WO2014132575A1 - Solar cell module production method, and solar cell module adhesive application system - Google Patents

Solar cell module production method, and solar cell module adhesive application system Download PDF

Info

Publication number
WO2014132575A1
WO2014132575A1 PCT/JP2014/000657 JP2014000657W WO2014132575A1 WO 2014132575 A1 WO2014132575 A1 WO 2014132575A1 JP 2014000657 W JP2014000657 W JP 2014000657W WO 2014132575 A1 WO2014132575 A1 WO 2014132575A1
Authority
WO
WIPO (PCT)
Prior art keywords
solar cell
adhesive
receiving surface
light receiving
back surface
Prior art date
Application number
PCT/JP2014/000657
Other languages
French (fr)
Japanese (ja)
Inventor
聡史 鈴木
慶之 工藤
正也 中井
治寿 橋本
Original Assignee
三洋電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三洋電機株式会社 filed Critical 三洋電機株式会社
Priority to JP2015502743A priority Critical patent/JPWO2014132575A1/en
Publication of WO2014132575A1 publication Critical patent/WO2014132575A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/05Electrical interconnection means between PV cells inside the PV module, e.g. series connection of PV cells
    • H01L31/0504Electrical interconnection means between PV cells inside the PV module, e.g. series connection of PV cells specially adapted for series or parallel connection of solar cells in a module
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022408Electrodes for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/022425Electrodes for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Definitions

  • the present invention relates to a solar cell module manufacturing method and a solar cell module adhesive coating system.
  • the solar cell module includes a plurality of solar cells, a wiring material for connecting the solar cells, a filler for sealing them, and the like.
  • the wiring material is bonded onto the electrode of the solar cell, and solder has been mainly used for the bonding.
  • solder has been mainly used for the bonding.
  • the solar cell may be warped or cracked due to thermal effects during soldering. Such a problem appears more prominently as the thickness of the solar cell becomes thinner.
  • a method has been proposed in which a wiring material and a solar cell are bonded using a resin adhesive (hereinafter simply referred to as “adhesive”) instead of solder (see, for example, Patent Document 1).
  • a solar cell module for a solar cell having electrodes on the light receiving surface and the back surface, an adhesive is applied on the light receiving surface and the back surface, and a wiring material is disposed on the adhesive.
  • An adhesive coating system for a solar cell module is an adhesive coating system for a solar cell module that applies an adhesive for bonding a wiring material on a light receiving surface and a back surface of a solar cell, the light receiving surface
  • a coating device that applies adhesive on the top and back surfaces, a reversing device that reverses the solar cell, and a control device are provided, and the control device controls the operation of the coating device and the reversing device to adhere to the light receiving surface.
  • the solar cell After applying the agent, the solar cell is inverted and the back surface is directed upward. After the adhesive is applied on the back surface, the solar cell is inverted again and the light receiving surface is directed upward.
  • the present invention it is possible to improve the performance of the solar cell module such as photoelectric conversion characteristics and appearance by optimizing the application method of the adhesive.
  • FIG. 1 It is sectional drawing of the solar cell module which is an example of embodiment of this invention. It is the figure (front view) which looked at the solar cell which comprises the solar cell module of FIG. 1 from the light-receiving surface side. It is the figure (back view) which looked at the solar cell which comprises the solar cell module of FIG. 1 from the back surface side. It is a figure for demonstrating the manufacturing process of the solar cell module which is an example of embodiment of this invention, and the adhesive agent coating system for solar cell modules. It is a figure which shows an example of the coating device of FIG. It is a figure for demonstrating the manufacturing process of the solar cell module which is an example of embodiment of this invention. It is a figure which shows the modification of the manufacturing process of FIG. 3, and an adhesive agent coating system. It is a figure which shows the other modification of the manufacturing process of FIG. 3, and an adhesive agent coating system. It is a figure which shows the reference example of the manufacturing process of a solar cell module, and an adhesive agent coating system.
  • the “light-receiving surface” means a surface on which sunlight mainly enters from the outside of the solar cell.
  • the “back surface” means a surface opposite to the light receiving surface. More specifically, over 50% to 100% of sunlight incident on the solar cell is incident from the light receiving surface side.
  • “Upward” means vertically upward unless otherwise specified.
  • “substantially **” is intended to include “substantially the same” as an example and includes what is recognized as substantially the same as the same.
  • FIG. 1 is a cross-sectional view of a solar cell module 10 which is an example of an embodiment of the present invention.
  • 2A and 2B are views of the solar cell 11 constituting the solar cell module 10 as viewed from the light-receiving surface side and the back surface side (the wiring member 15 is indicated by a one-dot chain line).
  • the solar cell module 10 to be described is an example of a product manufactured by a manufacturing method described later.
  • the solar cell module 10 includes a plurality of solar cells 11, a first protective member 12 disposed on the light receiving surface side of the solar cell 11, and a first surface disposed on the back surface side of the solar cell 11. 2 protection members 13.
  • the plurality of solar cells 11 are sandwiched between protective members 12 and 13 and sealed with a filler 14 such as an ethylene vinyl acetate copolymer (EVA).
  • EVA ethylene vinyl acetate copolymer
  • a translucent member such as a glass substrate, a resin substrate, or a resin film can be used.
  • a member that does not have translucency may be used as the protective member 13.
  • the solar cell module 10 further includes a wiring member 15 that electrically connects the solar cells 11 to each other, a frame, a terminal box, and the like (not shown).
  • the solar cell 11 includes a photoelectric conversion unit 20 that generates carriers by receiving sunlight.
  • the photoelectric conversion unit 20 includes, for example, a semiconductor substrate such as crystalline silicon (c-Si), gallium arsenide (GaAs), or indium phosphide (InP), and an amorphous semiconductor layer formed on the substrate.
  • the photoelectric conversion unit 20 preferably includes transparent conductive layers 21a and 21b formed on the amorphous semiconductor layer.
  • an i-type amorphous silicon layer, a p-type amorphous silicon layer, and a transparent conductive layer 21a are sequentially formed on a light-receiving surface of an n-type single crystal silicon substrate, and an i-type amorphous is formed on the back surface.
  • a structure in which a silicon layer, an n-type amorphous silicon layer, and a transparent conductive layer 21b are sequentially formed can be given.
  • the transparent conductive layers 21a and 21b are composed of a transparent conductive oxide obtained by doping tin (Sn), antimony (Sb), or the like with a metal oxide such as indium oxide (In 2 O 3 ) or zinc oxide (ZnO). It is preferable.
  • finger electrodes 22a and bus bar electrodes 23a as light receiving surface electrodes and finger electrodes 22b and bus bar electrodes 23b as back surface electrodes on the photoelectric conversion unit 20, respectively.
  • the finger electrodes 22a and 22b are thin line electrodes formed over a wide range on the transparent conductive layers 21a and 21b, respectively.
  • the bus bar electrodes 23a and 23b are electrodes that collect carriers from the finger electrodes 22a and 22b, respectively. When the bus bar electrodes 23a and 23b are provided, the wiring member 15 is attached on the electrodes.
  • the three bus bar electrodes 23a are arranged substantially in parallel with each other with a predetermined interval, and a large number of finger electrodes 22a are arranged substantially orthogonal to the three bus bar electrodes 23a. All the electrodes are formed in a straight line.
  • the back electrode has the same electrode arrangement as the light receiving surface electrode, the back surface electrode can be formed in a larger area than the light receiving surface electrode because the back surface is less affected by light shielding loss on the photoelectric conversion characteristics than the light receiving surface.
  • the back electrode has, for example, an electrode area about 2 to 6 times that of the light receiving surface electrode, and the number of finger electrodes 22b can be increased from the number of finger electrodes 22a. That is, it can be said that the “light receiving surface” is a surface having a smaller electrode area, and the “back surface” is a surface having a larger electrode area.
  • the electrode has, for example, a structure in which a conductive filler such as silver (Ag) is dispersed in a binder resin.
  • the electrode having the structure can be formed by screen printing in the same manner as the adhesive 17 described later.
  • a metal layer such as Ag may be formed over substantially the entire area on the transparent conductive layer 21b to form the back electrode.
  • the wiring member 15 is an elongated member that connects the solar cells 11 arranged adjacent to each other. One end side of the wiring member 15 is attached to the bus bar electrode 23a of one solar cell 11 among the solar cells 11 arranged adjacent to each other. The other end side of the wiring member 15 is attached to the bus bar electrode 23 b of the other solar cell 11. That is, the wiring member 15 bends in the thickness direction of the solar cell module 10 between the adjacent solar cells 11 and connects the solar cells 11 in series.
  • the wiring member 15 has one surface substantially flat and the other surface has irregularities 16 (see FIG. 5).
  • the wiring member 15 is arranged so that the unevenness 16 faces the protective member 12 side. That is, the flat surface of the wiring member 15 is bonded onto the light receiving surface, and the surface with the irregularities 16 is bonded onto the back surface. With this arrangement, the light diffused by the unevenness 16 is reflected again to the solar cell 11 side by the protective member 12, and the light receiving efficiency of the solar cell 11 can be increased.
  • the wiring member 15 is bonded to the bus bar electrodes 23a and 23b using an adhesive 17, respectively.
  • the elongated wiring member 15 is arranged along the longitudinal direction of the bus bar electrodes 23a, 23b and with the centers in the width direction being substantially coincident with each other. Since the wiring member 15 is required to have a strength that is not cut at the time of manufacture or use, for example, the width of the wiring member 15 is set wider than the width of the bus bar electrodes 23a and 23b. For this reason, the wiring material 15 is attached in the state which protruded from the width direction both sides of bus-bar electrode 23a, 23b.
  • thermoplastic adhesive a thermosetting adhesive
  • room temperature curing adhesive moisture curing type, two-component curing type
  • energy ray curing adhesive ultraviolet curing type
  • thermosetting adhesives include urea-based adhesives, resorcinol-based adhesives, melamine-based adhesives, phenol-based adhesives, epoxy-based adhesives, polyurethane-based adhesives, polyester-based adhesives, polyimide-based adhesives, An acrylic adhesive etc.
  • the adhesive 17 may contain a conductive filler such as Ag particles, but is preferably a non-conductive thermosetting adhesive that does not contain a conductive filler from the viewpoint of manufacturing cost, light-shielding loss reduction, and the like. is there.
  • the adhesive 17 before curing (hereinafter, the adhesive before curing is referred to as “adhesive 47”) is liquid.
  • “Liquid” is a state having fluidity at room temperature (25 ° C.) and includes a state called a paste or gel.
  • the viscosity of the adhesive 47 is about 1 Pa ⁇ s to 100 Pa ⁇ s, preferably about 5 Pa ⁇ s to 50 Pa ⁇ s, more preferably about 30 Pa ⁇ s to 50 Pa ⁇ s.
  • the production method described later is particularly suitable when the viscosity of the adhesive 47 is high, for example.
  • the adhesive 17 exists only between the wiring member 15 and the light receiving surface and between the wiring member 15 and the back surface, respectively. That is, it is preferable that the adhesive 17 does not protrude from between the wiring member 15 and the light receiving surface and the back surface, and does not have a so-called fillet in which the adhesive adheres to the side surface of the wiring member 15.
  • the wiring member 15 does not have to be firmly bonded to the solar cell 11 and is preferably bonded gently to the extent that it does not peel off during manufacturing or use from the viewpoint of stress relaxation.
  • the “stress” to be relaxed is mainly a shear stress generated at the interface between the wiring material 15 and the solar cell 11 due to a volume change (expansion / shrinkage due to a temperature change) of the filler 14.
  • FIG. 3 is a diagram showing a process of applying the adhesive 47 in the manufacturing process of the solar cell module 10 and the coating system 30 (11a is attached to the light receiving surface of the solar cell 11 and 11b is attached to the back surface thereof. ).
  • FIG. 4 is a view showing an example of the coating device 33b.
  • FIG. 4A is a cross-sectional view of the screen plate 42 and the like cut along the longitudinal direction of the bus bar electrodes 23a and 23b, and FIG. It is sectional drawing which cut
  • FIG. 5 is a diagram illustrating a process of bonding the wiring member 15.
  • the solar cell module 10 can be manufactured by a manufacturing line including a coating system 30.
  • the coating system 30 is a system that constitutes a part of the production line of the solar cell module 10, and applies an adhesive 47 for bonding the wiring material 15 on the light receiving surface and the back surface of the solar cell 11.
  • the wiring material 15 is attached to the solar cell 11 to which the adhesive 47 is applied by the coating system 30, and a string (see FIGS. 1 and 5) in which the plurality of solar cells 11 are connected by the wiring material 15 is produced. And the said string is conveyed by the laminating apparatus (not shown), for example, and the solar cell module 10 is manufactured through the below-mentioned laminating process.
  • the coating system 30 preferably includes a coating reversing unit 31 and a control device 32. Furthermore, the coating system 30 preferably includes an alignment adjustment unit 35 and an inspection unit 36.
  • the coating reversing unit 31 includes, for example, a coating device 33a that coats the adhesive 47 on the light receiving surface of the solar cell 11, a coating device 33b that coats the adhesive 47 on the back surface, and a reversing device 34 that reverses the solar cell 11. Including. It is preferable that the control device 32 controls the operation of the entire system including the alignment adjusting unit 35 and the inspection unit 36 while controlling the operation of the coating reversing unit 31.
  • the coating reversing unit 31 is a compact unit in which two coating devices 33a and 33b and a reversing device 34 are arranged close to each other.
  • a reversing device 34 is provided between the two coating devices 33a and 33b.
  • the adhesive 47 can be rapidly applied to both surfaces of the solar cell 11. Further, by combining the coating devices 33a and 33b and the reversing device 34, the coating system 30 can be downsized.
  • the coating devices 33a and 33b are provided with stages 40a and 40b on which the solar cell 11 is placed, respectively.
  • the solar cell 11 is placed on the stages 40a and 40b with the surface to which the adhesive 47 is applied facing upward.
  • the solar cell 11 placed on the stage 40a has the light receiving surface facing upward, and the back surface of the solar cell 11 placed on the stage 40b faces upward.
  • the former is referred to as “adhesive 47a” and the latter is referred to as “adhesive 47b”.
  • FIG. 4 it is preferable to use a screen printing apparatus for the coating apparatuses 33a and 33b from the viewpoint of productivity and the like.
  • FIG. 4 shows the coating device 33b, a similar device can be used for the coating device 33a.
  • the printing apparatuses 33a and 33b have different printing conditions, and the amount of adhesive 47 applied is larger on the back side than on the light receiving side (see FIG. 5).
  • a general apparatus having a screen plate 42, a squeegee 46, etc. can be applied to the screen printing apparatus.
  • the screen plate 42 has a mesh 43 that passes through the adhesive 47 and a mask material 44 provided on the mesh 43.
  • the mask material 44 is made of, for example, a photosensitive emulsion, and is provided leaving an opening 45 corresponding to the coating pattern of the adhesive 47a or the adhesive 47b.
  • the adhesive 47 is placed on the screen plate 42, and the squeegee 46 is slid on the plate, whereby the adhesive 47 is discharged from the opening 45 and the adhesive 47 is placed on the light receiving surface or the back surface. Print at the desired location.
  • the opening 45 is formed according to the shape of the bus bar electrode 23a or 23b. Specifically, the screen plate 42 is formed with three elongated openings 45 corresponding to the bus bar electrodes 23a or 23b.
  • Each opening 45 has a length in the longitudinal direction substantially the same as a length in the longitudinal direction of the bus bar electrode 23a or 23b, and a width larger than the width of the bus bar electrode 23a or 23b and narrower than the width of the wiring member 15. It is formed as follows.
  • the squeegee 46 is slid along the longitudinal direction of the bus bar electrodes 23a and 23b.
  • grooves 41b corresponding to the formation pattern of the adhesive 47a on the stage 40b so that the adhesive 47a previously applied by the coating apparatus 33a does not adhere.
  • three elongated grooves 41b are formed in the stage 40b.
  • the reversing device 34 is a device having a function of turning the solar cell 11 with the light-receiving surface facing upward and turning the back surface upward, and turning the solar cell 11 with the back surface facing upward and directing the light-receiving surface upward. If it is, it will not specifically limit.
  • a device having various reversing mechanisms such as a mechanism for reversing the solar cell 11 between two members or a mechanism for reversing the solar cell 11 using a member capable of sucking or adsorbing the solar cell 11, can be applied as appropriate.
  • a mechanism for reversing the solar cell 11 between two members or a mechanism for reversing the solar cell 11 using a member capable of sucking or adsorbing the solar cell 11, can be applied as appropriate.
  • the reversing device 34 is shown at the center of the coating reversing unit 31, but for example, a standby stage may be provided at the center of the coating reversing unit 31, and a reversing mechanism may be provided between each coating device and the standby stage. Good.
  • the alignment adjustment unit 35 preferably performs alignment (hereinafter also referred to as “alignment adjustment”) for applying the adhesive 47 to a target application position with reference to the light receiving surface side of the solar cell 11. .
  • the alignment adjusting unit 35 is provided in the vicinity of the upstream side of the coating reversing unit 31 (the starting point side of the production line).
  • the solar cell 11 used for manufacturing the solar cell module 10 is carried into the alignment adjustment unit 35 by, for example, the transport line 60.
  • the solar cell 11 since damage and contamination on the light receiving surface side more easily affect the photoelectric conversion characteristics than on the back surface side, it is preferable to transport the solar cell 11 with the light receiving surface facing upward in the transport line 60. . For this reason, the solar cell 11 is carried into the alignment adjusting unit 35 with the light receiving surface facing upward.
  • the alignment adjustment unit 35 it is preferable to perform the above alignment using a camera 37.
  • the inspection unit 36 is provided close to the downstream side (end point side of the production line) of the coating reversing unit 31 and inspects the application state of the adhesive 47a on the light receiving surface side (hereinafter also referred to as “quality inspection”). Is preferred.
  • the application state of the adhesive 47a is acquired by the camera 38, and it is determined whether or not it is applied to the target application position.
  • the inspection unit 36 also determines whether there is damage such as cracks or cracks. When the conformity determination is made, that is, when there is no damage and the adhesive 47a is applied to the target position (it is assumed that the adhesive 47b is also applied to the target position), the solar cell 11 is conveyed to the next step. On the other hand, when there is damage or the adhesive 47a deviates from the target position, the solar cell 11 is discarded, for example.
  • control device 32 controls the operation of each component of the system in an integrated manner.
  • the control device 32 includes, for example, a storage unit 50 that stores a database, a program, and the like necessary for realizing the function.
  • the control blocks include, for example, an alignment control unit 51, a first application control unit 52, a first inversion control unit 53, a second application control unit 54, a second inversion control unit 55, and an inspection determination unit 56.
  • the functions of the control device 32 may be distributed among a plurality of hardware. Further, all of the application process of the adhesive 47 may be automatically performed by the function of the control device 32, or a part of the process may be artificially performed.
  • the control device 32 controls the operations of the coating devices 33a and 33b and the reversing device 34 to apply the adhesive 47 on the light receiving surface, and then reverses the solar cell 11 so that the back surface faces upward. After the adhesive 47 is applied thereon, the solar cell 11 is inverted again and the light receiving surface is directed upward.
  • the control is executed by the functions of the first application control unit 52, the first inversion control unit 53, the second application control unit 54, and the second inversion control unit 55. Further, the control device 32 performs alignment adjustment based on the light receiving surface side of the solar cell 11. This control is executed by the function of the alignment control unit 51. In addition, after applying the adhesive 47, a quality inspection is performed on the light receiving surface side. This control is executed by the function of the inspection determination unit 56.
  • the application system 30 performs the reversal operation twice after applying the adhesive 47 on the light receiving surface and before inspecting the application state of the adhesive 47. That is, the solar cell 11 is reversed after applying the adhesive 47 on the light receiving surface and after applying the adhesive 47 on the back surface in the coating reversing unit 31, and both the carry-in surface and the carry-out surface are the light receiving surface. It becomes.
  • the “loading surface” means a surface facing upward when the solar cell 11 is loaded into the coating reversing unit 31, and the “unloading surface” is a surface facing upward when unloading from the coating reversing unit 31. Means.
  • movement and an effect of the coating system 30 are explained in full detail with the manufacturing process mentioned later.
  • a plurality of solar cells 11 are prepared.
  • the solar cell 11 can be manufactured by a conventionally known method (detailed description of the method is omitted).
  • a plurality of solar cells 11 are supplied to the production line, and for example, before the adhesive 47 is applied, the presence or absence of damage such as cracks or cracks is inspected. Then, the solar cell 11 that has passed the inspection is transported to the alignment adjustment unit 35 by the transport line 60.
  • the solar cell 11 is preferably transported with the light receiving surface facing upward, it is carried into the alignment adjustment unit 35 with the light receiving surface facing upward. Further, the application state of the adhesive 47 is required to have high accuracy particularly on the light receiving surface side. For example, if the application position of the adhesive 47 deviates from the target position, the light-shielding loss increases and the appearance may deteriorate, but this influence is greater on the light receiving surface side. Therefore, alignment adjustment is performed with the light receiving surface side as a reference.
  • the alignment adjustment unit 35 performs alignment for applying the adhesive 47 to a target application position using the camera 37 that photographs the solar cell 11 from above, with the light receiving surface side of the solar cell 11 as a reference.
  • the alignment is executed by the function of the alignment control unit 51.
  • the solar cell 11 in which the alignment is completed is carried into the coating reversing unit 31 with the light receiving surface as the carry-in surface.
  • the solar cell 11 in which the alignment is completed is transported to the coating device 33a.
  • the solar cell 11 is transported with its light receiving surface facing upward without being inverted.
  • the adhesive 47 is applied first from the light receiving surface side.
  • the adhesive 47 is applied on the electrode along the longitudinal direction of the bus bar electrode 23a. Preferably, it is applied a little wider than the width of the bus bar electrode 23a.
  • the application of the adhesive 47 on the light receiving surface is performed after the alignment is completed without being affected by the position accuracy due to the reversing operation or the like. For this reason, it becomes possible to apply the adhesive 47 to the light receiving surface with high accuracy.
  • the solar cell 11 is disposed on the stage 40 a with the light receiving surface facing upward, and the adhesive 47 is applied by the function of the first coating control unit 52.
  • the solar cell 11 with the adhesive 47 applied on the light receiving surface is conveyed to the reversing device 34.
  • the solar cell 11 with the adhesive 47 applied on the light receiving surface is reversed and the back surface is directed upward. That is, the light receiving surface coated with the adhesive 47 is directed downward (on the stage side of the reversing device 34). Since the adhesive 47a is in an uncured state, it is necessary to invert the solar cell 11 so that the adhesive 47a does not adhere to the stage and does not flow. As a measure against the former, there is a method of providing an adhesion preventing structure similar to the groove 41b on the stage.
  • the stage is provided with a cooling means, for example, means for blowing air to the solar cell 11, a cooler, etc. And a method for increasing the viscosity of the agent 47.
  • the first inversion operation is executed by the function of the first inversion control unit 53.
  • the reversing method is not particularly limited as long as it has a small influence on the adhesive 47a and the positional accuracy, and is appropriately selected according to the device space or the like (the same applies to the second reversing).
  • the solar cell 11 in which the first reversing operation is completed is conveyed to the coating device 33b.
  • an adhesive 47 is applied on the back surface directed upward by the above reversal operation.
  • the adhesive 47 is applied on the electrode along the longitudinal direction of the bus bar electrode 23b. Preferably, it is applied a little wider than the width of the bus bar electrode 23b. It is preferable that the amount of the adhesive 47 applied is larger on the back surface side than on the light receiving surface side (that is, adhesive 47a ⁇ adhesive 47b). In particular, when the wiring member 15 having the unevenness 16 is used, it is preferable that the coating amount is adhesive 47a ⁇ adhesive 47b in order to improve the adhesion on the back surface side.
  • the solar cell 11 is disposed on the stage 40b with the back surface facing upward, and the adhesive 47 is applied on the back surface by the function of the second coating control unit 54.
  • the stage 40b is provided with a groove 41b so that the adhesive 47a does not adhere thereto, and the solar cell 11 is arranged with the adhesive 47a aligned with the position of the groove 41b.
  • the solar cell 11 with the adhesive 47 applied on the back surface is conveyed again to the reversing device 34.
  • the coating amount is set to adhesive 47a ⁇ adhesive 47b
  • the screen plate 42 used in the coating apparatus 33b has a larger opening 45 and a thicker mask material 44.
  • the coating amount is adhesive 47a ⁇ adhesive 47b.
  • the solar cell 11 coated with the adhesive 47 on both sides is inverted again and the light receiving surface is directed upward. That is, the back surface to which the adhesive 47 is applied is directed downward (on the stage side of the reversing device 34).
  • the second reversal operation is executed by the function of the second reversal control unit 55.
  • the solar cell 11 for which the second reversing operation has been completed is unloaded from the coating reversing unit 31 and transported to the inspection unit 36.
  • the process in the coating reversing unit 31 is completed.
  • the solar cell 11 is reversed twice in the coating reversing unit 31 between the alignment adjustment and the quality inspection. Thereby, the solar cell 11 is conveyed to the test
  • the application state of the adhesive 47 is inspected by the inspection unit 36, and a series of application processes in the application system 30 is completed.
  • the inspection unit 36 performs quality inspection on the light receiving surface side where high coating accuracy is required.
  • the application state of the adhesive 47 a is acquired by the camera 38 by the function of the inspection determination unit 56, and whether it is applied to the target application position and whether there is damage such as a crack or a crack. Determine whether or not.
  • inspection is conveyed by the following process.
  • the wiring member 15 is attached to the solar cell 11 to which the adhesive 47 is applied.
  • the wiring member 15 has a flat surface bonded to the adhesive 47a and a surface having the irregularities 16 bonded to the adhesive 47b.
  • the wiring member 15 is thermocompression bonded onto the adhesive 47 and the heating temperature is set to a temperature at which the adhesive 47 is cured.
  • the wiring member 15 may be separately bonded on the light receiving surface side and the back surface side of the solar cell 11, or may be bonded simultaneously on the light receiving surface side and the back surface side. Thus, a string in which a plurality of solar cells 11 are connected by the wiring member 15 is produced.
  • the constituent members of the solar cell module 10 including the string are stacked and thermocompression bonded.
  • This process is called a laminating process.
  • a first resin film constituting the filler 14 is laminated on the protective member 12, and a string is laminated on the first resin film.
  • a second resin film constituting the filler 14 is laminated on the string, and the protective member 13 is laminated thereon. And it laminates by applying a pressure, heating at the temperature which each resin film fuse
  • the solar cell module 10 is manufactured by attaching a frame, a terminal box, and the like.
  • the method of applying the adhesive 47 can be optimized, and for example, the performance of the solar cell module 10 such as photoelectric conversion characteristics and appearance can be improved.
  • the performance of the solar cell module 10 such as photoelectric conversion characteristics and appearance can be improved.
  • alignment adjustment and quality inspection can be easily performed on the basis of the light receiving surface side that easily affects the photoelectric conversion characteristics. Can do. Thereby, it becomes possible to increase the application accuracy of the adhesive 47 to the light receiving surface.
  • the adhesive 47 on the light receiving surface in advance in a state where the influence of the position accuracy due to the reversing operation or the like is small, in order to increase the application accuracy of the adhesive 47 on the light receiving surface.
  • an adhesive having a high viscosity is used as the adhesive 47, even if the adhesive 47 is applied to the light receiving surface and then reversed, the influence of the adhesive 47a on the light receiving surface due to the reversal is very small.
  • the application amount of the adhesive 47 is adhesive 47a ⁇ adhesive 47b, it is preferable that the adhesive 47a with a small application amount is provided in advance.
  • the coating system 100 of the reference example shown in FIG. 8 has a problem in quality assurance (coating accuracy) and the like as compared with the embodiment of the present invention.
  • the coating system 100 is different from the above-described embodiment of the present invention in that the reversing operation in the coating reversing unit 101 is one time.
  • the adhesive 47 can be applied to both surfaces of the solar cell 11, but the carry-out surface from the coating inversion unit 101 is the back surface. That is, since the solar cell 11 is carried into the inspection unit 36 with the back surface facing upward, the quality inspection is performed on the back surface. That is, it is difficult to perform quality inspection on the light receiving surface side that requires high accuracy.
  • the coating system 100 since the carry-in surface and the carry-out surface are not unified, alignment adjustment and quality inspection are performed based on different surfaces. This is not preferable from the viewpoint of coating accuracy. Further, when the coating system 100 is used, the subsequent steps are performed with the light receiving surface facing downward, which is not preferable from the viewpoint of suppressing damage and contamination on the light receiving surface side.
  • the reversing operation of the solar cell 11 is performed twice in the coating reversing unit 31, thereby obtaining other methods including the above reference example. Unobtainable effects can be obtained.
  • the method of unifying the said carrying-in surface and the said carrying-out surface to a back surface is also considered, when using the solar cell 11, it will be understood from the said description that the said method is not appropriate.
  • the adhesive 47 is applied on the light receiving surface and the back surface using the two coating devices 33a and 33b.
  • the adhesive 47 may be applied by the application device 71.
  • the application reversing unit 70 shown in FIG. 6 is suitable when, for example, the adhesive 47 is applied using the same screen plate on the light receiving surface side and the back surface side.
  • the alignment adjustment part 35 is provided in the upstream of the application
  • the adhesive 47 can be applied with high accuracy at the target position.
  • the process from alignment adjustment to quality inspection can be performed at one place.
  • the coating reversing unit 80 shown in FIG. 7 the coating device and the reversing device are integrated into one. Furthermore, a camera 81 is mounted on the coating reversing unit 80, and alignment adjustment and quality inspection can be performed in this unit.

Abstract

A solar cell module (10) production method involves applying an adhesive (47) on a light-receiving surface and a rear surface of a solar cell (11) having electrodes on the light-receiving surface and the rear surface, and positioning and attaching a wiring material (15) on the adhesive (47). Specifically, after the adhesive (47) has been applied on the light-receiving surface of the solar cell (11) positioned so that the light-receiving surface is facing upward, the solar cell (11) is inverted so that the rear surface is facing upward, and the adhesive (47) is applied on the rear surface; then, before positioning the wiring material (15), the solar cell (11) is inverted once again so that the light-receiving surface is facing upward.

Description

太陽電池モジュールの製造方法及び太陽電池モジュール用接着剤塗布システムManufacturing method of solar cell module and adhesive coating system for solar cell module
 本発明は、太陽電池モジュールの製造方法及び太陽電池モジュール用接着剤塗布システムに関する。 The present invention relates to a solar cell module manufacturing method and a solar cell module adhesive coating system.
 太陽電池モジュールは、複数の太陽電池、太陽電池同士を接続する配線材、及びこれらを封止する充填材等を備える。配線材は太陽電池の電極上に接着されるが、当該接着には主に半田が用いられてきた。しかし、半田付け時の熱影響により、太陽電池の反りやクラックが発生する場合がある。かかる不具合は、太陽電池の厚みが薄くなるほど顕著に現れる。このため、半田の代わりに樹脂接着剤(以下、単に「接着剤」という)を用いて配線材と太陽電池とを接着する方法が提案されている(例えば、特許文献1参照)。 The solar cell module includes a plurality of solar cells, a wiring material for connecting the solar cells, a filler for sealing them, and the like. The wiring material is bonded onto the electrode of the solar cell, and solder has been mainly used for the bonding. However, the solar cell may be warped or cracked due to thermal effects during soldering. Such a problem appears more prominently as the thickness of the solar cell becomes thinner. For this reason, a method has been proposed in which a wiring material and a solar cell are bonded using a resin adhesive (hereinafter simply referred to as “adhesive”) instead of solder (see, for example, Patent Document 1).
特開2008-205137号公報JP 2008-205137 A
 ところで、太陽電池の両面に電極が設けられる場合、接着剤を太陽電池の両面に塗布する必要がある。このとき、接着剤の塗布方法によっては、例えば、塗布後の太陽電池の見栄えに影響を及ぼしたり、配線材の接着強度の低下に伴う品質異常や、配線材の接触抵抗増加に伴う光電変換特性の悪化を引き起こすなど、太陽電池モジュールの性能に好ましくない影響を与える場合がある。したがって、太陽電池モジュールの製造過程において、接着剤の塗布方法を適正化することは重要な課題である。 By the way, when electrodes are provided on both sides of a solar cell, it is necessary to apply an adhesive on both sides of the solar cell. At this time, depending on the application method of the adhesive, for example, it affects the appearance of the solar cell after application, quality abnormalities accompanying a decrease in the adhesive strength of the wiring material, and photoelectric conversion characteristics accompanying an increase in the contact resistance of the wiring material May adversely affect the performance of the solar cell module. Therefore, in the process of manufacturing the solar cell module, it is an important issue to optimize the method of applying the adhesive.
 本発明に係る太陽電池モジュールの製造方法は、受光面上及び裏面上に電極を有する太陽電池に対して、受光面上及び裏面上に接着剤を塗布し、当該接着剤上に配線材を配置して接着する太陽電池モジュールの製造方法であって、受光面を上方に向けて配置される太陽電池に対して、当該受光面上に接着剤を塗布した後、太陽電池を反転させて裏面を上方に向け、当該裏面上に接着剤を塗布した後、配線材を配置する前に、太陽電池を再度反転させて受光面を上方に向ける。 In the method for manufacturing a solar cell module according to the present invention, for a solar cell having electrodes on the light receiving surface and the back surface, an adhesive is applied on the light receiving surface and the back surface, and a wiring material is disposed on the adhesive. A solar cell module manufacturing method for adhering to a solar cell arranged with the light receiving surface facing upward, after applying an adhesive on the light receiving surface, inverting the solar cell After the adhesive is applied on the back surface, the solar cell is inverted again and the light receiving surface is directed upward before the wiring material is disposed.
 本発明に係る太陽電池モジュール用接着剤塗布システムは、太陽電池の受光面上及び裏面上に配線材を接着するための接着剤を塗布する太陽電池モジュール用接着剤塗布システムであって、受光面上及び裏面上に接着剤を塗布する塗布装置と、太陽電池を反転させる反転装置と、制御装置とを備え、制御装置は、塗布装置及び反転装置の動作を制御して、受光面上に接着剤を塗布した後、当該太陽電池を反転させて裏面を上方に向け、当該裏面上に接着剤を塗布した後、当該太陽電池を再度反転させて受光面を上方に向ける。 An adhesive coating system for a solar cell module according to the present invention is an adhesive coating system for a solar cell module that applies an adhesive for bonding a wiring material on a light receiving surface and a back surface of a solar cell, the light receiving surface A coating device that applies adhesive on the top and back surfaces, a reversing device that reverses the solar cell, and a control device are provided, and the control device controls the operation of the coating device and the reversing device to adhere to the light receiving surface. After applying the agent, the solar cell is inverted and the back surface is directed upward. After the adhesive is applied on the back surface, the solar cell is inverted again and the light receiving surface is directed upward.
 本発明によれば、接着剤の塗布方法を適正化して、例えば、光電変換特性や見栄え等の太陽電池モジュールの性能を改善することができる。 According to the present invention, it is possible to improve the performance of the solar cell module such as photoelectric conversion characteristics and appearance by optimizing the application method of the adhesive.
本発明の実施形態の一例である太陽電池モジュールの断面図である。It is sectional drawing of the solar cell module which is an example of embodiment of this invention. 図1の太陽電池モジュールを構成する太陽電池を受光面側から見た図(正面図)である。It is the figure (front view) which looked at the solar cell which comprises the solar cell module of FIG. 1 from the light-receiving surface side. 図1の太陽電池モジュールを構成する太陽電池を裏面側から見た図(背面図)である。It is the figure (back view) which looked at the solar cell which comprises the solar cell module of FIG. 1 from the back surface side. 本発明の実施形態の一例である太陽電池モジュールの製造工程及び太陽電池モジュール用接着剤塗布システムを説明するための図である。It is a figure for demonstrating the manufacturing process of the solar cell module which is an example of embodiment of this invention, and the adhesive agent coating system for solar cell modules. 図3の塗布装置の一例を示す図である。It is a figure which shows an example of the coating device of FIG. 本発明の実施形態の一例である太陽電池モジュールの製造工程を説明するための図である。It is a figure for demonstrating the manufacturing process of the solar cell module which is an example of embodiment of this invention. 図3の製造工程及び接着剤塗布システムの変形例を示す図である。It is a figure which shows the modification of the manufacturing process of FIG. 3, and an adhesive agent coating system. 図3の製造工程及び接着剤塗布システムの他の変形例を示す図である。It is a figure which shows the other modification of the manufacturing process of FIG. 3, and an adhesive agent coating system. 太陽電池モジュールの製造工程及び接着剤塗布システムの参考例を示す図である。It is a figure which shows the reference example of the manufacturing process of a solar cell module, and an adhesive agent coating system.
 以下、図面を参照しながら、本発明に係る実施形態について詳細に説明する。
 実施形態において参照する図面は、模式的に記載されたものであり、図面に描画された構成要素の寸法比率などは、現物と異なる場合がある。具体的な寸法比率等は、以下の説明を参酌して判断されるべきである。
Hereinafter, embodiments according to the present invention will be described in detail with reference to the drawings.
The drawings referred to in the embodiments are schematically described, and the dimensional ratios of the components drawn in the drawings may be different from the actual products. Specific dimensional ratios and the like should be determined in consideration of the following description.
 本明細書において、「受光面」とは、太陽電池の外部から太陽光が主に入射する面を意味する。「裏面」とは、受光面と反対側の面を意味する。より詳しくは、太陽電池に入射する太陽光のうち50%超過~100%が受光面側から入射する。
 また、「上方」とは、特に断らない限り鉛直上方を意味する。
 また、「略**」とは、「略同一」を例に挙げて説明すると、全く同一はもとより、実質的に同一と認められるものを含む意図である。
In the present specification, the “light-receiving surface” means a surface on which sunlight mainly enters from the outside of the solar cell. The “back surface” means a surface opposite to the light receiving surface. More specifically, over 50% to 100% of sunlight incident on the solar cell is incident from the light receiving surface side.
“Upward” means vertically upward unless otherwise specified.
In addition, “substantially **” is intended to include “substantially the same” as an example and includes what is recognized as substantially the same as the same.
 図1は、本発明の実施形態の一例である太陽電池モジュール10の断面図である。図2A,Bは、太陽電池モジュール10を構成する太陽電池11を受光面側及び裏面側からそれぞれ見た図である(配線材15を一点鎖線で示す)以下、図1及び図2A,Bを用いて説明する太陽電池モジュール10は、後述の製造方法による製造物の一例である。 FIG. 1 is a cross-sectional view of a solar cell module 10 which is an example of an embodiment of the present invention. 2A and 2B are views of the solar cell 11 constituting the solar cell module 10 as viewed from the light-receiving surface side and the back surface side (the wiring member 15 is indicated by a one-dot chain line). FIG. 1 and FIGS. The solar cell module 10 to be described is an example of a product manufactured by a manufacturing method described later.
 図1に示すように、太陽電池モジュール10は、複数の太陽電池11と、太陽電池11の受光面側に配置される第1の保護部材12と、太陽電池11の裏面側に配置される第2の保護部材13とを備える。複数の太陽電池11は、保護部材12,13により挟持されると共に、エチレン酢酸ビニル共重合体(EVA)等の充填剤14により封止されている。保護部材12,13には、例えば、ガラス基板や樹脂基板、樹脂フィルム等の透光性を有する部材を用いることができる。なお、裏面側からの光の入射を想定しない場合には、保護部材13に透光性を有さない部材を用いてもよい。太陽電池モジュール10は、さらに、太陽電池11同士を電気的に接続する配線材15、図示しないフレームや端子ボックス等を備える。 As shown in FIG. 1, the solar cell module 10 includes a plurality of solar cells 11, a first protective member 12 disposed on the light receiving surface side of the solar cell 11, and a first surface disposed on the back surface side of the solar cell 11. 2 protection members 13. The plurality of solar cells 11 are sandwiched between protective members 12 and 13 and sealed with a filler 14 such as an ethylene vinyl acetate copolymer (EVA). For the protective members 12 and 13, for example, a translucent member such as a glass substrate, a resin substrate, or a resin film can be used. In addition, when the incidence of light from the back side is not assumed, a member that does not have translucency may be used as the protective member 13. The solar cell module 10 further includes a wiring member 15 that electrically connects the solar cells 11 to each other, a frame, a terminal box, and the like (not shown).
 太陽電池11は、太陽光を受光することでキャリアを生成する光電変換部20を備える。光電変換部20は、例えば、結晶系シリコン(c‐Si)、ガリウム砒素(GaAs)、インジウム燐(InP)等の半導体基板と、基板上に形成された非晶質半導体層とを有する。また、光電変換部20は、非晶質半導体層上に形成される透明導電層21a,21bを有することが好適である。具体例としては、n型単結晶シリコン基板の受光面上にi型非晶質シリコン層、p型非晶質シリコン層、及び透明導電層21aを順に形成し、裏面上にi型非晶質シリコン層、n型非晶質シリコン層、及び透明導電層21bを順に形成した構造が挙げられる。透明導電層21a,21bは、酸化インジウム(In23)や酸化亜鉛(ZnO)等の金属酸化物に、錫(Sn)やアンチモン(Sb)等をドープした透明導電性酸化物から構成されることが好ましい。 The solar cell 11 includes a photoelectric conversion unit 20 that generates carriers by receiving sunlight. The photoelectric conversion unit 20 includes, for example, a semiconductor substrate such as crystalline silicon (c-Si), gallium arsenide (GaAs), or indium phosphide (InP), and an amorphous semiconductor layer formed on the substrate. In addition, the photoelectric conversion unit 20 preferably includes transparent conductive layers 21a and 21b formed on the amorphous semiconductor layer. As a specific example, an i-type amorphous silicon layer, a p-type amorphous silicon layer, and a transparent conductive layer 21a are sequentially formed on a light-receiving surface of an n-type single crystal silicon substrate, and an i-type amorphous is formed on the back surface. A structure in which a silicon layer, an n-type amorphous silicon layer, and a transparent conductive layer 21b are sequentially formed can be given. The transparent conductive layers 21a and 21b are composed of a transparent conductive oxide obtained by doping tin (Sn), antimony (Sb), or the like with a metal oxide such as indium oxide (In 2 O 3 ) or zinc oxide (ZnO). It is preferable.
 図2A,Bに示すように、光電変換部20上には、受光面電極としてフィンガー電極22a及びバスバー電極23aを、裏面電極としてフィンガー電極22b及びバスバー電極23bをそれぞれ設けることが好適である。フィンガー電極22a,22bは、それぞれ透明導電層21a,21b上の広範囲に形成される細線状の電極である。バスバー電極23a,23bは、フィンガー電極22a,22bからそれぞれキャリアを収集する電極である。バスバー電極23a,23bが設けられる場合、配線材15は当該電極上に取り付けられる。 As shown in FIGS. 2A and 2B, it is preferable to provide finger electrodes 22a and bus bar electrodes 23a as light receiving surface electrodes and finger electrodes 22b and bus bar electrodes 23b as back surface electrodes on the photoelectric conversion unit 20, respectively. The finger electrodes 22a and 22b are thin line electrodes formed over a wide range on the transparent conductive layers 21a and 21b, respectively. The bus bar electrodes 23a and 23b are electrodes that collect carriers from the finger electrodes 22a and 22b, respectively. When the bus bar electrodes 23a and 23b are provided, the wiring member 15 is attached on the electrodes.
 本実施形態では、3本のバスバー電極23aが所定の間隔を空けて互いに略平行に配置され、これに略直交して多数のフィンガー電極22aが配置されている。また、いずれの電極も直線状に形成されている。裏面電極も受光面電極と同様の電極配置を有するが、裏面では受光面と比べて光電変換特性に対する遮光ロスの影響が少ないため、裏面電極は受光面電極よりも大面積に形成できる。裏面電極は、例えば、受光面電極の2倍~6倍程度の電極面積を有し、フィンガー電極22bの本数をフィンガー電極22aの本数よりも増やすことができる。即ち、「受光面」は電極面積が小さい方の面であり、「裏面」は電極面積が大きい方の面であるといえる。 In the present embodiment, the three bus bar electrodes 23a are arranged substantially in parallel with each other with a predetermined interval, and a large number of finger electrodes 22a are arranged substantially orthogonal to the three bus bar electrodes 23a. All the electrodes are formed in a straight line. Although the back electrode has the same electrode arrangement as the light receiving surface electrode, the back surface electrode can be formed in a larger area than the light receiving surface electrode because the back surface is less affected by light shielding loss on the photoelectric conversion characteristics than the light receiving surface. The back electrode has, for example, an electrode area about 2 to 6 times that of the light receiving surface electrode, and the number of finger electrodes 22b can be increased from the number of finger electrodes 22a. That is, it can be said that the “light receiving surface” is a surface having a smaller electrode area, and the “back surface” is a surface having a larger electrode area.
 電極は、例えば、バインダ樹脂中に銀(Ag)等の導電性フィラーが分散した構造を有する。当該構造の電極は、後述の接着剤17と同様に、スクリーン印刷により形成できる。なお、裏面側からの光の入射を想定しない場合には、例えば、透明導電層21b上の略全域にAg等の金属層を形成して裏面電極としてもよい。 The electrode has, for example, a structure in which a conductive filler such as silver (Ag) is dispersed in a binder resin. The electrode having the structure can be formed by screen printing in the same manner as the adhesive 17 described later. In the case where the incidence of light from the back surface side is not assumed, for example, a metal layer such as Ag may be formed over substantially the entire area on the transparent conductive layer 21b to form the back electrode.
 配線材15は、隣接配置される太陽電池11同士を接続する細長い部材である。配線材15の一端側は、隣接配置される太陽電池11のうち、一方の太陽電池11のバスバー電極23aに取り付けられる。配線材15の他端側は、他方の太陽電池11のバスバー電極23bに取り付けられる。即ち、配線材15は、隣接配置される太陽電池11の間で太陽電池モジュール10の厚み方向に曲がり、当該太陽電池11同士を直列に接続する。 The wiring member 15 is an elongated member that connects the solar cells 11 arranged adjacent to each other. One end side of the wiring member 15 is attached to the bus bar electrode 23a of one solar cell 11 among the solar cells 11 arranged adjacent to each other. The other end side of the wiring member 15 is attached to the bus bar electrode 23 b of the other solar cell 11. That is, the wiring member 15 bends in the thickness direction of the solar cell module 10 between the adjacent solar cells 11 and connects the solar cells 11 in series.
 配線材15は、一方の面が略平坦で、他方の面に凹凸16を有することが好適である(図5参照)。配線材15は、凹凸16が保護部材12側を向くように配置される。つまり、配線材15の平坦な面が受光面上に接着され、凹凸16のある面が裏面上に接着される。当該配置とすれば、凹凸16で拡散された光が保護部材12により再び太陽電池11側に反射し、太陽電池11の受光効率を高めることができる。 It is preferable that the wiring member 15 has one surface substantially flat and the other surface has irregularities 16 (see FIG. 5). The wiring member 15 is arranged so that the unevenness 16 faces the protective member 12 side. That is, the flat surface of the wiring member 15 is bonded onto the light receiving surface, and the surface with the irregularities 16 is bonded onto the back surface. With this arrangement, the light diffused by the unevenness 16 is reflected again to the solar cell 11 side by the protective member 12, and the light receiving efficiency of the solar cell 11 can be increased.
 配線材15は、接着剤17を用いてバスバー電極23a,23b上にそれぞれ接着される。細長い配線材15は、バスバー電極23a,23bの長手方向に沿うように、且つ互いの幅方向中央を略一致させて配置される。配線材15には少なくとも製造時や使用時に切断されない程度の強度が求められるため、例えば、配線材15の幅はバスバー電極23a,23bの幅よりも広く設定される。このため、バスバー電極23a,23bの幅方向両側から張り出した状態で配線材15が取り付けられる。 The wiring member 15 is bonded to the bus bar electrodes 23a and 23b using an adhesive 17, respectively. The elongated wiring member 15 is arranged along the longitudinal direction of the bus bar electrodes 23a, 23b and with the centers in the width direction being substantially coincident with each other. Since the wiring member 15 is required to have a strength that is not cut at the time of manufacture or use, for example, the width of the wiring member 15 is set wider than the width of the bus bar electrodes 23a and 23b. For this reason, the wiring material 15 is attached in the state which protruded from the width direction both sides of bus- bar electrode 23a, 23b.
 接着剤17には、熱可塑性接着剤や熱硬化型接着剤、常温硬化型接着剤(湿気硬化型、2液硬化型)、エネルギー線硬化型接着剤(紫外線硬化型)を用いることができる。これらのうち、硬化型接着剤が好ましく、熱硬化型接着剤が特に好ましい。熱硬化型接着剤としては、例えば、ユリア系接着剤、レゾルシノール系接着剤、メラミン系接着剤、フェノール系接着剤、エポキシ系接着剤、ポリウレタン系接着剤、ポリエステル系接着剤、ポリイミド系接着剤、アクリル系接着剤等が例示できる。 As the adhesive 17, a thermoplastic adhesive, a thermosetting adhesive, a room temperature curing adhesive (moisture curing type, two-component curing type), or an energy ray curing adhesive (ultraviolet curing type) can be used. Among these, a curable adhesive is preferable, and a thermosetting adhesive is particularly preferable. Examples of thermosetting adhesives include urea-based adhesives, resorcinol-based adhesives, melamine-based adhesives, phenol-based adhesives, epoxy-based adhesives, polyurethane-based adhesives, polyester-based adhesives, polyimide-based adhesives, An acrylic adhesive etc. can be illustrated.
 接着剤17は、Ag粒子等の導電性フィラーが含有されていてもよいが、製造コストや遮光ロス低減等の観点から、好ましくは導電性フィラーを含有しない非導電性の熱硬化型接着剤である。硬化前の接着剤17(以下、硬化前の接着剤を「接着剤47」とする)は、液状である。「液状」とは、常温(25℃)で流動性を有する状態であって、ペースト状やゲル状と呼ばれる状態を含む意図である。接着剤47の粘度は、1Pa・s~100Pa・s程度であり、好ましくは5Pa・s~50Pa・s程度、より好ましくは30Pa・s~50Pa・s程度である。後述する製造方法は、例えば、接着剤47の粘度が高い場合に特に好適である。 The adhesive 17 may contain a conductive filler such as Ag particles, but is preferably a non-conductive thermosetting adhesive that does not contain a conductive filler from the viewpoint of manufacturing cost, light-shielding loss reduction, and the like. is there. The adhesive 17 before curing (hereinafter, the adhesive before curing is referred to as “adhesive 47”) is liquid. “Liquid” is a state having fluidity at room temperature (25 ° C.) and includes a state called a paste or gel. The viscosity of the adhesive 47 is about 1 Pa · s to 100 Pa · s, preferably about 5 Pa · s to 50 Pa · s, more preferably about 30 Pa · s to 50 Pa · s. The production method described later is particularly suitable when the viscosity of the adhesive 47 is high, for example.
 接着剤17は、それぞれ配線材15と受光面との間、配線材15と裏面との間のみに存在することが好適である。即ち、接着剤17は、配線材15と受光面及び裏面との間から食み出さず、接着剤が配線材15の側面に付着する所謂フィレットを有さないことが好適である。配線材15は、太陽電池11に対して強固に接着していれば良いというものではなく、応力緩和等の観点から製造時や使用時に剥離しない程度において緩やかに接着していることが好ましい。即ち、配線材15と太陽電池11との接着強度を適切な範囲に制御することは重要であるが、フィレットが形成される場合、フィレットによる接着が支配的になり接着強度を制御することが困難になる。本実施形態では、接着剤が配線材15から食み出さないように塗布されているため、接着強度を適切な範囲に制御することが容易である。なお、緩和すべき「応力」とは、主に、充填材14の体積変化(温度変化による膨張・収縮)により配線材15と太陽電池11との界面に生じるせん断応力である。 It is preferable that the adhesive 17 exists only between the wiring member 15 and the light receiving surface and between the wiring member 15 and the back surface, respectively. That is, it is preferable that the adhesive 17 does not protrude from between the wiring member 15 and the light receiving surface and the back surface, and does not have a so-called fillet in which the adhesive adheres to the side surface of the wiring member 15. The wiring member 15 does not have to be firmly bonded to the solar cell 11 and is preferably bonded gently to the extent that it does not peel off during manufacturing or use from the viewpoint of stress relaxation. That is, it is important to control the adhesive strength between the wiring member 15 and the solar cell 11 to an appropriate range, but when a fillet is formed, the adhesion by the fillet becomes dominant and it is difficult to control the adhesive strength. become. In the present embodiment, since the adhesive is applied so as not to protrude from the wiring member 15, it is easy to control the adhesive strength within an appropriate range. The “stress” to be relaxed is mainly a shear stress generated at the interface between the wiring material 15 and the solar cell 11 due to a volume change (expansion / shrinkage due to a temperature change) of the filler 14.
 以下、図3~図5を参照しながら、本発明の実施形態の一例である太陽電池モジュール10の製造方法、及び太陽電池モジュール用接着剤塗布システム30(以下、「塗布システム30」という)について詳説する。図3は、太陽電池モジュール10の製造工程のうち接着剤47を塗布する工程、及び塗布システム30を示す図である(太陽電池11の受光面に11aを、裏面に11bをそれぞれ付している)。図4は、塗布装置33bの一例を示す図であって、図4(a)はバスバー電極23a,23bの長手方向に沿ってスクリーン版42等を切断した断面図、図4(b)は当該長手方向に直交する方向に沿ってスクリーン版42等を切断した断面図である。図5は、配線材15を接着する工程を示す図である。 Hereinafter, with reference to FIGS. 3 to 5, a method for manufacturing a solar cell module 10, which is an example of an embodiment of the present invention, and an adhesive coating system 30 for solar cell modules (hereinafter referred to as “coating system 30”). Explain in detail. FIG. 3 is a diagram showing a process of applying the adhesive 47 in the manufacturing process of the solar cell module 10 and the coating system 30 (11a is attached to the light receiving surface of the solar cell 11 and 11b is attached to the back surface thereof. ). FIG. 4 is a view showing an example of the coating device 33b. FIG. 4A is a cross-sectional view of the screen plate 42 and the like cut along the longitudinal direction of the bus bar electrodes 23a and 23b, and FIG. It is sectional drawing which cut | disconnected the screen plate 42 grade | etc., Along the direction orthogonal to a longitudinal direction. FIG. 5 is a diagram illustrating a process of bonding the wiring member 15.
 図3に示すように、太陽電池モジュール10は、塗布システム30を備える製造ラインにより製造することができる。塗布システム30は、太陽電池モジュール10の製造ラインの一部を構成するシステムであって、太陽電池11の受光面上及び裏面上に配線材15を接着するための接着剤47を塗布する。塗布システム30で接着剤47が塗布された太陽電池11には配線材15が取り付けられ、複数の太陽電池11が配線材15で接続されたストリング(図1,5参照)が作製される。そして、当該ストリングは、例えばラミネート装置(図示せず)に搬送され、後述のラミネート工程を経て太陽電池モジュール10が製造される。 As shown in FIG. 3, the solar cell module 10 can be manufactured by a manufacturing line including a coating system 30. The coating system 30 is a system that constitutes a part of the production line of the solar cell module 10, and applies an adhesive 47 for bonding the wiring material 15 on the light receiving surface and the back surface of the solar cell 11. The wiring material 15 is attached to the solar cell 11 to which the adhesive 47 is applied by the coating system 30, and a string (see FIGS. 1 and 5) in which the plurality of solar cells 11 are connected by the wiring material 15 is produced. And the said string is conveyed by the laminating apparatus (not shown), for example, and the solar cell module 10 is manufactured through the below-mentioned laminating process.
 塗布システム30は、塗布反転ユニット31と、制御装置32とを備えることが好適である。さらに、塗布システム30は、アライメント調整部35と、検査部36とを備えることが好適である。塗布反転ユニット31は、例えば、太陽電池11の受光面上に接着剤47を塗布する塗布装置33a、裏面上に接着剤47を塗布する塗布装置33b、及び太陽電池11を反転させる反転装置34を含む。制御装置32は、塗布反転ユニット31の動作を制御すると共に、アライメント調整部35、検査部36を含むシステム全体の動作を制御することが好適である。 The coating system 30 preferably includes a coating reversing unit 31 and a control device 32. Furthermore, the coating system 30 preferably includes an alignment adjustment unit 35 and an inspection unit 36. The coating reversing unit 31 includes, for example, a coating device 33a that coats the adhesive 47 on the light receiving surface of the solar cell 11, a coating device 33b that coats the adhesive 47 on the back surface, and a reversing device 34 that reverses the solar cell 11. Including. It is preferable that the control device 32 controls the operation of the entire system including the alignment adjusting unit 35 and the inspection unit 36 while controlling the operation of the coating reversing unit 31.
 塗布反転ユニット31は、2つの塗布装置33a,33b、及び反転装置34を近接配置してコンパクトにまとめたものである。本実施形態では、2つの塗布装置33a,33bの間に反転装置34が設けられている。これにより、太陽電池11の両面に対して接着剤47を迅速に塗布できる。また、塗布装置33a,33b、及び反転装置34をまとめることで、塗布システム30の小型化等を図ることができる。 The coating reversing unit 31 is a compact unit in which two coating devices 33a and 33b and a reversing device 34 are arranged close to each other. In the present embodiment, a reversing device 34 is provided between the two coating devices 33a and 33b. Thereby, the adhesive 47 can be rapidly applied to both surfaces of the solar cell 11. Further, by combining the coating devices 33a and 33b and the reversing device 34, the coating system 30 can be downsized.
 塗布装置33a,33bには、太陽電池11を載置するステージ40a,40bがそれぞれ設けられる。太陽電池11は、接着剤47を塗布する面を上方に向けた状態でステージ40a,40bにそれぞれ載せられる。即ち、ステージ40aに載せられる太陽電池11は、受光面が上方を向き、ステージ40bに載せられる太陽電池11は、裏面が上方を向いている。以下、受光面上に塗布される接着剤47と裏面上に塗布される接着剤47とを区別する必要がある場合、前者を「接着剤47a」、後者を「接着剤47b」という。 The coating devices 33a and 33b are provided with stages 40a and 40b on which the solar cell 11 is placed, respectively. The solar cell 11 is placed on the stages 40a and 40b with the surface to which the adhesive 47 is applied facing upward. In other words, the solar cell 11 placed on the stage 40a has the light receiving surface facing upward, and the back surface of the solar cell 11 placed on the stage 40b faces upward. Hereinafter, when it is necessary to distinguish between the adhesive 47 applied on the light receiving surface and the adhesive 47 applied on the back surface, the former is referred to as “adhesive 47a” and the latter is referred to as “adhesive 47b”.
 図4に示すように、塗布装置33a,33bには、生産性等の観点からスクリーン印刷装置を用いることが好適である。図4では、塗布装置33bを示しているが、塗布装置33aについても同様の装置を用いることができる。但し、詳しくは後述するように、塗布装置33a,33bでは印刷条件を互いに異なるものとし、接着剤47の塗布量を受光面側よりも裏面側で多くすることが好ましい(図5参照)。スクリーン印刷装置には、スクリーン版42、スキージ46等を有する一般的な装置を適用できる。スクリーン版42は、接着剤47を透過するメッシュ43と、メッシュ43に設けられたマスク材44とを有する。マスク材44は、例えば、感光性の乳剤で構成され、接着剤47a又は接着剤47bの塗布パターンに応じた開口部45を残して設けられる。スクリーン印刷では、スクリーン版42上に接着剤47を載せ、当該版上でスキージ46を摺動させることにより、開口部45から接着剤47を吐出させて接着剤47を受光面上又は裏面上の目的とする位置に印刷する。開口部45は、バスバー電極23a又は23bの形状に応じて形成されている。具体的には、スクリーン版42には、バスバー電極23a又は23bに合わせて3本の細長い開口部45が形成されている。各開口部45は、長手方向の長さがバスバー電極23a又は23bの長手方向の長さと略同一であり、幅がバスバー電極23a又は23bの幅よりも広く、配線材15の幅よりも狭くなるように形成されている。スキージ46は、バスバー電極23a,23bの長手方向に沿って摺動される。 As shown in FIG. 4, it is preferable to use a screen printing apparatus for the coating apparatuses 33a and 33b from the viewpoint of productivity and the like. Although FIG. 4 shows the coating device 33b, a similar device can be used for the coating device 33a. However, as will be described in detail later, it is preferable that the printing apparatuses 33a and 33b have different printing conditions, and the amount of adhesive 47 applied is larger on the back side than on the light receiving side (see FIG. 5). A general apparatus having a screen plate 42, a squeegee 46, etc. can be applied to the screen printing apparatus. The screen plate 42 has a mesh 43 that passes through the adhesive 47 and a mask material 44 provided on the mesh 43. The mask material 44 is made of, for example, a photosensitive emulsion, and is provided leaving an opening 45 corresponding to the coating pattern of the adhesive 47a or the adhesive 47b. In the screen printing, the adhesive 47 is placed on the screen plate 42, and the squeegee 46 is slid on the plate, whereby the adhesive 47 is discharged from the opening 45 and the adhesive 47 is placed on the light receiving surface or the back surface. Print at the desired location. The opening 45 is formed according to the shape of the bus bar electrode 23a or 23b. Specifically, the screen plate 42 is formed with three elongated openings 45 corresponding to the bus bar electrodes 23a or 23b. Each opening 45 has a length in the longitudinal direction substantially the same as a length in the longitudinal direction of the bus bar electrode 23a or 23b, and a width larger than the width of the bus bar electrode 23a or 23b and narrower than the width of the wiring member 15. It is formed as follows. The squeegee 46 is slid along the longitudinal direction of the bus bar electrodes 23a and 23b.
 なお、ステージ40bには、塗布装置33aで先行塗布された接着剤47aが付着しないように、接着剤47aの形成パターンに対応する溝41bを形成しておくことが好適である。本実施形態では、3本の細長い溝41bがステージ40bに形成されている。 In addition, it is preferable to form grooves 41b corresponding to the formation pattern of the adhesive 47a on the stage 40b so that the adhesive 47a previously applied by the coating apparatus 33a does not adhere. In the present embodiment, three elongated grooves 41b are formed in the stage 40b.
 反転装置34としては、受光面が上方に向いた太陽電池11をひっくり返して裏面を上方に向け、また裏面が上方に向いた太陽電池11をひっくり返して受光面を上方に向ける機能を有する装置であれば特に限定されない。例えば、2つの部材で太陽電池11を挟んで反転させる機構や太陽電池11を吸引又は吸着可能な部材を用いて太陽電池11を反転させる機構など、種々の反転機構を有する装置を適宜適用できる。図3では、塗布反転ユニット31の中央に反転装置34を示しているが、例えば、塗布反転ユニット31の中央に待機ステージを設け、各塗布装置と待機ステージとの間に反転機構を設けてもよい。なお、反転装置34のステージには、ステージ40bと同様に接着剤47の付着を防止するための構造を形成しておくことが好適である。 The reversing device 34 is a device having a function of turning the solar cell 11 with the light-receiving surface facing upward and turning the back surface upward, and turning the solar cell 11 with the back surface facing upward and directing the light-receiving surface upward. If it is, it will not specifically limit. For example, a device having various reversing mechanisms, such as a mechanism for reversing the solar cell 11 between two members or a mechanism for reversing the solar cell 11 using a member capable of sucking or adsorbing the solar cell 11, can be applied as appropriate. In FIG. 3, the reversing device 34 is shown at the center of the coating reversing unit 31, but for example, a standby stage may be provided at the center of the coating reversing unit 31, and a reversing mechanism may be provided between each coating device and the standby stage. Good. In addition, it is preferable to form a structure for preventing the adhesive 47 from adhering to the stage of the reversing device 34 as in the stage 40b.
 アライメント調整部35は、太陽電池11の受光面側を基準に、接着剤47を目的とする塗布位置に塗布するための位置合わせ(以下、「アライメント調整」ともいう)を行うことが好適である。本実施形態では、塗布反転ユニット31の上流側(製造ラインの始点側)に近接してアライメント調整部35が設けられている。太陽電池モジュール10の製造に用いられる太陽電池11は、例えば、搬送ライン60によってアライメント調整部35に搬入される。なお、本実施形態では、裏面側よりも受光面側の損傷や汚染が光電変換特性に影響し易いため、搬送ライン60では受光面を上方に向けて太陽電池11を搬送することが好適である。このため、アライメント調整部35には、受光面が上方を向いた状態で太陽電池11が搬入される。アライメント調整部35では、カメラ37を用いて上記位置合わせを行うことが好適である。 The alignment adjustment unit 35 preferably performs alignment (hereinafter also referred to as “alignment adjustment”) for applying the adhesive 47 to a target application position with reference to the light receiving surface side of the solar cell 11. . In the present embodiment, the alignment adjusting unit 35 is provided in the vicinity of the upstream side of the coating reversing unit 31 (the starting point side of the production line). The solar cell 11 used for manufacturing the solar cell module 10 is carried into the alignment adjustment unit 35 by, for example, the transport line 60. In this embodiment, since damage and contamination on the light receiving surface side more easily affect the photoelectric conversion characteristics than on the back surface side, it is preferable to transport the solar cell 11 with the light receiving surface facing upward in the transport line 60. . For this reason, the solar cell 11 is carried into the alignment adjusting unit 35 with the light receiving surface facing upward. In the alignment adjustment unit 35, it is preferable to perform the above alignment using a camera 37.
 検査部36は、塗布反転ユニット31の下流側(製造ラインの終点側)に近接して設けられ、受光面側の接着剤47aについて塗布状態を検査(以下、「品質検査」ともいう)することが好適である。具体例としては、接着剤47aの塗布状態をカメラ38で取得して、目的とする塗布位置に塗布されているか否かを判定する。また、検査部36は、割れやクラック等の損傷の有無も判定している。適合判定がなされた場合、即ち損傷が無く且つ接着剤47aが目的とする位置に塗布されている場合(接着剤47bも目的とする位置に塗布されていると想定される)は、当該太陽電池11を次の工程に搬送する。一方、損傷が有る又は接着剤47aが目的とする位置から外れる場合は、例えば当該太陽電池11を廃棄する。 The inspection unit 36 is provided close to the downstream side (end point side of the production line) of the coating reversing unit 31 and inspects the application state of the adhesive 47a on the light receiving surface side (hereinafter also referred to as “quality inspection”). Is preferred. As a specific example, the application state of the adhesive 47a is acquired by the camera 38, and it is determined whether or not it is applied to the target application position. The inspection unit 36 also determines whether there is damage such as cracks or cracks. When the conformity determination is made, that is, when there is no damage and the adhesive 47a is applied to the target position (it is assumed that the adhesive 47b is also applied to the target position), the solar cell 11 is conveyed to the next step. On the other hand, when there is damage or the adhesive 47a deviates from the target position, the solar cell 11 is discarded, for example.
 上記のように、制御装置32は、本システムの上記各構成要素の動作を統合的に制御することが好適である。制御装置32は、例えば、当該機能を実現するために必要なデータベース、プログラム等を記憶する記憶部50を含む。また、制御ブロックとして、例えば、アライメント制御部51、第1塗布制御部52、第1反転制御部53、第2塗布制御部54、第2反転制御部55、及び検査判定部56を含む。なお、制御装置32の機能は複数のハードウェアに分散して存在していてもよい。また、制御装置32の機能により接着剤47の塗布工程の全てが自動的に行われてもよいし、工程の一部が人為的に行われてもよい。 As described above, it is preferable that the control device 32 controls the operation of each component of the system in an integrated manner. The control device 32 includes, for example, a storage unit 50 that stores a database, a program, and the like necessary for realizing the function. The control blocks include, for example, an alignment control unit 51, a first application control unit 52, a first inversion control unit 53, a second application control unit 54, a second inversion control unit 55, and an inspection determination unit 56. Note that the functions of the control device 32 may be distributed among a plurality of hardware. Further, all of the application process of the adhesive 47 may be automatically performed by the function of the control device 32, or a part of the process may be artificially performed.
 制御装置32は、塗布装置33a,33b、及び反転装置34の動作を制御して、受光面上に接着剤47を塗布した後、当該太陽電池11を反転させて裏面を上方に向け、当該裏面上に接着剤47を塗布した後、当該太陽電池11を再度反転させて受光面を上方に向ける。本実施形態では、第1塗布制御部52、第1反転制御部53、第2塗布制御部54、及び第2反転制御部55の機能により当該制御が実行される。また、制御装置32は、太陽電池11の受光面側を基準にアライメント調整を行う。当該制御は、アライメント制御部51の機能により実行される。また、接着剤47を塗布した後、受光面側について品質検査を行う。当該制御は、検査判定部56の機能により実行される。 The control device 32 controls the operations of the coating devices 33a and 33b and the reversing device 34 to apply the adhesive 47 on the light receiving surface, and then reverses the solar cell 11 so that the back surface faces upward. After the adhesive 47 is applied thereon, the solar cell 11 is inverted again and the light receiving surface is directed upward. In the present embodiment, the control is executed by the functions of the first application control unit 52, the first inversion control unit 53, the second application control unit 54, and the second inversion control unit 55. Further, the control device 32 performs alignment adjustment based on the light receiving surface side of the solar cell 11. This control is executed by the function of the alignment control unit 51. In addition, after applying the adhesive 47, a quality inspection is performed on the light receiving surface side. This control is executed by the function of the inspection determination unit 56.
 塗布システム30は、上記のように、受光面上に接着剤47を塗布した後、接着剤47の塗布状態を検査するまでの間に2回の反転操作を行う。つまり、太陽電池11は、塗布反転ユニット31において、受光面上に接着剤47を塗布した後、及び裏面上に接着剤47を塗布した後にそれぞれ反転され、搬入面及び搬出面がいずれも受光面となる。ここで「搬入面」とは、太陽電池11が塗布反転ユニット31に搬入ときに上方に向いた面を意味し、「搬出面」とは、塗布反転ユニット31から搬出ときに上方に向いた面を意味する。なお、塗布システム30の詳細な動作や作用効果については、後述する製造工程と共に詳説する。 As described above, the application system 30 performs the reversal operation twice after applying the adhesive 47 on the light receiving surface and before inspecting the application state of the adhesive 47. That is, the solar cell 11 is reversed after applying the adhesive 47 on the light receiving surface and after applying the adhesive 47 on the back surface in the coating reversing unit 31, and both the carry-in surface and the carry-out surface are the light receiving surface. It becomes. Here, the “loading surface” means a surface facing upward when the solar cell 11 is loaded into the coating reversing unit 31, and the “unloading surface” is a surface facing upward when unloading from the coating reversing unit 31. Means. In addition, detailed operation | movement and an effect of the coating system 30 are explained in full detail with the manufacturing process mentioned later.
 以下、塗布システム30を用いた接着剤47の塗布工程を中心に、太陽電池モジュール10の製造工程について詳説する。 Hereinafter, the manufacturing process of the solar cell module 10 will be described in detail with a focus on the application process of the adhesive 47 using the application system 30.
 太陽電池モジュール10の製造工程では、まず複数の太陽電池11が準備される。太陽電池11は、従来公知の方法で製造することができる(当該方法の詳しい説明は省略)。本製造ラインには、複数の太陽電池11が供給され、例えば、接着剤47を塗布する前に割れやクラック等の損傷の有無が検査される。そして、当該検査をパスした太陽電池11が搬送ライン60によってアライメント調整部35に搬送される。 In the manufacturing process of the solar cell module 10, first, a plurality of solar cells 11 are prepared. The solar cell 11 can be manufactured by a conventionally known method (detailed description of the method is omitted). A plurality of solar cells 11 are supplied to the production line, and for example, before the adhesive 47 is applied, the presence or absence of damage such as cracks or cracks is inspected. Then, the solar cell 11 that has passed the inspection is transported to the alignment adjustment unit 35 by the transport line 60.
 上記のように、太陽電池11は、受光面を上方に向けた状態で搬送されることが好適であるから、受光面が上方を向いた状態でアライメント調整部35に搬入される。また、接着剤47の塗布状態は、特に受光面側において高い精度が求められる。例えば、接着剤47の塗布位置が目的とする位置からずれると、遮光ロスが大きくなり、また見栄えが悪くなる場合があるが、この影響は受光面側でより大きくなる。したがって、アライメント調整は、受光面側を基準として行う。 As described above, since the solar cell 11 is preferably transported with the light receiving surface facing upward, it is carried into the alignment adjustment unit 35 with the light receiving surface facing upward. Further, the application state of the adhesive 47 is required to have high accuracy particularly on the light receiving surface side. For example, if the application position of the adhesive 47 deviates from the target position, the light-shielding loss increases and the appearance may deteriorate, but this influence is greater on the light receiving surface side. Therefore, alignment adjustment is performed with the light receiving surface side as a reference.
 アライメント調整部35では、太陽電池11を上方から撮影するカメラ37を用いて、太陽電池11の受光面側を基準に、接着剤47を目的とする塗布位置に塗布するための位置合わせを行う。当該位置合わせは、アライメント制御部51の機能により実行される。当該位置合わせが完了した太陽電池11は、受光面を搬入面として塗布反転ユニット31に搬入される。 The alignment adjustment unit 35 performs alignment for applying the adhesive 47 to a target application position using the camera 37 that photographs the solar cell 11 from above, with the light receiving surface side of the solar cell 11 as a reference. The alignment is executed by the function of the alignment control unit 51. The solar cell 11 in which the alignment is completed is carried into the coating reversing unit 31 with the light receiving surface as the carry-in surface.
 以下、塗布反転ユニット31における工程を説明する。
 まず初めに、上記位置合わせが完了した太陽電池11を塗布装置33aに搬送する。このとき、太陽電池11を反転させることなく受光面を上方に向けたまま搬送する。そして、受光面側から先に接着剤47を塗布する。接着剤47は、バスバー電極23aの長手方向に沿って当該電極上に塗布される。好ましくは、バスバー電極23aの幅よりもやや幅広に塗布される。
Hereinafter, steps in the coating reversal unit 31 will be described.
First, the solar cell 11 in which the alignment is completed is transported to the coating device 33a. At this time, the solar cell 11 is transported with its light receiving surface facing upward without being inverted. Then, the adhesive 47 is applied first from the light receiving surface side. The adhesive 47 is applied on the electrode along the longitudinal direction of the bus bar electrode 23a. Preferably, it is applied a little wider than the width of the bus bar electrode 23a.
 受光面上への接着剤47の塗布は、上記のように、位置合わせの完了後、反転操作等による位置精度の影響がない状態で実行される。このため、受光面に対して接着剤47を高精度で塗布することが可能となる。 As described above, the application of the adhesive 47 on the light receiving surface is performed after the alignment is completed without being affected by the position accuracy due to the reversing operation or the like. For this reason, it becomes possible to apply the adhesive 47 to the light receiving surface with high accuracy.
 塗布装置33aでは、受光面を上方に向けた状態で太陽電池11がステージ40a上に配置され、第1塗布制御部52の機能により接着剤47を塗布する。塗布装置33aでは、スクリーン印刷によって接着剤47を塗布することが好適である。受光面上に接着剤47が塗布された太陽電池11は反転装置34に搬送される。 In the coating device 33 a, the solar cell 11 is disposed on the stage 40 a with the light receiving surface facing upward, and the adhesive 47 is applied by the function of the first coating control unit 52. In the coating device 33a, it is preferable to apply the adhesive 47 by screen printing. The solar cell 11 with the adhesive 47 applied on the light receiving surface is conveyed to the reversing device 34.
 続いて、受光面上に接着剤47が塗布された太陽電池11を反転させて裏面を上方に向ける。即ち、接着剤47が塗布された受光面を下方(反転装置34のステージ側)に向ける。なお、接着剤47aは未硬化状態であるから、接着剤47aがステージに付着しないように、また流動しないように太陽電池11を反転させる必要がある。前者の対策としては、ステージに溝41bと同様の付着防止構造を設ける方法が挙げられる。後者の対策としては、粘度の高い接着剤47を用いること、反転速度を遅くすること以外にも、ステージに冷却手段、例えば、太陽電池11にエアを吹き付ける手段や、冷却器等を設けて接着剤47の粘度を上げる方法等が挙げられる。 Subsequently, the solar cell 11 with the adhesive 47 applied on the light receiving surface is reversed and the back surface is directed upward. That is, the light receiving surface coated with the adhesive 47 is directed downward (on the stage side of the reversing device 34). Since the adhesive 47a is in an uncured state, it is necessary to invert the solar cell 11 so that the adhesive 47a does not adhere to the stage and does not flow. As a measure against the former, there is a method of providing an adhesion preventing structure similar to the groove 41b on the stage. As a countermeasure against the latter, in addition to using a high-viscosity adhesive 47 and slowing the reversal speed, the stage is provided with a cooling means, for example, means for blowing air to the solar cell 11, a cooler, etc. And a method for increasing the viscosity of the agent 47.
 上記1回目の反転操作は、第1反転制御部53の機能により実行される。反転方法は、接着剤47aや位置精度に対する影響が小さな方法であれば特に限定されず、装置スペース等に応じて適宜選択される(2回目の反転についても同様)。1回目の反転操作が完了した太陽電池11は塗布装置33bに搬送される。 The first inversion operation is executed by the function of the first inversion control unit 53. The reversing method is not particularly limited as long as it has a small influence on the adhesive 47a and the positional accuracy, and is appropriately selected according to the device space or the like (the same applies to the second reversing). The solar cell 11 in which the first reversing operation is completed is conveyed to the coating device 33b.
 続いて、上記反転操作により上方に向けられた裏面上に接着剤47を塗布する。接着剤47は、バスバー電極23bの長手方向に沿って当該電極上に塗布される。好ましくは、バスバー電極23bの幅よりもやや幅広に塗布される。なお、接着剤47の塗布量は、受光面側よりも裏面側で多くすることが好適である(即ち、接着剤47a<接着剤47b)。特に凹凸16を有する配線材15を用いる場合には、裏面側における接着性を高めるために、塗布量を接着剤47a<接着剤47bとすることが好ましい。 Subsequently, an adhesive 47 is applied on the back surface directed upward by the above reversal operation. The adhesive 47 is applied on the electrode along the longitudinal direction of the bus bar electrode 23b. Preferably, it is applied a little wider than the width of the bus bar electrode 23b. It is preferable that the amount of the adhesive 47 applied is larger on the back surface side than on the light receiving surface side (that is, adhesive 47a <adhesive 47b). In particular, when the wiring member 15 having the unevenness 16 is used, it is preferable that the coating amount is adhesive 47a <adhesive 47b in order to improve the adhesion on the back surface side.
 塗布装置33bでは、裏面を上方に向けた状態で太陽電池11がステージ40b上に配置され、第2塗布制御部54の機能により裏面上に接着剤47が塗布される。ステージ40bには接着剤47aが付着しないように溝41bが設けられており、接着剤47aを溝41bの位置に合わせて太陽電池11を配置する。塗布装置33bでは、受光面側と同様にスクリーン印刷によって接着剤47を塗布することが好適である。裏面上に接着剤47が塗布された太陽電池11は、再び反転装置34に搬送される。 In the coating device 33b, the solar cell 11 is disposed on the stage 40b with the back surface facing upward, and the adhesive 47 is applied on the back surface by the function of the second coating control unit 54. The stage 40b is provided with a groove 41b so that the adhesive 47a does not adhere thereto, and the solar cell 11 is arranged with the adhesive 47a aligned with the position of the groove 41b. In the coating device 33b, it is preferable to apply the adhesive 47 by screen printing in the same manner as the light receiving surface side. The solar cell 11 with the adhesive 47 applied on the back surface is conveyed again to the reversing device 34.
 なお、塗布量を接着剤47a<接着剤47bとする場合、塗布装置33a,33bで異なるスクリーン版42を使用することが好ましい。例えば、塗布装置33bで使用するスクリーン版42は、開口部45がより大きく、マスク材44がより厚いものである。また、上述したように、裏面電極の面積が受光面電極の面積よりも大きい場合、塗布量は接着剤47a<接着剤47bとなる。 In addition, when the coating amount is set to adhesive 47a <adhesive 47b, it is preferable to use different screen plates 42 for the coating apparatuses 33a and 33b. For example, the screen plate 42 used in the coating apparatus 33b has a larger opening 45 and a thicker mask material 44. As described above, when the area of the back electrode is larger than the area of the light receiving surface electrode, the coating amount is adhesive 47a <adhesive 47b.
 続いて、両面に接着剤47が塗布された太陽電池11を再度反転させて受光面を上方に向ける。即ち、接着剤47が塗布された裏面を下方(反転装置34のステージ側)に向ける。当該2回目の反転操作は、第2反転制御部55の機能により実行される。そして、2回目の反転操作が完了した太陽電池11は塗布反転ユニット31から搬出され、検査部36に搬送される。こうして、塗布反転ユニット31における工程が終了する。 Subsequently, the solar cell 11 coated with the adhesive 47 on both sides is inverted again and the light receiving surface is directed upward. That is, the back surface to which the adhesive 47 is applied is directed downward (on the stage side of the reversing device 34). The second reversal operation is executed by the function of the second reversal control unit 55. Then, the solar cell 11 for which the second reversing operation has been completed is unloaded from the coating reversing unit 31 and transported to the inspection unit 36. Thus, the process in the coating reversing unit 31 is completed.
 上記のように、太陽電池11は、アライメント調整から品質検査までの間に、塗布反転ユニット31において2回反転される。これにより、太陽電池11は、受光面が上方に向いた状態で検査部36に搬送される。つまり、本塗布工程では、塗布反転ユニット31の搬入面と搬出面がいずれも受光面に統一される。 As described above, the solar cell 11 is reversed twice in the coating reversing unit 31 between the alignment adjustment and the quality inspection. Thereby, the solar cell 11 is conveyed to the test | inspection part 36 in the state in which the light-receiving surface faced upwards. That is, in this application process, both the carry-in surface and the carry-out surface of the coating reversing unit 31 are unified to the light receiving surface.
 最後に、検査部36で接着剤47の塗布状態を検査し、塗布システム30における一連の塗布工程が終了する。検査部36では、高い塗布精度が求められる受光面側について品質検査を行う。検査部36では、検査判定部56の機能により、例えば、接着剤47aの塗布状態をカメラ38で取得し、目的とする塗布位置に塗布されているか否か及び割れやクラック等の損傷があるか否かを判定する。そして、当該検査をパスした太陽電池11が次の工程に搬送される。 Finally, the application state of the adhesive 47 is inspected by the inspection unit 36, and a series of application processes in the application system 30 is completed. The inspection unit 36 performs quality inspection on the light receiving surface side where high coating accuracy is required. In the inspection unit 36, for example, the application state of the adhesive 47 a is acquired by the camera 38 by the function of the inspection determination unit 56, and whether it is applied to the target application position and whether there is damage such as a crack or a crack. Determine whether or not. And the solar cell 11 which passed the said test | inspection is conveyed by the following process.
 図5に示すように、次の工程では、接着剤47が塗布された太陽電池11に配線材15が取り付けられる。配線材15は、平坦な面が接着剤47a上に接着され、凹凸16のある面が接着剤47b上に接着される。配線材15は、例えば、接着剤47上に熱圧着され、加熱温度は接着剤47が硬化する温度に設定される。配線材15は、太陽電池11の受光面側及び裏面側でそれぞれ別々に接着してもよいし、受光面側及び裏面側で同時に接着してもよい。こうして、複数の太陽電池11が配線材15で接続されたストリングが作製される。 As shown in FIG. 5, in the next step, the wiring member 15 is attached to the solar cell 11 to which the adhesive 47 is applied. The wiring member 15 has a flat surface bonded to the adhesive 47a and a surface having the irregularities 16 bonded to the adhesive 47b. For example, the wiring member 15 is thermocompression bonded onto the adhesive 47 and the heating temperature is set to a temperature at which the adhesive 47 is cured. The wiring member 15 may be separately bonded on the light receiving surface side and the back surface side of the solar cell 11, or may be bonded simultaneously on the light receiving surface side and the back surface side. Thus, a string in which a plurality of solar cells 11 are connected by the wiring member 15 is produced.
 次に、上記ストリングを含む太陽電池モジュール10の各構成部材を積層して熱圧着する。この工程は、ラミネート工程と呼ばれる。ラミネート工程では、保護部材12上に充填材14を構成する第1の樹脂フィルムを積層し、第1の樹脂フィルム上にストリングを積層する。さらに、ストリング上に充填材14を構成する第2の樹脂フィルムを積層し、その上に保護部材13を積層する。そして、各樹脂フィルムが溶融する温度で加熱しながら圧力を加えてラミネートする。こうして、ストリングが充填材14で封止された構造が得られる。最後に、フレームや端子ボックス等を取り付けて、太陽電池モジュール10が製造される。 Next, the constituent members of the solar cell module 10 including the string are stacked and thermocompression bonded. This process is called a laminating process. In the laminating step, a first resin film constituting the filler 14 is laminated on the protective member 12, and a string is laminated on the first resin film. Further, a second resin film constituting the filler 14 is laminated on the string, and the protective member 13 is laminated thereon. And it laminates by applying a pressure, heating at the temperature which each resin film fuse | melts. Thus, a structure in which the string is sealed with the filler 14 is obtained. Finally, the solar cell module 10 is manufactured by attaching a frame, a terminal box, and the like.
 以上のように、本製造工程によれば、接着剤47の塗布方法を適正化して、例えば、光電変換特性や見栄え等の太陽電池モジュール10の性能を改善することができる。本製造工程では、塗布反転ユニット31の搬入面と搬出面がいずれも受光面に統一されるため、光電変換特性に影響し易い受光面側を基準として、アライメント調整及び品質検査を容易に行うことができる。これにより、受光面に対する接着剤47の塗布精度を高めることが可能となる。特に、アライメント調整後、反転操作等による位置精度の影響が少ない状態で、受光面上に接着剤47を先行塗布することは、受光面に対する接着剤47の塗布精度を高める上で重要である。また、接着剤47として粘度の高い接着剤を用いた場合は、受光面上に接着剤47を塗布後反転させたとしても、反転により受光面上の接着剤47aが受ける影響は非常に小さい。また、接着剤47の塗布量を接着剤47a<接着剤47bとする場合、塗布量の少ない接着剤47aを先行塗布して設けることは好適である。 As described above, according to the present manufacturing process, the method of applying the adhesive 47 can be optimized, and for example, the performance of the solar cell module 10 such as photoelectric conversion characteristics and appearance can be improved. In this manufacturing process, since both the carry-in surface and the carry-out surface of the coating reversing unit 31 are unified to the light receiving surface, alignment adjustment and quality inspection can be easily performed on the basis of the light receiving surface side that easily affects the photoelectric conversion characteristics. Can do. Thereby, it becomes possible to increase the application accuracy of the adhesive 47 to the light receiving surface. In particular, after the alignment adjustment, it is important to apply the adhesive 47 on the light receiving surface in advance in a state where the influence of the position accuracy due to the reversing operation or the like is small, in order to increase the application accuracy of the adhesive 47 on the light receiving surface. Further, when an adhesive having a high viscosity is used as the adhesive 47, even if the adhesive 47 is applied to the light receiving surface and then reversed, the influence of the adhesive 47a on the light receiving surface due to the reversal is very small. Further, when the application amount of the adhesive 47 is adhesive 47a <adhesive 47b, it is preferable that the adhesive 47a with a small application amount is provided in advance.
 一方、図8に示す参考例の塗布システム100では、上記本発明の実施形態と比べて品質保証(塗布精度)等に課題がある。塗布システム100では、塗布反転ユニット101における反転操作が1回である点で、上記本発明の実施形態と異なる。この場合も太陽電池11の両面に接着剤47を塗布することは可能であるが、塗布反転ユニット101からの搬出面が裏面となる。即ち、裏面が上方に向いた状態で太陽電池11が検査部36に搬入されるため、裏面について品質検査を行うことになる。つまり、高い精度が求められる受光面側の品質検査が困難となる。また、塗布システム100では、搬入面と搬出面が統一されないため、アライメント調整及び品質検査が異なる面を基準として行われる。これは、塗布精度の観点から好ましくない。さらに、塗布システム100を用いた場合、以後の工程が受光面を下方に向けた状態で行われることになり、受光面側の損傷や汚染を抑制する観点からも好ましくない。 On the other hand, the coating system 100 of the reference example shown in FIG. 8 has a problem in quality assurance (coating accuracy) and the like as compared with the embodiment of the present invention. The coating system 100 is different from the above-described embodiment of the present invention in that the reversing operation in the coating reversing unit 101 is one time. In this case as well, the adhesive 47 can be applied to both surfaces of the solar cell 11, but the carry-out surface from the coating inversion unit 101 is the back surface. That is, since the solar cell 11 is carried into the inspection unit 36 with the back surface facing upward, the quality inspection is performed on the back surface. That is, it is difficult to perform quality inspection on the light receiving surface side that requires high accuracy. Further, in the coating system 100, since the carry-in surface and the carry-out surface are not unified, alignment adjustment and quality inspection are performed based on different surfaces. This is not preferable from the viewpoint of coating accuracy. Further, when the coating system 100 is used, the subsequent steps are performed with the light receiving surface facing downward, which is not preferable from the viewpoint of suppressing damage and contamination on the light receiving surface side.
 つまり、本製造工程によれば、受光面上に接着剤47を先行塗布した後、塗布反転ユニット31において太陽電池11の反転操作を2回行うことによって、上記参考例を含む他の方法では得られない作用効果を得ることができる。なお、上記搬入面及び上記搬出面を裏面に統一する方法も考えられるが、太陽電池11を用いる場合、当該方法が適切ではないことが上記説明から理解されよう。 That is, according to the present manufacturing process, after the adhesive 47 is applied on the light receiving surface in advance, the reversing operation of the solar cell 11 is performed twice in the coating reversing unit 31, thereby obtaining other methods including the above reference example. Unobtainable effects can be obtained. In addition, although the method of unifying the said carrying-in surface and the said carrying-out surface to a back surface is also considered, when using the solar cell 11, it will be understood from the said description that the said method is not appropriate.
 上記実施形態は、本発明の目的を損なわない範囲で適宜設計変更できる。
 例えば、上記実施形態では、2つの塗布装置33a,33bを用いて、受光面上及び裏面上に接着剤47をそれぞれ塗布したが、図6で例示するように、各接着剤47は、1つの塗布装置71によって塗布されてもよい。この場合、塗布装置71のステージ72には、溝41bのような接着剤47aの付着防止構造を形成しておくことが好ましい。図6に示す塗布反転ユニット70は、例えば、受光面側と裏面側とで同じスクリーン版を用いて接着剤47を塗布する場合に好適である。
The above embodiment can be appropriately changed in design without departing from the object of the present invention.
For example, in the above embodiment, the adhesive 47 is applied on the light receiving surface and the back surface using the two coating devices 33a and 33b. However, as illustrated in FIG. It may be applied by the application device 71. In this case, it is preferable to form an adhesion preventing structure for the adhesive 47a such as the groove 41b on the stage 72 of the coating apparatus 71. The application reversing unit 70 shown in FIG. 6 is suitable when, for example, the adhesive 47 is applied using the same screen plate on the light receiving surface side and the back surface side.
 また、上記実施形態では、アライメント調整部35は塗布反転ユニット31の上流側に設けられているが、太陽電池11の受光面側に接着剤47を塗布後、反転装置34が太陽電池11の裏面が上方に向くように反転させた後にも設けられていてもよい。このように、太陽電池11を反転させた後にアライメントを調整することにより、接着剤47を目的とする位置により高精度で塗布することができる。 Moreover, in the said embodiment, although the alignment adjustment part 35 is provided in the upstream of the application | coating inversion unit 31, after the adhesive agent 47 is apply | coated to the light-receiving surface side of the solar cell 11, the inversion apparatus 34 is the back surface of the solar cell 11. May be provided after being inverted so as to face upward. Thus, by adjusting the alignment after inverting the solar cell 11, the adhesive 47 can be applied with high accuracy at the target position.
 また、図7に示すように、アライメント調整から品質検査までの工程を1箇所で行うことも可能である。図7に示す塗布反転ユニット80では、塗布装置と反転装置が1つに集約されている。さらに、塗布反転ユニット80には、カメラ81が搭載されており、本ユニットにおいてアライメント調整及び品質検査を行うことができる。 In addition, as shown in FIG. 7, the process from alignment adjustment to quality inspection can be performed at one place. In the coating reversing unit 80 shown in FIG. 7, the coating device and the reversing device are integrated into one. Furthermore, a camera 81 is mounted on the coating reversing unit 80, and alignment adjustment and quality inspection can be performed in this unit.
 10 太陽電池モジュール、11 太陽電池、12,13 保護部材、14 充填材、15 配線材、16 凹凸、17,47,47a,47b 接着剤、20 光電変換部、21a,21b 透明導電層、22a,22b フィンガー電極、23a,23b バスバー電極、30 太陽電池モジュール用接着剤塗布システム、31 塗布反転ユニット、32 制御装置、33a,33b 塗布装置、34 反転装置、35 アライメント調整部、36 検査部、37,38 カメラ、40a,40b ステージ、41b 溝、42 スクリーン版、43 メッシュ、44 マスク材、45 開口部、46 スキージ、50 記憶部、51 アライメント制御部、52 第1塗布制御部、53 第1反転制御部、54 第2塗布制御部、55 第2反転制御部、56 検査判定部、60 搬送ライン。 10 solar cell module, 11 solar cell, 12, 13 protective member, 14 filler, 15 wiring material, 16 unevenness, 17, 47, 47a, 47b adhesive, 20 photoelectric conversion part, 21a, 21b transparent conductive layer, 22a, 22b finger electrode, 23a, 23b bus bar electrode, 30 solar cell module adhesive coating system, 31 coating reversing unit, 32 control device, 33a, 33b coating device, 34 reversing device, 35 alignment adjusting unit, 36 inspection unit, 37, 38 camera, 40a, 40b stage, 41b groove, 42 screen version, 43 mesh, 44 mask material, 45 opening, 46 squeegee, 50 storage unit, 51 alignment control unit, 52 first application control unit, 53 first inversion control 54, second application control unit, 5 Second inversion control section, 56-inspection determining unit, 60 transfer line.

Claims (6)

  1.  受光面上及び裏面上に電極を有する太陽電池に対して、前記受光面上及び前記裏面上に接着剤を塗布し、当該接着剤上に配線材を配置して接着する太陽電池モジュールの製造方法であって、
     前記受光面を上方に向けて配置される前記太陽電池に対して、前記受光面上に前記接着剤を塗布した後、前記太陽電池を反転させて前記裏面を前記上方に向け、
     当該裏面上に前記接着剤を塗布した後、前記配線材を配置する前に、前記太陽電池を再度反転させて前記受光面を前記上方に向ける太陽電池モジュールの製造方法。
    A solar cell module manufacturing method in which an adhesive is applied on the light receiving surface and the back surface, and a wiring member is disposed on the adhesive and bonded to a solar cell having electrodes on the light receiving surface and the back surface. Because
    For the solar cell arranged with the light receiving surface facing upward, after applying the adhesive on the light receiving surface, the solar cell is reversed and the back surface is directed upward,
    A method of manufacturing a solar cell module in which the solar cell is reversed again and the light receiving surface is directed upward after applying the adhesive on the back surface and before placing the wiring member.
  2.  請求項1に記載の製造方法であって、
     前記接着剤は、液状である太陽電池モジュールの製造方法。
    The manufacturing method according to claim 1,
    The said adhesive agent is a manufacturing method of the solar cell module which is a liquid.
  3.  請求項1に記載の製造方法であって、
     前記太陽電池の前記受光面上及び前記裏面上への接着剤の塗布は、印刷法によって行われる太陽電池モジュールの製造方法。
    The manufacturing method according to claim 1,
    The method of manufacturing a solar cell module, in which the application of the adhesive on the light receiving surface and the back surface of the solar cell is performed by a printing method.
  4.  請求項1~3のいずれか1項に記載の製造方法であって、
     前記接着剤の塗布量を前記受光面側よりも前記裏面側で多くする太陽電池モジュールの製造方法。
    The manufacturing method according to any one of claims 1 to 3,
    The manufacturing method of the solar cell module which makes the application quantity of the said adhesive agent increase in the said back surface side rather than the said light-receiving surface side.
  5.  太陽電池の受光面上及び裏面上に配線材を接着するための接着剤を塗布する太陽電池モジュール用接着剤塗布システムであって、
     前記受光面上及び前記裏面上に接着剤を塗布する塗布装置と、
     前記太陽電池を反転させる反転装置と、
     制御装置と、
     を備え、
     前記制御装置は、前記塗布装置及び前記反転装置の動作を制御して、前記受光面上に前記接着剤を塗布した後、当該太陽電池を反転させて前記裏面を上方に向け、当該裏面上に前記接着剤を塗布した後、当該太陽電池を再度反転させて前記受光面を前記上方に向ける太陽電池モジュール用接着剤塗布システム。
    An adhesive coating system for a solar cell module that applies an adhesive for adhering a wiring material on a light receiving surface and a back surface of a solar cell,
    An applicator for applying an adhesive on the light receiving surface and the back surface;
    A reversing device for reversing the solar cell;
    A control device;
    With
    The control device controls the operation of the coating device and the reversing device to apply the adhesive on the light receiving surface, and then reverses the solar cell so that the back surface is directed upward and on the back surface. After applying the adhesive, the solar cell module adhesive application system in which the solar cell is inverted again and the light receiving surface faces upward.
  6.  請求項5に記載のシステムであって、
     前記太陽電池は前記受光面を上方に向けて前記システムに搬入され、前記受光面上及び前記裏面上に前記接着剤が塗布された後、前記受光面を上方に向けて前記システムから搬出される太陽電池モジュール用接着剤塗布システム。
    6. The system according to claim 5, wherein
    The solar cell is carried into the system with the light receiving surface facing upward, and after the adhesive is applied on the light receiving surface and the back surface, the solar cell is unloaded from the system with the light receiving surface facing upward. Adhesive coating system for solar cell modules.
PCT/JP2014/000657 2013-02-28 2014-02-07 Solar cell module production method, and solar cell module adhesive application system WO2014132575A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015502743A JPWO2014132575A1 (en) 2013-02-28 2014-02-07 Manufacturing method of solar cell module and adhesive coating system for solar cell module

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013039762 2013-02-28
JP2013-039762 2013-02-28

Publications (1)

Publication Number Publication Date
WO2014132575A1 true WO2014132575A1 (en) 2014-09-04

Family

ID=51427855

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/000657 WO2014132575A1 (en) 2013-02-28 2014-02-07 Solar cell module production method, and solar cell module adhesive application system

Country Status (2)

Country Link
JP (1) JPWO2014132575A1 (en)
WO (1) WO2014132575A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107665936A (en) * 2017-10-27 2018-02-06 乐山新天源太阳能科技有限公司 The two-in-one production line of solar cell silk-screen
KR20210096065A (en) * 2020-01-23 2021-08-04 청두 예판 사이언스 앤드 테크놀로지 컴퍼니 리미티드 Method for manufacturing shingled module and shingled module
WO2021166693A1 (en) 2020-02-18 2021-08-26 パナソニック株式会社 Method for manufacturing solar cell module
WO2022210100A1 (en) 2021-03-31 2022-10-06 パナソニックIpマネジメント株式会社 String manufacturing device
EP4099405A1 (en) * 2021-05-31 2022-12-07 Mondragon Assembly, S.Coop Apparatus and method for connecting solar cells
DE202023106708U1 (en) 2022-11-29 2024-02-01 Mondragon Assembly, S. Coop. Solar cell connection device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012043491A1 (en) * 2010-09-29 2012-04-05 日立化成工業株式会社 Solar cell module
WO2012049984A1 (en) * 2010-10-14 2012-04-19 日立化成工業株式会社 Solar cell module
JP2012134393A (en) * 2010-12-22 2012-07-12 Sony Chemical & Information Device Corp Method for manufacturing solar cell module and solar cell module

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012043491A1 (en) * 2010-09-29 2012-04-05 日立化成工業株式会社 Solar cell module
WO2012049984A1 (en) * 2010-10-14 2012-04-19 日立化成工業株式会社 Solar cell module
JP2012134393A (en) * 2010-12-22 2012-07-12 Sony Chemical & Information Device Corp Method for manufacturing solar cell module and solar cell module

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107665936A (en) * 2017-10-27 2018-02-06 乐山新天源太阳能科技有限公司 The two-in-one production line of solar cell silk-screen
CN107665936B (en) * 2017-10-27 2024-04-12 乐山新天源太阳能科技有限公司 Two unification production lines of solar cell silk screen printing
KR102531377B1 (en) * 2020-01-23 2023-05-11 청두 예판 사이언스 앤드 테크놀로지 컴퍼니 리미티드 Manufacturing method of shingled module and shingled module
JP2022501839A (en) * 2020-01-23 2022-01-06 チェンドゥ イェファン サイエンス アンド テクノロジー カンパニー,リミテッド Manufacturing method of board-roofed solar module and board-roofed solar module
JP7239713B2 (en) 2020-01-23 2023-03-14 チェンドゥ イェファン サイエンス アンド テクノロジー カンパニー,リミテッド Board-roofed solar module manufacturing method and board-roofed solar module
KR20210096065A (en) * 2020-01-23 2021-08-04 청두 예판 사이언스 앤드 테크놀로지 컴퍼니 리미티드 Method for manufacturing shingled module and shingled module
CN115104188A (en) * 2020-02-18 2022-09-23 松下控股株式会社 Method for manufacturing solar cell module
WO2021166693A1 (en) 2020-02-18 2021-08-26 パナソニック株式会社 Method for manufacturing solar cell module
CN115104188B (en) * 2020-02-18 2023-06-27 松下控股株式会社 Method for manufacturing solar cell module
WO2022210100A1 (en) 2021-03-31 2022-10-06 パナソニックIpマネジメント株式会社 String manufacturing device
EP4099405A1 (en) * 2021-05-31 2022-12-07 Mondragon Assembly, S.Coop Apparatus and method for connecting solar cells
WO2022253696A1 (en) 2021-05-31 2022-12-08 Mondragon Assembly, S.Coop. Apparatus and method for connecting solar cells
DE202023106708U1 (en) 2022-11-29 2024-02-01 Mondragon Assembly, S. Coop. Solar cell connection device

Also Published As

Publication number Publication date
JPWO2014132575A1 (en) 2017-02-02

Similar Documents

Publication Publication Date Title
WO2014132575A1 (en) Solar cell module production method, and solar cell module adhesive application system
KR101143640B1 (en) Method for manufacturing solar battery module
US20180145192A1 (en) Solar cell module production method
TWI624072B (en) Solar battery module manufacturing method, solar battery module and wiring connection method
JP6288474B2 (en) Manufacturing method of solar cell module and adhesive coating system for solar cell module
WO2013129301A1 (en) Conductive paste applying mechanism and cell wiring device
WO2010090277A1 (en) Method for manufacturing thin film solar cell
WO2014132282A1 (en) Solar cell module
WO2012165001A1 (en) Solar cell module and method for manufacturing same
CN115104188B (en) Method for manufacturing solar cell module
TWI497735B (en) A flexible electrode packing structure related to a electrooptic device
JP6684278B2 (en) Solar cell module
JPH10335686A (en) Flexible solar cell module
TWI483412B (en) Solar cell module, electronic device having the same, and manufacturing method for solar cell
JP2013232596A (en) Manufacturing method of solar cell module
JP2016510174A (en) Photovoltaic module assembly
JP6083685B2 (en) Solar cell module and method for manufacturing solar cell module
JP2019067837A (en) Solar cell module
JP2015097229A (en) Method for manufacturing solar cell module, and surface member
WO2012142249A2 (en) Busing sub-assembly for photovoltaic modules
JP2015012117A (en) Solar cell module and manufacturing method therefor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14757022

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015502743

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14757022

Country of ref document: EP

Kind code of ref document: A1