WO2014133070A1 - Negative electrode for nonaqueous electrolyte secondary batteries - Google Patents

Negative electrode for nonaqueous electrolyte secondary batteries Download PDF

Info

Publication number
WO2014133070A1
WO2014133070A1 PCT/JP2014/054842 JP2014054842W WO2014133070A1 WO 2014133070 A1 WO2014133070 A1 WO 2014133070A1 JP 2014054842 W JP2014054842 W JP 2014054842W WO 2014133070 A1 WO2014133070 A1 WO 2014133070A1
Authority
WO
WIPO (PCT)
Prior art keywords
negative electrode
active material
electrode active
secondary battery
electrolyte secondary
Prior art date
Application number
PCT/JP2014/054842
Other languages
French (fr)
Japanese (ja)
Inventor
真規 末永
嶋村 修
文洋 川村
健児 小原
狩野 巌大郎
康介 萩山
Original Assignee
日産自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日産自動車株式会社 filed Critical 日産自動車株式会社
Publication of WO2014133070A1 publication Critical patent/WO2014133070A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • H01M10/0585Construction or manufacture of accumulators having only flat construction elements, i.e. flat positive electrodes, flat negative electrodes and flat separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/133Electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/364Composites as mixtures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • H01M4/587Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings, jackets or wrappings of a single cell or a single battery
    • H01M50/116Primary casings, jackets or wrappings of a single cell or a single battery characterised by the material
    • H01M50/124Primary casings, jackets or wrappings of a single cell or a single battery characterised by the material having a layered structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings, jackets or wrappings of a single cell or a single battery
    • H01M50/116Primary casings, jackets or wrappings of a single cell or a single battery characterised by the material
    • H01M50/124Primary casings, jackets or wrappings of a single cell or a single battery characterised by the material having a layered structure
    • H01M50/1245Primary casings, jackets or wrappings of a single cell or a single battery characterised by the material having a layered structure characterised by the external coating on the casing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/621Binders
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • H01M4/625Carbon or graphite
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a negative electrode for a non-aqueous electrolyte secondary battery.
  • a secondary battery that can be repeatedly charged and discharged is suitable as a power source for driving these motors, and a non-aqueous electrolyte secondary battery such as a lithium ion secondary battery that can be expected to have a high capacity and a high output is attracting attention.
  • the nonaqueous electrolyte secondary battery has a positive electrode active material layer containing a positive electrode active material (for example, LiCoO 2 , LiMn 2 O 4 , LiNiO 2, etc.) formed on the current collector surface.
  • a positive electrode active material for example, LiCoO 2 , LiMn 2 O 4 , LiNiO 2, etc.
  • the non-aqueous electrolyte secondary battery includes a negative electrode active material formed on the current collector surface (for example, carbonaceous materials such as metallic lithium, coke and natural / artificial graphite, metals such as Sn and Si, and oxide materials thereof) Etc.).
  • Japanese Patent Application Laid-Open No. 2004-127913 discloses a technique in which artificial graphite particles having predetermined physical properties are used as a negative electrode active material for a lithium ion secondary battery in a mixture with spherical graphite particles.
  • 2004-127913 can greatly improve the charge / discharge cycle characteristics of the lithium ion secondary battery, and at the same time, discharge rate characteristics, low-temperature discharge characteristics and safety (heat resistance It is said that it becomes possible to provide a battery that is also excellent in the property.
  • an object of the present invention is to provide means for improving long-term cycle durability in a large-sized non-aqueous electrolyte secondary battery that can be used for driving electric vehicles.
  • the negative electrode for a non-aqueous electrolyte secondary battery has a current collector and a negative electrode active material layer including a negative electrode active material disposed on the surface of the current collector.
  • the negative electrode active material contains artificial graphite, coated natural graphite or natural graphite as a main component.
  • the content of the artificial graphite contained in the negative electrode active material is X [mass%]
  • the content of the coated natural graphite is Y [mass%]
  • the content of the natural graphite is Z [mass%].
  • FIG. 1 is a schematic cross-sectional view showing a basic configuration of a non-aqueous electrolyte lithium ion secondary battery that is not a flat (stacked) bipolar type.
  • the contents of artificial graphite, coated natural graphite and natural graphite that can constitute the main component of the negative electrode active material are X [mass%], Y [mass%] and It is a figure which shows the area
  • the present invention has a current collector and a negative electrode active material layer containing a negative electrode active material, which is disposed on the surface of the current collector, and the negative electrode active material is mainly composed of artificial graphite, coated natural graphite or natural graphite.
  • the coated natural graphite is contained more than the content of the artificial graphite
  • the artificial graphite having a high hardness can be replaced with other graphite particles (coated natural graphite or natural graphite) by pressing or the like during electrode production.
  • the risk of deformation is reduced.
  • the coated natural graphite is contained more than the content of natural graphite, the amount of precipitates generated on the surface of the negative electrode active material after a long-term cycle is also reduced, and further the precipitation form of the precipitates is reduced in capacity.
  • the long-term cycle characteristics can be improved because the shape is unlikely to cause a micro short circuit.
  • the negative electrode for a non-aqueous electrolyte secondary battery a case where it is used for a non-aqueous electrolyte lithium ion secondary battery will be described, but it is not limited to the following embodiment.
  • the same elements are denoted by the same reference numerals, and redundant description is omitted.
  • the dimensional ratios in the drawings are exaggerated for convenience of explanation, and may be different from the actual ratios.
  • FIG. 1 is a schematic cross-sectional view schematically showing a basic configuration of a non-aqueous electrolyte lithium ion secondary battery (hereinafter also simply referred to as “stacked battery”) that is not a flat (stacked) bipolar type.
  • the stacked battery 10 of the present embodiment has a structure in which a substantially rectangular power generation element 21 in which a charge / discharge reaction actually proceeds is sealed inside a battery exterior body 29 that is an exterior body.
  • the power generation element 21 has a configuration in which a positive electrode, a separator 17, and a negative electrode are stacked.
  • the separator 17 contains a nonaqueous electrolyte (for example, a liquid electrolyte).
  • the positive electrode has a structure in which the positive electrode active material layers 15 are disposed on both surfaces of the positive electrode current collector 12.
  • the negative electrode has a structure in which the negative electrode active material layer 13 is disposed on both surfaces of the negative electrode current collector 11.
  • the negative electrode, the electrolyte layer, and the positive electrode are laminated in this order so that one positive electrode active material layer 15 and the negative electrode active material layer 13 adjacent thereto face each other with a separator 17 therebetween.
  • the adjacent positive electrode, electrolyte layer, and negative electrode constitute one unit cell layer 19. Therefore, it can be said that the stacked battery 10 shown in FIG. 1 has a configuration in which a plurality of single battery layers 19 are stacked and electrically connected in parallel.
  • the negative electrode active material layer 13 is arrange
  • the positive electrode current collector 12 and the negative electrode current collector 11 are each provided with a positive electrode current collector plate (tab) 27 and a negative electrode current collector plate (tab) 25 that are electrically connected to the respective electrodes (positive electrode and negative electrode). It has the structure led out to the exterior of the battery exterior body 29 so that it may be pinched
  • the positive electrode current collector 27 and the negative electrode current collector 25 are ultrasonically welded to the positive electrode current collector 12 and the negative electrode current collector 11 of each electrode, respectively, via a positive electrode lead and a negative electrode lead (not shown) as necessary. Or resistance welding or the like.
  • FIG. 1 shows a flat battery (stacked battery) that is not a bipolar battery, but a positive electrode active material layer that is electrically coupled to one surface of the current collector and the opposite side of the current collector.
  • a bipolar battery including a bipolar electrode having a negative electrode active material layer electrically coupled to the surface.
  • one current collector also serves as a positive electrode current collector and a negative electrode current collector.
  • the negative electrode active material layer includes a negative electrode active material.
  • the negative electrode active material contains artificial graphite, coated natural graphite, or natural graphite as a main component.
  • the negative electrode active material contains these graphite crystals as a main component.
  • lithium metal 0.1 to 0.3 V vs. Li + / Li
  • the capacity per unit volume is relatively high (> 800 mAh / L).
  • the volume expansion is small, the potential flatness is excellent, the cost is low, and the battery can be manufactured in a discharged state.
  • the negative electrode active material contains artificial graphite, coated natural graphite or natural graphite as a main component
  • the proportion of graphite crystals in the total amount of 100% by mass of the negative electrode active material is preferably 70% by mass or more, more preferably 80% by mass or more, still more preferably 90% by mass or more, and still more preferably 95% by mass. % Or more, particularly preferably 98% by mass or more, and most preferably 100% by mass.
  • Graphite crystal is a layered material in which graphene sheets (sheets with a thickness of 1 atom in which carbon atoms (C) are connected by sp 2 hybrid orbitals) are stacked at intervals of 0.3354 nm according to AB or ABC stacking order. is there.
  • the crystallite size Lc of the graphite crystal is preferably 20 to 90 nm, more preferably 35 to 85 nm, and still more preferably 40 to 75 nm. If the crystallite size is 90 nm or less, the low-temperature output characteristics are excellent.
  • the average interplanar spacing (d002) is preferably 0.3354 to 0.3365 nm, more preferably 0.3354 to 0.3368 nm, and still more preferably 0.3354 to 0.3370 nm. Since the lower limit of 0.3354 nm is a theoretical value of graphite crystals, the closer to this value, the better. Moreover, if it is below an upper limit, crystallinity will be maintained high enough and the possibility of the voltage fall at the time of a capacity
  • “Artificial graphite” is artificially and industrially synthesized graphite, also called synthetic graphite or synthetic graphite, and is a polycrystalline body made of graphite crystallites. Artificial graphite is obtained, for example, by graphitizing a carbon material such as coke at a high temperature of 2800 ° C. or higher in an inert atmosphere. Further, there are high orientation pyrolytic graphite (HOPG) obtained by compressing pyrolytic carbon at a high temperature of 3000 ° C. or higher to enhance the orientation of crystallites, and quiche graphite obtained by precipitation from molten iron. Furthermore, the thermal decomposition product of silicon carbide (SiC) is also artificial graphite having a very high degree of graphitization.
  • HOPG orientation pyrolytic graphite
  • SiC silicon carbide
  • the method for producing artificial graphite is not particularly limited, but, for example, at least a graphitizable aggregate or graphite and a graphitizable binder are heated and mixed, pulverized, and then the pulverized product and a graphitization catalyst are mixed. It can be manufactured by firing and processing.
  • aggregates that can be graphitized include coke powder and resin carbide. Of these, coke powder that is easily graphitized such as needle coke is preferable.
  • the binder is preferably an organic material such as a thermosetting resin or a thermoplastic resin.
  • the blending amount of the binder is preferably 10 to 80% by mass, more preferably 20 to 80% by mass, and further preferably 30 to 80% by mass with respect to the graphitizable aggregate or graphite. If the amount of the binder is within such a range, the aspect ratio and specific surface area of the produced graphite particles do not become too large, which is preferable.
  • a kneader can be used, but it is preferable to mix at a temperature equal to or higher than the softening point of the binder.
  • the binder is pitch, tar or the like, 50 to 300 ° C. is preferable, and when the binder is a thermosetting resin, 20 to 180 ° C. is preferable.
  • the mixture is pulverized, the pulverized product and the graphitization catalyst are mixed, graphitized at 2000 ° C. or higher, and then pulverized to obtain artificial graphite.
  • Natural graphite is a graphite crystal that is calculated in nature as a mineral, as its name suggests. Compared to artificial graphite, it has a large amount of impurities such as allotrope, strong crystal structure, low hardness, and high electrical resistance. . In general, many natural graphites that have not been processed or treated have a flake shape, a large aspect ratio, and a large specific surface area, so that they easily react with the electrolyte and generate a large amount of gas. There is a problem that an active material slurry (ink) cannot be prepared because the solvent is absorbed during the production of the layer.
  • ink active material slurry
  • the nuclear material (natural graphite) has different crystallinity and structure depending on the production area and mine, and there are scale-like, scale-like, earthy graphite, etc., but there is no particular limitation as long as the surface can be modified into spherical graphite particles. . From the viewpoint of crystallinity (capacity), scaly and scaly ones are more preferable. As a spheroidization method, mechanical surface modification such as pulverization, compression, shearing, and granulation is preferable in that rounded and well-shaped particles can be obtained.
  • Examples of the apparatus for performing the mechanical surface modification treatment include a ball mill, a vibration mill, a mechano mill, a medium stirring mill, and an apparatus having a structure in which particles pass between a rotating container and a taper attached to the inside of the rotating container.
  • “spherical” means a rounded shape when a particle image of graphite particles is observed with an SEM image.
  • the circularity is preferably 0.8 or more, more preferably 0.85 or more, and still more preferably 0.9 or more.
  • the “circularity” is a circumference measured as a circle calculated from a projected image of graphite particles, by calculating the circle equivalent diameter, which is the diameter of a circle having the same area as the projected area of the graphite particles. The value obtained by dividing the value is 1.00 for a perfect circle. In addition, whether or not it is natural graphite can be confirmed from the state in which the scaly particles are originally folded by observing the cross section of the graphite particles with an SEM image.
  • Coated natural graphite is a graphite crystal in which the surface of natural graphite particles is coated with amorphous or low crystalline carbon. By covering the surface of natural graphite, the above-described problems of natural graphite are solved.
  • the coated natural graphite is obtained, for example, by attaching an amorphous layer to the surface of natural graphite particles.
  • the method for attaching the amorphous layer to the surface of the graphite particles is not particularly limited. For example, first, the surface of the natural graphite particles is coated with pitches such as a molten pitch. Thereafter, the surface of the natural graphite particles coated with the surface is baked at a temperature of about 500 to 2000 ° C.
  • the amorphous layer is not limited to that formed in such a liquid phase, and may be formed in a gas phase by a CVD method or the like.
  • the method for forming the low crystalline carbon layer on the surface of the negative electrode material is not particularly limited, and examples thereof include a wet mixing method, a chemical vapor deposition method, and a mechanochemical method.
  • the chemical vapor deposition method and the wet mixing method are preferable from the viewpoint that the reaction system can be controlled uniformly and the shape of the negative electrode material can be maintained.
  • the carbon source for forming the low crystalline carbon layer is not particularly limited, but in the chemical vapor deposition method, aliphatic hydrocarbons, aromatic hydrocarbons, alicyclic hydrocarbons, and the like can be used. Methane, ethane, propane, benzene, toluene, xylene, styrene, naphthalene, or derivatives thereof. In the wet mixing method and mechanochemical method, a polymer compound such as a phenol resin or a styrene resin, or a carbonizable solid material such as pitch can be processed as a solid or dissolved material. Regarding the treatment temperature, it is preferable to perform heat treatment at 800 to 1200 ° C.
  • heat treatment is preferably performed at 700 to 2000 ° C.
  • the carbon source is uniformly deposited in advance on the surface of the negative electrode material and fired, so that heat treatment can be performed even at a relatively high temperature. If it is 700 degreeC or more, carbon crystallinity is high enough and it can suppress electrolyte solution degradability low.
  • the coating amount can be calculated from a weight loss amount of 550 ° C. or higher (depending on the coating material), CO 2 adsorption amount, low crystal layer precursor charge amount, etc. by thermogravimetric analysis TG / DTA.
  • the carbon residue rate of the carbon source is measured in advance by thermogravimetric analysis, etc. The product of rate is the amount of carbon covered.
  • the amount of carbon in the low crystalline carbon layer is not particularly limited, but is preferably 1.0 to 20% by mass, more preferably 1.5 to 15% by mass, and further preferably 2 to 10% by mass of the core negative electrode material. Within such a range, the input / output characteristics and the life characteristics can be more balanced. That is, if it is 1.0 mass% or more, the distribution of the low crystal layer can be made uniform, and the life characteristics can be maintained by making the formation of the electrolyte additive uniform (the SEI film thickness). .
  • the contents of artificial graphite, coated natural graphite, and natural graphite that can constitute the main component of the negative electrode active material are X [mass%], Y [mass%], and Z [ Mass%] is characterized in that Y ⁇ Z and Y ⁇ X (see the hatched area A in FIG. 2).
  • X + Y + Z 100 mass%.
  • the case of (X, Y, Z) (0, 1, 0) is excluded from the scope of the present invention.
  • the coated natural graphite is contained in excess of the artificial graphite content, the artificial graphite having high hardness deforms other graphite particles (coated natural graphite and natural graphite) by pressing during electrode production. Is less likely to occur.
  • the coated natural graphite is contained more than the content of natural graphite, the amount of precipitates generated on the surface of the negative electrode active material after a long-term cycle is also reduced, and further the precipitation form of the precipitates is reduced in capacity. It is estimated that the long-term cycle characteristics are improved as a result because the shape does not easily cause a micro short-circuit.
  • X, Y, and Z may be determined so as to be included in the hatched area B in FIG.
  • the negative electrode active material may further include a material other than the above-mentioned artificial graphite, coated natural graphite, and natural graphite as the negative electrode active material.
  • the negative electrode active material may further include hard carbon (non-graphitizable carbon material) or soft carbon (graphitizable carbon material).
  • Hard carbon is also called non-graphitizable carbon material, and is hard to graphitize at high temperatures.
  • Soft carbon is also referred to as an easily graphitizable carbon material, and is easily graphitized at high temperatures. These are determined according to the type of the graphitization precursor.
  • the hard carbon does not have an ordered arrangement of crystallites, graphitization is difficult to proceed even if heat treatment is performed at a high temperature.
  • soft carbon since soft carbon has crystallites arranged in the same direction, carbon is graphitized by diffusing carbon over a short distance during heat treatment.
  • Soft carbon and graphite (graphite) have a layered structure in which a large number of carbon hexagonal mesh surfaces (graphene surfaces) are laminated, while hard carbon has several layers of carbon hexagonal mesh surfaces (graphene surfaces).
  • the size of the crystal is small and the spread of the crystals is small, and they are characterized by having a nanoscale layer space by being randomly arranged.
  • the negative electrode active material further contains these amorphous carbon materials, there is an advantage that the long-term cycle durability can be further improved.
  • the negative electrode active material may further contain other materials.
  • a lithium-transition metal composite oxide for example, Li 4 Ti 5 O 12
  • a metal material for example, Li 4 Ti 5 O 12
  • a lithium alloy-based negative electrode material for example, Li 4 Ti 5 O 12
  • it may be included.
  • the average particle diameter of the negative electrode active material contained in the negative electrode active material layer is not particularly limited, but from the viewpoint of improving the initial charge capacity (handling), it is preferable as the median diameter (D50) by the laser diffraction particle size distribution meter. Is 10-30 ⁇ m. If the value is equal to or greater than the lower limit, the possibility of a decrease in coatability due to a decrease in bulk density and a decrease in charge / discharge characteristics due to an increase in specific surface area are reduced. On the other hand, if the value is less than or equal to the upper limit value, the risk of poor appearance of the electrode due to deterioration of coating properties due to clogging or streaking of the coater head is reduced.
  • the BET specific surface area of the negative electrode active material contained in the negative electrode active material layer is preferably 0.5 to 10 m 2 / g, more preferably 1.0 to 6.0 m 2 / g, and still more preferably 2. 0 to 4.2 m 2 / g. If the specific surface area of the negative electrode active material is a value equal to or greater than the lower limit, the risk of deterioration of low temperature characteristics accompanying an increase in internal resistance is reduced. On the other hand, if the value is not more than the upper limit value, it is possible to prevent the side reaction from proceeding with an increase in the contact area with the electrolytic solution.
  • the specific surface area is too large, an overcurrent locally flows in the electrode surface due to the gas generated during the first charge (the film with the electrolyte additive is not fixed), and the film is coated in the electrode surface.
  • the value is equal to or less than the above upper limit value, the risk can be reduced.
  • the value of the ratio of the BET specific surface area value of all graphite particles selected from the group consisting of artificial graphite, coated natural graphite and natural graphite contained in the negative electrode active material to the BET specific surface area value of the coated natural graphite Is preferably 1.7 or less, more preferably 1.0 to 1.7, still more preferably 1.0 to 1.6, and more preferably 1.0 to 1.5. Is particularly preferred.
  • the tap density of the negative electrode active material contained in the negative electrode active material layer is preferably 0.7 g / cm 3 or more, more preferably 0.9 g / cm 3 or more.
  • the negative electrode active material layer preferably contains a binder.
  • the binder has a function of binding particles of the negative electrode active material contained in the negative electrode active material layer, or binding the negative electrode active material and the current collector.
  • the negative electrode active material layer preferably contains an aqueous binder as a binder.
  • the water-based binder refers to a binder using water as a solvent or a dispersion medium, and specifically includes a thermoplastic resin, a polymer having rubber elasticity, a water-soluble polymer, or a mixture thereof.
  • the binder using water as a dispersion medium refers to a polymer that includes all expressed as latex or emulsion and is emulsified or suspended in water.
  • kind a polymer latex that is emulsion-polymerized in a system that self-emulsifies.
  • water-based binders include styrene polymers (styrene-butadiene rubber, styrene-vinyl acetate copolymer, styrene-acrylic copolymer, etc.), acrylonitrile-butadiene rubber, methyl methacrylate-butadiene rubber, ) Acrylic polymers (polyethyl acrylate, polyethyl methacrylate, polypropyl acrylate, polymethyl methacrylate (methyl methacrylate rubber), polypropyl methacrylate, polyisopropyl acrylate, polyisopropyl methacrylate, polybutyl acrylate, polybutyl methacrylate, polyhexyl acrylate , Polyhexyl methacrylate, polyethylhexyl acrylate, polyethylhexyl methacrylate, polylauryl acrylate, polylauryl meta Acrylate, etc.), polytyren
  • the aqueous binder may contain at least one rubber binder selected from the group consisting of styrene-butadiene rubber, acrylonitrile-butadiene rubber, methyl methacrylate-butadiene rubber, and methyl methacrylate rubber from the viewpoint of binding properties. preferable. Furthermore, it is preferable that the water-based binder contains styrene-butadiene rubber because of good binding properties.
  • Water-soluble polymers suitable for use in combination with styrene-butadiene rubber include polyvinyl alcohol and modified products thereof, starch and modified products thereof, cellulose derivatives (such as carboxymethyl cellulose, methyl cellulose, hydroxyethyl cellulose, and salts thereof), polyvinyl Examples include pyrrolidone, polyacrylic acid (salt), or polyethylene glycol. Among them, it is preferable to combine styrene-butadiene rubber and carboxymethyl cellulose as a binder.
  • the content of the aqueous binder is preferably 80 to 100% by mass, preferably 90 to 100% by mass, and preferably 100% by mass.
  • the binder other than the water-based binder include binders used in the following positive electrode active material layer.
  • the amount of the binder contained in the negative electrode active material layer is not particularly limited as long as it can bind the active material, but preferably 0.5 to 15% by mass with respect to the active material layer. More preferably, it is 1 to 10% by mass, and further preferably 2 to 4% by mass. Since the water-based binder has high binding power, the active material layer can be formed with a small amount of addition as compared with the organic solvent-based binder. Accordingly, the content of the aqueous binder in the active material layer is preferably 0.5 to 15% by mass, more preferably 1 to 10% by mass, and still more preferably 1% with respect to the active material layer. .5-4% by mass.
  • the negative electrode active material layer further includes other additives such as a conductive additive, an electrolyte (polymer matrix, ion conductive polymer, electrolytic solution, etc.), and a lithium salt for improving ion conductivity, as necessary.
  • the conductive assistant means an additive blended to improve the conductivity of the positive electrode active material layer or the negative electrode active material layer.
  • the conductive aid include carbon materials such as carbon black such as acetylene black and carbon fibers.
  • electrolyte salt examples include Li (C 2 F 5 SO 2 ) 2 N, LiPF 6 , LiBF 4 , LiClO 4 , LiAsF 6 , LiCF 3 SO 3 and the like.
  • Examples of the ion conductive polymer include polyethylene oxide (PEO) and polypropylene oxide (PPO) polymers.
  • the compounding ratio of the components contained in the negative electrode active material layer and the positive electrode active material layer described later is not particularly limited.
  • the blending ratio can be adjusted by appropriately referring to known knowledge about lithium ion secondary batteries.
  • the thickness of each active material layer is not particularly limited, and conventionally known knowledge about the battery can be appropriately referred to. As an example, the thickness of each active material layer is about 2 to 100 ⁇ m.
  • the density of the negative electrode active material layer is preferably 1.2 to 1.6.
  • a water-based binder is used in the negative electrode active material layer, there is a problem that the amount of gas generated during charging of the battery is larger than that of a solvent-based binder such as PVdF which has been conventionally used.
  • the density of the negative electrode active material layer is 1.6 g / cm 3 or less, it is not necessary to increase the press pressure, and the occurrence of cracks in the graphite particles is prevented.
  • hole in an active material layer is also ensured and liquid injection property is also ensured. As a result, it is possible to prevent the deterioration of the life characteristics due to liquid erosion or the like.
  • the density of the negative electrode active material layer is 1.2 g / cm 3 or more, a decrease in electron conductivity due to an insufficient contact area between the active materials / active materials is prevented, and life characteristics are improved. Can improve.
  • the density of the negative electrode active material layer is preferably 1.25 to 1.58 g / cm 3 , more preferably 1.3 to 1.55 g / cm 3 , since the effects of the present invention are more exerted. is there. Note that the density of the negative electrode active material layer represents the mass of the active material layer per unit volume.
  • the electrode volume is obtained from the long side, the short side, and the height, and after measuring the weight of the active material layer, It can be determined by dividing weight by volume.
  • the surface centerline average roughness (Ra) of the surface on the separator side of the negative electrode active material layer is preferably 0.5 to 1.0 ⁇ m. If the center line average roughness (Ra) of the negative electrode active material layer is 0.5 ⁇ m or more, the long-term cycle characteristics can be further improved. This is considered to be because if the surface roughness is 0.5 ⁇ m or more, the gas generated in the power generation element is easily discharged out of the system. Moreover, if the centerline average roughness (Ra) of the negative electrode active material layer is 1.0 ⁇ m or less, the electron conductivity in the battery element is sufficiently secured, and the battery characteristics can be further improved.
  • the centerline average roughness Ra means that only the reference length is extracted from the roughness curve in the direction of the average line, the x axis is in the direction of the average line of the extracted portion, and the y axis is in the direction of the vertical magnification.
  • the value obtained by the following formula 1 is expressed in micrometers ( ⁇ m) (JIS-B0601-1994).
  • Ra The value of Ra is measured by using a stylus type or non-contact type surface roughness meter that is generally widely used, for example, by a method defined in JIS-B0601-1994. There are no restrictions on the manufacturer or model of the device. In the examination in the present invention, Ra was obtained according to the method defined in JIS-B0601 using a model number: DEKTAK3030 manufactured by SLOAN. Either the contact method (stylus type with a diamond needle or the like) or the non-contact method (non-contact detection with a laser beam or the like) can be measured.
  • the surface roughness Ra specified in the present invention is measured at the stage where the active material layer is formed on the current collector in the manufacturing process.
  • the measurement can be performed even after the battery is completed, and the results are almost the same as those in the manufacturing stage. Therefore, the surface roughness after the battery is completed may satisfy the above Ra range.
  • the surface roughness of the negative electrode active material layer is that on the separator side of the negative electrode active material layer.
  • the surface roughness of the negative electrode takes into account the active material shape, particle diameter, active material blending amount, etc. contained in the negative electrode active material layer, for example, by adjusting the press pressure during active material layer formation, etc. It can adjust so that it may become the said range.
  • the shape of the active material varies depending on the type and manufacturing method, and the shape can be controlled by pulverization, for example, spherical (powder), plate, needle, column, square Etc. Therefore, in order to adjust the surface roughness in consideration of the shape used for the active material layer, active materials having various shapes may be combined.
  • the positive electrode active material layer contains an active material and, if necessary, other additives such as a conductive additive, a binder, an electrolyte (polymer matrix, ion conductive polymer, electrolyte, etc.), and a lithium salt for increasing ionic conductivity.
  • a conductive additive such as aluminum silicate, aluminum silicate, magnesium silicate, magnesium silicate, magnesium silicate, magnesium silicate, magnesium silicate, magnesium silicate, etc.
  • an electrolyte polymer matrix, ion conductive polymer, electrolyte, etc.
  • a lithium salt for increasing ionic conductivity.
  • the positive electrode active material layer includes a positive electrode active material.
  • the positive electrode active material include LiMn 2 O 4 , LiCoO 2 , LiNiO 2 , Li (Ni—Mn—Co) O 2, and lithium-- such as those in which some of these transition metals are substituted with other elements.
  • Examples include transition metal composite oxides, lithium-transition metal phosphate compounds, and lithium-transition metal sulfate compounds.
  • two or more positive electrode active materials may be used in combination.
  • a lithium-transition metal composite oxide is used as the positive electrode active material.
  • a composite oxide containing lithium and nickel is used, and more preferably Li (Ni—Mn—Co) O 2 and a part of these transition metals substituted with other elements (hereinafter, referred to as “following”) Simply referred to as “NMC composite oxide”).
  • the NMC composite oxide has a layered crystal structure in which a lithium atomic layer and a transition metal (Mn, Ni, and Co are arranged in order) are stacked alternately via an oxygen atomic layer.
  • One Li atom is contained, and the amount of Li that can be taken out is twice that of the spinel lithium manganese oxide, that is, the supply capacity is doubled, so that a high capacity can be obtained.
  • the NMC composite oxide includes a composite oxide in which a part of the transition metal element is substituted with another metal element.
  • Other elements in that case include Ti, Zr, Nb, W, P, Al, Mg, V, Ca, Sr, Cr, Fe, B, Ga, In, Si, Mo, Y, Sn, V, Cu , Ag, Zn, etc., preferably Ti, Zr, Nb, W, P, Al, Mg, V, Ca, Sr, Cr, more preferably Ti, Zr, P, Al, Mg, From the viewpoint of improving cycle characteristics, Ti, Zr, Al, Mg, and Cr are more preferable.
  • a represents the atomic ratio of Li
  • b represents the atomic ratio of Ni
  • c represents the atomic ratio of Co
  • d represents the atomic ratio of Mn
  • x represents the atomic ratio of M. Represents. From the viewpoint of cycle characteristics, it is preferable that 0.4 ⁇ b ⁇ 0.6 in the general formula (1).
  • the composition of each element can be measured by, for example, inductively coupled plasma (ICP) emission spectrometry.
  • ICP inductively coupled plasma
  • Ni nickel
  • Co cobalt
  • Mn manganese
  • Ti or the like partially replaces the transition metal in the crystal lattice. From the viewpoint of cycle characteristics, it is preferable that a part of the transition element is substituted with another metal element, and it is particularly preferable that 0 ⁇ x ⁇ 0.3 in the general formula (1). Since at least one selected from the group consisting of Ti, Zr, Nb, W, P, Al, Mg, V, Ca, Sr, and Cr is dissolved, the crystal structure is stabilized. It is considered that the battery capacity can be prevented from decreasing even if the above is repeated, and that excellent cycle characteristics can be realized.
  • b, c and d are 0.44 ⁇ b ⁇ 0.51, 0.27 ⁇ c ⁇ 0.31, 0.19 ⁇ d ⁇ 0.26. It is preferable from the viewpoint of improving the balance between capacity and life characteristics.
  • LiNi 0.5 Mn 0.3 Co 0.2 O 2 is LiCoO 2 , LiMn 2 O 4 , LiNi 1/3 Mn 1/3 Co 1/3 O 2, etc. that have been proven in general consumer batteries.
  • the capacity per unit weight is large, and the energy density can be improved, so that a battery having a compact and high capacity can be produced, which is preferable from the viewpoint of cruising distance.
  • LiNi 0.8 Co 0.1 Al 0.1 O 2 is more advantageous in terms of a larger capacity, but there are difficulties in life characteristics.
  • LiNi 0.5 Mn 0.3 Co 0.2 O 2 has life characteristics as excellent as LiNi 1/3 Mn 1/3 Co 1/3 O 2 .
  • positive electrode active materials other than those described above may be used.
  • the average particle diameter of the positive electrode active material contained in the positive electrode active material layer is not particularly limited, but is preferably 1 to 100 ⁇ m, more preferably 1 to 20 ⁇ m from the viewpoint of increasing the output.
  • a binder used for a positive electrode active material layer For example, the following materials are mentioned. Polyethylene, polypropylene, polyethylene terephthalate (PET), polyether nitrile, polyacrylonitrile, polyimide, polyamide, cellulose, carboxymethyl cellulose (CMC) and its salts, ethylene-vinyl acetate copolymer, polyvinyl chloride, styrene-butadiene rubber (SBR) ), Isoprene rubber, butadiene rubber, ethylene / propylene rubber, ethylene / propylene / diene copolymer, styrene / butadiene / styrene block copolymer and hydrogenated product thereof, styrene / isoprene / styrene block copolymer and hydrogenated product thereof.
  • Thermoplastic polymers such as products, polyvinylidene fluoride (PVdF), polyt
  • the amount of the binder contained in the positive electrode active material layer is not particularly limited as long as it is an amount capable of binding the active material, but preferably 0.5 to 15% by mass with respect to the active material layer. More preferably, it is 1 to 10% by mass.
  • additives other than the binder the same additives as those in the negative electrode active material layer column can be used.
  • the separator has a function of holding an electrolyte and ensuring lithium ion conductivity between the positive electrode and the negative electrode, and a function as a partition wall between the positive electrode and the negative electrode.
  • the air permeability and the porosity of the separator are within an appropriate range.
  • the air permeability (Gurley value) of the separator is preferably 200 (seconds / 100 cc) or less.
  • the air permeability of the separator is preferably 200 (seconds / 100 cc) or less.
  • the lower limit of the air permeability is not particularly limited, but is usually 300 (second / 100 cc) or more.
  • the air permeability of the separator is a value according to the measurement method of JIS P8117 (2009).
  • the porosity of the separator is preferably 40 to 65%.
  • the porosity a value obtained as a volume ratio from the density of the resin as the raw material of the separator and the density of the separator of the final product is adopted.
  • the porosity is expressed by 100 ⁇ (1 ⁇ ′ / ⁇ ).
  • separator examples include a separator made of a porous sheet made of a polymer or fiber that absorbs and holds the electrolyte and a nonwoven fabric separator.
  • a microporous (microporous film) can be used as the separator of the porous sheet made of polymer or fiber.
  • the porous sheet made of the polymer or fiber include polyolefins such as polyethylene (PE) and polypropylene (PP); a laminate in which a plurality of these are laminated (for example, three layers of PP / PE / PP) And a microporous (microporous membrane) separator made of a hydrocarbon resin such as polyimide, aramid, polyvinylidene fluoride-hexafluoropropylene (PVdF-HFP), glass fiber, and the like.
  • PE polyethylene
  • PP polypropylene
  • a microporous (microporous membrane) separator made of a hydrocarbon resin such as polyimide, aramid, polyvinylidene fluoride-hexafluoropropylene (PVdF-HFP), glass fiber, and the like.
  • the thickness of the microporous (microporous membrane) separator cannot be uniquely defined because it varies depending on the intended use. For example, in applications such as secondary batteries for driving motors such as electric vehicles (EV), hybrid electric vehicles (HEV), and fuel cell vehicles (FCV), it is 4 to 60 ⁇ m in a single layer or multiple layers. Is desirable.
  • the fine pore diameter of the microporous (microporous membrane) separator is desirably 1 ⁇ m or less (usually a pore diameter of about several tens of nm).
  • nonwoven fabric separator cotton, rayon, acetate, nylon, polyester; polyolefins such as PP and PE; conventionally known ones such as polyimide and aramid are used alone or in combination.
  • the bulk density of the nonwoven fabric is not particularly limited as long as sufficient battery characteristics can be obtained by the impregnated polymer gel electrolyte.
  • the porosity of the nonwoven fabric separator is preferably 50 to 90%. Furthermore, the thickness of the nonwoven fabric separator may be the same as that of the electrolyte layer, and is preferably 5 to 200 ⁇ m, particularly preferably 10 to 100 ⁇ m.
  • the separator may be a separator in which a heat-resistant insulating layer is laminated on at least one surface of the resin porous substrate.
  • the heat-resistant insulating layer is a ceramic layer containing inorganic particles and a binder.
  • the separator includes an electrolyte.
  • the electrolyte is not particularly limited as long as it can exhibit such a function, but a liquid electrolyte or a gel polymer electrolyte is used.
  • the liquid electrolyte functions as a lithium ion carrier.
  • the liquid electrolyte has a form in which a lithium salt is dissolved in an organic solvent.
  • organic solvent include carbonates such as ethylene carbonate (EC), propylene carbonate (PC), dimethyl carbonate (DMC), diethyl carbonate (DEC), and ethyl methyl carbonate.
  • the lithium salt Li (CF 3 SO 2) 2 N, Li (C 2 F 5 SO 2) 2 N, LiPF 6, LiBF 4, LiClO 4, LiAsF 6, LiTaF such 6, LiCF 3 SO 3
  • the liquid electrolyte may further contain additives other than the components described above.
  • Such compounds include, for example, vinylene carbonate, methyl vinylene carbonate, dimethyl vinylene carbonate, phenyl vinylene carbonate, diphenyl vinylene carbonate, ethyl vinylene carbonate, diethyl vinylene carbonate, vinyl ethylene carbonate, 1,2-divinyl ethylene carbonate.
  • vinylene carbonate, methyl vinylene carbonate, and vinyl ethylene carbonate are preferable, and vinylene carbonate and vinyl ethylene carbonate are more preferable.
  • These cyclic carbonates may be used alone or in combination of two or more.
  • the gel polymer electrolyte has a configuration in which the above liquid electrolyte is injected into a matrix polymer (host polymer) made of an ion conductive polymer.
  • a gel polymer electrolyte as the electrolyte is superior in that the fluidity of the electrolyte is lost and it is easy to block the ion conductivity between the layers.
  • it is excellent also in the point that the long-term cycle durability of a battery can be improved through the improvement of the adhesiveness of a separator and an active material layer. Accordingly, in a preferred embodiment of the present invention, the separator holds the gel polymer electrolyte.
  • Examples of the ion conductive polymer used as the matrix polymer (host polymer) include polyethylene oxide (PEO), polypropylene oxide (PPO), and copolymers thereof.
  • PEO polyethylene oxide
  • PPO polypropylene oxide
  • electrolyte salts such as lithium salts can be well dissolved.
  • the matrix polymer of gel electrolyte can express excellent mechanical strength by forming a crosslinked structure.
  • thermal polymerization, ultraviolet polymerization, radiation polymerization, electron beam polymerization, etc. are performed on a polymerizable polymer (for example, PEO or PPO) for forming a polymer electrolyte using an appropriate polymerization initiator.
  • a polymerization treatment may be performed.
  • examples of the metal include aluminum, nickel, iron, stainless steel, titanium, copper, and other alloys.
  • a clad material of nickel and aluminum, a clad material of copper and aluminum, or a plating material of a combination of these metals can be preferably used.
  • covered on the metal surface may be sufficient.
  • aluminum, stainless steel, and copper are preferable from the viewpoints of electronic conductivity and battery operating potential.
  • the size of the current collector is determined according to the intended use of the battery. For example, if it is used for a large battery that requires a high energy density, a current collector having a large area is used. There is no particular limitation on the thickness of the current collector.
  • the thickness of the current collector is usually about 1 to 100 ⁇ m.
  • the material which comprises a current collector plate (25, 27) is not restrict
  • a constituent material of the current collector plate for example, metal materials such as aluminum, copper, titanium, nickel, stainless steel (SUS), and alloys thereof are preferable. From the viewpoint of light weight, corrosion resistance, and high conductivity, aluminum and copper are more preferable, and aluminum is particularly preferable.
  • the positive electrode current collector plate 25 and the negative electrode current collector plate 27 may be made of the same material or different materials.
  • the battery outer body 29 is a member that encloses the power generation element therein, and a bag-like case using a laminate film containing aluminum that can cover the power generation element can be used.
  • a laminate film for example, a laminate film having a three-layer structure in which PP, aluminum, and nylon are laminated in this order can be used, but is not limited thereto.
  • a laminate film is desirable from the viewpoint that it is excellent in high output and cooling performance, and can be suitably used for a battery for large equipment for EV and HEV.
  • the exterior body is more preferably a laminate film containing aluminum.
  • the internal volume of the battery exterior body 29 is configured to be larger than the volume of the power generation element 21 so that the power generation element 21 can be enclosed.
  • the internal volume of the exterior body refers to the volume in the exterior body before evacuation after sealing with the exterior body.
  • the volume of the power generation element is the volume of the space occupied by the power generation element, and includes a hole in the power generation element. Since the inner volume of the exterior body is larger than the volume of the power generation element, there is a space in which gas can be stored when gas is generated. Thereby, the gas release property from the power generation element is improved, the generated gas is less likely to affect the battery behavior, and the battery characteristics are improved.
  • the negative electrode active material layer is preferably rectangular, and the length of the short side of the rectangle is preferably 100 mm or more. Such a large battery can be used for vehicle applications.
  • the length of the short side of the negative electrode active material layer refers to the side having the shortest length among the electrodes.
  • the upper limit of the length of the short side of the battery structure is not particularly limited, but is usually 250 mm or less.
  • the nonaqueous electrolyte secondary battery according to the present embodiment is a battery having a large size as described above, because the merit due to the expression of the effects of the present invention is greater.
  • the size of the battery can be specified by the volume energy density, the single cell rated capacity, and the like.
  • a travel distance (cruising range) by one charge is 100 km, which is a market requirement.
  • the single cell rated capacity is preferably 20 Wh or more
  • the volume energy density of the battery is preferably 153 Wh / L or more.
  • the volume energy density and the rated discharge capacity are measured by the methods described in the following examples.
  • the aspect ratio of the rectangular electrode is preferably 1 to 3, and more preferably 1 to 2.
  • the electrode aspect ratio is defined as the aspect ratio of the rectangular positive electrode active material layer. Setting the aspect ratio in such a range is preferable because the gas generated during charging can be discharged uniformly in the surface direction.
  • the assembled battery is configured by connecting a plurality of batteries. Specifically, at least two or more are used, and are configured by serialization, parallelization, or both. Capacitance and voltage can be freely adjusted by paralleling in series.
  • a small assembled battery that can be attached and detached by connecting a plurality of batteries in series or in parallel. Then, a plurality of small assembled batteries that can be attached and detached are connected in series or in parallel to provide a large capacity and large capacity suitable for vehicle drive power supplies and auxiliary power supplies that require high volume energy density and high volume output density.
  • An assembled battery having an output can also be formed. How many batteries are connected to make an assembled battery, and how many small assembled batteries are stacked to make a large-capacity assembled battery depends on the battery capacity of the mounted vehicle (electric vehicle) It may be determined according to the output.
  • the electric device has excellent output characteristics, maintains discharge capacity even after long-term use, and has good cycle characteristics.
  • Vehicle applications such as electric vehicles, hybrid electric vehicles, fuel cell vehicles, and hybrid fuel cell vehicles require higher capacity, larger size, and longer life than electric and portable electronic devices. . Therefore, the electric device can be suitably used as a vehicle power source, for example, a vehicle driving power source or an auxiliary power source.
  • a battery or an assembled battery formed by combining a plurality of these batteries can be mounted on the vehicle.
  • a plug-in hybrid electric vehicle having a long EV mileage or an electric vehicle having a long charge mileage can be formed by mounting such a battery.
  • a car a hybrid car, a fuel cell car, an electric car (four-wheeled vehicles (passenger cars, trucks, buses, commercial vehicles, light cars, etc.) This is because it can be used for motorcycles (including motorcycles) and tricycles) to provide a long-life and highly reliable automobile.
  • the application is not limited to automobiles.
  • it can be applied to various power sources for moving vehicles such as other vehicles, for example, trains, and power sources for mounting such as uninterruptible power supplies. It is also possible to use as.
  • Example 1 Preparation of Electrolyte Solution A mixed solvent (30:30:40 (volume ratio)) of ethylene carbonate (EC), ethyl methyl carbonate (EMC), and diethyl carbonate (DEC) was used as a solvent. Further, 1.0M LiPF 6 was used as a lithium salt. Furthermore, 2% by mass of vinylene carbonate was added to the total of 100% by mass of the solvent and the lithium salt to prepare an electrolytic solution. Note that “1.0 M LiPF 6 ” means that the lithium salt (LiPF 6 ) concentration in the mixture of the mixed solvent and the lithium salt is 1.0 M.
  • the metal composite hydroxide and lithium carbonate were weighed so that the ratio of the total number of moles of metals other than Li (Ni, Co, Mn) and the number of moles of Li was 1: 1, and then mixed well.
  • the temperature was raised at a rate of temperature increase of 5 ° C / min, pre-baked at 450 ° C for 4 hours in an air atmosphere, then heated at a rate of temperature increase of 3 ° C / min, finally baked at 730 ° C for 10 hours, and cooled to room temperature.
  • NMC composite oxide LiNi 0.50 Mn 0.30 Co 0.20 O 2 ) was obtained.
  • the BET specific surface area of the negative electrode active material can be measured using the AMS8000 type automatic powder specific surface area measuring device (manufactured by Okura Riken), nitrogen as the adsorbing gas, helium as the carrier gas, and BET one-point method measurement by continuous flow went. Specifically, the powder sample is heated and deaerated with a mixed gas at a temperature of 150 ° C., then cooled to liquid nitrogen temperature to adsorb the nitrogen / helium mixed gas, and then heated to room temperature with water. The adsorbed nitrogen gas was desorbed, the amount was detected by a heat conduction detector, and the specific surface area of the sample was calculated from this.
  • Step of completing cell The positive electrode produced above was cut into a 220 ⁇ 200 mm rectangular shape, and the negative electrode was cut into a 225 ⁇ 205 mm rectangular shape (20 positive electrodes and 21 negative electrodes). The positive electrode and the negative electrode were alternately laminated via 230 ⁇ 210 mm separators (polyolefin microporous membrane, thickness 25 ⁇ m).
  • a tab is welded to each of the positive electrode and the negative electrode, and the battery is completed by sealing together with the electrolyte in an exterior body made of an aluminum laminate film, a urethane rubber sheet (thickness 3 mm) larger than the electrode area, and an Al plate (thickness) A cell was completed by sandwiching and pressing the battery at 5 mm).
  • D50 average particle diameter
  • the tact time [sec] in the degassing process was measured (Table 2 below).
  • a part of the laminate cell was cut in order to degas, and the pressure in the cell was reduced by using a large vacuum sealer made by Tosei.
  • this vacuum sealer can seal a laminate cut part after pressure reduction. If the tact time in the degassing process exceeds 30 seconds, the time until the gas is completely discharged from the power generation element (laminate structure) increases.
  • Example 9 to 12 In place of the artificial graphite and coated natural graphite used in Example 1 above, artificial graphite and coated natural graphite having different average particle diameters were used, and the median diameter (D50) was measured by a laser diffraction particle size distribution meter.
  • a battery was produced in the same manner as in Example 1 except that the average particle size of the negative electrode active material was controlled to the value shown in Table 3 below, and the physical properties and characteristics were evaluated in the same manner. The results are shown in Table 3 below.
  • Example 13 to 29 A battery was prepared in the same manner as in Example 1 described above except that the cell size (and volume energy density and single cell rated capacity) of Example 1 was changed as shown in Table 4 below. And the characteristics were evaluated. The results are shown in Table 4 below. As for the cruising distance, the cruising distance in the JC08 mode by the first charging was defined as the cruising distance.
  • Example 30 In place of LiNi 0.50 Mn 0.30 Co 0.20 O 2 , LiNi 0.50 Mn 0.30 Co 0.20 Zr 0.01 O 2 (Example 30) or LiNi 0. A battery was produced in the same manner as in Example 1 except that 50 Mn 0.30 Co 0.20 Al 0.01 O 2 (Example 31) was used, and the physical properties and characteristics were evaluated in the same manner. . In addition, for Example 1 and Examples 30 to 31, the batteries were disassembled in a 4.25 V charged state, the differential thermal analysis (DSC) of the positive electrode was performed, and the heat generation start temperature was determined. These results are shown in Table 5 below.
  • DSC differential thermal analysis
  • Example 32 Sodium hydroxide and ammonia are supplied to an aqueous solution (1.0 mol / L) in which nickel sulfate, cobalt sulfate, and manganese sulfate are dissolved so that the pH is 11.0, and the molar ratio of nickel, cobalt, and manganese is determined by a coprecipitation method.
  • a metal composite hydroxide obtained by solid solution at 1/3: 1/3: 1/3 was prepared.
  • the metal composite oxide and lithium carbonate were weighed so that the ratio of the total number of moles of metals other than Li (Ni, Co, Mn) to the number of moles of Li was 1: 1, and then mixed sufficiently.
  • the temperature was raised at a temperature rate of 5 ° C./min, fired at 920 ° C. for 10 hours in an air atmosphere, cooled to room temperature, and LiNi 1/3 Mn 1/3 Co 1/3 O 2 serving as a shell material was obtained.
  • a battery was produced in the same manner as in Example 1 except that the positive electrode material obtained above was used instead of the positive electrode active material in Example 1, and the physical properties and characteristics were evaluated in the same manner.
  • the battery was disassembled in a 4.25 V charged state, and differential thermal analysis (DSC) of the positive electrode was performed to determine the heat generation start temperature.
  • DSC differential thermal analysis
  • Example 33 As described above, except that LiNi 0.8 Co 0.1 Al 0.1 O 2 (NCA) was used in place of LiNi 1/3 Mn 1/3 Co 1/3 O 2 (NMC111) as the shell material.
  • NCA LiNi 0.8 Co 0.1 Al 0.1 O 2
  • NMC111 LiNi 1/3 Mn 1/3 Co 1/3 O 2
  • Example 34 A battery was fabricated in the same manner as in Example 32 described above except that LiCoO 2 (LCO) was used instead of LiNi 1/3 Mn 1/3 Co 1/3 O 2 (NMC111) as the shell material. In the same manner, physical properties and characteristics were evaluated. The results are shown in Table 6 below.
  • LCO LiCoO 2
  • NMC111 LiNi 1/3 Mn 1/3 Co 1/3 O 2
  • Example 6 From the results shown in Table 6, the NMC composite oxide (LiNi 0.50 Mn 0.30 Co 0.20 O 2 ) used in Example 1 was used as a core, and further coated with a shell material. It can be seen that the heat generation start temperature can be increased when the positive electrode material of the mold is used.
  • Example 35 In the production of the battery of Example 1, a battery was produced in the same manner as in Example 1 except that the gel electrolyte was used as described below. That is, an electrode element is formed by laminating a positive electrode plate and a negative electrode plate having current collecting elements through a heat-resistant separator previously coated with a matrix polymer (polyvinylidene fluoride-hexafluoropropylene copolymer) that forms a gel. Produced.
  • a matrix polymer polyvinylidene fluoride-hexafluoropropylene copolymer
  • Example 36 to 41 The following negative electrode active material was further added to a total of 100% by mass of the graphite crystal mixture (artificial graphite 50% by mass + coated natural graphite 50% by mass) as the negative electrode active material used in Example 1 described above.
  • a battery was produced in the same manner as in Example 1 except that the physical properties and characteristics were evaluated in the same manner. The results are shown in Table 8 below.
  • 97% by mass was used as a negative electrode active material to which the following carbon materials were added, and 2% by mass of SBR and 1% by mass of CMC were added thereto.
  • Example 36 1% by mass of hard carbon (non-graphitizable carbon material)
  • Example 37 5% by mass of hard carbon (non-graphitizable carbon material)
  • Example 38 Hard carbon (non-graphitizable carbon material) 10% by mass
  • Example 39 1% by mass of soft carbon (easily graphitized carbon material)
  • Example 40 5% by mass of soft carbon (easily graphitized carbon material)
  • Example 41 10% by mass of soft carbon (easily graphitized carbon material)
  • Lithium ion secondary battery 11 negative electrode current collector, 12 positive electrode current collector, 13 negative electrode active material layer, 15 positive electrode active material layer, 17 separator, 19 cell layer, 21 power generation elements, 25 negative current collector, 27 positive current collector, 29 Battery outer package.

Abstract

[Problem] To provide a means which is capable of improving the long-term cycle durability of a large-sized nonaqueous electrolyte secondary battery that can be used in applications such as driving of an electric vehicle. [Solution] A negative electrode for nonaqueous electrolyte secondary batteries, which comprises a collector and a negative electrode active material layer that is arranged on the surface of the collector and contains a negative electrode active material. The negative electrode active material contains, as a main component, an artificial graphite, a coated natural graphite or a natural graphite; and if X (% by mass) is the content of the artificial graphite contained in the negative electrode active material, Y (% by mass) is the content of the coated natural graphite contained in the negative electrode active material, and Z (% by mass) is the content of the natural graphite contained in the negative electrode active material (provided that X + Y + Z = 100% by mass), Y ≥ Z and Y ≥ X are satisfied (excluding the case where (X, Y, Z) = (0, 1, 0)).

Description

非水電解質二次電池用負極Anode for non-aqueous electrolyte secondary battery
 本発明は、非水電解質二次電池用負極に関する。 The present invention relates to a negative electrode for a non-aqueous electrolyte secondary battery.
 近年、環境保護運動の高まりを背景として、電気自動車(EV)、ハイブリッド電気自動車(HEV)、および燃料電池車(FCV)の開発が進められている。これらのモータ駆動用電源としては繰り返し充放電可能な二次電池が適しており、特に高容量、高出力が期待できるリチウムイオン二次電池などの非水電解質二次電池が注目を集めている。 In recent years, the development of electric vehicles (EVs), hybrid electric vehicles (HEVs), and fuel cell vehicles (FCVs) has been promoted against the backdrop of the increasing environmental protection movement. A secondary battery that can be repeatedly charged and discharged is suitable as a power source for driving these motors, and a non-aqueous electrolyte secondary battery such as a lithium ion secondary battery that can be expected to have a high capacity and a high output is attracting attention.
 非水電解質二次電池は、集電体表面に形成された正極活物質(たとえば、LiCoO、LiMn、LiNiO等)を含む正極活物質層を有する。また、非水電解質二次電池は、集電体表面に形成された負極活物質(たとえば、金属リチウム、コークスおよび天然・人造黒鉛等の炭素質材料、Sn、Si等の金属およびその酸化物材料等)を含む負極活物質層を有する。 The nonaqueous electrolyte secondary battery has a positive electrode active material layer containing a positive electrode active material (for example, LiCoO 2 , LiMn 2 O 4 , LiNiO 2, etc.) formed on the current collector surface. In addition, the non-aqueous electrolyte secondary battery includes a negative electrode active material formed on the current collector surface (for example, carbonaceous materials such as metallic lithium, coke and natural / artificial graphite, metals such as Sn and Si, and oxide materials thereof) Etc.).
 従来、民生用途における比較的容量の小さいリチウムイオン電池において、負極活物質として2種以上の黒鉛結晶を混合して用いる技術が提案されている。例えば特開2004-127913号公報には、リチウムイオン二次電池の負極活物質として、所定の物性を有する人造黒鉛粒子を、球状黒鉛粒子との混合物の状態で用いる技術が開示されている。そして、特開2004-127913号公報に開示の構成とすることで、リチウムイオン二次電池の充放電サイクル特性を大幅に改善することができ、同時に放電レート特性、低温放電特性および安全性(耐熱性)にも優れた電池を提供することが可能となるとされている。 Conventionally, a technique has been proposed in which two or more types of graphite crystals are used as a negative electrode active material in a lithium ion battery having a relatively small capacity for consumer use. For example, Japanese Patent Application Laid-Open No. 2004-127913 discloses a technique in which artificial graphite particles having predetermined physical properties are used as a negative electrode active material for a lithium ion secondary battery in a mixture with spherical graphite particles. The configuration disclosed in Japanese Patent Application Laid-Open No. 2004-127913 can greatly improve the charge / discharge cycle characteristics of the lithium ion secondary battery, and at the same time, discharge rate characteristics, low-temperature discharge characteristics and safety (heat resistance It is said that it becomes possible to provide a battery that is also excellent in the property.
 上述のように、従来、民生用途においては、負極活物質として2種以上の黒鉛結晶を混合して用いる技術について種々の検討がなされている。しかしながら、従来の混合負極に関する技術は、当然ながら、電動車両用大型電池の要求性能を考慮したものではなかった。そして、本発明者らの検討によれば、従来民生用途において提案されている技術を電動車両用大型電池にそのまま適用しても、十分な電池性能が発揮されるわけではないことを見出した。より詳細には、電動車両用大型電池の実用化における最も重要な性能の一つである長期サイクル耐久性について、従来の民生用途のサイクル耐久性の観点からは好ましい混合負極が、電動車両用大型電池の長期サイクル耐久性については必ずしも優れた性能を示すわけではないことを本発明者らは見出したのである。 As described above, conventionally, in consumer applications, various studies have been made on techniques for mixing and using two or more types of graphite crystals as negative electrode active materials. However, the conventional technology relating to the mixed negative electrode has not, of course, taken into consideration the required performance of a large battery for an electric vehicle. According to the study by the present inventors, it has been found that even if the technique proposed in the conventional consumer use is applied as it is to a large battery for an electric vehicle, sufficient battery performance is not exhibited. More specifically, with regard to long-term cycle durability, which is one of the most important performances in the practical application of large batteries for electric vehicles, a mixed negative electrode that is preferable from the viewpoint of cycle durability for conventional consumer use is a large size for electric vehicles. The present inventors have found that the long-term cycle durability of the battery does not necessarily show excellent performance.
 そこで本発明は、電動車両の駆動用などの用途に用いられうる大型の非水電解質二次電池において、長期サイクル耐久性を向上させうる手段を提供することを目的とする。 Therefore, an object of the present invention is to provide means for improving long-term cycle durability in a large-sized non-aqueous electrolyte secondary battery that can be used for driving electric vehicles.
 本発明に係る非水電解質二次電池用負極は、集電体と、当該集電体の表面に配置された、負極活物質を含む負極活物質層とを有する。また、負極活物質は、人造黒鉛、被覆天然黒鉛または天然黒鉛を主成分として含む。そして、負極活物質に含まれる人造黒鉛の含有量をX[質量%]とし、被覆天然黒鉛の含有量をY[質量%]とし、天然黒鉛の含有量をZ[質量%]としたときに(ここで、X+Y+Z=100質量%である)、Y≧ZおよびY≧Xを満たす(ただし、(X,Y,Z)=(0,1,0)の場合を除く)点に特徴がある。 The negative electrode for a non-aqueous electrolyte secondary battery according to the present invention has a current collector and a negative electrode active material layer including a negative electrode active material disposed on the surface of the current collector. The negative electrode active material contains artificial graphite, coated natural graphite or natural graphite as a main component. When the content of the artificial graphite contained in the negative electrode active material is X [mass%], the content of the coated natural graphite is Y [mass%], and the content of the natural graphite is Z [mass%]. (Where X + Y + Z = 100 mass%), Y ≧ Z and Y ≧ X are satisfied (except for the case of (X, Y, Z) = (0, 1, 0)). .
扁平型(積層型)の双極型でない非水電解質リチウムイオン二次電池の基本構成を示す断面概略図である。1 is a schematic cross-sectional view showing a basic configuration of a non-aqueous electrolyte lithium ion secondary battery that is not a flat (stacked) bipolar type. 本発明の実施形態に係る非水電解質二次電池における負極活物質の主成分を構成しうる人造黒鉛、被覆天然黒鉛および天然黒鉛の含有量をそれぞれX[質量%]、Y[質量%]およびZ[質量%]としたときに、Y≧ZおよびY≧Xを満たす領域(斜線領域A)を示す図である。In the nonaqueous electrolyte secondary battery according to the embodiment of the present invention, the contents of artificial graphite, coated natural graphite and natural graphite that can constitute the main component of the negative electrode active material are X [mass%], Y [mass%] and It is a figure which shows the area | region (hatched area | region A) which satisfy | fills Y> = Z and Y> = X when it is set as Z [mass%]. 本発明のより好ましい実施形態として、X=0の直線、Z=0の直線、および、(X,Y,Z=50,50,0)の座標(実施例1)と(X,Y,Z=20,60,20)の座標(実施例7)とを結ぶ直線で囲まれた領域(斜線領域B)を示す図である。As a more preferred embodiment of the present invention, a straight line of X = 0, a straight line of Z = 0, and coordinates (Example 1) of (X, Y, Z = 50, 50, 0) and (X, Y, Z) = 20, 60, 20) is a diagram showing a region (shaded region B) surrounded by a straight line connecting the coordinates (Example 7).
 本発明は、集電体と、前記集電体の表面に配置された、負極活物質を含む負極活物質層とを有し、前記負極活物質が人造黒鉛、被覆天然黒鉛または天然黒鉛を主成分として含み、前記負極活物質に含まれる人造黒鉛の含有量をX[質量%]とし、被覆天然黒鉛の含有量をY[質量%]とし、天然黒鉛の含有量をZ[質量%]としたときに(ここで、X+Y+Z=100質量%である)、Y≧ZおよびY≧Xを満たす(ただし、(X,Y,Z)=(0,1,0)の場合を除く)、非水電解質二次電池用負極である。本発明によれば、人造黒鉛の含有量以上に被覆天然黒鉛が含有されていることで、電極作製時のプレス等により硬度の大きい人造黒鉛が他の黒鉛粒子(被覆天然黒鉛や天然黒鉛)を変形させたりする虞が低減される。そして、天然黒鉛の含有量以上に被覆天然黒鉛が含有されていることで、長期サイクル後の負極活物質表面における析出物の発生量も低減され、さらには当該析出物の析出形態も容量低下の原因となる微小短絡を引き起こしにくい形状となることから、結果的に長期サイクル特性を向上させることが可能となる。 The present invention has a current collector and a negative electrode active material layer containing a negative electrode active material, which is disposed on the surface of the current collector, and the negative electrode active material is mainly composed of artificial graphite, coated natural graphite or natural graphite. The content of artificial graphite contained in the negative electrode active material is X [mass%], the content of coated natural graphite is Y [mass%], and the content of natural graphite is Z [mass%]. (Where X + Y + Z = 100% by mass), satisfying Y ≧ Z and Y ≧ X (except in the case of (X, Y, Z) = (0, 1, 0)) It is a negative electrode for water electrolyte secondary batteries. According to the present invention, since the coated natural graphite is contained more than the content of the artificial graphite, the artificial graphite having a high hardness can be replaced with other graphite particles (coated natural graphite or natural graphite) by pressing or the like during electrode production. The risk of deformation is reduced. And, since the coated natural graphite is contained more than the content of natural graphite, the amount of precipitates generated on the surface of the negative electrode active material after a long-term cycle is also reduced, and further the precipitation form of the precipitates is reduced in capacity. As a result, the long-term cycle characteristics can be improved because the shape is unlikely to cause a micro short circuit.
 以下、非水電解質二次電池用負極の好ましい実施形態として、非水電解質リチウムイオン二次電池に用いられる場合について説明するが、以下の実施形態のみには制限されない。なお、図面の説明において同一の要素には同一の符号を付し、重複する説明を省略する。また、図面の寸法比率は、説明の都合上誇張されており、実際の比率とは異なる場合がある。 Hereinafter, as a preferred embodiment of the negative electrode for a non-aqueous electrolyte secondary battery, a case where it is used for a non-aqueous electrolyte lithium ion secondary battery will be described, but it is not limited to the following embodiment. In the description of the drawings, the same elements are denoted by the same reference numerals, and redundant description is omitted. In addition, the dimensional ratios in the drawings are exaggerated for convenience of explanation, and may be different from the actual ratios.
 図1は、扁平型(積層型)の双極型ではない非水電解質リチウムイオン二次電池(以下、単に「積層型電池」ともいう)の基本構成を模式的に表した断面概略図である。図1に示すように、本実施形態の積層型電池10は、実際に充放電反応が進行する略矩形の発電要素21が、外装体である電池外装体29の内部に封止された構造を有する。ここで、発電要素21は、正極と、セパレータ17と、負極とを積層した構成を有している。なお、セパレータ17は、非水電解質(例えば、液体電解質)を内蔵している。正極は、正極集電体12の両面に正極活物質層15が配置された構造を有する。負極は、負極集電体11の両面に負極活物質層13が配置された構造を有する。具体的には、1つの正極活物質層15とこれに隣接する負極活物質層13とが、セパレータ17を介して対向するようにして、負極、電解質層および正極がこの順に積層されている。これにより、隣接する正極、電解質層および負極は、1つの単電池層19を構成する。したがって、図1に示す積層型電池10は、単電池層19が複数積層されることで、電気的に並列接続されてなる構成を有するともいえる。 FIG. 1 is a schematic cross-sectional view schematically showing a basic configuration of a non-aqueous electrolyte lithium ion secondary battery (hereinafter also simply referred to as “stacked battery”) that is not a flat (stacked) bipolar type. As shown in FIG. 1, the stacked battery 10 of the present embodiment has a structure in which a substantially rectangular power generation element 21 in which a charge / discharge reaction actually proceeds is sealed inside a battery exterior body 29 that is an exterior body. Have. Here, the power generation element 21 has a configuration in which a positive electrode, a separator 17, and a negative electrode are stacked. The separator 17 contains a nonaqueous electrolyte (for example, a liquid electrolyte). The positive electrode has a structure in which the positive electrode active material layers 15 are disposed on both surfaces of the positive electrode current collector 12. The negative electrode has a structure in which the negative electrode active material layer 13 is disposed on both surfaces of the negative electrode current collector 11. Specifically, the negative electrode, the electrolyte layer, and the positive electrode are laminated in this order so that one positive electrode active material layer 15 and the negative electrode active material layer 13 adjacent thereto face each other with a separator 17 therebetween. Thereby, the adjacent positive electrode, electrolyte layer, and negative electrode constitute one unit cell layer 19. Therefore, it can be said that the stacked battery 10 shown in FIG. 1 has a configuration in which a plurality of single battery layers 19 are stacked and electrically connected in parallel.
 なお、発電要素21の両最外層に位置する最外層正極集電体には、いずれも片面のみに負極活物質層13が配置されているが、両面に活物質層が設けられてもよい。すなわち、片面にのみ活物質層を設けた最外層専用の集電体とするのではなく、両面に活物質層がある集電体をそのまま最外層の集電体として用いてもよい。また、図1とは正極および負極の配置を逆にすることで、発電要素21の両最外層に最外層正極集電体が位置するようにし、該最外層正極集電体の片面または両面に正極活物質層が配置されているようにしてもよい。 In addition, although the negative electrode active material layer 13 is arrange | positioned only at one side in the outermost layer positive electrode collector located in both outermost layers of the electric power generation element 21, an active material layer may be provided in both surfaces. That is, instead of using a current collector dedicated to the outermost layer provided with an active material layer only on one side, a current collector having an active material layer on both sides may be used as it is as an outermost current collector. Further, by reversing the arrangement of the positive electrode and the negative electrode as compared with FIG. 1, the outermost positive electrode current collector is positioned on both outermost layers of the power generation element 21, and the outermost positive electrode current collector is disposed on one or both surfaces of the outermost layer positive electrode current collector. A positive electrode active material layer may be disposed.
 正極集電体12および負極集電体11は、各電極(正極および負極)と導通される正極集電板(タブ)27および負極集電板(タブ)25がそれぞれ取り付けられ、電池外装体29の端部に挟まれるようにして電池外装体29の外部に導出される構造を有している。正極集電板27および負極集電板25はそれぞれ、必要に応じて正極リードおよび負極リード(図示せず)を介して、各電極の正極集電体12および負極集電体11に超音波溶接や抵抗溶接等により取り付けられていてもよい。 The positive electrode current collector 12 and the negative electrode current collector 11 are each provided with a positive electrode current collector plate (tab) 27 and a negative electrode current collector plate (tab) 25 that are electrically connected to the respective electrodes (positive electrode and negative electrode). It has the structure led out to the exterior of the battery exterior body 29 so that it may be pinched | interposed into the edge part. The positive electrode current collector 27 and the negative electrode current collector 25 are ultrasonically welded to the positive electrode current collector 12 and the negative electrode current collector 11 of each electrode, respectively, via a positive electrode lead and a negative electrode lead (not shown) as necessary. Or resistance welding or the like.
 なお、図1では、扁平型(積層型)の双極型ではない積層型電池を示したが、集電体の一方の面に電気的に結合した正極活物質層と、集電体の反対側の面に電気的に結合した負極活物質層と、を有する双極型電極を含む双極型電池であってもよい。この場合、一の集電体が正極集電体および負極集電体を兼ねることとなる。 Note that FIG. 1 shows a flat battery (stacked battery) that is not a bipolar battery, but a positive electrode active material layer that is electrically coupled to one surface of the current collector and the opposite side of the current collector. And a bipolar battery including a bipolar electrode having a negative electrode active material layer electrically coupled to the surface. In this case, one current collector also serves as a positive electrode current collector and a negative electrode current collector.
 以下、各部材について、さらに詳細に説明する。 Hereinafter, each member will be described in more detail.
 [負極活物質層]
 負極活物質層は、負極活物質を含む。本形態に係る非水電解質リチウムイオン二次電池において、負極活物質は、人造黒鉛、被覆天然黒鉛または天然黒鉛を主成分として含む。負極活物質がこれらの黒鉛結晶を主成分として含むことで、種々の利点がある。例えば、リチウムイオンが黒鉛結晶に挿入するとリチウム金属と同程度の電位を示す(0.1~0.3V vs. Li/Li)、単位体積あたりの容量が比較的高い(>800mAh/L)、体積膨張が小さい、電位平坦性に優れる、安価である、電池を放電状態で作製できる、といった利点がある。ここで、「負極活物質が人造黒鉛、被覆天然黒鉛または天然黒鉛を主成分として含む」とは、負極活物質の全量100質量%に占める上記3種の黒鉛結晶の含有量(2種以上含まれる場合には、それらの含有量の合計)の割合が50質量%以上であることを意味する。負極活物質の全量100質量%に占める黒鉛結晶の割合は、好ましくは70質量%以上であり、より好ましくは80質量%以上であり、さらに好ましくは90質量%以上であり、いっそう好ましくは95質量%以上であり、特に好ましくは98質量%以上であり、最も好ましくは100質量%である。
[Negative electrode active material layer]
The negative electrode active material layer includes a negative electrode active material. In the non-aqueous electrolyte lithium ion secondary battery according to this embodiment, the negative electrode active material contains artificial graphite, coated natural graphite, or natural graphite as a main component. There are various advantages when the negative electrode active material contains these graphite crystals as a main component. For example, when lithium ions are inserted into a graphite crystal, it shows the same potential as lithium metal (0.1 to 0.3 V vs. Li + / Li), and the capacity per unit volume is relatively high (> 800 mAh / L). There are advantages that the volume expansion is small, the potential flatness is excellent, the cost is low, and the battery can be manufactured in a discharged state. Here, “the negative electrode active material contains artificial graphite, coated natural graphite or natural graphite as a main component” means the content of the above three types of graphite crystals in the total amount of 100% by mass of the negative electrode active material (including two or more types). In this case, it means that the total content) is 50% by mass or more. The proportion of graphite crystals in the total amount of 100% by mass of the negative electrode active material is preferably 70% by mass or more, more preferably 80% by mass or more, still more preferably 90% by mass or more, and still more preferably 95% by mass. % Or more, particularly preferably 98% by mass or more, and most preferably 100% by mass.
 黒鉛結晶は、グラフェンシート(炭素原子(C)がsp混成軌道により結合して連なった1原子の厚さのシート)が0.3354nmの間隔で、ABまたはABC積層秩序に従って積層した層状物質である。ここで、黒鉛結晶の結晶子の大きさLcは、好ましくは20~90nmであり、より好ましくは35~85nmであり、さらに好ましくは40~75nmである。結晶子の大きさが90nm以下であれば、低温出力特性に優れる。また、平均面間隔(d002)は、好ましくは0.3354~0.3365nmであり、より好ましくは0.3354~0.3368nmであり、さらに好ましくは0.3354~0.3370nmである。下限値の0.3354nmは黒鉛結晶の理論値であることから、この値に近いほど好ましい。また、上限値以下であれば結晶性が十分に高く維持され、容量低下や充放電時の電圧低下の虞が低減される。なお、これらの値はリガク社製広角X線回折測定装置を用いたXRD解析の結果から学振法に基づき算出される値である。また、これらの値は熱処理温度を調整することである程度コントロールすることが可能である。 Graphite crystal is a layered material in which graphene sheets (sheets with a thickness of 1 atom in which carbon atoms (C) are connected by sp 2 hybrid orbitals) are stacked at intervals of 0.3354 nm according to AB or ABC stacking order. is there. Here, the crystallite size Lc of the graphite crystal is preferably 20 to 90 nm, more preferably 35 to 85 nm, and still more preferably 40 to 75 nm. If the crystallite size is 90 nm or less, the low-temperature output characteristics are excellent. The average interplanar spacing (d002) is preferably 0.3354 to 0.3365 nm, more preferably 0.3354 to 0.3368 nm, and still more preferably 0.3354 to 0.3370 nm. Since the lower limit of 0.3354 nm is a theoretical value of graphite crystals, the closer to this value, the better. Moreover, if it is below an upper limit, crystallinity will be maintained high enough and the possibility of the voltage fall at the time of a capacity | capacitance fall and charge / discharge will be reduced. These values are values calculated based on the Gakushin method from the results of XRD analysis using a Rigaku wide-angle X-ray diffractometer. These values can be controlled to some extent by adjusting the heat treatment temperature.
 「人造黒鉛」とは、合成黒鉛または合成グラファイトとも称される、人工的・工業的に合成された黒鉛であり、黒鉛結晶子からなる多結晶体である。人造黒鉛は、例えばコークスなどの炭素材料を不活性雰囲気中2800℃以上の高温で黒鉛化することにより得られる。また、熱分解炭素を3000℃以上の高温下で圧縮して結晶子の配向性を高めた高配向性熱分解黒鉛(HOPG)や、溶鉄からの析出によって得られるキッシュ黒鉛などがある。さらには、炭化ケイ素(SiC)の熱分解物も、黒鉛化度が非常に高い人造黒鉛である。なお、人造黒鉛の製造方法について特に制限はないが、例えば、少なくとも黒鉛化可能な骨材または黒鉛と黒鉛化可能なバインダーとを加熱混合し、粉砕した後、該粉砕物と黒鉛化触媒を混合し、焼成し、加工することで製造が可能である。ここで、黒鉛化可能な骨材としては、例えば、コークス粉末、樹脂の炭化物等が挙げられる。なかでも、ニードルコークス等の黒鉛化しやすいコークス粉末が好ましい。また、バインダーとしては、タール、ピッチの他、熱硬化性樹脂、熱可塑性樹脂等の有機系材料が好ましい。バインダーの配合量は、黒鉛化可能な骨材または黒鉛に対して、好ましくは10~80質量%であり、より好ましくは20~80質量%であり、さらに好ましくは30~80質量%である。バインダーの量がかような範囲内の値であれば、作製される黒鉛粒子のアスペクト比および比表面積が大きくなりすぎないため、好ましい。混合方法についても特に制限はなく、例えばニーダー等を用いて行うことができるが、バインダーの軟化点以上の温度で混合することが好ましい。具体的にはバインダーがピッチ、タール等の場合には、50~300℃が好ましく、熱硬化性樹脂の場合は20~180℃が好ましい。上記混合物を粉砕し、該粉砕物と黒鉛化触媒とを混合し、2000℃以上で黒鉛化した後、粉砕することで人造黒鉛が得られる。 “Artificial graphite” is artificially and industrially synthesized graphite, also called synthetic graphite or synthetic graphite, and is a polycrystalline body made of graphite crystallites. Artificial graphite is obtained, for example, by graphitizing a carbon material such as coke at a high temperature of 2800 ° C. or higher in an inert atmosphere. Further, there are high orientation pyrolytic graphite (HOPG) obtained by compressing pyrolytic carbon at a high temperature of 3000 ° C. or higher to enhance the orientation of crystallites, and quiche graphite obtained by precipitation from molten iron. Furthermore, the thermal decomposition product of silicon carbide (SiC) is also artificial graphite having a very high degree of graphitization. The method for producing artificial graphite is not particularly limited, but, for example, at least a graphitizable aggregate or graphite and a graphitizable binder are heated and mixed, pulverized, and then the pulverized product and a graphitization catalyst are mixed. It can be manufactured by firing and processing. Here, examples of aggregates that can be graphitized include coke powder and resin carbide. Of these, coke powder that is easily graphitized such as needle coke is preferable. In addition to tar and pitch, the binder is preferably an organic material such as a thermosetting resin or a thermoplastic resin. The blending amount of the binder is preferably 10 to 80% by mass, more preferably 20 to 80% by mass, and further preferably 30 to 80% by mass with respect to the graphitizable aggregate or graphite. If the amount of the binder is within such a range, the aspect ratio and specific surface area of the produced graphite particles do not become too large, which is preferable. There is no particular limitation on the mixing method, and for example, a kneader can be used, but it is preferable to mix at a temperature equal to or higher than the softening point of the binder. Specifically, when the binder is pitch, tar or the like, 50 to 300 ° C. is preferable, and when the binder is a thermosetting resin, 20 to 180 ° C. is preferable. The mixture is pulverized, the pulverized product and the graphitization catalyst are mixed, graphitized at 2000 ° C. or higher, and then pulverized to obtain artificial graphite.
 「天然黒鉛」とは、その名の通り鉱物として自然界で算出される黒鉛結晶であり、人造黒鉛と比較すると、同素体等の不純物量が多く、結晶構造は強いが硬度は低く、電気抵抗は大きい。また、一般に加工や処理が施されていない天然黒鉛の多くは燐片状でアスペクト比が大きく、比表面積も大きいことから、電解液と反応しやすく多量のガスを発生してしまう、負極活物質層の作製時に溶媒を吸収してしまい活物質スラリー(インク)が調製できない、といった問題点を抱えている。なお、核材(天然黒鉛)は産地、鉱山などによって結晶性、構造などが異なり、鱗状、鱗片状、土状黒鉛などがあるが、球状の黒鉛粒子に表面改質可能であれば特に制限されない。結晶性(容量)から考えれば、鱗状、鱗片状のものがより好ましい。球形化処理の手法としては、丸みを帯びた良好な形状の粒子が得られるという点で、粉砕、圧縮、せん断、造粒のような機械的表面改質であることが好ましい。また、機械的表面改質処理を行う装置としては、ボールミル、振動ミル、メカノミル、媒体攪拌ミル、回転容器とその内部に取り付けられたテーパーの間を粒子が通過する構造の装置が挙げられる。ここで、「球状」とは、黒鉛粒子の粒子像をSEM画像で観察した場合に、丸みを帯びた形状であることを意味する。好ましくは円形度が0.8以上であり、より好ましくは0.85以上であり、さらに好ましくは0.9以上である。かような構成とすることで、形成される負極活物質層をより高密度化することができる。なお、「円形度」とは、黒鉛粒子の投影面積と同じ面積を持つ円の直径である円相当径か算出される円としての周囲長を、黒鉛粒子の投影像から測定される周囲長で除して得られる値であり、真円では1.00となる。また、天然黒鉛であるか否かの判別は、黒鉛粒子の断面のSEM画像による観察によって、元々鱗片状の粒子の折りたたまれ具合から確認することが可能である。 “Natural graphite” is a graphite crystal that is calculated in nature as a mineral, as its name suggests. Compared to artificial graphite, it has a large amount of impurities such as allotrope, strong crystal structure, low hardness, and high electrical resistance. . In general, many natural graphites that have not been processed or treated have a flake shape, a large aspect ratio, and a large specific surface area, so that they easily react with the electrolyte and generate a large amount of gas. There is a problem that an active material slurry (ink) cannot be prepared because the solvent is absorbed during the production of the layer. The nuclear material (natural graphite) has different crystallinity and structure depending on the production area and mine, and there are scale-like, scale-like, earthy graphite, etc., but there is no particular limitation as long as the surface can be modified into spherical graphite particles. . From the viewpoint of crystallinity (capacity), scaly and scaly ones are more preferable. As a spheroidization method, mechanical surface modification such as pulverization, compression, shearing, and granulation is preferable in that rounded and well-shaped particles can be obtained. Examples of the apparatus for performing the mechanical surface modification treatment include a ball mill, a vibration mill, a mechano mill, a medium stirring mill, and an apparatus having a structure in which particles pass between a rotating container and a taper attached to the inside of the rotating container. Here, “spherical” means a rounded shape when a particle image of graphite particles is observed with an SEM image. The circularity is preferably 0.8 or more, more preferably 0.85 or more, and still more preferably 0.9 or more. By setting it as such a structure, the negative electrode active material layer formed can be densified more. The “circularity” is a circumference measured as a circle calculated from a projected image of graphite particles, by calculating the circle equivalent diameter, which is the diameter of a circle having the same area as the projected area of the graphite particles. The value obtained by dividing the value is 1.00 for a perfect circle. In addition, whether or not it is natural graphite can be confirmed from the state in which the scaly particles are originally folded by observing the cross section of the graphite particles with an SEM image.
 「被覆天然黒鉛」とは、天然黒鉛の粒子の表面が非晶質または低結晶性の炭素で被覆されてなる黒鉛結晶である。天然黒鉛の表面が被覆されていることで、天然黒鉛の上述したような問題点の解決が図られている。被覆天然黒鉛は、例えば天然黒鉛の粒子の表面に非晶質層を付着させることで得られる。黒鉛粒子の表面に非晶質層を付着させる方法は特に限定されないが、例えば、まず、天然黒鉛粒子の表面を溶融ピッチ等のピッチ類で被覆する。その後、表面が被覆された天然黒鉛粒子の表面を、500~2000℃程度の温度で焼成して炭素化し、必要に応じて解砕・分級することで、表面の少なくとも一部が非晶質化した被覆天然黒鉛の粒子が得られる。なお、非晶質層は、このような液相中で形成されたものに限定されず、CVD法等によって気相中で形成されたものであってもよい。ここで、負極材表面に低結晶性炭素層を形成する方法としては特にこれらに限定はされないが、湿式混合法、化学蒸着法、メカノケミカル法などが挙げられる。均一かつ反応系が制御でき、負極材形状が維持できるといった点から、化学蒸着法および湿式混合法が好ましい。また、低結晶性炭素層を形成するための炭素源についても特に限定はないが、化学蒸着法では脂肪族炭化水素、芳香族炭化水素、脂環族炭化水素など用いることができ、具体的にはメタン、エタン、プロパン、ベンゼン、トルエン、キシレン、スチレン、ナフタレン、またはこれらの誘導体等が挙げられる。湿式混合法およびメカノケミカル法では、フェノール樹脂、スチレン樹脂等の高分子化合物、ピッチ等の炭化可能な固体物などを、固形または溶解物などにして処理を行うことができる。処理温度については、化学蒸着法では800~1200℃で熱処理することが好ましい。800℃以上であれば、蒸着炭素の生成速度が十分速く、処理時間の短縮が可能である。一方、1200℃以下であれば、生成速度が速くなりすぎず、被膜形成の制御が容易である。また、湿式混合法およびメカノケミカル法では、700~2000℃で熱処理することが好ましい。湿式混合法およびメカノケミカル法では、負極材表面に予め炭素源を均一に付着させて焼成するため、比較的高温でも熱処理することが可能である。700℃以上であれば炭素結晶性が十分高く、電解液分解性を低く抑えることが可能である。一方、2000℃以下であれば炭素結晶性が高くなりすぎず、出力特性の低下を防止することができる。なお、被覆量は、熱重量分析TG/DTAで550℃以上(被覆材により異なる)の重量減少量、CO吸着量、低結晶層の前駆体仕込み量などから算出することができる。また、負極材表面に形成する低結晶性炭素層の量について、本発明では、炭素源の残炭率を熱重量分析などにより予め測定しておき、作製時の炭素源使用量およびその残炭率の積を被覆した炭素量とする。低結晶性炭素層の炭素量については特に制限はないが、コアの負極材1.0~20質量%が好ましく、1.5~15質量%がより好ましく、2~10質量%がさらに好ましい。かような範囲であれば、入出力特性と寿命特性をよりバランスさせることができる。すなわち、1.0質量%以上であれば、低結晶層の分布を均一にすることができ、電解液添加剤の形成が均質(SEI膜厚み)になることで寿命特性を維持することができる。一方、20質量%以下であれば、低比表面積化による低温出力特性の低下が防止され、粒子同子の凝集、あるいは低結晶性成分が多いことによる容量低下の虞を低減させることができる。なお、表面改質(被覆)天然黒鉛判別方法として、低結晶性炭素の有無については、低結晶性炭素層と通常の黒鉛のグラファイト層の構造とは明らかに異なることから、透過型電子顕微鏡(TEM)により観察することが可能である。 “Coated natural graphite” is a graphite crystal in which the surface of natural graphite particles is coated with amorphous or low crystalline carbon. By covering the surface of natural graphite, the above-described problems of natural graphite are solved. The coated natural graphite is obtained, for example, by attaching an amorphous layer to the surface of natural graphite particles. The method for attaching the amorphous layer to the surface of the graphite particles is not particularly limited. For example, first, the surface of the natural graphite particles is coated with pitches such as a molten pitch. Thereafter, the surface of the natural graphite particles coated with the surface is baked at a temperature of about 500 to 2000 ° C. to be carbonized, and if necessary, pulverized and classified so that at least a part of the surface becomes amorphous. Coated natural graphite particles are obtained. The amorphous layer is not limited to that formed in such a liquid phase, and may be formed in a gas phase by a CVD method or the like. Here, the method for forming the low crystalline carbon layer on the surface of the negative electrode material is not particularly limited, and examples thereof include a wet mixing method, a chemical vapor deposition method, and a mechanochemical method. The chemical vapor deposition method and the wet mixing method are preferable from the viewpoint that the reaction system can be controlled uniformly and the shape of the negative electrode material can be maintained. Further, the carbon source for forming the low crystalline carbon layer is not particularly limited, but in the chemical vapor deposition method, aliphatic hydrocarbons, aromatic hydrocarbons, alicyclic hydrocarbons, and the like can be used. Methane, ethane, propane, benzene, toluene, xylene, styrene, naphthalene, or derivatives thereof. In the wet mixing method and mechanochemical method, a polymer compound such as a phenol resin or a styrene resin, or a carbonizable solid material such as pitch can be processed as a solid or dissolved material. Regarding the treatment temperature, it is preferable to perform heat treatment at 800 to 1200 ° C. in the chemical vapor deposition method. If it is 800 degreeC or more, the production | generation speed | rate of vapor deposition carbon will be sufficiently fast, and shortening of processing time is possible. On the other hand, if it is 1200 degrees C or less, a production | generation rate will not become quick too much and control of film formation will be easy. In the wet mixing method and mechanochemical method, heat treatment is preferably performed at 700 to 2000 ° C. In the wet mixing method and the mechanochemical method, the carbon source is uniformly deposited in advance on the surface of the negative electrode material and fired, so that heat treatment can be performed even at a relatively high temperature. If it is 700 degreeC or more, carbon crystallinity is high enough and it can suppress electrolyte solution degradability low. On the other hand, if it is 2000 degrees C or less, carbon crystallinity will not become high too much and the fall of an output characteristic can be prevented. The coating amount can be calculated from a weight loss amount of 550 ° C. or higher (depending on the coating material), CO 2 adsorption amount, low crystal layer precursor charge amount, etc. by thermogravimetric analysis TG / DTA. In addition, regarding the amount of the low crystalline carbon layer formed on the surface of the negative electrode material, in the present invention, the carbon residue rate of the carbon source is measured in advance by thermogravimetric analysis, etc. The product of rate is the amount of carbon covered. The amount of carbon in the low crystalline carbon layer is not particularly limited, but is preferably 1.0 to 20% by mass, more preferably 1.5 to 15% by mass, and further preferably 2 to 10% by mass of the core negative electrode material. Within such a range, the input / output characteristics and the life characteristics can be more balanced. That is, if it is 1.0 mass% or more, the distribution of the low crystal layer can be made uniform, and the life characteristics can be maintained by making the formation of the electrolyte additive uniform (the SEI film thickness). . On the other hand, if the amount is 20% by mass or less, a decrease in low-temperature output characteristics due to a reduction in specific surface area can be prevented, and the possibility of a decrease in capacity due to agglomeration of particles or a large amount of low crystalline components can be reduced. As a method of distinguishing surface modified (coated) natural graphite, the presence or absence of low crystalline carbon is clearly different from the structure of low crystalline carbon layer and normal graphite graphite layer. (TEM).
 本形態に係る非水電解質二次電池では、負極活物質の主成分を構成しうる人造黒鉛、被覆天然黒鉛および天然黒鉛の含有量をそれぞれX[質量%]、Y[質量%]およびZ[質量%]としたときに、Y≧ZおよびY≧Xを満たす点に特徴がある(図2の斜線領域Aを参照)。なお、本明細書ではX+Y+Z=100質量%とする。また、本発明の範囲からは、(X,Y,Z)=(0,1,0)の場合は除かれている。ここで、図2の斜線領域Aは、X=0、Z=0、Y=Z、Y=Xの4本の直線で囲まれた領域である。このような構成とすることで、非水電解質二次電池の長期(例えば、1000サイクル)のサイクル耐久性を向上させることが可能となる。このように、人造黒鉛の含有量以上に被覆天然黒鉛が含有されていることで、電極作製時のプレス等により硬度の大きい人造黒鉛が他の黒鉛粒子(被覆天然黒鉛や天然黒鉛)を変形させたりする虞が低減される。そして、天然黒鉛の含有量以上に被覆天然黒鉛が含有されていることで、長期サイクル後の負極活物質表面における析出物の発生量も低減され、さらには当該析出物の析出形態も容量低下の原因となる微小短絡を引き起こしにくい形状となることから、結果的に長期サイクル特性が向上するものと推定される。 In the non-aqueous electrolyte secondary battery according to this embodiment, the contents of artificial graphite, coated natural graphite, and natural graphite that can constitute the main component of the negative electrode active material are X [mass%], Y [mass%], and Z [ Mass%] is characterized in that Y ≧ Z and Y ≧ X (see the hatched area A in FIG. 2). In this specification, X + Y + Z = 100 mass%. Further, the case of (X, Y, Z) = (0, 1, 0) is excluded from the scope of the present invention. Here, the hatched area A in FIG. 2 is an area surrounded by four straight lines X = 0, Z = 0, Y = Z, and Y = X. With such a configuration, it is possible to improve the long-term (for example, 1000 cycles) cycle durability of the nonaqueous electrolyte secondary battery. In this way, since the coated natural graphite is contained in excess of the artificial graphite content, the artificial graphite having high hardness deforms other graphite particles (coated natural graphite and natural graphite) by pressing during electrode production. Is less likely to occur. And, since the coated natural graphite is contained more than the content of natural graphite, the amount of precipitates generated on the surface of the negative electrode active material after a long-term cycle is also reduced, and further the precipitation form of the precipitates is reduced in capacity. It is estimated that the long-term cycle characteristics are improved as a result because the shape does not easily cause a micro short-circuit.
 より好ましい実施形態においては、図3の斜線領域Bに含まれるように、X、YおよびZを決定するとよい。ここで、図3の斜線領域Bは、X=0の直線、Z=0の直線、および、(X,Y,Z=50,50,0)の座標(実施例1)と(X,Y,Z=20,60,20)の座標(実施例7)とを結ぶ直線で囲まれた領域である。 In a more preferred embodiment, X, Y, and Z may be determined so as to be included in the hatched area B in FIG. Here, the hatched area B in FIG. 3 includes a straight line of X = 0, a straight line of Z = 0, and coordinates (Example 1) of (X, Y, Z = 50, 50, 0) and (X, Y , Z = 20, 60, 20) is a region surrounded by a straight line connecting the coordinates (Example 7).
 負極活物質は、上述した人造黒鉛、被覆天然黒鉛および天然黒鉛以外の材料を負極活物質としてさらに含んでもよい。例えば、負極活物質は、ハードカーボン(難黒鉛化炭素材料)またはソフトカーボン(易黒鉛化炭素材料)をさらに含みうる請求項2。ハードカーボンは難黒鉛化炭素材料とも称され、高温で黒鉛化しにくい黒鉛である。また、ソフトカーボンは易黒鉛化炭素材料とも称され、高温で黒鉛化しやすい黒鉛である。これらは黒鉛化の前駆体の種類に応じて決定される。ここで、ハードカーボンは結晶子が秩序立った配列をとっていないことから高温で熱処理しても黒鉛化は進行し難い。一方、ソフトカーボンは結晶子が同一方向に並んでいることから熱処理の間に炭素が近距離を拡散することによって黒鉛化される。ソフトカーボンや黒鉛(グラファイト)は非常に多数の炭素六角網面(グラフェン面)が積層した層状構造をしているのに対し、ハードカーボンでは炭素六角網面(グラフェン面)の積層数が数層程度であり、結晶の広がりも小さく、それらがランダムに配置されることによりナノスケールの層空間を有しているのが特徴である。負極活物質がこれらの非晶質炭素材料をさらに含むと、長期サイクル耐久性がよりいっそう向上しうるという利点がある。なお、負極活物質における非晶質炭素材料の含有量の割合は、上述したX+Y+Z=100質量%を基準として、好ましくは0.1~20質量%であり、より好ましくは0.5~15質量%であり、さらに好ましくは1~10質量%である。下限値以上の値であれば、添加による効果が発現する。一方、上限値以下の値であれば、負極の容量低下およびセル容量の低下の虞が低減されうる。 The negative electrode active material may further include a material other than the above-mentioned artificial graphite, coated natural graphite, and natural graphite as the negative electrode active material. For example, the negative electrode active material may further include hard carbon (non-graphitizable carbon material) or soft carbon (graphitizable carbon material). Hard carbon is also called non-graphitizable carbon material, and is hard to graphitize at high temperatures. Soft carbon is also referred to as an easily graphitizable carbon material, and is easily graphitized at high temperatures. These are determined according to the type of the graphitization precursor. Here, since the hard carbon does not have an ordered arrangement of crystallites, graphitization is difficult to proceed even if heat treatment is performed at a high temperature. On the other hand, since soft carbon has crystallites arranged in the same direction, carbon is graphitized by diffusing carbon over a short distance during heat treatment. Soft carbon and graphite (graphite) have a layered structure in which a large number of carbon hexagonal mesh surfaces (graphene surfaces) are laminated, while hard carbon has several layers of carbon hexagonal mesh surfaces (graphene surfaces). The size of the crystal is small and the spread of the crystals is small, and they are characterized by having a nanoscale layer space by being randomly arranged. When the negative electrode active material further contains these amorphous carbon materials, there is an advantage that the long-term cycle durability can be further improved. The ratio of the content of the amorphous carbon material in the negative electrode active material is preferably 0.1 to 20% by mass, more preferably 0.5 to 15% by mass based on the above-mentioned X + Y + Z = 100% by mass. %, More preferably 1 to 10% by mass. If the value is equal to or greater than the lower limit, the effect of addition is manifested. On the other hand, if the value is equal to or less than the upper limit value, the risk of negative electrode capacity reduction and cell capacity reduction can be reduced.
 また、負極活物質は、さらに他の材料を含んでもよく、例えば、リチウム-遷移金属複合酸化物(例えば、LiTi12)、金属材料、リチウム合金系負極材料などが負極活物質としてさらに含まれていてもよい。 The negative electrode active material may further contain other materials. For example, a lithium-transition metal composite oxide (for example, Li 4 Ti 5 O 12 ), a metal material, a lithium alloy-based negative electrode material, or the like is used as the negative electrode active material. Further, it may be included.
 負極活物質層に含まれる負極活物質の平均粒子径は特に制限されないが、初期充電容量を向上させる(取扱い)という観点からは、レーザ回折式粒度分布計による中位径(D50)として、好ましくは10~30μmである。下限値以上の値であれば、かさ密度の低下による塗工性の低下の虞や、比表面積の増大に伴う充放電特性の悪化の虞が低減される。一方、上限値以下の値であれば、コーターのヘッドでの詰まりや筋引きに起因する塗工性の悪化による電極の外観不良の虞が低減される。 The average particle diameter of the negative electrode active material contained in the negative electrode active material layer is not particularly limited, but from the viewpoint of improving the initial charge capacity (handling), it is preferable as the median diameter (D50) by the laser diffraction particle size distribution meter. Is 10-30 μm. If the value is equal to or greater than the lower limit, the possibility of a decrease in coatability due to a decrease in bulk density and a decrease in charge / discharge characteristics due to an increase in specific surface area are reduced. On the other hand, if the value is less than or equal to the upper limit value, the risk of poor appearance of the electrode due to deterioration of coating properties due to clogging or streaking of the coater head is reduced.
 負極活物質層に含まれる負極活物質のBET比表面積は、好ましくは0.5~10m/gであり、より好ましくは1.0~6.0m/gであり、さらに好ましくは2.0~4.2m/gである。負極活物質の比表面積が下限値以上の値であれば、内部抵抗の増大に伴う低温特性の悪化の虞が低減される。一方、上限値以下の値であれば、電解液との接触面積の増大に伴う副反応の進行を防止することが可能となる。特に、比表面積が大きすぎると初回充電(電解液添加剤による被膜が固定化されていない)時に発生するガスが原因で、電極面内に局所的に過電流が流れて電極の面内に被膜の不均一が生じてしまい、寿命特性が悪くなることがあるが、上記上限値以下の値であれば、その虞も低減されうる。 The BET specific surface area of the negative electrode active material contained in the negative electrode active material layer is preferably 0.5 to 10 m 2 / g, more preferably 1.0 to 6.0 m 2 / g, and still more preferably 2. 0 to 4.2 m 2 / g. If the specific surface area of the negative electrode active material is a value equal to or greater than the lower limit, the risk of deterioration of low temperature characteristics accompanying an increase in internal resistance is reduced. On the other hand, if the value is not more than the upper limit value, it is possible to prevent the side reaction from proceeding with an increase in the contact area with the electrolytic solution. In particular, if the specific surface area is too large, an overcurrent locally flows in the electrode surface due to the gas generated during the first charge (the film with the electrolyte additive is not fixed), and the film is coated in the electrode surface. However, if the value is equal to or less than the above upper limit value, the risk can be reduced.
 また、負極活物質に含まれる人造黒鉛、被覆天然黒鉛および天然黒鉛からなる群から選択されるすべての黒鉛粒子のBET比表面積の値の、前記被覆天然黒鉛のBET比表面積の値に対する比の値は、1.7以下であることが好ましく、1.0~1.7であることがより好ましく、1.0~1.6であることがさらに好ましく、1.0~1.5であることが特に好ましい。かような構成とすることで、初回充放電の際におけるガス発生量を低減させることができ、また、電池の作製時におけるガス抜き工程のタクトタイムを短縮することができる。 Further, the value of the ratio of the BET specific surface area value of all graphite particles selected from the group consisting of artificial graphite, coated natural graphite and natural graphite contained in the negative electrode active material to the BET specific surface area value of the coated natural graphite Is preferably 1.7 or less, more preferably 1.0 to 1.7, still more preferably 1.0 to 1.6, and more preferably 1.0 to 1.5. Is particularly preferred. By adopting such a configuration, it is possible to reduce the amount of gas generated during the initial charge / discharge, and it is possible to shorten the tact time of the degassing step during battery production.
 さらに、負極活物質層に含まれる負極活物質のタップ密度は、好ましくは0.7g/cm以上であり、より好ましくは0.9g/cm以上である。かような構成とすることで、電極を圧縮した際に所望の厚みまで圧縮できることから、体積あたりの容量を十分に維持することができる。 Furthermore, the tap density of the negative electrode active material contained in the negative electrode active material layer is preferably 0.7 g / cm 3 or more, more preferably 0.9 g / cm 3 or more. By setting it as such a structure, when compressing an electrode, it can compress to desired thickness, Therefore The capacity | capacitance per volume can fully be maintained.
 負極活物質層は、バインダーを含むことが好ましい。バインダーは、負極活物質層に含まれる負極活物質の粒子どうしを結着したり、負極活物質と集電体とを結着したりする機能を有する。負極活物質層は、バインダーとして水系バインダーを含むことが好ましい。水系バインダーは、原料としての水の調達が容易であることに加え、乾燥時に発生するのは水蒸気であるため、製造ラインへの設備投資が大幅に抑制でき、環境負荷の低減を図ることができるという利点がある。 The negative electrode active material layer preferably contains a binder. The binder has a function of binding particles of the negative electrode active material contained in the negative electrode active material layer, or binding the negative electrode active material and the current collector. The negative electrode active material layer preferably contains an aqueous binder as a binder. In addition to the easy procurement of water as a raw material, water-based binders can be greatly reduced in capital investment on the production line and reduced environmental load because it is water vapor that occurs during drying. There is an advantage.
 水系バインダーとは水を溶媒もしくは分散媒体とするバインダーをいい、具体的には熱可塑性樹脂、ゴム弾性を有するポリマー、水溶性高分子など、またはこれらの混合物が該当する。ここで、水を分散媒体とするバインダーとは、ラテックスまたはエマルジョンと表現される全てを含み、水と乳化または水に懸濁したポリマーを指し、例えば自己乳化するような系で乳化重合したポリマーラテックス類が挙げられる。 The water-based binder refers to a binder using water as a solvent or a dispersion medium, and specifically includes a thermoplastic resin, a polymer having rubber elasticity, a water-soluble polymer, or a mixture thereof. Here, the binder using water as a dispersion medium refers to a polymer that includes all expressed as latex or emulsion and is emulsified or suspended in water. For example, a polymer latex that is emulsion-polymerized in a system that self-emulsifies. Kind.
 水系バインダーとしては、具体的にはスチレン系高分子(スチレン-ブタジエンゴム、スチレン-酢酸ビニル共重合体、スチレン-アクリル共重合体等)、アクリロニトリル-ブタジエンゴム、メタクリル酸メチル-ブタジエンゴム、(メタ)アクリル系高分子(ポリエチルアクリレート、ポリエチルメタクリレート、ポリプロピルアクリレート、ポリメチルメタクリレート(メタクリル酸メチルゴム)、ポリプロピルメタクリレート、ポリイソプロピルアクリレート、ポリイソプロピルメタクリレート、ポリブチルアクリレート、ポリブチルメタクリレート、ポリヘキシルアクリレート、ポリヘキシルメタクリレート、ポリエチルヘキシルアクリレート、ポリエチルヘキシルメタクリレート、ポリラウリルアクリレート、ポリラウリルメタクリレート等)、ポリテトラフルオロエチレン、ポリエチレン、ポリプロピレン、エチレン-プロピレン共重合体、ポリブタジエン、ブチルゴム、フッ素ゴム、ポリエチレンオキシド、ポリエピクロルヒドリン、ポリフォスファゼン、ポリアクリロニトリル、ポリスチレン、エチレン-プロピレン-ジエン共重合体、ポリビニルピリジン、クロロスルホン化ポリエチレン、ポリエステル樹脂、フェノール樹脂、エポキシ樹脂;ポリビニルアルコール(平均重合度は、好適には200~4000、より好適には、1000~3000、ケン化度は好適には80モル%以上、より好適には90モル%以上)およびその変性体(エチレン/酢酸ビニル=2/98~30/70モル比の共重合体の酢酸ビニル単位のうちの1~80モル%ケン化物、ポリビニルアルコールの1~50モル%部分アセタール化物等)、デンプンおよびその変性体(酸化デンプン、リン酸エステル化デンプン、カチオン化デンプン等)、セルロース誘導体(カルボキシメチルセルロース、メチルセルロース、ヒドロキシプロピルセルロース、ヒドロキシエチルセルロース、およびこれらの塩等)、ポリビニルピロリドン、ポリアクリル酸(塩)、ポリエチレングリコール、(メタ)アクリルアミドおよび/または(メタ)アクリル酸塩の共重合体[(メタ)アクリルアミド重合体、(メタ)アクリルアミド-(メタ)アクリル酸塩共重合体、(メタ)アクリル酸アルキル(炭素数1~4)エステル-(メタ)アクリル酸塩共重合体など]、スチレン-マレイン酸塩共重合体、ポリアクリルアミドのマンニッヒ変性体、ホルマリン縮合型樹脂(尿素-ホルマリン樹脂、メラミン-ホルマリン樹脂等)、ポリアミドポリアミンもしくはジアルキルアミン-エピクロルヒドリン共重合体、ポリエチレンイミン、カゼイン、大豆蛋白、合成蛋白、並びにマンナンガラクタン誘導体等の水溶性高分子などが挙げられる。これらの水系バインダーは1種単独で用いてもよいし、2種以上併用して用いてもよい。 Specific examples of water-based binders include styrene polymers (styrene-butadiene rubber, styrene-vinyl acetate copolymer, styrene-acrylic copolymer, etc.), acrylonitrile-butadiene rubber, methyl methacrylate-butadiene rubber, ) Acrylic polymers (polyethyl acrylate, polyethyl methacrylate, polypropyl acrylate, polymethyl methacrylate (methyl methacrylate rubber), polypropyl methacrylate, polyisopropyl acrylate, polyisopropyl methacrylate, polybutyl acrylate, polybutyl methacrylate, polyhexyl acrylate , Polyhexyl methacrylate, polyethylhexyl acrylate, polyethylhexyl methacrylate, polylauryl acrylate, polylauryl meta Acrylate, etc.), polytetrafluoroethylene, polyethylene, polypropylene, ethylene-propylene copolymer, polybutadiene, butyl rubber, fluororubber, polyethylene oxide, polyepichlorohydrin, polyphosphazene, polyacrylonitrile, polystyrene, ethylene-propylene-diene copolymer Polyvinyl pyridine, chlorosulfonated polyethylene, polyester resin, phenol resin, epoxy resin; polyvinyl alcohol (average polymerization degree is preferably 200 to 4000, more preferably 1000 to 3000, and saponification degree is preferably 80 Mol% or more, more preferably 90 mol% or more) and a modified product thereof (a saponified product of 1 to 80 mol% of vinyl acetate units of a copolymer of ethylene / vinyl acetate = 2/98 to 30/70 mol ratio) The 1 to 50 mol% partially acetalized vinyl alcohol), starch and modified products thereof (oxidized starch, phosphate esterified starch, cationized starch, etc.), cellulose derivatives (carboxymethylcellulose, methylcellulose, hydroxypropylcellulose, hydroxyethylcellulose, And their salts), polyvinylpyrrolidone, polyacrylic acid (salt), polyethylene glycol, (meth) acrylamide and / or (meth) acrylate copolymer [(meth) acrylamide polymer, (meth) acrylamide- (Meth) acrylate copolymer, (meth) alkyl acrylate (1 to 4 carbon atoms) ester- (meth) acrylate copolymer, etc.], styrene-maleate copolymer, polyacrylamide Mannich Degeneration , Formalin condensation type resins (urea-formalin resin, melamine-formalin resin, etc.), polyamide polyamine or dialkylamine-epichlorohydrin copolymer, polyethyleneimine, casein, soybean protein, synthetic protein, and mannangalactan derivatives Etc. These aqueous binders may be used alone or in combination of two or more.
 上記水系バインダーは、結着性の観点から、スチレン-ブタジエンゴム、アクリロニトリル-ブタジエンゴム、メタクリル酸メチル-ブタジエンゴム、およびメタクリル酸メチルゴムからなる群から選択される少なくとも1つのゴム系バインダーを含むことが好ましい。さらに、結着性が良好であることから、水系バインダーはスチレン-ブタジエンゴムを含むことが好ましい。 The aqueous binder may contain at least one rubber binder selected from the group consisting of styrene-butadiene rubber, acrylonitrile-butadiene rubber, methyl methacrylate-butadiene rubber, and methyl methacrylate rubber from the viewpoint of binding properties. preferable. Furthermore, it is preferable that the water-based binder contains styrene-butadiene rubber because of good binding properties.
 水系バインダーとしてスチレン-ブタジエンゴムを用いる場合、塗工性向上の観点から、上記水溶性高分子を併用することが好ましい。スチレン-ブタジエンゴムと併用することが好適な水溶性高分子としては、ポリビニルアルコールおよびその変性体、デンプンおよびその変性体、セルロース誘導体(カルボキシメチルセルロース、メチルセルロース、ヒドロキシエチルセルロース、およびこれらの塩等)、ポリビニルピロリドン、ポリアクリル酸(塩)、またはポリエチレングリコールが挙げられる。中でも、バインダーとして、スチレン-ブタジエンゴムと、カルボキシメチルセルロースとを組み合わせることが好ましい。スチレン-ブタジエンゴムと、水溶性高分子との含有質量比は、特に制限されるものではないが、スチレン-ブタジエンゴム:水溶性高分子=1:0.3~0.7であることが好ましい。 When styrene-butadiene rubber is used as the water-based binder, it is preferable to use the water-soluble polymer in combination from the viewpoint of improving coatability. Water-soluble polymers suitable for use in combination with styrene-butadiene rubber include polyvinyl alcohol and modified products thereof, starch and modified products thereof, cellulose derivatives (such as carboxymethyl cellulose, methyl cellulose, hydroxyethyl cellulose, and salts thereof), polyvinyl Examples include pyrrolidone, polyacrylic acid (salt), or polyethylene glycol. Among them, it is preferable to combine styrene-butadiene rubber and carboxymethyl cellulose as a binder. The mass ratio of the styrene-butadiene rubber and the water-soluble polymer is not particularly limited, but is preferably styrene-butadiene rubber: water-soluble polymer = 1: 0.3 to 0.7. .
 負極活物質層に用いられるバインダーのうち、水系バインダーの含有量は80~100質量%であることが好ましく、90~100質量%であることが好ましく、100質量%であることが好ましい。水系バインダー以外のバインダーとしては、下記正極活物質層に用いられるバインダーが挙げられる。 Among the binders used in the negative electrode active material layer, the content of the aqueous binder is preferably 80 to 100% by mass, preferably 90 to 100% by mass, and preferably 100% by mass. Examples of the binder other than the water-based binder include binders used in the following positive electrode active material layer.
 負極活物質層中に含まれるバインダー量は、活物質を結着することができる量であれば特に限定されるものではないが、好ましくは活物質層に対して、0.5~15質量%であり、より好ましくは1~10質量%であり、さらに好ましくは2~4質量%である。水系バインダーは結着力が高いことから、有機溶媒系バインダーと比較して少量の添加で活物質層を形成できる。このことから、水系バインダーの活物質層中の含有量は、活物質層に対して、好ましくは0.5~15質量%であり、より好ましくは1~10質量%であり、さらに好ましくは1.5~4質量%である。 The amount of the binder contained in the negative electrode active material layer is not particularly limited as long as it can bind the active material, but preferably 0.5 to 15% by mass with respect to the active material layer. More preferably, it is 1 to 10% by mass, and further preferably 2 to 4% by mass. Since the water-based binder has high binding power, the active material layer can be formed with a small amount of addition as compared with the organic solvent-based binder. Accordingly, the content of the aqueous binder in the active material layer is preferably 0.5 to 15% by mass, more preferably 1 to 10% by mass, and still more preferably 1% with respect to the active material layer. .5-4% by mass.
 負極活物質層は、必要に応じて、導電助剤、電解質(ポリマーマトリックス、イオン伝導性ポリマー、電解液など)、イオン伝導性を高めるためのリチウム塩などのその他の添加剤をさらに含む。 The negative electrode active material layer further includes other additives such as a conductive additive, an electrolyte (polymer matrix, ion conductive polymer, electrolytic solution, etc.), and a lithium salt for improving ion conductivity, as necessary.
 導電助剤とは、正極活物質層または負極活物質層の導電性を向上させるために配合される添加物をいう。導電助剤としては、アセチレンブラック等のカーボンブラック、炭素繊維などの炭素材料が挙げられる。活物質層が導電助剤を含むと、活物質層の内部における電子ネットワークが効果的に形成され、電池の出力特性の向上に寄与しうる。 The conductive assistant means an additive blended to improve the conductivity of the positive electrode active material layer or the negative electrode active material layer. Examples of the conductive aid include carbon materials such as carbon black such as acetylene black and carbon fibers. When the active material layer contains a conductive additive, an electronic network inside the active material layer is effectively formed, which can contribute to improvement of the output characteristics of the battery.
 電解質塩(リチウム塩)としては、Li(CSON、LiPF、LiBF、LiClO、LiAsF、LiCFSO等が挙げられる。 Examples of the electrolyte salt (lithium salt) include Li (C 2 F 5 SO 2 ) 2 N, LiPF 6 , LiBF 4 , LiClO 4 , LiAsF 6 , LiCF 3 SO 3 and the like.
 イオン伝導性ポリマーとしては、例えば、ポリエチレンオキシド(PEO)系およびポリプロピレンオキシド(PPO)系のポリマーが挙げられる。 Examples of the ion conductive polymer include polyethylene oxide (PEO) and polypropylene oxide (PPO) polymers.
 負極活物質層および後述の正極活物質層中に含まれる成分の配合比は、特に限定されない。配合比は、リチウムイオン二次電池についての公知の知見を適宜参照することにより、調整されうる。各活物質層の厚さについても特に制限はなく、電池についての従来公知の知見が適宜参照されうる。一例を挙げると、各活物質層の厚さは、2~100μm程度である。 The compounding ratio of the components contained in the negative electrode active material layer and the positive electrode active material layer described later is not particularly limited. The blending ratio can be adjusted by appropriately referring to known knowledge about lithium ion secondary batteries. The thickness of each active material layer is not particularly limited, and conventionally known knowledge about the battery can be appropriately referred to. As an example, the thickness of each active material layer is about 2 to 100 μm.
 本発明において、負極活物質層の密度は、1.2~1.6であることが好ましい。ここで一般に、水系バインダーを負極活物質層に用いると、従来よく用いられているPVdF等の溶剤系バインダーと比較して、電池の充電時に発生するガスの量が多いという問題がある。これに関連して、負極活物質層の密度が1.6g/cm以下であれば、プレス圧を高くする必要がなく、黒鉛粒子の割れの発生が防止される。また、活物質層内の空孔も確保され、注液性も確保される。これにより、液枯れ等による寿命特性の低下が防止されうる。また、負極活物質層の密度が1.2g/cm以上であれば、活物質/活物質同士の接触面積が不十分であることに起因する電子伝導性の低下が防止され、寿命特性が向上しうる。負極活物質層の密度は、本発明の効果がより発揮されることから、1.25~1.58g/cmであることが好ましく、さらに好ましくは1.3~1.55g/cmである。なお、負極活物質層の密度は、単位体積あたりの活物質層質量を表す。具体的には、電池から負極活物質層を取り出し、電解液中などに存在する溶媒等を除去後、電極体積を長辺、短辺、高さから求め、活物質層の重量を測定後、重量を体積で除することによって求めることができる。 In the present invention, the density of the negative electrode active material layer is preferably 1.2 to 1.6. In general, when a water-based binder is used in the negative electrode active material layer, there is a problem that the amount of gas generated during charging of the battery is larger than that of a solvent-based binder such as PVdF which has been conventionally used. In this connection, if the density of the negative electrode active material layer is 1.6 g / cm 3 or less, it is not necessary to increase the press pressure, and the occurrence of cracks in the graphite particles is prevented. Moreover, the void | hole in an active material layer is also ensured and liquid injection property is also ensured. As a result, it is possible to prevent the deterioration of the life characteristics due to liquid erosion or the like. Moreover, if the density of the negative electrode active material layer is 1.2 g / cm 3 or more, a decrease in electron conductivity due to an insufficient contact area between the active materials / active materials is prevented, and life characteristics are improved. Can improve. The density of the negative electrode active material layer is preferably 1.25 to 1.58 g / cm 3 , more preferably 1.3 to 1.55 g / cm 3 , since the effects of the present invention are more exerted. is there. Note that the density of the negative electrode active material layer represents the mass of the active material layer per unit volume. Specifically, after removing the negative electrode active material layer from the battery, removing the solvent and the like present in the electrolyte solution, the electrode volume is obtained from the long side, the short side, and the height, and after measuring the weight of the active material layer, It can be determined by dividing weight by volume.
 また、本発明において、負極活物質層のセパレータ側表面の表面中心線平均粗さ(Ra)は0.5~1.0μmであることが好ましい。負極活物質層の中心線平均粗さ(Ra)が0.5μm以上であれば、長期サイクル特性がより向上しうる。これは、表面粗さが0.5μm以上であれば、発電要素内に発生したガスが系外へ排出されやすいためであると考えられる。また、負極活物質層の中心線平均粗さ(Ra)が1.0μm以下であれば、電池要素内の電子伝導性が十分に確保され、電池特性がより向上しうる。 In the present invention, the surface centerline average roughness (Ra) of the surface on the separator side of the negative electrode active material layer is preferably 0.5 to 1.0 μm. If the center line average roughness (Ra) of the negative electrode active material layer is 0.5 μm or more, the long-term cycle characteristics can be further improved. This is considered to be because if the surface roughness is 0.5 μm or more, the gas generated in the power generation element is easily discharged out of the system. Moreover, if the centerline average roughness (Ra) of the negative electrode active material layer is 1.0 μm or less, the electron conductivity in the battery element is sufficiently secured, and the battery characteristics can be further improved.
 ここで、中心線平均粗さRaとは、粗さ曲線からその平均線の方向に基準長さだけを抜き取り、この抜き取り部分の平均線の方向にx軸を、縦倍率の方向にy軸を取り、粗さ曲線をy=f(x)で表したときに、下記の数式1によって求められる値をマイクロメートル(μm)で表したものである(JIS-B0601-1994)。 Here, the centerline average roughness Ra means that only the reference length is extracted from the roughness curve in the direction of the average line, the x axis is in the direction of the average line of the extracted portion, and the y axis is in the direction of the vertical magnification. When the roughness curve is expressed by y = f (x), the value obtained by the following formula 1 is expressed in micrometers (μm) (JIS-B0601-1994).
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
 Raの値は、例えばJIS-B0601-1994等に定められている方法によって、一般的に広く使用されている触針式あるいは非接触式表面粗さ計などを用いて測定される。装置のメーカーや型式には何ら制限は無い。本発明における検討では、SLOAN社製、型番:DEKTAK3030を用い、JIS-B0601に定められている方法に準拠してRaを求めた。接触法(ダイヤモンド針等による触針式)、非接触法(レーザー光等による非接触検出)のどちらでも測定可能である。 The value of Ra is measured by using a stylus type or non-contact type surface roughness meter that is generally widely used, for example, by a method defined in JIS-B0601-1994. There are no restrictions on the manufacturer or model of the device. In the examination in the present invention, Ra was obtained according to the method defined in JIS-B0601 using a model number: DEKTAK3030 manufactured by SLOAN. Either the contact method (stylus type with a diamond needle or the like) or the non-contact method (non-contact detection with a laser beam or the like) can be measured.
 また、比較的簡単に計測できることから、本発明に規定する表面粗さRaは、製造過程で集電体上に活物質層が形成された段階で測定する。ただし、電池完成後であっても測定可能であり、製造段階とほぼ同じ結果であることから、電池完成後の表面粗さが、上記Raの範囲を満たすものであればよい。また、負極活物質層の表面粗さは、負極活物質層のセパレータ側のものである。 Also, since it can be measured relatively easily, the surface roughness Ra specified in the present invention is measured at the stage where the active material layer is formed on the current collector in the manufacturing process. However, the measurement can be performed even after the battery is completed, and the results are almost the same as those in the manufacturing stage. Therefore, the surface roughness after the battery is completed may satisfy the above Ra range. The surface roughness of the negative electrode active material layer is that on the separator side of the negative electrode active material layer.
 負極の表面粗さは、負極活物質層に含まれる活物質の形状、粒子径、活物質の配合量等を考慮して、例えば、活物質層形成時のプレス圧を調整するなどして、上記範囲となるように調整することができる。活物質の形状は、その種類や製造方法等によって取り得る形状が異なり、また、粉砕等により形状を制御することができ、例えば、球状(粉末状)、板状、針状、柱状、角状などが挙げられる。したがって、活物質層に用いられる形状を考慮して、表面粗さを調整するために、種々の形状の活物質を組み合わせてもよい。 The surface roughness of the negative electrode takes into account the active material shape, particle diameter, active material blending amount, etc. contained in the negative electrode active material layer, for example, by adjusting the press pressure during active material layer formation, etc. It can adjust so that it may become the said range. The shape of the active material varies depending on the type and manufacturing method, and the shape can be controlled by pulverization, for example, spherical (powder), plate, needle, column, square Etc. Therefore, in order to adjust the surface roughness in consideration of the shape used for the active material layer, active materials having various shapes may be combined.
 [正極活物質層]
 正極活物質層は活物質を含み、必要に応じて、導電助剤、バインダー、電解質(ポリマーマトリックス、イオン伝導性ポリマー、電解液など)、イオン伝導性を高めるためのリチウム塩などのその他の添加剤をさらに含む。
[Positive electrode active material layer]
The positive electrode active material layer contains an active material and, if necessary, other additives such as a conductive additive, a binder, an electrolyte (polymer matrix, ion conductive polymer, electrolyte, etc.), and a lithium salt for increasing ionic conductivity. An agent is further included.
 正極活物質層は、正極活物質を含む。正極活物質としては、例えば、LiMn、LiCoO、LiNiO、Li(Ni-Mn-Co)Oおよびこれらの遷移金属の一部が他の元素により置換されたもの等のリチウム-遷移金属複合酸化物、リチウム-遷移金属リン酸化合物、リチウム-遷移金属硫酸化合物などが挙げられる。場合によっては、2種以上の正極活物質が併用されてもよい。好ましくは、容量、出力特性の観点から、リチウム-遷移金属複合酸化物が、正極活物質として用いられる。より好ましくはリチウムとニッケルとを含有する複合酸化物が用いられ、さらに好ましくはLi(Ni-Mn-Co)Oおよびこれらの遷移金属の一部が他の元素により置換されたもの(以下、単に「NMC複合酸化物」とも称する)が用いられる。NMC複合酸化物は、リチウム原子層と遷移金属(Mn、NiおよびCoが秩序正しく配置)原子層とが酸素原子層を介して交互に積み重なった層状結晶構造を持ち、遷移金属Mの1原子あたり1個のLi原子が含まれ、取り出せるLi量が、スピネル系リチウムマンガン酸化物の2倍、つまり供給能力が2倍になり、高い容量を持つことができる。 The positive electrode active material layer includes a positive electrode active material. Examples of the positive electrode active material include LiMn 2 O 4 , LiCoO 2 , LiNiO 2 , Li (Ni—Mn—Co) O 2, and lithium-- such as those in which some of these transition metals are substituted with other elements. Examples include transition metal composite oxides, lithium-transition metal phosphate compounds, and lithium-transition metal sulfate compounds. In some cases, two or more positive electrode active materials may be used in combination. Preferably, from the viewpoint of capacity and output characteristics, a lithium-transition metal composite oxide is used as the positive electrode active material. More preferably, a composite oxide containing lithium and nickel is used, and more preferably Li (Ni—Mn—Co) O 2 and a part of these transition metals substituted with other elements (hereinafter, referred to as “following”) Simply referred to as “NMC composite oxide”). The NMC composite oxide has a layered crystal structure in which a lithium atomic layer and a transition metal (Mn, Ni, and Co are arranged in order) are stacked alternately via an oxygen atomic layer. One Li atom is contained, and the amount of Li that can be taken out is twice that of the spinel lithium manganese oxide, that is, the supply capacity is doubled, so that a high capacity can be obtained.
 NMC複合酸化物は、上述したように、遷移金属元素の一部が他の金属元素により置換されている複合酸化物も含む。その場合の他の元素としては、Ti、Zr、Nb、W、P、Al、Mg、V、Ca、Sr、Cr、Fe、B、Ga、In、Si、Mo、Y、Sn、V、Cu、Ag、Znなどが挙げられ、好ましくは、Ti、Zr、Nb、W、P、Al、Mg、V、Ca、Sr、Crであり、より好ましくは、Ti、Zr、P、Al、Mg、Crであり、サイクル特性向上の観点から、さらに好ましくは、Ti、Zr、Al、Mg、Crである。 As described above, the NMC composite oxide includes a composite oxide in which a part of the transition metal element is substituted with another metal element. Other elements in that case include Ti, Zr, Nb, W, P, Al, Mg, V, Ca, Sr, Cr, Fe, B, Ga, In, Si, Mo, Y, Sn, V, Cu , Ag, Zn, etc., preferably Ti, Zr, Nb, W, P, Al, Mg, V, Ca, Sr, Cr, more preferably Ti, Zr, P, Al, Mg, From the viewpoint of improving cycle characteristics, Ti, Zr, Al, Mg, and Cr are more preferable.
 NMC複合酸化物は、理論放電容量が高いことから、好ましくは、一般式(1):LiNiMnCo(但し、式中、a、b、c、d、xは、0.9≦a≦1.2、0<b<1、0<c≦0.5、0<d≦0.5、0≦x≦0.3、b+c+d=1を満たす。MはTi、Zr、Nb、W、P、Al、Mg、V、Ca、Sr、Crから選ばれる元素で少なくとも1種類である)で表される組成を有する。ここで、aは、Liの原子比を表し、bは、Niの原子比を表し、cは、Coの原子比を表し、dは、Mnの原子比を表し、xは、Mの原子比を表す。サイクル特性の観点からは、一般式(1)において、0.4≦b≦0.6であることが好ましい。なお、各元素の組成は、例えば、誘導結合プラズマ(ICP)発光分析法により測定できる。 Since the NMC composite oxide has a high theoretical discharge capacity, it is preferable that the general formula (1): Li a Ni b Mn c Co d M x O 2 (where a, b, c, d, x Satisfies 0.9 ≦ a ≦ 1.2, 0 <b <1, 0 <c ≦ 0.5, 0 <d ≦ 0.5, 0 ≦ x ≦ 0.3, and b + c + d = 1. And at least one element selected from Ti, Zr, Nb, W, P, Al, Mg, V, Ca, Sr, and Cr. Here, a represents the atomic ratio of Li, b represents the atomic ratio of Ni, c represents the atomic ratio of Co, d represents the atomic ratio of Mn, and x represents the atomic ratio of M. Represents. From the viewpoint of cycle characteristics, it is preferable that 0.4 ≦ b ≦ 0.6 in the general formula (1). The composition of each element can be measured by, for example, inductively coupled plasma (ICP) emission spectrometry.
 一般に、ニッケル(Ni)、コバルト(Co)およびマンガン(Mn)は、材料の純度向上および電子伝導性向上という観点から、容量および出力特性に寄与することが知られている。Ti等は、結晶格子中の遷移金属を一部置換するものである。サイクル特性の観点からは、遷移元素の一部が他の金属元素により置換されていることが好ましく、特に一般式(1)において0<x≦0.3であることが好ましい。Ti、Zr、Nb、W、P、Al、Mg、V、Ca、SrおよびCrからなる群から選ばれる少なくとも1種が固溶することにより結晶構造が安定化されるため、その結果、充放電を繰り返しても電池の容量低下が防止でき、優れたサイクル特性が実現し得ると考えられる。 Generally, nickel (Ni), cobalt (Co), and manganese (Mn) are known to contribute to capacity and output characteristics from the viewpoint of improving the purity of the material and improving the electronic conductivity. Ti or the like partially replaces the transition metal in the crystal lattice. From the viewpoint of cycle characteristics, it is preferable that a part of the transition element is substituted with another metal element, and it is particularly preferable that 0 <x ≦ 0.3 in the general formula (1). Since at least one selected from the group consisting of Ti, Zr, Nb, W, P, Al, Mg, V, Ca, Sr, and Cr is dissolved, the crystal structure is stabilized. It is considered that the battery capacity can be prevented from decreasing even if the above is repeated, and that excellent cycle characteristics can be realized.
 より好ましい実施形態としては、一般式(1)において、b、cおよびdが、0.44≦b≦0.51、0.27≦c≦0.31、0.19≦d≦0.26であることが、容量と寿命特性とのバランスを向上させるという観点からは好ましい。例えば、LiNi0.5Mn0.3Co0.2は、一般的な民生電池で実績のあるLiCoO、LiMn、LiNi1/3Mn1/3Co1/3などと比較して、単位重量あたりの容量が大きく、エネルギー密度の向上が可能となることでコンパクトかつ高容量の電池を作製できるという利点を有しており、航続距離の観点からも好ましい。なお、より容量が大きいという点ではLiNi0.8Co0.1Al0.1がより有利であるが、寿命特性に難がある。これに対し、LiNi0.5Mn0.3Co0.2はLiNi1/3Mn1/3Co1/3並みに優れた寿命特性を有しているのである。 As a more preferable embodiment, in the general formula (1), b, c and d are 0.44 ≦ b ≦ 0.51, 0.27 ≦ c ≦ 0.31, 0.19 ≦ d ≦ 0.26. It is preferable from the viewpoint of improving the balance between capacity and life characteristics. For example, LiNi 0.5 Mn 0.3 Co 0.2 O 2 is LiCoO 2 , LiMn 2 O 4 , LiNi 1/3 Mn 1/3 Co 1/3 O 2, etc. that have been proven in general consumer batteries. Compared to the above, the capacity per unit weight is large, and the energy density can be improved, so that a battery having a compact and high capacity can be produced, which is preferable from the viewpoint of cruising distance. In addition, LiNi 0.8 Co 0.1 Al 0.1 O 2 is more advantageous in terms of a larger capacity, but there are difficulties in life characteristics. On the other hand, LiNi 0.5 Mn 0.3 Co 0.2 O 2 has life characteristics as excellent as LiNi 1/3 Mn 1/3 Co 1/3 O 2 .
 なお、上記以外の正極活物質が用いられてもよいことは勿論である。 Of course, positive electrode active materials other than those described above may be used.
 正極活物質層に含まれる正極活物質の平均粒子径は特に制限されないが、高出力化の観点からは、好ましくは1~100μm、より好ましくは1~20μmである。 The average particle diameter of the positive electrode active material contained in the positive electrode active material layer is not particularly limited, but is preferably 1 to 100 μm, more preferably 1 to 20 μm from the viewpoint of increasing the output.
 正極活物質層に用いられるバインダーとしては、特に限定されないが、例えば、以下の材料が挙げられる。ポリエチレン、ポリプロピレン、ポリエチレンテレフタレート(PET)、ポリエーテルニトリル、ポリアクリロニトリル、ポリイミド、ポリアミド、セルロース、カルボキシメチルセルロース(CMC)およびその塩、エチレン-酢酸ビニル共重合体、ポリ塩化ビニル、スチレン・ブタジエンゴム(SBR)、イソプレンゴム、ブタジエンゴム、エチレン・プロピレンゴム、エチレン・プロピレン・ジエン共重合体、スチレン・ブタジエン・スチレンブロック共重合体およびその水素添加物、スチレン・イソプレン・スチレンブロック共重合体およびその水素添加物などの熱可塑性高分子、ポリフッ化ビニリデン(PVdF)、ポリテトラフルオロエチレン(PTFE)、テトラフルオロエチレン・ヘキサフルオロプロピレン共重合体(FEP)、テトラフルオロエチレン・パーフルオロアルキルビニルエーテル共重合体(PFA)、エチレン・テトラフルオロエチレン共重合体(ETFE)、ポリクロロトリフルオロエチレン(PCTFE)、エチレン・クロロトリフルオロエチレン共重合体(ECTFE)、ポリフッ化ビニル(PVF)等のフッ素樹脂、ビニリデンフルオライド-ヘキサフルオロプロピレン系フッ素ゴム(VDF-HFP系フッ素ゴム)、ビニリデンフルオライド-ヘキサフルオロプロピレン-テトラフルオロエチレン系フッ素ゴム(VDF-HFP-TFE系フッ素ゴム)、ビニリデンフルオライド-ペンタフルオロプロピレン系フッ素ゴム(VDF-PFP系フッ素ゴム)、ビニリデンフルオライド-ペンタフルオロプロピレン-テトラフルオロエチレン系フッ素ゴム(VDF-PFP-TFE系フッ素ゴム)、ビニリデンフルオライド-パーフルオロメチルビニルエーテル-テトラフルオロエチレン系フッ素ゴム(VDF-PFMVE-TFE系フッ素ゴム)、ビニリデンフルオライド-クロロトリフルオロエチレン系フッ素ゴム(VDF-CTFE系フッ素ゴム)等のビニリデンフルオライド系フッ素ゴム、エポキシ樹脂等が挙げられる。これらのバインダーは、単独で用いてもよいし、2種以上を併用してもよい。 Although it does not specifically limit as a binder used for a positive electrode active material layer, For example, the following materials are mentioned. Polyethylene, polypropylene, polyethylene terephthalate (PET), polyether nitrile, polyacrylonitrile, polyimide, polyamide, cellulose, carboxymethyl cellulose (CMC) and its salts, ethylene-vinyl acetate copolymer, polyvinyl chloride, styrene-butadiene rubber (SBR) ), Isoprene rubber, butadiene rubber, ethylene / propylene rubber, ethylene / propylene / diene copolymer, styrene / butadiene / styrene block copolymer and hydrogenated product thereof, styrene / isoprene / styrene block copolymer and hydrogenated product thereof Thermoplastic polymers such as products, polyvinylidene fluoride (PVdF), polytetrafluoroethylene (PTFE), tetrafluoroethylene-hexafluoropropylene copolymer (F P), tetrafluoroethylene / perfluoroalkyl vinyl ether copolymer (PFA), ethylene / tetrafluoroethylene copolymer (ETFE), polychlorotrifluoroethylene (PCTFE), ethylene / chlorotrifluoroethylene copolymer (ECTFE) ), Fluororesin such as polyvinyl fluoride (PVF), vinylidene fluoride-hexafluoropropylene fluororubber (VDF-HFP fluoropolymer), vinylidene fluoride-hexafluoropropylene-tetrafluoroethylene fluororubber (VDF-HFP) -TFE fluorine rubber), vinylidene fluoride-pentafluoropropylene fluorine rubber (VDF-PFP fluorine rubber), vinylidene fluoride-pentafluoropropylene-tetrafluoroethylene Fluorine rubber (VDF-PFP-TFE fluorine rubber), vinylidene fluoride-perfluoromethyl vinyl ether-tetrafluoroethylene fluorine rubber (VDF-PFMVE-TFE fluorine rubber), vinylidene fluoride-chlorotrifluoroethylene fluorine Examples thereof include vinylidene fluoride type fluoro rubber such as rubber (VDF-CTFE type fluoro rubber), epoxy resin and the like. These binders may be used independently and may use 2 or more types together.
 正極活物質層中に含まれるバインダー量は、活物質を結着することができる量であれば特に限定されるものではないが、好ましくは活物質層に対して、0.5~15質量%であり、より好ましくは1~10質量%である。 The amount of the binder contained in the positive electrode active material layer is not particularly limited as long as it is an amount capable of binding the active material, but preferably 0.5 to 15% by mass with respect to the active material layer. More preferably, it is 1 to 10% by mass.
 バインダー以外のその他の添加剤については、上記負極活物質層の欄と同様のものを用いることができる。 As other additives other than the binder, the same additives as those in the negative electrode active material layer column can be used.
 [セパレータ(電解質層)]
 セパレータは、電解質を保持して正極と負極との間のリチウムイオン伝導性を確保する機能、および正極と負極との間の隔壁としての機能を有する。
[Separator (electrolyte layer)]
The separator has a function of holding an electrolyte and ensuring lithium ion conductivity between the positive electrode and the negative electrode, and a function as a partition wall between the positive electrode and the negative electrode.
 ここで、電池の初回充電時に発生したガスの発電要素からの放出性をより向上させるためには、負極活物質層を抜けてセパレータに達したガスの放出性も考慮することが好ましい。かような観点から、セパレータの透気度および空孔率を適切な範囲とすることがより好ましい。 Here, in order to further improve the release of the gas generated during the initial charge of the battery from the power generation element, it is preferable to consider the release of the gas that has passed through the negative electrode active material layer and reached the separator. From such a viewpoint, it is more preferable that the air permeability and the porosity of the separator are within an appropriate range.
 具体的には、セパレータの透気度(ガーレ値)は200(秒/100cc)以下であることが好ましい。セパレータの透気度が200(秒/100cc)以下であることによって発生するガスの抜けが向上し、サイクル後の容量維持率が良好な電池となり、また、セパレータとしての機能である短絡防止や機械的物性も十分なものとなる。透気度の下限は特に限定されるものではないが、通常300(秒/100cc)以上である。セパレータの透気度は、JIS P8117(2009)の測定法による値である。 Specifically, the air permeability (Gurley value) of the separator is preferably 200 (seconds / 100 cc) or less. When the separator has an air permeability of 200 (seconds / 100 cc) or less, the escape of gas generated is improved, the battery has a good capacity retention rate after cycling, and the short circuit prevention and machine functions as a separator The physical properties are also sufficient. The lower limit of the air permeability is not particularly limited, but is usually 300 (second / 100 cc) or more. The air permeability of the separator is a value according to the measurement method of JIS P8117 (2009).
 また、セパレータの空孔率は40~65%であることが好ましい。セパレータの空孔率が40~65%であることによって、発生するガスの放出性が向上し、長期サイクル特性がより良好な電池となり、また、セパレータとしての機能である短絡防止や機械的物性も十分なものとなる。なお、空孔率は、セパレータの原料である樹脂の密度と最終製品のセパレータの密度から体積比として求められる値を採用する。例えば、原料の樹脂の密度をρ、セパレータのかさ密度をρ’とすると、空孔率=100×(1-ρ’/ρ)で表される。 In addition, the porosity of the separator is preferably 40 to 65%. When the separator has a porosity of 40 to 65%, the release of the generated gas is improved, the battery has better long-term cycle characteristics, and the short circuit prevention and mechanical properties that are functions as a separator are also provided. It will be enough. For the porosity, a value obtained as a volume ratio from the density of the resin as the raw material of the separator and the density of the separator of the final product is adopted. For example, when the density of the raw material resin is ρ and the bulk density of the separator is ρ ′, the porosity is expressed by 100 × (1−ρ ′ / ρ).
 セパレータの形態としては、例えば、上記電解質を吸収保持するポリマーや繊維からなる多孔性シートのセパレータや不織布セパレータ等を挙げることができる。 Examples of the form of the separator include a separator made of a porous sheet made of a polymer or fiber that absorbs and holds the electrolyte and a nonwoven fabric separator.
 ポリマーないし繊維からなる多孔性シートのセパレータとしては、例えば、微多孔質(微多孔膜)を用いることができる。該ポリマーないし繊維からなる多孔性シートの具体的な形態としては、例えば、ポリエチレン(PE)、ポリプロピレン(PP)などのポリオレフィン;これらを複数積層した積層体(例えば、PP/PE/PPの3層構造をした積層体など)、ポリイミド、アラミド、ポリフッ化ビニリデン-ヘキサフルオロプロピレン(PVdF-HFP)等の炭化水素系樹脂、ガラス繊維などからなる微多孔質(微多孔膜)セパレータが挙げられる。 As the separator of the porous sheet made of polymer or fiber, for example, a microporous (microporous film) can be used. Specific examples of the porous sheet made of the polymer or fiber include polyolefins such as polyethylene (PE) and polypropylene (PP); a laminate in which a plurality of these are laminated (for example, three layers of PP / PE / PP) And a microporous (microporous membrane) separator made of a hydrocarbon resin such as polyimide, aramid, polyvinylidene fluoride-hexafluoropropylene (PVdF-HFP), glass fiber, and the like.
 微多孔質(微多孔膜)セパレータの厚みとして、使用用途により異なることから一義的に規定することはできない。1例を示せば、電気自動車(EV)やハイブリッド電気自動車(HEV)、燃料電池自動車(FCV)などのモータ駆動用二次電池などの用途においては、単層あるいは多層で4~60μmであることが望ましい。前記微多孔質(微多孔膜)セパレータの微細孔径は、最大で1μm以下(通常、数十nm程度の孔径である)であることが望ましい。 The thickness of the microporous (microporous membrane) separator cannot be uniquely defined because it varies depending on the intended use. For example, in applications such as secondary batteries for driving motors such as electric vehicles (EV), hybrid electric vehicles (HEV), and fuel cell vehicles (FCV), it is 4 to 60 μm in a single layer or multiple layers. Is desirable. The fine pore diameter of the microporous (microporous membrane) separator is desirably 1 μm or less (usually a pore diameter of about several tens of nm).
 不織布セパレータとしては、綿、レーヨン、アセテート、ナイロン、ポリエステル;PP、PEなどのポリオレフィン;ポリイミド、アラミドなど従来公知のものを、単独または混合して用いる。また、不織布のかさ密度は、含浸させた高分子ゲル電解質により十分な電池特性が得られるものであればよく、特に制限されるべきものではない。 As the nonwoven fabric separator, cotton, rayon, acetate, nylon, polyester; polyolefins such as PP and PE; conventionally known ones such as polyimide and aramid are used alone or in combination. The bulk density of the nonwoven fabric is not particularly limited as long as sufficient battery characteristics can be obtained by the impregnated polymer gel electrolyte.
 前記不織布セパレータの空孔率は50~90%であることが好ましい。さらに、不織布セパレータの厚さは、電解質層と同じであればよく、好ましくは5~200μmであり、特に好ましくは10~100μmである。 The porosity of the nonwoven fabric separator is preferably 50 to 90%. Furthermore, the thickness of the nonwoven fabric separator may be the same as that of the electrolyte layer, and is preferably 5 to 200 μm, particularly preferably 10 to 100 μm.
 ここで、セパレータは、樹脂多孔質基体の少なくとも一方の面に耐熱絶縁層が積層されたセパレータであってもよい。耐熱絶縁層は、無機粒子およびバインダーを含むセラミック層である。耐熱絶縁層を有することによって、温度上昇の際に増大するセパレータの内部応力が緩和されるため熱収縮抑制効果が得られうる。また、耐熱絶縁層を有することによって、耐熱絶縁層付セパレータの機械的強度が向上し、セパレータの破膜が起こりにくい。さらに、熱収縮抑制効果および機械的強度の高さから、電気デバイスの製造工程でセパレータがカールしにくくなる。また、上記セラミック層は、発電要素からのガスの放出性を向上させるためのガス放出手段としても機能しうるため、好ましい。 Here, the separator may be a separator in which a heat-resistant insulating layer is laminated on at least one surface of the resin porous substrate. The heat-resistant insulating layer is a ceramic layer containing inorganic particles and a binder. By having the heat-resistant insulating layer, the internal stress of the separator that increases when the temperature rises is relieved, so that the effect of suppressing thermal shrinkage can be obtained. Moreover, by having a heat-resistant insulating layer, the mechanical strength of the separator with a heat-resistant insulating layer is improved, and it is difficult for the separator to break. Furthermore, the separator is less likely to curl in the electrical device manufacturing process due to the effect of suppressing thermal shrinkage and high mechanical strength. Further, the ceramic layer is preferable because it can also function as a gas releasing means for improving the gas releasing property from the power generation element.
 また、上述したように、セパレータは、電解質を含む。電解質としては、かような機能を発揮できるものであれば特に制限されないが、液体電解質またはゲルポリマー電解質が用いられる。 Also, as described above, the separator includes an electrolyte. The electrolyte is not particularly limited as long as it can exhibit such a function, but a liquid electrolyte or a gel polymer electrolyte is used.
 液体電解質は、リチウムイオンのキャリヤーとしての機能を有する。液体電解質は、有機溶媒にリチウム塩が溶解した形態を有する。用いられる有機溶媒としては、例えば、エチレンカーボネート(EC)、プロピレンカーボネート(PC)、ジメチルカーボネート(DMC)、ジエチルカーボネート(DEC)、エチルメチルカーボネート等のカーボネート類が例示される。また、リチウム塩としては、Li(CFSON、Li(CSON、LiPF、LiBF、LiClO、LiAsF、LiTaF、LiCFSO等の電極の活物質層に添加されうる化合物が同様に採用されうる。液体電解質は、上述した成分以外の添加剤をさらに含んでもよい。かような化合物の具体例としては、例えば、ビニレンカーボネート、メチルビニレンカーボネート、ジメチルビニレンカーボネート、フェニルビニレンカーボネート、ジフェニルビニレンカーボネート、エチルビニレンカーボネート、ジエチルビニレンカーボネート、ビニルエチレンカーボネート、1,2-ジビニルエチレンカーボネート、1-メチル-1-ビニルエチレンカーボネート、1-メチル-2-ビニルエチレンカーボネート、1-エチル-1-ビニルエチレンカーボネート、1-エチル-2-ビニルエチレンカーボネート、ビニルビニレンカーボネート、アリルエチレンカーボネート、ビニルオキシメチルエチレンカーボネート、アリルオキシメチルエチレンカーボネート、アクリルオキシメチルエチレンカーボネート、メタクリルオキシメチルエチレンカーボネート、エチニルエチレンカーボネート、プロパルギルエチレンカーボネート、エチニルオキシメチルエチレンカーボネート、プロパルギルオキシエチレンカーボネート、メチレンエチレンカーボネート、1,1-ジメチル-2-メチレンエチレンカーボネートなどが挙げられる。なかでも、ビニレンカーボネート、メチルビニレンカーボネート、ビニルエチレンカーボネートが好ましく、ビニレンカーボネート、ビニルエチレンカーボネートがより好ましい。これらの環式炭酸エステルは、1種のみが単独で用いられてもよいし、2種以上が併用されてもよい。 The liquid electrolyte functions as a lithium ion carrier. The liquid electrolyte has a form in which a lithium salt is dissolved in an organic solvent. Examples of the organic solvent used include carbonates such as ethylene carbonate (EC), propylene carbonate (PC), dimethyl carbonate (DMC), diethyl carbonate (DEC), and ethyl methyl carbonate. As the lithium salt, Li (CF 3 SO 2) 2 N, Li (C 2 F 5 SO 2) 2 N, LiPF 6, LiBF 4, LiClO 4, LiAsF 6, LiTaF such 6, LiCF 3 SO 3 A compound that can be added to the active material layer of the electrode can be similarly employed. The liquid electrolyte may further contain additives other than the components described above. Specific examples of such compounds include, for example, vinylene carbonate, methyl vinylene carbonate, dimethyl vinylene carbonate, phenyl vinylene carbonate, diphenyl vinylene carbonate, ethyl vinylene carbonate, diethyl vinylene carbonate, vinyl ethylene carbonate, 1,2-divinyl ethylene carbonate. 1-methyl-1-vinylethylene carbonate, 1-methyl-2-vinylethylene carbonate, 1-ethyl-1-vinylethylene carbonate, 1-ethyl-2-vinylethylene carbonate, vinyl vinylene carbonate, allyl ethylene carbonate, vinyl Oxymethyl ethylene carbonate, allyloxymethyl ethylene carbonate, acryloxymethyl ethylene carbonate, methacrylate Oxy methylethylene carbonate, ethynyl ethylene carbonate, propargyl carbonate, ethynyloxy methylethylene carbonate, propargyloxy ethylene carbonate, methylene carbonate, etc. 1,1-dimethyl-2-methylene-ethylene carbonate. Among these, vinylene carbonate, methyl vinylene carbonate, and vinyl ethylene carbonate are preferable, and vinylene carbonate and vinyl ethylene carbonate are more preferable. These cyclic carbonates may be used alone or in combination of two or more.
 ゲルポリマー電解質は、イオン伝導性ポリマーからなるマトリックスポリマー(ホストポリマー)に、上記の液体電解質が注入されてなる構成を有する。電解質としてゲルポリマー電解質を用いることで電解質の流動性がなくなり、各層間のイオン伝導性を遮断することが容易になる点で優れている。また、セパレータと活物質層との接着性の向上を介して電池の長期サイクル耐久性を向上させうるという点でも優れている。したがって、本発明の好ましい実施形態では、セパレータがゲルポリマー電解質を保持する。マトリックスポリマー(ホストポリマー)として用いられるイオン伝導性ポリマーとしては、例えば、ポリエチレンオキシド(PEO)、ポリプロピレンオキシド(PPO)、およびこれらの共重合体等が挙げられる。かようなポリアルキレンオキシド系ポリマーには、リチウム塩などの電解質塩がよく溶解しうる。 The gel polymer electrolyte has a configuration in which the above liquid electrolyte is injected into a matrix polymer (host polymer) made of an ion conductive polymer. Using a gel polymer electrolyte as the electrolyte is superior in that the fluidity of the electrolyte is lost and it is easy to block the ion conductivity between the layers. Moreover, it is excellent also in the point that the long-term cycle durability of a battery can be improved through the improvement of the adhesiveness of a separator and an active material layer. Accordingly, in a preferred embodiment of the present invention, the separator holds the gel polymer electrolyte. Examples of the ion conductive polymer used as the matrix polymer (host polymer) include polyethylene oxide (PEO), polypropylene oxide (PPO), and copolymers thereof. In such polyalkylene oxide polymers, electrolyte salts such as lithium salts can be well dissolved.
 ゲル電解質のマトリックスポリマーは、架橋構造を形成することによって、優れた機械的強度を発現しうる。架橋構造を形成させるには、適当な重合開始剤を用いて、高分子電解質形成用の重合性ポリマー(例えば、PEOやPPO)に対して熱重合、紫外線重合、放射線重合、電子線重合等の重合処理を施せばよい。 The matrix polymer of gel electrolyte can express excellent mechanical strength by forming a crosslinked structure. In order to form a crosslinked structure, thermal polymerization, ultraviolet polymerization, radiation polymerization, electron beam polymerization, etc. are performed on a polymerizable polymer (for example, PEO or PPO) for forming a polymer electrolyte using an appropriate polymerization initiator. A polymerization treatment may be performed.
 [集電体]
 集電体を構成する材料に特に制限はないが、好適には金属が用いられる。
[Current collector]
There is no particular limitation on the material constituting the current collector, but a metal is preferably used.
 具体的には、金属としては、アルミニウム、ニッケル、鉄、ステンレス、チタン、銅、その他合金等などが挙げられる。これらのほか、ニッケルとアルミニウムとのクラッド材、銅とアルミニウムとのクラッド材、またはこれらの金属の組み合わせのめっき材などが好ましく用いられうる。また、金属表面にアルミニウムが被覆されてなる箔であってもよい。なかでも、電子伝導性や電池作動電位の観点からは、アルミニウム、ステンレス、銅が好ましい。 Specifically, examples of the metal include aluminum, nickel, iron, stainless steel, titanium, copper, and other alloys. In addition to these, a clad material of nickel and aluminum, a clad material of copper and aluminum, or a plating material of a combination of these metals can be preferably used. Moreover, the foil by which aluminum is coat | covered on the metal surface may be sufficient. Of these, aluminum, stainless steel, and copper are preferable from the viewpoints of electronic conductivity and battery operating potential.
 集電体の大きさは、電池の使用用途に応じて決定される。例えば、高エネルギー密度が要求される大型の電池に用いられるのであれば、面積の大きな集電体が用いられる。集電体の厚さについても特に制限はない。集電体の厚さは、通常は1~100μm程度である。 The size of the current collector is determined according to the intended use of the battery. For example, if it is used for a large battery that requires a high energy density, a current collector having a large area is used. There is no particular limitation on the thickness of the current collector. The thickness of the current collector is usually about 1 to 100 μm.
 [正極集電板および負極集電板]
 集電板(25、27)を構成する材料は、特に制限されず、リチウムイオン二次電池用の集電板として従来用いられている公知の高導電性材料が用いられうる。集電板の構成材料としては、例えば、アルミニウム、銅、チタン、ニッケル、ステンレス鋼(SUS)、これらの合金等の金属材料が好ましい。軽量、耐食性、高導電性の観点から、より好ましくはアルミニウム、銅であり、特に好ましくはアルミニウムである。なお、正極集電板25と負極集電板27とでは、同一の材料が用いられてもよいし、異なる材料が用いられてもよい。
[Positive electrode current collector and negative electrode current collector]
The material which comprises a current collector plate (25, 27) is not restrict | limited in particular, The well-known highly electroconductive material conventionally used as a current collector plate for lithium ion secondary batteries can be used. As a constituent material of the current collector plate, for example, metal materials such as aluminum, copper, titanium, nickel, stainless steel (SUS), and alloys thereof are preferable. From the viewpoint of light weight, corrosion resistance, and high conductivity, aluminum and copper are more preferable, and aluminum is particularly preferable. Note that the positive electrode current collector plate 25 and the negative electrode current collector plate 27 may be made of the same material or different materials.
 [正極リードおよび負極リード]
 また、図示は省略するが、集電体11と集電板(25、27)との間を正極リードや負極リードを介して電気的に接続してもよい。正極および負極リードの構成材料としては、公知のリチウムイオン二次電池において用いられる材料が同様に採用されうる。なお、外装から取り出された部分は、周辺機器や配線などに接触して漏電したりして製品(例えば、自動車部品、特に電子機器等)に影響を与えないように、耐熱絶縁性の熱収縮チューブなどにより被覆することが好ましい。
[Positive lead and negative lead]
Moreover, although illustration is abbreviate | omitted, you may electrically connect between the collector 11 and the current collector plates (25, 27) via a positive electrode lead or a negative electrode lead. As a constituent material of the positive electrode and the negative electrode lead, materials used in known lithium ion secondary batteries can be similarly employed. In addition, heat-shrinkable heat-shrinkable parts are removed from the exterior so that they do not affect products (for example, automobile parts, especially electronic devices) by touching peripheral devices or wiring and causing leakage. It is preferable to coat with a tube or the like.
 [電池外装体]
 電池外装体29は、その内部に発電要素を封入する部材であり、発電要素を覆うことができる、アルミニウムを含むラミネートフィルムを用いた袋状のケースなどが用いられうる。該ラミネートフィルムとしては、例えば、PP、アルミニウム、ナイロンをこの順に積層してなる3層構造のラミネートフィルム等を用いることができるが、これらに何ら制限されるものではない。高出力化や冷却性能に優れ、EV、HEV用の大型機器用電池に好適に利用することができるという観点から、ラミネートフィルムが望ましい。また、外部から掛かる発電要素への群圧を容易に調整することができることから、外装体はアルミニウムを含むラミネートフィルムがより好ましい。
[Battery exterior]
The battery outer body 29 is a member that encloses the power generation element therein, and a bag-like case using a laminate film containing aluminum that can cover the power generation element can be used. As the laminate film, for example, a laminate film having a three-layer structure in which PP, aluminum, and nylon are laminated in this order can be used, but is not limited thereto. A laminate film is desirable from the viewpoint that it is excellent in high output and cooling performance, and can be suitably used for a battery for large equipment for EV and HEV. Moreover, since the group pressure to the electric power generation element applied from the outside can be adjusted easily, the exterior body is more preferably a laminate film containing aluminum.
 電池外装体29の内容積は発電要素21を封入できるように、発電要素21の容積よりも大きくなるように構成されている。ここで外装体の内容積とは、外装体で封止した後の真空引きを行う前の外装体内の容積を指す。また、発電要素の容積とは、発電要素が空間的に占める部分の容積であり、発電要素内の空孔部を含む。外装体の内容積が発電要素の容積よりも大きいことで、ガスが発生した際にガスを溜めることができる空間が存在する。これにより、発電要素からのガスの放出性が向上し、発生したガスが電池挙動に影響することが少なく、電池特性が向上する。 The internal volume of the battery exterior body 29 is configured to be larger than the volume of the power generation element 21 so that the power generation element 21 can be enclosed. Here, the internal volume of the exterior body refers to the volume in the exterior body before evacuation after sealing with the exterior body. The volume of the power generation element is the volume of the space occupied by the power generation element, and includes a hole in the power generation element. Since the inner volume of the exterior body is larger than the volume of the power generation element, there is a space in which gas can be stored when gas is generated. Thereby, the gas release property from the power generation element is improved, the generated gas is less likely to affect the battery behavior, and the battery characteristics are improved.
 自動車用途などにおいては、昨今、大型化された電池が求められている。そして、黒鉛粒子の変形を防止しつつ負極活物質表面における析出物の影響も緩和することで長期サイクル特性を向上させるという本願発明の効果は、負極活物質の表面における被膜(SEI)の形成量の多い大面積電池の場合に、より効果的にその効果が発揮される。したがって、本発明において、発電要素を外装体で覆った電池構造体が大型であることが本発明の効果がより発揮されるという意味で好ましい。具体的には、負極活物質層が長方形状であり、当該長方形の短辺の長さが100mm以上であることが好ましい。かような大型の電池は、車両用途に用いることができる。ここで、負極活物質層の短辺の長さとは、各電極の中で最も長さが短い辺を指す。電池構造体の短辺の長さの上限は特に限定されるものではないが、通常250mm以下である。 In automobile applications and the like, recently, larger batteries are required. The effect of the present invention of improving long-term cycle characteristics by reducing the influence of precipitates on the surface of the negative electrode active material while preventing the deformation of the graphite particles is that the amount of coating (SEI) formed on the surface of the negative electrode active material In the case of a large-area battery with a large amount, the effect is more effectively exhibited. Therefore, in this invention, it is preferable in the meaning that the effect of this invention is exhibited more that the battery structure which covered the electric power generation element with the exterior body is large sized. Specifically, the negative electrode active material layer is preferably rectangular, and the length of the short side of the rectangle is preferably 100 mm or more. Such a large battery can be used for vehicle applications. Here, the length of the short side of the negative electrode active material layer refers to the side having the shortest length among the electrodes. The upper limit of the length of the short side of the battery structure is not particularly limited, but is usually 250 mm or less.
 また、電極の物理的な大きさの観点とは異なる、大型化電池の観点として、電池面積や電池容量の関係から電池の大型化を規定することもできる。例えば、扁平積層型ラミネート電池の場合には、定格容量に対する電池面積(電池外装体まで含めた電池の投影面積)の比の値が5cm/Ah以上であり、かつ、定格容量が3Ah以上である電池においては、単位容量当たりの電池面積が大きいため、充放電サイクルに伴う膨張収縮による活物質粒子のゆがみに起因する電池特性(サイクル特性)の低下の問題がよりいっそう顕在化しやすい。したがって、本形態に係る非水電解質二次電池は、上述したような大型化された電池であることが、本願発明の作用効果の発現によるメリットがより大きいという点で、好ましい。 Further, as a viewpoint of a large-sized battery, which is different from the viewpoint of the physical size of the electrode, it is possible to regulate the size of the battery from the relationship between the battery area and the battery capacity. For example, in the case of a flat laminated battery, the ratio of the battery area (projected area of the battery including the battery outer package) to the rated capacity is 5 cm 2 / Ah or more, and the rated capacity is 3 Ah or more. In some batteries, since the battery area per unit capacity is large, the problem of deterioration of battery characteristics (cycle characteristics) due to distortion of active material particles due to expansion / contraction due to charge / discharge cycles is more likely to be manifested. Therefore, it is preferable that the nonaqueous electrolyte secondary battery according to the present embodiment is a battery having a large size as described above, because the merit due to the expression of the effects of the present invention is greater.
 さらに、体積エネルギー密度や単セル定格容量などによって電池の大型化を規定することもできる。例えば、一般的な電気自動車では、一回の充電による走行距離(航続距離)は100kmが市場要求である。かような航続距離を考慮すると、単セル定格容量は20Wh以上であることが好ましく、かつ、電池の体積エネルギー密度は153Wh/L以上であることが好ましい。なお、体積エネルギー密度および定格放電容量は下記実施例に記載の方法で測定される。さらに、矩形状の電極のアスペクト比は1~3であることが好ましく、1~2であることがより好ましい。なお、電極のアスペクト比は矩形状の正極活物質層の縦横比として定義される。アスペクト比をかような範囲とすることで、充電時に発生したガスが面方向に均一に排出されることが可能となるため、好ましい。 Furthermore, the size of the battery can be specified by the volume energy density, the single cell rated capacity, and the like. For example, in a general electric vehicle, a travel distance (cruising range) by one charge is 100 km, which is a market requirement. Considering such cruising distance, the single cell rated capacity is preferably 20 Wh or more, and the volume energy density of the battery is preferably 153 Wh / L or more. The volume energy density and the rated discharge capacity are measured by the methods described in the following examples. Further, the aspect ratio of the rectangular electrode is preferably 1 to 3, and more preferably 1 to 2. The electrode aspect ratio is defined as the aspect ratio of the rectangular positive electrode active material layer. Setting the aspect ratio in such a range is preferable because the gas generated during charging can be discharged uniformly in the surface direction.
 [組電池]
 組電池は、電池を複数個接続して構成した物である。詳しくは少なくとも2つ以上用いて、直列化あるいは並列化あるいはその両方で構成されるものである。直列、並列化することで容量および電圧を自由に調節することが可能になる。
[Battery]
The assembled battery is configured by connecting a plurality of batteries. Specifically, at least two or more are used, and are configured by serialization, parallelization, or both. Capacitance and voltage can be freely adjusted by paralleling in series.
 電池が複数、直列に又は並列に接続して装脱着可能な小型の組電池を形成することもできる。そして、この装脱着可能な小型の組電池をさらに複数、直列に又は並列に接続して、高体積エネルギー密度、高体積出力密度が求められる車両駆動用電源や補助電源に適した大容量、大出力を持つ組電池を形成することもできる。何個の電池を接続して組電池を作製するか、また、何段の小型組電池を積層して大容量の組電池を作製するかは、搭載される車両(電気自動車)の電池容量や出力に応じて決めればよい。 It is also possible to form a small assembled battery that can be attached and detached by connecting a plurality of batteries in series or in parallel. Then, a plurality of small assembled batteries that can be attached and detached are connected in series or in parallel to provide a large capacity and large capacity suitable for vehicle drive power supplies and auxiliary power supplies that require high volume energy density and high volume output density. An assembled battery having an output can also be formed. How many batteries are connected to make an assembled battery, and how many small assembled batteries are stacked to make a large-capacity assembled battery depends on the battery capacity of the mounted vehicle (electric vehicle) It may be determined according to the output.
 [車両]
 上記電気デバイスは、出力特性に優れ、また長期使用しても放電容量が維持され、サイクル特性が良好である。電気自動車やハイブリッド電気自動車や燃料電池車やハイブリッド燃料電池自動車などの車両用途においては、電気・携帯電子機器用途と比較して、高容量、大型化が求められるとともに、長寿命化が必要となる。したがって、上記電気デバイスは、車両用の電源として、例えば、車両駆動用電源や補助電源に好適に利用することができる。
[vehicle]
The electric device has excellent output characteristics, maintains discharge capacity even after long-term use, and has good cycle characteristics. Vehicle applications such as electric vehicles, hybrid electric vehicles, fuel cell vehicles, and hybrid fuel cell vehicles require higher capacity, larger size, and longer life than electric and portable electronic devices. . Therefore, the electric device can be suitably used as a vehicle power source, for example, a vehicle driving power source or an auxiliary power source.
 具体的には、電池またはこれらを複数個組み合わせてなる組電池を車両に搭載することができる。本発明では、長期信頼性および出力特性に優れた高寿命の電池を構成できることから、こうした電池を搭載するとEV走行距離の長いプラグインハイブリッド電気自動車や、一充電走行距離の長い電気自動車を構成できる。電池またはこれらを複数個組み合わせてなる組電池を、例えば、自動車ならばハイブリット車、燃料電池車、電気自動車(いずれも四輪車(乗用車、トラック、バスなどの商用車、軽自動車など)のほか、二輪車(バイク)や三輪車を含む)に用いることにより高寿命で信頼性の高い自動車となるからである。ただし、用途が自動車に限定されるわけではなく、例えば、他の車両、例えば、電車などの移動体の各種電源であっても適用は可能であるし、無停電電源装置などの載置用電源として利用することも可能である。 Specifically, a battery or an assembled battery formed by combining a plurality of these batteries can be mounted on the vehicle. In the present invention, since a battery having a long life with excellent long-term reliability and output characteristics can be configured, a plug-in hybrid electric vehicle having a long EV mileage or an electric vehicle having a long charge mileage can be formed by mounting such a battery. . For example, in the case of a car, a hybrid car, a fuel cell car, an electric car (four-wheeled vehicles (passenger cars, trucks, buses, commercial vehicles, light cars, etc.) This is because it can be used for motorcycles (including motorcycles) and tricycles) to provide a long-life and highly reliable automobile. However, the application is not limited to automobiles. For example, it can be applied to various power sources for moving vehicles such as other vehicles, for example, trains, and power sources for mounting such as uninterruptible power supplies. It is also possible to use as.
 以下、実施例および比較例を用いてさらに詳細に説明するが、本発明は以下の実施例のみに何ら限定されるわけではない。 Hereinafter, although it demonstrates in detail using an Example and a comparative example, this invention is not necessarily limited only to the following Examples.
 (実施例1)
 1.電解液の作製
 エチレンカーボネート(EC)、エチルメチルカーボネート(EMC)、ジエチルカーボネート(DEC)の混合溶媒(30:30:40(体積比))を溶媒とした。また1.0MのLiPFをリチウム塩とした。さらに上記溶媒と上記リチウム塩との合計100質量%に対して2質量%のビニレンカーボネートを添加して電解液を調製した。なお、「1.0MのLiPF」とは、当該混合溶媒およびリチウム塩の混合物におけるリチウム塩(LiPF)濃度が1.0Mであるという意味である。
(Example 1)
1. Preparation of Electrolyte Solution A mixed solvent (30:30:40 (volume ratio)) of ethylene carbonate (EC), ethyl methyl carbonate (EMC), and diethyl carbonate (DEC) was used as a solvent. Further, 1.0M LiPF 6 was used as a lithium salt. Furthermore, 2% by mass of vinylene carbonate was added to the total of 100% by mass of the solvent and the lithium salt to prepare an electrolytic solution. Note that “1.0 M LiPF 6 ” means that the lithium salt (LiPF 6 ) concentration in the mixture of the mixed solvent and the lithium salt is 1.0 M.
 2.正極の作製
 硫酸ニッケル、硫酸コバルト、および硫酸マンガンを溶解した水溶液(1.0mol/L)に、60℃にて水酸化ナトリウムおよびアンモニアを連続的に供給してpHを11.0に調整し、共沈法によりニッケルとマンガンとコバルトとが50:30:20のモル比で固溶してなる金属複合水酸化物を作製した。
2. Preparation of positive electrode Sodium hydroxide and ammonia were continuously supplied to an aqueous solution (1.0 mol / L) in which nickel sulfate, cobalt sulfate, and manganese sulfate were dissolved at 60 ° C. to adjust the pH to 11.0. A metal composite hydroxide in which nickel, manganese, and cobalt were dissolved at a molar ratio of 50:30:20 was prepared by a coprecipitation method.
 この金属複合水酸化物と炭酸リチウムを、Li以外の金属(Ni、Co、Mn)の合計のモル数とLiのモル数の比が1:1となるように秤量した後、十分混合し、昇温速度5℃/minで昇温し、空気雰囲気で450℃、4時間仮焼成した後、昇温速度3℃/minで昇温し、730℃で10時間本焼成し、室温まで冷却してNMC複合酸化物(LiNi0.50Mn0.30Co0.20)を得た。 The metal composite hydroxide and lithium carbonate were weighed so that the ratio of the total number of moles of metals other than Li (Ni, Co, Mn) and the number of moles of Li was 1: 1, and then mixed well. The temperature was raised at a rate of temperature increase of 5 ° C / min, pre-baked at 450 ° C for 4 hours in an air atmosphere, then heated at a rate of temperature increase of 3 ° C / min, finally baked at 730 ° C for 10 hours, and cooled to room temperature. NMC composite oxide (LiNi 0.50 Mn 0.30 Co 0.20 O 2 ) was obtained.
 上記で得られた正極活物質を90重量%、導電助剤としてケッチェンブラック(平均粒子径:300nm)5重量%、バインダーとしてポリフッ化ビニリデン(PVDF)5重量%、およびスラリー粘度調整溶媒であるN-メチル-2-ピロリドン(NMP)を適量混合して、正極活物質スラリーを調製し、得られた正極活物質スラリーを集電体であるアルミニウム箔(厚さ:20μm)に塗布し、120℃で3分間乾燥後、ロールプレス機で圧縮成形して正極を作製した。裏面にも同様にして正極活物質層を形成して、正極集電体(アルミニウム箔)の両面に正極活物質層が形成されてなる正極を作製した。 90% by weight of the positive electrode active material obtained above, 5% by weight of ketjen black (average particle size: 300 nm) as a conductive assistant, 5% by weight of polyvinylidene fluoride (PVDF) as a binder, and a slurry viscosity adjusting solvent An appropriate amount of N-methyl-2-pyrrolidone (NMP) was mixed to prepare a positive electrode active material slurry, and the obtained positive electrode active material slurry was applied to an aluminum foil (thickness: 20 μm) as a current collector. After drying at 0 ° C. for 3 minutes, a positive electrode was produced by compression molding with a roll press. Similarly, a positive electrode active material layer was formed on the back surface to produce a positive electrode in which a positive electrode active material layer was formed on both surfaces of a positive electrode current collector (aluminum foil).
 3.負極の作製
 負極活物質として人造黒鉛(平均粒子径(D50):20.2μm、BET比表面積:3.5m/g)48.5質量%、被覆天然黒鉛(平均粒子径(D50):21.1μm、BET比表面積:2.0m/g)48.5質量%、バインダーとしてSBR2質量%、CMC1質量%からなる固形分を用意した。この固形分に対し、スラリー粘度調整溶媒であるイオン交換水を適量添加して、負極スラリーを作製した。次に、負極スラリーを、集電体である銅箔(10μm)の両面に塗布し乾燥・プレスを行い、厚み130μm(箔込み)の負極を作製した。
3. Production of negative electrode Artificial graphite (average particle diameter (D50): 20.2 μm, BET specific surface area: 3.5 m 2 / g) 48.5% by mass as a negative electrode active material, coated natural graphite (average particle diameter (D50): 21 0.1 μm, BET specific surface area: 2.0 m 2 / g) A solid content of 48.5% by mass, 2 % by mass of SBR as a binder, and 1% by mass of CMC was prepared. An appropriate amount of ion-exchanged water, which is a slurry viscosity adjusting solvent, was added to the solid content to prepare a negative electrode slurry. Next, the negative electrode slurry was applied to both sides of a copper foil (10 μm) as a current collector, dried and pressed, and a negative electrode having a thickness of 130 μm (including foil) was produced.
 なお、以下の手法により、負極活物質のBET比表面積、得られた負極の初回充電容量および初回効率を測定した。結果を下記の表1に示す。 In addition, the BET specific surface area of the negative electrode active material, the initial charge capacity and the initial efficiency of the obtained negative electrode were measured by the following methods. The results are shown in Table 1 below.
 [BET比表面積]
 負極活物質のBET比表面積は、AMS8000型全自動粉体比表面積測定装置(大倉理研製)を用い、吸着ガスに窒素、キャリアガスにヘリウムを使用し、連続流動法によるBET1点式法測定を行った。具体的には、粉体試料を混合ガスにより150℃の温度で加熱脱気し、次いで液体窒素温度まで冷却して窒素/ヘリウム混合ガスを吸着させた後、これを水により室温まで加温して吸着された窒素ガスを脱着させ、その量を熱伝導検出器によって検出し、これから試料の比表面積を算出した。
[BET specific surface area]
The BET specific surface area of the negative electrode active material can be measured using the AMS8000 type automatic powder specific surface area measuring device (manufactured by Okura Riken), nitrogen as the adsorbing gas, helium as the carrier gas, and BET one-point method measurement by continuous flow went. Specifically, the powder sample is heated and deaerated with a mixed gas at a temperature of 150 ° C., then cooled to liquid nitrogen temperature to adsorb the nitrogen / helium mixed gas, and then heated to room temperature with water. The adsorbed nitrogen gas was desorbed, the amount was detected by a heat conduction detector, and the specific surface area of the sample was calculated from this.
 4.単電池の完成工程
 上記で作製した正極を220×200mmの長方形状に切断し、負極を225×205mmの長方形状に切断した(正極20枚、負極21枚)。この正極と負極とを230×210mmのセパレータ(ポリオレフィン微多孔膜、厚さ25μm)を介して交互に積層した。
4). Step of completing cell The positive electrode produced above was cut into a 220 × 200 mm rectangular shape, and the negative electrode was cut into a 225 × 205 mm rectangular shape (20 positive electrodes and 21 negative electrodes). The positive electrode and the negative electrode were alternately laminated via 230 × 210 mm separators (polyolefin microporous membrane, thickness 25 μm).
 これらの正極と負極それぞれにタブを溶接し、アルミラミネートフィルムからなる外装体中に電解液とともに密封して電池を完成させ、電極面積よりも大きいウレタンゴムシート(厚み3mm)、さらにAl板(厚み5mm)で電池を挟み込み加圧することで単電池を完成させた。 A tab is welded to each of the positive electrode and the negative electrode, and the battery is completed by sealing together with the electrolyte in an exterior body made of an aluminum laminate film, a urethane rubber sheet (thickness 3 mm) larger than the electrode area, and an Al plate (thickness) A cell was completed by sandwiching and pressing the battery at 5 mm).
 (実施例2~8、および比較例1~6)
 上述した実施例1における負極活物質の組成(人造黒鉛:被覆天然黒鉛=50:50(質量%))に代えて、下記の表1に記載の負極活物質組成を採用したこと以外は、当該実施例1と同様にして電池を作製した。なお、天然黒鉛としては、平均粒子径(D50):20.1μm、BET比表面積:5.5m/gのものを用いた。
(Examples 2 to 8 and Comparative Examples 1 to 6)
Instead of adopting the negative electrode active material composition described in Table 1 below in place of the composition of the negative electrode active material in Example 1 described above (artificial graphite: coated natural graphite = 50: 50 (mass%)) A battery was produced in the same manner as in Example 1. Natural graphite having an average particle diameter (D50) of 20.1 μm and a BET specific surface area of 5.5 m 2 / g was used.
 そして、得られた電池について、以下の手法により、単セル定格容量、体積エネルギー密度、初回充放電効率、1000サイクル後容量維持率、および初期航続距離を求めた。結果を下記の表1に示す。 And about the obtained battery, the single cell rated capacity, volume energy density, initial charge / discharge efficiency, capacity maintenance rate after 1000 cycles, and initial cruising distance were obtained by the following methods. The results are shown in Table 1 below.
 [単セル定格容量および体積エネルギー密度]
 各実施例および比較例で作製した電池を24時間放置し、開回路電圧(OCV:Open Circuit Voltage)が安定した後、正極に対する電流密度を0.2mA/cmとしてカットオフ電圧4.15Vまで充電して初期充電容量とし、1時間の休止後カットオフ電圧3.0Vまで放電したときの容量を単セル定格容量(Wh)とした。また、これを元に体積当たりのエネルギー密度(体積エネルギー密度;Wh/L)を算出した。
[Single cell rated capacity and volumetric energy density]
The batteries produced in each Example and Comparative Example were allowed to stand for 24 hours, and after the open circuit voltage (OCV) was stabilized, the current density with respect to the positive electrode was 0.2 mA / cm 2 and the cut-off voltage was 4.15 V. The battery was charged to obtain an initial charge capacity, and the capacity when discharged to a cut-off voltage of 3.0 V after 1 hour of rest was defined as a single cell rated capacity (Wh). Moreover, the energy density per volume (volume energy density; Wh / L) was computed based on this.
 [1000サイクル後容量維持率]
 正極に対する電流密度を2mA/cmとして、各実施例および比較例で作製した電池をカットオフ電圧4.15Vまで充電して初期充電容量とし、1時間の休止後カットオフ電圧3.0Vまで放電したときの容量を初期放電容量とした。この充放電サイクルを1000回繰返した。初期放電容量に対する1000サイクル目の放電容量の割合を算出した。
[Capacity maintenance rate after 1000 cycles]
The current density with respect to the positive electrode was set to 2 mA / cm 2 , and the batteries produced in each Example and Comparative Example were charged to a cutoff voltage of 4.15 V to obtain an initial charge capacity, and discharged to a cutoff voltage of 3.0 V after 1 hour of rest. The capacity at this time was defined as the initial discharge capacity. This charge / discharge cycle was repeated 1000 times. The ratio of the discharge capacity at the 1000th cycle to the initial discharge capacity was calculated.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 表1に示す結果より、本発明に係る混合負極によれば、1000サイクル後の容量維持率が向上しうることがわかる。 From the results shown in Table 1, it can be seen that according to the mixed negative electrode according to the present invention, the capacity retention rate after 1000 cycles can be improved.
 (比表面積比とガス発生との関係)
 さらに、上記で作製した実施例1~8の電池について、負極活物質に含まれる人造黒鉛、被覆天然黒鉛および天然黒鉛からなる群から選択されるすべての黒鉛粒子のBET比表面積の値の、前記被覆天然黒鉛のBET比表面積の値に対する比の値を算出した(下記の表2の「比表面積比」)。また、初回充放電時に発生するガス量[cc]を、初回充放電した後の放電状態のセル体積と注液1日後(初回充放電前)のセル体積との差としてアルキメデス法によって測定した(下記の表2)。さらに、ガス抜き工程におけるタクトタイム[sec]を測定した(下記の表2)。ここで、ガス抜き工程では、ガスを抜くためにラミネートセルの一部をカットし、東静電気製の大型真空シーラーを用いてセル内の圧力を減圧することで外に排出した。なお、この真空シーラーは、減圧後にラミネートカット部をシールすることができる。ガス抜き工程におけるタクトタイムが30secを超えると、ガスを発電要素(ラミネート構造体)から完全に排出するまでの時間が増える。
(Relationship between specific surface area ratio and gas generation)
Further, for the batteries of Examples 1 to 8 produced above, the values of the BET specific surface areas of all graphite particles selected from the group consisting of artificial graphite, coated natural graphite and natural graphite contained in the negative electrode active material, The value of the ratio of the coated natural graphite to the value of the BET specific surface area was calculated ("specific surface area ratio" in Table 2 below). Moreover, the gas amount [cc] generated at the time of the first charge / discharge was measured by Archimedes method as the difference between the cell volume in the discharge state after the first charge / discharge and the cell volume one day after the injection (before the first charge / discharge) ( Table 2 below). Furthermore, the tact time [sec] in the degassing process was measured (Table 2 below). Here, in the degassing step, a part of the laminate cell was cut in order to degas, and the pressure in the cell was reduced by using a large vacuum sealer made by Tosei. In addition, this vacuum sealer can seal a laminate cut part after pressure reduction. If the tact time in the degassing process exceeds 30 seconds, the time until the gas is completely discharged from the power generation element (laminate structure) increases.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 表2に示す結果から、比表面積比が1.7以下であれば、初回充放電の際に発生するガス量が十分に低減され、ガス抜き工程におけるタクトタイムも短縮されうることがわかる。 From the results shown in Table 2, it can be seen that if the specific surface area ratio is 1.7 or less, the amount of gas generated during the initial charge / discharge can be sufficiently reduced, and the tact time in the degassing process can be shortened.
 (実施例9~12)
 上述した実施例1で用いた人造黒鉛および被覆天然黒鉛に代えて、平均粒子径の異なる人造黒鉛および被覆天然黒鉛を用いることで、レーザ回折式粒度分布計による中位径(D50)として測定した負極活物質の平均粒子径を下記の表3に示す値に制御したこと以外は、実施例1と同様にして電池を作製し、同様にして物性および特性を評価した。結果を下記の表3に示す。
(Examples 9 to 12)
In place of the artificial graphite and coated natural graphite used in Example 1 above, artificial graphite and coated natural graphite having different average particle diameters were used, and the median diameter (D50) was measured by a laser diffraction particle size distribution meter. A battery was produced in the same manner as in Example 1 except that the average particle size of the negative electrode active material was controlled to the value shown in Table 3 below, and the physical properties and characteristics were evaluated in the same manner. The results are shown in Table 3 below.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 表3に示す結果より、負極活物質のD50が10~30μmの範囲内の値であれば、長期サイクル特性に優れることがわかる。 From the results shown in Table 3, it can be seen that when the D50 of the negative electrode active material is a value within the range of 10 to 30 μm, the long-term cycle characteristics are excellent.
 (実施例13~29)
 実施例1のセルサイズ(並びに体積エネルギー密度および単セル定格容量)を下記の表4に示すように変更したこと以外は、上述した実施例1と同様にして電池を作製し、同様にして物性および特性を評価した。結果を下記の表4に示す。なお、航続可能距離については、1回目の充電によるJC08モードでの走行距離を航続可能距離とした。
(Examples 13 to 29)
A battery was prepared in the same manner as in Example 1 described above except that the cell size (and volume energy density and single cell rated capacity) of Example 1 was changed as shown in Table 4 below. And the characteristics were evaluated. The results are shown in Table 4 below. As for the cruising distance, the cruising distance in the JC08 mode by the first charging was defined as the cruising distance.
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
 表4に示す結果より、航続可能距離100kmを達成可能な体積エネルギー密度や電池容量がわかる。 From the results shown in Table 4, the volume energy density and battery capacity at which a cruising range of 100 km can be achieved are known.
 (実施例30~31)
 正極活物質として、LiNi0.50Mn0.30Co0.20に代えて、LiNi0.50Mn0.30Co0.20Zr0.01(実施例30)またはLiNi0.50Mn0.30Co0.20Al0.01(実施例31)を用いたこと以外は、上述した実施例1と同様にして電池を作製し、同様にして物性および特性を評価した。これに加えて、実施例1および実施例30~31について、4.25V充電状態で電池を解体し、当該正極の示差熱分析(DSC)を行い、発熱開始温度を求めた。これらの結果を下記の表5に示す。
(Examples 30 to 31)
In place of LiNi 0.50 Mn 0.30 Co 0.20 O 2 , LiNi 0.50 Mn 0.30 Co 0.20 Zr 0.01 O 2 (Example 30) or LiNi 0. A battery was produced in the same manner as in Example 1 except that 50 Mn 0.30 Co 0.20 Al 0.01 O 2 (Example 31) was used, and the physical properties and characteristics were evaluated in the same manner. . In addition, for Example 1 and Examples 30 to 31, the batteries were disassembled in a 4.25 V charged state, the differential thermal analysis (DSC) of the positive electrode was performed, and the heat generation start temperature was determined. These results are shown in Table 5 below.
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
 表5に示す結果より、実施例1で用いたNMC複合酸化物(LiNi0.50Mn0.30Co0.20)に、添加元素としてZrやAlをさらに添加すると、発熱開始温度が上昇することがわかる。 From the results shown in Table 5, when Zr or Al is further added as an additive element to the NMC composite oxide (LiNi 0.50 Mn 0.30 Co 0.20 O 2 ) used in Example 1, the heat generation start temperature is increased. You can see that it rises.
 (実施例32)
 硫酸ニッケルと硫酸コバルトと硫酸マンガンを溶解した水溶液(1.0mol/L)にpH11.0となるように水酸化ナトリウムおよびアンモニアを供給し、共沈法によりニッケル、コバルト、およびマンガンのモル比が1/3:1/3:1/3で固溶してなる金属複合水酸化物を作成した。この金属複合酸化物と炭酸リチウムを、Li以外の金属(Ni、Co、Mn)の合計のモル数とLiのモル数の比が1:1となるように秤量した後、十分混合し、昇温速度5℃/minで昇温し、空気雰囲気で920℃で10時間焼成し、室温まで冷却し、シェル材料となるLiNi1/3Mn1/3Co1/3を得た。
(Example 32)
Sodium hydroxide and ammonia are supplied to an aqueous solution (1.0 mol / L) in which nickel sulfate, cobalt sulfate, and manganese sulfate are dissolved so that the pH is 11.0, and the molar ratio of nickel, cobalt, and manganese is determined by a coprecipitation method. A metal composite hydroxide obtained by solid solution at 1/3: 1/3: 1/3 was prepared. The metal composite oxide and lithium carbonate were weighed so that the ratio of the total number of moles of metals other than Li (Ni, Co, Mn) to the number of moles of Li was 1: 1, and then mixed sufficiently. The temperature was raised at a temperature rate of 5 ° C./min, fired at 920 ° C. for 10 hours in an air atmosphere, cooled to room temperature, and LiNi 1/3 Mn 1/3 Co 1/3 O 2 serving as a shell material was obtained.
 次に、実施例1で作製したNMC複合酸化物(LiNi0.50Mn0.30Co0.20100質量%に対して、質量百分率が5質量%となるようにLiNi1/3Mn1/3Co1/3(NMC111)を混合し、粉砕機を用いて30分機械的処理を行った後、再度空気雰囲気下、930℃で10時間焼成し、核(コア)となるLiNi0.5Mn0.3Co0.2の二次粒子表面にLiNi1/3Mn1/3Co1/3が5質量%被覆した正極材料を得た。 Next, with respect to the NMC composite oxide (LiNi 0.50 Mn 0.30 Co 0.20 O 2 100% by mass produced in Example 1, LiNi 1/3 Mn so that the mass percentage becomes 5% by mass. 1/3 Co 1/3 (NMC111) was mixed and subjected to mechanical treatment for 30 minutes using a pulverizer, and then fired again at 930 ° C. for 10 hours in an air atmosphere to obtain LiNi 0 as a core. A positive electrode material in which 5% by mass of LiNi 1/3 Mn 1/3 Co 1/3 was coated on the surface of secondary particles of .5 Mn 0.3 Co 0.2 O 2 was obtained.
 上記で得られた正極材料を実施例1の正極活物質に代えて用いたこと以外は、実施例1と同様にして電池を作製し、同様にして物性および特性を評価した。これに加えて、実施例32についても、4.25V充電状態で電池を解体し、当該正極の示差熱分析(DSC)を行い、発熱開始温度を求めた。これらの結果を下記の表6に示す。 A battery was produced in the same manner as in Example 1 except that the positive electrode material obtained above was used instead of the positive electrode active material in Example 1, and the physical properties and characteristics were evaluated in the same manner. In addition, also in Example 32, the battery was disassembled in a 4.25 V charged state, and differential thermal analysis (DSC) of the positive electrode was performed to determine the heat generation start temperature. These results are shown in Table 6 below.
 (実施例33)
 シェル材料として、LiNi1/3Mn1/3Co1/3(NMC111)に代えて、LiNi0.8Co0.1Al0.1(NCA)を用いたこと以外は、上述した実施例32と同様にして電池を作製し、同様にして物性および特性を評価した。結果を下記の表6に示す。
(Example 33)
As described above, except that LiNi 0.8 Co 0.1 Al 0.1 O 2 (NCA) was used in place of LiNi 1/3 Mn 1/3 Co 1/3 O 2 (NMC111) as the shell material. A battery was produced in the same manner as in Example 32, and the physical properties and characteristics were evaluated in the same manner. The results are shown in Table 6 below.
 (実施例34)
 シェル材料として、LiNi1/3Mn1/3Co1/3(NMC111)に代えて、LiCoO(LCO)を用いたこと以外は、上述した実施例32と同様にして電池を作製し、同様にして物性および特性を評価した。結果を下記の表6に示す。
(Example 34)
A battery was fabricated in the same manner as in Example 32 described above except that LiCoO 2 (LCO) was used instead of LiNi 1/3 Mn 1/3 Co 1/3 O 2 (NMC111) as the shell material. In the same manner, physical properties and characteristics were evaluated. The results are shown in Table 6 below.
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
 表6に示す結果より、実施例1で用いたNMC複合酸化物(LiNi0.50Mn0.30Co0.20)をコアとして、さらにシェル材料を用いて被覆して、コア-シェル型の正極材料とすると、発熱開始温度が上昇しうることがわかる。 From the results shown in Table 6, the NMC composite oxide (LiNi 0.50 Mn 0.30 Co 0.20 O 2 ) used in Example 1 was used as a core, and further coated with a shell material. It can be seen that the heat generation start temperature can be increased when the positive electrode material of the mold is used.
 (実施例35)
 実施例1の電池の作製において、下記のようにゲル電解質を用いたこと以外は実施例1と同様に電池を作製した。すなわち、集電用素子を備えた正極板および負極板を、あらかじめゲルを形成するマトリックスポリマー(ポリフッ化ビニリデン-ヘキサフルオロプロピレン共重合体)を塗布した耐熱セパレータを介して積層することで電極素子を作製した。これをラミネートフィルムに格納した後、所定量の電解液を注入し、さらに加熱処理することで長さ280mm幅210mm厚み7mmのラミネート電池を作製し、上記と同様にして物性および特性を評価した。結果を下記の表7に示す。
(Example 35)
In the production of the battery of Example 1, a battery was produced in the same manner as in Example 1 except that the gel electrolyte was used as described below. That is, an electrode element is formed by laminating a positive electrode plate and a negative electrode plate having current collecting elements through a heat-resistant separator previously coated with a matrix polymer (polyvinylidene fluoride-hexafluoropropylene copolymer) that forms a gel. Produced. After storing this in a laminate film, a predetermined amount of electrolyte solution was injected and further heat-treated to produce a laminate battery having a length of 280 mm, a width of 210 mm, and a thickness of 7 mm, and the physical properties and characteristics were evaluated in the same manner as described above. The results are shown in Table 7 below.
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000008
 表7に示す結果より、液体電解質に代えて、ゲルポリマー電解質を用いると、長期サイクル耐久性が向上することがわかる。 From the results shown in Table 7, it can be seen that long-term cycle durability is improved when a gel polymer electrolyte is used instead of the liquid electrolyte.
 (実施例36~41)
 上述した実施例1で用いた負極活物質としての黒鉛結晶の混合物(人造黒鉛50質量%+被覆天然黒鉛50質量%)の合計100質量%に対して、以下の負極活物質をさらに添加したこと以外は、実施例1と同様にして電池を作製し、同様にして物性および特性を評価した。結果を下記の表8に示す。なお、負極活物質層の形成の際には、以下の炭素材料を加えた負極活物質として97質量%を用い、これにSBR2質量%およびCMC1質量%を添加した。
・実施例36:ハードカーボン(難黒鉛化炭素材料)1質量%
・実施例37:ハードカーボン(難黒鉛化炭素材料)5質量%
・実施例38:ハードカーボン(難黒鉛化炭素材料)10質量%
・実施例39:ソフトカーボン(易黒鉛化炭素材料)1質量%
・実施例40:ソフトカーボン(易黒鉛化炭素材料)5質量%
・実施例41:ソフトカーボン(易黒鉛化炭素材料)10質量%
(Examples 36 to 41)
The following negative electrode active material was further added to a total of 100% by mass of the graphite crystal mixture (artificial graphite 50% by mass + coated natural graphite 50% by mass) as the negative electrode active material used in Example 1 described above. A battery was produced in the same manner as in Example 1 except that the physical properties and characteristics were evaluated in the same manner. The results are shown in Table 8 below. In forming the negative electrode active material layer, 97% by mass was used as a negative electrode active material to which the following carbon materials were added, and 2% by mass of SBR and 1% by mass of CMC were added thereto.
Example 36: 1% by mass of hard carbon (non-graphitizable carbon material)
Example 37: 5% by mass of hard carbon (non-graphitizable carbon material)
Example 38: Hard carbon (non-graphitizable carbon material) 10% by mass
Example 39: 1% by mass of soft carbon (easily graphitized carbon material)
Example 40: 5% by mass of soft carbon (easily graphitized carbon material)
Example 41: 10% by mass of soft carbon (easily graphitized carbon material)
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000009
 表8に示す結果より、負極活物質がハードカーボンまたはソフトカーボンをさらに含むことで、長期サイクル耐久性がよりいっそう向上しうることがわかる。 From the results shown in Table 8, it can be seen that the long-term cycle durability can be further improved when the negative electrode active material further contains hard carbon or soft carbon.
 本出願は、2013年2月28日に出願された日本特許出願番号2013-040113号に基づいており、その開示内容は、参照により全体として組み入れられている。 This application is based on Japanese Patent Application No. 2013-040113 filed on February 28, 2013, the disclosure of which is incorporated by reference in its entirety.
  10 リチウムイオン二次電池、
  11 負極集電体、
  12 正極集電体、
  13 負極活物質層、
  15 正極活物質層、
  17 セパレータ、
  19 単電池層、
  21 発電要素、
  25 負極集電板、
  27 正極集電板、
  29 電池外装体。
10 Lithium ion secondary battery,
11 negative electrode current collector,
12 positive electrode current collector,
13 negative electrode active material layer,
15 positive electrode active material layer,
17 separator,
19 cell layer,
21 power generation elements,
25 negative current collector,
27 positive current collector,
29 Battery outer package.

Claims (14)

  1.  集電体と、
     前記集電体の表面に配置された、負極活物質を含む負極活物質層と、
    を有し、
     前記負極活物質が人造黒鉛、被覆天然黒鉛または天然黒鉛を主成分として含み、前記負極活物質に含まれる人造黒鉛の含有量をX[質量%]とし、被覆天然黒鉛の含有量をY[質量%]とし、天然黒鉛の含有量をZ[質量%]としたときに(ここで、X+Y+Z=100質量%である)、Y≧ZおよびY≧Xを満たす(ただし、(X,Y,Z)=(0,1,0)の場合を除く)、非水電解質二次電池用負極。
    A current collector,
    A negative electrode active material layer including a negative electrode active material, disposed on a surface of the current collector;
    Have
    The negative electrode active material contains artificial graphite, coated natural graphite or natural graphite as a main component, the content of artificial graphite contained in the negative electrode active material is X [mass%], and the content of coated natural graphite is Y [mass %] And the content of natural graphite is Z [mass%] (where X + Y + Z = 100 mass%), Y ≧ Z and Y ≧ X are satisfied (where (X, Y, Z ) = (Except in the case of (0, 1, 0)), a negative electrode for a non-aqueous electrolyte secondary battery.
  2.  前記負極活物質がハードカーボンまたはソフトカーボンをさらに含む、請求項1に記載の非水電解質二次電池用負極。 The negative electrode for a non-aqueous electrolyte secondary battery according to claim 1, wherein the negative electrode active material further contains hard carbon or soft carbon.
  3.  前記負極活物質のレーザ回折式粒度分布計による中位径(D50)が10~30μmである、請求項1または2に記載の非水電解質二次電池用負極。 The negative electrode for a nonaqueous electrolyte secondary battery according to claim 1 or 2, wherein the median diameter (D50) of the negative electrode active material measured by a laser diffraction particle size distribution analyzer is 10 to 30 µm.
  4.  前記負極活物質のBET比表面積が0.5~10m/gである、請求項1~3のいずれか1項に記載の非水電解質二次電池用負極。 The negative electrode for a nonaqueous electrolyte secondary battery according to any one of claims 1 to 3, wherein the negative electrode active material has a BET specific surface area of 0.5 to 10 m 2 / g.
  5.  前記負極活物質に含まれる人造黒鉛、被覆天然黒鉛および天然黒鉛からなる群から選択されるすべての黒鉛粒子のBET比表面積の値の、前記被覆天然黒鉛のBET比表面積の値に対する比の値が1.7以下である、請求項1~3のいずれか1項に記載の非水電解質二次電池用負極。 The value of the ratio of the BET specific surface area value of all graphite particles selected from the group consisting of artificial graphite, coated natural graphite and natural graphite contained in the negative electrode active material to the BET specific surface area value of the coated natural graphite is The negative electrode for a non-aqueous electrolyte secondary battery according to any one of claims 1 to 3, which is 1.7 or less.
  6.  前記負極活物質のタップ密度が0.7g/cm以上である、請求項1~5のいずれか1項に記載の非水電解質二次電池用負極。 The negative electrode for a nonaqueous electrolyte secondary battery according to any one of claims 1 to 5, wherein a tap density of the negative electrode active material is 0.7 g / cm 3 or more.
  7.  前記負極活物質層が水系バインダーを含む、請求項1~6のいずれか1項に記載の非水電解質二次電池用負極。 The negative electrode for a non-aqueous electrolyte secondary battery according to any one of claims 1 to 6, wherein the negative electrode active material layer contains an aqueous binder.
  8.  前記水系バインダーがスチレン-ブタジエンゴム、アクリロニトリル-ブタジエンゴム、メタクリル酸メチル-ブタジエンゴム、およびメタクリル酸メチルゴムからなる群から選択される少なくとも1つのゴム系バインダーを含む、請求項7に記載の非水電解質二次電池用負極。 The non-aqueous electrolyte according to claim 7, wherein the aqueous binder includes at least one rubber-based binder selected from the group consisting of styrene-butadiene rubber, acrylonitrile-butadiene rubber, methyl methacrylate-butadiene rubber, and methyl methacrylate rubber. Negative electrode for secondary battery.
  9.  前記水系バインダーがスチレン-ブタジエンゴムを含む、請求項8に記載の非水電解質二次電池用負極。 The negative electrode for a nonaqueous electrolyte secondary battery according to claim 8, wherein the aqueous binder contains styrene-butadiene rubber.
  10.  正極集電体の表面に正極活物質を含む正極活物質層が形成されてなる正極と、
     請求項1~9のいずれか1項に記載の負極と、
     前記正極と前記負極との間に介在し、液体電解質またはゲル電解質を保持するセパレータと、
    を有する発電要素が外装体の内部に封入されてなる、非水電解質二次電池。
    A positive electrode in which a positive electrode active material layer containing a positive electrode active material is formed on the surface of the positive electrode current collector;
    A negative electrode according to any one of claims 1 to 9,
    A separator interposed between the positive electrode and the negative electrode to hold a liquid electrolyte or a gel electrolyte;
    A non-aqueous electrolyte secondary battery in which a power generation element having a structure is enclosed in an exterior body.
  11.  前記正極活物質がリチウムとニッケルとを含有する複合酸化物を含む、請求項10に記載の非水電解質二次電池。 The non-aqueous electrolyte secondary battery according to claim 10, wherein the positive electrode active material includes a composite oxide containing lithium and nickel.
  12.  前記外装体がアルミニウムを含むラミネートフィルムである、請求項10または11に記載の非水電解質二次電池。 The nonaqueous electrolyte secondary battery according to claim 10 or 11, wherein the outer package is a laminate film containing aluminum.
  13.  定格容量に対する電池面積(電池外装体まで含めた電池の投影面積)の比の値が5cm/Ah以上であり、かつ、定格容量が3Ah以上である、請求項10~12のいずれか1項に記載の非水電解質二次電池。 The ratio of the battery area to the rated capacity (projected area of the battery including the battery outer casing) is 5 cm 2 / Ah or more, and the rated capacity is 3 Ah or more. The non-aqueous electrolyte secondary battery described in 1.
  14.  矩形状の正極活物質層の縦横比として定義される電極のアスペクト比が1~3である、請求項10~13のいずれか1項に記載の非水電解質二次電池。 The non-aqueous electrolyte secondary battery according to any one of claims 10 to 13, wherein an aspect ratio of the electrode defined as an aspect ratio of the rectangular positive electrode active material layer is 1 to 3.
PCT/JP2014/054842 2013-02-28 2014-02-27 Negative electrode for nonaqueous electrolyte secondary batteries WO2014133070A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-040113 2013-02-28
JP2013040113A JP2016095897A (en) 2013-02-28 2013-02-28 Negative electrode for nonaqueous electrolyte secondary battery

Publications (1)

Publication Number Publication Date
WO2014133070A1 true WO2014133070A1 (en) 2014-09-04

Family

ID=51428329

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/054842 WO2014133070A1 (en) 2013-02-28 2014-02-27 Negative electrode for nonaqueous electrolyte secondary batteries

Country Status (2)

Country Link
JP (1) JP2016095897A (en)
WO (1) WO2014133070A1 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017158960A1 (en) * 2016-03-16 2017-09-21 オートモーティブエナジーサプライ株式会社 Hybrid electric vehicle, and lithium ion secondary battery selection method for hybrid electric vehicle
EP3273518A4 (en) * 2015-03-16 2018-08-15 Hitachi Chemical Company, Ltd. Lithium ion cell, negative electrode for lithium ion cell, battery module, automobile, and power storage device
US20200280070A1 (en) * 2013-06-12 2020-09-03 Group14 Technologies, Inc. High capacity hard carbon materials comprising efficiency enhancers
CN111868972A (en) * 2018-11-22 2020-10-30 Sk新技术株式会社 Method for manufacturing negative electrode and secondary battery having improved quick-charging performance including the same
WO2021069517A1 (en) * 2019-10-07 2021-04-15 Imertech Graphite compositions and uses in battery technology
US11024470B2 (en) 2017-03-23 2021-06-01 Gs Yuasa International Ltd. Nonaqueous electrolyte energy storage device
CN113497218A (en) * 2020-03-20 2021-10-12 宁德时代新能源科技股份有限公司 Negative electrode plate, secondary battery and device containing secondary battery
EP3836255A4 (en) * 2018-09-11 2022-05-25 GS Yuasa International Ltd. Electricity storage element and method for producing electricity storage element
CN114830376A (en) * 2019-12-20 2022-07-29 株式会社Posco Negative active material for lithium secondary battery and method for preparing same
US11942630B2 (en) 2015-08-14 2024-03-26 Group14 Technologies, Inc. Nano-featured porous silicon materials

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6755311B2 (en) * 2016-06-08 2020-09-16 株式会社エンビジョンAescジャパン Non-aqueous electrolyte secondary battery
JP6737091B2 (en) * 2016-09-09 2020-08-05 日産自動車株式会社 Negative electrode for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery using the same
US10541453B2 (en) * 2016-10-31 2020-01-21 Grst International Limited Battery module for starting a power equipment
CN108844878A (en) 2018-05-24 2018-11-20 宁德时代新能源科技股份有限公司 Negative pole piece, method for testing active specific surface area of pole piece and battery
EP3961770B1 (en) * 2020-03-27 2023-10-25 Contemporary Amperex Technology Co., Limited Secondary battery and battery module, battery pack and apparatus containing the same

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004071290A (en) * 2002-08-05 2004-03-04 Nissan Motor Co Ltd Battery for automobile
WO2004066419A1 (en) * 2003-01-22 2004-08-05 Hitachi Maxell, Ltd. Negative electrode for lithium secondary battery, method for producing same, and lithium secondary battery using same
JP2007103198A (en) * 2005-10-05 2007-04-19 Sony Corp Anode and battery
JP2009117240A (en) * 2007-11-08 2009-05-28 Osaka Gas Chem Kk Anode carbon material, and lithium secondary cell equipped with same
JP2010522968A (en) * 2008-04-11 2010-07-08 エル エス エムトロン リミテッド Negative electrode active material for secondary battery, electrode for secondary battery including the same, and secondary battery
JP2012133981A (en) * 2010-12-21 2012-07-12 Jfe Chemical Corp Negative electrode material for lithium ion secondary battery, lithium ion secondary battery negative electrode, and lithium ion secondary battery
WO2012133699A1 (en) * 2011-03-29 2012-10-04 三菱化学株式会社 Negative electrode carbon material for non-aqueous secondary battery, negative electrode, and non-aqueous secondary battery

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004071290A (en) * 2002-08-05 2004-03-04 Nissan Motor Co Ltd Battery for automobile
WO2004066419A1 (en) * 2003-01-22 2004-08-05 Hitachi Maxell, Ltd. Negative electrode for lithium secondary battery, method for producing same, and lithium secondary battery using same
JP2007103198A (en) * 2005-10-05 2007-04-19 Sony Corp Anode and battery
JP2009117240A (en) * 2007-11-08 2009-05-28 Osaka Gas Chem Kk Anode carbon material, and lithium secondary cell equipped with same
JP2010522968A (en) * 2008-04-11 2010-07-08 エル エス エムトロン リミテッド Negative electrode active material for secondary battery, electrode for secondary battery including the same, and secondary battery
JP2012133981A (en) * 2010-12-21 2012-07-12 Jfe Chemical Corp Negative electrode material for lithium ion secondary battery, lithium ion secondary battery negative electrode, and lithium ion secondary battery
WO2012133699A1 (en) * 2011-03-29 2012-10-04 三菱化学株式会社 Negative electrode carbon material for non-aqueous secondary battery, negative electrode, and non-aqueous secondary battery

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200280070A1 (en) * 2013-06-12 2020-09-03 Group14 Technologies, Inc. High capacity hard carbon materials comprising efficiency enhancers
EP3273518A4 (en) * 2015-03-16 2018-08-15 Hitachi Chemical Company, Ltd. Lithium ion cell, negative electrode for lithium ion cell, battery module, automobile, and power storage device
US10270084B2 (en) 2015-03-16 2019-04-23 Hitachi Chemical Company, Ltd. Lithium ion battery, negative electrode for lithium ion battery, battery module automobile, and power storage device
US11942630B2 (en) 2015-08-14 2024-03-26 Group14 Technologies, Inc. Nano-featured porous silicon materials
US11400819B2 (en) 2016-03-16 2022-08-02 Envision Aesc Japan Ltd. Hybrid electric vehicle, and lithium ion secondary battery cell selection method for hybrid electric vehicle
WO2017158960A1 (en) * 2016-03-16 2017-09-21 オートモーティブエナジーサプライ株式会社 Hybrid electric vehicle, and lithium ion secondary battery selection method for hybrid electric vehicle
JPWO2017158960A1 (en) * 2016-03-16 2018-11-08 オートモーティブエナジーサプライ株式会社 Selection method of lithium-ion secondary battery for hybrid electric vehicle and hybrid electric vehicle
US11024470B2 (en) 2017-03-23 2021-06-01 Gs Yuasa International Ltd. Nonaqueous electrolyte energy storage device
US11562862B2 (en) 2017-03-23 2023-01-24 Gs Yuasa International Ltd. Nonaqueous electrolyte energy storage device
EP3836255A4 (en) * 2018-09-11 2022-05-25 GS Yuasa International Ltd. Electricity storage element and method for producing electricity storage element
CN111868972B (en) * 2018-11-22 2024-02-27 Sk新能源株式会社 Method for manufacturing negative electrode and secondary battery having improved rapid charging performance including the same
CN111868972A (en) * 2018-11-22 2020-10-30 Sk新技术株式会社 Method for manufacturing negative electrode and secondary battery having improved quick-charging performance including the same
US11876215B2 (en) 2018-11-22 2024-01-16 Sk On Co., Ltd. Method for manufacturing anode, and secondary battery with improved rapid charging performance, having anode according thereto
WO2021069517A1 (en) * 2019-10-07 2021-04-15 Imertech Graphite compositions and uses in battery technology
CN114514197A (en) * 2019-10-07 2022-05-17 伊梅科技 Graphite composition and use in battery technology
CN114830376A (en) * 2019-12-20 2022-07-29 株式会社Posco Negative active material for lithium secondary battery and method for preparing same
CN113497218A (en) * 2020-03-20 2021-10-12 宁德时代新能源科技股份有限公司 Negative electrode plate, secondary battery and device containing secondary battery
US11923537B2 (en) 2020-03-20 2024-03-05 Contemporary Amperex Technology Co., Limited Negative electrode plate, secondary battery, and apparatus contianing the secondary battery
CN113497218B (en) * 2020-03-20 2023-09-22 宁德时代新能源科技股份有限公司 Negative electrode tab, secondary battery, and device including the secondary battery

Also Published As

Publication number Publication date
JP2016095897A (en) 2016-05-26

Similar Documents

Publication Publication Date Title
WO2014133070A1 (en) Negative electrode for nonaqueous electrolyte secondary batteries
JP6229709B2 (en) Positive electrode active material, positive electrode material, positive electrode and non-aqueous electrolyte secondary battery
JP6075440B2 (en) Positive electrode active material, positive electrode material, positive electrode and non-aqueous electrolyte secondary battery
JP6575972B2 (en) Nonaqueous electrolyte secondary battery
JP5967287B2 (en) Positive electrode active material, positive electrode material, positive electrode and non-aqueous electrolyte secondary battery
JP6008041B2 (en) Positive electrode active material, positive electrode material, positive electrode and non-aqueous electrolyte secondary battery
JP6112204B2 (en) Non-aqueous electrolyte secondary battery positive electrode and non-aqueous electrolyte secondary battery using the same
JP6056969B2 (en) Non-aqueous electrolyte secondary battery
JP6311256B2 (en) Anode for non-aqueous electrolyte secondary battery, non-aqueous electrolyte secondary battery using the same, and method for producing the same
JP6759936B2 (en) Non-aqueous electrolyte secondary battery and negative electrode unit
WO2015156400A1 (en) Positive electrode for electrical device, and electrical device using same
WO2014142285A1 (en) Nonaqueous electrolyte secondary battery
WO2014157423A1 (en) Non-aqueous electrolyte secondary battery
KR20160100348A (en) Electrical device
JP2017220380A (en) Nonaqueous electrolyte secondary battery
WO2014157420A1 (en) Non-aqueous electrolyte secondary battery
JP6958272B2 (en) Non-aqueous electrolyte secondary battery
JP6755311B2 (en) Non-aqueous electrolyte secondary battery
WO2014157413A1 (en) Nonaqueous-electrolyte secondary battery
JP2021163542A (en) Non-aqueous electrolyte secondary battery
JP2016225185A (en) Positive electrode for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery using the same
JP6519264B2 (en) Positive electrode for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery using the same
JP6676305B2 (en) Negative electrode active material for non-aqueous electrolyte secondary battery, and negative electrode for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery using the same
JP6585842B2 (en) Nonaqueous electrolyte secondary battery
JP2023015591A (en) Positive electrode for lithium ion secondary battery

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14756499

Country of ref document: EP

Kind code of ref document: A1

DPE2 Request for preliminary examination filed before expiration of 19th month from priority date (pct application filed from 20040101)
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14756499

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP