposite to the first surface 341 where the power semiconductor module 100 is disposed. . The first negative terminal 321 and the second negative terminal 322 protrude through the through hole 330 to the second surface 342.
 第1正極端子311と第1負極端子321は、貫通孔330を挟んで対向して設置される。第2正極端子312は、第1負極端子321の側部に配置される。第2負極端子322は、第1正極端子311の側部に配置される。つまり、第2正極端子312と第2負極端子322も、貫通孔330を挟んで対向して設置される。 The first positive electrode terminal 311 and the first negative electrode terminal 321 are installed facing each other with the through hole 330 interposed therebetween. The second positive terminal 312 is disposed on the side of the first negative terminal 321. The second negative terminal 322 is disposed on the side of the first positive terminal 311. In other words, the second positive electrode terminal 312 and the second negative electrode terminal 322 are also installed facing each other with the through hole 330 interposed therebetween.
 本実施例のパワー半導体モジュール100は、第1モジュール正極端子111と、第1モジュール負極端子121と、第2モジュール正極端子112と、第2モジュール負極端子122と、を有する。第1モジュール正極端子111と第2モジュール正極端子112は、電気的に接続されている。第1モジュール負極端子121と第2モジュール負極端子122は、電気的に接続されている。 The power semiconductor module 100 of the present embodiment includes a first module positive terminal 111, a first module negative terminal 121, a second module positive terminal 112, and a second module negative terminal 122. The first module positive terminal 111 and the second module positive terminal 112 are electrically connected. The first module negative terminal 121 and the second module negative terminal 122 are electrically connected.
 第1モジュール正極端子111と、第1モジュール負極端子121と、第2モジュール正極端子112と、第2モジュール負極端子122は、実施例2における第1モジュール正極端子111及び第1モジュール負極端子121と同様に、パワー半導体モジュール100の本体部からパワーボード300の配置側へ向かって突出し、貫通孔330を貫通する。第1モジュール正極端子111は、第1正極端子311と電気的に接続される。第1モジュール負極端子121は、第1負極端子321と電気的に接続される。第2モジュール正極端子112は、第2正極端子312と電気的に接続される。第2モジュール負極端子122は、第2負極端子322と電気的に接続される。 The first module positive terminal 111, the first module negative terminal 121, the second module positive terminal 112, and the second module negative terminal 122 are the same as the first module positive terminal 111 and the first module negative terminal 121 in the second embodiment. Similarly, it protrudes from the main body of the power semiconductor module 100 toward the arrangement side of the power board 300 and penetrates the through hole 330. The first module positive terminal 111 is electrically connected to the first positive terminal 311. The first module negative terminal 121 is electrically connected to the first negative terminal 321. The second module positive terminal 112 is electrically connected to the second positive terminal 312. The second module negative terminal 122 is electrically connected to the second negative terminal 322.
 図11は本実施例のパワー半導体モジュール100の電気回路図の例である。パワー半導体モジュール100は、上アームのIGBT161とダイオード162と、下アームのIGBT163とダイオード164とで構成される。上アームのIGBT161は制御端子171に印加される制御信号によりオン状態とオフ状態とが切り換えられる。また下アームのIGBT163は制御端子172に印加される制御信号によりオン状態とオフ状態とが切り換えられる。 FIG. 11 is an example of an electric circuit diagram of the power semiconductor module 100 of the present embodiment. The power semiconductor module 100 includes an upper arm IGBT 161 and a diode 162, and a lower arm IGBT 163 and a diode 164. The IGBT 161 of the upper arm is switched between an on state and an off state by a control signal applied to the control terminal 171. The lower arm IGBT 163 is switched between an on state and an off state by a control signal applied to the control terminal 172.
 上アームのIGBT161のコレクタは、正極導体板310と電気的に接続するための第1モジュール正極端子111と第2正極モジュール端子112とが設けられている。下アームのIGBT163のエミッタは、負極導体板320と電気的に接続するための第1モジュール負極端子121と第2モジュール負極端子122とが設けられている。また上アームIGBT161のエミッタと下アームIGBT163のコレクタとの間は、モジュール交流端子150が設けられている。 The collector of the IGBT 161 on the upper arm is provided with a first module positive terminal 111 and a second positive module terminal 112 for electrical connection with the positive conductor plate 310. The emitter of the lower arm IGBT 163 is provided with a first module negative terminal 121 and a second module negative terminal 122 for electrical connection with the negative conductor plate 320. A module AC terminal 150 is provided between the emitter of the upper arm IGBT 161 and the collector of the lower arm IGBT 163.
 次に本実施例の作用効果を説明する。本実施例の効果は、実施例2で説明した効果に加え、以下に示すインダクタンス低減効果がある。 Next, the function and effect of this embodiment will be described. The effect of this embodiment has the following inductance reduction effect in addition to the effect described in the second embodiment.
 図10には、パワーボード300上の電流の流れを、第1正極電流411、第1負極電流412、第2正極電流421、第2負極電流422、として模式的に表現している。正極導体板310と負極導体板320は、積層されたパワーボード300を形成している。したがって、正極導体板310上を流れる第1正極電流411と第2正極電流421と、負極導体板320上を流れる第1負極電流412と第2負極電流422とは、領域414において互いに逆向きに流れる。ゆえに、パワーボード上の寄生インダクタンスを低減することができる。 In FIG. 10, the current flow on the power board 300 is schematically represented as a first positive current 411, a first negative current 412, a second positive current 421, and a second negative current 422. The positive conductor plate 310 and the negative conductor plate 320 form a laminated power board 300. Therefore, the first positive current 411 and the second positive current 421 flowing on the positive conductor plate 310, and the first negative current 412 and the second negative current 422 flowing on the negative conductor plate 320 are opposite to each other in the region 414. Flowing. Therefore, the parasitic inductance on the power board can be reduced.
 さらに、領域423においても、第1正極端子311と第2負極端子322とが隣接して配設されるため、第1正極端子311に流れ込む第1正極電流411と、第2負極端子322から流れ出す第2負極電流422とが、互いに逆向きに流れるためインダクタンスを低減できる。 Further, also in the region 423, the first positive electrode terminal 311 and the second negative electrode terminal 322 are disposed adjacent to each other, so that the first positive electrode current 411 flowing into the first positive electrode terminal 311 and the second negative electrode terminal 322 flow out. Since the second negative current 422 flows in opposite directions, the inductance can be reduced.
 同様に、領域424においても、第2正極端子312と第1負極端子321とが隣接して配置されるため、第2正極端子322に流れ込む第2正極電流421と、第1負極端子421から流れ出す第1負極電流412とが、互いに逆向きに流れるため、インダクタンスを低減できる。 Similarly, in the region 424, since the second positive electrode terminal 312 and the first negative electrode terminal 321 are adjacently disposed, the second positive electrode current 421 flowing into the second positive electrode terminal 322 and the first negative electrode terminal 421 flow out. Since the first negative electrode current 412 flows in opposite directions, the inductance can be reduced.
 以上のように、第1正極端子311と、第2正極端子312と、第1負極端子321と、第2負極端子322とを、貫通孔330に貫通させてパワーボードの一方の面から突出して形成させることで、正極導体板と負極導体板とを流れる電流による寄生インダクタンスを低減することができる。また、パワーボードの正極端子と負極端子とを対向して配置することで、それぞれの端子を流れる電流も互いに逆向きに流れ、寄生インダクタンスを低減することができる。また、電流の迂回経路を短くすることができるため、損失も低減することができる。 As described above, the first positive electrode terminal 311, the second positive electrode terminal 312, the first negative electrode terminal 321, and the second negative electrode terminal 322 penetrate the through hole 330 and protrude from one surface of the power board. By forming, the parasitic inductance due to the current flowing through the positive electrode conductor plate and the negative electrode conductor plate can be reduced. Further, by arranging the positive terminal and the negative terminal of the power board to face each other, currents flowing through the terminals also flow in opposite directions, and parasitic inductance can be reduced. Further, since the current bypass path can be shortened, loss can be reduced.
 さらに、正極端子と負極端子とを隣り合って配置させることによって、インダクタンス打ち消し効果を更に高めることができる。 Furthermore, the inductance canceling effect can be further enhanced by arranging the positive electrode terminal and the negative electrode terminal next to each other.
 なお本実施例では、正極端子と負極端子が2対で構成される場合について説明したが、2対以上の正極端子と負極端子から構成される電力変換装置でも良い。また、本実施例では、パワーボード300の正極端子311、312と負極端子321、322とが、パワー半導体モジュール100が配置される側とは反対側の第2表面342に突出して形成される例を説明したが、これら端子311、312、321、322が、パワー半導体モジュール100と向かい合う側のパワーボード第1表面341に突出して形成される電力変換装置でも良い。 In addition, although the present Example demonstrated the case where a positive electrode terminal and a negative electrode terminal were comprised by two pairs, the power converter device comprised from two or more pairs of positive electrode terminals and negative electrode terminals may be sufficient. In this embodiment, the positive terminals 311 and 312 and the negative terminals 321 and 322 of the power board 300 are formed so as to protrude from the second surface 342 opposite to the side where the power semiconductor module 100 is disposed. However, the power conversion device in which the terminals 311, 312, 321, and 322 protrude from the power board first surface 341 on the side facing the power semiconductor module 100 may be used.
 続いて、上記の実施例3の電力変換装置に用いられるパワー半導体モジュール100の構成例について説明する。 Subsequently, a configuration example of the power semiconductor module 100 used in the power conversion device of the third embodiment will be described.
 図12は、本実施例の電力変換装置に用いられるパワー半導体モジュール100の構成図の例である。図11に示したように、パワー半導体モジュール100は、上アームのIGBT161とダイオード162と、下アームのIGBT163とダイオード164とで構成される。 FIG. 12 is an example of a configuration diagram of the power semiconductor module 100 used in the power conversion device of the present embodiment. As shown in FIG. 11, the power semiconductor module 100 includes an upper arm IGBT 161 and a diode 162, and a lower arm IGBT 163 and a diode 164.
 本実施例のパワー半導体モジュール100は、内部のIGBTやダイオードを保護するために、樹脂でモールドされている。パワー半導体モジュール100のモールド端子面190には、パワーボード300の端子と接続するための、第1モジュール正極端子111と、第2モジュール正極端子112と、第1モジュール負極端子121と、第2モジュール負極端子122と、が設置されている。これらのモジュール端子は、インダクタンスを低減するために、正極端子と負極端子が交互に設置されている。本実施例においては、第1負極端子121、第1正極端子111、第2負極端子122、第2正極端子112、という順に設置されている。 The power semiconductor module 100 of this embodiment is molded with resin in order to protect internal IGBTs and diodes. On the molded terminal surface 190 of the power semiconductor module 100, a first module positive terminal 111, a second module positive terminal 112, a first module negative terminal 121, and a second module are connected to the terminals of the power board 300. A negative electrode terminal 122 is provided. These module terminals are alternately provided with positive terminals and negative terminals in order to reduce inductance. In this embodiment, the first negative terminal 121, the first positive terminal 111, the second negative terminal 122, and the second positive terminal 112 are arranged in this order.
 また、これらの端子(第1負極端子121、第1正極端子111、第2負極端子122、第2正極端子112)は、それぞれの主面が一つの仮想面上と重なるように配置されている。 In addition, these terminals (the first negative terminal 121, the first positive terminal 111, the second negative terminal 122, and the second positive terminal 112) are arranged so that their main surfaces overlap one virtual plane. .
 これらの端子には、パワーボード300の端子と接続するための中間端子が接続されている。第1正極端子111は、パワーボード300の第1正極端子311と接続するための第1中間正極端子131が電気的に接続される。第1負極端子121は、パワーボード300の第1負極端子321と接続するための第1中間負極端子141が電気的に接続される。第2正極端子112は、パワーボード300の第2正極端子312と接続するための第2中間正極端子132が電気的に接続される。第2負極端子122は、パワーボード300の第2負極端子322と接続するための第2中間負極端子132が電気的に接続される。 These terminals are connected to intermediate terminals for connection with the terminals of the power board 300. The first positive terminal 111 is electrically connected to the first intermediate positive terminal 131 for connecting to the first positive terminal 311 of the power board 300. The first negative electrode terminal 121 is electrically connected to the first intermediate negative electrode terminal 141 for connecting to the first negative electrode terminal 321 of the power board 300. The second positive terminal 112 is electrically connected to the second intermediate positive terminal 132 for connection to the second positive terminal 312 of the power board 300. The second negative electrode terminal 122 is electrically connected to the second intermediate negative electrode terminal 132 for connecting to the second negative electrode terminal 322 of the power board 300.
 第1中間正極端子131は、第1正極端子111と接続される一部が屈曲し、第1正極端子111の主面と重なる仮想面とは異なる仮想面上に、当該第1中間正極端子131の主面が重なるように、形成される。第1中間正極端子131の主面とは、パワーボード300の第1正極端子311と接続される部分である。第2中間負極端子142も同様に屈曲し、当該第2中間負極端子142の主面と第1中間正極端子131の主面とが一つの仮想面上と重なるように形成される。 The first intermediate positive terminal 131 is bent at a part thereof connected to the first positive terminal 111 and on a virtual plane different from a virtual plane overlapping the main surface of the first positive terminal 111. Are formed such that the main surfaces of the two overlap. The main surface of the first intermediate positive terminal 131 is a portion connected to the first positive terminal 311 of the power board 300. Similarly, the second intermediate negative terminal 142 is bent so that the main surface of the second intermediate negative terminal 142 and the main surface of the first intermediate positive terminal 131 overlap one virtual surface.
 そして、第1中間正極端子131及び第2中間正極端子132は、第1中間正極端子131の端子幅と第2中間正極端子132の端子幅の和が、第1正極端子111の端子幅と第2正極端子112の端子幅の和よりも大きくなるように形成される。また、第1中間負極端子141及び第2中間負極端子142は、第1中間負極端子141の端子幅と第2中間負極端子142の端子幅の和が、第1負極端子121の端子幅と第2負極端子122の端子幅の和よりも大きくなるように形成される。 The first intermediate positive terminal 131 and the second intermediate positive terminal 132 have the sum of the terminal width of the first intermediate positive terminal 131 and the terminal width of the second intermediate positive terminal 132, and the terminal width of the first positive terminal 111 and the second intermediate positive terminal 132. It is formed to be larger than the sum of the terminal widths of the two positive terminals 112. In addition, the first intermediate negative terminal 141 and the second intermediate negative terminal 142 are configured such that the sum of the terminal width of the first intermediate negative terminal 141 and the terminal width of the second intermediate negative terminal 142 is equal to the terminal width of the first negative terminal 121 and the second intermediate negative terminal 142. The two negative electrode terminals 122 are formed so as to be larger than the sum of the terminal widths.
 本実施例の電力変換装置に用いられるパワー半導体モジュール100は、モールド端子面190に設置された第1モジュール正極端子111と、第2モジュール正極端子112と、第1モジュール負極端子121と、第2モジュール負極端子122と、のそれぞれの主面が一つの仮想面上と重なるように形成されている。そのため、パワー半導体モジュール100のモールド工程において、端子部分のモールド治具の形状を簡単化できるため、モールド工程を容易化できる。 The power semiconductor module 100 used in the power conversion apparatus of the present embodiment includes a first module positive terminal 111, a second module positive terminal 112, a first module negative terminal 121, and a second module installed on the mold terminal surface 190. Each main surface of the module negative electrode terminal 122 is formed so as to overlap with one virtual surface. Therefore, in the molding process of the power semiconductor module 100, since the shape of the molding jig of the terminal portion can be simplified, the molding process can be facilitated.
 また、モールド端子面190に設置された端子(第1モジュール正極端子111、第2モジュール正極端子112、第1モジュール負極端子121、第2モジュール負極端子122)は、正極端子(111、112)と負極端子(121、122)とが交互に配置されており、これによりインダクタンスを低減できる。 Further, the terminals (first module positive terminal 111, second module positive terminal 112, first module negative terminal 121, second module negative terminal 122) installed on the mold terminal surface 190 are connected to the positive terminals (111, 112). The negative terminals (121, 122) are alternately arranged, whereby the inductance can be reduced.
 また、パワー半導体モジュール100のモールド端子面190に設置される端子(第1モジュール正極端子111、第2モジュール正極端子112、第1モジュール負極端子121、第2モジュール負極端子122)の端子幅は、端子部分の電気抵抗による損失を低減するために、広くすることが望まれる。しかし端子幅を広くすると、それに伴いパワー半導体モジュール100のモールド端子面190の幅が広くなり、結果としてパワー半導体モジュールが大きくなるため、端子幅を広げることは限界がある。本実施例のパワー半導体モジュールによれば、パワー半導体モジュールの端子の端子幅より広い幅を持つ中間端子を接続することで、パワー半導体モジュールを大きくしなくても、接続端子部分の損失を低減できる。 Moreover, the terminal widths of the terminals (the first module positive terminal 111, the second module positive terminal 112, the first module negative terminal 121, the second module negative terminal 122) installed on the mold terminal surface 190 of the power semiconductor module 100 are: In order to reduce the loss due to the electrical resistance of the terminal portion, it is desired to make it wide. However, when the terminal width is increased, the width of the mold terminal surface 190 of the power semiconductor module 100 is increased accordingly, and as a result, the power semiconductor module is increased. Therefore, there is a limit to increasing the terminal width. According to the power semiconductor module of the present embodiment, by connecting the intermediate terminal having a width wider than the terminal width of the terminal of the power semiconductor module, the loss of the connection terminal portion can be reduced without increasing the power semiconductor module. .
 図12では、2対の中間端子を設置したパワー半導体モジュールの構成を例として説明した。ここでさらに、図12のパワー半導体モジュールの変形例として図13のパワー半導体モジュールを示す。 In FIG. 12, the configuration of the power semiconductor module provided with two pairs of intermediate terminals has been described as an example. Here, the power semiconductor module of FIG. 13 is shown as a modification of the power semiconductor module of FIG.
 図13は、第1中間正極端子131と第1中間負極端子141を有するパワー半導体モジュール100の構成例である。図13に示すパワー半導体モジュール100は、図12とは異なり、中間端子として1対のみを有する。本パワー半導体モジュールは、実施例1又は実施例2の電力変換装置に用いることができる。 FIG. 13 is a configuration example of the power semiconductor module 100 having the first intermediate positive terminal 131 and the first intermediate negative terminal 141. A power semiconductor module 100 shown in FIG. 13 has only one pair as an intermediate terminal unlike FIG. This power semiconductor module can be used for the power converter of Example 1 or Example 2.
 第1中間正極端子131は、パワー半導体モジュール100のモールド端子面190に設置された第1モジュール正極端子111と第2モジュール正極端子112とに、電気的に接続される。第1中間負極端子141は、モールド端子面190に設置された第1モジュール負極端子121と第2モジュール負極端子122とに電気的に接続される。 The first intermediate positive terminal 131 is electrically connected to the first module positive terminal 111 and the second module positive terminal 112 installed on the mold terminal surface 190 of the power semiconductor module 100. The first intermediate negative terminal 141 is electrically connected to the first module negative terminal 121 and the second module negative terminal 122 installed on the mold terminal surface 190.
 第1中間正極端子131は、当該第1中間正極端子131の端子幅が、第1モジュール正極端子111の端子幅と第2モジュール正極端子112の端子幅の和よりも広くなるように形成される。第1中間負極端子141は、当該第1中間負極端子141の端子幅が、第1モジュール負極端子121の端子幅と第2モジュール負極端子122の端子幅の和よりも広くなるように形成される。 The first intermediate positive terminal 131 is formed such that the terminal width of the first intermediate positive terminal 131 is wider than the sum of the terminal width of the first module positive terminal 111 and the terminal width of the second module positive terminal 112. . The first intermediate negative terminal 141 is formed such that the terminal width of the first intermediate negative terminal 141 is wider than the sum of the terminal width of the first module negative terminal 121 and the terminal width of the second module negative terminal 122. .
 図13に示すパワー半導体モジュールの作用効果については、図12に示すパワー半導体モジュールと同様に、端子部分の電気抵抗による損失を低減することである。 The operational effect of the power semiconductor module shown in FIG. 13 is to reduce the loss due to the electrical resistance of the terminal portion, similar to the power semiconductor module shown in FIG.
 上記のパワー半導体モジュールのより詳細な実施形態の一例について図14を用いて説明する。なお、図12に示すパワー半導体モジュール100と、図13に示すパワー半導体モジュール100とは、構造的に中間端子部の構造が異なるのみであり、パワー半導体モジュールの内部構造については同一の構成であるため、ここでは代表して図12のパワー半導体モジュールについての実施形態を図14を用いて説明する。 An example of a more detailed embodiment of the power semiconductor module will be described with reference to FIG. The power semiconductor module 100 shown in FIG. 12 and the power semiconductor module 100 shown in FIG. 13 are structurally different only in the structure of the intermediate terminal portion, and have the same configuration as the internal structure of the power semiconductor module. Therefore, here, as an example, an embodiment of the power semiconductor module of FIG. 12 will be described with reference to FIG.
 図14は、図12に示すパワー半導体モジュール100の詳細な実施形態の一例について説明するための図である。 FIG. 14 is a diagram for explaining an example of a detailed embodiment of the power semiconductor module 100 shown in FIG.
 図14(a)は、パワー半導体モジュール100の外観斜視図である。パワー半導体モジュール100は、端子を出力する開口部以外は全閉な構造となっているケース103を有する。ケース103は、側壁及び底面を形成する枠体104と、パワー半導体素子を冷却する放熱フィン105と、フランジ部106と、により構成される。 FIG. 14A is an external perspective view of the power semiconductor module 100. The power semiconductor module 100 has a case 103 having a fully closed structure except for an opening for outputting terminals. The case 103 includes a frame body 104 that forms side walls and a bottom surface, heat radiation fins 105 that cool the power semiconductor elements, and a flange portion 106.
 放熱フィン105は、ケース103の側壁及び底面と直交する最も広い長手の面に形成される。放熱フィン105は、対向する反対の面にも同様の形状で形成されている。 The heat dissipating fins 105 are formed on the widest longitudinal surface orthogonal to the side wall and bottom surface of the case 103. The heat radiating fins 105 are also formed in the same shape on the opposite opposite surfaces.
 フランジ部106は、パワー半導体モジュール100を電力変換装置に組み付ける際の位置決めの役割を果たす。本実施例のパワー半導体モジュール100は、放熱フィン105が形成される放熱部が直接冷媒と接する形式の電力変換装置を想定しており、前記フランジ部106は、冷媒と接する放熱部と、端子部との間の気密性を確保する役割も果たす。フランジ部106に設けられた溝部106Aには、例えばOリングのような気密性を確保する部材が配置される。なお、ここでは前記のような直冷方式の電力変換装置について例示し説明したが、本実施形態のパワー半導体モジュールは、特にこれらの用途に限定されるわけではなく、他の方式の電力変換装置に利用しても良い。 The flange portion 106 plays a role of positioning when the power semiconductor module 100 is assembled to the power conversion device. The power semiconductor module 100 of the present embodiment assumes a power conversion device in which the heat dissipating part where the heat dissipating fins 105 are formed is in direct contact with the refrigerant, and the flange part 106 includes a heat dissipating part in contact with the refrigerant, a terminal part It also plays a role of ensuring airtightness between the two. In the groove portion 106 </ b> A provided in the flange portion 106, a member that ensures airtightness such as an O-ring is disposed. Here, the direct cooling type power conversion device as described above is illustrated and described. However, the power semiconductor module of the present embodiment is not particularly limited to these applications, and other types of power conversion devices are used. You may use it.
 絶縁モールド端子193は、第1中間正極端子131と、第1中間負極端子141と、第2中間正極端子132と、第2中間負極端子142と、中間交流端子151と、中間制御端子173、174と、モールド部材194と、により構成される。中間交流端子151は、パワー半導体モジュール100のモジュール交流端子150(図1参照)と、電力変換装置の交流出力端子とを接続する部材である。中間制御端子173は、パワー半導体モジュール100の制御端子171(図11参照)と、電力変換装置内に設置される制御回路部とを接続する。中間制御端子174は、パワー半導体モジュール100の制御端子172(図11参照)と、電力変換装置内に設置される制御回路部とを接続する。 The insulating mold terminal 193 includes a first intermediate positive terminal 131, a first intermediate negative terminal 141, a second intermediate positive terminal 132, a second intermediate negative terminal 142, an intermediate AC terminal 151, and intermediate control terminals 173 and 174. And a mold member 194. The intermediate AC terminal 151 is a member that connects the module AC terminal 150 (see FIG. 1) of the power semiconductor module 100 and the AC output terminal of the power converter. The intermediate control terminal 173 connects the control terminal 171 (see FIG. 11) of the power semiconductor module 100 and a control circuit unit installed in the power converter. The intermediate control terminal 174 connects the control terminal 172 (see FIG. 11) of the power semiconductor module 100 and a control circuit unit installed in the power converter.
 モールド部材194には、これらの中間端子(第1中間正極端子131、第1中間負極端子141、第2中間正極端子132、第2中間負極端子142、中間交流端子151、中間制御端子173、174)を貫通させるための複数の貫通孔が形成される。当該モールド部材194により、これらの中間端子は互いに電気的に絶縁される。 The mold member 194 includes these intermediate terminals (first intermediate positive terminal 131, first intermediate negative terminal 141, second intermediate positive terminal 132, second intermediate negative terminal 142, intermediate AC terminal 151, intermediate control terminals 173, 174. A plurality of through holes are formed. These intermediate terminals are electrically insulated from each other by the mold member 194.
 また、別体の絶縁板材を各端子間に組み付けて絶縁を確保する構成としても良い。 Also, a separate insulating plate material may be assembled between the terminals to ensure insulation.
 図14(b)は、パワー半導体モジュール100のケース103にモジュール封止体191を組み立てる工程を示す分解斜視図である。パワー半導体素子(上アームのIGBT161とダイオード162、下アームのIGBT163とダイオード164)を封止して内蔵するモジュール封止体191は、前記ケース103の挿入口107に挿入される。その際、絶縁部材108が、モジュール封止体191のそれぞれの面と対向して配置される。 FIG. 14B is an exploded perspective view showing a process of assembling the module sealing body 191 with the case 103 of the power semiconductor module 100. The module sealing body 191 that seals and houses the power semiconductor elements (the upper arm IGBT 161 and the diode 162, and the lower arm IGBT 163 and the diode 164) is inserted into the insertion port 107 of the case 103. At that time, the insulating member 108 is arranged to face each surface of the module sealing body 191.
 図14(c)は、パワー半導体モジュール100の上下アームの直列回路を構成する回路部品の分解斜視図である。図14(c)においては、モジュール封止体191の封止材は図示していない。 FIG. 14C is an exploded perspective view of the circuit components constituting the series circuit of the upper and lower arms of the power semiconductor module 100. In FIG.14 (c), the sealing material of the module sealing body 191 is not illustrated.
 上アーム回路を構成するIGBT161は、当該IGBT161のコレクタ電極が導体板181に接合されるように配置される。上アーム回路を構成するダイオード162は、当該ダイオード164のカソード電極が導体板181に接合されるように配置される。電極板182は、IGBT161及びダイオード162を挟んで、電極板181と対向して配置される。電極板181は、IGBT161のエミッタ電極と、ダイオード162のアノード電極と接合される。上アーム回路のパワー半導体素子(IGBT161、ダイオード162)は、電極板181と電極板182に平行に挟まれるようにして、並列に接続される。 The IGBT 161 constituting the upper arm circuit is disposed so that the collector electrode of the IGBT 161 is joined to the conductor plate 181. The diode 162 constituting the upper arm circuit is arranged so that the cathode electrode of the diode 164 is joined to the conductor plate 181. The electrode plate 182 is disposed to face the electrode plate 181 with the IGBT 161 and the diode 162 interposed therebetween. The electrode plate 181 is joined to the emitter electrode of the IGBT 161 and the anode electrode of the diode 162. The power semiconductor elements (IGBT 161 and diode 162) of the upper arm circuit are connected in parallel so as to be sandwiched between the electrode plate 181 and the electrode plate 182 in parallel.
 下アーム回路を構成するIGBT163は、当該IGBT163のコレクタ電極が導体板184に接合されるように配置される。下アーム回路を構成するダイオード164は、当該ダイオード164のカソード電極が導体板184に接合されるように配置される。電極板185は、IGBT163及びダイオード164を挟んで、電極板184と対向して配置される。電極板185は、IGBT163のエミッタ電極と、ダイオード164のアノード電極と接合される。下アーム回路のパワー半導体素子(IGBT163、ダイオード164)は、電極板184と電極板185に平行に挟まれるようにして、並列に接続される。 The IGBT 163 constituting the lower arm circuit is disposed so that the collector electrode of the IGBT 163 is joined to the conductor plate 184. The diode 164 constituting the lower arm circuit is arranged so that the cathode electrode of the diode 164 is joined to the conductor plate 184. The electrode plate 185 is disposed to face the electrode plate 184 with the IGBT 163 and the diode 164 interposed therebetween. Electrode plate 185 is joined to the emitter electrode of IGBT 163 and the anode electrode of diode 164. The power semiconductor elements (IGBT 163 and diode 164) of the lower arm circuit are connected in parallel so as to be sandwiched between the electrode plate 184 and the electrode plate 185 in parallel.
 導体板182と導体板184は、導体板182に形成された中間電極183Aと、導体板184に形成された中間電極183Bとが金属接合されることにより、接続される。すなわち、上アーム回路のパワー半導体素子(IGBT161、ダイオード162)と下アーム回路のパワー半導体素子(IGBT163、ダイオード164)は、直列に接続される回路を構成する。 The conductor plate 182 and the conductor plate 184 are connected by metal bonding of the intermediate electrode 183A formed on the conductor plate 182 and the intermediate electrode 183B formed on the conductor plate 184. That is, the power semiconductor element (IGBT 161, diode 162) of the upper arm circuit and the power semiconductor element (IGBT 163, diode 164) of the lower arm circuit constitute a circuit connected in series.
 また、信号端子171、172は、不図示のボンディングワイヤなどによりIGBTのゲート電極等と接続される。 Further, the signal terminals 171 and 172 are connected to the gate electrode of the IGBT or the like by a bonding wire (not shown).
 導体板182と導体板185は、同一平面上に配置される。また、図14(b)に示すように、これらの導体板182、185は、IGBTとダイオードが接合される面とは反対側の面がモジュール封止体191の封止材から露出するように配置される。 The conductor plate 182 and the conductor plate 185 are arranged on the same plane. Further, as shown in FIG. 14B, these conductor plates 182 and 185 are exposed so that the surface opposite to the surface where the IGBT and the diode are joined is exposed from the sealing material of the module sealing body 191. Be placed.
 導体板181と導体板184は、同一平面上に配置される。また、図14(b)に図示されないが、これらの導体板181、184は、IGBTとダイオードが接合される面とは反対側の面がモジュール封止体191の封止材から露出するように配置される。 The conductor plate 181 and the conductor plate 184 are arranged on the same plane. Further, although not shown in FIG. 14B, these conductor plates 181 and 184 are exposed so that the surface opposite to the surface where the IGBT and the diode are joined is exposed from the sealing material of the module sealing body 191. Be placed.
 上記の導体板182、183、184、185の露出面は、ケース103の放熱フィン105と対向して配置される。 The exposed surfaces of the conductor plates 182, 183, 184, and 185 are arranged to face the heat radiating fins 105 of the case 103.
 また、モジュール封止体191のモジュール端子面190からは、第1モジュール正極端子111、第1モジュール負極端子121、第2モジュール正極端子112、第2モジュール負極端子122が突出して配置される。前述のように、これらの端子は、それぞれの主面が一つの仮想面上と重なるように配置される。また、インダクタンスを低減するために、正極端子と負極端子が交互に設置されている。 Further, the first module positive terminal 111, the first module negative terminal 121, the second module positive terminal 112, and the second module negative terminal 122 are arranged so as to protrude from the module terminal surface 190 of the module sealing body 191. As described above, these terminals are arranged so that their main surfaces overlap one virtual surface. Moreover, in order to reduce inductance, the positive electrode terminal and the negative electrode terminal are alternately installed.
 本実施例のパワー半導体モジュール100においては、ケース103は、電気伝導性を有する部材、例えばCu、Cu合金、Cu-C、Cu-CuOなどの複合材、あるいはAl、Al合金、AlSiC、Al-Cなどの複合材などから形成されている。また、ケース103は、溶接など防水性の高い接合法で、あるいは鍛造、鋳造法などにより成形されている。 In the power semiconductor module 100 of the present embodiment, the case 103 is made of an electrically conductive member, for example, a composite material such as Cu, Cu alloy, Cu—C, Cu—CuO, Al, Al alloy, AlSiC, Al—. It is formed from a composite material such as C. The case 103 is formed by a highly waterproof joining method such as welding, or by forging or casting.
 モジュール封止体191の封止材としては、例えばノボラック系、多官能系、ビフェニル系のエポキシ樹脂系を基とした樹脂を用いることができ、SiO2,Al2O3,AlN,BNなどのセラミックスやゲル、ゴムなどを含有させ、熱膨張係数を導体部315,320,318,319に近づける。これにより、部材間の熱膨張係数差を低減でき、使用環境時の温度上昇にともない発生する熱応力が大幅に低下するため、パワー半導体モジュールの寿命をのばすことが可能となる。また、モールド部材194の成型材には、PPS(ポリフェニルサルファイド)やPBT(ポリブチレンテレフタレート)といった高耐熱な熱可塑性樹脂が適している。 As the sealing material of the module sealing body 191, for example, a resin based on a novolac-based, polyfunctional, or biphenyl-based epoxy resin can be used, such as ceramics such as SiO 2, Al 2 O 3, AlN, BN, gel, Rubber or the like is included to make the thermal expansion coefficient close to the conductor portions 315, 320, 318, and 319. Thereby, the difference in thermal expansion coefficient between the members can be reduced, and the thermal stress generated as the temperature rises in the use environment is greatly reduced, so that the life of the power semiconductor module can be extended. For the molding material of the mold member 194, a highly heat-resistant thermoplastic resin such as PPS (polyphenyl sulfide) or PBT (polybutylene terephthalate) is suitable.
 導体板とパワー半導体素子との接合などに用いる金属接合剤は、例えばSn合金系の軟ろう材(はんだ)やAl合金・Cu合金等の硬ろう材や金属のナノ粒子・マイクロ粒子を用いた金属焼結材を用いることができる。 For example, Sn alloy-based soft brazing material (solder), hard brazing material such as Al alloy / Cu alloy, or metal nanoparticles / microparticles were used as the metal bonding agent used for bonding the conductive plate and the power semiconductor element. A metal sintered material can be used.
 また、図14のパワー半導体モジュールと接続されるパワーボードの実施形態の一例について図15を用いて説明する。 Further, an example of an embodiment of a power board connected to the power semiconductor module of FIG. 14 will be described with reference to FIG.
 図15(a)は、パワーボード300の外観斜視図である。パワーボード300は、積層された正極導体板310(不図示)と負極導体板320(不図示)とを被覆する絶縁被覆材302を備える。絶縁被覆材302は、正極導体板310と負極導体板320を互いに電気的に絶縁する。 FIG. 15A is an external perspective view of the power board 300. The power board 300 includes an insulating coating material 302 that covers the stacked positive electrode conductor plate 310 (not shown) and negative electrode conductor plate 320 (not shown). The insulating covering material 302 electrically insulates the positive electrode conductor plate 310 and the negative electrode conductor plate 320 from each other.
 また、本実施例のパワーボード300は、交流導体板350(不図示)も、正極導体板310及び負極導体板320と同様に、絶縁被覆材302に被覆される。交流導体板350は、パワー半導体モジュール100のモジュール交流端子150と接続される導体板である。 In the power board 300 of this embodiment, the AC conductor plate 350 (not shown) is also covered with the insulating coating material 302 in the same manner as the positive electrode conductor plate 310 and the negative electrode conductor plate 320. The AC conductor plate 350 is a conductor plate connected to the module AC terminal 150 of the power semiconductor module 100.
 パワーボード300には、貫通孔330が形成される。貫通孔330の外縁部には、図10で説明したように、パワーボード300とパワー半導体モジュール100の端子とを接続する、第1正極端子311、第1負極端子321、第2正極端子312、第2負極端子322が形成される。第1負極端子321及び第2負極端子322は、貫通孔330を通って、パワーボード300の第2表面342に突出して形成される。 A through hole 330 is formed in the power board 300. As described with reference to FIG. 10, a first positive electrode terminal 311, a first negative electrode terminal 321, a second positive electrode terminal 312, which connect the power board 300 and the terminals of the power semiconductor module 100 to the outer edge portion of the through hole 330. A second negative terminal 322 is formed. The first negative electrode terminal 321 and the second negative electrode terminal 322 are formed to protrude from the second surface 342 of the power board 300 through the through hole 330.
 第2負極端子322の側部には、交流端子351が形成される。交流端子351は、交流導体板350とパワー半導体モジュール100のモジュール交流端子150とを電気的に接続する。なお、本実施例では、交流端子351を、第1正極端子311、第1負極端子321、第2正極端子312、第2負極端子322と同様に貫通孔330内に形成しているが、貫通孔330とは別に交流端子351を形成する貫通孔を形成する構成としても良い。 An AC terminal 351 is formed on the side of the second negative terminal 322. The AC terminal 351 electrically connects the AC conductor plate 350 and the module AC terminal 150 of the power semiconductor module 100. In this embodiment, the AC terminal 351 is formed in the through hole 330 in the same manner as the first positive terminal 311, the first negative terminal 321, the second positive terminal 312, and the second negative terminal 322. In addition to the hole 330, a through hole for forming the AC terminal 351 may be formed.
 また、パワーボード300には、制御端子173を貫通させるための貫通孔335が形成される。制御端子174は、貫通孔330を貫通する構成となっている。しかしながら、制御端子174を貫通させるための貫通孔を別途形成する構成としても良い。 Further, the power board 300 is formed with a through hole 335 for allowing the control terminal 173 to pass therethrough. The control terminal 174 is configured to penetrate the through hole 330. However, a configuration may be adopted in which a through hole for penetrating the control terminal 174 is formed separately.
 コンデンサ端子360も、パワーボード300の正極端子、負極端子と同様に、パワーボード300の正極導体板310及び負極導体板320に形成される。 The capacitor terminal 360 is also formed on the positive conductor plate 310 and the negative conductor plate 320 of the power board 300 in the same manner as the positive terminal and the negative terminal of the power board 300.
 正極導体板310は、パワーボード300の絶縁被覆部材302から露出して形成される直流入出力正極端子319を有する。また、負極導体板320は、パワーボード300の絶縁被覆部材302から露出して形成される直流入出力負極端子329を有する。交流導体板350は、パワーボード300の絶縁被覆部材302から露出して形成される交流入出力端子352を有する。 The positive electrode conductor plate 310 has a DC input / output positive electrode terminal 319 formed to be exposed from the insulating coating member 302 of the power board 300. Further, the negative electrode conductor plate 320 has a DC input / output negative electrode terminal 329 formed to be exposed from the insulating coating member 302 of the power board 300. The AC conductor plate 350 has an AC input / output terminal 352 formed to be exposed from the insulating coating member 302 of the power board 300.
 図15(b)は、パワーボード300の上面図である。図15(b)には、パワーボード300の絶縁被覆部材302に覆われる正極導体板310と負極導体板320のうち、正極導体板310を点線で図示している。また、交流導体板350も同様に図示している。 FIG. 15B is a top view of the power board 300. In FIG. 15B, the positive electrode conductor plate 310 among the positive electrode conductor plate 310 and the negative electrode conductor plate 320 covered with the insulating coating member 302 of the power board 300 is illustrated by a dotted line. An AC conductor plate 350 is also illustrated in the same manner.
 正極導体板310は、直流入出力正極端子319と、コンデンサ端子360と、第1正極端子311と、第2正極端子312と、を有する。また、正極導体板310は、貫通孔330と、貫通孔335とを形成する。 The positive electrode conductor plate 310 includes a DC input / output positive electrode terminal 319, a capacitor terminal 360, a first positive electrode terminal 311, and a second positive electrode terminal 312. Further, the positive electrode conductor plate 310 forms a through hole 330 and a through hole 335.
 正極導体板310と負極導体板320を、絶縁被覆材302を介して対向して積層配置することで、インバータ主回路の配線インダクタンスを低減することができる。 The wiring inductance of the inverter main circuit can be reduced by arranging the positive electrode conductor plate 310 and the negative electrode conductor plate 320 so as to face each other with the insulating coating material 302 interposed therebetween.
 絶縁被覆材302は、例えばノボラック系、多官能系、ビフェニル系のエポキシ樹脂系を基とした樹脂を用いることができ、SiO2,Al2O3,AlN,BNなどのセラミックスやゲル、ゴムなどを含有させ、熱膨張係数を導体部315,320,318,319に近づけた材料を用いることができる。他には、PPS(ポリフェニルサルファイド)やPBT(ポリブチレンテレフタレート)といった高耐熱な熱可塑性樹脂でも良い。また、ガラスクロスを含浸したガラスエポキシ等のプリント基板材料でも良い。絶縁被覆部材とバスバーは、接着材で接着されていても良い。また、導体板は、例えば、Cu合金やAl合金といった熱伝導率が高く、電気抵抗が低い材料が適しており、絶縁被覆部材との接着強度を向上するために、表面に酸化処理や粗化処理が施されていても良い。 The insulating coating material 302 can use, for example, a resin based on a novolak, polyfunctional, or biphenyl epoxy resin, and contains ceramics such as SiO2, Al2O3, AlN, BN, gel, rubber, and the like. A material having a thermal expansion coefficient close to that of the conductor portions 315, 320, 318, and 319 can be used. In addition, a highly heat-resistant thermoplastic resin such as PPS (polyphenyl sulfide) or PBT (polybutylene terephthalate) may be used. Further, a printed board material such as glass epoxy impregnated with glass cloth may be used. The insulating covering member and the bus bar may be bonded with an adhesive. For the conductor plate, for example, a material having high thermal conductivity and low electrical resistance, such as Cu alloy and Al alloy, is suitable, and the surface is oxidized or roughened in order to improve the adhesive strength with the insulating coating member Processing may be performed.
 なお、本発明は上記した実施例に限定されるものではなく、様々な変形例が含まれる。例えば、上記した実施例は本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。また、ある実施例の構成の一部を他の実施例の構成に置き換えることが可能であり、また、ある実施例の構成に他の実施例の構成を加えることも可能である。また、各実施例の構成の一部について、他の構成の追加・削除・置換をすることが可能である。  In addition, this invention is not limited to the above-mentioned Example, Various modifications are included. For example, the above-described embodiments have been described in detail for easy understanding of the present invention, and are not necessarily limited to those having all the configurations described. Further, a part of the configuration of one embodiment can be replaced with the configuration of another embodiment, and the configuration of another embodiment can be added to the configuration of one embodiment. Further, it is possible to add, delete, and replace other configurations for a part of the configuration of each embodiment.
100  パワー半導体モジュール
102  封止体
103  ケース
104  枠体
105  放熱フィン
106  フランジ
106A 溝部
107  挿入口
108  絶縁部材
111  第1モジュール正極端子
112  第2モジュール正極端子
114  正極接続端子の寄生インダクタンス
115  正極接続端子と負極接続端子との間の相互インダクタンス
121  第1モジュール負極端子
122  第2モジュール負極端子
124  負極接続端子の寄生インダクタンス
131  第1中間正極端子
132  第2中間正極端子
141  第1中間負極端子
142  第2中間負極端子
150  モジュール交流端子
151  中間交流端子
161  上アームのIGBT
162  上アームのダイオード
163  下アームのIGBT
164  下アームのダイオード
171  上アームの制御端子
172  下アームの制御端子
173  上アームの中間制御端子
174  下アームの中間制御端子
181  導体板
182  導体板
183A 中間電極
183B 中間電極
184  導体板
185  導体板
190  モールド端子面
191  モジュール封止体
193  絶縁モールド端子
194  モールド部材
200  コンデンサモジュール
201  コンデンサ正極端子
202  コンデンサ負極端子
210  第1コンデンサ
211  第1コンデンサ正極端子
212  第1コンデンサ負極端子
220  第2コンデンサ
221  第2コンデンサ正極端子
222  第2コンデンサ負極端子
300  パワーボード
302  絶縁被覆部材
310  正極導体板
311  第1正極端子
314  正極導体板の寄生インダクタンス
315  正極導体板と負極導体板との間の相互インダクタンス
312  第2正極端子
319  直流入出力正極端子
320  負極導体板
321  第1負極端子
322  第2負極端子
324  負極導体板の寄生インダクタンス
329  直流入出力負極端子
330  貫通孔
331  貫通孔
332  貫通孔
335  貫通孔
341  第1表面
342  第2表面
350  交流導体板
351  交流端子
352  交流入出力端子
361  コンデンサ正極端子
362  コンデンサ負極端子
363  コンデンサ正極端子
364  コンデンサ負極端子
370  貫通孔
371  貫通孔
372  貫通孔
411  第1正極電流
412  第1負極電流
421  第2正極電流
422  第2負極電流
500  電力変換装置
600  制御基板
DESCRIPTION OF SYMBOLS 100 Power semiconductor module 102 Sealing body 103 Case 104 Frame body 105 Radiation fin 106 Flange 106A Groove 107 Insertion slot 108 Insulating member 111 First module positive terminal 112 Second module positive terminal 114 Parasitic inductance 115 of positive connection terminal Positive connection terminal Mutual inductance 121 between the negative connection terminal 121 First module negative terminal 122 Second module negative terminal 124 Parasitic inductance 131 of the negative connection terminal First intermediate positive terminal 132 Second intermediate positive terminal 141 First intermediate negative terminal 142 Second intermediate Negative terminal 150 Module AC terminal 151 Intermediate AC terminal 161 Upper arm IGBT
162 Upper-arm diode 163 Lower-arm IGBT
164 Lower arm diode 171 Upper arm control terminal 172 Lower arm control terminal 173 Upper arm intermediate control terminal 174 Lower arm intermediate control terminal 181 Conductor plate 182 Conductor plate 183A Intermediate electrode 183B Intermediate electrode 184 Conductor plate 185 Conductor plate 190 Mold terminal surface 191 Module sealing body 193 Insulated mold terminal 194 Mold member 200 Capacitor module 201 Capacitor positive terminal 202 Capacitor negative terminal 210 First capacitor 211 First capacitor positive terminal 212 First capacitor negative terminal 220 Second capacitor 221 Second capacitor Positive terminal 222 Second capacitor negative terminal 300 Power board 302 Insulation coating member 310 Positive conductive plate 311 First positive terminal 314 Parasitic inductance 31 of positive conductive plate Mutual inductance 312 between positive and negative electrode conductor plates 312 Second positive electrode terminal 319 DC input / output positive electrode terminal 320 Negative electrode conductor plate 321 First negative electrode terminal 322 Second negative electrode terminal 324 Negative inductance 329 of negative electrode conductor plate DC input / output negative electrode Terminal 330 Through-hole 331 Through-hole 332 Through-hole 335 Through-hole 341 First surface 342 Second surface 350 AC conductor plate 351 AC terminal 352 AC input / output terminal 361 Capacitor positive terminal 362 Capacitor negative terminal 363 Capacitor positive terminal 364 Capacitor negative terminal 370 Through-hole 371 Through-hole 372 Through-hole 411 First positive current 412 First negative current 421 Second positive current 422 Second negative current 500 Power converter 600 Control board

Claims (8)

  1.  直流電流が入力される電気回路体と、前記直流電流を前記電気回路体に伝達するパワーボードと、を備え、
     前記パワーボードは、正極導体板と、該正極導体板と対向して配置される負極導体板と、前記正極導体板に接続される正極端子と、前記負極導体板に接続されかつ前記正極端子と対向する負極端子と、を有し、
     前記パワーボードには、貫通孔が形成され、
     前記正極端子または前記負極端子のいずれか一方の端子は、前記パワーボードの一方の面から突出し、
     前記正極端子または前記負極端子の他方の端子は、前記貫通孔を通って前記パワーボードの前記一方の面から突出し、
     前記電気回路体は、前記正極端子及び前記負極端子と電気的に接続される電力変換装置。
    An electric circuit body to which a direct current is input, and a power board that transmits the direct current to the electric circuit body
    The power board includes a positive electrode conductor plate, a negative electrode conductor plate arranged to face the positive electrode conductor plate, a positive electrode terminal connected to the positive electrode conductor plate, and a positive electrode terminal connected to the negative electrode conductor plate and An opposing negative electrode terminal,
    A through hole is formed in the power board,
    Either one of the positive terminal or the negative terminal protrudes from one surface of the power board,
    The other terminal of the positive terminal or the negative terminal protrudes from the one surface of the power board through the through hole,
    The electric circuit body is a power conversion device that is electrically connected to the positive terminal and the negative terminal.
  2.  請求項1に記載された電力変換装置であって、
     前記電気回路体とは異なる第2電気回路体を備え、
     前記正極端子及び前記負極端子は、前記パワーボードに対して前記電気回路体が配置される側に向かって突出し、
     前記第2電気回路体は、前記パワーボードを挟んで前記電気回路体と対向して配置される電力変換装置。
    The power conversion device according to claim 1,
    A second electric circuit body different from the electric circuit body,
    The positive terminal and the negative terminal protrude toward the side where the electric circuit body is disposed with respect to the power board,
    The second electric circuit body is a power conversion device arranged to face the electric circuit body with the power board interposed therebetween.
  3.  請求項1に記載された電力変換装置であって、
     前記正極端子及び前記負極端子は、前記パワーボードに対して前記電気回路体が配置される側とは反対側に向かって突出し、
     前記電気回路体の端子は、前記貫通孔を通って前記正極端子及び前記負極端子と電気的に接続される電力変換装置。
    The power conversion device according to claim 1,
    The positive terminal and the negative terminal protrude toward the side opposite to the side on which the electric circuit body is disposed with respect to the power board,
    A terminal of the electric circuit body is a power conversion device that is electrically connected to the positive terminal and the negative terminal through the through hole.
  4.  請求項1乃至3に記載されたいずれかの電力変換装置であって、
     前記電気回路体は、前記直流電流を交流電流に変換するパワー半導体モジュールであって、
     前記パワー半導体モジュールは、モジュール正極端子と、該モジュール正極端子と対向するモジュール負極端子と、を有し、
     前記モジュール正極端子は、前記正極端子と電気的に接続され、
     前記モジュール負極端子は、前記負極端子と電気的に接続される電力変換装置。
    The power conversion device according to any one of claims 1 to 3,
    The electric circuit body is a power semiconductor module that converts the direct current into alternating current,
    The power semiconductor module has a module positive terminal, and a module negative terminal facing the module positive terminal,
    The module positive terminal is electrically connected to the positive terminal,
    The module negative terminal is a power conversion device electrically connected to the negative terminal.
  5.  請求項1乃至3に記載されたいずれかの電力変換装置であって、
     前記電気回路体は、前記直流電流を平滑化する第1コンデンサと第2コンデンサであって、
     前記第1コンデンサは、第1コンデンサ正極端子を有し、
     前記第2コンデンサは、第2コンデンサ負極端子を有し、
     前記第1コンデンサ正極端子は、前記正極端子と電気的に接続され、
     前記第2コンデンサ負極端子は、前記負極端子と電気的に接続される電力変換装置。
    The power conversion device according to any one of claims 1 to 3,
    The electric circuit body is a first capacitor and a second capacitor that smooth the direct current,
    The first capacitor has a first capacitor positive terminal,
    The second capacitor has a second capacitor negative terminal,
    The first capacitor positive terminal is electrically connected to the positive terminal;
    The second capacitor negative electrode terminal is a power conversion device electrically connected to the negative electrode terminal.
  6.  請求項5に記載された電力変換装置であって、
     前記第2コンデンサは、前記第2コンデンサ負極端子が前記第1コンデンサ正極端子と対向するように配置される電力変換装置。
    The power conversion device according to claim 5,
    The second capacitor is a power conversion device in which the second capacitor negative terminal is disposed so as to face the first capacitor positive terminal.
  7.  請求項4に記載された電力変換装置であって、
     前記モジュール正極端子は、第1モジュール正極端子と、第2モジュール正極端子と、を有し、
     前記モジュール負極端子は、前記第1モジュール正極端子と対向する第1モジュール負極端子と、前記第2モジュール正極端子と対向する第2モジュール負極端子と、を有し、
     前記正極端子は、第1正極端子と、第2正極端子と、を有し、
     前記負極端子は、前記第1正極端子と対向する第1負極端子と、前記第2正極端子と対向する第2負極端子と、を有し、
     前記第1正極端子は、前記第2正極端子とは前記貫通孔を挟んで反対側に配置され、
     かつ前記第1正極端子は、前記第2負極端子の側部に配置され、
     前記第1モジュール正極端子は、前記第1正極端子と電気的に接続され、
     前記第1モジュール負極端子は、前記第1負極端子と電気的に接続され、
     前記第2モジュール正極端子は、前記第2正極端子と電気的に接続され、
     前記第2モジュール負極端子は、前記第2負極端子と電気的に接続される電力変換装置。
    The power conversion device according to claim 4,
    The module positive terminal has a first module positive terminal and a second module positive terminal,
    The module negative terminal has a first module negative terminal facing the first module positive terminal, and a second module negative terminal facing the second module positive terminal,
    The positive terminal has a first positive terminal and a second positive terminal,
    The negative electrode terminal has a first negative electrode terminal facing the first positive electrode terminal, and a second negative electrode terminal facing the second positive electrode terminal,
    The first positive terminal is disposed on the opposite side of the second positive terminal with the through hole interposed therebetween,
    The first positive terminal is disposed on a side of the second negative terminal,
    The first module positive terminal is electrically connected to the first positive terminal,
    The first module negative terminal is electrically connected to the first negative terminal,
    The second module positive terminal is electrically connected to the second positive terminal,
    The second module negative electrode terminal is a power conversion device electrically connected to the second negative electrode terminal.
  8.  請求項7に記載された電力変換装置であって、
     前記パワー半導体モジュールは、前記第1モジュール正極端子と接続される第1中間正極端子と、前記第2モジュール正極端子と接続される第2中間正極端子と、前記第1モジュール負極端子と接続される第1中間負極端子と、前記第2モジュール負極端子と接続される第2中間負極端子と、を有し、
     前記第1正極端子は、前記第1中間正極端子と電気的に接続され、
     前記第2正極端子は、前記第2中間正極端子と電気的に接続され、
     前記第1負極端子は、前記第1中間負極端子と電気的に接続され、
     前記第2負極端子は、前記第2中間負極端子と電気的に接続され、
     前記第1モジュール正極端子、前記第2モジュール正極端子、前記第1モジュール負極端子及び前記第2モジュール負極端子は、それぞれの主面が一つの仮想面上と重なるように配置され、
     前記第1中間正極端子及び前記第2中間正極端子は、前記第1中間正極端子の幅と前記第2中間正極端子の幅との和が、前記第1モジュール正極端子の幅と前記第2モジュール正極端子の幅との和よりも大きくなるように形成され、
     前記第1中間負極端子及び前記第2中間負極端子は、前記第1中間負極端子の幅と前記第2中間負極端子の幅との和が、前記第1モジュール負極端子の幅と前記第2モジュール負極端子の幅との和よりも大きくなるように形成される電力変換装置。
    The power conversion device according to claim 7,
    The power semiconductor module is connected to a first intermediate positive terminal connected to the first module positive terminal, a second intermediate positive terminal connected to the second module positive terminal, and the first module negative terminal. A first intermediate negative terminal, and a second intermediate negative terminal connected to the second module negative terminal,
    The first positive terminal is electrically connected to the first intermediate positive terminal;
    The second positive terminal is electrically connected to the second intermediate positive terminal;
    The first negative terminal is electrically connected to the first intermediate negative terminal,
    The second negative terminal is electrically connected to the second intermediate negative terminal,
    The first module positive terminal, the second module positive terminal, the first module negative terminal, and the second module negative terminal are arranged such that their main surfaces overlap one virtual plane,
    In the first intermediate positive terminal and the second intermediate positive terminal, the sum of the width of the first intermediate positive terminal and the width of the second intermediate positive terminal is equal to the width of the first module positive terminal and the second module. Formed to be greater than the sum of the width of the positive terminal,
    In the first intermediate negative terminal and the second intermediate negative terminal, the sum of the width of the first intermediate negative terminal and the width of the second intermediate negative terminal is equal to the width of the first module negative terminal and the second module. The power converter formed so that it may become larger than the sum with the width | variety of a negative electrode terminal.
PCT/JP2013/082525 2013-03-05 2013-12-04 Wiring board and power conversion apparatus using same WO2014136335A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013042499A JP5830480B2 (en) 2013-03-05 2013-03-05 Wiring board and power conversion device using the same
JP2013-042499 2013-03-05

Publications (1)

Publication Number Publication Date
WO2014136335A1 true WO2014136335A1 (en) 2014-09-12

Family

ID=51490878

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/082525 WO2014136335A1 (en) 2013-03-05 2013-12-04 Wiring board and power conversion apparatus using same

Country Status (2)

Country Link
JP (1) JP5830480B2 (en)
WO (1) WO2014136335A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105981284A (en) * 2014-09-25 2016-09-28 株式会社日立制作所 Power conversion unit and power conversion device
CN108598074A (en) * 2018-06-15 2018-09-28 华北电力大学 A kind of power module of novel package structure
US10177676B2 (en) 2015-03-05 2019-01-08 Hitachi Automotive Systems, Ltd. Power converter
JPWO2021095239A1 (en) * 2019-11-15 2021-05-20
WO2023068057A1 (en) * 2021-10-22 2023-04-27 日立Astemo株式会社 Power conversion device

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9917529B2 (en) 2014-03-27 2018-03-13 Hitachi, Ltd. Power conversion unit, power converter and method of manufacturing power converter
US9536671B2 (en) * 2014-12-01 2017-01-03 Telsa Motors, Inc. Planar capacitor terminals
JP6544021B2 (en) * 2015-04-24 2019-07-17 株式会社デンソー Power converter
WO2016189674A1 (en) 2015-05-27 2016-12-01 株式会社日立製作所 Power conversion device
JP6528080B2 (en) * 2015-06-26 2019-06-12 パナソニックIpマネジメント株式会社 Washing machine
JP5894321B1 (en) * 2015-07-09 2016-03-30 株式会社日立製作所 Power conversion unit and power conversion device
JP2017200262A (en) * 2016-04-25 2017-11-02 株式会社デンソー Power conversion device
JP6950326B2 (en) 2017-07-25 2021-10-13 株式会社デンソー Power converter
DE112017008003T5 (en) * 2017-08-30 2020-07-02 Mitsubishi Electric Corporation MAIN CIRCUIT WIRING LINK AND POWER CONVERTER
WO2021054024A1 (en) * 2019-09-17 2021-03-25 パナソニックIpマネジメント株式会社 Capacitor and method for manufacturing capacitor

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005065412A (en) * 2003-08-12 2005-03-10 Fuji Electric Fa Components & Systems Co Ltd Stack structure in power converter
JP2006295997A (en) * 2005-04-05 2006-10-26 Denso Corp Power converter
JP2007259685A (en) * 2006-02-24 2007-10-04 Denso Corp Power conversion apparatus
WO2011093239A1 (en) * 2010-01-27 2011-08-04 株式会社日立製作所 Power distribution mounting component and inverter apparatus using same
JP2012100532A (en) * 2007-08-09 2012-05-24 Hitachi Automotive Systems Ltd Power conversion device

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2877505B1 (en) * 2004-11-02 2007-04-13 Fci Expansion 2 Sa ELECTRICITY CONDUCTOR ASSEMBLY, DEVICE COMPRISING AN ELECTRICAL COMPONENT CONNECTED TO THE CONDUCTIVE ASSEMBLY, AND CONNECTION SYSTEM COMPRISING SUCH AN ASSEMBLY
JP4580997B2 (en) * 2008-03-11 2010-11-17 日立オートモティブシステムズ株式会社 Power converter
JP5446761B2 (en) * 2009-11-16 2014-03-19 株式会社デンソー Power converter

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005065412A (en) * 2003-08-12 2005-03-10 Fuji Electric Fa Components & Systems Co Ltd Stack structure in power converter
JP2006295997A (en) * 2005-04-05 2006-10-26 Denso Corp Power converter
JP2007259685A (en) * 2006-02-24 2007-10-04 Denso Corp Power conversion apparatus
JP2012100532A (en) * 2007-08-09 2012-05-24 Hitachi Automotive Systems Ltd Power conversion device
WO2011093239A1 (en) * 2010-01-27 2011-08-04 株式会社日立製作所 Power distribution mounting component and inverter apparatus using same

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105981284A (en) * 2014-09-25 2016-09-28 株式会社日立制作所 Power conversion unit and power conversion device
CN105981284B (en) * 2014-09-25 2018-07-06 株式会社日立制作所 Electric power conversion unit and power-converting device
US10177676B2 (en) 2015-03-05 2019-01-08 Hitachi Automotive Systems, Ltd. Power converter
CN108598074A (en) * 2018-06-15 2018-09-28 华北电力大学 A kind of power module of novel package structure
CN108598074B (en) * 2018-06-15 2024-02-02 华北电力大学 Novel packaging structure's power module
JPWO2021095239A1 (en) * 2019-11-15 2021-05-20
WO2021095239A1 (en) * 2019-11-15 2021-05-20 三菱電機株式会社 Semiconductor device
JP7237191B2 (en) 2019-11-15 2023-03-10 三菱電機株式会社 semiconductor equipment
WO2023068057A1 (en) * 2021-10-22 2023-04-27 日立Astemo株式会社 Power conversion device

Also Published As

Publication number Publication date
JP2014171342A (en) 2014-09-18
JP5830480B2 (en) 2015-12-09

Similar Documents

Publication Publication Date Title
JP5830480B2 (en) Wiring board and power conversion device using the same
JP6300978B2 (en) Power semiconductor module
JP6349275B2 (en) Power converter
JP6979864B2 (en) Power semiconductor devices and their manufacturing methods
JP6591556B2 (en) Power converter
WO2015072105A1 (en) Power module
JP2012129309A (en) Switching module
JP6421055B2 (en) Power converter
WO2019181261A1 (en) Power semiconductor device
JP2014183078A (en) Semiconductor device
JP6838243B2 (en) Power converter
US10021802B2 (en) Electronic module assembly having low loop inductance
JP7367506B2 (en) semiconductor module
JP6123722B2 (en) Semiconductor device
JP2014096412A (en) Semiconductor module
JP7331497B2 (en) power converter
JP7069885B2 (en) Semiconductor device
WO2022202292A1 (en) Power semiconductor device and power conversion device
US20230395457A1 (en) Power Semiconductor Device, Power Conversion Device, and Electric System
JP7142784B2 (en) electric circuit device
JP7159609B2 (en) semiconductor equipment
JP2018037452A (en) Power semiconductor module
JP6475660B2 (en) Power semiconductor device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13876992

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13876992

Country of ref document: EP

Kind code of ref document: A1