WO2014134923A1 - 棱镜及应用此棱镜的光学检测系统 - Google Patents

棱镜及应用此棱镜的光学检测系统 Download PDF

Info

Publication number
WO2014134923A1
WO2014134923A1 PCT/CN2013/086408 CN2013086408W WO2014134923A1 WO 2014134923 A1 WO2014134923 A1 WO 2014134923A1 CN 2013086408 W CN2013086408 W CN 2013086408W WO 2014134923 A1 WO2014134923 A1 WO 2014134923A1
Authority
WO
WIPO (PCT)
Prior art keywords
prism
light
detection system
optical detection
plane
Prior art date
Application number
PCT/CN2013/086408
Other languages
English (en)
French (fr)
Inventor
陈浩夫
李光申
Original Assignee
法玛科技顾问股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US13/790,408 external-priority patent/US8908185B2/en
Application filed by 法玛科技顾问股份有限公司 filed Critical 法玛科技顾问股份有限公司
Priority to EP13877365.0A priority Critical patent/EP2966482B1/en
Priority to CN201380074183.5A priority patent/CN105122093B/zh
Publication of WO2014134923A1 publication Critical patent/WO2014134923A1/zh

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/12Reflex reflectors
    • G02B5/136Reflex reflectors plural reflecting elements forming part of a unitary body
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/55Specular reflectivity
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/04Prisms

Definitions

  • the present invention relates to the field of optical technology, and more particularly to a prism and an optical detection system using the same. Background technique
  • the object can be detected by the optical detection system to obtain detailed analysis information.
  • the application of Surface Plasmon Waves is to analyze the target by the surface plasmon wave excited by the light. It is applied to the research of biological detection and its molecular dynamics, including biosensor, immunodiagnosis, antibody and antigen reaction dynamic analysis. By chemical specificity of the antigen and the corresponding antibody, surface plasmon resonance is used in biomedical scientific research, mainly using dynamic analysis of chemical binding between antibody antigens. Applications derived from the detection of the presence of biomolecules, the detection of specific pathogenic bacterial subspecies, and the detection and classification of specific viruses.
  • biomolecules The detection of the presence of biomolecules is currently the most important derivative application of surface plasma waves in biomedical scientific research, such as inflammatory molecular markers, the use of C-reactive protein in the detection of cardiovascular diseases, for specific pathogenic bacteria. Detection of subspecies, and detection and classification of specific viruses.
  • the basic plasmonic wave sensor is erected in the form of: laser light is used to illuminate the interface between the metal and the non-conductive medium, and the surface plasma wave is excited thereon. If the refractive index of the non-conductive medium changes, the resonance condition of the surface plasma wave is changed.
  • This change can be obtained by measuring the optical properties of the reflected light of the laser beam, and can be classified into measurement modes such as angle, amplitude, wavelength, and phase depending on the measured physical quantity.
  • the amplitude, phase and other measurement modes are static systems during measurement.
  • the optical path erection needs to be adjusted to fix the incident angle of the laser source to the angle at which the amplitude changes the most or the optimal resonance angle of the energy coupling.
  • the range of detectable refractive indices and sensitivity will be greatly limited. Only in the wavelength mode operation, a good measurement dynamic range and sensitivity can be obtained without changing the incident angle.
  • the angle measurement mode is a dynamic system, and the angle of incidence of the light is constantly scanned during measurement.
  • the incident light source and the receiving end are not fixed. This will limit the size, weight and complexity of the light source system and the light detecting system. This also means that the detection method such as phase and amplitude will be limited.
  • Two rotating platforms are not as good as a single linear stepping mobile platform in terms of control resolutance, stability, precision positioning and price.
  • the prism coupling surface of this design is placed perpendicular to the horizontal plane.
  • This prism coupling surface placement method is also not suitable for the design and operation of micro flow channels.
  • This prism coupling surface placement method cannot be easily combined with the imaging system, especially with the micro imaging system. This is because the microscopic imaging system uses a vertical image to capture the optical path.
  • a galvo mirror scanning method such as a point-scanning confocal microscope is combined with a double lens to achieve a light incident angle modulation, which in this way causes the light path to deviate from the optical detector after exiting the optical coupling prism.
  • the normal incidence angle makes it impossible to perform optical phase detection.
  • Optical phase detection usually has higher sensitivity.
  • a horizontal surface plasmon resonance apparatus capable of improving an optical path as disclosed in US Pat. No. 7,265,844, which requires a complicated mechanical linkage and a special curved slide rail to adjust the incident angle of light while keeping the light source and the light detecting unit fixed. The accuracy and stability of the device are also not high.
  • FIG. 1 shows the structure of the prior surface plasma wave detecting system of the inventor of the present invention.
  • the surface plasma wave system 100 includes a light source unit 110, a control unit 120, a detecting unit 130, and a processing unit 140. .
  • the light source unit 110 includes: a laser light source 111, a polarization beam splitter 112, and a half wavelength wave plate 113 for introducing light into the control unit 120.
  • the control unit 120 includes: a stepping motor 121, a right-angled triangular lens 122, two-dimensional parabolic mirrors 123a, 123b, and a half-spherical lens 124.
  • the light is guided by the triangular lens 122 into the two-dimensional parabolic mirror 123a, and the two-dimensional parabolic mirror 123a first introduces light into the hemispherical lens 124, and the hemispherical lens 124 will be introduced into the two-dimensional parabolic mirror 123b, and the last light is further divided by the two
  • the parabolic mirror 123b is introduced into the triangular lens 122 and output to the detecting unit 130.
  • the detecting unit 130 includes: a non-polarized beam splitter 131, a polarizing beam splitter 132, a detector 133, an amplifier 134, a wave plate 135, and a controller 125.
  • the detected light is detected by the detecting unit 130.
  • the signal is then transmitted to the processing unit 140 for further analysis.
  • the user can detect the target to make the incident angle of the light fixed to the angle at which the amplitude changes the most or the optimal resonance angle of the energy coupling to detect the change caused by the refractive index of the medium. .
  • the relative position adjustment of the two two-dimensional parabolic mirrors and the hemispherical lens is not easy, so that the user does not easily make the optical path to the detecting unit 130 unchanged at the same time in the large-angle broom range. It is required that the optical path reaching the detecting unit 130 does not cause an optical path shift under a large-angle broom, and it takes a lot of time to adjust the optical path.
  • the light excitation point will be very small, and only single point or single flow path detection can be performed.
  • this design lacks a mirror that directs horizontally traveling light into vertically traveling light, making it difficult to combine with the microscope platform.
  • An object of the present invention is to provide a prism that solves the above technical problems.
  • the prism of the present invention comprises a lower plane, an upper plane, a first side and a second side, wherein the first side and the second side are one-dimensional parabolic curved surfaces;
  • the lower plane is for receiving a light
  • the upper plane is located on the opposite side of the lower plane
  • the first side is for reflecting light from the lower plane to the upper plane
  • the second side is for reflecting light from the upper plane to the lower plane; wherein the first side
  • the second side is located between the upper plane and the lower plane.
  • the light is reflected by the total internal reflection angles of the first side and the second side, respectively, and the angle of the light reflected from the first side to the upper plane is greater than the critical angle of the total internal reflection, and the angle of the upper plane is reflected to the second side. It is larger than the critical angle of total internal reflection, so the reflection generated in the prism is total reflection, and the inner surface of the prism can achieve the effect of total reflection without the need of mirror coating or the like.
  • the optical detection system of the present invention comprises a light source unit, a control unit and a detecting unit; the light source unit is for providing a light source; the control unit comprises a prism and a detecting unit; the prism comprises a lower plane, an upper plane, a first side surface and a second side surface, wherein the first side surface and the second side surface are located between the upper plane and the lower plane, and the first side surface and the second side surface are one-dimensional parabolic curved surfaces;
  • the light After the light enters the control unit, the light is introduced into the lower plane of the prism, and the lower plane reflects the light to the first side of the prism. Then, the first side reflects the light to the upper plane of the prism, and then the upper plane emits the light. To the second side, likewise, the second side reflects the light back to the plane below the prism, and finally, the light is input to the detecting unit;
  • the detecting unit detects the light from the control unit to output a signal.
  • control unit further includes a triangular lens
  • the triangular lens includes a first reflective surface and a second reflective surface, wherein the first reflective surface receives the light from the light source unit and directs the light into the prism.
  • the second reflecting surface receives the light from the prism and directs the light into the detecting unit.
  • control unit further comprises a first power provider and a second power provider, the first power provider being connected to the triangular lens, and the second power provider being connected to the prism.
  • the optical detection system further includes a processing unit for receiving the signal for subsequent analysis processing.
  • the user controls the incident angle of the light entering the prism through the first power provider, and performs multi-point scanning of the light at the fixed light incident angle by the second power provider, and can detect the target object, and the incident angle of the light entering the prism is fixed to the amplitude change.
  • the light source unit and the detecting unit of the present invention are fixed, but have the characteristics of adjustable and scanable light incident angle, so that surface plasmon wave measurement modes such as resonance angle, amplitude, wavelength, and phase can be simultaneously performed. It has a large range of measurement range and high sensitivity measurement characteristics, and the optical path is easy to adjust.
  • the present invention can be easily combined with a microscope system, and is quite practical.
  • the prism of the present invention uses the total reflection of the parabolic curved surface (the first side and the second side) and the plane (upper plane) where the focal line is located to reflect the excitation light, it is used for optical detection.
  • the system can achieve a large number of simplified optical path adjustment procedures, system miniaturization, no need for refractive index matching oi l, long-term measurement and low cost and disposable characteristics.
  • FIG. 1 is a schematic view of a prior art surface plasma wave detecting system
  • Figure 2a is a schematic view of the prism of the present invention
  • Figure 2b is a schematic view of the light path of the prism of the present invention
  • Figure 2c is a schematic view of the light path of the prism side of the present invention
  • Figure 3 is a schematic view of the optical detection system of the present invention
  • a schematic view of a triangular lens of the inventive optical detection system
  • Figure 5a is a schematic view of the appearance of a conventional Dove prism
  • Figure 5b is a schematic view of the light path of a conventional Dove prism.
  • optical detection system 100, 200; light source unit: 110, 210; laser light source: 111, 211; polarized beam splitter: 1 12, 212; half wavelength wave plate: 113, 213; control unit: 120 , 220; stepper motor: 121; first power supply: 221; right angle triangle lens: 122; triangular lens: 222; first reflection surface of triangular lens: 222a; Two reflecting surfaces: 222b; two-dimensional parabolic mirror: 123a, 123b; prism: 223; lower plane: 223a; upper plane: 223b; first side: 223c; second side: 223d; hemispherical lens: 124; 125, 225; second power provider: 227; detection unit: 130, 230; non-polarized beam splitter: 131, 231; polarized beam splitter: 132, 232; detector: 133, 233; amplifier: 134, 234 Wave plate: 135, 235; Processing
  • FIG. 2a shows the prism shape of the present invention
  • FIG. 2b shows the light path of the prism of the present invention
  • the prism 223 of the present invention comprises a lower plane 223a, an upper plane 223b, a first side 223c and a second side. 223d.
  • the lower plane 223a is for receiving a light
  • the upper plane 223b is located on the opposite side of the lower plane 223a
  • the first side 223c is for reflecting the light from the lower plane 223a to the upper plane 223b
  • the second side 223d is for reflecting the light from the upper plane 223b to The lower surface 223a; wherein the first side surface 223c and the second side surface 223d are located between the upper plane 223b and the lower plane 223a.
  • the first side 223c and the second side 223d of the prism 223 are one-dimensional parabolic curved surfaces, so the light is guided to a focal line by a parabolic surface, and the focal line is generally located on the upper plane 223b of the prism, but a microfluidic structure is to be constructed.
  • the slide is incorporated in the prism 223 of the present invention, that is, the prism 223 needs to be removed from the thickness of the slide so that the focal line of the parabolic surface can be located on the upper plane of the slide, and the coupling oil is applied between the slide and the prism 223. , making the two visible as a single optical component.
  • the light of the present invention is reflected by the internal reflection angles of the first side surface 223c and the second side surface 223d, respectively.
  • the angle ⁇ 1 of the light reflected from the first side surface 223c to the upper plane 223b is greater than the critical angle of the total internal reflection, and the light rays are from the upper plane 223b.
  • the angle ⁇ 2 reflected to the second side 223d is also greater than the critical angle of total internal reflection, and the invention is not limited thereto.
  • the incident light of the present invention is incident on the prism 223 by the lower plane 223a, and the incident light and the outgoing light in the prism 223 are all parallel to the optical axis, and the present invention is not limited thereto.
  • the lower plane 223a of the prism 223 is parallel to the upper plane 223b, but the lower plane 223a may not be parallel to the upper plane 223b, and the invention is not limited thereto.
  • Figure 2c shows the light path of the prism side surface of the present invention, the lower case 223a is not parallel to the plane of the plane 223b, the light emitted to the incident angle [theta] plane, and the angle of refraction of light incident on the plane is not ⁇ t Limiting, but the light path in the prism 223 is parallel to the plane of incidence of the upper plane 223b.
  • the lower plane 223a is not parallel to the upper plane 223b, multiple reflection interference of the main path of the light may be avoided.
  • the problem of detecting the drift of the angle when the angle is changed by the non-normal incidence of the light is avoided, and the present invention is not limited thereto.
  • the prism 223 can be formed by injection molding with an optical resin, and the invention is not limited thereto.
  • FIG. 3 shows an optical detecting system of the present invention
  • FIG. 4 shows a triangular lens of the optical detecting system of the present invention.
  • the optical detecting system 200 of the present invention comprises a light source unit 210, a control unit 220, a detecting unit 230, and a processing unit. 240.
  • the light source unit 210 includes: a laser light source 211 (Semiconductor laser), a polarization beam splitter 212 (Polarized beam splitter or polarizer) 215 (Half wave plate), and a laser light source 211 for providing a light source. Light is then introduced into the control unit 220 through the polarizing beam splitter 212 and the half wavelength wave plate 213.
  • the laser light source 211 can also be replaced by a light emitting diode (LED) or other light source, and the invention is not limited thereto.
  • the control unit 220 includes a first power provider 221, a triangular mirror 222, a prism 223, a controller 225, and a second power provider 227, wherein the triangular lens 222 has a first reflective surface. 222a and a second reflecting surface 222b.
  • the horizontally traveling light is guided to the lower plane 223a of the prism 223 by the first reflecting surface 222a of the triangular lens 222, and the lower plane 223a reflects the horizontal traveling light to the first of the prism 223.
  • the side surface 223c then, the first side surface 223c reflects the light to the upper plane 223b of the prism 223.
  • the upper surface 223b redirects the light toward the second side surface 223d.
  • the second side surface 223d reflects the light to the prism 223.
  • the lower plane 223a finally, the light is guided back to the second reflecting surface 222b of the triangular lens 222, and the second reflecting surface 222b of the triangular lens 222 is input to the detecting unit 230.
  • sin (theta) is a light displacement resolution enhancement factor.
  • the angle is 90 degrees, the light reflected by the second reflecting surface 222b will coincide with the extending line of the incident light of the first reflecting surface 222a.
  • the triangular mirror 222 can be replaced by a polarizing or non-polarizing beam splitter, and the invention is not limited thereto.
  • the first power provider 221 is coupled to the triangular lens 222 for forming a mobile platform (not shown) that provides the power required to move the reflected position of the light on the triangular lens 222.
  • the movement of the mobile platform can change the incident angle of the light into the prism 223.
  • the first power supply 221 can be a motorized stage, and the invention is not limited thereto.
  • the second power provider 227 is coupled to the prism 223 for forming another mobile platform (not shown) that provides the desired location for moving light on the first side 223c and the second side 223d.
  • the driving force of the moving platform can guide the light to scan at the upper plane 223b for the incident angle of the fixed light.
  • the scanning angle is determined by the distance of the incident light to the optical axis, and the scanning range is determined by the size design.
  • the power supply 227 can also be a stepping motor, and the invention is not limited thereto.
  • the prism used in the present invention is completely different from the conventional Dove Prism. If the conventional Doffer prism as shown in Fig. 5a, the light path of the conventional Duf prism shown in Fig. 5b, the Duf prism is using light. The principle of refraction refracts the excitation light to the lower plane to produce an evanescent wave. When the excitation light reaches the Duf prism, partial reflection and partial refraction occur. Not all light energy is used to excite the surface plasma wave. The prism used in the present invention uses the principle of total reflection to use all of the light energy to excite surface plasma waves. Moreover, the Dove prism can only be used to fix the incident angle, and the effect that the prism used in the present invention can be used for the incident angle scanning cannot be achieved.
  • the light source provided by the light source unit 210 is a point light source. If the optical detection system 200 of the present invention is applied to a surface plasma wave biomedical detector, multi-point detection can be performed, if the light source unit 210 provides When the light source is a line source, the optical detection system 200 of the present invention can perform multi-point simultaneous detection of multiple flow paths or linear distributions.
  • the controller 225 is electrically connected to the first power provider 221 and the second power provider 227, respectively, for controlling the moving direction and position of the mobile platforms.
  • the detecting unit 230 includes: a non-polarized beam splitter 231, a polarized beam splitter 232, at least one detector 233, an amplifier 234 (amplifier), and a wave plate 235 ( Wave plate), detecting the characteristic of the light at this time via the detecting unit 230, generating a signal, and transmitting the signal to the processing unit 240, For further analysis.
  • the detector can be a photodiode
  • CMOS Complementary Metal-Oxide-Semiconductor
  • the wave plate 235 can be a quarter wave plate, and the invention is not limited thereto.
  • the processing unit 240 is configured to receive the signal for subsequent analysis processing. At the same time, the controller 225 in the control unit 220 is also electrically connected to the processing unit 240. The processing unit 240 sends the signal control controller 225, so the processing unit 240 can At the same time, signals from the detecting unit 230 and the control unit 220 are received for processing.
  • the processing unit 240 can be a computer, and the invention is not limited thereto.
  • the optical detection system provided by the present invention reflects light through the first side 223c of the prism 223, the second side 223d, and the plane where the focal line is located, that is, the three total reflections of the upper plane 223b, and the light is reflected in the single prism 223. It can greatly simplify the effect of the optical path adjustment program, miniaturize the system, eliminate the need for refractive index matching oil, and can be used for long-term measurement with low cost and disposable characteristics.
  • the user can detect the target object to make the incident angle of the light entering the upper plane 223b fixed to the angle at which the amplitude changes the most or the energy coupling by the adjustment of the first power provider 221, the second power provider 227, and the prism 223.
  • the optimum resonance angle is used to detect the change caused by the refractive index of the medium. Since the first side surface 223c and the second side surface 223d are parabolic mirrors, all of which are one-dimensional, the optical path is relatively simple, so that the light source unit and the detecting unit can be fixed, that is, When the position of the incident light is received and received, the adjustment of the incident angle of the light is completed, and the optical path adjustment is easy, which is quite practical.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

一种棱镜及应用此棱镜的光学检测系统。该棱镜(223)包含一下平面(223a)、一上平面(223b)、一第一侧面(223c)、一第二侧面(223d),其中第一侧面(223c)以及第二侧面(223d)位于上平面(223b)与下平面(223a)之间,且第一侧面(223c)以及第二侧面(223d)为一维抛物曲面,下平面(223a)系用以接收光线,第一侧面(223c)用于反射来自下平面(223a)的光线至上平面(223b),第二侧面(223d)系用于反射来自上平面(223b)的光线至下平面(223a),进而将光线进行后续的处理。

Description

棱镜及应用此棱镜的光学检测系统
技术领域
本发明涉及一种光学技术领域, 特别是一种棱镜和应用此棱镜的光学 检测系统。 背景技术
通过光学检测系统可以对目标物进行检测, 以得到详尽的分析信息, 其中, 表面等离子波(Surface Plasmon Waves)的应用是藉由光所激发的表 面等离子波对目标物进行分析, 目前巳经广泛应用于生物检测及其分子动 力学的研究上, 其中包括生物传感器、 免疫诊断、 抗体及抗原反应动态分 析。 藉由抗原与相对应的抗体的化学结合专一性, 表面等离子共振于生物 医学科学研究上, 主要运用在抗体抗原之间化学结合的动态分析。 其衍生 的应用包括生物分子存在的检测、 特定致病细菌亚种的检测、 以及特定病 毒的检测和分类。 其中生物分子存在的检测是目前表面等离子波在生物医 学科学研究上最主要的衍生应用, 例如在发炎分子标记, 利用 C反应蛋白 ( C-reactive protein ) 在心血管疾病的检测, 对于特定致病细菌亚种的 检测、 及特定病毒的检测和分类。
表面等离子波传感器的基本架设形式为: 利用激光光照射金属与非导 电介质界面, 于其上激发表面等离子波。 而非导电介质的折射率若有变化, 即改变了表面等离子波的共振条件。
此一改变可藉由测量激光束反射光的光学性质而得, 依据测量的物理 量不同, 可分类为角度、 振幅、 波长、 以及相位等测量模式。 以测量的操 作而言, 振幅、 相位等量测模式于测量时虽属静态系统, 然测量前需调整 光路架设, 使激光光源入射角度固定于振幅变化最大的角度或能量耦合的 最佳共振角, 以检测介质折射率造成的变化。 当系统的设计无法调整入射 角时, 其可检测的折射率范围及灵敏度将受到很大的限制。 唯于波长模式 操作下, 不改变入射角尚可获得不错的测量动态范围及灵敏度。 而角度量 测模式属于动态系统, 测量时需不断的扫描光入射角。
传统的表面等离子共振仪大多以双轴旋转扫描平台(two-arm rotating stage) 做相对应的旋转运动, 藉以达到调控光入射角度的功能。 以这种方 式控制入射角度会有如下缺点:
a. 入射光源及接收端并不是固定的, 此将限制光源系统及光检测系统 的大小、 重量及其复杂度, 此亦代表着它在相位及振幅等检测方式将会受 到限制。
b. 两个旋转平台在控制的精度 (resolut ion)、 稳定度(stabil ity), 精密定位及价格上不如单一的线性步进移动平台。
c 因为光学组件置具机构的限制, 此设计的棱镜耦合面以垂直于水平 面置放为大宗, 当使用耦合油(matching oil)做为试片及棱镜的接合, 在 长时间的使用下容易蒸发干燥, 系统稳定度及长时间测量一致性不佳。
d. 此棱镜耦合面置放方式亦不适合微流道的设计与操作。
e. 此棱镜耦合面置放方式亦无法方便的与影像系统结合, 特别是与显 微影像系统的结合。 这是由于显微影像系统多采取垂直式影像撷取光路的 设计。
另有运用如点扫描共焦显微镜的镜片光扫描方式(galvo mirror scanning method)结合双透镜以达到光入射角调变, 唯此方式将使得光线 在离开光耦合棱镜后进入光检测器的光路偏离正入射角, 以致无法进行光 相位检测。 而光相位检测通常具有较高的灵敏度。
近年来各种检测模式的机型虽各有千秋, 但仍缺乏足以整合数种模式 于一机型的设计, 以现有装置而言, 具大量测范围(dynamic range) 的操 作模式 (共振角及振幅测量模式)通常无法达到高灵敏度量测的要求, 具高 灵敏度量测特性者 (光相位测量模式), 其入射角不可调整, 故其量测范围 极小。
如美国专利 US7265844所揭露的一种可改善光路的水平表面等离子共 振仪, 其需透过复杂的机械连动及具特殊曲线的滑轨来调整光入射角并同 时保持光源及光检测单元固定, 该装置的精度及稳定度也不高。
另外, 图 1显示了本案发明人先前的表面等离子波检测系统的结构, 如图所示,该表面等离子波系统 100包含一光源单元 110、一控制单元 120、 一检测单元 130以及一处理单元 140。
该光源单元 110包含: 一激光光源 111、一极化分光片 112以及一半波 长波片 113, 用以将光线导入该控制单元 120。 该控制单元 120包含: 一步进马达 121、 一直角三角镜片 122、 二维抛 物面镜 123a、 123b以及一半球形透镜 124。 光线由该三角镜片 122导入该 二维抛物面镜 123a,该二维抛物面镜 123a先将光线导入该半球形透镜 124, 该半球形透镜 124将导入该二维抛物面镜 123b, 最后光线再由该二维抛物 面镜 123b导入该三角镜片 122输出至该检测单元 130。
该检测单元 130包括: 一非极化分光片 131、 一极化分光片 132、 一检 测器 133、 一放大器 134、 一波片 135以及一控制器 125, 经由该检测单元 130检测所输出的光特性, 再将讯号传送至该处理单元 140, 以进行进一步 的分析。
使用者通过步进马达 121以及二维抛物面镜 123a、 123b的调整, 可以 检测目标物使光线入射角度固定于振幅变化最大的角度或能量耦合的最佳 共振角, 以检测介质折射率造成的变化。
然而, 半球形透镜以及二维抛物面镜皆容易造成光路调教的复杂度及 长时间的稳定性, 入射光些许的光路偏移将因二维抛物面镜及半球形透镜 而造成入射角的误差及光路偏移放大, 此特性将导致接收端在光相位及共 振角检测的困难, 轻则造成检测误差, 重则造成无法检测的情形, 且此系 统需要同时通过兩个二维离轴抛物面镜 123a、 123b的搭配使用, 兩个二维 抛物面镜及半球形透镜的相对位置调校并不容易, 因而使用者不易在大角 度的扫喵范围下同时使到达该检测单元 130的光路不变, 若欲要求到达该 检测单元 130的光路在大角度的扫喵下不发生光路偏移, 需耗费许多时间 来调校光路。 且此设计因该半球透镜 124及该二维抛物面镜 123a、 123b的 聚焦作用, 其光激发点将非常小, 仅可做单点或单流道检测。 另外, 此设 计缺乏将水平行进的光线导引成垂直行进的光线的反射镜, 故不易与显微 镜平台结合。
发明内容 本发明的一个目的是提供一种解决上述技术问题的棱镜。
本发明的另一个目的是提供一种使用解决上述技术问题的棱镜的光学 检测系统。 本发明的棱镜包含一下平面、 一上平面、 一第一侧面以及一第二侧面, 其中第一侧面以及第二侧面为一维抛物曲面;
下平面用于接收一光线, 上平面位于下平面对侧, 第一侧面用于反射 来自下平面的光线至上平面, 第二侧面用于反射来自上平面的光线至下平 面; 其中第一侧面以及第二侧面位于上平面与下平面之间。
较佳地, 光线分别通过第一侧面以及第二侧面的全内反射角进行反射, 光线从第一侧面反射至上平面的夹角大于全内反射临界角, 上平面反射至 第二侧面的夹角大于全内反射临界角, 因此在棱镜内所产生之反射皆为全 反射, 棱镜内层表面不需经过镜面涂布等处理即可达成全反射之效果。
本发明的光学检测系统包含一光源单元、一控制单元以及一检测单元; 所述光源单元用于提供一光源; 所述控制单元包含一棱镜和一检测单 元; 棱镜包含一下平面、 一上平面、 一第一侧面、 一第二侧面, 其中第一 侧面以及第二侧面位于上平面与下平面之间, 且第一侧面以及第二侧面为 一维抛物曲面;
光线进入控制单元后, 将光线导入棱镜的下平面, 下平面则将光线反 射至棱镜的第一侧面, 接着, 第一侧面将光线再反射至棱镜的上平面, 之 后, 上平面再将光线射向第二侧面, 同样地, 第二侧面将光线再反射至棱 镜之下平面, 最后, 将光线输入至检测单元;
检测单元系检测来自该控制单元的光线, 以输出一讯号。
较佳地, 控制单元还包含一三角镜片, 该三角镜片包含一第一反射面 以及一第二反射面, 其中该第一反射面接收来至该光源单元的光线并将该 光线导入该棱镜, 该第二反射面接收来至该棱镜的光线并将该光线导入该 检测单元。
较佳地, 控制单元还包含一第一动力提供器以及一第二动力提供器, 第一动力提供器连接于该三角镜片, 第二动力提供器连接于该棱镜。
较佳地, 光学检测系统还包含一处理单元, 用以接收该讯号以进行后 续分析处理。
使用者通过第一动力提供器控制光线进入棱镜的入射角度、 通过第二 动力提供器进行固定光入射角的光线多点扫描, 可以检测目标物使光线射 入该棱镜的入射角度固定于振幅变化最大的角度或能量耦合的最佳共振角 度, 以检测介质折射率造成的变化。
相对于上述现有技术, 藉由本发明中光源单元及检测单元固定, 但具 可调整及可扫描光入射角的特征, 可使同时进行共振角、 振幅、 波长、 相 位等表面等离子波测量模式, 兼具大量测范围及高灵敏度量测特性, 且光 路路径调校容易, 此外, 本发明亦可轻易与显微镜系统结合, 相当具有实 用性。
相对于上述现有技术, 由于本发明的棱镜运用抛物曲面 (第一侧面及第 二侧面)及焦线所在的平面 (上平面)的三个全反射来反射激发光, 将其利用 于光学检测系统可达到大量简化光路调教程序、 系统微型化、 无需折射率 親合油 (refractive index matching oi l) , 可长时间量测并具低成本及可 抛式特性等优点。
本发明的优点与精神, 以及更详细的实施方式可以通过以下的实施方 式以及附图得到进一步的了解。
附图说明 图 1是现有技术的表面等离子波检测系统的示意图;
图 2a是本发明的棱镜外形示意图; 图 2b是本发明的棱镜的光线路径示意图; 图 2c是本发明的棱镜侧面的光线路径示意图; 图 3是本发明的光学检测系统示意图; 图 4是本发明的光学检测系统的三角镜片示意图;
图 5a是传统杜夫棱镜外形示意图; 以及 图 5b是传统杜夫棱镜的光线路径示意图。
附图标记说明, 光学检测系统: 100、 200; 光源单元: 110、 210; 激 光光源: 111、 211; 极化分光片: 1 12、 212; 半波长波片: 113、 213; 控 制单元: 120、 220; 步进马达: 121 ; 第一动力提供器: 221 ; 直角三角镜 片: 122 ; 三角镜片: 222 ; 三角镜片之第一反射面: 222a; 三角镜片之第 二反射面: 222b; 二维抛物面镜: 123a、 123b ; 棱镜: 223 ; 下平面: 223a; 上平面: 223b ; 第一侧面: 223c ; 第二侧面: 223d; 半球形透镜: 124; 控 制器: 125、 225; 第二动力提供器: 227 ; 检测单元: 130、 230; 非极化分 光片: 131、 231; 极化分光片: 132、 232; 检测器: 133、 233; 放大器: 134、 234; 波片: 135、 235; 处理单元: 140、 240; 光线从第一侧面反射 至上平面的夹角: θ 1 ;光线从上平面反射至第二侧面的夹角: θ 2 ;光线射 至下平面的入射角: θ 1 ;光线射入下平面的折射角: 9 t
具体实施方式 图 2a显示了本发明的棱镜外形, 图 2b显示了本发明的棱镜的光线路 径,本发明的棱镜 223包含一下平面 223a、一上平面 223b、一第一侧面 223c 以及一第二侧面 223d。
下平面 223a用于接收一光线, 上平面 223b位于下平面 223a对侧, 第 一侧面 223c用于反射来自下平面 223a的光线至上平面 223b,第二侧面 223d 用于反射来自上平面 223b的光线至下平面 223a; 其中第一侧面 223c以及 第二侧面 223d位于上平面 223b与下平面 223a之间。
棱镜 223的第一侧面 223c以及第二侧面 223d为一维抛物曲面, 因此 光线会被抛物曲面导至一焦线, 焦线一般位于棱镜的上平面 223b, 但若要 将一建构有微流体的玻片结合在本发明的棱镜 223,即需将棱镜 223削除掉 玻片的厚度, 使抛物曲面的焦线能位于玻片的上平面, 并将耦合油涂布于 玻片与棱镜 223之间, 使两者可视为一个整体的光学组件。 而本发明的光 线分别通过第一侧面 223c以及第二侧面 223d的内反射角进行反射, 光线 从第一侧面 223c反射至上平面 223b的夹角 Θ 1大于全内反射临界角, 光线 从上平面 223b反射至第二侧面 223d的夹角 Θ 2亦大于全内反射临界角, 本 发明并不以此为限。
其中, 本发明的入射光由下平面 223a射入棱镜 223, 在棱镜 223内的 入射光及出射光皆平行光轴, 本发明并不以此为限。
在一实施例中,棱镜 223的下平面 223a平行于上平面 223b,但下平面 223a亦可不平行于上平面 223b, 本发明不以此为限。 图 2c显示了本发明的棱镜侧面的光线路径, 此时该下平面 223a不平 行于该上平面 223b,光线射至下平面的入射角 θ ,以及光线射入下平面的折 射角 Θ t并无限制, 但该棱镜 223中的光线路径会平行于该上平面 223b的 入射面(plane of incidence) , 当下平面 223a不平行于上平面 223b时, 可避免光线的主路径发生多重反射干扰, 也可以避免光线非垂直入射 (normal incidence)造成角度变化时检测点漂移的问题, 本发明不以此为 限。
在一实施例中, 棱镜 223可用光学树脂配合射出成型制作, 本发明不 以此为限。
图 3显示了本发明的光学检测系统, 图 4显示了本发明的光学检测系 统的三角镜片, 本发明光学检测系统 200包含一光源单元 210、一控制单元 220、 一检测单元 230以及一处理单元 240。
光源单元 210包含: 一激光光源 211 (Semiconductor laser)、 一极化 分光片 212 (Polarized beam spl itter or polarizer)以及一半波长波片 213 (Half wave plate) , 该激光光源 211用于提供一光源, 再通过极化分 光片 212以及半波长波片 213将光线导入该控制单元 220。 该激光光源 211 也可使用发光二极管 (LED)或其它光源替代, 本发明不以此为限。
控制单元 220包含:一第一动力提供器 221、一三角镜片 222 (Triangle mirror) , 一棱镜 223、 一控制器 225以及一第二动力提供器 227, 其中该 三角镜片 222具有一第一反射面 222a以及一第二反射面 222b。
光线进入该控制单元 220后,藉由该三角镜片 222的该第一反射面 222a 将水平行进的光线导入棱镜 223的下平面 223a,下平面 223a则将水平行进 的光线反射至棱镜 223的第一侧面 223c,接着,第一侧面 223c将光线再反 射至棱镜 223的上平面 223b, 之后, 上平面 223b再将光线射向第二侧面 223d, 同样地, 第二侧面 223d将光线再反射至棱镜 223的下平面 223a, 最 后, 光线被导回至三角镜片 222的第二反射面 222b, 交由该三角镜片 222 的该第二反射面 222b将光线输入至该检测单元 230。
三角镜片 222的两反射面的夹角(theta)不限于 90度直角, 该三角面 镜的位移量(LM)与光线平移(LB)关系为 LB=LM*sin (theta)。当三角面镜 222 的两反射面的夹角不为 90度时, sin (theta)为光位移分辨率强化因子。 当 夹角为 90度时, 第二反射面 222b所反射的光线将与该第一反射面 222a的 入射光的延伸线重合。 该三角面镜 222可由偏振或非偏振分光镜取代, 本 发明不以此为限。
在一实施例中,第一动力提供器 221连接于三角镜片 222, 用于形成一 移动平台(图中未显示), 提供移动光线于该三角镜片 222上的反射位置所 需的动力, 藉由移动平台的移动可改变光线射入棱镜 223的入射角度, 第 一动力提供器 221可为一步进马达 (Motorized stage),本发明不以此为限。
在一实施例中,第二动力提供器 227连接于棱镜 223, 用于形成另一移 动平台(图中未显示), 提供移动光线于第一侧面 223c以及第二侧面 223d 上的反射位置所需的动力, 藉由移动平台的移动可导引光线在该上平面 223b进行固定光线入射角度的光扫描, 扫描角度由入射光到光轴的距离来 决定, 其扫描范围由尺寸设计决定, 第二动力提供器 227亦可为一步进马 达, 本发明不以此为限。
本发明所使用的棱镜与传统的杜夫棱镜 (Dove Prism)是完全不相同的, 若如图 5a所示的传统杜夫棱镜, 如图 5b所示的传统杜夫棱镜的光线路径, 杜夫棱镜是运用光折射原理将激发光折射到下平面上产生渐逝波, 激发光 到达杜夫棱镜时会发生部分反射及部分折射, 并非所有的光能量皆用来激 发表面等离子波。 本发明所使用的棱镜是运用全反射原理将所有的光能量 皆用来激发表面等离子波。 并且杜夫棱棱镜只能用于固定入射角, 并无法 达到如本发明所使用的棱镜可做入射角扫描的效果。
在一实施例中, 光源单元 210所提供的光源为点光源, 若将本发明的 光学检测系统 200运用于表面等离子波生医检测器时, 则可进行多点检测, 若光源单元 210所提供的光源为为一线光源时,本发明的光学检测系统 200 可进行多流道或线形分布的多点同时检测。
控制器 225分别与第一动力提供器 221及第二动力提供器 227电连接, 用以控制该些移动平台的移动方向及位置。
检测单元 230包括: 一非极化分光片 231 (Non-polarized beam splitter)、 一极化分光片 232 (Polarized beam splitter)、 至少一检测器 233、 一放大器 234 (amplifier)以及一波片 235 (wave plate) , 经由检测单 元 230检测此时光的特性,而产生一讯号,再将该讯号传送至处理单元 240, 以进行进一步的分析。 一实施例中, 该检测器可为一光电二极管
(photodiode)、 一 CCD (Charge- coupled Device)感光组件或一
CMOS (Complementary Metal-Oxide-Semiconductor) 感光组件, 本发明不 以此为限。 该波片 235可为 1/4波片(1/4 wave plate) , 本发明不以此为 限。
处理单元 240用于接收该讯号以进行后续分析处理, 同时, 该控制单 元 220中的控制器 225也电连接于处理单元 240,藉由处理单元 240发送讯 号控制控制器 225,因此处理单元 240可以同时接收来自检测单元 230以及 控制单元 220的讯号进行处理。 一实施例中, 该处理单元 240可为一计算 机, 本发明不以此为限。
本发明所提供的光学检测系统通过棱镜 223的第一侧面 223c、 第二侧 面 223d以及焦线所在的平面, 也就是上平面 223b的三个全反射来反射光 线, 光线于单一个棱镜 223中即可达大量简化光路调教程序的效果、 将系 统微型化功能、 且无需折射率耦合油(refractive index matching oil)、 可做长时间量测并具低成本及可抛式特性等优点。
此外, 使用者通过第一动力提供器 221、第二动力提供器 227以及棱镜 223的搭配调整, 可以检测目标物使光线射入上平面 223b的入射角度固定 于振幅变化最大的角度或能量耦合的最佳共振角度, 以检测介质折射率造 成的变化, 因第一侧面 223c以及第二侧面 223d为抛物面镜, 皆为一维走 向, 故光路较单纯, 因此可在光源单元及检测单元固定, 即固定射入及接 收光线位置的情况下, 完成光线入射角度的调变, 且光路调校容易, 相当 具有实用性。
尽管上文对本发明进行了详细说明, 但是本发明不限于此, 本技术领 域技术人员可以根据本发明的原理进行各种修改。 因此, 凡按照本发明原 理所作的修改, 都应当理解为落入本发明的保护范围。

Claims

权 利 要 求 书
1、 一种棱镜, 包含:
一下平面, 用于接收一光线;
一上平面, 位于所述下平面对侧;
一第一侧面, 为一维抛物曲面, 用于反射来自下平面的光线至所述 上平面; 以及
一第二侧面, 为一维抛物曲面, 用于反射来自上平面的光线至所述 下平面;
其中, 所述第一侧面以及第二侧面位于所述上平面与下平面之间。
2、 如权利要求 1所述的棱镜, 其中所述光线分别通过所述第一侧面及 第二侧面的内反射角进行反射。
3、 如权利要求 2所述的棱镜, 其中所述光线从第一侧面反射至上平面 的夹角大于全内反射临界角。
4、 如权利要求 3所述的棱镜, 其中所述光线从上平面反射至第二侧面 的夹角大于全内反射临界角。
5、 如权利要求 4所述的棱镜, 其中所述棱镜的下平面平行于上平面。
6、 如权利要求 4所述的棱镜, 其中所述棱镜的下平面不平行于上平面。
7、 如权利要求 1所述的棱镜, 其中所述棱镜可结合一建构有微流体的 玻片。
8、 一种光学检测系统, 包含:
一光源单元, 用以提供一光线;
一控制单元, 包含:
一棱镜, 包含:
一下平面, 用于接收该光线;
一上平面, 位于所述下平面对侧;
一第一侧面, 为一维抛物曲面, 用于反射来自下平面的光线至 上平面; 以及
一第二侧面, 为一维抛物曲面, 用于反射来自上平面的光线至 下平面; 其中, 第一侧面以及第二侧面位于上平面以与下平面之间; 以及 一检测单元, 用于检测来自控制单元的光线, 以输出一讯号。
9、 如权利要求 8所述的光学检测系统, 其中所述光源单元包含一激光 光源或一发光二极管光源。
10、 如权利要求 9所述的光学检测系统, 其中所述光源单元还包含一极 化分光片及一半波长波片。
11、 如权利要求 8所述的光学检测系统, 其中所述控制单元还包含一三 角镜片, 所述三角镜片包含一第一反射面以及一第二反射面, 其中所述第 一反射面接收来自光源单元的光线并将该光线导入棱镜的下平面, 所述第 二反射面接收来自该棱镜的下平面的光线, 并将该光线导入检测单元。
12、 如权利要求 11所述的光学检测系统, 其中所述控制单元还包含一 第一动力提供器, 所述第一动力提供器连接于所述三角镜片。
13、 如权利要求 12所述的光学检测系统, 其中所述控制单元还包含一 第二动力提供器, 所述第二动力提供器连接于所述棱镜。
14、 如权利要求 13所述的光学检测系统, 其中所述第一动力提供器以 及第二动力提供器为步进马达。
15、 如权利要求 13所述的光学检测系统, 其中所述控制单元还包含一 控制器, 且所述控制器分别电连接于所述第一动力提供器以及第二动力提 供器。
16、 如权利要求 8所述的光学检测系统, 其中所述光线分别通过所述第 一侧面以及第二侧面的内反射角进行反射。
17、 如权利要求 16所述的光学检测系统, 其中所述光线从所述第一侧 面反射至所述上平面的夹角大于全内反射临界角。
18、 如权利要求 17所述的光学检测系统, 其中所述光线从所述上平面 反射至所述第二侧面的夹角大于全内反射临界角。
19、 如权利要求 18所述的光学检测系统, 其中所述棱镜的下平面平行 于上平面。
20、 如权利要求 18所述的光学检测系统, 其中所述棱镜的下平面不平 行于上平面。
21、 如权利要求 8所述的光学检测系统, 其中所述检测单元包含一非极 化分光片、 一极化分光片、 一放大器、 一波片以及至少一检测器。
22、 如权利要求 20所述的光学检测系统, 其中所述检测器为一光电二 极管、 一 CCD感光组件或一 CMOS感光组件。
23、 如权利要求 8所述的光学检测系统, 还包含一处理单元, 用于接收 该讯号以进行后续分析处理。
24、 如权利要求 23所述的光学检测系统, 其中所述处理单元为一计算 机。
25、 如权利要求 8所述的光学检测系统, 其中所述棱镜用光学树脂配合 射出成型制成。
26、 如权利要求 8所述的光学检测系统, 其中所述棱镜可结合一建构有 微流体的玻片。
PCT/CN2013/086408 2013-03-08 2013-11-01 棱镜及应用此棱镜的光学检测系统 WO2014134923A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP13877365.0A EP2966482B1 (en) 2013-03-08 2013-11-01 Prism and optical detection system applying same
CN201380074183.5A CN105122093B (zh) 2013-03-08 2013-11-01 棱镜及应用此棱镜的光学检测系统

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US13/790,408 2013-03-08
US13/790,408 US8908185B2 (en) 2012-11-02 2013-03-08 Coupling prism and optical detection system thereof

Publications (1)

Publication Number Publication Date
WO2014134923A1 true WO2014134923A1 (zh) 2014-09-12

Family

ID=51490657

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/086408 WO2014134923A1 (zh) 2013-03-08 2013-11-01 棱镜及应用此棱镜的光学检测系统

Country Status (3)

Country Link
EP (1) EP2966482B1 (zh)
CN (1) CN105122093B (zh)
WO (1) WO2014134923A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113211192A (zh) * 2021-05-13 2021-08-06 成都大学 机床几何误差及旋转台转角定位误差检定装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1293757A (zh) * 1998-11-13 2001-05-02 莱卡微系统公司 折射计和用于定性及定量测量的方法
US20050018194A1 (en) * 2001-10-17 2005-01-27 Carsten Thirstrup Surface plasmon resonance sensor
CN1965253A (zh) * 2004-06-03 2007-05-16 伊斯曼柯达公司 具有聚光器的视亮度增强膜
US7265844B2 (en) 2003-04-10 2007-09-04 Wisconsin Alumni Research Foundation Horizontal surface plasmon resonance instrument with improved light path
US20100128269A1 (en) * 2006-06-16 2010-05-27 University Of Washington Miniaturized surface plasmon resonance imaging system
DE102011053003A1 (de) * 2011-08-26 2013-02-28 Carl Zeiss Microlmaging Gmbh Verfahren und Vorrichtungen zur Weitfeld-Mikroskopie

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11249019A (ja) * 1998-02-26 1999-09-17 Canon Inc 光学素子及びそれを用いた光学系
JP2008159695A (ja) * 2006-12-21 2008-07-10 Canon Inc 露光装置
JP4871176B2 (ja) * 2007-03-13 2012-02-08 浜松ホトニクス株式会社 全反射テラヘルツ波測定装置
JP5139832B2 (ja) * 2008-02-14 2013-02-06 浜松ホトニクス株式会社 観察装置
CN101477044B (zh) * 2009-01-19 2011-11-02 浙江大学 一种表面等离子共振传感器
DE102011051042B4 (de) * 2011-06-14 2016-04-28 Leica Microsystems Cms Gmbh Abtastmikroskop und Verfahren zur lichtmikroskopischen Abbildung eines Objektes

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1293757A (zh) * 1998-11-13 2001-05-02 莱卡微系统公司 折射计和用于定性及定量测量的方法
US20050018194A1 (en) * 2001-10-17 2005-01-27 Carsten Thirstrup Surface plasmon resonance sensor
US7265844B2 (en) 2003-04-10 2007-09-04 Wisconsin Alumni Research Foundation Horizontal surface plasmon resonance instrument with improved light path
CN1965253A (zh) * 2004-06-03 2007-05-16 伊斯曼柯达公司 具有聚光器的视亮度增强膜
US20100128269A1 (en) * 2006-06-16 2010-05-27 University Of Washington Miniaturized surface plasmon resonance imaging system
DE102011053003A1 (de) * 2011-08-26 2013-02-28 Carl Zeiss Microlmaging Gmbh Verfahren und Vorrichtungen zur Weitfeld-Mikroskopie

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2966482A4

Also Published As

Publication number Publication date
EP2966482A4 (en) 2016-10-05
EP2966482B1 (en) 2023-03-01
EP2966482A1 (en) 2016-01-13
CN105122093B (zh) 2018-04-03
CN105122093A (zh) 2015-12-02

Similar Documents

Publication Publication Date Title
US20220042920A1 (en) Biosensors based on optical probing and sensing
CN104919301B (zh) 测量玻璃样品的分布特征的系统和方法
TW583388B (en) Sensor for replacement
CN101046445B (zh) 线状光束扫描表面等离子体共振成像光强检测方法及系统
CN1997871A (zh) 孔内侧表面的检测装置和方法
US10041875B2 (en) Apparatus and method for reading out an optical chip
CN102253014A (zh) 表面等离子体共振传感检测系统和方法
TWI557405B (zh) 光學檢測系統
CN107764776A (zh) 多波长可调式表面等离子体共振成像装置及其应用
US20080137061A1 (en) Displacement Measurement Sensor Using the Confocal Principle
TWI480535B (zh) 稜鏡以及應用此稜鏡的光學檢測系統
WO2014134923A1 (zh) 棱镜及应用此棱镜的光学检测系统
CN103698304A (zh) 一种剪式液芯耦合表面等离子体共振成像分析仪
TW201305530A (zh) 小角度及小位移之量測方法及其裝置
JP2002296018A (ja) 3次元形状計測装置
CN109443711A (zh) 一种基于针孔随动高速扫描共焦显微技术的大口径光学元件测量装置和方法
KR100628877B1 (ko) 주사 방식 및 줌 방식을 채택하여 표면 플라즈몬 공명현상을 측정하는 장치 및 이를 이용한 측정방법
CN112630193A (zh) 一种基于数字微镜器件的角度调制型spr传感器及spr检测设备
CN104849237A (zh) 基于波长调制spr的折射率测量装置
CN214472762U (zh) 基于dmd的角度调制型spr传感器及spr检测设备
CN214472763U (zh) 一种基于扫描振镜的角度调制型spr传感器及spr检测设备
JPH08334317A (ja) 測定顕微鏡
CN215833253U (zh) 一种基于光束偏转器的角度调制型spr传感器及spr检测设备
CN112630194A (zh) 一种基于扫描振镜的角度调制型spr传感器及spr检测设备
Trierweiler et al. Easy integrable refractometer for liquids on extended surfaces

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13877365

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2013877365

Country of ref document: EP