WO2014133062A1 - Organic el element, and lighting device and display device using same - Google Patents

Organic el element, and lighting device and display device using same Download PDF

Info

Publication number
WO2014133062A1
WO2014133062A1 PCT/JP2014/054828 JP2014054828W WO2014133062A1 WO 2014133062 A1 WO2014133062 A1 WO 2014133062A1 JP 2014054828 W JP2014054828 W JP 2014054828W WO 2014133062 A1 WO2014133062 A1 WO 2014133062A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
carbon atoms
organic
general formula
energy
Prior art date
Application number
PCT/JP2014/054828
Other languages
French (fr)
Japanese (ja)
Inventor
齋藤 健
千輝 柏倉
Original Assignee
株式会社カネカ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社カネカ filed Critical 株式会社カネカ
Priority to JP2015503007A priority Critical patent/JP6259812B2/en
Publication of WO2014133062A1 publication Critical patent/WO2014133062A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D401/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom
    • C07D401/14Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing three or more hetero rings
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/654Aromatic compounds comprising a hetero atom comprising only nitrogen as heteroatom
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6572Polycyclic condensed heteroaromatic hydrocarbons comprising only nitrogen in the heteroaromatic polycondensed ring system, e.g. phenanthroline or carbazole
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1029Heterocyclic compounds characterised by ligands containing one nitrogen atom as the heteroatom

Definitions

  • the present invention relates to an organic electroluminescent device in which a light emitting layer has a host material and a predetermined fluorescent dopant material.
  • the organic electroluminescence element may be referred to as an “organic EL element”.
  • the organic EL element includes a light emitting layer between a pair of electrodes.
  • the light emitting layer is usually composed of a host material and a dopant material.
  • the host material itself has a low light emission capability, it is a material having a high film forming property, and is used by mixing other materials having a high light emission capability.
  • the dopant material is a material having a high light emission capability.
  • a fluorescent material or a phosphorescent material is generally known.
  • an organic EL element whose dopant material is a fluorescent material (hereinafter referred to as “fluorescent organic EL element”) emits fluorescence through the following steps (1) to (3).
  • S 1 state singlet lowest excited state
  • T 1 state triplet lowest excited state
  • the value of the host material follows the abundance ratio between the S 1 state and the T 1 state. That is, 25% of the dopant material that has reached the excited state is in the S 1 state and 75% is in the T 1 state. (3) All of the dopant material in the T 1 state and part of the dopant material in the S 1 state are thermally deactivated. Then, the dopant material in the S 1 state that has not been thermally deactivated emits fluorescence.
  • Patent Document 1 proposes a phosphorescent organic EL device having a low driving voltage and excellent external quantum efficiency by using a phosphorescent host material having a carbazole skeleton and a metal complex dopant material such as iridium or platinum.
  • Patent Documents 2 to 4 and Non-Patent Documents 1 to 7 propose a technique of “using a thermally activated delayed fluorescent material”.
  • the thermally activated delayed fluorescent material is a fluorescent dopant material characterized in that the difference between S 1 energy and T 1 energy is small. Since the energy difference between two states is small, the heat from the T 1 state to the S 1 state.
  • a state transition caused by energy hereinafter, a transition from the S 1 state to the T 1 state is referred to as “reciprocal crossing”).
  • the S 1 and T 1 energies are adiabatic transition energies between the S 1 and T 1 states and the singlet ground state (hereinafter referred to as “S 0 state”), and are measured by a spectroscopic technique or the like. Is done.
  • the S 1 energy corresponds to the energy at the short wavelength side peak end of the fluorescence spectrum at 77K
  • the T 1 energy corresponds to the energy at the short wavelength side peak end of the phosphorescence spectrum at 77K.
  • the proportion of the S 1 state of the dopant material increases and the amount of emitted fluorescence also increases.
  • an organic EL element that achieves an internal quantum efficiency of 25% or more can be realized.
  • the fluorescence emitted after the inverse intersystem crossing due to thermal energy occurs is referred to as “thermally activated delayed fluorescence”.
  • S 1 -T 1 energy gap In order for a material to emit sufficient thermally activated delayed fluorescence at room temperature, the difference between the S 1 energy and T 1 energy of the material (hereinafter referred to as “S 1 -T 1 energy gap”) is sufficiently small. It is essential. The standard of this narrow S 1 -T 1 energy gap is about 0.24 eV. In fact, Non-Patent Document 1 reported a compound having an S 1 -T 1 energy gap of 0.24 eV, and thermal activity at 27 degrees Celsius. Type delayed fluorescence is observed.
  • the design guideline for a material having a narrow S 1 -T 1 energy gap is “an electron donating site by a ⁇ conjugated system and an electron withdrawing site by a ⁇ conjugated system are combined, and 2 The two ⁇ conjugate planes are twisted so that they do not line up in parallel. ”
  • all thermally activated delayed fluorescent materials proposed in Non-Patent Documents 2 to 7 follow this guideline.
  • the carbazole derivative is used in the light-emitting materials described in Non-Patent Documents 2, 3, and 7, and the acridine derivative is used in the light-emitting material described in Non-Patent Document 3.
  • the luminescent material described in 6 uses phenoxazine.
  • 1,3,5-triazine derivatives are described in Non-Patent Documents 3, 5, and 7 in the light-emitting materials described in Non-Patent Documents 2, 4, and 6. Cyanobenzene derivatives are used in these luminescent materials.
  • the heat-activated delayed fluorescent material has an essential condition that the S 1 -T 1 energy gap is narrow, but there are few basic skeleton types of materials that satisfy this condition. For example, when focusing on electron-withdrawing sites in the molecule, material compounds containing 1,3,5-triazine derivatives and cyanobenzene derivatives have been reported as described above, but other types of electron-withdrawing sites have been reported. There have been few reports of thermally activated delayed fluorescent materials containing sex sites.
  • an object of the present invention is to provide an organic EL element using a thermally activated delayed fluorescent material having a basic skeleton different from that of a conventional thermally activated delayed fluorescent material.
  • the inventor paid attention to cyanopyridine, which has never been seen before, as an electron-withdrawing site of the thermally activated delayed fluorescent material. Further, the present inventors have found that among compounds containing a cyanopyridine structure, there are compounds having a narrow S 1 -T 1 energy gap, which can be used as a thermally activated delayed fluorescent dopant material for an organic EL device. Furthermore, it has also been found that a compound containing cyanopyridine has a longer emission wavelength than a compound containing cyanobenzene as an electron withdrawing site.
  • the present invention includes a light emitting layer between a pair of electrodes, and the fluorescent dopant material of the light emitting layer has a difference between S 1 energy and T 1 energy of 0.24 eV or less, and is represented by the following general formula (I).
  • the present invention relates to an organic EL device which is a cyanopyridine compound.
  • R 1 to R 5 in the general formula (I) are each independently a hydrogen atom, a halogen atom, a cyano group, a nitro group, a silyl group, an alkyl group having 1 to 10 carbon atoms, an alkenyl group having 1 to 10 carbon atoms, An alkynyl group having 1 to 10 carbon atoms, a cycloalkyl group having 4 to 12 carbon atoms, a substituted or unsubstituted aryl group having 6 to 50 carbon atoms, a substituted or unsubstituted heteroaryl group having 6 to 50 elements, and the number of elements A substituted or unsubstituted heterocyclic group having 6 to 50 carbon atoms, an alkoxy group having 1 to 10 carbon atoms, a cycloalkoxy group having 4 to 12 carbon atoms, an aryloxy group having 1 to 10 carbon atoms, and an alkylthio group having 1 to 10 carbon atoms A cycloalky
  • One or more of the substituents that are not hydrogen atoms or cyano groups of R 1 to R 5 are preferably electron-donating substituents, specifically, substituted or unsubstituted having 6 to 50 elements.
  • the heteroaryl group is preferably.
  • the substituted or unsubstituted heteroaryl group having 6 to 50 elements which is an electron donating substituent is, for example, a substituted or unsubstituted carbazolyl group having 21 to 50 elements.
  • a compound represented by the following general formula (II) is preferable.
  • R 6 and R 7 in the general formula (II) are each independently one selected from the group consisting of a hydrogen atom, a halogen atom, a cyano group, a methyl group, a methoxy group, and a phenyl group, and R 6 and R 7 May be the same or different. Especially, it is preferable that both of R 6 and R 7 are hydrogen atoms.
  • Another example of a substituted or unsubstituted heteroaryl group having 6 to 50 elements that is an electron donating substituent is a substituted indolyl group having 50 or less elements.
  • a compound represented by the following general formula (III) is preferable.
  • R 8 and R 9 in the general formula (III) are each independently one selected from the group consisting of a hydrogen atom, a halogen atom, a cyano group, a methyl group, a methoxy group, and a phenyl group.
  • R 9 is preferably a hydrogen atom or a methyl group, and R 8 is preferably a hydrogen atom.
  • the S 1 energy of the fluorescent host material of the light emitting layer is higher than the S 1 energy of the dopant material of the light emitting layer, and the difference between these two types of S 1 energy is 1.5 eV or less. This is preferable because the luminous efficiency is further increased.
  • the host material preferably has a hole mobility / electron mobility ratio in the range of 0.002 to 500. Examples of host materials that satisfy such conditions include carbazole compounds, arylsilane compounds, and phosphorus oxide compounds.
  • this invention relates to a lighting fixture and display apparatus provided with said organic EL element.
  • a thermally activated delayed fluorescent material containing a cyanopyridine structure is used as a fluorescent dopant material, and therefore, the organic EL device can be an option for making the emission wavelength of the organic EL device longer. Further, in the fluorescent organic EL device using this fluorescent dopant material, the reverse intersystem crossing due to the thermal energy at room temperature occurs in the light emitting material, so that the ratio of the S 1 state of the light emitting material is increased and high luminous efficiency is achieved. Show.
  • FIG. 1 is a schematic cross-sectional view showing a configuration of an organic EL element according to an embodiment of the present invention.
  • This element includes an anode 2 and a cathode 4 on a substrate 1 and a light emitting unit 3 between the pair of electrodes.
  • the light emitting unit 3 has a plurality of layers, at least one of which is a light emitting layer.
  • the organic EL element of this invention should just have a light emitting layer between a pair of electrodes, and is not limited to the structure shown in FIG.
  • the light emitting unit 3 of the organic EL element generally has a configuration in which a plurality of layers are laminated, and each layer is a thin film containing an organic compound, a polymer compound, an inorganic compound, and a transition metal complex.
  • the layers constituting the light emitting unit 3 at least one layer is a light emitting layer formed of an amorphous film.
  • the light emitting unit 3 includes a hole injection layer 31 and a hole transport layer 32 on the anode 2 side of the light emitting layer 33, and an electron transport layer on the cathode 4 side of the light emitting layer 33.
  • a structure having 34 or an electron injection layer 35 can be employed.
  • the light emitting layer 33 is composed of a host material and a fluorescent dopant material.
  • the host material is a material having a high film forming property although its own light emitting ability is low.
  • the fluorescent dopant material is a material having a high light emission capability.
  • the content of the host material in the light emitting layer is 51% or more of the mass of the entire light emitting layer, and the content of the dopant material is 49% or less of the mass of the entire light emitting layer.
  • the content of the host material is 75% or more of the mass of the entire light emitting layer, and the content of the dopant material is 25% or less of the mass of the entire light emitting layer.
  • the fluorescent dopant material of the light emitting layer 33 As the fluorescent dopant material of the light emitting layer 33, a compound that causes reverse intersystem crossing from the T 1 state to the S 1 state at room temperature is used. Therefore, it is essential that the fluorescent dopant material has an S 1 -T 1 energy gap of 0.24 eV or less.
  • a cyanopyridine compound represented by the following general formula (I) having an S 1 -T 1 energy gap of 0.24 eV or less is used as the fluorescent dopant material of the light emitting layer. .
  • R 1 to R 5 in the general formula (I) are each independently a hydrogen atom, a halogen atom, a cyano group, a nitro group, a silyl group, an alkyl group having 1 to 10 carbon atoms, an alkenyl group having 1 to 10 carbon atoms, An alkynyl group having 1 to 10 carbon atoms, a cycloalkyl group having 4 to 12 carbon atoms, a substituted or unsubstituted aryl group having 6 to 50 carbon atoms, a substituted or unsubstituted heteroaryl group having 6 to 50 elements, and the number of elements A substituted or unsubstituted heterocyclic group having 6 to 50 carbon atoms, an alkoxy group having 1 to 10 carbon atoms, a cycloalkoxy group having 4 to 12 carbon atoms, an aryloxy group having 1 to 10 carbon atoms, and an alkylthio group having 1 to 10 carbon atoms A cycloalky
  • the molecule includes an electron donating site in addition to having a cyanopyridine structure as an electron withdrawing site. Therefore, it is preferable that one or more of the substituents that are neither a hydrogen atom nor a cyano group of R 1 to R 5 is a substituted or unsubstituted heteroaryl group having 6 to 50 elements. Further, in order to enhance the electron donating property of the substituent, one or more of the substituted or unsubstituted heteroaryl group having 6 to 50 elements is a substituted or unsubstituted carbazolyl group having 21 to 50 elements. Preferably there is.
  • R 6 and R 7 in the general formula (II) are each independently one selected from the group consisting of a hydrogen atom, a halogen atom, a cyano group, a methyl group, a methoxy group, and a phenyl group.
  • the carbazolyl group and the cyanopyridine are twisted and bonded by steric repulsion between the substituted or unsubstituted carbazolyl group and the cyano group of cyanopyridine.
  • the fluorescent dopant material in the present invention among the compounds represented by the general formula (II), R 6 and R 7, the compound are each independently a hydrogen atom or a methyl group is preferable, and R 6 and R 7 The following compound (1) in which both are hydrogen atoms is preferred.
  • the substituted or unsubstituted heteroaryl group having 6 to 50 elements is a substituted or unsubstituted indolyl group having 15 to 50 elements, the electron donating property is enhanced, so that the S 1 -T 1 energy gap Can be reduced.
  • the indolyl group as represented by the following formula (A), is preferably an element number 50 following substitutions indolyl group having a substituent R 10 at the 2-position.
  • R 8 and R 9 are each independently one type selected from the group consisting of a hydrogen atom, a halogen atom, a cyano group, a methyl group, a methoxy group, and a phenyl group; 10 is one selected from the group consisting of a halogen atom, a cyano group, a methyl group, a methoxy group and a phenyl group. Among them, R 10 is preferably a methyl group.
  • the substitution in which the cyano group and the substituent (A) are bonded to the adjacent carbon atom It is preferably a group.
  • Examples of the light emitting material having such a substituent and satisfying the condition that the S 1 -T 1 energy gap is 0.24 eV or less include a compound represented by the following general formula (III).
  • R 8 and R 9 in the general formula (III) are the same as described above.
  • the 2-methylindolyl group and the cyanopyridine are twisted and bonded by steric repulsion between the substituted or unsubstituted 2-methylindolyl group and the cyano group of cyanopyridine.
  • the fluorescent dopant material among the compounds represented by the above general formula (III), the following compound (2) or (3) wherein R 8 is a hydrogen atom and R 9 is a methyl group or a hydrogen atom is preferable.
  • a host material is used for the light emitting layer.
  • a compound that exhibits good film formability and ensures good dispersibility of the fluorescent dopant material is preferably used.
  • the host material desirably has both hole transport performance and electron transport performance.
  • the host material preferably has a small difference between the hole transport property and the electron transport property.
  • the ratio of hole mobility to electron mobility which is an index of transport performance, is higher.
  • the degree is divided by the lower degree of mobility, it is preferably 500 or less, that is, the ratio of hole mobility / electron mobility is preferably in the range of 0.002 to 500.
  • S 1 energy of the host material is preferably higher than S 1 energy of the fluorescent dopant material. More desirably, the difference between these two types of S 1 energy is smaller than 1.5 eV.
  • the difference between the S 1 energy of S 1 energy and the fluorescent dopant material of the host material more preferably at most 1.0 eV, more preferably not more than 0.5 eV.
  • Examples of the host material are not particularly limited as long as the above-described desirable elements are taken into consideration, and examples thereof include carbazole compounds, arylsilane compounds, and phosphorus oxide compounds.
  • An example of a carbazole compound is N, N′-dicarbazolyl-4-4′-biphenyl (referred to as “CBP”)
  • an example of an arylsilane compound is p-bis (triphenylsilyl) benzene (“ UGH2 ”)
  • examples of phosphorus oxide compounds include 4,4′-bis (diphenylphosphoryl) -1,1′-biphenyl (referred to as“ PO1 ”).
  • CBP has a hole mobility of 1.0 ⁇ 10 ⁇ 3 to 2.0 ⁇ 10 ⁇ 3 cm 2 / Vs and an electron mobility of 2.9 ⁇ 10 ⁇ 4 to 6.9 ⁇ . 10 ⁇ 4 cm 2 / Vs (Current Applied Physics, 5, 305 (2005)), and the ratio of hole mobility / electron mobility is about 1.4 to 6.9. It is preferably used as a host material having both hole transportability and electron transportability.
  • CBP has also been reported to have an S 1 energy measured in dichloromethane at room temperature of 3.48 eV (New Journal of Chemistry, 32, 1379 (2008)).
  • the compound (1) which is a fluorescent dopant material, has an S 1 energy of 2.99 eV in 2-methyltetrahydrofuran at 77K.
  • S 1 energy and the S 1 energy of the above CBP albeit difference in measurement conditions, even when the measurement conditions identical, S 1 energy of CBP compounds of the compounds in the examples herein (1) ( It is higher than the S 1 energy of 1), and the difference between the S 1 energies of both is 1.5 eV or less. That is, it can be said that CBP is a preferable compound as a host material of an organic EL device using the compound (1) as a thermally activated delayed fluorescent dopant material.
  • the configuration and composition of each element other than the light emitting layer are not particularly limited.
  • substrate 1 used for formation of an organic EL element For example, it selects from a transparent substrate like glass, a silicon substrate, a flexible film substrate, etc. suitably, and is used.
  • the substrate 1 preferably has a transmittance in the visible light region of 80% or more, and 95% or more, from the viewpoint of reducing loss of emitted light. More preferably.
  • the anode 2 provided on the substrate 1 is not particularly limited.
  • indium tin oxide (ITO), indium zinc oxide (IZO), SnO 2 , ZnO and the like can be mentioned.
  • ITO or IZO having high transparency can be preferably used from the viewpoint of extraction efficiency of light generated from the light emitting layer and ease of patterning.
  • the anode may be doped with one or more dopants such as aluminum, gallium, silicon, boron, and niobium, if necessary.
  • the anode 2 preferably has a transmittance in the visible light region of 70% or more, more preferably 80% or more, and particularly preferably 90% or more.
  • the method for forming the anode 2 on the substrate 1 is not particularly limited, and can be formed by, for example, a sputtering method or a thermal CVD method.
  • the stacked structure is not particularly limited. There are no particular restrictions on the method of forming each layer constituting the light emitting unit 3, and the layers can be formed by a vacuum deposition method, a spin coating method, or the like.
  • the light emitting unit 3 preferably has a hole transport layer 32.
  • the substance contained in the hole transport layer is preferably a compound that easily undergoes radical cationization.
  • arylamine compounds have many hole mobility in addition to being easily radical cationized and
  • a hole transport layer containing an arylamine compound a hole transport layer containing a triarylamine derivative is particularly preferred, and 4,4′-bis [N- (2-naphthyl) -N is more preferred.
  • -Phenyl-amino] biphenyl referred to as “ ⁇ -NPD” or “NPB”).
  • the light emitting unit 3 also preferably has an electron transport layer 34.
  • the substance contained in the electron transport layer is preferably a compound that easily undergoes radical anionization.
  • BCP 2,9-dimethyl-4,7-diphenyl-1,10-phenanthroline
  • Alq 3 tris [(8 -Hydroxyquinolinato)] Aluminum (III)
  • Alq 3 is preferably used from the viewpoint of versatility.
  • the material used for the cathode 4 is not particularly limited.
  • a metal having a small work function, an alloy thereof, a metal oxide, or the like is used.
  • the metal having a small work function include Li for an alkali metal and Mg and Ca for an alkaline earth metal.
  • a single metal made of rare earth metal or an alloy such as Al, In, or Ag may be used.
  • a metal complex compound containing at least one selected from the group consisting of alkaline earth metal ions and alkali metal ions is used as the organic layer in contact with the cathode. It can also be used.
  • a metal capable of reducing metal ions in the complex compound to a metal in a vacuum, such as Al, Zr, Ti, Si, or an alloy containing these metals, as the cathode.
  • ⁇ Organic EL elements should be kept to a minimum in use environment. Therefore, it is preferable that a part or the whole of the element is sealed with a sealing glass or a metal cap in an inert gas atmosphere, or is covered with a protective layer made of an ultraviolet curable resin or the like.
  • the organic EL device of the present invention since the dopant material of the light emitting layer causes an inverse intersystem crossing due to thermal energy at room temperature, the ratio of the S 1 state in the fluorescent dopant material is high and high internal quantum efficiency is exhibited.
  • the internal quantum efficiency at room temperature is expected to be 25% or more. Therefore, the organic EL device of the present invention preferably has an internal quantum efficiency of 25% or more at any temperature from 0 ° C. to 100 ° C.
  • the organic EL device of the present invention has an increase in luminous efficiency as the temperature rises in a temperature range from 0 ° C. to 100 ° C.
  • the organic EL element of the present invention is an energy-saving light source with low power consumption and can be effectively applied to a display device, a lighting device, and the like.
  • the obtained crystal was confirmed to be compound (1) by 1 H-NMR.
  • Compound (1) was dispersed in 2-methyltetrahydrofuran, cooled to 77 K using liquid nitrogen, and then measured for fluorescence and phosphorescence spectra using a spectrofluorometer (Hitachi F-7000).
  • the solid line in FIG. 2 is a fluorescence spectrum obtained from 320 nm incident light, and the broken line is a phosphorescence spectrum obtained from 320 nm incident light.
  • the peak ends on the short wavelength side of the fluorescence and phosphorescence spectra are defined as S 1 energy and T 1 energy, respectively.
  • S 1 energy and T 1 energy are defined as S 1 energy and T 1 energy, respectively.
  • compound (1) is a thermally activated delayed fluorescent material that causes reverse intersystem crossing from the T 1 state to the S 1 state at room temperature.
  • the position of the peak top of the fluorescence spectrum at 77 K of compound (1) was defined as the experimental value of the emission wavelength.
  • the emission wavelength of the compound (1) was 467 nm (position (C) in FIG. 2).
  • the S 1 -T 1 energy gap of the compound (1) was evaluated from the quantum chemical calculation according to the following procedures 1 to 4.
  • the quantum chemical calculation was performed using 6-31G (d) basis functions for all atoms.
  • Gaussian 09 Revision C.01 manufactured by Gaussian was used.
  • Procedure 1 Using the density functional theory using the M06-2X functional (hereinafter referred to as “M06-2X method”), the molecular structure that gives the lowest energy within the range of the S 0 state is calculated. the energy was defined as e 0.
  • Procedure 2 Calculate the molecular structure that gives the lowest energy within the range of the S 1 state using time-dependent density functional theory using the M06-2X functional (hereinafter referred to as “TD-M06-2X method”). The difference between the lowest energy e 1 and the energy e 0 obtained in the above procedure 1 was defined as E 1 .
  • Procedure 3 Using the TD-M06-2X method, calculate the molecular structure having the lowest energy within the range of the T 1 state, and calculate the difference between the lowest energy e 2 and the energy e 0 obtained in the above procedure 1 as E It was defined as 2 .
  • Procedure 4 The difference between E 1 and E 2 was defined as “calculated value of S 1 -T 1 energy gap”.
  • TD-M06-2X functional is used to calculate the molecular structure that has the lowest energy within the range of the S 1 state, and corresponds to the energy of the difference between the lowest energy e 3 and the energy e 1 obtained in step 2 above.
  • the wavelength was defined as “calculated value of emission wavelength”.
  • Table 1 shows experimental values and calculated values of the S 1 -T 1 energy gap and emission wavelength of compound (1), and calculated values of emission wavelength of comparative compound (1C).
  • the experimental value of the S 1 -T 1 energy gap of the compound (1) was 0.11 eV, and it was experimentally determined to be smaller than 0.24 eV. From this result, it can be seen that the compound (1) causes an inverse intersystem crossing from the T 1 state to the S 1 state at room temperature, that is, a thermally activated delayed fluorescent material.
  • the calculated value of the emission wavelength of the compound (1) was longer than the calculated value of the emission wavelength of the comparative compound (1C) in which the cyanopyridine moiety was changed to cyanobenzene.
  • the experimental value of the emission wavelength of 1,2,3,5-tetrakis (carbazolo-9-ryl) -4,6-dicyanobenzene (4CzIPN) is 507 nm. It has been reported that the calculated value of the emission wavelength of 4CzIPN determined by the same quantum chemistry calculation as described above is 429 nm, and the calculated value tends to be shorter than the experimental value.
  • the experimental value of the emission wavelength of the compound (1) is shorter than the experimental value of the emission wavelength of 4CzIPN, and the calculated value of the emission wavelength of the compound (1) is the experimental value of the emission wavelength of 4CzIPN. Shorter wavelength.
  • the calculated emission wavelength of compound (1) is longer than the experimental value of the emission wavelength in 2-methyltetrahydrofuran at 77K.
  • the calculated emission wavelength does not accurately represent the absolute value of the experimentally measured emission wavelength, but is useful for relative evaluation of the emission wavelength of a specific compound. You can say that.
  • the thermally activated delayed fluorescent material containing cyanopyridine is cyanobenzene. It can be seen that the emission wavelength is longer than that of the light-emitting material contained.
  • the calculated value of the S 1 -T 1 energy gap of the compounds (2) and (3) is smaller than that of the compound (1). Therefore, the experimental value of the S 1 -T 1 energy gap of the compounds (2) and (3) is predicted to be smaller than the experimental value of 0.11 eV of the S 1 -T 1 energy gap of the compound (1). Therefore, like the compound (1), the compounds (2) and (3) are considered to cause reverse intersystem crossing from the T 1 state to the S 1 state at room temperature. That is, the compounds (2) and (3) are considered to be thermally activated delayed fluorescent materials.
  • the calculated emission wavelength of the compounds (2) and (3) is longer than the calculated emission wavelength of the comparative compounds (2C) and (3C) in which the cyanopyridine moiety is changed to the cyanobenzene moiety.
  • the same tendency as in the case of comparison between the compound (1) and the comparative compound (1C) was exhibited.
  • the thermally activated delayed fluorescent material containing cyanopyridine has a longer emission wavelength than the light emitting material containing cyanobenzene.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

This organic EL element is provided with a light emitting layer between a pair of electrodes. The light emitting layer contains a host material and a fluorescent dopant material, and the content of the fluorescent dopant material in the light emitting layer is 49% or less of the total mass of the light emitting layer. The dopant material has a difference between the S1 energy and the T1 energy of 0.24 eV or less, and is composed of a cyanopyridine compound represented by general formula (I). In general formula (I), at least one of R1-R5 represents a cyano group, and at least one of R1-R5 represents a substituent that is not a hydrogen atom nor a cyano group.

Description

有機EL素子、ならびにそれを用いた照明器具及びディスプレイ装置ORGANIC EL ELEMENT AND LIGHTING EQUIPMENT AND DISPLAY DEVICE USING THE SAME
 本発明は、発光層がホスト材料と所定の蛍光ドーパント材料を有する有機エレクトロルミネセンス素子に関する。なお、以下において、有機エレクトロルミネッセンス素子を「有機EL素子」と称することがある。 The present invention relates to an organic electroluminescent device in which a light emitting layer has a host material and a predetermined fluorescent dopant material. Hereinafter, the organic electroluminescence element may be referred to as an “organic EL element”.
 有機EL素子は、一対の電極間に発光層を備える。発光層は、通常、ホスト材料とドーパント材料で構成される。ホスト材料は、それ自身の発光能力は低いが、成膜性の高い材料であり、発光能力の高い他の材料を混合して用いられる。ドーパント材料は、それ自身の発光能力が高い材料である。ドーパント材料としては、蛍光材料もしくは燐光材料が一般的に知られている。 The organic EL element includes a light emitting layer between a pair of electrodes. The light emitting layer is usually composed of a host material and a dopant material. Although the host material itself has a low light emission capability, it is a material having a high film forming property, and is used by mixing other materials having a high light emission capability. The dopant material is a material having a high light emission capability. As the dopant material, a fluorescent material or a phosphorescent material is generally known.
 ドーパント材料が蛍光材料である有機EL素子(以下、「蛍光有機EL素子」と称する)は、多くの場合、次の(1)~(3)の過程を経て蛍光を放出する。
(1)発光層のホスト材料においてホールと電子の再結合が起こり、ホスト材料は基底状態から励起状態に状態遷移する。この時、励起状態に至ったホスト材料の25%が一重項最低励起状態(以下、「S1状態」と称する)、75%が三重項最低励起状態(以下、「T1状態」と称する)になる。
(2)再結合の後、ホスト材料からドーパント材料へエネルギー移動が起こり、ドーパント材料が基底状態から励起状態に状態遷移する。この時、原則的に、S1状態とT1状態の存在比はホスト材料での値が踏襲される。すなわち、励起状態に至ったドーパント材料の25%がS1状態、75%がT1状態になる。
(3)T1状態にあるドーパント材料の全部とS1状態にあるドーパント材料の一部は熱失活する。そして、熱失活しなかったS1状態のドーパント材料が蛍光を放出する。
In many cases, an organic EL element whose dopant material is a fluorescent material (hereinafter referred to as “fluorescent organic EL element”) emits fluorescence through the following steps (1) to (3).
(1) Recombination of holes and electrons occurs in the host material of the light emitting layer, and the host material changes from the ground state to the excited state. At this time, 25% of the host material that has reached the excited state is the singlet lowest excited state (hereinafter referred to as “S 1 state”), and 75% is the triplet lowest excited state (hereinafter referred to as “T 1 state”). become.
(2) After recombination, energy transfer occurs from the host material to the dopant material, and the dopant material transitions from the ground state to the excited state. At this time, in principle, the value of the host material follows the abundance ratio between the S 1 state and the T 1 state. That is, 25% of the dopant material that has reached the excited state is in the S 1 state and 75% is in the T 1 state.
(3) All of the dopant material in the T 1 state and part of the dopant material in the S 1 state are thermally deactivated. Then, the dopant material in the S 1 state that has not been thermally deactivated emits fluorescence.
 多くの蛍光有機EL素子がこの過程を経るため、蛍光有機EL素子の内部量子効率の理論上限は25%であると考えられていた。そのため、特に照明器具やディスプレイ装置等の応用分野において、励起したドーパント材料の75%を占めるT状態からの発光を利用した有機EL素子、すなわち、燐光有機EL素子が注目され、種々のドーパント材料及びホスト材料が開発されている。例えば、特許文献1では、カルバゾール骨格を有する燐光性ホスト材料とイリジウムや白金等の金属錯体ドーパント材料とを用いることにより、低駆動電圧で外部量子効率に優れる燐光有機EL素子が提案されている。 Since many fluorescent organic EL devices go through this process, the theoretical upper limit of the internal quantum efficiency of the fluorescent organic EL device was considered to be 25%. Therefore, particularly in application fields such as lighting fixtures and display devices, organic EL elements utilizing light emission from the T 1 state, which occupies 75% of the excited dopant material, that is, phosphorescent organic EL elements are attracting attention. And host materials have been developed. For example, Patent Document 1 proposes a phosphorescent organic EL device having a low driving voltage and excellent external quantum efficiency by using a phosphorescent host material having a carbazole skeleton and a metal complex dopant material such as iridium or platinum.
 しかし、特許文献1にも記載されているように、燐光を高効率に放出する有機EL素子は、ドーパント材料として、イリジウムや白金のような貴金属を含んだ金属錯体化合物を用いる必要があり、材料価格が極めて高いことが問題であった。そのため、安価な蛍光材料を用いつつ、蛍光有機EL素子の理論上限である25%を超える内部量子効率を達成する技術が望まれてきた。 However, as described in Patent Document 1, an organic EL element that emits phosphorescence with high efficiency needs to use a metal complex compound containing a noble metal such as iridium or platinum as a dopant material. The problem was the extremely high price. Therefore, there has been a demand for a technology that achieves an internal quantum efficiency exceeding 25%, which is the theoretical upper limit of a fluorescent organic EL element, while using an inexpensive fluorescent material.
 蛍光有機EL素子の内部量子効率を25%以上にするための技術として、特許文献2~4及び非特許文献1~7において「熱活性型遅延蛍光材料を使用する」という技術が提案された。熱活性型遅延蛍光材料とは、S1エネルギーとT1エネルギーの差が小さいことを特徴とする蛍光ドーパント材料であり、2つの状態のエネルギー差が小さい故にT1状態からS1状態への熱エネルギーによる状態遷移(以下、S1状態からT1状態への遷移を「逆項間交差」と称する)が起きる。ここで、S1及びT1エネルギーは、それぞれS1及びT1状態と一重項基底状態(以下、「S0状態」と称する)との断熱遷移エネルギーであり、分光学的な手法等で測定される。S1エネルギーは77Kにおける蛍光スペクトルの短波長側ピーク端のエネルギーに対応し、T1エネルギーは77Kにおける燐光スペクトルの短波長側ピーク端のエネルギーに対応する。熱エネルギーによる逆項間交差が起きると、ドーパント材料のS1状態の割合が増加し、放出される蛍光の量も増加する。そして、使用する材料によっては、25%以上の内部量子効率を達成する有機EL素子が実現可能となる。なお、熱エネルギーによる逆項間交差が起きた後に放出される蛍光を「熱活性型遅延蛍光」と称する。 As a technique for increasing the internal quantum efficiency of the fluorescent organic EL element to 25% or more, Patent Documents 2 to 4 and Non-Patent Documents 1 to 7 propose a technique of “using a thermally activated delayed fluorescent material”. The thermally activated delayed fluorescent material is a fluorescent dopant material characterized in that the difference between S 1 energy and T 1 energy is small. Since the energy difference between two states is small, the heat from the T 1 state to the S 1 state. A state transition caused by energy (hereinafter, a transition from the S 1 state to the T 1 state is referred to as “reciprocal crossing”). Here, the S 1 and T 1 energies are adiabatic transition energies between the S 1 and T 1 states and the singlet ground state (hereinafter referred to as “S 0 state”), and are measured by a spectroscopic technique or the like. Is done. The S 1 energy corresponds to the energy at the short wavelength side peak end of the fluorescence spectrum at 77K, and the T 1 energy corresponds to the energy at the short wavelength side peak end of the phosphorescence spectrum at 77K. When inverse intersystem crossing due to thermal energy occurs, the proportion of the S 1 state of the dopant material increases and the amount of emitted fluorescence also increases. Depending on the material used, an organic EL element that achieves an internal quantum efficiency of 25% or more can be realized. In addition, the fluorescence emitted after the inverse intersystem crossing due to thermal energy occurs is referred to as “thermally activated delayed fluorescence”.
 ある材料が室温において十分な熱活性型遅延蛍光を放出するには、材料のS1エネルギーとT1エネルギーの差(以下、これを「S1-T1エネルギーギャップと称する」)が十分に小さいことが必須である。この狭いS1-T1エネルギーギャップの目安は0.24eV程度であり、実際、非特許文献1において、S1-T1エネルギーギャップが0.24eVの化合物が報告され、摂氏27度において熱活性型遅延蛍光が観測されている。 In order for a material to emit sufficient thermally activated delayed fluorescence at room temperature, the difference between the S 1 energy and T 1 energy of the material (hereinafter referred to as “S 1 -T 1 energy gap”) is sufficiently small. It is essential. The standard of this narrow S 1 -T 1 energy gap is about 0.24 eV. In fact, Non-Patent Document 1 reported a compound having an S 1 -T 1 energy gap of 0.24 eV, and thermal activity at 27 degrees Celsius. Type delayed fluorescence is observed.
 非特許文献2の記載によると、S1-T1エネルギーギャップが狭い材料の設計指針は、「π共役系による電子供与性部位とπ共役系による電子求引性部位を結合させ、かつ、2つのπ共役面が平行に並ばないよう捻れさせる」である。実際、非特許文献2~7で提案されている熱活性型遅延蛍光材料は、全てこの指針に従っている。ここで、各材料の電子供与性部位に注目すると、非特許文献2、3、及び7に記載の発光材料ではカルバゾール誘導体が、非特許文献3に記載の発光材料ではアクリジン誘導体が、非特許文献6に記載の発光材料ではフェノキサジンが使われている。また、各材料の電子求引性部位に注目すると、非特許文献2、4、及び6に記載の発光材料では1,3,5-トリアジン誘導体が、非特許文献3、5、及び7に記載の発光材料ではシアノベンゼン誘導体が使われている。 According to the description in Non-Patent Document 2, the design guideline for a material having a narrow S 1 -T 1 energy gap is “an electron donating site by a π conjugated system and an electron withdrawing site by a π conjugated system are combined, and 2 The two π conjugate planes are twisted so that they do not line up in parallel. ” In fact, all thermally activated delayed fluorescent materials proposed in Non-Patent Documents 2 to 7 follow this guideline. Here, paying attention to the electron-donating site of each material, the carbazole derivative is used in the light-emitting materials described in Non-Patent Documents 2, 3, and 7, and the acridine derivative is used in the light-emitting material described in Non-Patent Document 3. The luminescent material described in 6 uses phenoxazine. When attention is paid to the electron-withdrawing site of each material, 1,3,5-triazine derivatives are described in Non-Patent Documents 3, 5, and 7 in the light-emitting materials described in Non-Patent Documents 2, 4, and 6. Cyanobenzene derivatives are used in these luminescent materials.
特開2009-94486号公報JP 2009-94486 A 特開2004-241374号公報JP 2004-241374 A 特開2006-024830号公報JP 2006-024830 A 特開2012-193352号公報JP 2012-193352 A
 熱活性型遅延蛍光材料は、S1-T1エネルギーギャップが狭いことが必須の条件であるが、この条件を満たす材料の基礎的な骨格の種類は少ない。例えば、分子内の電子求引性部位に注目した場合、上記のように1,3,5-トリアジン誘導体やシアノベンゼン誘導体を含んだ材料化合物は報告されているが、他の種類の電子求引性部位を含む熱活性型遅延蛍光材料はあまり報告されていない。 The heat-activated delayed fluorescent material has an essential condition that the S 1 -T 1 energy gap is narrow, but there are few basic skeleton types of materials that satisfy this condition. For example, when focusing on electron-withdrawing sites in the molecule, material compounds containing 1,3,5-triazine derivatives and cyanobenzene derivatives have been reported as described above, but other types of electron-withdrawing sites have been reported. There have been few reports of thermally activated delayed fluorescent materials containing sex sites.
 このように、現状では熱活性型遅延蛍光材料の選択肢が少なく、発光波長が短波長のものが多いため、発光波長等の有機EL素子が示す特性の制御の自由度が低い。そこで、本発明は、従来の熱活性型遅延蛍光材料とは異なる基礎骨格を有する熱活性型遅延蛍光材料を用いた有機EL素子の提供を目的とする。 Thus, at present, there are few options for the thermally activated delayed fluorescent material, and many of the emission wavelengths are short, so the degree of freedom in controlling the characteristics of the organic EL element such as the emission wavelength is low. Therefore, an object of the present invention is to provide an organic EL element using a thermally activated delayed fluorescent material having a basic skeleton different from that of a conventional thermally activated delayed fluorescent material.
 上記課題に鑑み、発明者は、熱活性型遅延蛍光材料の電子求引性部位として、これまでに例のないシアノピリジンに注目し、検討した。そして、シアノピリジン構造を含む化合物の中には、S1-T1エネルギーギャップが狭い化合物が存在し、有機EL素子の熱活性型遅延蛍光ドーパント材料として使用できることを見出した。さらに、電子求引性部位としてシアノベンゼンを含む化合物と比較すると、シアノピリジンを含む化合物は発光波長が長波長になることも見出した。 In view of the above problems, the inventor paid attention to cyanopyridine, which has never been seen before, as an electron-withdrawing site of the thermally activated delayed fluorescent material. Further, the present inventors have found that among compounds containing a cyanopyridine structure, there are compounds having a narrow S 1 -T 1 energy gap, which can be used as a thermally activated delayed fluorescent dopant material for an organic EL device. Furthermore, it has also been found that a compound containing cyanopyridine has a longer emission wavelength than a compound containing cyanobenzene as an electron withdrawing site.
 すなわち、本発明は、一対の電極間に発光層を備え、発光層の蛍光ドーパント材料が、S1エネルギーとT1エネルギーの差が0.24eV以下であって、下記一般式(I)で表されるシアノピリジン系化合物である、有機EL素子に関する。 That is, the present invention includes a light emitting layer between a pair of electrodes, and the fluorescent dopant material of the light emitting layer has a difference between S 1 energy and T 1 energy of 0.24 eV or less, and is represented by the following general formula (I). The present invention relates to an organic EL device which is a cyanopyridine compound.
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000005
 一般式(I)のR1~R5は、各々独立に、水素原子、ハロゲン原子、シアノ基、ニトロ基、シリル基、炭素数1~10のアルキル基、炭素数1~10のアルケニル基、炭素数1~10のアルキニル基、炭素数4~12のシクロアルキル基、炭素数6~50の置換又は無置換のアリール基、元素数6~50の置換又は無置換のヘテロアリール基、元素数6~50の置換又は無置換のヘテロ環基、炭素数1~10のアルコキシ基、炭素数4~12のシクロアルコキシ基、炭素数1~10のアリールオキシ基、炭素数1~10のアルキルチオ基、炭素数4~12のシクロアルキルチオ基、炭素数6~12のアリールチオ基、炭素数1~10のアルコキシカルボニル基、炭素数6~12のアリールオキシカルボニル基、炭素数1~10のスルファモイル基、炭素数1~10のアシル基、炭素数1~10のアシルオキシ基、炭素数1~10のアミド基、炭素数1~10のカルボニル基、炭素数1~10のウレイド基、炭素数1~10のスルフィニル基、炭素数1~10のアルキルスルホニル基、炭素数6~12のアリールスルホニリ基、及び炭素数1~10のアミノ基からなる群から選ばれる1種である。ただし、R1~R5の少なくとも1つはシアノ基であり、R1~R5の少なくとも1つは、水素原子でもシアノ基でもない置換基である。 R 1 to R 5 in the general formula (I) are each independently a hydrogen atom, a halogen atom, a cyano group, a nitro group, a silyl group, an alkyl group having 1 to 10 carbon atoms, an alkenyl group having 1 to 10 carbon atoms, An alkynyl group having 1 to 10 carbon atoms, a cycloalkyl group having 4 to 12 carbon atoms, a substituted or unsubstituted aryl group having 6 to 50 carbon atoms, a substituted or unsubstituted heteroaryl group having 6 to 50 elements, and the number of elements A substituted or unsubstituted heterocyclic group having 6 to 50 carbon atoms, an alkoxy group having 1 to 10 carbon atoms, a cycloalkoxy group having 4 to 12 carbon atoms, an aryloxy group having 1 to 10 carbon atoms, and an alkylthio group having 1 to 10 carbon atoms A cycloalkylthio group having 4 to 12 carbon atoms, an arylthio group having 6 to 12 carbon atoms, an alkoxycarbonyl group having 1 to 10 carbon atoms, an aryloxycarbonyl group having 6 to 12 carbon atoms, a sulfamoyl having 1 to 10 carbon atoms Group, acyl group having 1 to 10 carbon atoms, acyloxy group having 1 to 10 carbon atoms, amide group having 1 to 10 carbon atoms, carbonyl group having 1 to 10 carbon atoms, ureido group having 1 to 10 carbon atoms, carbon number 1 It is one selected from the group consisting of ˜10 sulfinyl groups, alkylsulfonyl groups having 1 to 10 carbon atoms, arylsulfonyl groups having 6 to 12 carbon atoms, and amino groups having 1 to 10 carbon atoms. However, at least one of R 1 to R 5 is a cyano group, and at least one of R 1 to R 5 is a substituent that is neither a hydrogen atom nor a cyano group.
 前記R1~R5の水素原子でもシアノ基でもない置換基は、その1つ以上が、電子供与性の置換基であることが好ましく、具体的には元素数6~50の置換又は無置換のヘテロアリール基であることが好ましい。 One or more of the substituents that are not hydrogen atoms or cyano groups of R 1 to R 5 are preferably electron-donating substituents, specifically, substituted or unsubstituted having 6 to 50 elements. The heteroaryl group is preferably.
 電子供与性の置換基である元素数6~50の置換又は無置換のヘテロアリール基は、例えば、元素数21~50の置換又は無置換のカルバゾリル基である。このような発光材料の具体例としては、下記一般式(II)で表される化合物が好ましい。 The substituted or unsubstituted heteroaryl group having 6 to 50 elements which is an electron donating substituent is, for example, a substituted or unsubstituted carbazolyl group having 21 to 50 elements. As a specific example of such a light emitting material, a compound represented by the following general formula (II) is preferable.
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000006
 一般式(II)のR6及びR7は、各々独立に、水素原子、ハロゲン原子、シアノ基、メチル基、メトキシ基、フェニル基からなる群から選ばれる1種であり、R6とR7はそれぞれ同じであっても異なっていても良い。中でも、R6及びR7は、双方が水素原子であることが好ましい。 R 6 and R 7 in the general formula (II) are each independently one selected from the group consisting of a hydrogen atom, a halogen atom, a cyano group, a methyl group, a methoxy group, and a phenyl group, and R 6 and R 7 May be the same or different. Especially, it is preferable that both of R 6 and R 7 are hydrogen atoms.
 また、電子供与性の置換基である元素数6~50の置換又は無置換のヘテロアリール基の他の例としては、元素数50以下の置換インドリル基が挙げられる。このような置換基を有する蛍光ドーパント材料の中でも、下記一般式(III)で表される化合物が好ましい。 Another example of a substituted or unsubstituted heteroaryl group having 6 to 50 elements that is an electron donating substituent is a substituted indolyl group having 50 or less elements. Among the fluorescent dopant materials having such a substituent, a compound represented by the following general formula (III) is preferable.
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000007
 一般式(III)のR8及びR9は、各々独立に、水素原子、ハロゲン原子、シアノ基、メチル基、メトキシ基、フェニル基からなる群から選ばれる1種である。R9は、水素原子又はメチル基であることが好ましく、R8は、水素原子であることが好ましい。 R 8 and R 9 in the general formula (III) are each independently one selected from the group consisting of a hydrogen atom, a halogen atom, a cyano group, a methyl group, a methoxy group, and a phenyl group. R 9 is preferably a hydrogen atom or a methyl group, and R 8 is preferably a hydrogen atom.
 本発明の有機EL素子において、発光層の蛍光ホスト材料のS1エネルギーが発光層のドーパント材料のS1エネルギーよりも高く、かつ、これら2種類のS1エネルギーの差が1.5eV以下であると、さらに発光効率が高まるので好ましい。また、ホスト材料は、正孔移動度と電子移動度の比が、0.002~500の範囲内であることが好ましい。このような条件を満たすホスト材料としては、カルバゾール系化合物、アリールシラン系化合物、酸化リン系化合物等が挙げられる。 In the organic EL device of the present invention, the S 1 energy of the fluorescent host material of the light emitting layer is higher than the S 1 energy of the dopant material of the light emitting layer, and the difference between these two types of S 1 energy is 1.5 eV or less. This is preferable because the luminous efficiency is further increased. The host material preferably has a hole mobility / electron mobility ratio in the range of 0.002 to 500. Examples of host materials that satisfy such conditions include carbazole compounds, arylsilane compounds, and phosphorus oxide compounds.
 さらに、本発明は、上記の有機EL素子を備える照明器具およびディスプレイ装置に関する。 Furthermore, this invention relates to a lighting fixture and display apparatus provided with said organic EL element.
 本発明の有機EL素子は、蛍光ドーパント材料としてシアノピリジン構造を含む熱活性型遅延蛍光材料が用いられるため、有機EL素子の発光波長をより長波長化するための選択肢となり得る。また、この蛍光ドーパント材料を用いた蛍光有機EL素子は、室温の熱エネルギーによる逆項間交差が、発光材料の中で起きるため、発光材料のS1状態の割合が増加し、高い発光効率を示す。 In the organic EL device of the present invention, a thermally activated delayed fluorescent material containing a cyanopyridine structure is used as a fluorescent dopant material, and therefore, the organic EL device can be an option for making the emission wavelength of the organic EL device longer. Further, in the fluorescent organic EL device using this fluorescent dopant material, the reverse intersystem crossing due to the thermal energy at room temperature occurs in the light emitting material, so that the ratio of the S 1 state of the light emitting material is increased and high luminous efficiency is achieved. Show.
本発明の実施形態に係る有機EL素子の構成を表す模式断面構成である。It is a schematic cross-sectional structure showing the structure of the organic EL element which concerns on embodiment of this invention. 化合物(1)の蛍光及び燐光スペクトルである。It is the fluorescence and phosphorescence spectrum of a compound (1).
 以下、本発明の実施形態を、図面に基づいて詳細に説明する。図1は、本発明の実施形態に係る有機EL素子の構成を表す模式断面図である。この素子は、基板1上に、陽極2及び陰極4を備え、これら一対の電極間に発光ユニット3を備える。発光ユニット3は複数の層を有し、そのうちの少なくとも1つは発光層である。なお、本発明の有機EL素子は、一対の電極間に発光層を有していればよく、図1に示す構成に限定されるものではない。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. FIG. 1 is a schematic cross-sectional view showing a configuration of an organic EL element according to an embodiment of the present invention. This element includes an anode 2 and a cathode 4 on a substrate 1 and a light emitting unit 3 between the pair of electrodes. The light emitting unit 3 has a plurality of layers, at least one of which is a light emitting layer. In addition, the organic EL element of this invention should just have a light emitting layer between a pair of electrodes, and is not limited to the structure shown in FIG.
 有機EL素子の発光ユニット3は、一般に複数の層が積層された構成を有しており、各層は、有機化合物、高分子化合物、無機化合物、遷移金属錯体を含む薄膜である。発光ユニット3を構成する層のうち、少なくとも1層はアモルファス膜で構成される発光層である。発光ユニット3の積層構成としては、例えば、図1に示すように、発光層33の陽極2側にホール注入層31やホール輸送層32を有し、発光層33の陰極4側に電子輸送層34や電子注入層35を有する構造を採用できる。 The light emitting unit 3 of the organic EL element generally has a configuration in which a plurality of layers are laminated, and each layer is a thin film containing an organic compound, a polymer compound, an inorganic compound, and a transition metal complex. Among the layers constituting the light emitting unit 3, at least one layer is a light emitting layer formed of an amorphous film. For example, as shown in FIG. 1, the light emitting unit 3 includes a hole injection layer 31 and a hole transport layer 32 on the anode 2 side of the light emitting layer 33, and an electron transport layer on the cathode 4 side of the light emitting layer 33. A structure having 34 or an electron injection layer 35 can be employed.
[発光層の構成]
 発光層33は、ホスト材料と蛍光ドーパント材料で構成される。ここで、ホスト材料は、それ自身の発光能力は低いが、成膜性の高い材料である。蛍光ドーパント材料は、それ自身の発光能力が高い材料である。発光層におけるホスト材料の含有量は、発光層全体の質量の51%以上であり、ドーパント材料の含有量は、発光層全体の質量の49%以下である。好ましくは、ホスト材料の含有量は、発光層全体の質量の75%以上であり、ドーパント材料の含有量は発光層全体の質量の25%以下である。
[Configuration of light emitting layer]
The light emitting layer 33 is composed of a host material and a fluorescent dopant material. Here, the host material is a material having a high film forming property although its own light emitting ability is low. The fluorescent dopant material is a material having a high light emission capability. The content of the host material in the light emitting layer is 51% or more of the mass of the entire light emitting layer, and the content of the dopant material is 49% or less of the mass of the entire light emitting layer. Preferably, the content of the host material is 75% or more of the mass of the entire light emitting layer, and the content of the dopant material is 25% or less of the mass of the entire light emitting layer.
<ドーパント材料>
 本発明の有機EL素子では、発光層33の蛍光ドーパント材料として、室温においてT1状態からS1状態への逆項間交差を起こす化合物が用いられる。そのため、蛍光ドーパント料は、S1-T1エネルギーギャップが0.24eV以下であることが必須である。本発明の有機EL素子では、発光層の蛍光ドーパント材料として、S1-T1エネルギーギャップが0.24eV以下であり、かつ、下記一般式(I)で表されるシアノピリジン系化合物が用いられる。
<Dopant material>
In the organic EL device of the present invention, as the fluorescent dopant material of the light emitting layer 33, a compound that causes reverse intersystem crossing from the T 1 state to the S 1 state at room temperature is used. Therefore, it is essential that the fluorescent dopant material has an S 1 -T 1 energy gap of 0.24 eV or less. In the organic EL device of the present invention, a cyanopyridine compound represented by the following general formula (I) having an S 1 -T 1 energy gap of 0.24 eV or less is used as the fluorescent dopant material of the light emitting layer. .
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000008
 一般式(I)のR1~R5は、各々独立に、水素原子、ハロゲン原子、シアノ基、ニトロ基、シリル基、炭素数1~10のアルキル基、炭素数1~10のアルケニル基、炭素数1~10のアルキニル基、炭素数4~12のシクロアルキル基、炭素数6~50の置換又は無置換のアリール基、元素数6~50の置換又は無置換のヘテロアリール基、元素数6~50の置換又は無置換のヘテロ環基、炭素数1~10のアルコキシ基、炭素数4~12のシクロアルコキシ基、炭素数1~10のアリールオキシ基、炭素数1~10のアルキルチオ基、炭素数4~12のシクロアルキルチオ基、炭素数6~12のアリールチオ基、炭素数1~10のアルコキシカルボニル基、炭素数6~12のアリールオキシカルボニル基、炭素数1~10のスルファモイル基、炭素数1~10のアシル基、炭素数1~10のアシルオキシ基、炭素数1~10のアミド基、炭素数1~10のカルボニル基、炭素数1~10のウレイド基、炭素数1~10のスルフィニル基、炭素数1~10のアルキルスルホニル基、炭素数6~12のアリールスルホニリ基、及び炭素数1~10のアミノ基からなる群から選ばれる1種である。ただし、R1~R5の少なくとも1つはシアノ基であり、R1~R5の少なくとも1つは、水素原子でもシアノ基でもない置換基である。 R 1 to R 5 in the general formula (I) are each independently a hydrogen atom, a halogen atom, a cyano group, a nitro group, a silyl group, an alkyl group having 1 to 10 carbon atoms, an alkenyl group having 1 to 10 carbon atoms, An alkynyl group having 1 to 10 carbon atoms, a cycloalkyl group having 4 to 12 carbon atoms, a substituted or unsubstituted aryl group having 6 to 50 carbon atoms, a substituted or unsubstituted heteroaryl group having 6 to 50 elements, and the number of elements A substituted or unsubstituted heterocyclic group having 6 to 50 carbon atoms, an alkoxy group having 1 to 10 carbon atoms, a cycloalkoxy group having 4 to 12 carbon atoms, an aryloxy group having 1 to 10 carbon atoms, and an alkylthio group having 1 to 10 carbon atoms A cycloalkylthio group having 4 to 12 carbon atoms, an arylthio group having 6 to 12 carbon atoms, an alkoxycarbonyl group having 1 to 10 carbon atoms, an aryloxycarbonyl group having 6 to 12 carbon atoms, a sulfamoyl having 1 to 10 carbon atoms Group, acyl group having 1 to 10 carbon atoms, acyloxy group having 1 to 10 carbon atoms, amide group having 1 to 10 carbon atoms, carbonyl group having 1 to 10 carbon atoms, ureido group having 1 to 10 carbon atoms, carbon number 1 It is one selected from the group consisting of ˜10 sulfinyl groups, alkylsulfonyl groups having 1 to 10 carbon atoms, arylsulfonyl groups having 6 to 12 carbon atoms, and amino groups having 1 to 10 carbon atoms. However, at least one of R 1 to R 5 is a cyano group, and at least one of R 1 to R 5 is a substituent that is neither a hydrogen atom nor a cyano group.
 S1-T1エネルギーギャップを0.24eV以下にするためには、分子内に、電子求引性部位としてシアノピリジン構造を有することに加えて、電子供与性部位を含むことが好ましい。そのため、前記R1~R5の水素原子でもシアノ基でもない置換基は、その1つ以上が、元素数6~50の置換又は無置換のヘテロアリール基であることが好ましい。さらに、この置換基の電子供与性を強くするためには、元素数6~50の置換又は無置換のヘテロアリール基の1つ以上が、元素数21~50の置換又は無置換のカルバゾリル基であることが好ましい。 In order to make the S 1 -T 1 energy gap 0.24 eV or less, it is preferable that the molecule includes an electron donating site in addition to having a cyanopyridine structure as an electron withdrawing site. Therefore, it is preferable that one or more of the substituents that are neither a hydrogen atom nor a cyano group of R 1 to R 5 is a substituted or unsubstituted heteroaryl group having 6 to 50 elements. Further, in order to enhance the electron donating property of the substituent, one or more of the substituted or unsubstituted heteroaryl group having 6 to 50 elements is a substituted or unsubstituted carbazolyl group having 21 to 50 elements. Preferably there is.
 さらに、S1-T1エネルギーギャップを小さくするためには、分子内の電子求引性部位であるシアノピリジン構造と電子供与性部位であるカルバゾリル基を捻れさせながら結合させるのが好ましい。このような発光材料の例としては、下記一般式(II)で表される化合物が挙げられる。 Further, in order to reduce the S 1 -T 1 energy gap, it is preferable to bond the cyanopyridine structure, which is an electron withdrawing site, in the molecule and the carbazolyl group, which is an electron donating site, while twisting. Examples of such a light emitting material include compounds represented by the following general formula (II).
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000009
 一般式(II)のR6及びR7は、各々独立に、水素原子、ハロゲン原子、シアノ基、メチル基、メトキシ基、フェニル基からなる群から選ばれる1種である。一般式(II)で表される化合物は、置換あるいは無置換のカルバゾリル基とシアノピリジンのシアノ基との立体反発により、カルバゾリル基とシアノピリジンが捻れながら結合する。 R 6 and R 7 in the general formula (II) are each independently one selected from the group consisting of a hydrogen atom, a halogen atom, a cyano group, a methyl group, a methoxy group, and a phenyl group. In the compound represented by the general formula (II), the carbazolyl group and the cyanopyridine are twisted and bonded by steric repulsion between the substituted or unsubstituted carbazolyl group and the cyano group of cyanopyridine.
 本発明において蛍光ドーパント材料としては、上記一般式(II)で表される化合物の中でも、R6及びR7が、それぞれ独立に水素原子又はメチル基である化合物が好ましく、中でもR6及びR7の双方が水素原子である下記化合物(1)が好ましい。 The fluorescent dopant material in the present invention, among the compounds represented by the general formula (II), R 6 and R 7, the compound are each independently a hydrogen atom or a methyl group is preferable, and R 6 and R 7 The following compound (1) in which both are hydrogen atoms is preferred.
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000010
 元素数6~50の置換又は無置換のヘテロアリール基が、元素数15~50の置換又は無置換のインドリル基である場合にも、電子供与性が強くなるため、S1-T1エネルギーギャップを小さくすることができる。S1-T1エネルギーギャップを0.24eV以下とするためには、分子内の電子求引性部位であるシアノピリジンと電子供与性部位であるインドリル基を捻れさせながら結合させるのが好ましい。そのため、上記インドリル基は、下記式(A)で表されるように、2位に置換基R10を有する元素数50以下の置換インドリル基であることが好ましい。 Even when the substituted or unsubstituted heteroaryl group having 6 to 50 elements is a substituted or unsubstituted indolyl group having 15 to 50 elements, the electron donating property is enhanced, so that the S 1 -T 1 energy gap Can be reduced. In order to set the S 1 -T 1 energy gap to 0.24 eV or less, it is preferable that cyanopyridine, which is an electron withdrawing site, and an indolyl group, which is an electron donating site, are bonded while twisting. Therefore, the indolyl group, as represented by the following formula (A), is preferably an element number 50 following substitutions indolyl group having a substituent R 10 at the 2-position.
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000011
 上記置換基(A)において、のR8及びR9は、各々独立に、水素原子、ハロゲン原子、シアノ基、メチル基、メトキシ基、及びフェニル基からなる群から選ばれる1種であり、R10は、ハロゲン原子、シアノ基、メチル基、メトキシ基及びフェニル基からなる群から選ばれる1種である。中でも、R10はメチル基であることが好ましい。また、シアノピリジンとインドリル基の結合を捻じれさせ、両者のπ共役系を非同一平面に存在させるためには、シアノ基と上記置換基(A)とが、隣接する炭素原子に結合した置換基であることが好ましい。 In the substituent (A), R 8 and R 9 are each independently one type selected from the group consisting of a hydrogen atom, a halogen atom, a cyano group, a methyl group, a methoxy group, and a phenyl group; 10 is one selected from the group consisting of a halogen atom, a cyano group, a methyl group, a methoxy group and a phenyl group. Among them, R 10 is preferably a methyl group. In addition, in order to twist the bond between the cyanopyridine and the indolyl group so that both π-conjugated systems exist in a non-coplanar plane, the substitution in which the cyano group and the substituent (A) are bonded to the adjacent carbon atom It is preferably a group.
 このような置換基を有し、かつS1-T1エネルギーギャップが0.24eV以下の条件を満たす発光材料の例としては、下記一般式(III)で表される化合物が挙げられる。 Examples of the light emitting material having such a substituent and satisfying the condition that the S 1 -T 1 energy gap is 0.24 eV or less include a compound represented by the following general formula (III).
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000012
 一般式(III)のR8及びR9は、上記と同様である。一般式(III)で表される化合物は、置換あるいは無置換の2-メチルインドリル基とシアノピリジンのシアノ基との立体反発により、2-メチルインドリル基とシアノピリジンが捻れながら結合する。 R 8 and R 9 in the general formula (III) are the same as described above. In the compound represented by the general formula (III), the 2-methylindolyl group and the cyanopyridine are twisted and bonded by steric repulsion between the substituted or unsubstituted 2-methylindolyl group and the cyano group of cyanopyridine.
 蛍光ドーパント材料としては、上記一般式(III)で表される化合物の中でも、Rが水素原子であり、R9がメチル基又は水素原子である下記化合物(2)又は(3)が好ましい。 As the fluorescent dopant material, among the compounds represented by the above general formula (III), the following compound (2) or (3) wherein R 8 is a hydrogen atom and R 9 is a methyl group or a hydrogen atom is preferable.
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000013
<ホスト材料>
 発光層には、上記の蛍光ドーパント材料に加えて、ホスト材料が用いられる。ホスト材料としては、良好な成膜性を示し、かつ、蛍光ドーパント材料の良好な分散性を確保する化合物が好ましく用いられる。ホスト材料は、ホール輸送性能と電子輸送性能の双方を併せ持つことが望ましい。すなわちホスト材料は、ホール輸送性と電子輸送性の差が小さいことが好ましく、具体的には、輸送性能の指標であるホール(正孔)移動度と電子移動度の比は、高いほうの移動度を低いほうの移動度で除した場合に500以下となること、すなわち、正孔移動度/電子移動度の比が0.002~500の範囲内であることが好ましい。
<Host material>
In addition to the fluorescent dopant material described above, a host material is used for the light emitting layer. As the host material, a compound that exhibits good film formability and ensures good dispersibility of the fluorescent dopant material is preferably used. The host material desirably has both hole transport performance and electron transport performance. In other words, the host material preferably has a small difference between the hole transport property and the electron transport property. Specifically, the ratio of hole mobility to electron mobility, which is an index of transport performance, is higher. When the degree is divided by the lower degree of mobility, it is preferably 500 or less, that is, the ratio of hole mobility / electron mobility is preferably in the range of 0.002 to 500.
 ホスト材料のS1状態から蛍光ドーパント材料のS1状態へのエネルギー移動を活発に起こすという観点から、ホスト材料のS1エネルギーは蛍光ドーパント材料のS1エネルギーよりも高いことが望ましい。さらに望ましくは、これら2種類のS1エネルギーの差が1.5eVよりも小さいことである。ホスト材料のS1エネルギーと蛍光ドーパント材料のS1エネルギーとの差は、1.0eV以下がより好ましく、0.5eV以下がさらに好ましい。 The energy transfer to S 1 state of the fluorescent dopant material from the viewpoint of actively causing the S 1 state of the host material, S 1 energy of the host material is preferably higher than S 1 energy of the fluorescent dopant material. More desirably, the difference between these two types of S 1 energy is smaller than 1.5 eV. The difference between the S 1 energy of S 1 energy and the fluorescent dopant material of the host material, more preferably at most 1.0 eV, more preferably not more than 0.5 eV.
 ホスト材料の例としては、上記の望ましい要素を考慮していれば特に制限はなく、カルバゾール系化合物、アリールシラン系化合物、酸化リン系化合物が挙げられる。カルバゾール系化合物の例としてはN,N’-ジカルバゾリル-4-4’-ビフェニル(「CBP」と称される)が、アリールシラン系化合物の例としてはp-ビス(トリフェニルシリル)ベンゼン(「UGH2」と称される)が、酸化リン系化合物の例としては4,4’-ビス(ジフェニルフォスフォリル)-1,1’-ビフェニル(「PO1」と称される)がある。 Examples of the host material are not particularly limited as long as the above-described desirable elements are taken into consideration, and examples thereof include carbazole compounds, arylsilane compounds, and phosphorus oxide compounds. An example of a carbazole compound is N, N′-dicarbazolyl-4-4′-biphenyl (referred to as “CBP”), and an example of an arylsilane compound is p-bis (triphenylsilyl) benzene (“ UGH2 ”), but examples of phosphorus oxide compounds include 4,4′-bis (diphenylphosphoryl) -1,1′-biphenyl (referred to as“ PO1 ”).
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000014
 上記ホスト材料の中でも、CBPは、正孔移動度が1.0×10-3~2.0×10-3cm/Vs、電子移動度が2.9×10-4~6.9×10-4cm/Vsであることが報告されており(Current Applied Physics, 5, 305(2005))、ホール移動度/電子移動度の比が1.4~6.9程度であることから、ホール輸送性と電子輸送性の双方を併せ持つホスト材料として好適に用いられる。 Among the above host materials, CBP has a hole mobility of 1.0 × 10 −3 to 2.0 × 10 −3 cm 2 / Vs and an electron mobility of 2.9 × 10 −4 to 6.9 ×. 10 −4 cm 2 / Vs (Current Applied Physics, 5, 305 (2005)), and the ratio of hole mobility / electron mobility is about 1.4 to 6.9. It is preferably used as a host material having both hole transportability and electron transportability.
 また、CBPは、室温のジクロロメタン中で測定されたSエネルギーが3.48eVであることが報告されている(New Journal of Chemistry, 32, 1379 (2008))。後に実施例で示すように、蛍光ドーパント材料である上記化合物(1)は、77Kの2-メチルテトラヒドロフラン中でのSエネルギーが2.99eVである。本明細書の実施例における化合物(1)のSエネルギーと上記のCBPのSエネルギーは、測定条件の差異はあるが、測定条件を同一とした場合でも、CBPのSエネルギーは化合物(1)のSエネルギーよりも高く、かつ、両者のSエネルギーの差は1.5eV以下である。つまり、CBPは、化合物(1)を熱活性型遅延蛍光ドーパント材料として用いる有機EL素子のホスト材料として好ましい化合物であるといえる。 CBP has also been reported to have an S 1 energy measured in dichloromethane at room temperature of 3.48 eV (New Journal of Chemistry, 32, 1379 (2008)). As will be shown later in Examples, the compound (1), which is a fluorescent dopant material, has an S 1 energy of 2.99 eV in 2-methyltetrahydrofuran at 77K. S 1 energy and the S 1 energy of the above CBP, albeit difference in measurement conditions, even when the measurement conditions identical, S 1 energy of CBP compounds of the compounds in the examples herein (1) ( It is higher than the S 1 energy of 1), and the difference between the S 1 energies of both is 1.5 eV or less. That is, it can be said that CBP is a preferable compound as a host material of an organic EL device using the compound (1) as a thermally activated delayed fluorescent dopant material.
[発光層以外の有機EL素子の構成]
 本発明の有機EL素子において、発光層以外の各要素の構成や組成は特に限定されない。有機EL素子の形成に用いられる基板1については特に制限はなく、例えば、ガラスのような透明基板、シリコン基板、フレキシブルなフィルム基板等から適宜選択され、使用される。基板側から光を取り出すボトムエミッション型の有機EL素子の場合、基板1は、発光する光のロスを減少する観点から、可視光域における透過率が80%以上であることが好ましく、95%以上であることがさらに好ましい。
[Configuration of organic EL element other than light emitting layer]
In the organic EL device of the present invention, the configuration and composition of each element other than the light emitting layer are not particularly limited. There is no restriction | limiting in particular about the board | substrate 1 used for formation of an organic EL element, For example, it selects from a transparent substrate like glass, a silicon substrate, a flexible film substrate, etc. suitably, and is used. In the case of a bottom emission type organic EL device that extracts light from the substrate side, the substrate 1 preferably has a transmittance in the visible light region of 80% or more, and 95% or more, from the viewpoint of reducing loss of emitted light. More preferably.
 基板1上に設けられる陽極2についても特に制限はない。例えば、インジウム・スズ酸化物(ITO)、インジウム・亜鉛酸化物(IZO)、SnO2、ZnO等があげられる。中でも、発光層から発生した光の取り出し効率やパターニングの容易性の観点から、透明性が高いITOあるいはIZOを好ましく使用することができる。また、陽極中には、必要に応じて、アルミニウム、ガリウム、ケイ素、ホウ素、二オブ等の1種以上のドーパントがドーピングされていてもよい。 The anode 2 provided on the substrate 1 is not particularly limited. For example, indium tin oxide (ITO), indium zinc oxide (IZO), SnO 2 , ZnO and the like can be mentioned. Among them, ITO or IZO having high transparency can be preferably used from the viewpoint of extraction efficiency of light generated from the light emitting layer and ease of patterning. Further, the anode may be doped with one or more dopants such as aluminum, gallium, silicon, boron, and niobium, if necessary.
 陽極2は、透明性の観点から、可視光域における透過率が70%以上であることが好ましく、80%以上であることがさらに好ましく、90%以上であることが特に好ましい。
基板1上に陽極2を形成する方法については特に制限されず、例えば、スパッタ法や熱CVD法等により形成することができる。
From the viewpoint of transparency, the anode 2 preferably has a transmittance in the visible light region of 70% or more, more preferably 80% or more, and particularly preferably 90% or more.
The method for forming the anode 2 on the substrate 1 is not particularly limited, and can be formed by, for example, a sputtering method or a thermal CVD method.
 発光ユニット3は、上記の発光層33を備えるものであれば、その積層構造は特に限定されない。発光ユニット3を構成する各層の成膜方法については特に制限はなく、真空蒸着法やスピンコート法等によって形成できる。 As long as the light emitting unit 3 includes the light emitting layer 33, the stacked structure is not particularly limited. There are no particular restrictions on the method of forming each layer constituting the light emitting unit 3, and the layers can be formed by a vacuum deposition method, a spin coating method, or the like.
 発光ユニット3は、ホール輸送層32を有していることが好ましい。ホール輸送層に含まれる物質は、ラジカルカチオン化し易い化合物が好ましく、例えば、アリールアミン系化合物、イミダゾール系化合物、オキサジアゾール系化合物、オキサゾール系化合物、トリアゾール系化合物、カルコン系化合物、スチリルアントラセン系化合物、スチルベン系化合物、テトラアリールエテン系化合物、トリアリールアミン系化合物、トリアリールエテン系化合物、トリアリールメタン系化合物、フタロシアニン系化合物、フルオレノン系化合物、ヒドラジン系化合物、カルバゾール系化合物、N-ビニルカルバゾール系化合物、ピラゾリン系化合物、ピラゾロン系化合物、フェニルアントラセン系化合物、フェニレンジアミン系化合物、ポリアリールアルカン系化合物、ポリシラン系化合物、ポリフェニレンビニレン系化合物から選ばれる1種類以上の化合物が考えられる。特に、アリールアミン化合物は、ラジカルカチオン化し易いことに加えてホール移動度が高いものが多く、ホール輸送層として適する。 The light emitting unit 3 preferably has a hole transport layer 32. The substance contained in the hole transport layer is preferably a compound that easily undergoes radical cationization. For example, arylamine compounds, imidazole compounds, oxadiazole compounds, oxazole compounds, triazole compounds, chalcone compounds, styrylanthracene compounds Stilbene compounds, tetraarylethene compounds, triarylamine compounds, triarylethene compounds, triarylmethane compounds, phthalocyanine compounds, fluorenone compounds, hydrazine compounds, carbazole compounds, N-vinylcarbazole compounds Compound, pyrazoline compound, pyrazolone compound, phenylanthracene compound, phenylenediamine compound, polyarylalkane compound, polysilane compound, polyphenylene vinyle One or more compounds selected from the system compounds are contemplated. In particular, arylamine compounds have many hole mobility in addition to being easily radical cationized and are suitable as a hole transport layer.
 アリールアミン化合物を含有するホール輸送層の中でも特に好ましいのは、トリアリールアミン誘導体を含有するホール輸送層であり、さらに好ましいのは、4、4‘-ビス[N-(2-ナフチル)-N-フェニル-アミノ]ビフェニル(「α―NPD」、又は「NPB」と称される)を含有するホール輸送層である。 Among the hole transport layers containing an arylamine compound, a hole transport layer containing a triarylamine derivative is particularly preferred, and 4,4′-bis [N- (2-naphthyl) -N is more preferred. -Phenyl-amino] biphenyl (referred to as “α-NPD” or “NPB”).
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000015
 発光ユニット3は、電子輸送層34を有していることも好ましい。電子輸送層に含まれる物質は、ラジカルアニオン化し易い化合物が好ましく、例えば、2,9-ジメチル-4,7-ジフェニル-1,10-フェナントロリン(「BCP」と称される)、トリス[(8-ハイドロキシキノリナート)]アルミニウム(III)(「Alq3」と称される)やその誘導体が考えられる。中でも、汎用性の観点から、Alq3が好適に用いられる。 The light emitting unit 3 also preferably has an electron transport layer 34. The substance contained in the electron transport layer is preferably a compound that easily undergoes radical anionization. For example, 2,9-dimethyl-4,7-diphenyl-1,10-phenanthroline (referred to as “BCP”), tris [(8 -Hydroxyquinolinato)] Aluminum (III) (referred to as “Alq 3 ”) and its derivatives. Among these, Alq 3 is preferably used from the viewpoint of versatility.
Figure JPOXMLDOC01-appb-C000016
Figure JPOXMLDOC01-appb-C000016
 陰極4に用いられる材料は特に制限がなく、例えば、仕事関数の小さい金属、又はその合金や、金属酸化物等が用いられる。仕事関数の小さい金属の例としては、アルカリ金属ではLi、アルカリ土類金属ではMg、Caが挙げられる。また、希土類金属等からなる金属単体、あるいは、これらの金属とAl、In、Ag等の合金が用いられることもある。さらに、特開2001-102175号公報等に開示されているように、陰極に接する有機層として、アルカリ土類金属イオン、アルカリ金属イオンからなる群から選択される少なくとも1種を含む金属錯体化合物を用いることもできる。この場合、陰極として、当該錯体化合物中の金属イオンを真空中で金属に還元し得る金属、例えばAl、Zr、Ti、Si等もしくはこれらの金属を含有する合金を用いることが好ましい。 The material used for the cathode 4 is not particularly limited. For example, a metal having a small work function, an alloy thereof, a metal oxide, or the like is used. Examples of the metal having a small work function include Li for an alkali metal and Mg and Ca for an alkaline earth metal. In addition, a single metal made of rare earth metal or an alloy such as Al, In, or Ag may be used. Further, as disclosed in Japanese Patent Application Laid-Open No. 2001-102175 and the like, a metal complex compound containing at least one selected from the group consisting of alkaline earth metal ions and alkali metal ions is used as the organic layer in contact with the cathode. It can also be used. In this case, it is preferable to use a metal capable of reducing metal ions in the complex compound to a metal in a vacuum, such as Al, Zr, Ti, Si, or an alloy containing these metals, as the cathode.
 有機EL素子は、使用環境における劣化を最小限に抑えるべきである。そのため、素子の一部又は全体を、不活性ガス雰囲気下で封止ガラスや金属キャップを用いて封止する、あるいは、紫外線硬化樹脂等による保護層で被覆するのが好ましい。 ¡Organic EL elements should be kept to a minimum in use environment. Therefore, it is preferable that a part or the whole of the element is sealed with a sealing glass or a metal cap in an inert gas atmosphere, or is covered with a protective layer made of an ultraviolet curable resin or the like.
 本発明の有機EL素子は、室温において発光層のドーパント材料が熱エネルギーによる逆項間交差を起こすため、蛍光ドーパント材料におけるS1状態の割合が高く、高い内部量子効率を示す。なお、室温において熱エネルギーによる逆項間交差が生じる場合、室温における内部量子効率は25%以上となることが期待される。したがって、本発明の有機EL素子は、0℃~100℃までのいずれかの温度における内部量子効率が25%以上であることが好ましい。また、熱エネルギーによる逆項間交差が生じる場合、温度が高いほど、S状態からT状態への逆項間交差の発生確率が上昇する。そのため、本発明の有機EL素子は、0℃~100℃までの温度範囲において、温度上昇に伴って発光効率が上昇することが好ましい。 In the organic EL device of the present invention, since the dopant material of the light emitting layer causes an inverse intersystem crossing due to thermal energy at room temperature, the ratio of the S 1 state in the fluorescent dopant material is high and high internal quantum efficiency is exhibited. When reverse intersystem crossing due to thermal energy occurs at room temperature, the internal quantum efficiency at room temperature is expected to be 25% or more. Therefore, the organic EL device of the present invention preferably has an internal quantum efficiency of 25% or more at any temperature from 0 ° C. to 100 ° C. Also, when reverse intersystem crossing due to thermal energy occurs, the probability of occurrence of reverse intersystem crossing from the S 1 state to the T 1 state increases as the temperature increases. Therefore, it is preferable that the organic EL device of the present invention has an increase in luminous efficiency as the temperature rises in a temperature range from 0 ° C. to 100 ° C.
 本発明の有機EL素子は、消費電力の少ない省エネルギーの光源になり、ディスプレイ装置や照明装置等に有効に適用できる。 The organic EL element of the present invention is an energy-saving light source with low power consumption and can be effectively applied to a display device, a lighting device, and the like.
 <化合物(1)の合成>
 窒素雰囲気下、3,5-ジブロモピリジン-4-カルボニトリル(1.006g、3.8mmol)、カルバゾール(1.912g、11.5mmol)、ヨウ化銅(0.1174g、0.6mmol)、18-クラウン-6(0.158g、0.6mmol)、炭酸カリウム(1.212g、8.8mmol)、1,3-ジメチル-3,4,5,6-テトラヒドロ-2(1H)-ピリミジノン(3ml)の混合液を170oCで5時間加熱した。室温まで冷却した後、ジクロロメタンで洗浄し、シリカゲルクロマトグラフィーで精製した(scheme 1)。この手順により、黄色固体の化合物(1)を0.470g得た(1.1mmol、収率29%)。
<Synthesis of Compound (1)>
Under a nitrogen atmosphere, 3,5-dibromopyridine-4-carbonitrile (1.006 g, 3.8 mmol), carbazole (1.912 g, 11.5 mmol), copper iodide (0.1174 g, 0.6 mmol), 18 -Crown-6 (0.158 g, 0.6 mmol), potassium carbonate (1.212 g, 8.8 mmol), 1,3-dimethyl-3,4,5,6-tetrahydro-2 (1H) -pyrimidinone (3 ml) ) Was heated at 170 ° C. for 5 hours. After cooling to room temperature, it was washed with dichloromethane and purified by silica gel chromatography (scheme 1). This procedure yielded 0.470 g of yellow solid compound (1) (1.1 mmol, 29% yield).
 得られた結晶は、1H-NMRによって化合物(1)であることを確認した。測定結果は次の通りであった。1H-NMR(400MHz、CDCl3);δ=9.10(s、2H)、8.20(s、2H)、8.18(s、2H)、7.55-7.52(m、4H)、7.43-7.37(m、8H)。 The obtained crystal was confirmed to be compound (1) by 1 H-NMR. The measurement results were as follows. 1 H-NMR (400 MHz, CDCl 3 ); δ = 9.10 (s, 2H), 8.20 (s, 2H), 8.18 (s, 2H), 7.55-7.52 (m, 4H), 7.43-7.37 (m, 8H).
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000017
<蛍光及び燐光スペクトルから評価した化合物(1)のS1-T1エネルギーギャップ及び発光波長>
 化合物(1)を2-メチルテトラヒドロフランに分散させ、液体窒素を用いて77Kに冷却した後、分光蛍光光度計(日立製 F-7000)を用いて蛍光及び燐光スペクトルを測定した。図2の実線は320nmの入射光から得られた蛍光スペクトル、破線は320nmの入射光から得られた燐光スペクトルである。なお、これらのスペクトルは発光強度の最大値が1.0となるように規格化されている。
<S 1 -T 1 energy gap and emission wavelength of compound (1) evaluated from fluorescence and phosphorescence spectra>
Compound (1) was dispersed in 2-methyltetrahydrofuran, cooled to 77 K using liquid nitrogen, and then measured for fluorescence and phosphorescence spectra using a spectrofluorometer (Hitachi F-7000). The solid line in FIG. 2 is a fluorescence spectrum obtained from 320 nm incident light, and the broken line is a phosphorescence spectrum obtained from 320 nm incident light. These spectra are standardized so that the maximum value of the emission intensity is 1.0.
 蛍光及び燐光スペクトルの短波長側のピーク端をそれぞれS1エネルギー及びT1エネルギーと定義する。図2よりこれらの値を読み取ると、それぞれ415nm(2.99eV;図2の(a)の位置)、430nm(2.88eV;図2の(b)の位置)であった。 The peak ends on the short wavelength side of the fluorescence and phosphorescence spectra are defined as S 1 energy and T 1 energy, respectively. When these values were read from FIG. 2, they were 415 nm (2.99 eV; position of (a) in FIG. 2) and 430 nm (2.88 eV; position of (b) in FIG. 2), respectively.
 すなわち、化合物(1)は、室温でT1状態からS1状態への逆項間交差を起こす熱活性型遅延蛍光材料であることが分かる。 That is, it can be seen that compound (1) is a thermally activated delayed fluorescent material that causes reverse intersystem crossing from the T 1 state to the S 1 state at room temperature.
 化合物(1)の77Kにおける蛍光スペクトルのピークトップの位置を、発光波長の実験値と定義した。化合物(1)の発光波長は、467nm(図2の(C)の位置)であった。 The position of the peak top of the fluorescence spectrum at 77 K of compound (1) was defined as the experimental value of the emission wavelength. The emission wavelength of the compound (1) was 467 nm (position (C) in FIG. 2).
<S1-T1エネルギーギャップの量子化学計算>
 化合物(1)のS1-T1エネルギーギャップを、下記の手順1~4による量子化学計算から評価した。なお、量子化学計算は、全ての原子に対して6-31G(d)基底関数を用いて行った。計算を実行するためのプログラムとしてはGaussian社製のGaussian09(Revision C.01)を使用した。
<Quantum chemical calculation of S 1 -T 1 energy gap>
The S 1 -T 1 energy gap of the compound (1) was evaluated from the quantum chemical calculation according to the following procedures 1 to 4. The quantum chemical calculation was performed using 6-31G (d) basis functions for all atoms. As a program for executing the calculation, Gaussian 09 (Revision C.01) manufactured by Gaussian was used.
 手順1:M06-2X汎関数を用いた密度汎関数理論(以下、「M06-2X法」と称する)を用いて、S状態の範囲内で最低エネルギーとなる分子構造を計算し、その最低エネルギーをeと定義した。
 手順2:M06-2X汎関数を用いた時間依存密度汎関数理論(以下、「TD-M06-2X法」と称する)を用いて、S1状態の範囲内で最低エネルギーとなる分子構造を計算し、その最低エネルギーをeと上記手順1で求めたエネルギーeとの差分をE1と定義した。
 手順3:TD-M06-2X法を用いて、T1状態の範囲内で最低エネルギーとなる分子構造を計算し、その最低エネルギーeと上記手順1で求めたエネルギーeとの差分をE2と定義した。
 手順4:E1とE2の差分を「S1-T1エネルギーギャップの計算値」とした。
Procedure 1: Using the density functional theory using the M06-2X functional (hereinafter referred to as “M06-2X method”), the molecular structure that gives the lowest energy within the range of the S 0 state is calculated. the energy was defined as e 0.
Procedure 2: Calculate the molecular structure that gives the lowest energy within the range of the S 1 state using time-dependent density functional theory using the M06-2X functional (hereinafter referred to as “TD-M06-2X method”). The difference between the lowest energy e 1 and the energy e 0 obtained in the above procedure 1 was defined as E 1 .
Procedure 3: Using the TD-M06-2X method, calculate the molecular structure having the lowest energy within the range of the T 1 state, and calculate the difference between the lowest energy e 2 and the energy e 0 obtained in the above procedure 1 as E It was defined as 2 .
Procedure 4: The difference between E 1 and E 2 was defined as “calculated value of S 1 -T 1 energy gap”.
<発光波長の量子化学計算>
 TD-M06-2X汎関数を用いてS状態の範囲内で最低エネルギーとなる分子構造を計算し、その最低エネルギーeと上記手順2で求めたエネルギーeとの差分のエネルギーに対応する波長を「発光波長の計算値」と定義した。
<Quantum chemical calculation of emission wavelength>
TD-M06-2X functional is used to calculate the molecular structure that has the lowest energy within the range of the S 1 state, and corresponds to the energy of the difference between the lowest energy e 3 and the energy e 1 obtained in step 2 above. The wavelength was defined as “calculated value of emission wavelength”.
<比較化合物(1C)の発光波長の量子化学計算>
 化合物(1)のシアノピリジン部分をシアノベンゼンに変えた下記の比較較化合物(1C)について、上記化合物(1)と同様に、量子化学計算により、発光波長を求めた。
<Quantum chemical calculation of emission wavelength of comparative compound (1C)>
With respect to the following comparative compound (1C) in which the cyanopyridine portion of the compound (1) was changed to cyanobenzene, the emission wavelength was determined by quantum chemical calculation in the same manner as the compound (1).
Figure JPOXMLDOC01-appb-C000018
Figure JPOXMLDOC01-appb-C000018
 化合物(1)のS1-T1エネルギーギャップ及び発光波長の実験値及び計算値、ならびに比較化合物(1C)の発光波長の計算値を表1に示す。 Table 1 shows experimental values and calculated values of the S 1 -T 1 energy gap and emission wavelength of compound (1), and calculated values of emission wavelength of comparative compound (1C).
Figure JPOXMLDOC01-appb-T000019
Figure JPOXMLDOC01-appb-T000019
 表1に示すように、化合物(1)のS-Tエネルギーギャップの実験値は0.11eVであり、0.24eVよりも小さいことが、実験的に求められた。この結果から、化合物(1)は、室温でT1状態からS1状態への逆項間交差を起こす、すなわち熱活性型遅延蛍光材料であることが分かる。 As shown in Table 1, the experimental value of the S 1 -T 1 energy gap of the compound (1) was 0.11 eV, and it was experimentally determined to be smaller than 0.24 eV. From this result, it can be seen that the compound (1) causes an inverse intersystem crossing from the T 1 state to the S 1 state at room temperature, that is, a thermally activated delayed fluorescent material.
 化合物(1)の発光波長の計算値は、シアノピリジン部分をシアノベンゼンに変えた比較化合物(1C)の発光波長の計算値よりも長波長であった。なお、前述の非特許文献7では、1,2,3,5-テトラキス(カルバゾロ-9-リル)-4,6-ジシアノベンゼン(4CzIPN)の発光波長の実験値が507nmであるのに対して、上記と同一の量子化学計算により求められた4CzIPNの発光波長の計算値が429nmであることが報告されており、計算値は実験値よりも短波長となる傾向がある。また、上記の化合物(1)の発光波長の実験値は、4CzIPNの発光波長の実験値よりも短波長であり、上記化合物(1)の発光波長の計算値は、4CzIPNの発光波長の実験値よりも短波長である。 The calculated value of the emission wavelength of the compound (1) was longer than the calculated value of the emission wavelength of the comparative compound (1C) in which the cyanopyridine moiety was changed to cyanobenzene. In the above-mentioned Non-Patent Document 7, the experimental value of the emission wavelength of 1,2,3,5-tetrakis (carbazolo-9-ryl) -4,6-dicyanobenzene (4CzIPN) is 507 nm. It has been reported that the calculated value of the emission wavelength of 4CzIPN determined by the same quantum chemistry calculation as described above is 429 nm, and the calculated value tends to be shorter than the experimental value. The experimental value of the emission wavelength of the compound (1) is shorter than the experimental value of the emission wavelength of 4CzIPN, and the calculated value of the emission wavelength of the compound (1) is the experimental value of the emission wavelength of 4CzIPN. Shorter wavelength.
 上記の量子化学計算では、化合物(1)の発光波長の計算値は、77Kの2-メチルテトラヒドロフラン中の発光波長の実験値よりも長波長となっている。これらの結果を総合すると、発光波長の計算値は、実験的に測定される発光波長の絶対値を正確に表すものではないが、特定の化合物の発光波長の長短の相対的な評価には有用であるといえる。 In the above quantum chemistry calculation, the calculated emission wavelength of compound (1) is longer than the experimental value of the emission wavelength in 2-methyltetrahydrofuran at 77K. Taken together, the calculated emission wavelength does not accurately represent the absolute value of the experimentally measured emission wavelength, but is useful for relative evaluation of the emission wavelength of a specific compound. You can say that.
 したがって、化合物(1)の発光波長の計算値が比較化合物(1C)の発光波長の計算値よりも長波長であるとの結果から、シアノピリジンを含む熱活性型遅延蛍光材料は、シアノベンゼンを含む発光材料よりも、発光波長が長波長になることがわかる。 Therefore, from the result that the calculated value of the emission wavelength of the compound (1) is longer than the calculated value of the emission wavelength of the comparative compound (1C), the thermally activated delayed fluorescent material containing cyanopyridine is cyanobenzene. It can be seen that the emission wavelength is longer than that of the light-emitting material contained.
<化合物(2)(3)及び比較化合物(2C)(3C)の量子化学計算>
 下記の化合物(2)及び化合物(3)について、上記と同様の手順で、量子化学計算により、S-Tエネルギーギャップを求めた。また、化合物(2)及び化合物(3)、ならびにこれらの化合物のシアノピリジン部位をシアノベンゼンに変えた比較化合物(2C)及び比較化合物(3C)のそれぞれについて、上記と同様の手順で、量子化学計算により発光波長を求めた。計算結果を表2に示す。
<Quantum chemical calculation of compound (2) (3) and comparative compound (2C) (3C)>
For the following compounds (2) and (3), the S 1 -T 1 energy gap was determined by quantum chemical calculation in the same procedure as described above. In addition, for each of the compound (2) and the compound (3), and the comparative compound (2C) and the comparative compound (3C) in which the cyanopyridine site of these compounds is changed to cyanobenzene, The emission wavelength was determined by calculation. The calculation results are shown in Table 2.
Figure JPOXMLDOC01-appb-C000020
Figure JPOXMLDOC01-appb-C000020
Figure JPOXMLDOC01-appb-T000021
Figure JPOXMLDOC01-appb-T000021
 表2に示されているように、化合物(2)及び(3)のS1-T1エネルギーギャップの計算値は、化合物(1)よりも小さい。そのため、化合物(2)及び(3)のS1-T1エネルギーギャップの実験値は、化合物(1)のS1-T1エネルギーギャップの実験値0.11eVよりも小さくなると予測される。したがって、化合物(2)及び(3)は、化合物(1)と同様に、室温でT1状態からS1状態への逆項間交差を起こすと考えられる。つまり、化合物(2)及び(3)は、熱活性型遅延蛍光材料になると考えられる。 As shown in Table 2, the calculated value of the S 1 -T 1 energy gap of the compounds (2) and (3) is smaller than that of the compound (1). Therefore, the experimental value of the S 1 -T 1 energy gap of the compounds (2) and (3) is predicted to be smaller than the experimental value of 0.11 eV of the S 1 -T 1 energy gap of the compound (1). Therefore, like the compound (1), the compounds (2) and (3) are considered to cause reverse intersystem crossing from the T 1 state to the S 1 state at room temperature. That is, the compounds (2) and (3) are considered to be thermally activated delayed fluorescent materials.
 また、化合物(2)及び(3)の発光波長の計算値は、シアノピリジン部位をシアノベンゼン部位に変えた比較較化合物(2C)及び(3C)の発光波長の計算値よりも長波長であり、化合物(1)と比較化合物(1C)との対比の場合と同様の傾向を示した。この計算結果からも、シアノピリジンを含む熱活性型遅延蛍光材料は、シアノベンゼンを含む発光材料よりも、発光波長が長波長になることがわかる。

 
In addition, the calculated emission wavelength of the compounds (2) and (3) is longer than the calculated emission wavelength of the comparative compounds (2C) and (3C) in which the cyanopyridine moiety is changed to the cyanobenzene moiety. The same tendency as in the case of comparison between the compound (1) and the comparative compound (1C) was exhibited. Also from this calculation result, it can be seen that the thermally activated delayed fluorescent material containing cyanopyridine has a longer emission wavelength than the light emitting material containing cyanobenzene.

Claims (16)

  1.  一対の電極間に発光層を備える有機EL素子であって、
     前記発光層は、ホスト材料及び蛍光ドーパント材料を有し、発光層における蛍光ドーパント材料の含有量が、発光層全体の質量の49%以下であり、
     前記蛍光ドーパント材料は、S1エネルギーとT1エネルギーの差が0.24eV以下であって、下記一般式(I)で表されるシアノピリジン系化合物である、有機EL素子。
    Figure JPOXMLDOC01-appb-C000001
    (一般式(I)のR1~R5は、各々独立に、水素原子、ハロゲン原子、シアノ基、ニトロ基、シリル基、炭素数1~10のアルキル基、炭素数1~10のアルケニル基、炭素数1~10のアルキニル基、炭素数4~12のシクロアルキル基、炭素数6~50の置換又は無置換のアリール基、元素数6~50の置換又は無置換のヘテロアリール基、元素数6~50の置換又は無置換のヘテロ環基、炭素数1~10のアルコキシ基、炭素数4~12のシクロアルコキシ基、炭素数1~10のアリールオキシ基、炭素数1~10のアルキルチオ基、炭素数4~12のシクロアルキルチオ基、炭素数6~12のアリールチオ基、炭素数1~10のアルコキシカルボニル基、炭素数6~12のアリールオキシカルボニル基、炭素数1~10のスルファモイル基、炭素数1~10のアシル基、炭素数1~10のアシルオキシ基、炭素数1~10のアミド基、炭素数1~10のカルボニル基、炭素数1~10のウレイド基、炭素数1~10のスルフィニル基、炭素数1~10のアルキルスルホニル基、炭素数6~12のアリールスルホニリ基、及び炭素数1~10のアミノ基からなる群から選ばれる1種であり、R1~R5の少なくとも1つはシアノ基であり、R1~R5の少なくとも1つは、水素原子でもシアノ基でもない置換基である。)
    An organic EL element comprising a light emitting layer between a pair of electrodes,
    The light emitting layer has a host material and a fluorescent dopant material, and the content of the fluorescent dopant material in the light emitting layer is 49% or less of the mass of the entire light emitting layer,
    The fluorescent dopant material is an organic EL device in which a difference between S 1 energy and T 1 energy is 0.24 eV or less, and is a cyanopyridine compound represented by the following general formula (I).
    Figure JPOXMLDOC01-appb-C000001
    (R 1 to R 5 in the general formula (I) are each independently a hydrogen atom, a halogen atom, a cyano group, a nitro group, a silyl group, an alkyl group having 1 to 10 carbon atoms, or an alkenyl group having 1 to 10 carbon atoms. , Alkynyl groups having 1 to 10 carbon atoms, cycloalkyl groups having 4 to 12 carbon atoms, substituted or unsubstituted aryl groups having 6 to 50 carbon atoms, substituted or unsubstituted heteroaryl groups having 6 to 50 carbon atoms, elements A substituted or unsubstituted heterocyclic group having 6 to 50 carbon atoms, an alkoxy group having 1 to 10 carbon atoms, a cycloalkoxy group having 4 to 12 carbon atoms, an aryloxy group having 1 to 10 carbon atoms, and an alkylthio having 1 to 10 carbon atoms Group, cycloalkylthio group having 4 to 12 carbon atoms, arylthio group having 6 to 12 carbon atoms, alkoxycarbonyl group having 1 to 10 carbon atoms, aryloxycarbonyl group having 6 to 12 carbon atoms, sulfamo having 1 to 10 carbon atoms Group, acyl group having 1 to 10 carbon atoms, acyloxy group having 1 to 10 carbon atoms, amide group having 1 to 10 carbon atoms, carbonyl group having 1 to 10 carbon atoms, ureido group having 1 to 10 carbon atoms, carbon number 1 to 10 sulfinyl groups, an alkylsulfonyl group having 1 to 10 carbon atoms, an arylsulfonyl group having 6 to 12 carbon atoms, and an amino group having 1 to 10 carbon atoms, and R 1 At least one of -R 5 is a cyano group, and at least one of R 1 -R 5 is a substituent that is neither a hydrogen atom nor a cyano group.
  2.  前記一般式(I)において、R1~R5の中で水素原子でもシアノ基でもない置換基の1つ以上が元素数6~50の置換又は無置換のヘテロアリール基である、請求項1に記載の有機EL素子。 2. In the general formula (I), one or more of the substituents that are neither a hydrogen atom nor a cyano group in R 1 to R 5 are a substituted or unsubstituted heteroaryl group having 6 to 50 elements. The organic EL element as described in.
  3.  前記元素数6~50の置換又は無置換のヘテロアリール基が、置換又は無置換のカルバゾリル基である、請求項2に記載の有機EL素子。 3. The organic EL device according to claim 2, wherein the substituted or unsubstituted heteroaryl group having 6 to 50 elements is a substituted or unsubstituted carbazolyl group.
  4.  前記一般式(I)で表されるシアノピリジン系化合物が、下記一般式(II)で表される化合物である、請求項3に記載の有機EL素子。
    Figure JPOXMLDOC01-appb-C000002
    (一般式(II)のR6及びR7は、各々独立に、水素原子、ハロゲン原子、シアノ基、メチル基、メトキシ基、フェニル基からなる群から選ばれる1種である。)
    The organic EL device according to claim 3, wherein the cyanopyridine compound represented by the general formula (I) is a compound represented by the following general formula (II).
    Figure JPOXMLDOC01-appb-C000002
    (R 6 and R 7 in formula (II) are each independently one selected from the group consisting of a hydrogen atom, a halogen atom, a cyano group, a methyl group, a methoxy group, and a phenyl group.)
  5.  前記一般式(II)において、R6及びR7がいずれも水素原子である、請求項4に記載の有機EL素子。 The organic EL device according to claim 4, wherein in the general formula (II), R 6 and R 7 are both hydrogen atoms.
  6.  前記元素数6~24の置換又は無置換のヘテロアリール基の1つ以上が、下記式(A)で表される元素数50以下の置換インドリル基である、請求項2に記載の有機EL素子。
    Figure JPOXMLDOC01-appb-C000003
    (上記置換基(A)において、のR8及びR9は、各々独立に、水素原子、ハロゲン原子、シアノ基、メチル基、メトキシ基、及びフェニル基からなる群から選ばれる1種であり;R10は、ハロゲン原子、シアノ基、メチル基、メトキシ基及びフェニル基からなる群から選ばれる1種である)
    The organic EL device according to claim 2, wherein one or more of the substituted or unsubstituted heteroaryl groups having 6 to 24 elements are substituted indolyl groups having 50 or less elements represented by the following formula (A): .
    Figure JPOXMLDOC01-appb-C000003
    (In the above substituent (A), R 8 and R 9 are each independently one type selected from the group consisting of a hydrogen atom, a halogen atom, a cyano group, a methyl group, a methoxy group, and a phenyl group; R 10 is one selected from the group consisting of a halogen atom, a cyano group, a methyl group, a methoxy group, and a phenyl group)
  7.  前記R10がメチル基であり、前記一般式(I)で表されるシアノピリジン系化合物が、下記一般式(III)で表される化合物である、請求項6に記載の有機EL素子。
    Figure JPOXMLDOC01-appb-C000004
    (一般式(III)のR8及びR9は、各々独立に、水素原子、ハロゲン原子、シアノ基、メチル基、メトキシ基、フェニル基からなる群から選ばれる1種である。)
    The organic EL device according to claim 6, wherein R 10 is a methyl group, and the cyanopyridine compound represented by the general formula (I) is a compound represented by the following general formula (III).
    Figure JPOXMLDOC01-appb-C000004
    (R 8 and R 9 in formula (III) are each independently one selected from the group consisting of a hydrogen atom, a halogen atom, a cyano group, a methyl group, a methoxy group, and a phenyl group.)
  8.  前記一般式(III)において、R9が水素原子又はメチル基である、請求項7に記載の有機EL素子。 The organic EL device according to claim 7, wherein in the general formula (III), R 9 is a hydrogen atom or a methyl group.
  9.  前記一般式(III)において、Rが水素原子である、請求項8に記載の有機EL素子。 The organic EL device according to claim 8, wherein in the general formula (III), R 8 is a hydrogen atom.
  10.  前記ホスト材料のS1エネルギーが、前記蛍光ドーパント材料のS1エネルギーよりも高く、かつ、これら2種類のS1エネルギーの差が1.5eV以下である、請求項1~9のいずれか1項に記載の有機EL素子。 The S 1 energy of the host material is higher than the S 1 energy of the fluorescent dopant material, and the difference between the two types of S 1 energy is 1.5 eV or less. The organic EL element as described in.
  11.  前記ホスト材料は、正孔移動度と電子移動度の比が、0.002~500の範囲内である、請求項1~10のいずれか1項に記載の有機EL素子。 11. The organic EL device according to claim 1, wherein the host material has a hole mobility to electron mobility ratio in the range of 0.002 to 500.
  12.  前記ホスト材料が、カルバゾール系化合物、アリールシラン系化合物、酸化リン系化合物からなる群から選択される1種以上である、請求項1~11のいずれか1項に記載の有機EL素子。 The organic EL device according to any one of claims 1 to 11, wherein the host material is at least one selected from the group consisting of a carbazole compound, an arylsilane compound, and a phosphorus oxide compound.
  13.  摂氏0度~100度までのいずれかの温度における内部量子効率が25%以上である、請求項1~12のいずれか1項に記載の有機EL素子。 The organic EL device according to any one of claims 1 to 12, wherein the internal quantum efficiency at any temperature of 0 to 100 degrees Celsius is 25% or more.
  14.  摂氏0度~100度の温度範囲において温度上昇に伴い発光効率が上昇する、請求項1~13のいずれか1項に記載の有機EL素子。 The organic EL device according to any one of claims 1 to 13, wherein the light emission efficiency increases as the temperature rises in a temperature range of 0 to 100 degrees Celsius.
  15.  請求項1~14のいずれか1項に記載の有機EL素子を備える照明器具。 A lighting fixture comprising the organic EL element according to any one of claims 1 to 14.
  16.  請求項1~14のいずれか1項に記載の有機EL素子を備えるディスプレイ装置。

     
    A display device comprising the organic EL element according to any one of claims 1 to 14.

PCT/JP2014/054828 2013-02-28 2014-02-27 Organic el element, and lighting device and display device using same WO2014133062A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015503007A JP6259812B2 (en) 2013-02-28 2014-02-27 ORGANIC EL ELEMENT AND LIGHTING EQUIPMENT AND DISPLAY DEVICE USING THE SAME

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-038757 2013-02-28
JP2013038757 2013-02-28

Publications (1)

Publication Number Publication Date
WO2014133062A1 true WO2014133062A1 (en) 2014-09-04

Family

ID=51428322

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/054828 WO2014133062A1 (en) 2013-02-28 2014-02-27 Organic el element, and lighting device and display device using same

Country Status (2)

Country Link
JP (1) JP6259812B2 (en)
WO (1) WO2014133062A1 (en)

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016110075A (en) * 2014-10-03 2016-06-20 株式会社半導体エネルギー研究所 Light-emitting device, module, and electronic device
WO2019046734A1 (en) * 2017-09-01 2019-03-07 Kyulux, Inc. Composition of matter for use in organic light-emitting diodes
JPWO2018155642A1 (en) * 2017-02-24 2019-12-19 国立大学法人九州大学 Compound, light emitting material and light emitting element
US10547014B2 (en) 2017-06-23 2020-01-28 Kyulux, Inc. Composition of matter for use in organic light-emitting diodes
JP2020510322A (en) * 2017-01-16 2020-04-02 中国科学院長春應用化学研究所 Blue organic electroluminescent device and method of manufacturing the same
US10644249B2 (en) 2017-12-22 2020-05-05 Kyulux, Inc. Composition of matter for use in organic light-emitting diodes
CN111987230A (en) * 2019-05-23 2020-11-24 三星显示有限公司 Organic light emitting device and apparatus including the same
US10892425B1 (en) 2017-03-03 2021-01-12 Kyulux, Inc. Composition of matter for use in organic light-emitting diodes
US11069860B2 (en) 2017-08-21 2021-07-20 Kyulux, Inc. Composition of matter for use in organic light-emitting diodes
US11104669B2 (en) 2018-02-02 2021-08-31 Kyulux, Inc. Composition of matter for use in organic light-emitting diodes
US11283027B1 (en) 2017-03-03 2022-03-22 Kyulux, Inc. Composition of matter for use in organic light-emitting diodes
US11444250B2 (en) 2017-12-05 2022-09-13 Kyulux, Inc. Composition of matter for use in organic light-emitting diodes
JP2022140543A (en) * 2016-08-19 2022-09-26 株式会社Kyulux Organic light emitting element
US11498914B2 (en) 2018-03-30 2022-11-15 Kyulux, Inc. Composition of matter for use in organic light-emitting diodes
CN115368343A (en) * 2021-05-18 2022-11-22 江苏三月科技股份有限公司 Compound with pyridine derivative as core and application thereof
US11542260B2 (en) 2018-01-31 2023-01-03 Kyulux, Inc. Composition of matter for use in organic light-emitting diodes
US11575088B2 (en) 2017-12-22 2023-02-07 Kyulux, Inc. Composition of matter for use in organic light-emitting diodes
US11608333B2 (en) 2018-03-20 2023-03-21 Kyulux, Inc. Composition of matter for use in organic light-emitting diodes
WO2023181958A1 (en) * 2022-03-22 2023-09-28 住友化学株式会社 Light-emitting element and production method therefor, light-emitting compound and production method therefor, composition and production method therefor, information processing method, information processing device, program, method for providing light-emitting compound, and data generation method
US11778904B2 (en) 2018-05-09 2023-10-03 Kyulux, Inc. Composition of matter for use in organic light-emitting diodes

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7153363B2 (en) * 2017-12-05 2022-10-14 株式会社Kyulux Composition for use in organic light-emitting diodes

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0782552A (en) * 1993-09-14 1995-03-28 Nisshinbo Ind Inc Organic electroluminescent element
JP2006024830A (en) * 2004-07-09 2006-01-26 Sogo Pharmaceutical Co Ltd Organic electroluminescent device
JP2008063278A (en) * 2006-09-07 2008-03-21 Fujifilm Finechemicals Co Ltd Method for producing 1-pyridin-4-yl-indole
JP2009094486A (en) * 2007-09-18 2009-04-30 Fujifilm Corp Organic electroluminescence device
JP2010114425A (en) * 2008-10-10 2010-05-20 Canon Inc Organic el display device
KR20120092909A (en) * 2011-02-14 2012-08-22 에스에프씨 주식회사 Pyridine derivative compound and organic electroluminescent device comprising the same

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0782552A (en) * 1993-09-14 1995-03-28 Nisshinbo Ind Inc Organic electroluminescent element
JP2006024830A (en) * 2004-07-09 2006-01-26 Sogo Pharmaceutical Co Ltd Organic electroluminescent device
JP2008063278A (en) * 2006-09-07 2008-03-21 Fujifilm Finechemicals Co Ltd Method for producing 1-pyridin-4-yl-indole
JP2009094486A (en) * 2007-09-18 2009-04-30 Fujifilm Corp Organic electroluminescence device
JP2010114425A (en) * 2008-10-10 2010-05-20 Canon Inc Organic el display device
KR20120092909A (en) * 2011-02-14 2012-08-22 에스에프씨 주식회사 Pyridine derivative compound and organic electroluminescent device comprising the same

Cited By (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10998750B2 (en) 2014-10-03 2021-05-04 Semiconductor Energy Laboratory Co., Ltd. Light-emitting device, module, and electronic device
JP2020101802A (en) * 2014-10-03 2020-07-02 株式会社半導体エネルギー研究所 Light-emitting device
JP2022100311A (en) * 2014-10-03 2022-07-05 株式会社半導体エネルギー研究所 Light emitting device
JP7381639B2 (en) 2014-10-03 2023-11-15 株式会社半導体エネルギー研究所 light emitting device
JP2016110075A (en) * 2014-10-03 2016-06-20 株式会社半導体エネルギー研究所 Light-emitting device, module, and electronic device
JP2022140543A (en) * 2016-08-19 2022-09-26 株式会社Kyulux Organic light emitting element
JP7290374B2 (en) 2016-08-19 2023-06-13 株式会社Kyulux organic light emitting device
JP2020510322A (en) * 2017-01-16 2020-04-02 中国科学院長春應用化学研究所 Blue organic electroluminescent device and method of manufacturing the same
JP7222549B2 (en) 2017-02-24 2023-02-15 株式会社Kyulux Compounds, luminescent materials and light-emitting devices
US12120952B2 (en) 2017-02-24 2024-10-15 Kyulux, Inc. Compound, light-emitting material and light-emitting element
JPWO2018155642A1 (en) * 2017-02-24 2019-12-19 国立大学法人九州大学 Compound, light emitting material and light emitting element
US10892425B1 (en) 2017-03-03 2021-01-12 Kyulux, Inc. Composition of matter for use in organic light-emitting diodes
US11283027B1 (en) 2017-03-03 2022-03-22 Kyulux, Inc. Composition of matter for use in organic light-emitting diodes
US10547014B2 (en) 2017-06-23 2020-01-28 Kyulux, Inc. Composition of matter for use in organic light-emitting diodes
US11069860B2 (en) 2017-08-21 2021-07-20 Kyulux, Inc. Composition of matter for use in organic light-emitting diodes
US11849634B2 (en) 2017-09-01 2023-12-19 Kyulux, Inc. Composition of matter for use in organic light- emitting diodes
WO2019046734A1 (en) * 2017-09-01 2019-03-07 Kyulux, Inc. Composition of matter for use in organic light-emitting diodes
US11444250B2 (en) 2017-12-05 2022-09-13 Kyulux, Inc. Composition of matter for use in organic light-emitting diodes
US11575088B2 (en) 2017-12-22 2023-02-07 Kyulux, Inc. Composition of matter for use in organic light-emitting diodes
US10644249B2 (en) 2017-12-22 2020-05-05 Kyulux, Inc. Composition of matter for use in organic light-emitting diodes
US11542260B2 (en) 2018-01-31 2023-01-03 Kyulux, Inc. Composition of matter for use in organic light-emitting diodes
US11104669B2 (en) 2018-02-02 2021-08-31 Kyulux, Inc. Composition of matter for use in organic light-emitting diodes
US11608333B2 (en) 2018-03-20 2023-03-21 Kyulux, Inc. Composition of matter for use in organic light-emitting diodes
US11498914B2 (en) 2018-03-30 2022-11-15 Kyulux, Inc. Composition of matter for use in organic light-emitting diodes
US11778904B2 (en) 2018-05-09 2023-10-03 Kyulux, Inc. Composition of matter for use in organic light-emitting diodes
CN111987230A (en) * 2019-05-23 2020-11-24 三星显示有限公司 Organic light emitting device and apparatus including the same
CN115368343A (en) * 2021-05-18 2022-11-22 江苏三月科技股份有限公司 Compound with pyridine derivative as core and application thereof
WO2023181958A1 (en) * 2022-03-22 2023-09-28 住友化学株式会社 Light-emitting element and production method therefor, light-emitting compound and production method therefor, composition and production method therefor, information processing method, information processing device, program, method for providing light-emitting compound, and data generation method

Also Published As

Publication number Publication date
JP6259812B2 (en) 2018-01-10
JPWO2014133062A1 (en) 2017-02-02

Similar Documents

Publication Publication Date Title
JP6259812B2 (en) ORGANIC EL ELEMENT AND LIGHTING EQUIPMENT AND DISPLAY DEVICE USING THE SAME
WO2014129330A1 (en) Organic el element, lighting device using same, and display device
JP6025959B2 (en) 2-Azatriphenylene materials for organic light-emitting diodes
CN106892857B (en) Thermal activation delayed fluorescent material and application thereof in organic electroluminescent device
JP6326251B2 (en) Luminescent material and organic EL device using the same
TWI429650B (en) Organic electroluminescent elements
JP5774267B2 (en) Organic electroluminescent compound and light emitting diode using the same
JP5399418B2 (en) Organic electroluminescence device
WO2010113761A1 (en) Organic electroluminescent device
KR102231248B1 (en) Compound for organic electronic element, organic electronic element using the same, and an electronic device thereof
CN104193738B (en) A kind of electric transmission compound based on benzimidazole
KR102413966B1 (en) organic light emitting device
TW201348228A (en) Material for organic electroluminescent element, and element using same
TW200418343A (en) Organic electroluminescent element
TW201343639A (en) Material for organic electroluminescence element and element using same
JP5783749B2 (en) 1,8-aryl substituted naphthalene derivative having excimer characteristics and organic EL device using the same
KR20160095175A (en) Material for organic electroluminescent elements, and organic electroluminescent element using same
JP6580392B2 (en) Compound, mixture, light emitting layer, organic light emitting device and assist dopant
KR20100021367A (en) Light emitting compound and organic light-emitting diode including the same
CN106255695B (en) Compound and organic light-emitting element comprising same
KR20170016137A (en) Compound for organic electronic element, organic electronic element using the same, and an electronic device thereof
KR102004385B1 (en) New compounds and organic light-emitting diode including the same
WO2016111196A1 (en) Compound, mixture, light-emitting layer, organic light-emitting element, and assist dopant
KR20160125022A (en) Compound for organic electric element, organic electric element comprising the same and electronic device thereof
JP2007254312A (en) Organic compound and organic electroluminescent element using the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14757233

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015503007

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14757233

Country of ref document: EP

Kind code of ref document: A1