WO2014134914A1 - 一种供电方法及装置 - Google Patents

一种供电方法及装置 Download PDF

Info

Publication number
WO2014134914A1
WO2014134914A1 PCT/CN2013/084540 CN2013084540W WO2014134914A1 WO 2014134914 A1 WO2014134914 A1 WO 2014134914A1 CN 2013084540 W CN2013084540 W CN 2013084540W WO 2014134914 A1 WO2014134914 A1 WO 2014134914A1
Authority
WO
WIPO (PCT)
Prior art keywords
module
direct current
voltage direct
input
path
Prior art date
Application number
PCT/CN2013/084540
Other languages
English (en)
French (fr)
Inventor
方庆银
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP13876769.4A priority Critical patent/EP2822145B1/en
Priority to EP16158617.7A priority patent/EP3141983B1/en
Priority to ES13876769.4T priority patent/ES2587607T3/es
Priority to US14/483,996 priority patent/US9203238B2/en
Publication of WO2014134914A1 publication Critical patent/WO2014134914A1/zh
Priority to US14/853,045 priority patent/US9954369B2/en

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/36Arrangements for transfer of electric power between ac networks via a high-tension dc link
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/26Power supply means, e.g. regulation thereof
    • G06F1/30Means for acting in the event of power-supply failure or interruption, e.g. power-supply fluctuations
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J9/00Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J9/00Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting
    • H02J9/04Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source
    • H02J9/06Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source with automatic change-over, e.g. UPS systems
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J9/00Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting
    • H02J9/04Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source
    • H02J9/06Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source with automatic change-over, e.g. UPS systems
    • H02J9/061Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source with automatic change-over, e.g. UPS systems for DC powered loads
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J9/00Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting
    • H02J9/04Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source
    • H02J9/06Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source with automatic change-over, e.g. UPS systems
    • H02J9/08Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source with automatic change-over, e.g. UPS systems requiring starting of a prime-mover
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J9/00Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting
    • H02J9/04Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source
    • H02J9/06Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source with automatic change-over, e.g. UPS systems
    • H02J9/068Electronic means for switching from one power supply to another power supply, e.g. to avoid parallel connection

Definitions

  • the present invention relates to the field of electronic communication technologies, and in particular, to a power supply method and apparatus.
  • an existing data center (or a computer room) adopts an AC power supply mode.
  • two sets of power supply systems are used for redundant backup.
  • the electric and oil machine supplies power to the rear stage load through the ATS (Automatic Transfer Switches) switching device.
  • ATS Automatic Transfer Switches
  • the AC power output from the ATS is divided into two branches A and B through the AC (Alternating Current) power distribution screen.
  • the branch A is input into the UPS (Uninterruptible Power Supply) system A in the equipment room, and the branch B is input into the equipment room.
  • the UPS system B After the UPS system B, the UPS system A and the UPS system B output AC power respectively pass through the power distribution cabinet and the column head cabinet, the ICT input into the equipment room
  • ICT Information Communication Technology, equipment cabinet
  • Each ICT equipment cabinet receives the AC power output from UPS System A and UPS System B.
  • the AC power from UPS System A (referred to as A-plane AC) and the AC power from UPS System B (referred to as B-plane AC) are backed up.
  • the equipment in the ICT equipment cabinet can be powered by the A-plane AC power supply through the A-channel power distribution unit and by the B-plane AC power supply through the B-channel power distribution unit.
  • each power module receives only one AC power. If both the A-plane AC power supply and the B-plane AC power supply that are backed up each other have N (N is an integer greater than zero), N+N is required.
  • Embodiments of the present invention provide a power supply method capable of reducing cost, a power module, a power supply device, a power supply system, and an ICT device.
  • the power supply method provided by the embodiment of the present invention is applied to a power module, where the power module is configured to adjust at least one input voltage and output the power to the load to implement power supply to the load, where the power supply method includes:
  • the input second alternating current is rectified, and the second alternating current is converted into a second high voltage direct current
  • the input third high voltage direct current input is input.
  • a DC/DC module when detecting that the second high voltage direct current is normal, inputting the second high voltage direct current into the DC/DC module, and the input third high voltage direct current is in a standby state;
  • the DC/DC module converts the input second high voltage direct current or the third high voltage direct current into a low voltage direct current output for use by a load.
  • the power supply method before the input of the second alternating current is rectified, the power supply method further includes:
  • the input second alternating current is filtered.
  • the power supply method further includes:
  • the input third high voltage direct current is filtered.
  • the power supply method further includes: The second alternating current is subjected to power factor calibration by the rectified voltage.
  • Another power supply method provided by the embodiment of the present invention includes:
  • the battery pack Converting the input first alternating current into the first high voltage direct current;
  • the battery pack outputs a standby high-voltage direct current when the first high-voltage direct current is abnormal, wherein the battery pack outputs a third high-voltage direct current in parallel with the first high-voltage direct current; and the input second alternating current is performed. Rectifying, and converting the second alternating current into a second high voltage direct current;
  • a DC/DC module wherein the third high voltage direct current that is output after the first high voltage direct current is connected in parallel with the battery pack is in a standby state; when the second high voltage direct current abnormality is detected, Said third high voltage direct current input to said DC/DC module;
  • the DC/DC module converts the input second high voltage direct current or the third high voltage direct current into a low voltage direct current output for use by a load.
  • the power supply method further includes:
  • the input second alternating current is filtered.
  • the power supply method before the third high voltage direct current is input to the DC/DC module, the power supply method further includes:
  • the third high voltage direct current is filtered.
  • the power supply method further includes :
  • the second alternating current is subjected to power factor calibration by the rectified voltage.
  • An embodiment of the present invention further provides a power module, wherein the power module includes a rectification module, a selection module, and a DC/DC module;
  • the rectifier module is configured to rectify the input second alternating current, and convert the second alternating current into a second high voltage direct current output;
  • the selection module is connected to two high voltage direct current inputs to the path of the DC/DC module.
  • the two high-voltage direct currents include the second high-voltage direct current and the third high-voltage direct current, and the selecting module is configured to open the second high-voltage direct current input when detecting that the second high-voltage direct current is normal.
  • the path of the DC/DC module turns off the path of the third high voltage direct current input to the DC/DC module, and when the second high voltage direct current abnormality is detected, the third high voltage direct current is turned on Inputting a path to the DC/DC module and turning off a path of the second high voltage direct current input to the DC/DC module;
  • the DC/DC module is configured to convert the input second high voltage direct current or the third high voltage direct current into a low voltage direct current output for use by a load.
  • the power module described above further includes a first EMI module;
  • the first EMI module is configured to filter the third high voltage direct current, and output the filtered third high voltage direct current to the selection module;
  • the above power module further includes:
  • the second EMI module is configured to filter the input second alternating current, and output the filtered second alternating current to the rectifier module.
  • the above power module further includes:
  • the PFC module is configured to perform power factor calibration on the second alternating current through the rectified voltage.
  • the first implementation manner of the selection module includes:
  • a first voltage detecting module configured to detect a voltage of the second high voltage direct current and the third high voltage direct current, and when detecting that the voltage of the second high voltage direct current is normal, output a shutdown signal to the second driving module, and
  • the first driving module outputs a communication signal; when detecting that the voltage of the second high voltage direct current is abnormal, outputting a shutdown signal to the first driving module, and outputting a communication signal to the second driving module;
  • the first driving module is configured to trigger, when receiving the shutdown signal, the first switch module to turn off the path of the second high voltage direct current input to the DC/DC module, and to receive the connected signal, and After the third high voltage direct current input to the DC/DC module is turned off, the first switch module is triggered. Passing the second high voltage direct current input to the path of the DC/DC module;
  • the second driving module is configured to: after receiving the communication signal, and after the path of the second high voltage direct current input to the DC/DC module is turned off, triggering the second switch module to connect the third high voltage direct current input to a path of the DC/DC module; and a path for triggering the second switch module to turn off the third high voltage direct current input to the DC/DC module upon receiving the shutdown signal;
  • the first switch module is connected between the second high voltage direct current and the DC/DC module, and is configured to respond to the driving of the first driving module, turn off the path of the second high voltage direct current input to the DC/DC module, and Two-way high-voltage direct current input to the path of the DC/DC module;
  • a second switch module connected between the third high voltage direct current and the DC/DC module for responding to the driving of the second driving module, turning off the path of the third high voltage direct current input to the DC/DC module, and Three high-voltage DC inputs are input to the DC/DC module.
  • the second implementation manner of the selection module includes:
  • a second voltage detecting module configured to detect a voltage of the second high voltage direct current and the third high voltage direct current, and when detecting that the second high voltage direct current voltage is normal, outputting the third high voltage direct current to the third driving module a signal input to a path of the DC/DC module, and a signal connecting the second high voltage direct current input to the path of the DC/DC module; and when detecting that the voltage of the second high voltage direct current is abnormal, to the third driving module Outputting a signal for turning off a path of the second high voltage direct current input to the DC/DC module, and a signal connecting the third high voltage direct current input to the path of the DC/DC module;
  • the third driving module is configured to receive Turning off the signal of the second high-voltage DC input to the path of the DC/DC module, and when connecting the signal of the third high-voltage direct current input to the path of the DC/DC module, triggering the third switch module to turn off the second high-voltage direct current Input to the path of the DC/DC module, and then
  • the third switch module is connected between the two high-voltage direct currents and the DC/DC module, and the two high-voltage direct currents are the second high-voltage direct current and the third high-voltage direct current; and are used for responding to the driving of the third driving module. Turning off the path of the second high voltage direct current input to the DC/DC module, and then connecting the third high voltage direct current input to the path of the DC/DC module; and in response to the driving of the third driving module, turning off the third high voltage The DC power is input to the path of the DC/DC module, and then the second high voltage DC input is connected to the path of the DC/DC module.
  • Embodiments of the present invention also provide a power supply device including an AC/DC module, a battery pack, a rectifier module, a selection module, and a DC/DC module:
  • the AC/DC module is configured to convert the input first alternating current into a first high voltage direct current output
  • the battery pack is configured to output standby high voltage direct current when the first high voltage direct current abnormality output by the AC/DC module is abnormal,
  • the battery pack is connected in parallel with the AC/DC module to output a third high voltage direct current;
  • the rectifier module is configured to rectify the input second alternating current, and convert the second alternating current into Second high voltage direct current output;
  • the selection module is connected to two high voltage direct current inputs to the path of the DC/DC module, the two high voltage direct currents including the second high voltage direct current and the third high voltage direct current, the selection module And configured to turn on the path of the second high voltage direct current input to the DC/DC module and turn off the third high voltage direct current input to the DC/DC when detecting that the second high voltage direct current is normal a path of the module, when detecting the second high voltage direct current abnormality, opening a path of the third high voltage direct current input to the DC/DC module and turning off the second high voltage direct current input to the DC /DC module path;
  • the DC/DC module is configured to convert the input second high voltage direct current or the third high voltage direct current into a low voltage direct current output for use by a load.
  • the above power supply device further includes a first EMI module
  • the first EMI module is configured to filter the third high voltage direct current and filter The third high voltage direct current after the wave is output to the selection module.
  • the power supply device further includes a second EMI module
  • the second EMI module is configured to filter the input second alternating current, and output the filtered second alternating current to the rectifier module.
  • the above power supply device further includes:
  • the PFC module is configured to perform power factor calibration on the second alternating current through the rectified voltage.
  • the first implementation manner of the selection module includes:
  • a first voltage detecting module configured to detect a voltage of the second high voltage direct current and the third high voltage direct current, and when detecting that the voltage of the second high voltage direct current is normal, output a shutdown signal to the second driving module, and
  • the first driving module outputs a communication signal; when detecting that the voltage of the second high voltage direct current is abnormal, outputting a shutdown signal to the first driving module, and outputting a communication signal to the second driving module;
  • the first driving module is configured to trigger, when receiving the shutdown signal, the first switch module to turn off the path of the second high voltage direct current input to the DC/DC module, and to receive the connected signal, and After the third high voltage direct current input to the DC/DC module is turned off, the first switch module is connected to connect the second high voltage direct current input to the DC/DC module;
  • the second driving module is configured to: after receiving the communication signal, and after the path of the second high voltage direct current input to the DC/DC module is turned off, triggering the second switch module to connect the third high voltage direct current input to a path of the DC/DC module; and a path for triggering the second switch module to turn off the third high voltage direct current input to the DC/DC module upon receiving the shutdown signal;
  • the first switch module is connected between the second high voltage direct current and the DC/DC module, and is configured to respond to the driving of the first driving module, turn off the path of the second high voltage direct current input to the DC/DC module, and Two-way high-voltage direct current input to the path of the DC/DC module;
  • a second switch module connected between the third high voltage direct current and the DC/DC module for responding to the driving of the second driving module, turning off the path of the third high voltage direct current input to the DC/DC module, and Three high-voltage DC inputs are input to the DC/DC module.
  • the second implementation manner of the selection module includes: a second voltage detection module, configured to detect a voltage of the second high voltage direct current and the third high voltage direct current, and detect the second road When the high voltage direct current voltage is normal, outputting a signal for turning off the path of the third high voltage direct current input to the DC/DC module to the third driving module, and a signal connecting the second high voltage direct current input to the path of the DC/DC module;
  • the third driving module is configured to receive a signal for turning off a path of the second high voltage direct current input to the DC/DC module, and connecting the third high voltage direct current input to the DC/DC
  • the third switch module is triggered to
  • the third switch module is triggered to turn off the path of the third high voltage direct current input to the DC/DC module, and then the third switch module is connected to the path of the second high voltage direct current input to the DC/DC module.
  • the third switch module is connected between the two high-voltage direct currents and the DC/DC module, and the two high-voltage direct currents are the second high-voltage direct current and the third high-voltage direct current; and are used for responding to the driving of the third driving module. Turning off the path of the second high voltage direct current input to the DC/DC module, and then connecting the third high voltage direct current input to the path of the DC/DC module; and in response to the driving of the third driving module, turning off the third high voltage The DC power is input to the path of the DC/DC module, and then the second high voltage DC input is connected to the path of the DC/DC module.
  • An embodiment of the present invention further provides a power supply system, including: X AC/DC modules, W power modules, power bus bars, and battery packs,
  • the power module is configured to adjust at least one input voltage and output the power to a load, where the power module includes a rectifier module, a selection module, and a DC/DC module; and the AC/DC module is configured to: Convert the input first AC power to the first high voltage DC power Out
  • the battery pack is configured to output standby high voltage direct current when the first high voltage direct current abnormality outputted by the X AC/DC modules is abnormal;
  • the battery pack is connected in parallel with the power supply bus bar to output a third high voltage direct current power, and the third high voltage direct current power is input to the W power supply modules;
  • the rectifier module is configured to rectify the input second alternating current, and convert the second alternating current into a second high voltage direct current output;
  • the selection module is connected to two high voltage direct current inputs to the path of the DC/DC module, the two high voltage direct currents including the second high voltage direct current and the third high voltage direct current, the selection module And configured to turn on the path of the second high voltage direct current input to the DC/DC module and turn off the third high voltage direct current input to the DC/DC when detecting that the second high voltage direct current is normal a path of the module, when detecting the second high voltage direct current abnormality, opening a path of the third high voltage direct current input to the DC/DC module and turning off the second high voltage direct current input to the DC /DC module path;
  • the DC/DC module is configured to convert the input second high voltage direct current or the third high voltage direct current into a low voltage direct current output for use by the load.
  • W are integers greater than zero.
  • the above power supply system further includes a first EMI module
  • the first EMI module is configured to filter the third high voltage direct current, and output the filtered third high voltage direct current to the selection module.
  • the above power supply system further includes a second EMI module
  • the second EMI module is configured to filter the input second alternating current, and output the filtered second alternating current to the rectifier module.
  • the PFC module is configured to perform power factor calibration on the second alternating current through the rectified voltage.
  • the first implementation manner of the selection module includes:
  • a first voltage detecting module configured to detect a voltage of the second high voltage direct current and the third high voltage direct current, and when detecting that the voltage of the second high voltage direct current is normal, output a shutdown signal to the second driving module, and
  • the first driving module outputs a communication signal; when detecting that the voltage of the second high voltage direct current is abnormal, outputting a shutdown signal to the first driving module, and outputting a communication signal to the second driving module;
  • the first driving module is configured to trigger, when receiving the shutdown signal, the first switch module to turn off the path of the second high voltage direct current input to the DC/DC module, and to receive the connected signal, and After the third high voltage direct current input to the DC/DC module is turned off, the first switch module is connected to connect the second high voltage direct current input to the DC/DC module;
  • the second driving module is configured to: after receiving the communication signal, and after the path of the second high voltage direct current input to the DC/DC module is turned off, triggering the second switch module to connect the third high voltage direct current input to a path of the DC/DC module; and a path for triggering the second switch module to turn off the third high voltage direct current input to the DC/DC module upon receiving the shutdown signal;
  • the first switch module is connected between the second high voltage direct current and the DC/DC module, and is configured to respond to the driving of the first driving module, turn off the path of the second high voltage direct current input to the DC/DC module, and Two-way high-voltage direct current input to the path of the DC/DC module;
  • a second switch module connected between the third high voltage direct current and the DC/DC module for responding to the driving of the second driving module, turning off the path of the third high voltage direct current input to the DC/DC module, and Three high-voltage DC inputs are input to the DC/DC module.
  • the second implementation manner of the selection module includes:
  • a second voltage detecting module configured to detect a voltage of the second high voltage direct current and the third high voltage direct current, and when detecting that the second high voltage direct current voltage is normal, outputting the third high voltage direct current to the third driving module a signal input to a path of the DC/DC module, and a signal connecting the second high voltage direct current input to the path of the DC/DC module; detecting the voltage of the second high voltage direct current When abnormal, outputting a signal for turning off the path of the second high voltage direct current input to the DC/DC module to the third driving module, and a signal for connecting the path of the third high voltage direct current input to the DC/DC module; a driving module, configured to trigger a third switch when receiving a signal for turning off a path of the second high voltage direct current input to the DC/DC module, and a signal connecting the third high voltage direct current input to the path of the DC/DC module The module turns off the path of the second high voltage direct current input to the DC/DC module, and then triggers the third switch module to communicate with the third high
  • the third switch module is connected between the two high-voltage direct currents and the DC/DC module, and the two high-voltage direct currents are the second high-voltage direct current and the third high-voltage direct current; and are used for responding to the driving of the third driving module. Turning off the path of the second high voltage direct current input to the DC/DC module, and then connecting the third high voltage direct current input to the path of the DC/DC module; and in response to the driving of the third driving module, turning off the third high voltage The DC power is input to the path of the DC/DC module, and then the second high voltage DC input is connected to the path of the DC/DC module.
  • the X AC/DC modules are disposed in a power cabinet.
  • An embodiment of the present invention further provides an ICT device, where the ICT device includes: N power modules and M loads.
  • the power module is configured to adjust the input voltage to the load, and output the power to the load, where the N power modules supply power to the M loads;
  • the power module includes a rectifier module, and the selection module , and DC/DC modules;
  • the rectifier module is configured to rectify the input second alternating current, and convert the second alternating current into a second high voltage direct current output;
  • the selection module is connected to two high voltage direct current inputs to the path of the DC/DC module.
  • the two high-voltage direct currents include the second high-voltage direct current and the third high-voltage direct current, and the selecting module is configured to open the second high-voltage direct current input when detecting that the second high-voltage direct current is normal.
  • the path of the DC/DC module turns off the path of the third high voltage direct current input to the DC/DC module, and when the second high voltage direct current abnormality is detected, the third high voltage direct current is turned on Inputting a path to the DC/DC module and turning off a path of the second high voltage direct current input to the DC/DC module;
  • the DC/DC module is configured to convert the input second high voltage direct current or the third high voltage direct current into a low voltage direct current output for use by the load;
  • the power module further includes a first EMI module
  • the first EMI module is configured to filter the third high voltage direct current, and output the filtered third high voltage direct current to the selection module;
  • the power module further includes:
  • the second EMI module is configured to filter the input second alternating current, and output the filtered second alternating current to the rectifier module.
  • the power module further includes:
  • the PFC module is configured to perform power factor calibration on the second alternating current through the rectified voltage.
  • the above ICT device further includes m power modules, wherein the m power modules are redundantly backed up, where m is an integer greater than zero.
  • the above ICT device further includes a low voltage bus, the N power modules and the DC/DC modules of the m power modules output the low voltage direct current to the low voltage bus, and the M loads are connected to the low voltage bus Up to achieve power supply of the M loads.
  • an overcurrent protection module is connected between at least one of the M loads and the low voltage bus, and the overcurrent protection module is configured to be connected to the overcurrent protection module.
  • the load provides overcurrent protection.
  • the M loads may also be divided into a plurality of load regions, each of the load regions including at least one load, and each load region is connected to the low voltage bus to implement the M Power supply for a load.
  • An overcurrent protection module is connected between the at least one load zone of the plurality of load zones and the low voltage bus, and the overcurrent protection module is configured to provide the load zone connected to the overcurrent protection module. Overcurrent protection.
  • the first implementation manner of the selection module includes:
  • a first voltage detecting module configured to detect a voltage of the second high voltage direct current and the third high voltage direct current, and when detecting that the voltage of the second high voltage direct current is normal, output a shutdown signal to the second driving module, and
  • the first driving module outputs a communication signal; when detecting that the voltage of the second high voltage direct current is abnormal, outputting a shutdown signal to the first driving module, and outputting a communication signal to the second driving module;
  • the first driving module is configured to trigger, when receiving the shutdown signal, the first switch module to turn off the path of the second high voltage direct current input to the DC/DC module, and to receive the connected signal, and After the third high voltage direct current input to the DC/DC module is turned off, the first switch module is connected to connect the second high voltage direct current input to the DC/DC module;
  • the second driving module is configured to: after receiving the communication signal, and after the path of the second high voltage direct current input to the DC/DC module is turned off, triggering the second switch module to connect the third high voltage direct current input to a path of the DC/DC module; and a path for triggering the second switch module to turn off the third high voltage direct current input to the DC/DC module upon receiving the shutdown signal;
  • the first switch module is connected between the second high voltage direct current and the DC/DC module, and is configured to respond to the driving of the first driving module, turn off the path of the second high voltage direct current input to the DC/DC module, and Two-way high-voltage direct current input to the path of the DC/DC module;
  • a second switch module connected between the third high voltage direct current and the DC/DC module for responding to the driving of the second driving module, turning off the path of the third high voltage direct current input to the DC/DC module, and Three high-voltage DC inputs are input to the DC/DC module.
  • the second implementation manner of the selection module includes: a second voltage detecting module, configured to detect a voltage of the second high voltage direct current and the third high voltage direct current, and when detecting that the second high voltage direct current voltage is normal, outputting the third high voltage direct current to the third driving module a signal input to a path of the DC/DC module, and a signal connecting the second high voltage direct current input to the path of the DC/DC module; and when detecting that the voltage of the second high voltage direct current is abnormal, to the third driving module Outputting a signal for turning off a path of the second high voltage direct current input to the DC/DC module, and a signal connecting the third high voltage direct current input to the path of the DC/DC module; the third driving module is configured to receive Turning off the signal of the second high-voltage DC input to the path of the DC/DC module, and when connecting the signal of the third high-voltage direct current input to the path of the DC/DC module, triggering the third switch module to turn off the second high-voltage direct current
  • the third switch module is connected between the two high-voltage direct currents and the DC/DC module, and the two high-voltage direct currents are the second high-voltage direct current and the third high-voltage direct current; and are used for responding to the driving of the third driving module. Turning off the path of the second high voltage direct current input to the DC/DC module, and then connecting the third high voltage direct current input to the path of the DC/DC module; and in response to the driving of the third driving module, turning off the third high voltage
  • the DC power is input to the path of the DC/DC module, and then the second high voltage DC input is connected to the path of the DC/DC module.
  • two power circuits that are backed up by using the second alternating current and the third high voltage direct current are used to enter the power module, because the power module can access two paths to each other.
  • the backup supply voltage therefore, can be used to connect more voltages to a smaller number of power modules, thereby saving power costs.
  • the branch circuit does not need to be powered, and the third-channel high-voltage direct current power supply branch uses battery packs for backup. Since the two power supply branches do not use the more expensive UPS equipment for backup power, and only the third-channel high-voltage direct current power supply branch uses the battery pack to reserve power, the power supply cost is low.
  • FIG. 1 is a schematic diagram of a power supply method of an existing data center (or a computer room);
  • FIG. 2 is a schematic flowchart of a power supply method according to an embodiment of the present invention.
  • FIG. 3 is a schematic flowchart of another power supply method according to an embodiment of the present invention.
  • FIG. 4 is a schematic diagram of a power supply device according to an embodiment of the present invention.
  • FIG. 5 is a schematic diagram of a selection module according to an embodiment of the present invention.
  • FIG. 6 is a schematic diagram of another selection module according to an embodiment of the present invention.
  • FIG. 7 is a schematic diagram of a power supply system according to an embodiment of the present invention.
  • FIG. 8 is a schematic diagram of a first AC ATS module, a second AC ATS module, and an oil machine according to an embodiment of the present invention
  • FIG. 9 is a schematic diagram of a specific implementation of the power supply system shown in FIG. 7;
  • FIG. 10 is a schematic diagram of another specific implementation of the power supply system shown in FIG. 7;
  • FIG. 11 is a schematic diagram of an ICT device according to an embodiment of the present invention.
  • the technical solutions in the embodiments of the present invention are clearly and completely described in the following with reference to the accompanying drawings in the embodiments of the present invention. It is obvious that the described embodiments are only a part of the embodiments of the present invention, and not all of the embodiments. example. Based on the embodiments of the present invention, those of ordinary skill in the art have not made All other embodiments obtained under the premise of creative labor are within the scope of the invention.
  • the present invention provides an embodiment of a first power supply method, which is applied to a power module, where the power module is configured to adjust at least one input voltage and output the power to a load to implement power supply to the load.
  • the input second alternating current is rectified, and the second alternating current is converted into a second high voltage direct current (HVDC);
  • the input third high voltage direct current is input to the DC/DC module; when the second high voltage direct current is detected to be normal, the second high voltage direct current input is The DC/DC module, the third high voltage direct current input at this time is in a standby state; the DC/DC module converts the input second high voltage direct current or the third high voltage direct current into a low voltage DC output for use by the load.
  • the two-way alternating current and the third high-voltage direct current are mutually backup two voltages enter the power module, because the power module can access two mutual The backup supply voltage, therefore, can be used to connect more voltages to a smaller number of power modules, thereby saving power costs. Further, the number of power modules used is small, and the size of the equipment accommodating the power modules can also be reduced.
  • the power supply method may further include:
  • the power supply method further includes:
  • the input third high voltage direct current is filtered. After the input of the second alternating current is rectified, and before the second alternating current is input to the DC/DC module, the power supply method further includes:
  • the second alternating current is subjected to power factor calibration by the rectified voltage.
  • the first alternating current or the second alternating current may be a three-phase 380V voltage, or a three-phase 480V voltage, or a single-phase 220V voltage, or a single-phase 120V voltage.
  • the power factor is calibrated for the second alternating current, when the second alternating current is 220V, the normal voltage of the second high voltage direct current is 350-450V; when the second alternating current is 110V, the second high voltage direct current is Normal voltage range: 130-250V.
  • the voltage of the second high voltage DC is normal: 240-390V; when the second AC is 110V, the second high voltage DC
  • the normal voltage range 110-190V.
  • the normal range of voltages of the second high voltage direct current and the third high voltage direct current may be adjusted according to the needs of the load or according to the capability of the hardware in the power supply system.
  • the second high voltage direct current is normal, and the voltage of the second high voltage direct current is within the above normal range.
  • the second high voltage direct current abnormality means that the voltage of the second high voltage direct current is outside the above normal range. At this time, the second alternating current overvoltage, or the second alternating current undervoltage, or the second alternating current voltage is lost (no voltage), or the second alternating current frequency is abnormal, or the second alternating current has a waveform distortion.
  • the normal voltage of the first high voltage direct current is 260-400V.
  • the normality of the first high voltage direct current means that the voltage of the first high voltage direct current is within the above normal range.
  • the first high voltage direct current abnormality means that the voltage of the first high voltage direct current is outside the normal range described above.
  • the normal voltage range of the third high voltage direct current 260-400V.
  • the third high voltage direct current is normal, wherein the voltage of the third high voltage direct current is within the above normal range.
  • the third high voltage direct current abnormality means that the voltage of the third high voltage direct current is outside the normal range described above.
  • the present invention provides an embodiment of a second power supply method, including:
  • the battery pack outputs a standby high voltage direct current when the first high voltage direct current is abnormal, wherein the battery pack outputs a third high voltage direct current in parallel with the first high voltage direct current;
  • the input second alternating current is rectified, and the second alternating current is converted into a second high voltage direct current
  • the second high voltage direct current When detecting that the second high voltage direct current is normal, the second high voltage direct current is input to the DC/DC module, and the third high voltage direct current is connected in parallel with the battery group to output the third road.
  • the high voltage direct current is in a standby state; when the second high voltage direct current abnormality is detected, the third high voltage direct current is input to the DC/DC module;
  • the DC/DC module converts the input second high voltage direct current or the third high voltage direct current into a low voltage direct current output for use by a load.
  • the power supply branch B when the second alternating current is normal, the power supply branch B supplies power, and when the second alternating current is abnormal, the power supply branch A supplies power.
  • the power supply branch A when the first alternating current is normal, the first alternating current power is supplied, and when the first alternating current is abnormal, the battery pack supplies power.
  • the first alternating current abnormality refers to: the first alternating current overvoltage, or the first alternating current undervoltage, or the first alternating current voltage is lost (no voltage), or the first alternating current frequency is abnormal, or First road Waveform distortion occurs in the current.
  • the normality of the first alternating current refers to a state in which the first alternating current is outside the abnormal state.
  • the second alternating current abnormality refers to: the second alternating current overvoltage, or the second alternating current undervoltage, or the second alternating current voltage is lost (no voltage), or the second alternating current frequency is abnormal, or the second Waveform distortion occurred in the AC.
  • the normality of the second alternating current refers to a state in which the second alternating current is outside the abnormal state.
  • the power supply branch of the second alternating current power does not need to be powered, and the power supply branch of the third high voltage direct current power source uses the battery pack for power backup. Since the two power supply branches do not use the more expensive UPS equipment for backup power, and only the third-channel high-voltage direct current power supply branch uses the battery pack to reserve power, the power supply cost is low. Moreover, when the second alternating current is normal, the second alternating current is used to supply power, and at this time, the power supply has few switching links, which improves the efficiency of power supply and power distribution.
  • the AC/DC module is connected in parallel with the battery pack, when the first alternating current and the second alternating current return to normal after the battery pack is discharged, the second alternating current is used to supply power to the load.
  • the first high voltage direct current outputted by the AC/DC module is charged by the AC power to the battery pack, and the battery pack is fully charged and then enters the floating state.
  • the power supply method before the input of the second alternating current is rectified, the power supply method may further include:
  • the input second alternating current is filtered.
  • the power supply method may further include:
  • the third high voltage direct current is filtered.
  • the power supply method may further include:
  • the second alternating current is subjected to power factor calibration by the rectified voltage.
  • the first alternating current or the second alternating current may be It is a 3-phase 380V voltage, or a 3-phase 480V voltage, or a single-phase 220V voltage, or a single-phase 120V voltage and other voltage specifications.
  • the power factor is calibrated for the second alternating current, when the second alternating current is 220V, the normal voltage of the second high voltage direct current is 350-450V; when the second alternating current is 110V, the second high voltage direct current is Normal voltage range: 130-250V.
  • the voltage of the second high voltage DC is normal: 240-390V; when the second AC is 110V, the second high voltage DC The normal voltage range: 110-190V.
  • the normal range of voltages of the second high voltage direct current and the third high voltage direct current may be adjusted according to the needs of the load or according to the capability of the hardware in the power supply system.
  • the second high voltage direct current is normal, and the voltage of the second high voltage direct current is within the above normal range.
  • the second high voltage direct current abnormality means that the voltage of the second high voltage direct current is outside the above normal range. At this time, the second alternating current overvoltage, or the second alternating current undervoltage, or the second alternating current voltage is lost (no voltage), or the second alternating current frequency is abnormal, or the second alternating current has a waveform distortion.
  • the normal voltage of the first high voltage direct current is 260-400V.
  • the normality of the first high voltage DC current means that the voltage of the first high voltage direct current is within the above normal range.
  • the first high voltage direct current abnormality means that the voltage of the first high voltage direct current is outside the normal range described above.
  • the normal voltage range of the third high voltage direct current 260-400V.
  • the third high voltage direct current is normal, wherein the voltage of the third high voltage direct current is within the above normal range.
  • the third high voltage direct current abnormality means that the voltage of the third high voltage direct current is outside the normal range described above.
  • the mains is converted into the first alternating current and the There are two ways to describe the second AC:
  • the two mains include the first mains A and the second mains B.
  • the first mains A When the first mains power is normal, the first mains A is divided into two branch outputs, one branch is the first alternating current, and the other branch is the second alternating current;
  • the second mains B is divided into two branch outputs, one branch is the first alternating current, and the other branch is the Second alternating current;
  • the first mains A abnormality refers to: the first mains A overvoltage, or the first mains A undervoltage, or the first mains A voltage is lost ( There is no voltage), or the frequency of the first mains A is abnormal, or the waveform of the first mains A is distorted.
  • the first mains power A is normally a state in which the first mains power A is outside the abnormal state.
  • the second mains B abnormality refers to: the second mains B overvoltage, or the second mains B undervoltage, or the second mains B voltage is lost (no voltage ), or the frequency of the second mains B is abnormal, or the waveform of the second mains B is distorted.
  • the second mains B is normally in a state in which the second mains B is outside the abnormal state.
  • the mains abnormality refers to: the mains overvoltage, or the mains undervoltage, or the mains voltage is lost (no voltage), or the mains frequency is abnormal, or Waveform distortion of the mains, etc.
  • the normal power supply refers to a state in which the commercial power is outside the abnormal state. Power module
  • the present invention provides an embodiment of a power module, where the power module includes a rectifier module, a selection module, and a DC/DC module, and the rectifier module is configured to input an input second AC (second AC) Rectifying, and converting the second alternating current into a second high voltage direct current (second HVDC) output;
  • the power module includes a rectifier module, a selection module, and a DC/DC module
  • the rectifier module is configured to input an input second AC (second AC) Rectifying, and converting the second alternating current into a second high voltage direct current (second HVDC) output;
  • the selection module is connected to two high voltage direct current inputs to the path of the DC/DC module, and the two high voltage direct currents comprise the second high voltage direct current and the third high voltage direct current (third HVDC).
  • the selection module is configured to: when detecting that the second high voltage direct current is normal, open the path of the second high voltage direct current input to the DC/DC module and turn off the third high voltage direct current input to the a path of the DC/DC module, when detecting the second high voltage direct current abnormality, opening a path of the third high voltage direct current input to the DC/DC module and turning off the second high voltage direct current input a path to the DC/DC module;
  • the DC/DC module is configured to convert the input second high voltage direct current or the third high voltage direct current into a low voltage direct current output for use by a load. It can be seen that, in the embodiment of the power module of the present invention, the two-way alternating current and the third high-voltage direct current are mutually backup two voltages enter the power module, because the power module can access two mutual The backup supply voltage, therefore, can be used to connect more voltages to a smaller number of power modules, thereby saving power costs. Further, the number of power modules used is small, and the size of the equipment accommodating the power modules can also be reduced.
  • the power module may further include a first EMI module;
  • the first EMI module is configured to filter the third high voltage direct current, and output the filtered third high voltage direct current to the selection module;
  • the power module can further include:
  • the second EMI module is configured to filter the input second alternating current (second AC), and output the filtered second alternating current to the rectifier module.
  • the power module can further include:
  • the PFC module is configured to perform power factor calibration on the second alternating current through the rectified voltage.
  • the first EMI module is further used for lightning protection; and the second EMI module is further used for lightning protection.
  • the first alternating current or the second alternating current may be a three-phase 380V voltage, or a three-phase 480V voltage, or a single-phase 220V voltage, or a single-phase 120V voltage.
  • the power factor is calibrated for the second alternating current, when the second alternating current is 220V, the normal voltage of the second high voltage direct current is 350-450V; when the second alternating current is 110V, the second high voltage direct current is Normal voltage range: 130-250V.
  • the voltage of the second high voltage DC is normal: 240-390V; when the second AC is 110V, the second high voltage DC The normal voltage range: 110-190V.
  • the normal range of the voltage of the second high voltage direct current and the third high voltage direct current can be adjusted.
  • the second high voltage direct current is normal, and the voltage of the second high voltage direct current is within the above normal range.
  • the second high voltage direct current abnormality means that the voltage of the second high voltage direct current is outside the above normal range. At this time, the second alternating current overvoltage, or the second alternating current undervoltage, or the second alternating current voltage is lost (no voltage), or the second alternating current frequency is abnormal, or the second alternating current has a waveform distortion.
  • the normal voltage of the first high voltage direct current is 260-400V.
  • the normality of the first high voltage DC current means that the voltage of the first high voltage direct current is within the above normal range.
  • the first high voltage direct current abnormality means that the voltage of the first high voltage direct current is outside the normal range described above.
  • the normal voltage range of the third high voltage direct current 260-400V.
  • the normality of the third high voltage DC current means that the voltage of the third high voltage direct current is within the above normal range.
  • the third high voltage direct current abnormality means that the voltage of the third high voltage direct current is outside the normal range described above.
  • the implementation of the selection module in the embodiment of the subsequent power supply device may be employed.
  • the present invention provides an embodiment of a power supply device, including an AC/DC module, a battery pack, a rectifier module, a selection module, and a DC/DC module;
  • the AC/DC module is configured to convert the input first alternating current (first AC) into a first high voltage direct current (first HVDC) output;
  • the battery pack the first high voltage direct current abnormality outputted by the AC/DC module When the standby high voltage direct current is output,
  • the battery pack is connected in parallel with the AC/DC module to output a third high voltage direct current (third C);
  • the rectifier module is configured to rectify the input second alternating current, and convert the second alternating current into a second high voltage direct current (second HVDC) output;
  • the selection module is connected to two high voltage direct current inputs to the path of the DC/DC module, the two high voltage direct currents including the second high voltage direct current and the third high voltage direct current, the selection module And configured to turn on the path of the second high voltage direct current input to the DC/DC module and turn off the third high voltage direct current input to the DC/DC when detecting that the second high voltage direct current is normal a path of the module, when detecting the second high voltage direct current abnormality, opening a path of the third high voltage direct current input to the DC/DC module and turning off the second high voltage direct current input to the DC /DC module path;
  • the DC/DC module is configured to convert the input second high voltage direct current or the third high voltage direct current into a low voltage direct current output for use by a load.
  • the power supply branch of the second alternating current power supply does not need to be powered, and the power supply branch of the third high voltage direct current power supply uses the battery pack for power backup. Since the two power supply branches do not use the more expensive UPS equipment for backup power, and only the third-channel high-voltage direct current power supply branch uses the battery pack to reserve power, the power supply cost is low. Moreover, when the second alternating current is normal, the second alternating current is used to supply power, and at this time, the power supply has few switching links, which improves the efficiency of power supply and power distribution.
  • the above-described embodiment of the power supply apparatus of the present invention can be applied to a data center or a machine room, and if the load power of the data center or the equipment room is large, a plurality of such power supply devices can be provided to supply power to the load.
  • the power supply branch A having the first alternating current as an input
  • the other is a power supply branch B having the second alternating current as an input.
  • the power supply branch B supplies power
  • the power supply branch A supplies power.
  • the battery pack supplies power.
  • the first alternating current abnormality refers to: the first alternating current overvoltage, or the first alternating current undervoltage, or the first alternating current voltage is lost (no voltage), or the first alternating current frequency is abnormal, or Waveform distortion.
  • the normality of the first alternating current refers to a state in which the first alternating current is outside the abnormal state.
  • the second alternating current abnormality refers to: the second alternating current overvoltage, or the second alternating current undervoltage, or the second alternating current voltage is lost (no voltage), or the second alternating current frequency is abnormal, or the waveform distortion .
  • the normality of the second alternating current refers to a state in which the second alternating current is outside the abnormal state.
  • the AC/DC module is connected in parallel with the battery pack, when the first alternating current and the second alternating current return to normal after the battery pack is discharged, the second alternating current is used to supply power to the load.
  • the first high voltage direct current outputted by the AC/DC module is charged by the AC power to the battery pack, and the battery pack is fully charged and then enters the floating state.
  • the first alternating current or the second alternating current may be a three-phase 380V voltage, or a three-phase 480V voltage, or a single-phase 220V voltage, or a single-phase 120V voltage.
  • the power factor is calibrated for the second alternating current, when the second alternating current is 220V, the normal voltage of the second high voltage direct current is 350-450V; when the second alternating current is 110V, the second high voltage direct current is Normal voltage range: 130-250V.
  • the voltage of the second high voltage DC is normal: 240-390V; when the second AC is 110V, the second high voltage DC The normal voltage range: 110-190V.
  • the normal range of voltages of the second high voltage direct current and the third high voltage direct current may be adjusted according to the needs of the load or according to the bearing capacity of the power supply device and the power supply system in which the power supply device is located.
  • the second high voltage direct current is normal, the voltage of the second high voltage direct current Located within the normal range above.
  • the second high voltage direct current abnormality means that the voltage of the second high voltage direct current is outside the above normal range.
  • the second AC overvoltage, or the second AC undervoltage, or the second AC loss (no voltage), or the second AC frequency is abnormal, or the second AC has a waveform distortion.
  • the normal voltage of the first high voltage direct current is 260-400V.
  • the normality of the first high voltage direct current means that the voltage of the first high voltage direct current is within the above normal range.
  • the first high voltage direct current abnormality means that the voltage of the first high voltage direct current is outside the normal range described above.
  • the normal voltage range of the third high voltage direct current 260-400V.
  • the normality of the third high voltage DC current means that the voltage of the third high voltage direct current is within the above normal range.
  • the third high voltage direct current abnormality means that the voltage of the third high voltage direct current is outside the normal range described above.
  • the first EMI module and the second EMI module are further included;
  • the first EMI module is configured to filter the third high voltage direct current, and output the filtered third high voltage direct current to a selection module;
  • the second EMI module is configured to filter the input second alternating current (second AC), and output the filtered second alternating current to the rectifier module.
  • the power supply device can further include:
  • the PFC module is configured to perform power factor calibration on the second alternating current through the rectified voltage.
  • the first EMI module is further used for lightning protection; and the second EMI module is further used for lightning protection.
  • the selection module has two implementation manners, and the first implementation manner is as follows:
  • the selection module includes: a first voltage detecting module, configured to detect a voltage of the second high voltage direct current and the third high voltage direct current, and when detecting that the voltage of the second high voltage direct current is normal, output a shutdown signal to the second driving module, and The first driving module outputs a communication signal; when detecting that the voltage of the second high voltage direct current is abnormal, outputting a shutdown signal to the first driving module, and outputting a communication signal to the second driving module;
  • the first driving module is configured to trigger, when receiving the shutdown signal, the first switch module to turn off the path of the second high voltage direct current input to the DC/DC module, and to receive the connected signal, and After the third high voltage direct current input to the DC/DC module is turned off, the first switch module is connected to connect the second high voltage direct current input to the DC/DC module;
  • the second driving module is configured to: after receiving the communication signal, and after the path of the second high voltage direct current input to the DC/DC module is turned off, triggering the second switch module to connect the third high voltage direct current input to a path of the DC/DC module; and a path for triggering the second switch module to turn off the third high voltage direct current input to the DC/DC module upon receiving the shutdown signal;
  • the first switch module is connected between the second high voltage direct current and the DC/DC module, and is configured to respond to the driving of the first driving module, turn off the path of the second high voltage direct current input to the DC/DC module, and Two-way high-voltage direct current input to the path of the DC/DC module;
  • a second switch module connected between the third high voltage direct current and the DC/DC module for responding to the driving of the second driving module, turning off the path of the third high voltage direct current input to the DC/DC module, and Three high-voltage DC inputs are input to the DC/DC module.
  • the first switch module and the second switch module may be implemented by using a MOSFET or by using a relay.
  • the path connecting the second high voltage direct current input to the DC/DC module includes: a path connecting the positive pole of the second high voltage direct current and the positive pole of the input end of the DC/DC module at the same time, and The path between the negative pole of the second high voltage direct current and the negative pole of the input end of the DC/DC module.
  • the step of turning off the second high voltage direct current input to the DC/DC module includes: simultaneously turning off a path between the positive pole of the second high voltage direct current and the positive pole of the input end of the DC/DC module, And a path between the negative pole of the second high voltage direct current and the negative pole of the input end of the DC/DC module.
  • the path connecting the third high voltage direct current input to the DC/DC module includes: a path connecting the positive electrode of the third high voltage direct current and the positive terminal of the input end of the DC/DC module, and the The path between the negative pole of the three-way high-voltage direct current and the negative terminal of the input end of the DC/DC module.
  • the step of turning off the third high voltage direct current input to the DC/DC module includes: simultaneously turning off a path between the positive pole of the third high voltage direct current and the positive pole of the input end of the DC/DC module, and The path between the negative pole of the third high voltage direct current and the negative pole of the input end of the DC/DC module.
  • the selection module includes:
  • a second voltage detecting module configured to detect a voltage of the second high voltage direct current and the third high voltage direct current, and when detecting that the second high voltage direct current voltage is normal, outputting the third high voltage direct current to the third driving module a signal input to a path of the DC/DC module, and a signal connecting the second high voltage direct current input to the path of the DC/DC module; and when detecting that the voltage of the second high voltage direct current is abnormal, to the third driving module Outputting a signal for turning off the path of the second high voltage direct current input to the DC/DC module, and a signal connecting the third high voltage direct current input to the path of the DC/DC module;
  • the third driving module is configured to receive a signal for turning off a path of the second high voltage direct current input to the DC/DC module, and a signal connecting the third high voltage direct current input to the path of the DC/DC module. Triggering the third switch module to turn off the path of the second high voltage direct current input to the DC/DC module, and then triggering the third switch module to connect the third high voltage direct current input to the path of the DC/DC module; When the signal of the third high voltage direct current input to the path of the DC/DC module is broken, and the signal of the second high voltage direct current input to the path of the DC/DC module is connected, the third switch module is triggered to turn off the third high voltage direct current input. After the path to the DC/DC module, the third switch module is triggered to communicate with the second high voltage direct current input to the DC/DC module.
  • the third switch module is connected between the two high-voltage direct currents and the DC/DC module, and the two high-voltage direct currents are the second high-voltage direct current and the third high-voltage direct current;
  • the driving of the moving module turns off the path of the second high-voltage direct current input to the DC/DC module, and then connects the path of the third high-voltage direct current input to the DC/DC module; and is used for responding to the driving of the third driving module,
  • the third high voltage direct current is input to the path of the DC/DC module, and then the second high voltage direct current input is connected to the path of the DC/DC module.
  • the third switch module can be implemented by using a MOSFET or by using a relay.
  • the path connecting the second high voltage direct current input to the DC/DC module includes: a path connecting the positive pole of the second high voltage direct current and the positive pole of the input end of the DC/DC module at the same time, and The path between the negative pole of the second high voltage direct current and the negative pole of the input end of the DC/DC module.
  • the step of turning off the second high voltage direct current input to the DC/DC module includes: simultaneously turning off a path between the positive pole of the second high voltage direct current and the positive pole of the input end of the DC/DC module, and The path between the negative pole of the second high voltage direct current and the negative pole of the input end of the DC/DC module.
  • the path connecting the third high voltage direct current input to the DC/DC module includes: a path connecting the positive electrode of the third high voltage direct current and the positive terminal of the input end of the DC/DC module, and the The path between the negative pole of the three-way high-voltage direct current and the negative terminal of the input end of the DC/DC module.
  • the step of turning off the third high voltage direct current input to the DC/DC module includes: simultaneously turning off a path between the positive pole of the third high voltage direct current and the positive pole of the input end of the DC/DC module, and The path between the negative pole of the third high voltage direct current and the negative pole of the input end of the DC/DC module.
  • Power Supply System Referring to FIG. 7, an embodiment of the present invention further provides a power supply system, including: X AC/DC modules, W power modules, power bus bars, and battery packs.
  • the power module is configured to adjust at least one input voltage and output the power to the load, where the power module includes a rectifier module, a selection module, and a DC/DC module;
  • the AC/DC module is configured to convert the input first alternating current (first AC) into a first high voltage direct current (first HVDC) output;
  • the X first high voltage direct currents output by the X of the AC/DC modules are input to the power supply bus;
  • the battery pack is configured to output standby high voltage direct current when the first high voltage direct current abnormality outputted by the X AC/DC modules is abnormal;
  • the battery pack is connected in parallel with the power supply bus to output a third high voltage direct current (third HVDC), and the third high voltage direct current is input to the W power supply modules;
  • the rectifier module is configured to rectify the input second alternating current (second AC), and convert the second alternating current into a second high voltage direct current (second HVDC) output;
  • the selection module is connected to two high voltage direct current inputs to the path of the DC/DC module, the two high voltage direct currents including the second high voltage direct current and the third high voltage direct current, the selection module And configured to turn on the path of the second high voltage direct current input to the DC/DC module and turn off the third high voltage direct current input to the DC/DC when detecting that the second high voltage direct current is normal a path of the module, when detecting the second high voltage direct current abnormality, opening a path of the third high voltage direct current input to the DC/DC module and turning off the second high voltage direct current input to the DC /DC module path;
  • the DC/DC module is configured to convert the input second high voltage direct current or the third high voltage direct current into a low voltage direct current output for use by the load.
  • the selection module may adopt the implementation of the selection module in the foregoing power supply device embodiment.
  • the two-way alternating current and the third high-voltage direct current are mutually backup two voltages enter the power module, because the power module can access two mutually backup power supply voltages. Therefore, a small number of power modules can be used to access more voltages. Thereby saving power supply costs. Further, the number of power modules used is small, and the size of the equipment accommodating the power modules can also be reduced.
  • the power supply branch of the second alternating current does not need to be powered, and the power supply branch of the third high voltage direct current uses the battery pack for power supply. Since neither of the two power supply branches uses the more expensive UPS equipment for power supply, and only the third-stage high-voltage direct current power supply branch uses the battery pack to reserve power, the power supply cost is low. Moreover, when the second alternating current is normal, the second alternating current is used for power supply, and at this time, the power supply has few switching links, which improves the efficiency of power supply and power distribution.
  • X of the AC/DC modules realize parallel parallel sharing between the X AC/DC modules through a current sharing bus.
  • the first EMI module and the second EMI module are further included;
  • the first EMI module is configured to filter the third high voltage direct current, and output the filtered third high voltage direct current to the selection module;
  • the second EMI module is configured to filter the input second alternating current (second AC), and output the filtered second alternating current to the rectifier module;
  • the power supply system can further include:
  • the PFC module is configured to perform power factor calibration on the second alternating current through the rectified voltage.
  • the first EMI module is further used for lightning protection; and the second EMI module is further used for lightning protection.
  • the first alternating current or the second alternating current may be a three-phase 380V voltage, or a three-phase 480V voltage, or a single-phase 220V voltage, or a single-phase 120V voltage.
  • the power factor is calibrated for the second alternating current
  • the normal voltage of the second high voltage direct current is 350-450V
  • the second alternating current is 110V
  • the second high voltage direct current is Normal voltage range: 130-250V.
  • the power supply is not calibrated for the second AC, when the second AC is 220V, the voltage of the second high voltage DC is normal: 240-390V; when the second AC is 110V, the second high voltage DC The normal voltage range: 110-190V.
  • the normal range of voltages of the second high voltage direct current and the third high voltage direct current may be adjusted according to the needs of the load or according to the bearing capacity of the power supply device and the power supply system in which the power supply device is located.
  • the second high voltage direct current is normal, and the voltage of the second high voltage direct current is within the above normal range.
  • the second high voltage direct current abnormality means that the voltage of the second high voltage direct current is outside the above normal range. At this time, the second alternating current overvoltage, or the second alternating current undervoltage, or the second alternating current voltage is lost (no voltage), or the second alternating current frequency is abnormal, or the second alternating current has a waveform distortion.
  • the normal voltage of the first high voltage direct current is 260-400V.
  • the normality of the first high voltage DC current means that the voltage of the first high voltage direct current is within the above normal range.
  • the first high voltage direct current abnormality means that the voltage of the first high voltage direct current is outside the normal range described above.
  • the normal voltage range of the third high voltage direct current 260-400V.
  • the normality of the third high voltage DC current means that the voltage of the third high voltage direct current is within the above normal range.
  • the third high voltage direct current abnormality means that the voltage of the third high voltage direct current is outside the normal range described above.
  • each power module supports one AC (second AC) input and one HVDC (third high voltage DC) input.
  • the second alternating current power passes through the EMI module, the rectification and the PFC module inside the power module, and then outputs a second high voltage direct current with relatively stable voltage.
  • the third high voltage direct current is input to the selection module after passing through the EMI module.
  • the selection module detects and selects the second high-voltage direct current and the third high-voltage direct current. When the voltage of the second high-voltage direct current is within the set normal range, it is considered that the input second high-voltage direct current is normal, then the mode is selected.
  • the block controls the second high voltage direct current input to the DC/DC module of the latter stage of the selection module.
  • the corresponding rectification and PFC module When the second AC input voltage is faulty or abnormal such as undervoltage or overvoltage, the corresponding rectification and PFC module will shut down the PFC output or output an abnormal voltage due to an input fault or an abnormality such as undervoltage or overvoltage.
  • the module detects that the voltage of the second high-voltage direct current is not within the normal range, and the selection module determines the input second high-voltage direct current fault, so the second high-voltage direct current input is disconnected to the rear-stage DC/DC module, and the control is controlled.
  • the third high voltage DC input is input to the DC/DC module of the latter stage of the selection module.
  • the selection module detects that the voltage of the second high voltage direct current is restored to the set normal range, the third high voltage direct current input is disconnected to the path of the DC/DC module of the subsequent stage, and the second high voltage is re-opened. DC power is input to the DC/DC module of the subsequent stage.
  • the power supply branch A having a first alternating current as an input
  • the other is a power supply branch B having a second alternating current as an input.
  • the power supply branch B when the second alternating current is normal, the power supply branch B supplies power, and when the second alternating current is abnormal, the power supply branch A supplies power.
  • the power supply branch A when the first alternating current is normal, the first alternating current power is supplied, and when the first alternating current is abnormal, the battery pack supplies power.
  • the first alternating current abnormality refers to: the first alternating current overvoltage, or the first alternating current undervoltage, or the first alternating current voltage is lost (no voltage), or the first alternating current frequency is abnormal, or Waveform distortion.
  • the normality of the first alternating current refers to a state in which the first alternating current is outside the abnormal state.
  • the second alternating current abnormality refers to: the second alternating current overvoltage, or the second alternating current undervoltage, or the second alternating current voltage is lost (no voltage), or the second alternating current frequency is abnormal, or the waveform distortion .
  • the second alternating current is normal in a state in which the second alternating current is outside the abnormal state.
  • the UPS backup system is no longer set in the power supply branch A and the power supply branch B, which not only saves cost but also improves the efficiency of power supply and distribution.
  • the AC/DC module is connected in parallel with the battery pack, after the battery pack is discharged, when the first AC power returns to normal, the first AC power is outputted through the AC/DC module.
  • a high-voltage direct current powers the battery pack, and the battery pack is fully charged and then enters a floating state.
  • the DC/DC module converts the input second high voltage direct current or the third high voltage direct current into a low voltage direct current output, and the low voltage direct current can be a 48V, or + 12V, or + 54V, or a 54V, etc.).
  • the W power modules may be distributed in different ICT devices, where the ICT device may be located in a data center or a computer room.
  • the ICT device may be located in a data center or a computer room.
  • the "power supply A1" to "power AN.+m." is set in the first ICT device (in the figure) ICT device 1), ⁇ +13 ⁇ 4 in W power modules (where ⁇ , 13 ⁇ 4 is an integer greater than zero, 13 ⁇ 4 is less than or equal to N ("Power supply A1" to "Power A +nh” in the figure)
  • Two ICT devices ICT device 2 in the figure, and so on.
  • the W N 0 +m 0 +N 1 +m 1 + ⁇ .
  • a power module can meet the power requirements of the first ICT device (power demand), and the extra m.
  • the power modules are redundantly backed up.
  • ⁇ power modules can meet the power requirements of the second ICT device (power demand), and the extra 3 ⁇ 4 power modules are used as redundant backups.
  • N power modules can meet the power consumption requirements of an ICT device (power demand), and the extra m power modules are used as redundant backups.
  • the ICT device can include, but is not limited to, a router, or a switch, or a server, and the like.
  • the ICT device may further include a low voltage bus, N0+m0 or Nl+ml or N+m in an ICT device.
  • the DC/DC module of the power module outputs a low-voltage DC power to the low-voltage bus, and a load such as a single board or a fan in the ICT device is connected to the low-voltage bus to implement the load of the board, the fan, and the like.
  • An overcurrent protection module may be connected between the at least one load and the low voltage bus.
  • the overcurrent protection module is configured to provide overcurrent protection for the load connected to the overcurrent protection module.
  • the overcurrent protection module may include a fuse, or a circuit breaker or the like.
  • the ICT device may also include a current sharing bus, ⁇ + in an ICT device! ⁇ or ⁇ +! ! ⁇ or
  • N + m of the power modules implement N through the current sharing bus. +m. Or N 1 +m 1 or N+m of the power modules are evenly distributed with each other to ensure an even load sharing.
  • X, W, No, m. , 13 ⁇ 4 is an integer greater than zero.
  • the load in the ICT device (for example, ICT device 1 and ICT device 2 in the figure) can also be partitioned, for example: load region 1 to load region in ICT device 1 in the figure T, load zone 1 in ICT device 2 to the load zone.
  • M load zone 1 in ICT device 2
  • L is an integer greater than zero.
  • Each load zone is coupled to the low voltage bus to provide power to the load zone.
  • the load zone includes at least one load, and the load includes at least one electronic device, and the electronic device may be a single board, a fan, or the like.
  • An overcurrent protection module is connected between the at least one load zone of the plurality of load zones and the low voltage bus, and the overcurrent protection module is configured to provide the load zone connected to the overcurrent protection module.
  • the overcurrent protection module may include a fuse, or a circuit breaker or the like.
  • the X AC/DC modules may be disposed in a power cabinet.
  • the third high voltage direct current (third HVDC) may be output to the first EMI module of the W power modules through the distribution module;
  • the distribution module is configured to allocate the third high voltage direct current into W DC branch outputs of different capacities or the same capacity, and the W DC branches are respectively input to the W power modules.
  • the distribution module may be a first DC power distribution screen (a DC power distribution screen in the figure), and the first DC power distribution panel may further input the DC branch as an output.
  • the overcurrent protection is provided.
  • the first DC power distribution panel may further include a function of detecting a voltage and a current of the input third high voltage direct current.
  • the distribution module may also include a second DC power distribution panel (DC power distribution panel in the figure) and P DC power distribution cabinets (DC power distribution cabinets in the figure).
  • DC power distribution panel DC power distribution panel in the figure
  • P DC power distribution cabinets DC power distribution cabinets in the figure
  • the second DC power distribution panel is configured to allocate the third high voltage direct current power into Q DC branches of different capacities or the same capacity, and the Q DC branches are respectively input to the P DC power distribution cabinets.
  • a DC branch or a plurality of DC branches may be input to the DC power distribution cabinet in the Q DC branch;
  • the DC power distribution cabinet is configured to allocate each of the input DC branches into multiple DC branch outputs of different capacities or the same capacity;
  • the total number of the DC branches outputted by the P DC power distribution cabinets is W, and the W DC branches are respectively input to the first EMI modules of the W power modules, where the Q and P are greater than zero.
  • the integer is the integer.
  • the second DC power distribution panel may further provide overcurrent protection for the output DC branch; in addition, the second DC power distribution panel may further include the third path for inputting The function of detecting the voltage and current of high-voltage direct current.
  • the DC power distribution cabinet may further provide overcurrent protection for the output DC branch; and the DC power distribution cabinet may further include detecting the voltage and current of the input DC branch.
  • the AC power distribution cabinet is configured to allocate the input second AC power into an AC branch with different capacity or the same capacity; Further, the AC power distribution cabinet may further provide overcurrent protection for the output AC branch; in addition, the AC power distribution cabinet may further have an input of the second AC power The function of voltage and current detection.
  • the manner in which the mains is converted into the first alternating current and the second alternating current may be as follows: Referring to Figures 8 and 9, the first type:
  • two mains are input to the power supply system, and the two mains include the first mains A and the second mains B, and the power supply system further includes An AC ATS module, a second AC ATS module, and an oil machine (wherein the first AC ATS module and the second AC ATS module are shown together as an "AC ATS module" in FIG. 9); the two mains inputs are input to the First AC ATS module;
  • the first AC ATS module (ATS1 in the figure) is configured to receive a first mains A and a second mains B, and configured to: when the first mains A is normal, to the second exchange
  • the ATS module (ATS2 in the figure) outputs the first mains A, and is used to the second AC ATS module when the first mains A is abnormal and the second mains B is normal. Outputting the second mains B, when the first mains A and the second mains B are abnormal, the first mains A and the second mains B are not output;
  • the second AC ATS module is configured to output, when the first mains A is normal, the first AC ATS mode input to the first AC mains A, where the first mains A is abnormal
  • the second mains B When the second mains B is normal, the second mains B input from the first AC ATS module is output, and when the first mains A and the second mains B are abnormal,
  • the first road power A abnormality refers to: the first road power A overvoltage, or the first road market
  • the electric A is under voltage, or the voltage of the first mains A is lost (no voltage), or the frequency of the first mains A is abnormal, or the waveform of the first mains A is distorted.
  • the first mains supply A is normal in a state in which the first mains A is outside the abnormal state.
  • the second mains B abnormality refers to: the second mains B overvoltage, or the second mains B undervoltage, or the second mains B voltage is lost (no voltage ), or the frequency of the second mains B is abnormal, or the waveform of the second mains B is distorted.
  • the second mains B is normally in a state in which the second mains B is outside the abnormal state.
  • the mains supply is selected, only the first mains A and the second
  • the oil machine is started, and the oil machine is powered.
  • the oil machine can generate electricity from start to start, and the power is supplied by the battery pack before the oil machine can generate electricity.
  • the first AC power distribution screen is further included.
  • the first AC power distribution screen is configured to allocate the first mains A, or the second electric B, or the AC generated by the second AC ATS module, into two AC branches.
  • One AC branch is the first AC power and the other AC branch is the second AC.
  • the first AC power distribution panel may further provide overcurrent protection for the output AC branch; in addition, the first AC power distribution panel may further include the first road power supply A, Or the second mains B, or the alternating current generated by the oil machine, performs functions such as lightning protection, detection, and the like.
  • a mains power is input to the power supply system, and the power supply system further includes a third AC ATS module (AC ATS module in the figure), and an oil machine; Mains input to the third alternating current ATS module;
  • the oil machine is configured to generate electricity to generate alternating current and output to the third alternating current ATS module; the third alternating current ATS module is configured to output the input utility power when the utility power is normal When the utility power is abnormal, the AC power generated by the oil machine is output; wherein, the third AC ATS module outputs
  • the alternating current generated by the oil machine, or the mains, is divided into two branches, one branch is the first alternating current, and the other branch is the second alternating current.
  • the mains abnormality refers to: the mains overvoltage, or the mains undervoltage, or the mains voltage is lost (no voltage), or the mains frequency is abnormal, or Waveform distortion of the mains, etc.
  • the normal power supply refers to a state in which the commercial power is outside the abnormal state.
  • the mains supply is selected, and the oil machine is started under the abnormality of the mains, and the oil is supplied by the oil machine.
  • the oil machine can generate electricity from the start to the start. There is a process in which the battery pack is powered before the oil machine can generate electricity.
  • the third AC power distribution screen is further included.
  • the third alternating current power distribution screen is configured to allocate the commercial power output by the third alternating current ATS module or the alternating current generated by the oil machine into two alternating current branches, and one alternating current branch is the first alternating current and the other An alternating branch is the second alternating current.
  • the third AC power distribution panel may further provide overcurrent protection for the output AC branch; in addition, the third AC power distribution panel may further be configured to input the utility power, or the oil machine The AC power is used for lightning protection, or detection.
  • an embodiment of the present invention further provides an ICT device, where the ICT device includes: N power modules and M loads.
  • the power module is configured to adjust the input voltage to the load, and output the power to the load, where the N power modules supply power to the M loads;
  • the power module includes a rectifier module, and the selection module , and DC/DC modules;
  • the rectifier module is configured to rectify the input second alternating current (second AC), and convert the second alternating current into a second high voltage direct current (second HVDC) output;
  • the selection module is connected to two high voltage direct current inputs to the path of the DC/DC module.
  • the two high voltage direct currents include the second high voltage direct current (second HVDC) and the third high voltage direct current (third HVDC).
  • the selection module is configured to: when detecting that the second high voltage direct current is normal, open the path of the second high voltage direct current input to the DC/DC module and turn off the third high voltage direct current input to the a path of the DC/DC module, when detecting the second high voltage direct current abnormality, opening a path of the third high voltage direct current input to the DC/DC module and turning off the second high voltage direct current input a path to the DC/DC module;
  • the DC/DC module is configured to convert the input second high voltage direct current or the third high voltage direct current into a low voltage direct current output for use by the load;
  • N are integers greater than zero.
  • the selection module may employ an implementation of the selection module in the power supply apparatus embodiment described above.
  • the two-way alternating current and the third high-voltage direct current are mutually backup two-way voltages enter the power supply module, because the power supply module can access two mutually backup power supply voltages. Therefore, a small number of power modules can be used to access more voltages, thereby saving power costs. Further, the number of power modules used is small, and the volume of the ICT device housing the power module can be reduced.
  • X of the AC/DC modules may implement parallel current sharing between the X of the AC/DC modules through a current sharing bus.
  • the first EMI module and the second EMI module are further included;
  • the first EMI module is configured to filter the third high voltage direct current, and output the filtered third high voltage direct current to the selection module;
  • the second EMI module is configured to filter the input second alternating current (second AC), and output the filtered second alternating current to the rectifier module;
  • the ICT device can further include:
  • the PFC module is configured to perform power factor calibration on the second alternating current through the rectified voltage.
  • the first EMI module may be further used for lightning protection; and the second EMI module may be further used for lightning protection.
  • the first alternating current or the second alternating current may be a three-phase 380V voltage, or a three-phase 480V voltage, or a single-phase 220V voltage, or a single-phase 120V voltage.
  • the power factor is calibrated for the second alternating current, when the second alternating current is 220V, the normal voltage of the second high voltage direct current is 350-450V; when the second alternating current is 110V, the second high voltage direct current is Normal voltage range: 130-250V.
  • the voltage of the second high voltage DC is normal: 240-390V; when the second AC is 110V, the second high voltage DC The normal voltage range: 110-190V.
  • the normal range of the voltages of the second high voltage direct current and the third high voltage direct current may be adjusted according to the needs of the load or according to the power supply device and the power supply system of the power supply system or the ICT device.
  • the second high voltage direct current is normal, and the voltage of the second high voltage direct current is within the above normal range.
  • the second high voltage direct current abnormality means that the voltage of the second high voltage direct current is outside the above normal range. At this time, the second alternating current overvoltage, or the second alternating current undervoltage, or the second alternating current voltage is lost (no voltage), or the second alternating current frequency is abnormal, or the second alternating current has a waveform distortion.
  • the normal voltage of the first high voltage direct current is 260-400V.
  • the normality of the first high voltage DC current means that the voltage of the first high voltage direct current is within the above normal range.
  • the first high voltage direct current abnormality means that the voltage of the first high voltage direct current is outside the normal range described above.
  • the normal voltage range of the third high voltage direct current 260-400V.
  • the third road is high pressure straight Normally flowing current means that the voltage of the third high voltage direct current is within the above normal range.
  • the third high voltage direct current abnormality means that the voltage of the third high voltage direct current is outside the normal range described above.
  • each power module supports one AC (second AC) input and one HVDC (third high voltage DC) input.
  • the second AC power is output through a EMI module, a rectification and a PFC module inside the power module to output a second high voltage direct current with a relatively stable voltage.
  • the third high voltage DC power is input to the selection module after passing through the EMI module.
  • the selection module detects and selects the second high voltage direct current and the third high voltage direct current. When the voltage value of the second high voltage direct current is within the set normal range, it is considered that the input second high voltage direct current is normal, then the module is selected. Control the second high voltage DC input to the DC/DC module in the rear stage of the selection module.
  • the corresponding rectification and PFC module When the second AC input voltage is faulty or abnormal such as undervoltage or overvoltage, the corresponding rectification and PFC module will shut down the PFC output or output an abnormal voltage due to an input fault or an abnormality such as undervoltage or overvoltage.
  • the module detects that the voltage of the second high-voltage direct current is not within the normal range, and the selection module determines the input second high-voltage direct current fault, so the second high-voltage direct current input is disconnected to the rear-stage DC/DC module, and the control is controlled.
  • the third high voltage DC input is input to the DC/DC module of the latter stage of the selection module.
  • the selection module detects that the voltage of the second high voltage direct current is restored to the set normal range, the third high voltage direct current input is disconnected to the path of the DC/DC module of the subsequent stage, and the second high voltage is re-opened. DC power is input to the DC/DC module of the subsequent stage.
  • the ICT apparatus of the present invention there are two power supply branches, one is a power supply branch A having a first alternating current as an input, and the other is a power supply branch B having a second alternating current as an input.
  • the power supply branch B when the second alternating current is normal, the power supply branch B supplies power, and when the second alternating current is abnormal, the power supply branch A supplies power.
  • the power supply branch A when the first alternating current is normal, the first alternating current power is supplied, and when the first alternating current is abnormal, the battery pack supplies power.
  • the first alternating current abnormality refers to: the first alternating current overvoltage, or the first alternating current undervoltage, or the first alternating current voltage is lost (no voltage), or the frequency of the first alternating current is abnormal, Or waveform distortion.
  • the normality of the first alternating current refers to a state in which the first alternating current is outside the abnormal state.
  • the second alternating current abnormality refers to: the second alternating current overvoltage, or the second alternating current undervoltage, or the second alternating current voltage is lost (no voltage), or the second alternating current frequency is abnormal, or the waveform distortion .
  • the normality of the second alternating current refers to a state in which the second alternating current is outside the abnormal state.
  • the UPS backup system is no longer set in the power supply branch A and the power supply branch B, which not only saves cost but also improves the efficiency of power supply and distribution.
  • the AC/DC module is connected in parallel with the battery pack, after the battery pack is discharged, when the first AC power returns to normal, the first road is output by the first AC power after passing through the AC/DC module.
  • the high voltage direct current charges the battery pack, and the battery pack is fully charged and then enters a floating state.
  • the DC/DC module converts the input second high voltage direct current or the third high voltage direct current into a low voltage direct current output, and the low voltage direct current can be a 48V, or + 12V, or + 54V, or a 54V, etc.).
  • the W power modules may be distributed in different ICT devices, where the ICT device may be located in a data center or a computer room.
  • the "power supply A1" to "power AN.+m." is set in the first ICT device (in the figure) ICT device 1), ⁇ +!3 ⁇ 4 in W power modules (where ⁇ , 13 ⁇ 4 is an integer greater than zero, 13 ⁇ 4 is less than or equal to N ("Power supply A1" to "Power muscle +!3 ⁇ 4" in the figure) settings In the second ICT device (ICT device 2 in the figure), and so on.
  • the W N 0 + m 0 + N 1 + m 1 + ....
  • a power module can meet the power requirements of the first ICT device (power demand), and the extra m.
  • the power modules are redundantly backed up.
  • ⁇ power modules can meet the power requirements of the second ICT device (power demand), and the extra 3 ⁇ 4 power modules are used as redundant backups.
  • the ICT device may include, but is not limited to, a router, or a switch, or a server or the like.
  • the ICT apparatus may further include a low voltage bus, N located in an ICT device. +m. Or ⁇ +13 ⁇ 4 or N+m DC/DC modules of the power module output low voltage direct current to the low voltage bus, and M loads in the ICT device are connected to the low voltage bus to implement the M Power supply for a load.
  • the M loads include loads such as a single board and a fan in the ICT device.
  • An overcurrent protection module is connected between the at least one load of the M loads and the low voltage bus, and the overcurrent protection module is configured to provide overcurrent protection for the load connected to the overcurrent protection module. .
  • the overcurrent protection module may include a fuse, or a circuit breaker or the like.
  • the ICT device may also include a current sharing bus, ⁇ + in an ICT device! ⁇ or ⁇ +! ! ⁇ or
  • N + m of the power modules implement N through the current sharing bus. +m. Or equalization of N or m of the power modules to each other to ensure an even load sharing.
  • the M loads in the ICT device may be divided into multiple load regions, for example: ICT device 1 in the figure In the load zone 1 to the load zone T, the load zone 1 to the load zone in the ICT device 2, where T, L are integers greater than zero.
  • Each load zone is connected to the low voltage bus to provide power to the load zone.
  • the load zone includes at least one load, and the load includes at least one electronic device, and the electronic device may be a single board, a fan, or the like.
  • An overcurrent protection module is connected between the at least one load zone of the plurality of load zones and the low voltage bus, and the overcurrent protection module is configured to provide the load zone connected to the overcurrent protection module.
  • the overcurrent protection module may include a fuse, or a circuit breaker or the like.
  • the X AC/DC modules may be disposed in a power cabinet.
  • the third high voltage direct current may be output to the first EMI module of the W power modules through the distribution module;
  • the distribution module is configured to allocate the third high voltage direct current into W DC branch outputs of different capacities or the same capacity, and the W DC branches are respectively input to the W power modules.
  • the distribution module may be a first DC power distribution screen (a DC power distribution screen in the figure), and the first DC power distribution panel may further input the DC branch as an output.
  • the overcurrent protection is provided.
  • the first DC power distribution panel may further include a function of detecting a voltage and a current of the input third high voltage direct current.
  • the distribution module may also include a second DC power distribution panel (DC power distribution panel in the figure) and P DC power distribution cabinets (DC power distribution cabinets in the figure).
  • DC power distribution panel DC power distribution panel in the figure
  • P DC power distribution cabinets DC power distribution cabinets in the figure
  • the second DC power distribution panel is configured to allocate the third high voltage direct current power into Q DC branches of different capacities or the same capacity, and the Q DC branches are respectively input to the P DC power distribution cabinets.
  • a DC branch or a plurality of DC branches may be input to the DC power distribution cabinet in the Q DC branch;
  • the DC power distribution cabinet is configured to allocate each of the input DC branches into multiple DC branch outputs of different capacities or the same capacity;
  • the total number of the DC branches outputted by the P DC power distribution cabinets is W, and the W DC branches are respectively input to the first EMI modules of the W power modules, where the Q and P are greater than zero.
  • the integer may further provide overcurrent protection for the output DC branch; in addition, the second DC power distribution panel may further include the third path for inputting The function of detecting the voltage and current of high-voltage direct current.
  • the DC power distribution cabinet may further provide overcurrent protection for the output DC branch; and the DC power distribution cabinet may further include detecting the voltage and current of the input DC branch.
  • the AC power distribution cabinet is configured to allocate the input second AC power into an AC branch with different capacity or the same capacity
  • the AC power distribution cabinet may further provide overcurrent protection for the output AC branch; in addition, the AC power distribution cabinet may further have an input of the second AC power The function of voltage and current detection.
  • the storage medium may be a magnetic disk, an optical disk, a read-only memory (ROM), or a random access memory (RAM).

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Business, Economics & Management (AREA)
  • Emergency Management (AREA)
  • Theoretical Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Direct Current Feeding And Distribution (AREA)
  • Rectifiers (AREA)
  • Dc-Dc Converters (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

本发明实施例公开了一种供电方法,包括:将第二路交流电,进行整流,并将第二路交流电转换成第二路高压直流电;在所述第二路高压直流电异常时,将第三路高压直流电输入DC/DC模块;在所述第二路高压直流电正常时,将所述第二路高压直流电输入DC/DC模块;DC/DC模块将所述第二路高压直流电或第三路高压直流电,转换为低压直流电输出。

Description

一种供电方法及装置
技术领域 本发明涉及电子通信技术领域, 尤其涉及一种供电方法及装置。
背景技术 参见图 1, 现有的数据中心 (或机房) 采用交流供电方式, 为保证整个数 据中心设备的供电和配电的可靠性, 采用两套供电系统冗余备份的方式供电, 两路市电和油机通过 ATS (Automatic Transfer Switches, 自动切换开关) 切换设备给后级负载供电。
ATS输出的交流电经过 AC (Alternating Current交流) 配电屏后分为 A、 B两个分支, 分支 A输入到机房内的 UPS (Uninterruptible power supply不 间断电源) 系统 A, 分支 B输入到机房内的 UPS系统 B, UPS系统 A和 UPS系 统 B输出的交流电分别经过配电柜和列头柜后, 输入到机房内的 ICT
( Information Communication Technology, 信息与通信技术) 设备机柜, 给 ICT设备供电。
每个 ICT设备机柜接收 UPS系统 A和 UPS系统 B输出的交流电, 来自 UPS 系统 A的交流电 (简称 A平面交流电) 和来自 UPS系统 B的交流电 (简称 B 平面交流电)相互备份。 ICT设备机柜内的设备可以通过 A路配电单元由 A平 面交流电供电和通过 B路配电单元由 B平面交流电供电。 在上述现有的供电方式中, 每个电源模块只接收一路交流电, 相互备份 的 A平面交流电供电和 B平面交流电供电如果都有 N (N为大于零的整数) 路 的话, 则需要 N+N个电源模块 (图中 "电源 A1 "到 "电源 AN", 以及 "电源 B1 "到 "电源 BN")。 设备中的电源模块数量较多, 成本较高。 发明内容 本发明实施例提供一种能够降低成本的供电方法, 电源模块, 供电装置, 供电系统及 ICT设备。 本发明的实施例提供的供电方法, 应用于电源模块中, 所述电源模块用于 将输入的至少一路电压进行调整后输出给负载, 实现给负载供电, 其特征在 于, 所述供电方法包括:
将输入的第二路交流电, 进行整流, 并将所述第二路交流电转换成第二路 高压直流电;
在检测到所述第二路高压直流电异常时, 将输入的第三路高压直流电输入
DC/DC模块; 在检测到所述第二路高压直流电正常时, 将所述第二路高压直流 电输入所述 DC/DC模块, 此时输入的所述第三路高压直流电处在备用状态; 所述 DC/DC模块将输入的所述第二路高压直流电或所述第三路高压直流电, 转换为低压直流电输出, 以供负载使用。
在上述的供电方法中, 在将输入的所述第二路交流电进行整流之前, 所述 供电方法进一歩包括:
将输入的所述第二路交流电进行滤波。
在上述的供电方法中,
在将输入的所述第三路高压直流电输入所述 DC/DC模块之前, 所述供电方 法进一歩包括:
将输入的所述第三路高压直流电进行滤波。
在上述的供电方法中, 在将输入的所述第二路交流电进行整流之后, 并且, 在将所述第二路交流电输入所述 DC/DC模块之前, 所述供电方法进一歩包括: 将所述第二路交流电经过整流后的电压进行功率因素校准。 本发明的实施例还提供的另一种供电方法, 所述供电方法包括:
将输入的第一路交流电转换为第一路高压直流电; 蓄电池组在所述第一路高压直流电异常时, 输出备用高压直流电, 其中, 所述蓄电池组与所述第一路高压直流电并联后输出第三路高压直流电; 将输入的第二路交流电, 进行整流, 并将所述第二路交流电转换成第二路 高压直流电;
在检测到所述第二路高压直流电正常时, 将所述第二路高压直流电输入
DC/DC模块,此时所述第一路高压直流电与所述蓄电池组并联后输出的所述第 三路高压直流电处在备用状态; 在检测到所述第二路高压直流电异常时, 将 所述第三路高压直流电输入所述 DC/DC模块;
所述 DC/DC模块将输入的所述第二路高压直流电或所述第三路高压直流电, 转换为低压直流电输出, 以供负载使用。 在上述的另一种供电方法中, 在将输入的所述第二路交流电进行整流之前, 所述供电方法进一歩包括:
将输入的所述第二路交流电进行滤波。
在上述的另一种供电方法中, 在将所述第三路高压直流电输入所述 DC/DC 模块之前, 所述供电方法进一歩包括:
将所述第三路高压直流电进行滤波。
在上述的另一种供电方法中, 在将输入的所述第二路交流电进行整流之后, 并且, 在将所述第二路交流电输入所述 DC/DC模块之前, 所述供电方法进一 歩包括:
将所述第二路交流电经过整流后的电压进行功率因素校准。
本发明的实施例还提供一种电源模块, 其特征在于, 所述电源模块包括整 流模块, 选择模块, 以及 DC/DC模块;
所述整流模块, 用于将输入的第二路交流电, 进行整流, 并将所述第二路 交流电转换成第二路高压直流电输出;
所述选择模块, 连接在两路高压直流电输入到所述 DC/DC模块的通路上, 所述两路高压直流电包括所述第二路高压直流电和第三路高压直流电, 所述选择模块用于在检测到所述第二路高压直流电正常时, 打开所述第二 路高压直流电输入到所述 DC/DC模块的通路并关断所述第三路高压直流电输 入到所述 DC/DC模块的通路, 在检测到所述第二路高压直流电异常时, 打开 所述第三路高压直流电输入到所述 DC/DC模块的通路并关断所述第二路高压 直流电输入到所述 DC/DC模块的通路;
所述 DC/DC模块, 用于将输入的所述第二路高压直流电或所述第三路高压 直流电, 转换为低压直流电输出, 以供负载使用。 上述的电源模块还进一歩包括第一 EMI模块;
所述第一 EMI模块, 用于将所述第三路高压直流电进行滤波, 并将经过滤 波后的所述第三路高压直流电向所述选择模块输出;
上述的电源模块还进一歩包括:
所述第二 EMI模块, 用于将输入的所述第二路交流电进行滤波, 并将经过 滤波后的所述第二路交流电向所述整流模块输出。
上述电源模块还进一歩包括:
PFC模块, 用于将所述第二路交流电经过整流后的电压进行功率因素校准。 在上述的电源模块中, 所述选择模块的第一种实现方式包括:
第一电压检测模块, 用于检测第二路高压直流电及第三路高压直流电的电 压, 在检测到所述第二路高压直流电的电压正常时, 向第二驱动模块输出关 断信号, 并向第一驱动模块输出连通信号; 在检测到所述第二路高压直流电 的电压异常时, 向第一驱动模块输出关断信号, 并向第二驱动模块输出连通 信号;
所述第一驱动模块, 用于在收到关断信号时触发第一开关模块关断第二路 高压直流电输入到 DC/DC模块的通路, 以及, 用于在收到连通信号, 并且, 所 述第三路高压直流电输入到 DC/DC模块的通路被关断后, 触发第一开关模块连 通第二路高压直流电输入到 DC/DC模块的通路;
所述第二驱动模块, 用于在收到连通信号, 并且, 所述第二路高压直流电 输入到 DC/DC模块的通路被关断后, 触发第二开关模块连通第三路高压直流电 输入到 DC/DC模块的通路; 以及, 用于在收到关断信号时触发第二开关模块关 断第三路高压直流电输入到 DC/DC模块的通路;
第一开关模块, 连接在第二路高压直流电与 DC/DC模块之间, 用于响应第一 驱动模块的驱动, 关断第二路高压直流电输入到 DC/DC模块的通路, 以及, 连 通第二路高压直流电输入到 DC/DC模块的通路;
第二开关模块, 连接在第三路高压直流电与 DC/DC模块之间, 用于响应第二 驱动模块的驱动, 关断第三路高压直流电输入到 DC/DC模块的通路, 以及, 连 通第三路高压直流电输入到 DC/DC模块的通路。
在上述的电源模块中, 所述选择模块的第二种实现方式包括:
第二电压检测模块, 用于检测第二路高压直流电及第三路高压直流电的电 压, 在检测到所述第二路高压直流电电压正常时, 向第三驱动模块输出关断 第三路高压直流电输入到 DC/DC模块的通路的信号, 以及, 连通第二路高压直 流电输入到 DC/DC模块的通路的信号; 在检测到所述第二路高压直流电的电压 异常时, 向第三驱动模块输出关断第二路高压直流电输入到 DC/DC模块的通路 的信号, 以及, 连通第三路高压直流电输入到 DC/DC模块的通路的信号; 所述第三驱动模块, 用于在收到关断第二路高压直流电输入到 DC/DC模块的 通路的信号, 以及,连通第三路高压直流电输入到 DC/DC模块的通路的信号时, 触发第三开关模块关断第二路高压直流电输入到 DC/DC模块的通路, 之后, 触 发第三开关模块连通第三路高压直流电输入到 DC/DC模块的通路; 以及用于在 收到关断第三路高压直流电输入到 DC/DC模块的通路的信号, 以及, 连通第二 路高压直流电输入到 DC/DC模块的通路的信号时, 触发第三开关模块关断第三 路高压直流电输入到 DC/DC模块的通路, 之后, 触发第三开关模块连通第二路 高压直流电输入到 DC/DC模块的通路。 第三开关模块, 连接在两路高压直流电与 DC/DC模块之间, 这两路高压直流 电就是所述的第二路高压直流电以及第三路高压直流电; 用于响应第三驱动 模块的驱动, 关断第二路高压直流电输入到 DC/DC模块的通路, 之后, 连通第 三路高压直流电输入到 DC/DC模块的通路; 以及用于响应第三驱动模块的驱 动, 关断第三路高压直流电输入到 DC/DC模块的通路, 之后, 连通第二路高压 直流电输入到 DC/DC模块的通路。
本发明的实施例还提供一种供电装置, 所述供电装置包括 AC/DC模块, 蓄电 池组, 整流模块, 选择模块, 以及 DC/DC模块:
所述 AC/DC模块, 用于将输入的第一路交流电转换为第一路高压直流电输 出;
所述蓄电池组, 用于在所述 AC/DC模块输出的所述第一路高压直流电异常 时, 输出备用高压直流电,
其中, 所述蓄电池组与所述 AC/DC模块并联后输出第三路高压直流电; 所述整流模块, 用于将输入的第二路交流电, 进行整流, 并将所述第二路 交流电转换成第二路高压直流电输出;
所述选择模块, 连接在两路高压直流电输入到所述 DC/DC模块的通路上, 所述两路高压直流电包括所述第二路高压直流电和所述第三路高压直流电, 所述选择模块用于在检测到所述第二路高压直流电正常时, 打开所述第二 路高压直流电输入到所述 DC/DC模块的通路并关断所述第三路高压直流电输 入到所述 DC/DC模块的通路, 在检测到所述第二路高压直流电异常时, 打开 所述第三路高压直流电输入到所述 DC/DC模块的通路并关断所述第二路高压 直流电输入到所述 DC/DC模块的通路;
所述 DC/DC模块, 用于将输入的所述第二路高压直流电或所述第三路高压 直流电, 转换为低压直流电输出, 以供负载使用。
上述的供电装置还进一歩包括第一 EMI模块;
所述第一 EMI模块, 用于将所述第三路高压直流电进行滤波, 并将经过滤 波后的所述第三路高压直流电向所述选择模块输出。
上述的供电装置还进一歩包括第二 EMI模块;
所述第二 EMI模块, 用于将输入的所述第二路交流电进行滤波, 并将经过 滤波后的所述第二路交流电向所述整流模块输出。
上述的供电装置还进一歩包括:
PFC模块, 用于将所述第二路交流电经过整流后的电压进行功率因素校准。 在上述的供电装置中, 所述选择模块的第一种实现方式包括:
第一电压检测模块, 用于检测第二路高压直流电及第三路高压直流电的电 压, 在检测到所述第二路高压直流电的电压正常时, 向第二驱动模块输出关 断信号, 并向第一驱动模块输出连通信号; 在检测到所述第二路高压直流电 的电压异常时, 向第一驱动模块输出关断信号, 并向第二驱动模块输出连通 信号;
所述第一驱动模块, 用于在收到关断信号时触发第一开关模块关断第二路 高压直流电输入到 DC/DC模块的通路, 以及, 用于在收到连通信号, 并且, 所 述第三路高压直流电输入到 DC/DC模块的通路被关断后, 触发第一开关模块连 通第二路高压直流电输入到 DC/DC模块的通路;
所述第二驱动模块, 用于在收到连通信号, 并且, 所述第二路高压直流电 输入到 DC/DC模块的通路被关断后, 触发第二开关模块连通第三路高压直流电 输入到 DC/DC模块的通路; 以及, 用于在收到关断信号时触发第二开关模块关 断第三路高压直流电输入到 DC/DC模块的通路;
第一开关模块, 连接在第二路高压直流电与 DC/DC模块之间, 用于响应第一 驱动模块的驱动, 关断第二路高压直流电输入到 DC/DC模块的通路, 以及, 连 通第二路高压直流电输入到 DC/DC模块的通路;
第二开关模块, 连接在第三路高压直流电与 DC/DC模块之间, 用于响应第二 驱动模块的驱动, 关断第三路高压直流电输入到 DC/DC模块的通路, 以及, 连 通第三路高压直流电输入到 DC/DC模块的通路。 在上述的供电装置中, 所述选择模块的第二种实现方式包括: 第二电压检测模块, 用于检测第二路高压直流电及第三路高压直流电的电 压, 在检测到所述第二路高压直流电电压正常时, 向第三驱动模块输出关断 第三路高压直流电输入到 DC/DC模块的通路的信号, 以及, 连通第二路高压直 流电输入到 DC/DC模块的通路的信号; 在检测到所述第二路高压直流电的电压 异常时, 向第三驱动模块输出关断第二路高压直流电输入到 DC/DC模块的通路 的信号, 以及, 连通第三路高压直流电输入到 DC/DC模块的通路的信号; 所述第三驱动模块, 用于在收到关断第二路高压直流电输入到 DC/DC模块的 通路的信号, 以及,连通第三路高压直流电输入到 DC/DC模块的通路的信号时, 触发第三开关模块关断第二路高压直流电输入到 DC/DC模块的通路, 之后, 触 发第三开关模块连通第三路高压直流电输入到 DC/DC模块的通路; 以及用于在 收到关断第三路高压直流电输入到 DC/DC模块的通路的信号, 以及, 连通第二 路高压直流电输入到 DC/DC模块的通路的信号时, 触发第三开关模块关断第三 路高压直流电输入到 DC/DC模块的通路, 之后, 触发第三开关模块连通第二路 高压直流电输入到 DC/DC模块的通路。
第三开关模块, 连接在两路高压直流电与 DC/DC模块之间, 这两路高压直流 电就是所述的第二路高压直流电以及第三路高压直流电; 用于响应第三驱动 模块的驱动, 关断第二路高压直流电输入到 DC/DC模块的通路, 之后, 连通第 三路高压直流电输入到 DC/DC模块的通路; 以及用于响应第三驱动模块的驱 动, 关断第三路高压直流电输入到 DC/DC模块的通路, 之后, 连通第二路高压 直流电输入到 DC/DC模块的通路。
本发明的实施例还提供一种供电系统,所述供电系统包括: X个 AC/DC模块, W个电源模块, 供电母线, 以及蓄电池组,
所述电源模块用于将输入的至少一路电压进行调整后输出给负载, 实现给 负载供电, 所述电源模块包括整流模块, 选择模块, 以及 DC/DC模块; 所述 AC/DC模块, 用于将输入的第一路交流电转换为第一路高压直流电输 出;
其中, X个所述 AC/DC模块输出的 X个所述第一路高压直流电输入到所述供 电母线上;
所述蓄电池组, 用于在所述 X个 AC/DC模块输出的所述第一路高压直流电 异常时, 输出备用高压直流电;
所述蓄电池组与所述供电母线并联后输出第三路高压直流电, 所述第三路 高压直流电输入到所述 W个电源模块;
所述整流模块, 用于将输入的第二路交流电, 进行整流, 并将所述第二路 交流电转换成第二路高压直流电输出;
所述选择模块, 连接在两路高压直流电输入到所述 DC/DC模块的通路上, 所述两路高压直流电包括所述第二路高压直流电和所述第三路高压直流电, 所述选择模块用于在检测到所述第二路高压直流电正常时, 打开所述第二 路高压直流电输入到所述 DC/DC模块的通路并关断所述第三路高压直流电输 入到所述 DC/DC模块的通路, 在检测到所述第二路高压直流电异常时, 打开 所述第三路高压直流电输入到所述 DC/DC模块的通路并关断所述第二路高压 直流电输入到所述 DC/DC模块的通路;
所述 DC/DC模块, 用于将输入的所述第二路高压直流电或所述第三路高压 直流电, 转换为低压直流电输出, 以供所述负载使用。
其中, X, W为大于零的整数。
上述的供电系统进一歩包括第一 EMI模块;
所述第一 EMI模块, 用于将所述第三路高压直流电进行滤波, 并将经过滤 波后的所述第三路高压直流电向所述选择模块输出。
上述的供电系统进一歩包括第二 EMI模块;
所述第二 EMI模块, 用于将输入的所述第二路交流电进行滤波, 并将经过 滤波后的所述第二路交流电向所述整流模块输出。 PFC模块, 用于将所述第二路交流电经过整流后的电压进行功率因素校准。 在上述的供电系统中, 所述选择模块的第一种实现方式包括:
第一电压检测模块, 用于检测第二路高压直流电及第三路高压直流电的电 压, 在检测到所述第二路高压直流电的电压正常时, 向第二驱动模块输出关 断信号, 并向第一驱动模块输出连通信号; 在检测到所述第二路高压直流电 的电压异常时, 向第一驱动模块输出关断信号, 并向第二驱动模块输出连通 信号;
所述第一驱动模块, 用于在收到关断信号时触发第一开关模块关断第二路 高压直流电输入到 DC/DC模块的通路, 以及, 用于在收到连通信号, 并且, 所 述第三路高压直流电输入到 DC/DC模块的通路被关断后, 触发第一开关模块连 通第二路高压直流电输入到 DC/DC模块的通路;
所述第二驱动模块, 用于在收到连通信号, 并且, 所述第二路高压直流电 输入到 DC/DC模块的通路被关断后, 触发第二开关模块连通第三路高压直流电 输入到 DC/DC模块的通路; 以及, 用于在收到关断信号时触发第二开关模块关 断第三路高压直流电输入到 DC/DC模块的通路;
第一开关模块, 连接在第二路高压直流电与 DC/DC模块之间, 用于响应第一 驱动模块的驱动, 关断第二路高压直流电输入到 DC/DC模块的通路, 以及, 连 通第二路高压直流电输入到 DC/DC模块的通路;
第二开关模块, 连接在第三路高压直流电与 DC/DC模块之间, 用于响应第二 驱动模块的驱动, 关断第三路高压直流电输入到 DC/DC模块的通路, 以及, 连 通第三路高压直流电输入到 DC/DC模块的通路。
在上述的供电系统中, 所述选择模块的第二种实现方式包括:
第二电压检测模块, 用于检测第二路高压直流电及第三路高压直流电的电 压, 在检测到所述第二路高压直流电电压正常时, 向第三驱动模块输出关断 第三路高压直流电输入到 DC/DC模块的通路的信号, 以及, 连通第二路高压直 流电输入到 DC/DC模块的通路的信号; 在检测到所述第二路高压直流电的电压 异常时, 向第三驱动模块输出关断第二路高压直流电输入到 DC/DC模块的通路 的信号, 以及, 连通第三路高压直流电输入到 DC/DC模块的通路的信号; 所述第三驱动模块, 用于在收到关断第二路高压直流电输入到 DC/DC模块的 通路的信号, 以及,连通第三路高压直流电输入到 DC/DC模块的通路的信号时, 触发第三开关模块关断第二路高压直流电输入到 DC/DC模块的通路, 之后, 触 发第三开关模块连通第三路高压直流电输入到 DC/DC模块的通路; 以及用于在 收到关断第三路高压直流电输入到 DC/DC模块的通路的信号, 以及, 连通第二 路高压直流电输入到 DC/DC模块的通路的信号时, 触发第三开关模块关断第三 路高压直流电输入到 DC/DC模块的通路, 之后, 触发第三开关模块连通第二路 高压直流电输入到 DC/DC模块的通路。
第三开关模块, 连接在两路高压直流电与 DC/DC模块之间, 这两路高压直流 电就是所述的第二路高压直流电以及第三路高压直流电; 用于响应第三驱动 模块的驱动, 关断第二路高压直流电输入到 DC/DC模块的通路, 之后, 连通第 三路高压直流电输入到 DC/DC模块的通路; 以及用于响应第三驱动模块的驱 动, 关断第三路高压直流电输入到 DC/DC模块的通路, 之后, 连通第二路高压 直流电输入到 DC/DC模块的通路。
在上述的供电系统中, 所述 X个 AC/DC模块设置于电源柜中。 本发明的实施例还提供一种 ICT设备, 所述 ICT设备包括: N个电源模块以及 M个负载,
所述电源模块用于将输入的至少一路电压进行调整后输出给负载, 实现给 负载供电, 其中, 所述 N个电源模块为所述 M个负载供电; 所述电源模块包括 整流模块, 选择模块, 以及 DC/DC模块;
所述整流模块, 用于将输入的第二路交流电, 进行整流, 并将所述第二路 交流电转换成第二路高压直流电输出;
所述选择模块, 连接在两路高压直流电输入到所述 DC/DC模块的通路上, 所述两路高压直流电包括所述第二路高压直流电和第三路高压直流电, 所述选择模块用于在检测到所述第二路高压直流电正常时, 打开所述第二 路高压直流电输入到所述 DC/DC模块的通路并关断所述第三路高压直流电输 入到所述 DC/DC模块的通路, 在检测到所述第二路高压直流电异常时, 打开 所述第三路高压直流电输入到所述 DC/DC模块的通路并关断所述第二路高压 直流电输入到所述 DC/DC模块的通路;
所述 DC/DC模块, 用于将输入的所述第二路高压直流电或所述第三路高压 直流电, 转换为低压直流电输出, 以供所述负载使用;
其中所述 N, M为大于零的整数。 在上述的 ICT设备中, 所述电源模块还进一歩包括第一 EMI模块;
所述第一 EMI模块, 用于将所述第三路高压直流电进行滤波, 并将经过滤 波后的所述第三路高压直流电向所述选择模块输出;
在上述的 ICT设备中, 所述电源模块还进一歩包括:
所述第二 EMI模块, 用于将输入的所述第二路交流电进行滤波, 并将经过 滤波后的所述第二路交流电向所述整流模块输出。
在上述的 ICT设备中, 所述电源模块还进一歩包括:
PFC模块, 用于将所述第二路交流电经过整流后的电压进行功率因素校准。 上述的 ICT设备还包括 m个所述电源模块, 所述 m个电源模块是作为冗余 备份的, 其中, m为大于零的整数。 上述 ICT设备还包括低压母线, 所述 N个 电源模块和所述 m个电源模块的 DC/DC模块将所述低压直流电输出到所述低 压母线上, 所述 M个负载连接到所述低压母线上, 以实现所述 M个负载的供 电。
在上述的 ICT设备中, 所述 M个负载中的至少一个负载与所述低压母线之 间连接有过流保护模块, 所述过流保护模块, 用于为与所述过流保护模块连 接的所述负载提供过流保护。 在上述的 ICT设备中, 所述 M个负载还可以被划分为多个负载区, 每个所 述负载区包括至少一个负载, 每个负载区连接到所述低压母线上, 以实现所 述 M个负载的供电。 所述多个负载区中的至少一个负载区与所述低压母线之 间连接有过流保护模块, 所述过流保护模块, 用于为与所述过流保护模块连 接的所述负载区提供过流保护。
在上述的 ICT设备中, 所述选择模块的第一种实现方式包括:
第一电压检测模块, 用于检测第二路高压直流电及第三路高压直流电的电 压, 在检测到所述第二路高压直流电的电压正常时, 向第二驱动模块输出关 断信号, 并向第一驱动模块输出连通信号; 在检测到所述第二路高压直流电 的电压异常时, 向第一驱动模块输出关断信号, 并向第二驱动模块输出连通 信号;
所述第一驱动模块, 用于在收到关断信号时触发第一开关模块关断第二路 高压直流电输入到 DC/DC模块的通路, 以及, 用于在收到连通信号, 并且, 所 述第三路高压直流电输入到 DC/DC模块的通路被关断后, 触发第一开关模块连 通第二路高压直流电输入到 DC/DC模块的通路;
所述第二驱动模块, 用于在收到连通信号, 并且, 所述第二路高压直流电 输入到 DC/DC模块的通路被关断后, 触发第二开关模块连通第三路高压直流电 输入到 DC/DC模块的通路; 以及, 用于在收到关断信号时触发第二开关模块关 断第三路高压直流电输入到 DC/DC模块的通路;
第一开关模块, 连接在第二路高压直流电与 DC/DC模块之间, 用于响应第一 驱动模块的驱动, 关断第二路高压直流电输入到 DC/DC模块的通路, 以及, 连 通第二路高压直流电输入到 DC/DC模块的通路;
第二开关模块, 连接在第三路高压直流电与 DC/DC模块之间, 用于响应第二 驱动模块的驱动, 关断第三路高压直流电输入到 DC/DC模块的通路, 以及, 连 通第三路高压直流电输入到 DC/DC模块的通路。
在上述的 ICT设备中, 所述选择模块的第二种实现方式包括: 第二电压检测模块, 用于检测第二路高压直流电及第三路高压直流电的电 压, 在检测到所述第二路高压直流电电压正常时, 向第三驱动模块输出关断 第三路高压直流电输入到 DC/DC模块的通路的信号, 以及, 连通第二路高压直 流电输入到 DC/DC模块的通路的信号; 在检测到所述第二路高压直流电的电压 异常时, 向第三驱动模块输出关断第二路高压直流电输入到 DC/DC模块的通路 的信号, 以及, 连通第三路高压直流电输入到 DC/DC模块的通路的信号; 所述第三驱动模块, 用于在收到关断第二路高压直流电输入到 DC/DC模块的 通路的信号, 以及,连通第三路高压直流电输入到 DC/DC模块的通路的信号时, 触发第三开关模块关断第二路高压直流电输入到 DC/DC模块的通路, 之后, 触 发第三开关模块连通第三路高压直流电输入到 DC/DC模块的通路; 以及用于在 收到关断第三路高压直流电输入到 DC/DC模块的通路的信号, 以及, 连通第二 路高压直流电输入到 DC/DC模块的通路的信号时, 触发第三开关模块关断第三 路高压直流电输入到 DC/DC模块的通路, 之后, 触发第三开关模块连通第二路 高压直流电输入到 DC/DC模块的通路。
第三开关模块, 连接在两路高压直流电与 DC/DC模块之间, 这两路高压直 流电就是所述的第二路高压直流电以及第三路高压直流电; 用于响应第三驱 动模块的驱动, 关断第二路高压直流电输入到 DC/DC模块的通路, 之后, 连 通第三路高压直流电输入到 DC/DC模块的通路; 以及用于响应第三驱动模块 的驱动, 关断第三路高压直流电输入到 DC/DC模块的通路, 之后, 连通第二 路高压直流电输入到 DC/DC模块的通路。 上述技术方案中具有如下的优点:
可以看出, 在本发明上述的各实施例中, 通过采用第二路交流电和所述第 三路高压直流电互为备份的两路电压进入电源模块, 由于所述电源模块可以 接入两路相互备份的供电电压, 因此, 可以采用数量较少的电源模块接入更 多路的电压, 从而节省了供电成本。 或者, 由于第二路交流电的这一路供电 支路不需要备电, 第三路高压直流电的这一路供电支路采用蓄电池组进行备 电。 由于两个供电支路都没有采用较贵的 UPS设备进行备电, 并且, 仅在第 三路高压直流电的这一路供电支路采用蓄电池组备电, 因此, 供电成本较低。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案, 下面将对实 施例或现有技术描述中所需要使用的附图作简单地介绍, 显而易见地, 下面 描述中的附图仅仅是本发明的一些实施例, 对于本领域普通技术人员来讲, 在不付出创造性劳动性的前提下, 还可以根据这些附图获得其他的附图。 图 1为现有的数据中心 (或机房) 的供电方法的示意图;
图 2为本发明的实施例提供的一种供电方法的流程示意图;
图 3为本发明的实施例提供的另一种供电方法的流程示意图;
图 4为本发明的实施例提供的一种供电装置的示意图;
图 5为本发明的实施例提供的一种选择模块的示意图;
图 6为本发明的实施例提供的另一种选择模块的示意图;
图 7为本发明的实施例提供的一种供电系统的示意图;
图 8为本发明的实施例提供的第一交流 ATS模块, 第二交流 ATS模块以 及油机的示意图;
图 9为图 7所示的供电系统的一种具体实现的示意图;
图 10为图 7所示的供电系统的另一种具体实现的示意图;
图 11为本发明的实施例提供的一种 ICT设备的示意图。 具体实施方式 下面将结合本发明实施例中的附图, 对本发明实施例中的技术方案进行清 楚、 完整地描述, 显然, 所描述的实施例仅仅是本发明一部分实施例, 而不 是全部的实施例。 基于本发明中的实施例, 本领域普通技术人员在没有作出 创造性劳动前提下所获得的所有其他实施例, 都属于本发明保护的范围。 第一种供电方法
参见图 2, 本发明提供第一种供电方法的实施例, 应用于电源模块中, 所 述电源模块用于将输入的至少一路电压进行调整后输出给负载, 实现给负载 供电, 所述供电方法包括:
将输入的第二路交流电, 进行整流, 并将所述第二路交流电转换成第二路 HVDC (High Voltage Direct Current, 高压直流) 电;
在检测到所述第二路高压直流电异常时, 将输入的第三路高压直流电输入 DC/DC模块; 在检测到所述第二路高压直流电正常时, 将所述第二路高压直流 电输入所述 DC/DC模块, 此时输入的所述第三路高压直流电处在备用状态; 所述 DC/DC模块将输入的所述第二路高压直流电或所述第三路高压直流 电, 转换为低压直流电输出, 以供负载使用。 可以看出, 在本发明上述的供电方法的实施例中, 第二路交流电和所述第 三路高压直流电互为备份的两路电压进入电源模块, 由于所述电源模块可以 接入两路相互备份的供电电压, 因此, 可以采用数量较少的电源模块接入更 多路的电压, 从而节省了供电成本。 进一歩地, 采用的电源模块数量少了, 容纳所述电源模块的设备的体积也可以减小。 在本发明的上述供电方法的实施例中, 在将输入的所述第二路交流电进行 整流之前, 所述供电方法可以进一歩包括:
将输入的所述第二路交流电进行滤波;
在将输入的所述第三路高压直流电输入所述 DC/DC模块之前, 所述供电方 法进一歩包括:
将输入的所述第三路高压直流电进行滤波。 在将输入的所述第二路交流电进行整流之后, 并且, 在将所述第二路交流 电输入所述 DC/DC模块之前, 所述供电方法进一歩包括:
将所述第二路交流电经过整流后的电压进行功率因素校准。 在本发明的上述供电方法的实施例中, 第一路交流电或第二路交流电可以 为 3相 380V电压, 或者 3相 480V电压, 或者单相 220V电压, 或者单相 120V电压 等不同电压规格。
如果对第二路交流电进行功率因素校准的话, 在第二路交流电为 220V时, 第二路高压直流电的电压正常范围: 350-450V; 在第二路交流电为 110V时, 第二路高压直流电的电压正常范围: 130-250V。
如果对第二路交流电不进行功率因素校准的话, 在第二路交流电为 220V 时, 第二路高压直流电的电压正常范围: 240-390V; 在第二路交流电为 110V 时, 第二路高压直流电的电压正常范围: 110-190V。 另外, 根据负载的需要, 或者根据供电系统中硬件的承受能力, 所述第二 路高压直流电和第三路高压直流电的电压正常范围是可以调整的。
其中, 所述第二路高压直流电正常是指, 所述第二路高压直流电的电压位 于上述的正常范围之内。
所述第二路高压直流电异常是指, 所述第二路高压直流电的电压位于上述 的正常范围之外。 此时, 第二路交流电过压, 或第二路交流电欠压, 或第二路交 流电的电压丢失(没有电压), 或第二路交流电的频率异常, 或第二路交流电发生 了波形畸变。
第一路高压直流电的电压正常范围: 260-400V。 其中, 所述第一路高压直 流电正常是指, 所述第一路高压直流电的电压位于上述的正常范围之内。 所 述第一路高压直流电异常是指, 所述第一路高压直流电的电压位于上述的正 常范围之外。 第三路高压直流电的电压正常范围: 260-400V。 其中, 所述第三路高压直 流电正常是指, 所述第三路高压直流电的电压位于上述的正常范围之内。 所 述第三路高压直流电异常是指, 所述第三路高压直流电的电压位于上述的正 常范围之外。 第二种供电方法
参见图 3, 本发明提供第二种供电方法的实施例, 包括:
将输入的第一路交流电转换为第一路高压直流电;
蓄电池组在所述第一路高压直流电异常时, 输出备用高压直流电, 其中, 所述蓄电池组与所述第一路高压直流电并联后输出第三路高压直流电;
将输入的第二路交流电, 进行整流, 并将所述第二路交流电转换成第二路 高压直流电;
在检测到所述第二路高压直流电正常时, 将所述第二路高压直流电输入 DC/DC模块,此时所述第一路高压直流电与所述蓄电池组并联后输出的所述第 三路高压直流电处在备用状态; 在检测到所述第二路高压直流电异常时, 将 所述第三路高压直流电输入所述 DC/DC模块;
所述 DC/DC模块将输入的所述第二路高压直流电或所述第三路高压直流 电, 转换为低压直流电输出, 以供负载使用。
可以看出, 在本发明上述的供电方法的实施例中, 具有两个供电支路, 一 个是由第一路交流电作为输入的供电支路 A, 另一个由第二路交流电作为输入 的供电支路] 3。
由于在本发明实施例中, 第二路交流电正常时, 由供电支路 B供电, 在第 二路交流电异常时, 由供电支路 A进行供电。 在供电支路 A中, 第一路交流 电正常时, 由第一路交流电供电, 在第一路交流电异常时, 由蓄电池组供电。 其中, 所述第一路交流电异常是指: 第一路交流电过压, 或第一路交流电欠压, 或 第一路交流电的电压丢失(没有电压), 或第一路交流电的频率异常, 或第一路交 流电发生了波形畸变。 所述第一路交流电正常是指所述第一路交流电处于所述异常 的状态之外的状态。 所述第二路交流电异常是指: 第二路交流电过压, 或第二路交 流电欠压, 或第二路交流电的电压丢失(没有电压), 或第二路交流电的频率异常, 或第二路交流电发生了波形畸变。 所述第二路交流电正常是指所述第二路交流电处 于所述异常的状态之外的状态。
在上述的供电方法的实施例中, 第二路交流电的这一路供电支路不需要备 电, 第三路高压直流电的这一路供电支路采用蓄电池组进行备电。 由于两个 供电支路都没有采用较贵的 UPS设备进行备电, 并且, 仅在第三路高压直流电 的这一路供电支路采用蓄电池组备电, 因此, 供电成本较低。 而且在第二路 交流电正常时, 由第二路交流电来供电, 此时供电的转换环节很少, 提高了 供电和配电的效率。 另外, 因为所述 AC/DC模块与所述蓄电池组并联, 在蓄电池组放电后, 第 一路交流电和第二路交流电恢复正常时, 由所述第二路交流电为负载供电, 由所述第一路交流电经过 AC/DC模块所输出的第一高压直流电为所述蓄电池 组充电, 蓄电池组充满后进入浮充状态。
在本发明的上述供电方法的实施例中, 在将输入的所述第二路交流电进行 整流之前, 所述供电方法可以进一歩包括:
将输入的所述第二路交流电进行滤波。
在将所述第三路高压直流电输入所述 DC/DC模块之前, 所述供电方法可以 进一歩包括:
将所述第三路高压直流电进行滤波。
在将输入的所述第二路交流电进行整流之后, 并且, 在将所述第二路交流 电输入所述 DC/DC模块之前, 所述供电方法可以进一歩包括:
将所述第二路交流电经过整流后的电压进行功率因素校准。
在本发明的上述供电方法的实施例中, 第一路交流电或第二路交流电可以 为 3相 380V电压, 或者 3相 480V电压, 或者单相 220V电压, 或者单相 120V电压 等不同电压规格。
如果对第二路交流电进行功率因素校准的话, 在第二路交流电为 220V时, 第二路高压直流电的电压正常范围: 350-450V; 在第二路交流电为 110V时, 第二路高压直流电的电压正常范围: 130-250V。
如果对第二路交流电不进行功率因素校准的话, 在第二路交流电为 220V 时, 第二路高压直流电的电压正常范围: 240-390V; 在第二路交流电为 110V 时, 第二路高压直流电的电压正常范围: 110-190V。
另外, 根据负载的需要, 或者根据供电系统中硬件的承受能力, 所述第二 路高压直流电和第三路高压直流电的电压正常范围是可以调整的。
其中, 所述第二路高压直流电正常是指, 所述第二路高压直流电的电压位 于上述的正常范围之内。
所述第二路高压直流电异常是指, 所述第二路高压直流电的电压位于上述 的正常范围之外。 此时, 第二路交流电过压, 或第二路交流电欠压, 或第二路交 流电的电压丢失(没有电压), 或第二路交流电的频率异常, 或第二路交流电发生 了波形畸变。
第一路高压直流电的电压正常范围: 260-400V。 其中, 所述第一路高压直 流电正常是指, 所述第一路高压直流电的电压位于上述的正常范围之内。 所 述第一路高压直流电异常是指, 所述第一路高压直流电的电压位于上述的正 常范围之外。
第三路高压直流电的电压正常范围: 260-400V。 其中, 所述第三路高压直 流电正常是指, 所述第三路高压直流电的电压位于上述的正常范围之内。 所 述第三路高压直流电异常是指, 所述第三路高压直流电的电压位于上述的正 常范围之外。 在本发明上述的供电方法的实施例中, 市电转变为所述第一路交流电和所 述第二路交流电的方式可以有以下两种:
第一种:
在本发明上述的供电方法的实施例中, 有两路市电输入, 所述两路市电包 括第一路市电 A和第二路市电 B,
第一路市电 A正常时, 将所述第一路市电 A分为两个分支输出, 一个分支是所 述第一路交流电, 另一个分支是所述第二路交流电;
在第一路市电 A异常, 第二路市电 B正常时, 将所述第二路市电 B分为两个分 支输出, 一个分支是所述第一路交流电, 另一个分支是所述第二路交流电;
在第一路市电 A和第二路市电 B都异常时, 由油机发电, 产生交流电, 并将所 述油机产生的交流电分为两个分支输出, 一个分支是所述第一路交流电, 另一个分 支是所述第二路交流电。 其中, 所述第一路市电 A异常是指: 所述第一路市电 A过压, 或所述第一路市 电 A欠压, 或所述第一路市电 A的电压丢失(没有电压), 或所述第一路市电 A的 频率异常, 或所述第一路市电 A的波形畸变等。 所述第一路市电 A正常是指所述第 一路市电 A处于所述异常的状态之外的状态。
所述第二路市电 B异常是指: 所述第二路市电 B过压, 或所述第二路市电 B欠 压, 或所述第二路市电 B的电压丢失(没有电压), 或所述第二路市电 B的频率异 常, 或所述第二路市电 B的波形畸变等。 所述第二路市电 B正常是指所述第二路市 电 B处于所述异常的状态之外的状态。 第二种:
在本发明上述的供电方法的实施例中, 有一路市电输入, 在所述市电正常 时, 将所述市电分为两个分支输出, 一个分支是所述第一路交流电, 另一个分支是 所述第二路交流电; 在所述市电异常时, 将所述油机发电产生的交流电分为两个分 支输出, 一个分支是所述第一路交流电, 另一个分支是所述第二路交流电。 其中, 所述市电异常是指: 所述市电过压, 或所述市电欠压, 或所述市电的电 压丢失(没有电压), 或所述市电的频率异常, 或所述市电的波形畸变等。 所述市 电正常是指所述市电处于所述异常的状态之外的状态。 电源模块
参见图 4, 本发明提供一种电源模块的实施例, 所述电源模块包括整流模 块, 选择模块, 以及 DC/DC模块; 所述整流模块, 用于将输入的第二路交流 电 (第二 AC ) , 进行整流, 并将所述第二路交流电转换成第二路高压直流电 (第二 HVDC ) 输出;
所述选择模块, 连接在两路高压直流电输入到所述 DC/DC模块的通路上, 所述两路高压直流电包括所述第二路高压直流电和第三路高压直流电 (第三 HVDC ) ,
所述选择模块用于在检测到所述第二路高压直流电正常时, 打开所述第二 路高压直流电输入到所述 DC/DC模块的通路并关断所述第三路高压直流电输 入到所述 DC/DC模块的通路, 在检测到所述第二路高压直流电异常时, 打开 所述第三路高压直流电输入到所述 DC/DC模块的通路并关断所述第二路高压 直流电输入到所述 DC/DC模块的通路;
所述 DC/DC模块, 用于将输入的所述第二路高压直流电或所述第三路高压 直流电, 转换为低压直流电输出, 以供负载使用。 可以看出, 在本发明上述的电源模块的实施例中, 第二路交流电和所述第 三路高压直流电互为备份的两路电压进入电源模块, 由于所述电源模块可以 接入两路相互备份的供电电压, 因此, 可以采用数量较少的电源模块接入更 多路的电压, 从而节省了供电成本。 进一歩地, 采用的电源模块数量少了, 容纳所述电源模块的设备的体积也可以减小。 进一歩地, 在所述电源模块中, 虽然有两个支路, 一个是所述第二路交流 电所在的支路, 另一个是所述第三路高压直流电所在的支路, 但是可以仅设 置一个 DC/DC模块, 从而进一歩节省成本。 进一歩参见图 4, 在本发明的上述电源模块的实施例中, 所述电源模块还 可以进一歩包括第一 EMI模块;
所述第一 EMI模块, 用于将所述第三路高压直流电进行滤波, 并将经过滤 波后的所述第三路高压直流电向所述选择模块输出;
进一歩地, 所述电源模块还可以进一歩包括:
所述第二 EMI模块,用于将输入的所述第二路交流电(第二 AC)进行滤波, 并将经过滤波后的所述第二路交流电向所述整流模块输出。
进一歩地, 所述电源模块还可以进一歩包括:
PFC模块,用于将所述第二路交流电经过整流后的电压进行功率因素校准。 在本发明的上述电源模块的实施例中,所述第一 EMI模块进一歩用于防雷; 所述第二 EMI模块进一歩用于防雷。
在本发明的上述电源模块的实施例中, 第一路交流电或第二路交流电可以 为 3相 380V电压, 或者 3相 480V电压, 或者单相 220V电压, 或者单相 120V电压 等不同电压规格。
如果对第二路交流电进行功率因素校准的话, 在第二路交流电为 220V时, 第二路高压直流电的电压正常范围: 350-450V; 在第二路交流电为 110V时, 第二路高压直流电的电压正常范围: 130-250V。
如果对第二路交流电不进行功率因素校准的话, 在第二路交流电为 220V 时, 第二路高压直流电的电压正常范围: 240-390V; 在第二路交流电为 110V 时, 第二路高压直流电的电压正常范围: 110-190V。
另外, 根据负载的需要, 或者根据所述电源模块及其所在的供电系统中硬 件的承受能力, 所述第二路高压直流电和第三路高压直流电的电压正常范围 是可以调整的。
其中, 所述第二路高压直流电正常是指, 所述第二路高压直流电的电压位 于上述的正常范围之内。
所述第二路高压直流电异常是指, 所述第二路高压直流电的电压位于上述 的正常范围之外。 此时, 第二路交流电过压, 或第二路交流电欠压, 或第二路交 流电的电压丢失(没有电压), 或第二路交流电的频率异常, 或第二路交流电发生 了波形畸变。
第一路高压直流电的电压正常范围: 260-400V。 其中, 所述第一路高压直 流电正常是指, 所述第一路高压直流电的电压位于上述的正常范围之内。 所 述第一路高压直流电异常是指, 所述第一路高压直流电的电压位于上述的正 常范围之外。
第三路高压直流电的电压正常范围: 260-400V。 其中, 所述第三路高压直 流电正常是指, 所述第三路高压直流电的电压位于上述的正常范围之内。 所 述第三路高压直流电异常是指, 所述第三路高压直流电的电压位于上述的正 常范围之外。
在本发明上述电源模块中的所述选择模块, 可以采用后续的供电装置的实 施例中的选择模块的实现方式。
供电装置
进一歩参见图 4, 本发明提供一种供电装置的实施例, 所述供电装置包括 AC/DC模块, 蓄电池组, 整流模块, 选择模块, 以及 DC/DC模块;
所述 AC/DC模块, 用于将输入的第一路交流电(第一 AC )转换为第一路高 压直流电 (第一 HVDC ) 输出;
所述蓄电池组, 用于在所述 AC/DC模块输出的所述第一路高压直流电异常 时, 输出备用高压直流电,
其中, 所述蓄电池组与所述 AC/DC模块并联后输出第三路高压直流电 (第 三誦 C) ;
所述整流模块, 用于将输入的第二路交流电, 进行整流, 并将所述第二路 交流电转换成第二路高压直流电 (第二 HVDC) 输出;
所述选择模块, 连接在两路高压直流电输入到所述 DC/DC模块的通路上, 所述两路高压直流电包括所述第二路高压直流电和所述第三路高压直流电, 所述选择模块用于在检测到所述第二路高压直流电正常时, 打开所述第二 路高压直流电输入到所述 DC/DC模块的通路并关断所述第三路高压直流电输 入到所述 DC/DC模块的通路, 在检测到所述第二路高压直流电异常时, 打开 所述第三路高压直流电输入到所述 DC/DC模块的通路并关断所述第二路高压 直流电输入到所述 DC/DC模块的通路;
所述 DC/DC模块, 用于将输入的所述第二路高压直流电或所述第三路高压 直流电, 转换为低压直流电输出, 以供负载使用。
在上述的供电装置的实施例中, 第二路交流电的这一路供电支路不需要备 电, 第三路高压直流电的这一路供电支路采用蓄电池组进行备电。 由于两个 供电支路都没有采用较贵的 UPS设备进行备电, 并且, 仅在第三路高压直流电 的这一路供电支路采用蓄电池组备电, 因此, 供电成本较低。 而且在第二路 交流电正常时, 由第二路交流电来供电, 此时供电的转换环节很少, 提高了 供电和配电的效率。
本发明上述的供电装置的实施例可以应用于数据中心或机房中, 而且, 如 果数据中心或机房的负载功率较大的话, 可以设置多个这样的供电装置为负 载供电。
在本发明上述的供电装置的实施例中, 具有两个供电支路, 一个是由第一 路交流电作为输入的供电支路 A, 另一个由第二路交流电作为输入的供电支路 B。 由于在本发明实施例中, 第二路交流电正常时, 由供电支路 B供电, 在第 二路交流电异常时, 由供电支路 A进行供电。 在供电支路 A中, 第一路交流 电正常时, 由第一路交流电供电, 在第一路交流电异常时, 由蓄电池组供电。 其中, 所述第一路交流电异常是指: 第一路交流电过压, 或第一路交流电欠压, 或 第一路交流电的电压丢失(没有电压), 或第一路交流电的频率异常, 或波形畸变。 所述第一路交流电正常是指所述第一路交流电处于所述异常的状态之外的状态。 所 述第二路交流电异常是指: 第二路交流电过压, 或第二路交流电欠压, 或第二路交 流电的电压丢失(没有电压), 或第二路交流电的频率异常, 或波形畸变。 所述第 二路交流电正常是指所述第二路交流电处于所述异常的状态之外的状态。
另外, 因为所述 AC/DC模块与所述蓄电池组并联, 在蓄电池组放电后, 第 一路交流电和第二路交流电恢复正常时, 由所述第二路交流电为负载供电, 由所述第一路交流电经过 AC/DC模块所输出的第一高压直流电为所述蓄电池 组充电, 蓄电池组充满后进入浮充状态。
在本发明的上述供电装置的实施例中, 第一路交流电或第二路交流电可以 为 3相 380V电压, 或者 3相 480V电压, 或者单相 220V电压, 或者单相 120V电压 等不同电压规格。
如果对第二路交流电进行功率因素校准的话, 在第二路交流电为 220V时, 第二路高压直流电的电压正常范围: 350-450V; 在第二路交流电为 110V时, 第二路高压直流电的电压正常范围: 130-250V。
如果对第二路交流电不进行功率因素校准的话, 在第二路交流电为 220V 时, 第二路高压直流电的电压正常范围: 240-390V; 在第二路交流电为 110V 时, 第二路高压直流电的电压正常范围: 110-190V。
另外, 根据负载的需要, 或者根据所述供电装置及其所在的供电系统中硬 件的承受能力, 所述第二路高压直流电和第三路高压直流电的电压正常范围 是可以调整的。
其中, 所述第二路高压直流电正常是指, 所述第二路高压直流电的电压 位于上述的正常范围之内。
所述第二路高压直流电异常是指, 所述第二路高压直流电的电压位于上述 的正常范围之外。 第二路交流电过压, 或第二路交流电欠压, 或第二路交流电的 电压丢失(没有电压), 或第二路交流电的频率异常, 或第二路交流电发生了波形 畸变。
第一路高压直流电的电压正常范围: 260-400V。 其中, 所述第一路高压 直流电正常是指, 所述第一路高压直流电的电压位于上述的正常范围之内。 所述第一路高压直流电异常是指, 所述第一路高压直流电的电压位于上述的 正常范围之外。
第三路高压直流电的电压正常范围: 260-400V。 其中, 所述第三路高压直 流电正常是指, 所述第三路高压直流电的电压位于上述的正常范围之内。 所 述第三路高压直流电异常是指, 所述第三路高压直流电的电压位于上述的正 常范围之外。
进一歩参见图 4, 在本发明的上述供电装置的实施例中, 还进一歩包括第 一 EMI模块及第二 EMI模块;
所述第一 EMI模块, 用于将所述第三路高压直流电进行滤波, 并将经过滤 波后的所述第三路高压直流电向选择模块输出;
所述第二 EMI模块, 用于将输入的第二路交流电(第二 AC)进行滤波, 并 将经过滤波后的所述第二路交流电向所述整流模块输出。
进一歩地, 所述供电装置还可以进一歩包括:
PFC模块, 用于将所述第二路交流电经过整流后的电压进行功率因素校准。 在本发明的上述供电装置的实施例中,所述第一 EMI模块进一歩用于防雷; 所述第二 EMI模块进一歩用于防雷。
在本发明的上述供电装置的实施例中, 所述选择模块有两种实现方式, 第 一种实现方式如下:
参见图 5, 所述选择模块包括: 第一电压检测模块, 用于检测第二路高压直流电及第三路高压直流电的电 压, 在检测到所述第二路高压直流电的电压正常时, 向第二驱动模块输出关 断信号, 并向第一驱动模块输出连通信号; 在检测到所述第二路高压直流电 的电压异常时, 向第一驱动模块输出关断信号, 并向第二驱动模块输出连通 信号;
所述第一驱动模块, 用于在收到关断信号时触发第一开关模块关断第二路 高压直流电输入到 DC/DC模块的通路, 以及, 用于在收到连通信号, 并且, 所 述第三路高压直流电输入到 DC/DC模块的通路被关断后, 触发第一开关模块连 通第二路高压直流电输入到 DC/DC模块的通路;
所述第二驱动模块, 用于在收到连通信号, 并且, 所述第二路高压直流电 输入到 DC/DC模块的通路被关断后, 触发第二开关模块连通第三路高压直流电 输入到 DC/DC模块的通路; 以及, 用于在收到关断信号时触发第二开关模块关 断第三路高压直流电输入到 DC/DC模块的通路;
第一开关模块, 连接在第二路高压直流电与 DC/DC模块之间, 用于响应第 一驱动模块的驱动, 关断第二路高压直流电输入到 DC/DC模块的通路, 以及, 连通第二路高压直流电输入到 DC/DC模块的通路;
第二开关模块, 连接在第三路高压直流电与 DC/DC模块之间, 用于响应第 二驱动模块的驱动, 关断第三路高压直流电输入到 DC/DC模块的通路, 以及, 连通第三路高压直流电输入到 DC/DC模块的通路。
其中, 所述的第一开关模块和第二开关模块可以采用 M0SFET来实现, 也可 以采用继电器实现。
其中, 所述连通所述第二路高压直流电输入到 DC/DC模块的通路, 包括: 同时连通所述第二路高压直流电的正极与 DC/DC模块的输入端的正极之间的 通路, 以及所述第二路高压直流电的负极与 DC/DC模块的输入端的负极之间的 通路。 所述关断所述第二路高压直流电输入到 DC/DC模块的通路, 包括: 同时 关断所述第二路高压直流电的正极与 DC/DC模块的输入端的正极之间的通路, 以及所述第二路高压直流电的负极与 DC/DC模块的输入端的负极之间的通路。 所述连通所述第三路高压直流电输入到 DC/DC模块的通路, 包括: 同时连 通所述第三路高压直流电的正极与 DC/DC模块的输入端的正极之间的通路, 以 及所述第三路高压直流电的负极与 DC/DC模块的输入端的负极之间的通路。 所 述关断所述第三路高压直流电输入到 DC/DC模块的通路, 包括: 同时关断所述 第三路高压直流电的正极与 DC/DC模块的输入端的正极之间的通路, 以及所述 第三路高压直流电的负极与 DC/DC模块的输入端的负极之间的通路。 第二种实现方式如下:
参见图 6, 所述选择模块包括:
第二电压检测模块, 用于检测第二路高压直流电及第三路高压直流电的电 压, 在检测到所述第二路高压直流电电压正常时, 向第三驱动模块输出关断 第三路高压直流电输入到 DC/DC模块的通路的信号, 以及, 连通第二路高压直 流电输入到 DC/DC模块的通路的信号; 在检测到所述第二路高压直流电的电压 异常时, 向第三驱动模块输出关断第二路高压直流电输入到 DC/DC模块的通路 的信号, 以及, 连通第三路高压直流电输入到 DC/DC模块的通路的信号;
所述第三驱动模块, 用于在收到关断第二路高压直流电输入到 DC/DC模块 的通路的信号, 以及, 连通第三路高压直流电输入到 DC/DC模块的通路的信号 时,触发第三开关模块关断第二路高压直流电输入到 DC/DC模块的通路,之后, 触发第三开关模块连通第三路高压直流电输入到 DC/DC模块的通路; 以及用于 在收到关断第三路高压直流电输入到 DC/DC模块的通路的信号, 以及, 连通第 二路高压直流电输入到 DC/DC模块的通路的信号时, 触发第三开关模块关断第 三路高压直流电输入到 DC/DC模块的通路, 之后, 触发第三开关模块连通第二 路高压直流电输入到 DC/DC模块的通路。
第三开关模块, 连接在两路高压直流电与 DC/DC模块之间, 这两路高压直 流电就是所述的第二路高压直流电以及第三路高压直流电; 用于响应第三驱 动模块的驱动, 关断第二路高压直流电输入到 DC/DC模块的通路, 之后, 连通 第三路高压直流电输入到 DC/DC模块的通路; 以及用于响应第三驱动模块的驱 动, 关断第三路高压直流电输入到 DC/DC模块的通路, 之后, 连通第二路高压 直流电输入到 DC/DC模块的通路。 其中, 所述的第三开关模块可以采用 M0SFET来实现, 也可以采用继电器实 现。
其中, 所述连通所述第二路高压直流电输入到 DC/DC模块的通路, 包括: 同时连通所述第二路高压直流电的正极与 DC/DC模块的输入端的正极之间的 通路, 以及所述第二路高压直流电的负极与 DC/DC模块的输入端的负极之间的 通路。 所述关断所述第二路高压直流电输入到 DC/DC模块的通路, 包括: 同时 关断所述第二路高压直流电的正极与 DC/DC模块的输入端的正极之间的通路, 以及所述第二路高压直流电的负极与 DC/DC模块的输入端的负极之间的通路。
所述连通所述第三路高压直流电输入到 DC/DC模块的通路, 包括: 同时连 通所述第三路高压直流电的正极与 DC/DC模块的输入端的正极之间的通路, 以 及所述第三路高压直流电的负极与 DC/DC模块的输入端的负极之间的通路。 所 述关断所述第三路高压直流电输入到 DC/DC模块的通路, 包括: 同时关断所述 第三路高压直流电的正极与 DC/DC模块的输入端的正极之间的通路, 以及所述 第三路高压直流电的负极与 DC/DC模块的输入端的负极之间的通路。 供电系统 参见图 7, 本发明的实施例还提供一种供电系统, 包括: X个 AC/DC模块, W个电源模块, 供电母线, 以及蓄电池组,
所述电源模块用于将输入的至少一路电压进行调整后输出给负载, 实现给 负载供电, 所述电源模块包括整流模块, 选择模块, 以及 DC/DC模块; 所述 AC/DC模块, 用于将输入的第一路交流电(第一 AC)转换为第一路高 压直流电 (第一 HVDC) 输出;
其中, X个所述 AC/DC模块输出的 X个所述第一路高压直流电输入到所述 供电母线上;
所述蓄电池组, 用于在所述 X个 AC/DC模块输出的所述第一路高压直流电 异常时, 输出备用高压直流电;
所述蓄电池组与所述供电母线并联后输出第三路高压直流电(第三 HVDC) , 所述第三路高压直流电输入到所述 W个电源模块;
所述整流模块, 用于将输入的第二路交流电(第二 AC) , 进行整流, 并将 所述第二路交流电转换成第二路高压直流电 (第二 HVDC) 输出;
所述选择模块, 连接在两路高压直流电输入到所述 DC/DC模块的通路上, 所述两路高压直流电包括所述第二路高压直流电和所述第三路高压直流电, 所述选择模块用于在检测到所述第二路高压直流电正常时, 打开所述第二 路高压直流电输入到所述 DC/DC模块的通路并关断所述第三路高压直流电输 入到所述 DC/DC模块的通路, 在检测到所述第二路高压直流电异常时, 打开 所述第三路高压直流电输入到所述 DC/DC模块的通路并关断所述第二路高压 直流电输入到所述 DC/DC模块的通路;
所述 DC/DC模块, 用于将输入的所述第二路高压直流电或所述第三路高压 直流电, 转换为低压直流电输出, 以供所述负载使用。
其中, X, W为大于零的整数。 在本发明的上述供电系统的实施例中, 选择模块可采用前述供电装置实施 例中的选择模块的实现方式。
在本发明的上述供电系统的实施例中, 第二路交流电和所述第三路高压直 流电互为备份的两路电压进入电源模块, 由于所述电源模块可以接入两路相 互备份的供电电压, 因此, 可以采用数量较少的电源模块接入更多路的电压, 从而节省了供电成本。 进一歩地, 采用的电源模块数量少了, 容纳所述电源 模块的设备的体积也可以减小。
进一歩地, 第二路交流电的这一路供电支路不需要备电, 第三路高压直流 电的这一路供电支路采用蓄电池组进行备电。 由于两个供电支路都没有采用 较贵的 UPS设备进行备电, 并且, 仅在第三路高压直流电的这一路供电支路采 用蓄电池组备电, 因此, 供电成本较低。 而且在第二路交流电正常时, 由第 二路交流电来供电, 此时供电的转换环节很少, 提高了供电和配电的效率。
在本发明的上述供电系统的实施例中, X个所述 AC/DC模块通过均流母线 实现 X个所述 AC/DC模块之间并联均流。
进一歩参见图 7, 在本发明的上述供电系统的实施例中, 还进一歩包括第 一 EMI模块及第二 EMI模块;
所述第一 EMI模块, 用于将所述第三路高压直流电进行滤波, 并将经过滤 波后的所述第三路高压直流电向所述选择模块输出;
所述第二 EMI模块,用于将输入的所述第二路交流电(第二 AC )进行滤波, 并将经过滤波后的所述第二路交流电向所述整流模块输出;
进一歩地, 所述供电系统还可以进一歩包括:
PFC模块,用于将所述第二路交流电经过整流后的电压进行功率因素校准。 在本发明的上述供电系统的实施例中,所述第一 EMI模块进一歩用于防雷; 所述第二 EMI模块进一歩用于防雷。 在本发明的上述供电系统的实施例中, 第一路交流电或第二路交流电可以 为 3相 380V电压, 或者 3相 480V电压, 或者单相 220V电压, 或者单相 120V电压 等不同电压规格。
如果对第二路交流电进行功率因素校准的话, 在第二路交流电为 220V时, 第二路高压直流电的电压正常范围: 350-450V; 在第二路交流电为 110V时, 第二路高压直流电的电压正常范围: 130-250V。 如果对第二路交流电不进行功率因素校准的话, 在第二路交流电为 220V 时, 第二路高压直流电的电压正常范围: 240-390V; 在第二路交流电为 110V 时, 第二路高压直流电的电压正常范围: 110-190V。
另外, 根据负载的需要, 或者根据所述供电装置及其所在的供电系统中硬 件的承受能力, 所述第二路高压直流电和第三路高压直流电的电压正常范围 是可以调整的。
其中, 所述第二路高压直流电正常是指, 所述第二路高压直流电的电压位 于上述的正常范围之内。
所述第二路高压直流电异常是指, 所述第二路高压直流电的电压位于上述 的正常范围之外。 此时, 第二路交流电过压, 或第二路交流电欠压, 或第二路交 流电的电压丢失(没有电压), 或第二路交流电的频率异常, 或第二路交流电发生 了波形畸变。
第一路高压直流电的电压正常范围: 260-400V。 其中, 所述第一路高压直 流电正常是指, 所述第一路高压直流电的电压位于上述的正常范围之内。 所 述第一路高压直流电异常是指, 所述第一路高压直流电的电压位于上述的正 常范围之外。
第三路高压直流电的电压正常范围: 260-400V。 其中, 所述第三路高压直 流电正常是指, 所述第三路高压直流电的电压位于上述的正常范围之内。 所 述第三路高压直流电异常是指, 所述第三路高压直流电的电压位于上述的正 常范围之外。
在本发明的上述实施例中, 每个电源模块支持 1路交流 (第二路交流电) 输入和 1路 HVDC直流(第三路高压直流电) 输入。 第二路交流电经过电源模块 内部的 EMI模块、 整流及 PFC模块后输出一个电压相对稳定的第二路高压直流 电。 第三路高压直流电经过 EMI模块后输入到选择模块。 选择模块对第二路高 压直流电和第三路高压直流电进行检测及选择控制, 第二路高压直流电的电 压值在设定的正常范围内, 则认为输入的第二路高压直流电正常, 则选择模 块控制第二路高压直流电输入到选择模块后级的 DC/DC模块。 当第二路 AC输入 电压故障或欠压或过压等异常时, 对应的整流及 PFC模块会因为输入故障或欠 压或过压等异常而关断 PFC输出或输出一个异常电压, 此时选择模块检测到第 二路高压直流电的电压不在正常范围内, 选择模块会确定输入的第二路高压 直流电故障, 所以会断开第二路高压直流电输入到后级 DC/DC模块的通路, 并 控制第三路高压直流输入到选择模块后级的 DC/DC模块。 当选择模块检测到第 二路高压直流电的电压重新恢复到设定的正常范围内时, 则断开第三路高压 直流电输入到后级的 DC/DC模块的通路, 并重新把第二路高压直流电输入到后 级的 DC/DC模块。
在本发明上述的供电系统的实施例中, 具有两个供电支路, 一个是由第一 路交流电作为输入的供电支路 A, 另一个由第二路交流电作为输入的供电支路 B。
由于在本发明实施例中, 第二路交流电正常时, 由供电支路 B供电, 在第 二交流电异常时, 由供电支路 A进行供电。 在供电支路 A中, 第一路交流电 正常时, 由第一路交流电供电, 在第一路交流电异常时, 由蓄电池组供电。 其中, 所述第一路交流电异常是指: 第一路交流电过压, 或第一路交流电欠 压, 或第一路交流电的电压丢失 (没有电压) , 或第一路交流电的频率异常, 或波形畸变。 所述第一路交流电正常是指所述第一路交流电处于所述异常的 状态之外的状态。 所述第二路交流电异常是指: 第二路交流电过压, 或第二 路交流电欠压, 或第二路交流电的电压丢失 (没有电压) , 或第二路交流电 的频率异常, 或波形畸变。 所述第二路交流电正常是指所述第二路交流电处 于所述异常的状态之外的状态。
可以看出, 供电支路 A和供电支路 B中不再设置 UPS备电系统, 既节省了成 本, 也提高了供电和配电的效率。
另外, 因为所述 AC/DC模块与所述蓄电池组并联, 在蓄电池组放电后, 第 一路交流电恢复正常时, 由所述第一路交流电经过 AC/DC模块后输出的所述第 一路高压直流电为所述蓄电池组充电, 蓄电池组充满后进入浮充状态。
在本发明上述的供电系统的实施例中, DC/DC模块将输入的第二路高压直 流电或所述第三路高压直流电, 转换为低压直流电输出, 所述低压直流电可 以为一 48V, 或 + 12V, 或 + 54V, 或一 54V等) 。
参见图 9及 10, 在本发明上述的供电系统的实施例中, 所述 W个电源 模块可以分布于不同的 ICT设备中, 其中, 所述 ICT设备可以位于数据中心 或机房。 例如: W个电源模块中的 N。+m。 (其中, N。, m。为大于零的整数, m。小 于或等于 N。) (图中 "电源 A1 "到 "电源 AN。+m。" ) 个设置于第一个 ICT设 备 (图中 ICT设备 1 ) , W个电源模块中的^+1¾ (其中, ^, 1¾为大于零的整 数, 1¾小于或等于 N (图中 "电源 A1 " 到 "电源 A +nh" )个设置于第二 个 ICT设备 (图中 ICT设备 2 ) , 如此类推。 所述 W= N0+m0+N1+m1+ ······。
其中, N。个电源模块就可以满足第一个 ICT设备的功耗需求 (用电功率需 求) , 多出来的 m。个电源模块是作为冗余备份的。 相似的, 第二个 ICT设备 中, ^个电源模块就可以满足第二个 ICT设备的功耗需求 (用电功率需求) , 多出来的 !¾个电源模块是作为冗余备份的。
参见图 11, 所述 W个电源模块也可以分布于同一个 ICT设备内, 例如: W 个电源模块中的 N+m (其中, N, m为大于零的整数, m小于或等于 N) ) (图 中 "电源 A1 " 到 "电源 AN+m" ) 个分布于第一个 ICT设备, 所述 W= N+m。
其中, N个电源模块就可以满足一个 ICT设备的功耗需求 (用电功率需求), 多出来的 m个电源模块是作为冗余备份的。
所述 ICT设备可以包括但不限于路由器、 或交换器、 或服务器等。
参见图 9, 图 10及图 11, 在本发明上述的供电系统的实施例中, 所述 ICT设 备还可以包括低压母线, 位于一个 ICT设备中的 N0+m0或 Nl+ml或 N+m个所 述电源模块的 DC/DC模块将低压直流电输出到所述低压母线上, 所述 ICT设 备中的单板、 风扇等负载连接到所述低压母线上, 以实现所述单板、 风扇等 负载的供电。 至少一个负载与所述低压母线之间可以连接有过流保护模块, 所述过流保护模块, 用于为与所述过流保护模块连接的所述负载提供过流保 护。 所述过流保护模块可以包括熔丝、 或断路器等。 所述 ICT设备还可以包括均流母线, 位于一个 ICT设备中的 ^+!^或^+!!^或
N+m个所述电源模块通过所述均流母线上实现 N。+m。或 N1+m1或N+m个所述电源 模块相互之间的均流, 确保平均分摊负荷。
其中, X, W, No , m。, 1¾为大于零的整数。
参见图 9, 图 10及图 11, 所述 ICT设备 (例如图中的 ICT设备 1和 ICT设备 2 ) 中的负载还可以进行分区, 例如: 图中 ICT设备 1中的负载区 1到负载区 T, ICT 设备 2中的负载区 1到负载区 。 其中, M, L为大于零的整数。 每个负载区连接 到所述低压母线上, 以实现所述负载区的供电。
所述负载区包括至少一个负载, 所述负载包括至少一个电子设备, 所述电 子设备可以为单板、 或风扇等。
所述多个负载区中的至少一个负载区与所述低压母线之间连接有过流保 护模块, 所述过流保护模块, 用于为与所述过流保护模块连接的所述负载区 提供过流保护。 所述过流保护模块可以包括熔丝、 或断路器等。 参见图 9及 10, 在本发明上述的供电系统的实施例中, 所述 X个 AC/DC 模块可以设置于电源柜中。 在本发明上述的供电系统的实施例中, 还可以进一歩包括分配模块。 所述 第三路高压直流电 (第三 HVDC) 可以通过所述分配模块向 W个电源模块的第 一 EMI模块输出;
所述分配模块用于将所述第三路高压直流电分配成 W个不同容量或相同容 量的直流支路输出, 所述 W个直流支路分别输入到所述 W个电源模块。 参见图 9及 10,所述分配模块可以为第一直流配电屏(图中的直流配电屏), 所述第一直流配电屏还可以进一歩为输出的所述直流支路提供过流保护; 此 外, 所述第一直流配电屏还可以具备对输入的所述第三路高压直流电的电压、 电流进行检测等的功能。
或者, 所述分配模块也可以包括第二直流配电屏 (图中的直流配电屏) 和 P个直流配电柜 (图中的直流配电柜) 。
所述第二直流配电屏用于将所述第三路高压直流电分配成 Q个不同容量或 相同容量的直流支路, 所述 Q个直流支路分别输入到所述 P个直流配电柜, 其 中, 所述 Q个直流支路中输入一个直流配电柜的可以有一个直流支路或多个直 流支路;
所述直流配电柜用于将输入的每一个直流支路分配成多路不同容量或相 同容量的直流支路输出;
其中, P个所述直流配电柜输出的直流支路的总数为 W, 所述 W个直流支路 分别输入到所述 W个电源模块的第一 EMI模块, 所述 Q, P为大于零的整数。
进一歩地, 所述第二直流配电屏还可以进一歩为输出的所述直流支路提供 过流保护; 此外, 所述第二直流配电屏还可以具备对输入的所述第三路高压 直流电的电压、 电流进行检测等功能。 所述直流配电柜也可以进一歩为输出 的所述直流支路提供过流保护; 此外, 所述直流配电柜还可以具备对输入的 所述直流支路的电压、 电流进行检测等的功能。
参见图 9及 10,在本发明上述的供电系统的实施例中,还进一歩包括交流 配电柜, 所述第二路交流电通过所述交流配电柜输入到 W个电源模块的第二 EMI模块;
所述交流配电柜, 用于将输入的第二路交流电分配成 W路不同容量或相同 容量的交流支路; 进一歩地, 所述交流配电柜还可以进一歩为输出的所述交流支路提供过流 保护; 此外, 所述所述交流配电柜还可以具备对输入的所述第二路交流电的 电压、 电流进行检测等的功能。 在本发明上述的供电系统的实施例中, 市电转变为所述第一路交流电和所 述第二路交流电的方式可以有以下两种: 参见图 8及 9, 第一种:
在本发明上述的供电系统的实施例中, 有两路市电输入该供电系统, 所述 两路市电包括第一路市电 A和第二路市电 B, 并且该供电系统还包括第一交流 ATS模块, 第二交流 ATS模块以及油机(其中, 第一交流 ATS模块和第二交流 ATS模块一起在图 9显示为 "交流 ATS模块" ) ; 所述两路市电输入到所述第 一交流 ATS模块;
所述第一交流 ATS模块(图中 ATS1 ), 用于接收第一路市电 A和第二路市电 B, 用于在所述第一路市电 A正常时, 向所述第二交流 ATS模块(图中 ATS2)输出所述 第一路市电 A, 以及用于在所述第一路市电 A异常, 所述第二路市电 B正常时, 向 所述第二交流 ATS模块输出所述第二路市电 B, 在所述第一路市电 A和第二路市电 B都异常时, 所述第一路市电 A和第二路市电 B都不被输出;
油机, 用于发电, 以产生交流电并向第二交流 ATS模块输出;
所述第二交流 ATS模块, 用于在第一路市电 A正常时, 将所述第一交流 ATS模 ±夬输入的第一路市电 A输出, 在所述第一路市电 A异常且第二路市电 B正常时, 将 所述第一交流 ATS模块输入的第二路市电 B输出, 在所述第一路市电 A和第二路市 电 B都异常时, 将所述油机产生的交流电输出; 其中, 所述第二交流 ATS模块输出 的第一路市电 A, 或第二路市电 B, 或油机产生的交流电, 分为两个分支, 一个分 支是所述第一路交流电, 另一个分支是所述第二路交流电。
其中, 所述第一路市电 A异常是指: 所述第一路市电 A过压, 或所述第一路市 电 A欠压, 或所述第一路市电 A的电压丢失(没有电压), 或所述第一路市电 A的 频率异常, 或所述第一路市电 A的波形畸变等。 所述第一路市电 A正常是指所述第 一路市电 A处于所述异常的状态之外的状态。
所述第二路市电 B异常是指: 所述第二路市电 B过压, 或所述第二路市电 B欠 压, 或所述第二路市电 B的电压丢失(没有电压), 或所述第二路市电 B的频率异 常, 或所述第二路市电 B的波形畸变等。 所述第二路市电 B正常是指所述第二路市 电 B处于所述异常的状态之外的状态。
可以看出, 在本发明的上述实施例中, 当所述第一路市电 A或所述第二路 市电 B正常时, 选择市电供电, 只有在第一路市电 A和第二路市电 B都异常的 情况下才启动油机, 由油机供电, 但是, 油机从启动到发动起来能够发电有 个过程, 在油机能够发电之前, 由蓄电池组来供电。
在本发明上述的供电系统的实施例中, 还包括第一交流配电屏,
所述第一交流配电屏,用于将所述第二交流 ATS模块输出的第一路市电 A, 或第二路市电 B, 或油机产生的交流电, 分配成两个交流分支, 一个交流分支 是所述第一路交流电, 另一个交流分支是所述第二路交流电。
所述第一交流配电屏, 还可以进一歩为输出的所述交流分支提供过流保 护; 此外, 所述所述第一交流配电屏还可以具备对所述第一路市电 A, 或所述 第二路市电 B, 或所述油机产生的交流电进行防雷, 或检测等的功能。 第二种:
参见图 10,在本发明上述的供电系统的实施例中, 有一路市电输入该供电 系统, 并且该供电系统还包括第三交流 ATS模块 (图中交流 ATS模块) , 以 及油机; 所述市电输入到所述第三交流 ATS模块;
所述油机, 用于发电, 以产生交流电并向所述第三交流 ATS模块输出; 所述第三交流 ATS模块, 用于在所述市电正常时, 将输入的市电输出, 在所 述市电异常时, 将所述油机产生的交流电输出; 其中, 所述第三交流 ATS模块输出 的油机产生的交流电, 或市电, 分为两个分支, 一个分支是所述第一路交流电, 另 一个分支是所述第二路交流电。
其中, 所述市电异常是指: 所述市电过压, 或所述市电欠压, 或所述市电的电 压丢失(没有电压), 或所述市电的频率异常, 或所述市电的波形畸变等。 所述市 电正常是指所述市电处于所述异常的状态之外的状态。
可以看出, 在本发明的上述实施例中, 当市电正常时, 选择市电供电, 在 市电异常情况下启动油机, 由油机供电, 但是, 油机从启动到发动起来能够 发电有个过程, 在油机能够发电之前, 由蓄电池组来供电。
在本发明上述的供电系统的实施例中, 还包括第三交流配电屏,
所述第三交流配电屏, 用于将所述第三交流 ATS模块输出的市电, 或油机 产生的交流电, 分配成两个交流分支, 一个交流分支是所述第一路交流电和 另一个交流分支是所述第二路交流电。
所述第三交流配电屏, 还可以进一歩为输出的所述交流分支提供过流保 护; 此外, 所述第三交流配电屏还可以具备对所述市电, 或所述油机输入的 交流电进行防雷, 或检测等的功能。
ICT设备 参见图 9及 10,本发明的实施例还提供一种 ICT设备,其特征在于,所述 ICT 设备包括: N个电源模块以及 M个负载,
所述电源模块用于将输入的至少一路电压进行调整后输出给负载, 实现给 负载供电, 其中, 所述 N个电源模块为所述 M个负载供电; 所述电源模块包括 整流模块, 选择模块, 以及 DC/DC模块;
所述整流模块, 用于将输入的第二路交流电(第二 AC) , 进行整流, 并将 所述第二路交流电转换成第二路高压直流电 (第二 HVDC) 输出;
所述选择模块, 连接在两路高压直流电输入到所述 DC/DC模块的通路上, 所述两路高压直流电包括所述第二路高压直流电 (第二 HVDC) 和第三路高压 直流电 (第三 HVDC) ,
所述选择模块用于在检测到所述第二路高压直流电正常时, 打开所述第二 路高压直流电输入到所述 DC/DC模块的通路并关断所述第三路高压直流电输 入到所述 DC/DC模块的通路, 在检测到所述第二路高压直流电异常时, 打开 所述第三路高压直流电输入到所述 DC/DC模块的通路并关断所述第二路高压 直流电输入到所述 DC/DC模块的通路;
所述 DC/DC模块, 用于将输入的所述第二路高压直流电或所述第三路高压 直流电, 转换为低压直流电输出, 以供所述负载使用;
其中所述 N, M为大于零的整数。
在本发明的上述 ICT设备的实施例中, 选择模块可采用前述供电装置实施 例中的选择模块的实现方式。
在本发明的上述 ICT设备的实施例中, 第二路交流电和所述第三路高压直 流电互为备份的两路电压进入电源模块, 由于所述电源模块可以接入两路相 互备份的供电电压, 因此, 可以采用数量较少的电源模块接入更多路的电压, 从而节省了供电成本。 进一歩地, 采用的电源模块数量少了, 容纳所述电源 模块的 ICT设备的体积也可以减小。
在本发明的上述 ICT设备的实施例中, X个所述 AC/DC模块可以通过均流 母线实现 X个所述 AC/DC模块之间并联均流。
进一歩参见图 7, 在本发明的上述 ICT设备的实施例中, 还进一歩包括第 一 EMI模块及第二 EMI模块;
所述第一 EMI模块, 用于将所述第三路高压直流电进行滤波, 并将经过滤 波后的所述第三路高压直流电向所述选择模块输出;
所述第二 EMI模块,用于将输入的所述第二路交流电(第二 AC)进行滤波, 并将经过滤波后的所述第二路交流电向所述整流模块输出;
进一歩地, 所述 ICT设备还可以进一歩包括: PFC模块,用于将所述第二路交流电经过整流后的电压进行功率因素校准。 在本发明的上述 ICT设备的实施例中, 所述第一 EMI模块可以进一歩用于 防雷; 所述第二 EMI模块也可以进一歩用于防雷。
在本发明的上述 ICT设备的实施例中, 第一路交流电或第二路交流电可以 为 3相 380V电压, 或者 3相 480V电压, 或者单相 220V电压, 或者单相 120V电压 等不同电压规格。
如果对第二路交流电进行功率因素校准的话, 在第二路交流电为 220V时, 第二路高压直流电的电压正常范围: 350-450V; 在第二路交流电为 110V时, 第二路高压直流电的电压正常范围: 130-250V。
如果对第二路交流电不进行功率因素校准的话, 在第二路交流电为 220V 时, 第二路高压直流电的电压正常范围: 240-390V; 在第二路交流电为 110V 时, 第二路高压直流电的电压正常范围: 110-190V。
另外,根据负载的需要,或者根据所述供电装置及其所在的供电系统或 ICT 设备中硬件的承受能力, 所述第二路高压直流电和第三路高压直流电的电压 正常范围是可以调整的。
其中, 所述第二路高压直流电正常是指, 所述第二路高压直流电的电压位 于上述的正常范围之内。
所述第二路高压直流电异常是指, 所述第二路高压直流电的电压位于上述 的正常范围之外。 此时, 第二路交流电过压, 或第二路交流电欠压, 或第二路交 流电的电压丢失(没有电压), 或第二路交流电的频率异常, 或第二路交流电发生 了波形畸变。
第一路高压直流电的电压正常范围: 260-400V。 其中, 所述第一路高压直 流电正常是指, 所述第一路高压直流电的电压位于上述的正常范围之内。 所 述第一路高压直流电异常是指, 所述第一路高压直流电的电压位于上述的正 常范围之外。
第三路高压直流电的电压正常范围: 260-400V。 其中, 所述第三路高压直 流电正常是指, 所述第三路高压直流电的电压位于上述的正常范围之内。 所 述第三路高压直流电异常是指, 所述第三路高压直流电的电压位于上述的正 常范围之外。
在本发明的上述实施例中, 每个电源模块支持 1路交流 (第二路交流电) 输入和 1路 HVDC直流(第三路高压直流电) 输入。 第二路交流电经过电源模块 内部的 EMI模块、 整流及 PFC模块后输出一个电压相对稳定的第二路高压直流 电。 第三路高压直流电经过 EMI模块后输入到选择模块。 选择模块对第二路高 压直流电和第三路高压直流电进行检测及选择控制, 第二路高压直流电的电 压值在设定的正常范围内, 则认为输入的第二路高压直流电正常, 则选择模 块控制第二路高压直流电输入到选择模块后级的 DC/DC模块。 当第二路 AC输入 电压故障或欠压或过压等异常时, 对应的整流及 PFC模块会因为输入故障或欠 压或过压等异常而关断 PFC输出或输出一个异常电压, 此时选择模块检测到第 二路高压直流电的电压不在正常范围内, 选择模块会确定输入的第二路高压 直流电故障, 所以会断开第二路高压直流电输入到后级 DC/DC模块的通路, 并 控制第三路高压直流输入到选择模块后级的 DC/DC模块。 当选择模块检测到第 二路高压直流电的电压重新恢复到设定的正常范围内时, 则断开第三路高压 直流电输入到后级的 DC/DC模块的通路, 并重新把第二路高压直流电输入到后 级的 DC/DC模块。
在本发明上述的 ICT设备的实施例中, 具有两个供电支路, 一个是由第一 路交流电作为输入的供电支路 A, 另一个由第二路交流电作为输入的供电支路 B。
由于在本发明实施例中, 第二路交流电正常时, 由供电支路 B供电, 在第 二交流电异常时, 由供电支路 A进行供电。 在供电支路 A中, 第一路交流电 正常时, 由第一路交流电供电, 在第一路交流电异常时, 由蓄电池组供电。 其中, 所述第一路交流电异常是指: 第一路交流电过压, 或第一路交流电欠 压, 或第一路交流电的电压丢失 (没有电压) , 或第一路交流电的频率异常, 或波形畸变。 所述第一路交流电正常是指所述第一路交流电处于所述异常的 状态之外的状态。 所述第二路交流电异常是指: 第二路交流电过压, 或第二 路交流电欠压, 或第二路交流电的电压丢失 (没有电压) , 或第二路交流电 的频率异常, 或波形畸变。 所述第二路交流电正常是指所述第二路交流电处 于所述异常的状态之外的状态。
可以看出, 供电支路 A和供电支路 B中不再设置 UPS备电系统, 既节省了成 本, 也提高了供电和配电的效率。
另外, 因为所述 AC/DC模块与所述蓄电池组并联, 在蓄电池组放电后, 第 一路交流电恢复正常时, 由所述第一路交流电经过 AC/DC模块后输出的所述第 一路高压直流电为所述蓄电池组充电, 蓄电池组充满后进入浮充状态。
在本发明上述的 ICT设备的实施例中, DC/DC模块将输入的第二路高压直流 电或所述第三路高压直流电, 转换为低压直流电输出, 所述低压直流电可以 为一 48V, 或 + 12V, 或 + 54V, 或一 54V等) 。
参见图 9及 10, 在本发明上述的 ICT设备的实施例中, 所述 W个电源模 块可以分布于不同的 ICT设备中, 其中, 所述 ICT设备可以位于数据中心或 机房。 例如: W个电源模块中的 N。+m。 (其中, N。, m。为大于零的整数, m。小于 或等于 N。) (图中 "电源 A1 "到 "电源 AN。+m。" ) 个设置于第一个 ICT设备 (图中 ICT设备 1 ), W个电源模块中的^+!¾ (其中, ^, 1¾为大于零的整数, 1¾小于或等于 N (图中 "电源 A1 " 到 "电源肌 +!¾" ) 个设置于第二个 ICT设备 (图中 ICT设备 2 ) , 如此类推。 所述 W= N0+m0+N1+m1+……。
其中, N。个电源模块就可以满足第一个 ICT设备的功耗需求 (用电功率需 求) , 多出来的 m。个电源模块是作为冗余备份的。 相似的, 第二个 ICT设备 中, ^个电源模块就可以满足第二个 ICT设备的功耗需求 (用电功率需求) , 多出来的 !¾个电源模块是作为冗余备份的。
参见图 11, 所述 W个电源模块也可以分布于同一个 ICT设备内, 例如: W 个电源模块中的 N+m (其中, N, m为大于零的整数, m小于或等于 N) (图中 "电源 Al " 到 "电源 AN+m" ) 个分布于第一个 ICT设备, 所述 W= N+m。 其中, N个电源模块就可以满足一个 ICT设备的功耗需求 (用电功率需求), 多出来的 m个电源模块是作为冗余备份的, 其中, m为大于零的整数。 在本发明上述的 ICT设备的实施例中, 所述 ICT设备可以包括但不限于路 由器、 或交换器、 或服务器等。
参见图 9, 图 10及图 11,在本发明上述的 ICT设备的实施例中,所述 ICT 设备还可以包括低压母线,位于一个 ICT设备中的 N。+m。或 ^+1¾个或 N+m个所 述电源模块的 DC/DC模块将低压直流电输出到所述低压母线上, ICT设备中的 M个负载连接到所述低压母线上, 以实现所述 M个负载的供电。所述 M个负载 包括所述 ICT设备中的单板、 风扇等负载。 所述 M个负载中的至少一个负载 与所述低压母线之间连接有过流保护模块, 所述过流保护模块, 用于为与所 述过流保护模块连接的所述负载提供过流保护。 所述过流保护模块可以包括 熔丝、 或断路器等。 所述 ICT设备还可以包括均流母线, 位于一个 ICT设备中的 ^+!^或^+!!^个或
N+m个所述电源模块通过所述均流母线上实现 N。+m。或 个或 N+m个所述电 源模块相互之间的均流, 确保平均分摊负荷。
其中, X, W, No , N!, m0, 1¾为大于零的整数。 参见图 9, 图 10及图 11, 所述 ICT设备 (例如图中的 ICT设备 1和 ICT设备 2 ) 中的所述 M个负载可以被划分为多个负载区, 例如: 图中 ICT设备 1中的负载区 1到负载区 T, ICT设备 2中的负载区 1到负载区^ 其中, T, L为大于零的整数。 每个负载区连接到所述低压母线上, 以实现所述负载区的供电。
所述负载区包括至少一个负载, 所述负载包括至少一个电子设备, 所述电 子设备可以为单板、 或风扇等。 所述多个负载区中的至少一个负载区与所述低压母线之间连接有过流保 护模块, 所述过流保护模块, 用于为与所述过流保护模块连接的所述负载区 提供过流保护。 所述过流保护模块可以包括熔丝、 或断路器等。
参见图 9及 10, 在本发明上述的 ICT设备的实施例中, 所述 X个 AC/DC 模块可以设置于电源柜中。
在本发明上述的 ICT设备的实施例中, 还可以进一歩包括分配模块。 所述 第三路高压直流电 (第三 HVDC) 可以通过所述分配模块向 W个电源模块的第 一 EMI模块输出;
所述分配模块用于将所述第三路高压直流电分配成 W个不同容量或相同容 量的直流支路输出, 所述 W个直流支路分别输入到所述 W个电源模块。
参见图 9及 10,所述分配模块可以为第一直流配电屏(图中的直流配电屏), 所述第一直流配电屏还可以进一歩为输出的所述直流支路提供过流保护; 此 外, 所述第一直流配电屏还可以具备对输入的所述第三路高压直流电的电压、 电流进行检测等的功能。
或者, 所述分配模块也可以包括第二直流配电屏 (图中的直流配电屏) 和 P个直流配电柜 (图中的直流配电柜) 。
所述第二直流配电屏用于将所述第三路高压直流电分配成 Q个不同容量或 相同容量的直流支路, 所述 Q个直流支路分别输入到所述 P个直流配电柜, 其 中, 所述 Q个直流支路中输入一个直流配电柜的可以有一个直流支路或多个直 流支路;
所述直流配电柜用于将输入的每一个直流支路分配成多路不同容量或相 同容量的直流支路输出;
其中, P个所述直流配电柜输出的直流支路的总数为 W, 所述 W个直流支路 分别输入到所述 W个电源模块的第一 EMI模块, 所述 Q, P为大于零的整数。 进一歩地, 所述第二直流配电屏还可以进一歩为输出的所述直流支路提供 过流保护; 此外, 所述第二直流配电屏还可以具备对输入的所述第三路高压 直流电的电压、 电流进行检测等功能。 所述直流配电柜也可以进一歩为输出 的所述直流支路提供过流保护; 此外, 所述直流配电柜还可以具备对输入的 所述直流支路的电压、 电流进行检测等的功能。
参见图 9及 10,在本发明上述的 ICT设备的实施例中,还进一歩包括交流 配电柜, 所述第二路交流电通过所述交流配电柜输入到 W个电源模块的第二 EMI模块;
所述交流配电柜, 用于将输入的第二路交流电分配成 W路不同容量或相同 容量的交流支路;
进一歩地, 所述交流配电柜还可以进一歩为输出的所述交流支路提供过流 保护; 此外, 所述所述交流配电柜还可以具备对输入的所述第二路交流电的 电压、 电流进行检测等的功能。
本领域普通技术人员可以理解上述供电方法, 电源模块, 供电装置, 及供 电系统, ICT设备等多个实施例之间,具体的歩骤及组成元件,可以互相借鉴, 互相参考。
本领域普通技术人员可以理解实现上述实施例方法中的全部或部分流程, 是可以通过计算机程序来指示相关的硬件来完成, 所述的程序可存储于一计 算机可读取存储介质中, 该程序在执行时, 可包括如上述各方法的实施例的 流程。 其中, 所述的存储介质可为磁碟、 光盘、 只读存储记忆体 (Read-Only Memory, ROM) 或随机存储记忆体 (Random Access Memory, RAM) 等。 以上所述仅为本发明的几个实施例, 本领域的技术人员依据申请文件公 开的可以对本发明进行各种改动或变型而不脱离本发明的精神和范围。

Claims

权 利 要 求 书
1、 一种供电方法, 应用于电源模块中, 所述电源模块用于将输入的至少一路 电压进行调整后输出给负载, 实现给负载供电, 其特征在于, 所述供电方法包 括:
将输入的第二路交流电, 进行整流, 并将所述第二路交流电转换成第二路高 压直流电;
在检测到所述第二路高压直流电异常时, 将输入的第三路高压直流电输入
DC/DC模块; 在检测到所述第二路高压直流电正常时, 将所述第二路高压直流电 输入所述 DC/DC模块, 此时输入的所述第三路高压直流电处在备用状态; 所述 DC/DC模块将输入的所述第二路高压直流电或所述第三路高压直流电, 转换为低压直流电输出, 以供负载使用。
2、 如权利要求 1所述的供电方法, 其特征在于, 在将输入的所述第二路交流 电进行整流之前, 所述供电方法进一歩包括:
将输入的所述第二路交流电进行滤波。
3、 如权利要求 1所述的供电方法, 其特征在于,
在将输入的所述第三路高压直流电输入所述 DC/DC模块之前, 所述供电方法 进一歩包括:
将输入的所述第三路高压直流电进行滤波。
4、 如权利要求 1至 3中的任意一项所述的供电方法, 其特征在于, 在将输入 的所述第二路交流电进行整流之后, 并且, 在将所述第二路交流电输入所述 DC/DC模块之前, 所述供电方法进一歩包括:
将所述第二路交流电经过整流后的电压进行功率因素校准。
5、 一种供电方法, 其特征在于, 所述供电方法包括:
将输入的第一路交流电转换为第一路高压直流电;
蓄电池组在所述第一路高压直流电异常时, 输出备用高压直流电, 其中, 所 述蓄电池组与所述第一路高压直流电并联后输出第三路高压直流电; 将输入的第二路交流电, 进行整流, 并将所述第二路交流电转换成第二路高 压直流电;
在检测到所述第二路高压直流电正常时,将所述第二路高压直流电输入 DC/DC 模块, 此时所述第一路高压直流电与所述蓄电池组并联后输出的所述第三路高 压直流电处在备用状态; 在检测到所述第二路高压直流电异常时, 将所述第三 路高压直流电输入所述 DC/DC模块;
所述 DC/DC模块将输入的所述第二路高压直流电或所述第三路高压直流电, 转换为低压直流电输出, 以供负载使用。
6、 如权利要求 5所述的供电方法, 其特征在于, 在将输入的所述第二路交流 电进行整流之前, 所述供电方法进一歩包括:
将输入的所述第二路交流电进行滤波。
7、 如权利要求 5所述的供电方法, 其特征在于,
在将所述第三路高压直流电输入所述 DC/DC模块之前, 所述供电方法进一歩 包括:
将所述第三路高压直流电进行滤波。
8、 如权利要求 5至 7中的任意一项所述的供电方法, 其特征在于, 在将输入 的所述第二路交流电进行整流之后, 并且, 在将所述第二路交流电输入所述 DC/DC模块之前, 所述供电方法进一歩包括:
将所述第二路交流电经过整流后的电压进行功率因素校准。
9、 一种电源模块, 其特征在于, 所述电源模块包括整流模块, 选择模块, 以 及 DC/DC模块;
所述整流模块, 用于将输入的第二路交流电, 进行整流, 并将所述第二路交 流电转换成第二路高压直流电输出;
所述选择模块, 连接在两路高压直流电输入到所述 DC/DC模块的通路上, 所 述两路高压直流电包括所述第二路高压直流电和第三路高压直流电,
所述选择模块用于在检测到所述第二路高压直流电正常时, 打开所述第二路 高压直流电输入到所述 DC/DC模块的通路并关断所述第三路高压直流电输入到 所述 DC/DC模块的通路, 在检测到所述第二路高压直流电异常时, 打开所述第 三路高压直流电输入到所述 DC/DC模块的通路并关断所述第二路高压直流电输 入到所述 DC/DC模块的通路;
所述 DC/DC模块, 用于将输入的所述第二路高压直流电或所述第三路高压直 流电, 转换为低压直流电输出, 以供负载使用。
10、 如权利要求 9所述的电源模块, 其特征在于, 所述电源模块还进一歩包括 第一 EMI模块;
所述第一 EMI模块, 用于将所述第三路高压直流电进行滤波, 并将经过滤波 后的所述第三路高压直流电向所述选择模块输出;
11、 如权利要求 9所述的电源模块, 其特征在于, 所述电源模块还进一歩包 括:
所述第二 EMI模块, 用于将输入的所述第二路交流电进行滤波, 并将经过滤 波后的所述第二路交流电向所述整流模块输出。
12、 如权利要求 9所述的电源模块, 其特征在于, 所述电源模块还进一歩包 括:
PFC模块, 用于将所述第二路交流电经过整流后的电压进行功率因素校准。
13、 如权利要求 9至 12中的任意一项所述的电源模块, 其特征在于, 所述选择 模块包括:
第一电压检测模块, 用于检测第二路高压直流电及第三路高压直流电的电压, 在检测到所述第二路高压直流电的电压正常时, 向第二驱动模块输出关断信号, 并向第一驱动模块输出连通信号; 在检测到所述第二路高压直流电的电压异常 时, 向第一驱动模块输出关断信号, 并向第二驱动模块输出连通信号;
所述第一驱动模块, 用于在收到关断信号时触发第一开关模块关断第二路高 压直流电输入到 DC/DC模块的通路, 以及, 用于在收到连通信号, 并且, 所述第 三路高压直流电输入到 DC/DC模块的通路被关断后, 触发第一开关模块连通第二 路高压直流电输入到 DC/DC模块的通路;
所述第二驱动模块, 用于在收到连通信号, 并且, 所述第二路高压直流电输 入到 DC/DC模块的通路被关断后, 触发第二开关模块连通第三路高压直流电输入 到 DC/DC模块的通路; 以及, 用于在收到关断信号时触发第二开关模块关断第三 路高压直流电输入到 DC/DC模块的通路;
第一开关模块, 连接在第二路高压直流电与 DC/DC模块之间, 用于响应第一驱 动模块的驱动, 关断第二路高压直流电输入到 DC/DC模块的通路, 以及, 连通第 二路高压直流电输入到 DC/DC模块的通路;
第二开关模块, 连接在第三路高压直流电与 DC/DC模块之间, 用于响应第二驱 动模块的驱动, 关断第三路高压直流电输入到 DC/DC模块的通路, 以及, 连通第 三路高压直流电输入到 DC/DC模块的通路。
14、 如权利要求 9至 12中的任意一项所述的电源模块, 其特征在于, 所述选择 模块包括:
第二电压检测模块, 用于检测第二路高压直流电及第三路高压直流电的电压, 在检测到所述第二路高压直流电电压正常时, 向第三驱动模块输出关断第三路 高压直流电输入到 DC/DC模块的通路的信号, 以及, 连通第二路高压直流电输入 到 DC/DC模块的通路的信号; 在检测到所述第二路高压直流电的电压异常时, 向 第三驱动模块输出关断第二路高压直流电输入到 DC/DC模块的通路的信号, 以 及, 连通第三路高压直流电输入到 DC/DC模块的通路的信号;
所述第三驱动模块, 用于在收到关断第二路高压直流电输入到 DC/DC模块的通 路的信号, 以及, 连通第三路高压直流电输入到 DC/DC模块的通路的信号时, 触 发第三开关模块关断第二路高压直流电输入到 DC/DC模块的通路, 之后, 触发第 三开关模块连通第三路高压直流电输入到 DC/DC模块的通路; 以及用于在收到关 断第三路高压直流电输入到 DC/DC模块的通路的信号, 以及, 连通第二路高压直 流电输入到 DC/DC模块的通路的信号时, 触发第三开关模块关断第三路高压直流 电输入到 DC/DC模块的通路, 之后, 触发第三开关模块连通第二路高压直流电输 入到 DC/DC模块的通路。
第三开关模块, 连接在两路高压直流电与 DC/DC模块之间, 这两路高压直流电 就是所述的第二路高压直流电以及第三路高压直流电; 用于响应第三驱动模块 的驱动, 关断第二路高压直流电输入到 DC/DC模块的通路, 之后, 连通第三路高 压直流电输入到 DC/DC模块的通路; 以及用于响应第三驱动模块的驱动, 关断第 三路高压直流电输入到 DC/DC模块的通路, 之后, 连通第二路高压直流电输入到 DC/DC模块的通路。
15、 一种供电装置, 其特征在于, 所述供电装置包括 AC/DC模块, 蓄电池组, 整流模块, 选择模块, 以及 DC/DC模块:
所述 AC/DC模块, 用于将输入的第一路交流电转换为第一路高压直流电输出; 所述蓄电池组, 用于在所述 AC/DC模块输出的所述第一路高压直流电异常时, 输出备用高压直流电,
其中, 所述蓄电池组与所述 AC/DC模块并联后输出第三路高压直流电; 所述整流模块, 用于将输入的第二路交流电, 进行整流, 并将所述第二路交 流电转换成第二路高压直流电输出;
所述选择模块, 连接在两路高压直流电输入到所述 DC/DC模块的通路上, 所 述两路高压直流电包括所述第二路高压直流电和所述第三路高压直流电, 所述选择模块用于在检测到所述第二路高压直流电正常时, 打开所述第二路 高压直流电输入到所述 DC/DC模块的通路并关断所述第三路高压直流电输入到 所述 DC/DC模块的通路, 在检测到所述第二路高压直流电异常时, 打开所述第 三路高压直流电输入到所述 DC/DC模块的通路并关断所述第二路高压直流电输 入到所述 DC/DC模块的通路;
所述 DC/DC模块, 用于将输入的所述第二路高压直流电或所述第三路高压直 流电, 转换为低压直流电输出, 以供负载使用。
16、 如权利要求 15所述的供电装置, 其特征在于, 所述供电装置还进一歩包 括第一 EMI模块; 所述第一 EMI模块, 用于将所述第三路高压直流电进行滤波, 并将经过滤波 后的所述第三路高压直流电向所述选择模块输出。
17、 如权利要求 15所述的供电装置, 其特征在于, 所述供电装置还进一歩包 括第二 EMI模块;
所述第二 EMI模块, 用于将输入的所述第二路交流电进行滤波, 并将经过滤 波后的所述第二路交流电向所述整流模块输出。
18、 如权利要求 15所述的供电装置, 其特征在于, 所述供电装置还进一歩包 括:
PFC模块, 用于将所述第二路交流电经过整流后的电压进行功率因素校准。
19、 如权利要求 15至 18中的任意一项所述的供电装置, 其特征在于, 所述选 择模块包括:
第一电压检测模块, 用于检测第二路高压直流电及第三路高压直流电的电压, 在检测到所述第二路高压直流电的电压正常时, 向第二驱动模块输出关断信号, 并向第一驱动模块输出连通信号; 在检测到所述第二路高压直流电的电压异常 时, 向第一驱动模块输出关断信号, 并向第二驱动模块输出连通信号;
所述第一驱动模块, 用于在收到关断信号时触发第一开关模块关断第二路高 压直流电输入到 DC/DC模块的通路, 以及, 用于在收到连通信号, 并且, 所述第 三路高压直流电输入到 DC/DC模块的通路被关断后, 触发第一开关模块连通第二 路高压直流电输入到 DC/DC模块的通路;
所述第二驱动模块, 用于在收到连通信号, 并且, 所述第二路高压直流电输 入到 DC/DC模块的通路被关断后, 触发第二开关模块连通第三路高压直流电输入 到 DC/DC模块的通路; 以及, 用于在收到关断信号时触发第二开关模块关断第三 路高压直流电输入到 DC/DC模块的通路;
第一开关模块, 连接在第二路高压直流电与 DC/DC模块之间, 用于响应第一驱 动模块的驱动, 关断第二路高压直流电输入到 DC/DC模块的通路, 以及, 连通第 二路高压直流电输入到 DC/DC模块的通路; 第二开关模块, 连接在第三路高压直流电与 DC/DC模块之间, 用于响应第二驱 动模块的驱动, 关断第三路高压直流电输入到 DC/DC模块的通路, 以及, 连通第 三路高压直流电输入到 DC/DC模块的通路。
20、 如权利要求 15至 18中的任意一项所述的供电装置, 其特征在于, 所述选 择模块包括:
第二电压检测模块, 用于检测第二路高压直流电及第三路高压直流电的电压, 在检测到所述第二路高压直流电电压正常时, 向第三驱动模块输出关断第三路 高压直流电输入到 DC/DC模块的通路的信号, 以及, 连通第二路高压直流电输入 到 DC/DC模块的通路的信号; 在检测到所述第二路高压直流电的电压异常时, 向 第三驱动模块输出关断第二路高压直流电输入到 DC/DC模块的通路的信号, 以 及, 连通第三路高压直流电输入到 DC/DC模块的通路的信号;
所述第三驱动模块, 用于在收到关断第二路高压直流电输入到 DC/DC模块的通 路的信号, 以及, 连通第三路高压直流电输入到 DC/DC模块的通路的信号时, 触 发第三开关模块关断第二路高压直流电输入到 DC/DC模块的通路, 之后, 触发第 三开关模块连通第三路高压直流电输入到 DC/DC模块的通路; 以及用于在收到关 断第三路高压直流电输入到 DC/DC模块的通路的信号, 以及, 连通第二路高压直 流电输入到 DC/DC模块的通路的信号时, 触发第三开关模块关断第三路高压直流 电输入到 DC/DC模块的通路, 之后, 触发第三开关模块连通第二路高压直流电输 入到 DC/DC模块的通路。
第三开关模块, 连接在两路高压直流电与 DC/DC模块之间, 这两路高压直流电 就是所述的第二路高压直流电以及第三路高压直流电; 用于响应第三驱动模块 的驱动, 关断第二路高压直流电输入到 DC/DC模块的通路, 之后, 连通第三路高 压直流电输入到 DC/DC模块的通路; 以及用于响应第三驱动模块的驱动, 关断第 三路高压直流电输入到 DC/DC模块的通路, 之后, 连通第二路高压直流电输入到 DC/DC模块的通路。
21、 一种供电系统, 其特征在于, 所述供电系统包括: X个 AC/DC模块, W个 电源模块, 供电母线, 以及蓄电池组,
所述电源模块用于将输入的至少一路电压进行调整后输出给负载, 实现给负 载供电, 所述电源模块包括整流模块, 选择模块, 以及 DC/DC模块;
所述 AC/DC模块, 用于将输入的第一路交流电转换为第一路高压直流电输出; 其中, X个所述 AC/DC模块输出的 X个所述第一路高压直流电输入到所述供电 母线上;
所述蓄电池组, 用于在所述 X个 AC/DC模块输出的所述第一路高压直流电异 常时, 输出备用高压直流电;
所述蓄电池组与所述供电母线并联后输出第三路高压直流电, 所述第三路高 压直流电输入到所述 W个电源模块;
所述整流模块, 用于将输入的第二路交流电, 进行整流, 并将所述第二路交 流电转换成第二路高压直流电输出;
所述选择模块, 连接在两路高压直流电输入到所述 DC/DC模块的通路上, 所 述两路高压直流电包括所述第二路高压直流电和所述第三路高压直流电, 所述选择模块用于在检测到所述第二路高压直流电正常时, 打开所述第二路 高压直流电输入到所述 DC/DC模块的通路并关断所述第三路高压直流电输入到 所述 DC/DC模块的通路, 在检测到所述第二路高压直流电异常时, 打开所述第 三路高压直流电输入到所述 DC/DC模块的通路并关断所述第二路高压直流电输 入到所述 DC/DC模块的通路;
所述 DC/DC模块, 用于将输入的所述第二路高压直流电或所述第三路高压直 流电, 转换为低压直流电输出, 以供所述负载使用。
其中, X, W为大于零的整数。
22、 如权利要求 21所述的供电系统, 其特征在于, 所述供电系统进一歩包括 第一 EMI模块;
所述第一 EMI模块, 用于将所述第三路高压直流电进行滤波, 并将经过滤波 后的所述第三路高压直流电向所述选择模块输出。
23、 如权利要求 21所述的供电系统, 其特征在于, 所述供电系统进一歩包括 第二 EMI模块;
所述第二 EMI模块, 用于将输入的所述第二路交流电进行滤波, 并将经过滤 波后的所述第二路交流电向所述整流模块输出。
24、 如权利要求 21所述的供电装置, 其特征在于, 所述供电系统还进一歩包 括:
PFC模块, 用于将所述第二路交流电经过整流后的电压进行功率因素校准。
25、 如权利要求 21至 24中的任意一项所述的供电系统, 其特征在于, 所述 选择模块包括:
第一电压检测模块, 用于检测第二路高压直流电及第三路高压直流电的电压, 在检测到所述第二路高压直流电的电压正常时, 向第二驱动模块输出关断信号, 并向第一驱动模块输出连通信号; 在检测到所述第二路高压直流电的电压异常 时, 向第一驱动模块输出关断信号, 并向第二驱动模块输出连通信号;
所述第一驱动模块, 用于在收到关断信号时触发第一开关模块关断第二路高 压直流电输入到 DC/DC模块的通路, 以及, 用于在收到连通信号, 并且, 所述第 三路高压直流电输入到 DC/DC模块的通路被关断后, 触发第一开关模块连通第二 路高压直流电输入到 DC/DC模块的通路;
所述第二驱动模块, 用于在收到连通信号, 并且, 所述第二路高压直流电输 入到 DC/DC模块的通路被关断后, 触发第二开关模块连通第三路高压直流电输入 到 DC/DC模块的通路; 以及, 用于在收到关断信号时触发第二开关模块关断第三 路高压直流电输入到 DC/DC模块的通路;
第一开关模块, 连接在第二路高压直流电与 DC/DC模块之间, 用于响应第一驱 动模块的驱动, 关断第二路高压直流电输入到 DC/DC模块的通路, 以及, 连通第 二路高压直流电输入到 DC/DC模块的通路;
第二开关模块, 连接在第三路高压直流电与 DC/DC模块之间, 用于响应第二驱 动模块的驱动, 关断第三路高压直流电输入到 DC/DC模块的通路, 以及, 连通第 三路高压直流电输入到 DC/DC模块的通路。
26、 如权利要求 21至 24中的任意一项所述的供电系统, 其特征在于, 所述选 择模块包括:
第二电压检测模块, 用于检测第二路高压直流电及第三路高压直流电的电压, 在检测到所述第二路高压直流电电压正常时, 向第三驱动模块输出关断第三路 高压直流电输入到 DC/DC模块的通路的信号, 以及, 连通第二路高压直流电输入 到 DC/DC模块的通路的信号; 在检测到所述第二路高压直流电的电压异常时, 向 第三驱动模块输出关断第二路高压直流电输入到 DC/DC模块的通路的信号, 以 及, 连通第三路高压直流电输入到 DC/DC模块的通路的信号;
所述第三驱动模块, 用于在收到关断第二路高压直流电输入到 DC/DC模块的通 路的信号, 以及, 连通第三路高压直流电输入到 DC/DC模块的通路的信号时, 触 发第三开关模块关断第二路高压直流电输入到 DC/DC模块的通路, 之后, 触发第 三开关模块连通第三路高压直流电输入到 DC/DC模块的通路; 以及用于在收到关 断第三路高压直流电输入到 DC/DC模块的通路的信号, 以及, 连通第二路高压直 流电输入到 DC/DC模块的通路的信号时, 触发第三开关模块关断第三路高压直流 电输入到 DC/DC模块的通路, 之后, 触发第三开关模块连通第二路高压直流电输 入到 DC/DC模块的通路。
第三开关模块, 连接在两路高压直流电与 DC/DC模块之间, 这两路高压直流电 就是所述的第二路高压直流电以及第三路高压直流电; 用于响应第三驱动模块 的驱动, 关断第二路高压直流电输入到 DC/DC模块的通路, 之后, 连通第三路高 压直流电输入到 DC/DC模块的通路; 以及用于响应第三驱动模块的驱动, 关断第 三路高压直流电输入到 DC/DC模块的通路, 之后, 连通第二路高压直流电输入到 DC/DC模块的通路。
27、 如权利要求 21至 24中的任意一项所述的供电系统, 其特征在于, 所述 X个 AC/DC模块设置于电源柜中。
28、 一种 ICT设备, 其特征在于, 所述 ICT设备包括: N个电源模块以及 M个负 载,
所述电源模块用于将输入的至少一路电压进行调整后输出给负载, 实现给负 载供电, 其中, 所述 N个电源模块为所述 M个负载供电; 所述电源模块包括整流 模块, 选择模块, 以及 DC/DC模块;
所述整流模块, 用于将输入的第二路交流电, 进行整流, 并将所述第二路交 流电转换成第二路高压直流电输出;
所述选择模块, 连接在两路高压直流电输入到所述 DC/DC模块的通路上, 所 述两路高压直流电包括所述第二路高压直流电和第三路高压直流电,
所述选择模块用于在检测到所述第二路高压直流电正常时, 打开所述第二路 高压直流电输入到所述 DC/DC模块的通路并关断所述第三路高压直流电输入到 所述 DC/DC模块的通路, 在检测到所述第二路高压直流电异常时, 打开所述第 三路高压直流电输入到所述 DC/DC模块的通路并关断所述第二路高压直流电输 入到所述 DC/DC模块的通路;
所述 DC/DC模块, 用于将输入的所述第二路高压直流电或所述第三路高压直 流电, 转换为低压直流电输出, 以供所述负载使用;
其中所述 N, M为大于零的整数。
29、 如权利要求 28所述的 ICT设备, 其特征在于, 所述电源模块还进一歩包括 第一 EMI模块;
所述第一 EMI模块, 用于将所述第三路高压直流电进行滤波, 并将经过滤波 后的所述第三路高压直流电向所述选择模块输出;
30、 如权利要求 28所述的 ICT设备, 其特征在于, 所述电源模块还进一歩包 括:
所述第二 EMI模块, 用于将输入的所述第二路交流电进行滤波, 并将经过滤 波后的所述第二路交流电向所述整流模块输出。
31、 如权利要求 28所述的 ICT设备, 其特征在于, 所述电源模块还进一歩包 括:
PFC模块, 用于将所述第二路交流电经过整流后的电压进行功率因素校准。
32、 如权利要求 28所述的 ICT设备, 其特征在于, 所述 ICT设备还包括 m个 所述电源模块,所述 m个电源模块是作为冗余备份的,其中, m为大于零的整数。
33、 如权利要求 32所述的 ICT设备, 其特征在于, 所述 ICT设备还包括低压 母线, 所述 N个电源模块和所述 m个电源模块的 DC/DC模块将所述低压直流电 输出到所述低压母线上, 所述 M个负载连接到所述低压母线上, 以实现所述 M 个负载的供电。
34、 如权利要求 33所述的 ICT设备, 其特征在于, 所述 M个负载中的至少一 个负载与所述低压母线之间连接有过流保护模块, 所述过流保护模块, 用于为 与所述过流保护模块连接的所述负载提供过流保护。
35、 如权利要求 33所述的 ICT设备, 其特征在于, 所述 M个负载被划分为多 个负载区, 每个所述负载区包括至少一个负载, 每个负载区连接到所述低压母 线上, 以实现所述 M个负载的供电。
36、 如权利要求 35所述的 ICT设备, 其特征在于, 所述多个负载区中的至少 一个负载区与所述低压母线之间连接有过流保护模块, 所述过流保护模块, 用 于为与所述过流保护模块连接的所述负载区提供过流保护。
37、 如权利要求 28至 36中的任意一项所述的 ICT设备, 其特征在于, 所述选择 模块包括:
第一电压检测模块, 用于检测第二路高压直流电及第三路高压直流电的电压, 在检测到所述第二路高压直流电的电压正常时, 向第二驱动模块输出关断信号, 并向第一驱动模块输出连通信号; 在检测到所述第二路高压直流电的电压异常 时, 向第一驱动模块输出关断信号, 并向第二驱动模块输出连通信号;
所述第一驱动模块, 用于在收到关断信号时触发第一开关模块关断第二路高 压直流电输入到 DC/DC模块的通路, 以及, 用于在收到连通信号, 并且, 所述第 三路高压直流电输入到 DC/DC模块的通路被关断后, 触发第一开关模块连通第二 路高压直流电输入到 DC/DC模块的通路;
所述第二驱动模块, 用于在收到连通信号, 并且, 所述第二路高压直流电输 入到 DC/DC模块的通路被关断后, 触发第二开关模块连通第三路高压直流电输入 到 DC/DC模块的通路; 以及, 用于在收到关断信号时触发第二开关模块关断第三 路高压直流电输入到 DC/DC模块的通路;
第一开关模块, 连接在第二路高压直流电与 DC/DC模块之间, 用于响应第一驱 动模块的驱动, 关断第二路高压直流电输入到 DC/DC模块的通路, 以及, 连通第 二路高压直流电输入到 DC/DC模块的通路;
第二开关模块, 连接在第三路高压直流电与 DC/DC模块之间, 用于响应第二驱 动模块的驱动, 关断第三路高压直流电输入到 DC/DC模块的通路, 以及, 连通第 三路高压直流电输入到 DC/DC模块的通路。
38、 如权利要求 28至 36中的任意一项所述的 ICT设备, 其特征在于, 所述选择 模块包括:
第二电压检测模块, 用于检测第二路高压直流电及第三路高压直流电的电压, 在检测到所述第二路高压直流电电压正常时, 向第三驱动模块输出关断第三路 高压直流电输入到 DC/DC模块的通路的信号, 以及, 连通第二路高压直流电输入 到 DC/DC模块的通路的信号; 在检测到所述第二路高压直流电的电压异常时, 向 第三驱动模块输出关断第二路高压直流电输入到 DC/DC模块的通路的信号, 以 及, 连通第三路高压直流电输入到 DC/DC模块的通路的信号;
所述第三驱动模块, 用于在收到关断第二路高压直流电输入到 DC/DC模块的通 路的信号, 以及, 连通第三路高压直流电输入到 DC/DC模块的通路的信号时, 触 发第三开关模块关断第二路高压直流电输入到 DC/DC模块的通路, 之后, 触发第 三开关模块连通第三路高压直流电输入到 DC/DC模块的通路; 以及用于在收到关 断第三路高压直流电输入到 DC/DC模块的通路的信号, 以及, 连通第二路高压直 流电输入到 DC/DC模块的通路的信号时, 触发第三开关模块关断第三路高压直流 电输入到 DC/DC模块的通路, 之后, 触发第三开关模块连通第二路高压直流电输 入到 DC/DC模块的通路。 第三开关模块, 连接在两路高压直流电与 DC/DC模块之间, 这两路高压直 流电就是所述的第二路高压直流电以及第三路高压直流电; 用于响应第三驱动 模块的驱动, 关断第二路高压直流电输入到 DC/DC模块的通路, 之后, 连通第 三路高压直流电输入到 DC/DC模块的通路; 以及用于响应第三驱动模块的驱动, 关断第三路高压直流电输入到 DC/DC模块的通路, 之后, 连通第二路高压直流 电输入到 DC/DC模块的通路。
PCT/CN2013/084540 2013-03-06 2013-09-27 一种供电方法及装置 WO2014134914A1 (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP13876769.4A EP2822145B1 (en) 2013-03-06 2013-09-27 Power supply method and power supply apparatus
EP16158617.7A EP3141983B1 (en) 2013-03-06 2013-09-27 Power supply method and apparatus
ES13876769.4T ES2587607T3 (es) 2013-03-06 2013-09-27 Método de alimentación eléctrica y aparato de alimentación eléctrica
US14/483,996 US9203238B2 (en) 2013-03-06 2014-09-11 Power supply method and apparatus
US14/853,045 US9954369B2 (en) 2013-03-06 2015-09-14 Power supply method and apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201310071433.1A CN104037929B (zh) 2013-03-06 2013-03-06 一种供电方法及装置
CN201310071433.1 2013-03-06

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/483,996 Continuation US9203238B2 (en) 2013-03-06 2014-09-11 Power supply method and apparatus

Publications (1)

Publication Number Publication Date
WO2014134914A1 true WO2014134914A1 (zh) 2014-09-12

Family

ID=51468585

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/084540 WO2014134914A1 (zh) 2013-03-06 2013-09-27 一种供电方法及装置

Country Status (5)

Country Link
US (2) US9203238B2 (zh)
EP (2) EP3141983B1 (zh)
CN (2) CN104037929B (zh)
ES (1) ES2587607T3 (zh)
WO (1) WO2014134914A1 (zh)

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104333122B (zh) 2014-11-18 2018-05-11 华为技术有限公司 供电总线电路
CN104503561A (zh) * 2014-12-23 2015-04-08 浪潮电子信息产业股份有限公司 一种服务器的供电系统及服务器机柜
US10243397B2 (en) * 2015-02-20 2019-03-26 Lifeline IP Holdings, LLC Data center power distribution
KR101769664B1 (ko) * 2015-03-10 2017-08-18 엘에스산전 주식회사 고전압 직류 송전 시스템의 이중화 제어 장치
KR101641460B1 (ko) 2015-03-23 2016-07-20 엘에스산전 주식회사 고전압 직류 송전 시스템의 데이터 처리 장치 및 방법
US9859085B2 (en) * 2015-09-23 2018-01-02 Hamilton Sundstrand Corporation Fault protection devices and methods for power systems
CN105244997A (zh) * 2015-10-30 2016-01-13 国家电网公司 一种采集终端双电源切换装置
CN106849313A (zh) * 2015-12-04 2017-06-13 艾默生网络能源有限公司 一种高压直流电源系统
US10326442B2 (en) * 2015-12-29 2019-06-18 Lear Corporation Assembly having internally configurable solid-state switch arrangement for use as one or more disconnection switches in electrical systems and having external package common to the electrical systems
CN105490379B (zh) * 2016-01-21 2018-03-09 上海科泰电源股份有限公司 一种通信基站用高压直流柴油发电机组
US10404062B2 (en) * 2016-04-21 2019-09-03 Nuscale Power, Llc Fault-tolerant power-distribution modules for a power plant
CN106026691B (zh) * 2016-05-30 2018-08-21 株洲中车时代电气股份有限公司 一种可独立轴控的列车主辅一体牵引变流器
EP3340429B1 (en) * 2016-12-23 2021-02-10 Huawei Technologies Co., Ltd. A switching arrangement for switching between two inputs in order ensure uninterrupted power supply
EP3467994A1 (en) 2017-10-03 2019-04-10 CE+T Power Luxembourg SA Virtualization of power for data centers, telecom environments and equivalent infrastructures
CN108683251B (zh) * 2018-04-18 2021-08-03 华为技术有限公司 一种发电机组的机组监控电路、方法及控制设备
CN108649561B (zh) * 2018-04-28 2021-07-20 华为技术有限公司 供电系统
CN110690694B (zh) * 2018-07-05 2023-05-09 株式会社村田制作所 输入电源选择电路
CN112542830B (zh) * 2019-09-20 2023-12-29 深圳航羿知识产权服务有限公司 供电系统
CN111857224A (zh) * 2020-07-31 2020-10-30 深圳君略科技有限公司 一种多级芯片串联电路及驱动系统
CN113315110B (zh) * 2021-07-29 2022-01-25 中国南方电网有限责任公司超高压输电公司检修试验中心 直流供电电路

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6181029B1 (en) * 1998-11-06 2001-01-30 International Business Machines Corporation Method of controlling battery back-up for multiple power supplies
CN1790864A (zh) * 2004-12-13 2006-06-21 新巨企业股份有限公司 具备交直流电力输入的备用电源供应器
JP2007306778A (ja) * 2006-05-15 2007-11-22 Toyota Industries Corp Dc/dcコンバータ及びdc/dcコンバータの電源切替え方法
CN101626166A (zh) * 2008-07-11 2010-01-13 光宝科技股份有限公司 备用电源装置
CN102214945A (zh) * 2010-12-21 2011-10-12 深圳市泰昂能源科技股份有限公司 一种基于蓄电池并联的直流电源系统
CN102593938A (zh) * 2012-01-17 2012-07-18 百度在线网络技术(北京)有限公司 整机柜及用于其的集中供电装置

Family Cites Families (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5001623A (en) 1989-12-22 1991-03-19 Burle Technologies, Inc. Automatically switching multiple input voltage power supply
JPH0676935A (ja) 1992-07-03 1994-03-18 Samsung Electron Co Ltd 電子レンジ駆動装置
US5939799A (en) * 1997-07-16 1999-08-17 Storage Technology Corporation Uninterruptible power supply with an automatic transfer switch
JP3947906B2 (ja) * 2001-08-30 2007-07-25 株式会社日立製作所 バックアップ電源と電源装置
US6980911B2 (en) * 2003-02-28 2005-12-27 Kohler Co. Automatic transfer switch system with synchronization control
US7468566B2 (en) * 2005-11-21 2008-12-23 General Electric Company Automatic transfer switch apparatus
US8907520B2 (en) * 2007-03-14 2014-12-09 Zonit Structured Solutions, Llc Parallel redundant power distribution
KR101012300B1 (ko) 2008-03-07 2011-02-08 삼성전자주식회사 터치스크린을 구비한 휴대 단말기의 사용자 인터페이스장치 및 그 방법
CN101630918B (zh) 2009-05-12 2012-09-05 中兴通讯股份有限公司 节能的模块化高压直流电源系统
KR101228363B1 (ko) 2009-07-10 2013-02-01 한국전자통신연구원 하이브리드 데이터 센터 전력 공급 장치
CN101599641B (zh) 2009-07-16 2011-06-15 中国电信股份有限公司 利用高压直流向通信设备供电的系统和方法
US8446044B2 (en) * 2009-10-28 2013-05-21 Hewlett-Packard Development Company, L.P. Power conversion and distribution scheme for electronic equipment racks
CN201584805U (zh) * 2009-12-17 2010-09-15 佛山市柏克电力设备有限公司 一种平安工程监控不间断电源
CN101826821B (zh) 2010-02-08 2012-06-27 哈尔滨工业大学 光网混合供电不间断逆变电源的电能控制方法
US8400015B2 (en) * 2010-03-14 2013-03-19 International Business Machines Corporation Highly available node redundancy power architecture
CN104979812B (zh) * 2010-08-31 2018-08-10 伊顿公司 高压直流系统中控制直流电弧的高压电子开关及其操作方法
US8904305B2 (en) 2011-03-11 2014-12-02 Google Inc. Automatically hiding controls
US9583942B2 (en) * 2011-04-20 2017-02-28 Reliance Controls Corporation Transfer switch for automatically switching between alternative energy source and utility grid
WO2013024512A1 (en) * 2011-08-18 2013-02-21 Hitachi, Ltd. Storage apparatus with redundant power supply
CN102394510A (zh) 2011-09-30 2012-03-28 百度在线网络技术(北京)有限公司 一种高效可靠的数据中心it设备供电架构
CN202455149U (zh) 2011-09-30 2012-09-26 百度在线网络技术(北京)有限公司 一种用于向电子设备供电的供电系统以及机架电源
CN202353297U (zh) 2011-09-30 2012-07-25 百度在线网络技术(北京)有限公司 一种数据中心it设备供电系统和后备式高压直流电源
CN102368631B (zh) 2011-09-30 2014-05-21 百度在线网络技术(北京)有限公司 一种高效可靠的数据中心电子设备供电架构
DE202012002586U1 (de) 2012-03-13 2012-03-27 Kay Morawietz Betätigungsknopf für eine "Annahme-verweigert" -Funktion von e-mails in handelsüblichen PC-Mailprogrammen
CN102710004A (zh) 2012-05-15 2012-10-03 浪潮电子信息产业股份有限公司 一种数据中心高效供电方法
CN102710010A (zh) * 2012-05-23 2012-10-03 华为技术有限公司 供电设备
CN102801204B (zh) 2012-08-31 2015-08-19 王良根 一种240vdc高压直流供电系统及方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6181029B1 (en) * 1998-11-06 2001-01-30 International Business Machines Corporation Method of controlling battery back-up for multiple power supplies
CN1790864A (zh) * 2004-12-13 2006-06-21 新巨企业股份有限公司 具备交直流电力输入的备用电源供应器
JP2007306778A (ja) * 2006-05-15 2007-11-22 Toyota Industries Corp Dc/dcコンバータ及びdc/dcコンバータの電源切替え方法
CN101626166A (zh) * 2008-07-11 2010-01-13 光宝科技股份有限公司 备用电源装置
CN102214945A (zh) * 2010-12-21 2011-10-12 深圳市泰昂能源科技股份有限公司 一种基于蓄电池并联的直流电源系统
CN102593938A (zh) * 2012-01-17 2012-07-18 百度在线网络技术(北京)有限公司 整机柜及用于其的集中供电装置

Also Published As

Publication number Publication date
CN106208350B (zh) 2020-12-01
CN104037929A (zh) 2014-09-10
ES2587607T3 (es) 2016-10-25
EP2822145B1 (en) 2016-06-01
US9203238B2 (en) 2015-12-01
US20150001942A1 (en) 2015-01-01
EP2822145A1 (en) 2015-01-07
EP3141983A1 (en) 2017-03-15
EP2822145A4 (en) 2015-04-01
CN106208350A (zh) 2016-12-07
EP3141983B1 (en) 2021-12-15
US20160006247A1 (en) 2016-01-07
US9954369B2 (en) 2018-04-24
CN104037929B (zh) 2017-06-27

Similar Documents

Publication Publication Date Title
WO2014134914A1 (zh) 一种供电方法及装置
US8203235B2 (en) AC and DC uninterruptible online power supplies
CN104539042B (zh) 一种不间断电源系统
US7800248B2 (en) Backup power system
US9047076B1 (en) Uninterruptable power supply system and method
US9047075B1 (en) Uninterruptable power supply system and method
US20150380968A1 (en) Uninterruptable power supply system and method
WO2021004284A1 (zh) 供电电路及不间断供电电源ups系统
WO2014106469A1 (zh) 高压直流供电系统
TWI427887B (zh) 高壓電源供應模組及其所適用之供電系統
CN106532919A (zh) 一种两段直流电源母线互为热备份的系统架构
CN107359688A (zh) 供电设备的故障处理方法及装置
CN103715757A (zh) 一种核电站用后备式冗余低压配电系统
CN101710728A (zh) 一种通信机房机架设备的供电方法及装置
KR20210051491A (ko) 무순단 전원 공급 제어 장치 및 그 전원 공급 제어 장치가 적용된 ups 모듈
CN218276462U (zh) 一种光伏系统漏电流抑制系统
CN103715763A (zh) 提供idc机房节能供电的系统
CN203671834U (zh) 软启动充电电路
CN203707869U (zh) 一种核电站用后备式冗余低压配电系统
CN214590546U (zh) 一种用于智能断路器的多模组合取电供能模块
CN205791789U (zh) 水电站厂用电源切换装置
CN207968056U (zh) 一种应用2v蓄电池的ups电源装置
CN213959822U (zh) 不间断供电电路、风电变流器及风力发电机组
CN210806838U (zh) 通信电源系统
CN216312666U (zh) 直流母线电容缓冲保护电路

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2013876769

Country of ref document: EP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13876769

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE