WO2014132381A1 - Light-emitting device, manufacturing method therefor, coating and coating apparatus - Google Patents

Light-emitting device, manufacturing method therefor, coating and coating apparatus Download PDF

Info

Publication number
WO2014132381A1
WO2014132381A1 PCT/JP2013/055304 JP2013055304W WO2014132381A1 WO 2014132381 A1 WO2014132381 A1 WO 2014132381A1 JP 2013055304 W JP2013055304 W JP 2013055304W WO 2014132381 A1 WO2014132381 A1 WO 2014132381A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
light
emitting device
light emitting
paint
Prior art date
Application number
PCT/JP2013/055304
Other languages
French (fr)
Japanese (ja)
Inventor
規仁 土岐
泰章 永野
Original Assignee
国立大学法人岩手大学
株式会社ニュートン
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人岩手大学, 株式会社ニュートン filed Critical 国立大学法人岩手大学
Priority to PCT/JP2013/055304 priority Critical patent/WO2014132381A1/en
Priority to JP2015503010A priority patent/JP6402414B2/en
Priority to PCT/JP2014/054832 priority patent/WO2014133065A1/en
Publication of WO2014132381A1 publication Critical patent/WO2014132381A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • H10K50/135OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers comprising mobile ions
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1029Heterocyclic compounds characterised by ligands containing one nitrogen atom as the heteroatom
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/18Metal complexes
    • C09K2211/185Metal complexes of the platinum group, i.e. Os, Ir, Pt, Ru, Rh or Pd
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2101/00Properties of the organic materials covered by group H10K85/00
    • H10K2101/10Triplet emission
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • H10K85/341Transition metal complexes, e.g. Ru(II)polypyridine complexes
    • H10K85/344Transition metal complexes, e.g. Ru(II)polypyridine complexes comprising ruthenium

Definitions

  • the present invention relates to a light emitting device, a manufacturing method thereof, a paint, and a coating apparatus.
  • a light-emitting device using a Ru complex as a light emitter such as Ru (bpy) 3 (PF 6 ) 2 is known.
  • a light emitter emits light when excited by applying light or voltage.
  • This light emission principle is electrochemiluminescence (ECL), and the principle can be divided into electroluminescence (EL) and chemical luminescence (CL). In other words, it goes through an electronic process and a chemical process before light emission occurs.
  • the Ru complex is stable with Ru (bpy) 3 2+ [Ru (II)] when no voltage (or light) is applied, but a voltage is applied between the electrodes. Then, oxidation [Ru (III)] and reduction [Ru (I)] of the Ru complex occur near the electrode. Thereafter, Ru (III) and Ru (I) migrate in the electrolyte solution and both come into contact with each other to neutralize. By this neutralization, Ru (III) and Ru (I) exchange electrons, and excited state Ru (II) * is generated. Ru (II) * in the excited state is very unstable and emits light by releasing light energy to return to the ground state. While voltage is applied, light is emitted continuously by repeating reaction and release of light energy in the solution.
  • This ECL emission easily emits light at a low voltage, and it has been found that the AC drive tends to have a long life, or has a serious problem in practical use. That is, the conventional illuminant is liable to cause light deterioration, oxidation deterioration, and moisture deterioration, and is difficult to use in a general environment.
  • the luminous body is a liquid or a gel body, there is a risk of leakage and volatilization of the solvent, and it is necessary to provide a micron-order gap between the electrodes to hold the electrolytic solution. It was very difficult to handle, such as a deformable flexible board.
  • the present invention has been proposed in view of such conventional circumstances, and it is possible to suppress deterioration due to light, oxygen, and moisture, to increase the light emission time, and to use a flexible substrate.
  • the first object is to provide a light-emitting device that is easy to handle.
  • the present invention suppresses deterioration due to light, oxygen, and moisture, extends the light emission time, and allows the use of a flexible substrate.
  • a second object is to provide a method for manufacturing a light emitting device, which can be manufactured by a simple method.
  • a third object of the present invention is to provide a coating material that suppresses deterioration due to light, oxygen, and moisture and has a long light emission time.
  • a fourth object of the present invention is to provide a coating apparatus using a coating material that suppresses deterioration due to light, oxygen, and moisture and has a long light emission time.
  • the light emitting device is a light emitting device in which at least a solid fluorescent light emitter is disposed between a first electrode and a second electrode, and the fluorescent light emitter is a dielectric. It is a hybrid crystal having a structure in which a plurality of Ru complex crystals are arranged apart from each other in a single object.
  • a light-emitting device is the light-emitting device according to the first aspect, wherein the fluorescent light emitter further includes a semiconductor.
  • the light-emitting device according to claim 3 of the present invention is the light-emitting device according to claim 1 or 2, wherein one or both of the first electrode and the second electrode are made of a member that transmits fluorescence and transmits fluorescence. It is characterized by being arranged on a substrate.
  • the light emitting device according to claim 4 of the present invention is characterized in that, in claim 1, the dielectric is cellulose acetate.
  • the light-emitting device according to claim 5 of the present invention is characterized in that, in claim 1, the Ru complex is Ru (bpy) 3 (PF 6 ) 2 .
  • a solid fluorescent substance is disposed between the first electrode and the second electrode, and the fluorescent substance is a single unit made of a dielectric.
  • a method for manufacturing a light-emitting device which is a hybrid crystal having a structure in which a plurality of crystals made of a Ru complex are arranged apart from each other in an object, wherein a solution is prepared by dissolving the Ru complex in an organic solvent. A and the solution are applied to one substrate provided with the first electrode and dried to deposit the crystal so as to cover the first electrode, and in contact with the crystal And a step Z of providing the second electrode.
  • the method for manufacturing a light-emitting device according to claim 7 of the present invention is the method according to claim 6, wherein the step B includes: (applying the solution to one substrate, drying, and covering the first electrode; In order to precipitate crystals, a spin coating method is used.
  • the method for manufacturing a light-emitting device according to an eighth aspect of the present invention is characterized in that, in the fifth aspect, the step Z uses a conductive member formed in advance on the other substrate as the second electrode.
  • a ninth aspect of the present invention there is provided a light emitting device manufacturing method according to the eighth aspect, wherein the first electrode and the one substrate, and the second electrode and the other substrate are transparent members in the visible region. It is characterized by using.
  • the paint according to claim 10 of the present invention is a paint for producing a light emitting device comprising a solid fluorescent material, and is a solution in which at least a Ru complex is dissolved in an organic solvent.
  • the paint according to claim 11 of the present invention is characterized in that, in claim 10, it further comprises a semiconductor.
  • a coating apparatus according to a twelfth aspect of the present invention includes a first means for storing the paint in claim 10 or 11, and a second means for discharging the paint from the first means toward the object to be processed. It is provided with at least.
  • the present invention it is possible to provide a light-emitting device that can suppress deterioration due to light, oxygen, and moisture, extend a light emission time, use a flexible substrate, and can be easily handled. it can.
  • the manufacturing method of the light-emitting device which can be manufactured by the method can be provided.
  • a coating apparatus using a paint that suppresses deterioration due to light, oxygen, and moisture and has a long light emission time.
  • Sectional drawing which shows typically the example of 1 structure of the light-emitting device which concerns on this invention.
  • Sectional drawing which shows typically the example of 1 structure of the light-emitting device which concerns on this invention.
  • Sectional drawing which shows typically the example of 1 structure of the light-emitting device which concerns on this invention.
  • the flowchart which shows the manufacturing method (process A, process B) of the light emitting device which concerns on this invention.
  • Microscope laser microscope
  • Microscope laser microscope photograph of crystal film.
  • Microscope laser microscope photograph of crystal film.
  • Diagram showing the relationship between the light emitting device and the amount of Ru (bpy) 3 (PF 6 ) 2 and thickness of the light-emitting element.
  • FIG. 6 shows a relationship between voltage and luminance for a light-emitting device manufactured in an example.
  • FIG. 1A is a cross-sectional view schematically showing a configuration example of a light emitting device (DC type) according to the present invention.
  • a light emitting device 1 of the present invention (hereinafter also referred to as a light emitting device that emits fluorescence (fluorescent light emitting device)) 1 includes at least a solid fluorescent light emitter 10 disposed between a first electrode 20 and a second electrode 30.
  • the fluorescent light emitter 10 is a hybrid crystal having a structure in which a plurality of crystals 12 made of a Ru complex are arranged apart from each other in a single object 11 made of a dielectric. It is characterized by.
  • the polarity of the DC power source connected to the first electrode 20 and the second electrode may be either.
  • Fluorescent light emitter 10 contains a dielectric.
  • a solution in which a Ru complex is dissolved in a solvent to a substrate and drying, the solution is thickened by adding a dielectric when the phosphor 10 is formed.
  • the film shape can be maintained. Thereby, the film formability is improved, and the obtained crystal film has high surface flatness. Moreover, durability (life) improves by containing a dielectric material.
  • Such a dielectric is not particularly limited, and examples thereof include cellulose acetate, polyvinylidene fluoride, and nitrocellulose. Among these, cellulose acetate is particularly preferable.
  • the content of the dielectric is not particularly limited, but is preferably about 0% to 75%, for example.
  • the Ru complex is not particularly limited.
  • Ru (bpy) 3 (PF 6 ) 2 [tris (2,2′-bipyridinate) ruthenium (II) hexafluorophosphate di-salt] is particularly preferable.
  • a complex containing Rh, Re, Os, Zn, Cr, Pd, Pt, Ir, Cu, Al, Ga, and Au can be used instead of Ru.
  • X PF, NO 3 ⁇ , CH 3 COO ⁇ , BF 4 ⁇ , (CF 3 SO 2 ) 2 N ⁇ , (C 2 F 5 SO 2 ) 2 N ⁇ , CF 3 COO ⁇ , CF 3 SO 3 ⁇ may be used.
  • the fluorescent light emitter 10 is a hybrid crystal in which a plurality of Ru complexes 12 are arranged in a single object 11 made of a dielectric and spaced apart from each other.
  • the environmental resistance performance of the fluorescent light emitter 10 can be improved. That is, deterioration due to light, oxygen and moisture can be suppressed. Moreover, it is solid and can be stably held.
  • the fluorescent light emitter 10 preferably further includes a semiconductor.
  • a semiconductor is not particularly limited, and examples thereof include polyvinyl carbazole.
  • the amount of the semiconductor added is not particularly limited, but is preferably about 50 mol% or less, for example.
  • the material of the first electrode 20 and the second electrode 30 various materials can be used as the material of the first electrode 20 and the second electrode 30.
  • the first electrode 20 is an anode
  • the first electrode 20 is not particularly limited.
  • ITO tin-doped indium oxide
  • FTO fluorine-doped tin oxide
  • PEDOT poly (3,4) -Ethylenedioxythiophene
  • the second electrode 30 is not particularly limited, and examples thereof include ITO, FTO, Al, Mg, carbon, and PEDOT.
  • one or both of the first electrode 20 and the second electrode 30 is made of a member that transmits fluorescence, and is disposed on a substrate that transmits fluorescence.
  • a member that transmits fluorescence include transparent conductive films such as ITO and FTO.
  • the substrate that transmits fluorescence include materials that are transparent in the visible region, such as glass and PET (polyethylene terephthalate).
  • both electrodes and the substrate may be configured to transmit fluorescence. By setting both the first electrode 20 and the second electrode 30 to transmit fluorescence, the light emitting device 1 can emit light on both sides.
  • the fluorescent light emitter 10 When the light emitting device 1 emits light, the fluorescent light emitter 10 is excited to emit light by applying, for example, a DC voltage between the first electrode 20 and the second electrode 30 disposed on both sides of the fluorescent light emitter. .
  • the hybrid crystal (the first crystal 11 and the second crystal 12) forming the fluorescent light emitter 10 is P-type
  • the N-type semiconductor layer 40 is replaced with the fluorescent light emitter 10 and the second electrode. 30 is preferable.
  • the hybrid crystal (the first crystal 11 and the second crystal 12) forming the fluorescent light emitter 10 is N-type
  • the P-type semiconductor layer 50 is replaced with the fluorescent light emitter 10 and the first electrode. It is preferable to arrange it between 20. Thereby, the fluorescent light emitter 10 easily emits light.
  • the hybrid crystal has both N-type and P-type
  • the light-emitting device 1 of the present invention has excellent environmental resistance and can suppress deterioration due to light, oxygen, and moisture. Thereby, the light emitting device 1 of the present invention realizes a longer light emission time than the conventional one and has a long life. Further, in the light emitting device 1 of the present invention, the fluorescent light emitter 10 including the hybrid crystal is not a liquid or gel that is difficult to handle as in the prior art, but is a dry solid and easy to handle. As a result, a flexible substrate (flexible substrate) or the like can be used.
  • the step B is characterized by comprising at least a step B of depositing a crystal so as to cover the first electrode 20 and a step Z of providing the second electrode 30 so as to be in contact with the crystal.
  • a solution in which a Ru complex is dissolved in an organic solvent is prepared (Step A).
  • the organic solvent is not particularly limited.
  • an aprotic polar solvent such as acetonitrile, acetone, DMF (N, N-dimethylformamide), DMSO (dimethyl sulfoxide), aniline, MEK (methyl ethyl ketone) is used.
  • An organic solvent such as) can be used.
  • FIG. 2 is a flowchart of the process A.
  • a sample tube with a lid is prepared (S1).
  • a Ru complex for example, Ru (bpy) 3 (PF 6 ) 2 is weighed in a predetermined amount (S2).
  • a solution to which, for example, acetonitrile is added as an organic solvent is prepared (S3).
  • This solution is ultrasonically dissolved (S4).
  • an ultrasonic cleaner manufactured by Kaijo Corporation, SONO CLEANER 200R
  • SONO CLEANER 200R for ultrasonic dissolution.
  • this ultrasonically dissolved solution is filtered (S5).
  • a filter of 0.5 ⁇ m or less for example, DISMIC manufactured by ADVANTEC
  • a predetermined amount of cellulose acetate is added as a dielectric to the filtrate (S6).
  • cellulose acetate is dissolved at 60 ° C. (S7), and further ultrasonically dissolved (S8).
  • the raw material solution (luminescent coating material) is prepared.
  • specific materials, numerical values, and the like are described. However, these are examples, and the present invention is not limited thereto. Each step is not limited to the above example.
  • the obtained solution is applied to one substrate provided with the first electrode 20 and dried to precipitate crystals so as to cover the first electrode 20 (step B).
  • the first electrode 20 for example, one in which ITO is formed on one substrate made of glass can be used.
  • a method for applying the solution is not particularly limited, but for example, a spin coating method is preferable. According to the spin coating method, the steps of applying an aqueous solution, drying, and crystal precipitation can be performed at a time in the atmosphere.
  • a support in which an ITO film is formed as an anode on a PET base material is prepared in advance and cut into a predetermined size (S10).
  • the support surface is cleaned by laser dry etching (S11).
  • wet cleaning using an acid may be used.
  • the support is placed on the rotating disk (S12).
  • the support is fixed on the rotating disk, for example, with a tape.
  • the support surface is wiped and cleaned using, for example, acetone (S13). This is intended to remove, for example, plasticizers.
  • the disk is rotated, for example, at 500 to 2000 rpm (S14).
  • As the rotating device for example, ACT-300A manufactured by Active Corporation can be used.
  • the support surface is cleaned using, for example, IPA (isopropyl alcohol) (S15). This is aimed at removing small trash. Thereafter, it is dried (S16). The drying time is, for example, 15 seconds. Then, the raw material aqueous solution (light-emitting paint) is supplied onto the support and applied by spin coating (S17). The application time is, for example, 1 second. The paint is dried (S18). Thereby, a hybrid crystal is deposited on the support. Although drying time changes with kinds of solvent, it shall be 30 seconds, for example. Then, the rotation of the disk is stopped (S19), and the support on which the hybrid crystal (fluorescent light emitter 10) is formed is taken out (S20).
  • IPA isopropyl alcohol
  • the second electrode 30 is provided in contact with the hybrid crystal (step Z).
  • the method for forming the second electrode 30 is not particularly limited, and can be formed by a conventionally known method.
  • FIG. 3 is a flowchart of the process Z.
  • the support on which the hybrid crystal is formed is taken out (S20)
  • masking is performed (S21).
  • the cathode paint prepared separately is applied by, for example, a casting method so as to cover the hybrid crystal (S22).
  • S23 is dried (S23). Drying is performed at 100 ° C. for 15 seconds, for example.
  • S24 a (fluorescence) light emitting device 1 in which at least a hybrid crystal (fluorescent light emitter 10) is disposed between the first electrode 20 and the second electrode 30 is obtained.
  • a hybrid crystal fluorescent light emitter 10
  • the 2nd electrode 30 can also be formed as follows. After the support on which the hybrid crystal is formed is taken out (S20), masking is performed (S21). The support is placed in the film forming chamber of the vacuum deposition apparatus (S30). As the vacuum deposition apparatus, for example, ED-1250R1 manufactured by Sunbac Co., Ltd. can be used. The film forming chamber is depressurized (S31), and for example, Al is deposited (S32). When the deposition is completed, the inside of the film forming chamber is cooled (S33) and returned to atmospheric pressure (S34), and finally the support having the Al deposited film formed on the hybrid crystal is taken out from the film forming chamber (S35). . In addition to Al, the second electrode 30 can be formed by evaporating, for example, Mg, MgAg, Ca, LiF.
  • the second electrode 30 a conductive member previously formed on the other substrate may be used.
  • the conductive member for example, an Al film formed in advance as the second electrode 30 on the other substrate made of PET can be used.
  • the second electrode 30 (conductive member) is separately prepared in advance.
  • the second electrode 30 may be simply stacked (contacted) so as to be in contact with the crystal. As long as the second electrode 30 (Al) is present, the other substrate may be omitted.
  • (all) transparent members in the visible range may be used as the first electrode 20 and the one substrate, and the second electrode 30 and the other substrate.
  • the light-emitting device 1 obtained can emit light on both sides.
  • the coating material of the present invention is a coating material for producing a (fluorescence) light emitting device 1 comprising a solid fluorescent material 10 and is a solution in which at least a Ru complex is dissolved in an organic solvent.
  • the Ru complex is not particularly limited.
  • Ru (bpy) 3 (PF 6 ) 2 [tris (2,2′-bipyridinate) ruthenium (II) hexafluorophosphate di-salt] is particularly preferable.
  • the fluorescent light emitter 10 contains a dielectric. Thereby, when a coating film is formed by applying and drying the coating material on the substrate, the viscosity of the coating material is increased by adding a dielectric, and the film shape can be maintained until drying. Thereby, film formability improves and the coating film obtained has a high surface flatness. Moreover, durability (life) improves by containing a dielectric material.
  • the coating material of this embodiment further contains a semiconductor.
  • a semiconductor is not particularly limited, and examples thereof include polyvinyl carbazole.
  • the amount of the semiconductor added is not particularly limited, but is preferably about 50 mol% or less, for example.
  • the first electrode and the second electrode are disposed on both sides of the coating film formed by drying the paint, and a direct-current voltage is applied between the first electrode and the second electrode, whereby the fluorescent light emitter is excited and emits light. That is, the first electrode may be in electrical contact with one surface of the coating film and the second electrode may be in electrical contact with the other surface.
  • the coating material of the present invention has excellent environmental resistance, and deterioration due to light, oxygen and moisture can be suppressed. Thereby, the coating material of this invention implement
  • the coating apparatus of the present invention includes at least a first means for storing paint and a second means for discharging the paint from the first means toward the object to be processed.
  • Examples of such a coating apparatus include a line marker and an ink jet nozzle.
  • paper, cloth, wood, glass etc. are mentioned, for example.
  • a light-emitting device as shown in FIGS. 1A, 1B, and 1C was produced through the steps shown in FIGS. First, a solution in which a Ru complex was dissolved in an organic solvent was prepared. A sample tube with a lid was prepared (S1). Then, a predetermined amount of Ru (bpy) 3 (PF 6 ) 2 was weighed as a Ru complex (S2). Next, a solution to which acetonitrile was added as an organic solvent was prepared (S3). This solution was ultrasonically dissolved (S4). An ultrasonic cleaner (manufactured by Kaijo Corporation, SONO CLEANER 200R) was used for ultrasonic dissolution.
  • An ultrasonic cleaner manufactured by Kaijo Corporation, SONO CLEANER 200R
  • this ultrasonically dissolved solution was filtered (S5).
  • a filter of 0.5 ⁇ m or less for example, DISMIC manufactured by ADVANTEC
  • a predetermined amount of cellulose acetate (TAC) was added as a dielectric to the filtrate (S6).
  • TAC cellulose acetate
  • S7 melt
  • S8 ultrasonically melt
  • the obtained light-emitting paint was applied to one substrate provided with the first electrode 20 and dried, so that crystals were deposited so as to cover the first electrode 20.
  • a support formed by forming a film of ITO as an anode on a PET substrate was prepared in advance, and was cut into a predetermined size (S10).
  • the support surface was cleaned by laser dry etching (S11). In addition, wet cleaning using an acid may be used.
  • the support was placed on the rotating disk (S12).
  • the support was fixed with tape on a rotating disk.
  • the support surface was wiped and washed with acetone (S13).
  • the disk was rotated at 500 to 2000 rpm (S14).
  • ACT-300A manufactured by Active Corporation was used.
  • the support body surface was wash
  • IPA isopropyl alcohol
  • hybrid crystal film / first electrode / one substrate
  • a support on which a film-shaped hybrid crystal (hereinafter also referred to as “hybrid crystal film”: fluorescent substance 10) is formed. ) was taken out (S20).
  • the emission wavelength is shown in FIG. As shown in FIGS. 11 and 12, it was found that the light-emitting device emitted light from around 3V, and 9V had the highest luminance. The emission peak was 620 nm.
  • FIG. 13 shows the relationship between the temperature and the half-life time of the luminance of this light emitting device. The lifetime of the conventional light emitting device is several seconds, which is very short. However, as shown in FIG. 13, the light emitting device of the present invention has a very long half life of 10,000 hours and a long lifetime. I understood that.
  • the light emitting device was produced by changing the amount of the Ru complex [Ru (bpy) 3 (PF 6 ) 2 ], and the film thickness and the luminance were evaluated.
  • FIG. 14 shows the relationship between the amount of Ru (bpy) 3 (PF 6 ) 2 and the light emitter film thickness for the light emitting device.
  • FIG. 15 shows the relationship between the light emitter thickness and the light emission luminance.
  • FIG. 15 shows that the film thickness and the luminance are also in a proportional relationship.
  • a light emitting device was fabricated using an Mg electrode instead of the Al electrode, and a direct current voltage was applied. The device emitted light from 2.5V, and the luminance was confirmed at 9V. Moreover, it replaced with said Al electrode, the light emitting device was produced using the ITO electrode, and when direct current voltage was applied, it light-emitted from 7V and the brightness
  • a paint was prepared by dissolving [Ru (bpy) 3 Cl 2 ] in ethanol at a weight ratio of 1:20. This paint was applied on ITO and dried. An Al electrode deposited on PET was placed on this coating film, and the solid light emitting film was sandwiched between the ITO electrode and the Al electrode. When a DC voltage of 9 V was applied between the electrodes, orange-yellow light emission was confirmed. [Ru (bpy) 3 (PF 6 ) 2 ] was dissolved in ethanol at a weight ratio of 1:20 to prepare a paint. This paint was applied on ITO and dried. An Al electrode deposited on PET was placed on this coating film, and the solid light emitting film was sandwiched between the ITO electrode and the Al electrode. When a DC voltage of 9 V was applied between the electrodes, yellow to white light emission was confirmed.
  • 1 light emitting device 10 fluorescent light emitter, 11 object, 12 crystal, 20 first electrode, 30 second electrode, 40 N-type semiconductor layer, 50 P-type semiconductor layer.

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

The present invention provides a light-emitting device that minimizes degradation caused by light, oxygen and moisture, increases light emission time, enables a flexible substrate to be used, and is easy to handle. This light-emitting device is formed by disposing at least a solid fluorescent light-emitting body between a first electrode and a second electrode. The fluorescent light-emitting body is a hybrid crystal having a structure in which a plurality of crystals comprising a ruthenium complex are disposed so as to be separate from one another in a single object comprising a dielectric material.

Description

発光デバイス、及びその製造方法、塗料並びに塗布装置LIGHT EMITTING DEVICE, ITS MANUFACTURING METHOD, COATING AND COATING APPARATUS
 本発明は、発光デバイス、及びその製造方法、塗料並びに塗布装置に関する。 The present invention relates to a light emitting device, a manufacturing method thereof, a paint, and a coating apparatus.
 例えばRu(bpy)(PFのような、Ru錯体を発光体として用いた、発光デバイスが知られている。このような発光体は、光または電圧を印加することにより励起されて発光する。
 この発光原理は、電気化学発光(ECL)で、エレクトロルミネセンス(EL)とケミカルルミネセンス(CL)に原理を分けることができる。つまり発光が起こるまでに電子的なプロセスと化学的なプロセスを経ている。
For example, a light-emitting device using a Ru complex as a light emitter such as Ru (bpy) 3 (PF 6 ) 2 is known. Such a light emitter emits light when excited by applying light or voltage.
This light emission principle is electrochemiluminescence (ECL), and the principle can be divided into electroluminescence (EL) and chemical luminescence (CL). In other words, it goes through an electronic process and a chemical process before light emission occurs.
 例えば図17に示すように、Ru錯体は、電圧(または光)を印加していない状態では、Ru(bpy) 2+ [Ru(II)]で安定しているが、電極間に電圧を印加するとRu錯体の酸化[Ru(III)]と還元[Ru(I)]が電極付近で生じる。その後Ru(III)とRu(I)は電解液中を泳動して双方が接触して中和する。この中和によってRu(III)とRu(I)は電子の授受を行い、励起状態のRu(II)が生じる。励起状態のRu(II)は、非常に不安定で基底状態に戻ろうとして光エネルギーを放出することで発光する。電圧を印加している間は溶液中で反応と光エネルギーの放出を繰り返すことで連続的に発光が起こる。 For example, as shown in FIG. 17, the Ru complex is stable with Ru (bpy) 3 2+ [Ru (II)] when no voltage (or light) is applied, but a voltage is applied between the electrodes. Then, oxidation [Ru (III)] and reduction [Ru (I)] of the Ru complex occur near the electrode. Thereafter, Ru (III) and Ru (I) migrate in the electrolyte solution and both come into contact with each other to neutralize. By this neutralization, Ru (III) and Ru (I) exchange electrons, and excited state Ru (II) * is generated. Ru (II) * in the excited state is very unstable and emits light by releasing light energy to return to the ground state. While voltage is applied, light is emitted continuously by repeating reaction and release of light energy in the solution.
 このECL発光は低電圧で発光しやすく、交流駆動では長寿命になりやすいことが分かっているか、実用化へは大きな問題を抱えている。
 すなわち、従来の発光体は、光劣化、酸化劣化、水分劣化が生じやすく、一般環境下で使用することは困難であった。
 また、発光体が液体やゲル体であるため、漏れや溶媒の揮発のおそれがある上、電極間にミクロンオーダーのギャップを設けて電解液を保持する必要があり、可撓性を有する基板(変形可能なフレキシブル基板など)を使用できないなど、取り扱いが非常に難しかった。
This ECL emission easily emits light at a low voltage, and it has been found that the AC drive tends to have a long life, or has a serious problem in practical use.
That is, the conventional illuminant is liable to cause light deterioration, oxidation deterioration, and moisture deterioration, and is difficult to use in a general environment.
In addition, since the luminous body is a liquid or a gel body, there is a risk of leakage and volatilization of the solvent, and it is necessary to provide a micron-order gap between the electrodes to hold the electrolytic solution. It was very difficult to handle, such as a deformable flexible board.
特開2008-84664号公報JP 2008-84664 A
 本発明は、このような従来の実情に鑑みて提案されたものであり、光、酸素および水分による劣化を抑え、発光時間を長くするとともに、可撓性を有する基板を用いることが可能であり、取り扱いを容易にした、発光デバイスを提供することを第一の目的とする。
 また、本発明は、光、酸素および水分による劣化を抑え、発光時間を長くするとともに、可撓性を有する基板を用いることが可能であり、取り扱いを容易にした(蛍光)発光デバイスを、簡便な方法で製造することができる、発光デバイスの製造方法を提供することを第二の目的とする。
 また、本発明は、光、酸素および水分による劣化を抑え、発光時間を長くした、塗料を提供することを第三の目的とする。
 さらに、本発明は、光、酸素および水分による劣化を抑え、発光時間を長くした塗料を用いた、塗布装置を提供することを第四の目的とする。
The present invention has been proposed in view of such conventional circumstances, and it is possible to suppress deterioration due to light, oxygen, and moisture, to increase the light emission time, and to use a flexible substrate. The first object is to provide a light-emitting device that is easy to handle.
In addition, the present invention suppresses deterioration due to light, oxygen, and moisture, extends the light emission time, and allows the use of a flexible substrate. A second object is to provide a method for manufacturing a light emitting device, which can be manufactured by a simple method.
A third object of the present invention is to provide a coating material that suppresses deterioration due to light, oxygen, and moisture and has a long light emission time.
Furthermore, a fourth object of the present invention is to provide a coating apparatus using a coating material that suppresses deterioration due to light, oxygen, and moisture and has a long light emission time.
 本発明の請求項1に記載の発光デバイスは、第一電極と第二電極との間に、固体の蛍光発光体が少なくとも配されてなる発光デバイスであって、前記蛍光発光体は、誘電体からなる単一の物体内に、Ru錯体からなる結晶が複数、互いに離間して配された構造を有するハイブリッド結晶であることを特徴とする。
 本発明の請求項2に記載の発光デバイスは、請求項1において、前記蛍光発光体は、さらに半導体を含むことを特徴とする。
 本発明の請求項3に記載の発光デバイスは、請求項1又は2において、前記第一電極または前記第二電極の一方、あるいは両方が、蛍光を透過する部材からなり、かつ、蛍光を透過する基体に配されていることを特徴とする。
 本発明の請求項4に記載の発光デバイスは、請求項1において、前記誘電体が、酢酸セルロースであることを特徴とする。
 本発明の請求項5に記載の発光デバイスは、請求項1において、前記Ru錯体が、Ru(bpy)(PF2 であることを特徴とする。
 本発明の請求項6に記載の発光デバイスの製造方法は、第一電極と第二電極との間に、固体の蛍光発光体が少なくとも配され、該蛍光発光体は誘電体からなる単一の物体内に、Ru錯体からなる結晶が複数、互いに離間して配された構造を有するハイブリッド結晶である発光デバイスの作製方法であって、前記Ru錯体を有機溶剤に溶解させた溶液を用意する工程Aと、前記溶液を、前記第一電極を備えた一方の基体に塗布して、乾燥させることにより、該第一電極を覆うように前記結晶を析出させる工程Bと、前記結晶に接するように、前記第二電極を設ける工程Zと、を少なくとも備えたことを特徴とする。
 本発明の請求項7に記載の発光デバイスの製造方法は、請求項6において、前記工程Bは、(前記溶液を一方の基体に塗布して、乾燥させ、前記第一電極を覆うように前記結晶を析出させるために、)スピンコート法を用いることを特徴とする。
 本発明の請求項8に記載の発光デバイスの製造方法は、請求項5において、前記工程Zは、前記第二電極として、他方の基体に予め形成された導電部材を用いることを特徴とする。
 本発明の請求項9に記載の発光デバイスの製造方法は、請求項8において、前記第一電極及び前記一方の基体、並びに、前記第二電極及び前記他方の基体として、可視域において透明な部材を用いることを特徴とする。
 本発明の請求項10に記載の塗料は、固体の蛍光発光体からなる発光デバイスを作製するための塗料であって、有機溶剤に少なくともRu錯体を溶解させてなる溶液であることを特徴とする。
 本発明の請求項11に記載の塗料は、請求項10において、さらに半導体を含むことを特徴とする。
 本発明の請求項12に記載の塗布装置は、請求項10又は11において塗料を収納する第一手段と、前記第一手段から被処理体に向けて前記塗料を吐出させる第二手段とを、少なくとも備えたことを特徴とする。
The light emitting device according to claim 1 of the present invention is a light emitting device in which at least a solid fluorescent light emitter is disposed between a first electrode and a second electrode, and the fluorescent light emitter is a dielectric. It is a hybrid crystal having a structure in which a plurality of Ru complex crystals are arranged apart from each other in a single object.
A light-emitting device according to a second aspect of the present invention is the light-emitting device according to the first aspect, wherein the fluorescent light emitter further includes a semiconductor.
The light-emitting device according to claim 3 of the present invention is the light-emitting device according to claim 1 or 2, wherein one or both of the first electrode and the second electrode are made of a member that transmits fluorescence and transmits fluorescence. It is characterized by being arranged on a substrate.
The light emitting device according to claim 4 of the present invention is characterized in that, in claim 1, the dielectric is cellulose acetate.
The light-emitting device according to claim 5 of the present invention is characterized in that, in claim 1, the Ru complex is Ru (bpy) 3 (PF 6 ) 2 .
In the method for manufacturing a light-emitting device according to claim 6 of the present invention, at least a solid fluorescent substance is disposed between the first electrode and the second electrode, and the fluorescent substance is a single unit made of a dielectric. A method for manufacturing a light-emitting device, which is a hybrid crystal having a structure in which a plurality of crystals made of a Ru complex are arranged apart from each other in an object, wherein a solution is prepared by dissolving the Ru complex in an organic solvent. A and the solution are applied to one substrate provided with the first electrode and dried to deposit the crystal so as to cover the first electrode, and in contact with the crystal And a step Z of providing the second electrode.
The method for manufacturing a light-emitting device according to claim 7 of the present invention is the method according to claim 6, wherein the step B includes: (applying the solution to one substrate, drying, and covering the first electrode; In order to precipitate crystals, a spin coating method is used.
The method for manufacturing a light-emitting device according to an eighth aspect of the present invention is characterized in that, in the fifth aspect, the step Z uses a conductive member formed in advance on the other substrate as the second electrode.
According to a ninth aspect of the present invention, there is provided a light emitting device manufacturing method according to the eighth aspect, wherein the first electrode and the one substrate, and the second electrode and the other substrate are transparent members in the visible region. It is characterized by using.
The paint according to claim 10 of the present invention is a paint for producing a light emitting device comprising a solid fluorescent material, and is a solution in which at least a Ru complex is dissolved in an organic solvent. .
The paint according to claim 11 of the present invention is characterized in that, in claim 10, it further comprises a semiconductor.
A coating apparatus according to a twelfth aspect of the present invention includes a first means for storing the paint in claim 10 or 11, and a second means for discharging the paint from the first means toward the object to be processed. It is provided with at least.
 本発明によれば、光、酸素および水分による劣化を抑え、発光時間を長くするとともに、可撓性を有する基板を用いることが可能であり、取り扱いを容易にした、発光デバイスを提供することができる。
 また、本発明によれば、光、酸素および水分による劣化を抑え、発光時間を長くするとともに、可撓性を有する基板を用いることが可能であり、取り扱いを容易にした発光デバイスを、簡便な方法で製造できる、発光デバイスの製造方法を提供することができる。
 また、本発明によれば、光、酸素および水分による劣化を抑え、発光時間を長くした、塗料を提供することができる。
 さらに、本発明によれば、光、酸素および水分による劣化を抑え、発光時間を長くした塗料を用いた、塗布装置を提供することができる。
According to the present invention, it is possible to provide a light-emitting device that can suppress deterioration due to light, oxygen, and moisture, extend a light emission time, use a flexible substrate, and can be easily handled. it can.
In addition, according to the present invention, it is possible to suppress deterioration due to light, oxygen, and moisture, to increase the light emission time, and to use a flexible substrate. The manufacturing method of the light-emitting device which can be manufactured by the method can be provided.
In addition, according to the present invention, it is possible to provide a coating material in which deterioration due to light, oxygen and moisture is suppressed and the light emission time is extended.
Furthermore, according to the present invention, it is possible to provide a coating apparatus using a paint that suppresses deterioration due to light, oxygen, and moisture and has a long light emission time.
本発明に係る発光デバイスの一構成例を模式的に示す断面図。Sectional drawing which shows typically the example of 1 structure of the light-emitting device which concerns on this invention. 本発明に係る発光デバイスの一構成例を模式的に示す断面図。Sectional drawing which shows typically the example of 1 structure of the light-emitting device which concerns on this invention. 本発明に係る発光デバイスの一構成例を模式的に示す断面図。Sectional drawing which shows typically the example of 1 structure of the light-emitting device which concerns on this invention. 本発明に係る発光デバイスの製造方法(工程A,工程B)を示すフローチャート。The flowchart which shows the manufacturing method (process A, process B) of the light emitting device which concerns on this invention. 本発明に係る発光デバイスの製造方法(工程Z)を示すフローチャート。The flowchart which shows the manufacturing method (process Z) of the light emitting device which concerns on this invention. 結晶膜の顕微鏡(レーザーマイクロスコープ)写真。Microscope (laser microscope) photograph of crystal film. 結晶膜の顕微鏡(レーザーマイクロスコープ)写真。Microscope (laser microscope) photograph of crystal film. 結晶膜の顕微鏡(レーザーマイクロスコープ)写真。Microscope (laser microscope) photograph of crystal film. 結晶膜の顕微鏡(レーザーマイクロスコープ)写真。Microscope (laser microscope) photograph of crystal film. 結晶膜の顕微鏡(レーザーマイクロスコープ)写真。Microscope (laser microscope) photograph of crystal film. 結晶膜の顕微鏡(レーザーマイクロスコープ)写真。Microscope (laser microscope) photograph of crystal film. 結晶膜について酢酸セルロールの量と表面粗さとの関係を示す図。The figure which shows the relationship between the quantity of cellulose acetate, and surface roughness about a crystalline film. 発光デバイスについて電圧と輝度との関係を示す図。The figure which shows the relationship between a voltage and a brightness | luminance about a light-emitting device. 発光デバイスについて発光波長を示す図。The figure which shows the light emission wavelength about a light emitting device. 発光デバイスにおいてついて発光輝度の減衰時間を示す図。The figure which shows the decay time of light-emitting luminance about a light-emitting device. 発光デバイスについてRu(bpy)(PF2 の量と発光体の膜厚との関係を示す図。Diagram showing the relationship between the light emitting device and the amount of Ru (bpy) 3 (PF 6 ) 2 and thickness of the light-emitting element. 発光デバイスについて発光体の膜厚と発光輝度との関係を示す図。The figure which shows the relationship between the film thickness of a light-emitting body, and light-emitting luminance about a light-emitting device. 実施例で作製した発光デバイスについて電圧と輝度との関係を示す図。FIG. 6 shows a relationship between voltage and luminance for a light-emitting device manufactured in an example. Ru錯体の発光原理について説明する模式図。The schematic diagram explaining the light emission principle of Ru complex.
 以下、図面を参照して、本発明の実施形態及び実施例を詳細に説明するが、本発明はこれらの実施形態及び実施例に限定されるものではない。 Hereinafter, embodiments and examples of the present invention will be described in detail with reference to the drawings, but the present invention is not limited to these embodiments and examples.
<(蛍光)発光デバイス>
 図1Aは、本発明に係る発光デバイス(直流型)の一構成例を模式的に示す断面図である。
 本発明の発光デバイス(以下、蛍光を発する発光デバイス(蛍光発光デバイス)」とも呼ぶ)1は、第一電極20と第二電極30との間に、固体の蛍光発光体10が少なくとも配されてなる発光デバイス1であって、蛍光発光体10は、誘電体からなる単一の物体11内に、Ru錯体からなる結晶12が複数、互いに離間して配された構造を有するハイブリッド結晶であることを特徴とする。なお、図1Aの場合においては、第一電極20と第二電極に接続する直流電源の極性はどちらでもよい。
<(Fluorescent) light emitting device>
FIG. 1A is a cross-sectional view schematically showing a configuration example of a light emitting device (DC type) according to the present invention.
A light emitting device 1 of the present invention (hereinafter also referred to as a light emitting device that emits fluorescence (fluorescent light emitting device)) 1 includes at least a solid fluorescent light emitter 10 disposed between a first electrode 20 and a second electrode 30. The fluorescent light emitter 10 is a hybrid crystal having a structure in which a plurality of crystals 12 made of a Ru complex are arranged apart from each other in a single object 11 made of a dielectric. It is characterized by. In the case of FIG. 1A, the polarity of the DC power source connected to the first electrode 20 and the second electrode may be either.
 蛍光発光体10は、誘電体を含有する。これにより、例えばRu錯体が溶媒に溶解されてなる溶液を基体に塗布、乾燥することにより、蛍光発光体10を形成する際に、誘電体を添加することで溶液が増粘され、乾燥するまでの間、膜形状保持が維持できる。これにより、成膜性が向上し、得られる結晶膜は表面平坦性の高いものとなる。また、誘電体を含有することにより、耐久性(寿命)が向上する。 Fluorescent light emitter 10 contains a dielectric. Thus, for example, by applying a solution in which a Ru complex is dissolved in a solvent to a substrate and drying, the solution is thickened by adding a dielectric when the phosphor 10 is formed. During this, the film shape can be maintained. Thereby, the film formability is improved, and the obtained crystal film has high surface flatness. Moreover, durability (life) improves by containing a dielectric material.
 このような誘電体としては、特に限定されるものではないが、例えば酢酸セルロース、ポリフッ化ビニリデン、ニトロセルロースなどが挙げられる。その中でも特に、酢酸セルロースが好ましい。
 誘電体の含有量としては、特に限定されるものではないが、例えば、0%~75%程度とすることが好ましい。ただし、誘電体量が増えると低電圧発光させるために、蛍光発光体10を含む発光層の厚みを薄くする必要がある。そのため発光物の溶存量が少なくなるので、電圧当りの発光量が減る傾向がある。
Such a dielectric is not particularly limited, and examples thereof include cellulose acetate, polyvinylidene fluoride, and nitrocellulose. Among these, cellulose acetate is particularly preferable.
The content of the dielectric is not particularly limited, but is preferably about 0% to 75%, for example. However, in order to emit light at a low voltage as the amount of dielectric increases, it is necessary to reduce the thickness of the light emitting layer including the fluorescent light emitter 10. For this reason, since the amount of luminescent material dissolved is reduced, the amount of luminescence per voltage tends to decrease.
 Ru錯体としては、特に限定されるものではないが、例えば、[Ru(dpbpy)](PF、[Ru(dpphen)](PF、[Ru(dmdpphen)](PF、[Ru(tmphen)](PF、[Ru(dmbpy)](PF、[Ru(dmbpy)](ClO、[Ru(bqn)](PF、[Ru(bpy)](ClO、[Ru(bpy)](PF、[Ru(dmdpphen)](ClO、などが挙げられる。その中でも特に、Ru(bpy)(PF[トリス(2,2’-ビピリジナート)ルテニウム(II)六フッ化リン酸二塩]が好ましい。
Ru(bpy)(PFの構造を、化1に示す。化1中、X=PFである。
The Ru complex is not particularly limited. For example, [Ru (dpbpy) 3 ] (PF 6 ) 2 , [Ru (dpphen) 3 ] (PF 6 ) 2 , [Ru (dmdpphen) 3 ] ( PF 6 ) 2 , [Ru (tmphen) 3 ] (PF 6 ) 2 , [Ru (dmbpy) 3 ] (PF 6 ) 2 , [Ru (dmbpy) 3 ] (ClO 4 ) 2 , [Ru (bqn) 3 ] (PF 6 ) 2 , [Ru (bpy) 3 ] (ClO 4 ) 2 , [Ru (bpy) 3 ] (PF 6 ) 2 , [Ru (dmdpphen) 3 ] (ClO 4 ) 2 , and the like. . Among them, Ru (bpy) 3 (PF 6 ) 2 [tris (2,2′-bipyridinate) ruthenium (II) hexafluorophosphate di-salt] is particularly preferable.
The structure of Ru (bpy) 3 (PF 6 ) 2 is shown in Chemical Formula 1. In Formula 1, X = PF.
Figure JPOXMLDOC01-appb-C000001
 
Figure JPOXMLDOC01-appb-C000001
 
 なお、上記式において、Ruに代えて、Rh、Re、Os、Zn、Cr、Pd、Pt、Ir、Cu、Al、Ga、Auを含む、錯体を用いることができる。
 また、上記式において、X=PFに代えて、NO 、CHCOO、BF 、(CFSO、(CSO、CFCOO、CFSO 、であってもよい。
Note that in the above formula, a complex containing Rh, Re, Os, Zn, Cr, Pd, Pt, Ir, Cu, Al, Ga, and Au can be used instead of Ru.
In the above formula, instead of X = PF, NO 3 , CH 3 COO , BF 4 , (CF 3 SO 2 ) 2 N , (C 2 F 5 SO 2 ) 2 N , CF 3 COO , CF 3 SO 3 may be used.
 このように、本実施形態では、蛍光発光体10を、誘電体からなる単一の物体11内に、Ru錯体からなる結晶12が複数、互いに離間して配されたハイブリッド結晶とすることにより、蛍光発光体10の耐環境性能を向上することができる。すなわち、光、酸素および水分による劣化が抑えられる。また、固体状で安定に保持することができる。 As described above, in the present embodiment, the fluorescent light emitter 10 is a hybrid crystal in which a plurality of Ru complexes 12 are arranged in a single object 11 made of a dielectric and spaced apart from each other. The environmental resistance performance of the fluorescent light emitter 10 can be improved. That is, deterioration due to light, oxygen and moisture can be suppressed. Moreover, it is solid and can be stably held.
 (蛍光)発光デバイス1において、蛍光発光体10は、さらに半導体を含むことが好ましい。これにより、導電性が向上する。
 このような半導体としては、特に限定されるものではないが、例えばポリビニルカルバゾール等が挙げられる。
 半導体の添加量としては、特に限定されるものではないが、例えば50mol%以下程度とすることが好ましい。
In the (fluorescence) light emitting device 1, the fluorescent light emitter 10 preferably further includes a semiconductor. Thereby, electroconductivity improves.
Such a semiconductor is not particularly limited, and examples thereof include polyvinyl carbazole.
The amount of the semiconductor added is not particularly limited, but is preferably about 50 mol% or less, for example.
 発光デバイス1において、第一電極20および第二電極30の材料として、種々の材料を用いることができる。
 例えば第一電極20が陽極である場合、第一電極20としては、特に限定されるものではないが、例えばITO(スズドープ酸化インジウム)、FTO(フッ素ドープ酸化スズ)、PEDOT(ポリ(3,4-エチレンジオキシ チオフェン))などが挙げられる。
 また、第二電極30が陰極である場合、第二電極30としては、特に限定されるものではないが、例えばITO、FTO、Al、Mg、カーボン、PEDOTなどが挙げられる。
In the light emitting device 1, various materials can be used as the material of the first electrode 20 and the second electrode 30.
For example, when the first electrode 20 is an anode, the first electrode 20 is not particularly limited. For example, ITO (tin-doped indium oxide), FTO (fluorine-doped tin oxide), PEDOT (poly (3,4) -Ethylenedioxythiophene)) and the like.
When the second electrode 30 is a cathode, the second electrode 30 is not particularly limited, and examples thereof include ITO, FTO, Al, Mg, carbon, and PEDOT.
 発光デバイス1は、前記第一電極20または前記第二電極30の一方、あるいは両方が、蛍光を透過する部材からなり、かつ、蛍光を透過する基体に配されていることが好ましい。
 このような、蛍光を透過する部材としては、例えばITO、FTOなどの、透明導電膜が挙げられる。
 また、蛍光を透過する基体としては、例えばガラス、PET(ポリエチレンテレフタレート)などの、可視域において透明な材料が挙げられる。
 発光デバイス1において、両方の電極と基体を、蛍光を透過する構成してもよい。第一電極20と第二電極30との両方を、蛍光を透過する構成とすることで、発光デバイス1は、両面発光が可能となる。
In the light emitting device 1, it is preferable that one or both of the first electrode 20 and the second electrode 30 is made of a member that transmits fluorescence, and is disposed on a substrate that transmits fluorescence.
Examples of such a member that transmits fluorescence include transparent conductive films such as ITO and FTO.
Examples of the substrate that transmits fluorescence include materials that are transparent in the visible region, such as glass and PET (polyethylene terephthalate).
In the light emitting device 1, both electrodes and the substrate may be configured to transmit fluorescence. By setting both the first electrode 20 and the second electrode 30 to transmit fluorescence, the light emitting device 1 can emit light on both sides.
 発光デバイス1を発光させる場合、蛍光発光体の両側に配された第一電極20と第二電極30との間に、例えば直流電圧を印加することにより、蛍光発光体10が励起されて発光する。
 なお、図1Bに示すように、蛍光発光体10をなすハイブリッド結晶(第一結晶11と第二結晶12)がP型の場合は、N型半導体層40を、蛍光発光体10と第二電極30との間に配することが好ましい。一方、図1Cに示すように、蛍光発光体10をなすハイブリッド結晶(第一結晶11と第二結晶12)がN型の場合は、P型半導体層50を、蛍光発光体10と第一電極20との間に配置することが好ましい。これにより蛍光発光体10が発光しやすくなる。ハイブリッド結晶がN型とP型双方をもつ場合は、第一電極20と第二電極30との間には、蛍光発光体10であるハイブリッド結晶のみを配置することが好ましい。
When the light emitting device 1 emits light, the fluorescent light emitter 10 is excited to emit light by applying, for example, a DC voltage between the first electrode 20 and the second electrode 30 disposed on both sides of the fluorescent light emitter. .
As shown in FIG. 1B, when the hybrid crystal (the first crystal 11 and the second crystal 12) forming the fluorescent light emitter 10 is P-type, the N-type semiconductor layer 40 is replaced with the fluorescent light emitter 10 and the second electrode. 30 is preferable. On the other hand, as shown in FIG. 1C, when the hybrid crystal (the first crystal 11 and the second crystal 12) forming the fluorescent light emitter 10 is N-type, the P-type semiconductor layer 50 is replaced with the fluorescent light emitter 10 and the first electrode. It is preferable to arrange it between 20. Thereby, the fluorescent light emitter 10 easily emits light. When the hybrid crystal has both N-type and P-type, it is preferable to arrange only the hybrid crystal that is the fluorescent light emitter 10 between the first electrode 20 and the second electrode 30.
 本発明の発光デバイス1は、優れた耐環境性能があり、光、酸素および水分による劣化が抑えられる。これにより、本発明の発光デバイス1は、従来よりも長い発光時間を実現し、長寿命を有するものとなる。また、本発明の発光デバイス1は、ハイブリッド結晶を含む蛍光発光体10が、従来のように取り扱いが難しい液体状やゲル状ではなく、乾燥した固体状であり、取り扱いがしやすい。その結果、可撓性のある基板(フレキシブル基板)などを用いることができる。 The light-emitting device 1 of the present invention has excellent environmental resistance and can suppress deterioration due to light, oxygen, and moisture. Thereby, the light emitting device 1 of the present invention realizes a longer light emission time than the conventional one and has a long life. Further, in the light emitting device 1 of the present invention, the fluorescent light emitter 10 including the hybrid crystal is not a liquid or gel that is difficult to handle as in the prior art, but is a dry solid and easy to handle. As a result, a flexible substrate (flexible substrate) or the like can be used.
<発光デバイスの製造方法>
 以下では、このような(蛍光)発光デバイスの製造方法について説明する。
 本発明に係る(蛍光)発光デバイスの製造方法は、Ru錯体を有機溶剤に溶解させた溶液を用意する工程Aと、溶液を、第一電極20を備えた一方の基体に塗布して、乾燥させることにより、第一電極20を覆うように結晶を析出させる工程Bと、結晶に接するように、第二電極30を設ける工程Zと、を少なくとも備えたことを特徴とする。
<Method for manufacturing light emitting device>
Below, the manufacturing method of such a (fluorescence) light emitting device is demonstrated.
In the method for producing a (fluorescent) light emitting device according to the present invention, a process A in which a solution in which an Ru complex is dissolved in an organic solvent is prepared, and the solution is applied to one substrate having the first electrode 20 and dried. The step B is characterized by comprising at least a step B of depositing a crystal so as to cover the first electrode 20 and a step Z of providing the second electrode 30 so as to be in contact with the crystal.
 まず、Ru錯体を有機溶剤に溶解させた溶液を用意する(工程A)。
 有機溶剤としては、特に限定されるものではないが、例えば、アセトニトリル、アセトン、DMF(N,N-ジメチルホルムアミド)、DMSO(ジメチルスルホキシド)のような非プロトン性極性溶媒、或いはアニリン、MEK(メチルエチルケトン)のような有機溶媒を用いることができる。
First, a solution in which a Ru complex is dissolved in an organic solvent is prepared (Step A).
The organic solvent is not particularly limited. For example, an aprotic polar solvent such as acetonitrile, acetone, DMF (N, N-dimethylformamide), DMSO (dimethyl sulfoxide), aniline, MEK (methyl ethyl ketone) is used. An organic solvent such as) can be used.
  図2は、この工程Aのフローチャートである。
 まず、ふた付のサンプル管を用意する(S1)。
 そして、Ru錯体として、例えばRu(bpy)(PFを所定量、秤量する(S2)。
 次に、有機溶剤として、例えばアセトニトリルを追加した溶液を作製する(S3)。
 この溶液を超音波溶解する(S4)。超音波溶解には、例えば超音波洗浄機((株)カイジョー社製、SONO CLEANER 200R)を用いることができる。
FIG. 2 is a flowchart of the process A.
First, a sample tube with a lid is prepared (S1).
Then, as a Ru complex, for example, Ru (bpy) 3 (PF 6 ) 2 is weighed in a predetermined amount (S2).
Next, a solution to which, for example, acetonitrile is added as an organic solvent is prepared (S3).
This solution is ultrasonically dissolved (S4). For ultrasonic dissolution, for example, an ultrasonic cleaner (manufactured by Kaijo Corporation, SONO CLEANER 200R) can be used.
  次に、この超音波溶解した溶液をろ過する(S5)。ろ過には、例えば0.5μm以下のフィルター(例えば、ADVANTEC社製、DISMIC)を用いることができる。
 ろ液に、誘電体として、所定量の酢酸セルロースを添加する(S6)。
 そして、例えば60℃にて酢酸セルロースを溶解し(S7)、さらに、超音波溶解する(S8)。
 以上のようにして、原料溶液(発光塗料)が調製される。
 なお、上述した説明では、具体的な材料、数値等を挙げて説明しているが、これらは一例であり、これに限定されるものではない。また、各ステップも、上記の例に限定されない。
Next, this ultrasonically dissolved solution is filtered (S5). For the filtration, for example, a filter of 0.5 μm or less (for example, DISMIC manufactured by ADVANTEC) can be used.
A predetermined amount of cellulose acetate is added as a dielectric to the filtrate (S6).
Then, for example, cellulose acetate is dissolved at 60 ° C. (S7), and further ultrasonically dissolved (S8).
As described above, the raw material solution (luminescent coating material) is prepared.
In the above description, specific materials, numerical values, and the like are described. However, these are examples, and the present invention is not limited thereto. Each step is not limited to the above example.
 次に、得られた溶液を、第一電極20を備えた一方の基体に塗布して、乾燥させることにより、第一電極20を覆うように結晶を析出させる(工程B)。
 第一電極20としては、例えば、ガラスからなる一方の基体上に、ITOが形成されたものを用いることができる。
 溶液の塗布方法としては、特に限定されるものではないが、例えば、スピンコート法が好ましい。スピンコート法によれば、大気中で、水溶液の塗布、乾燥、および結晶析出の工程を、一気に実行することができる。
Next, the obtained solution is applied to one substrate provided with the first electrode 20 and dried to precipitate crystals so as to cover the first electrode 20 (step B).
As the first electrode 20, for example, one in which ITO is formed on one substrate made of glass can be used.
A method for applying the solution is not particularly limited, but for example, a spin coating method is preferable. According to the spin coating method, the steps of applying an aqueous solution, drying, and crystal precipitation can be performed at a time in the atmosphere.
 この工程Bのフローチャートを図3に示す。
 まず、例えばPET基材上に陽極としてITOが成膜されてなる支持体を予め用意し、所定の大きさにカットする(S10)。
 例えばレーザードライエッチングにより、支持体表面を洗浄する(S11)。なお、酸を用いた湿式洗浄でもよい。
 支持体を、回転ディスク上に設置する(S12)。支持体は、回転ディスク上に例えばテープで固定される。
 支持体表面を、例えばアセトンを用いて拭き洗浄する(S13)。これは例えば可塑剤などの除去を目的としている。
 ディスクを例えば500~2000rpmで回転させる(S14)。回転装置には、例えば(株)アクティブ社製のACT-300Aを用いることができる。
A flowchart of this step B is shown in FIG.
First, for example, a support in which an ITO film is formed as an anode on a PET base material is prepared in advance and cut into a predetermined size (S10).
For example, the support surface is cleaned by laser dry etching (S11). In addition, wet cleaning using an acid may be used.
The support is placed on the rotating disk (S12). The support is fixed on the rotating disk, for example, with a tape.
The support surface is wiped and cleaned using, for example, acetone (S13). This is intended to remove, for example, plasticizers.
The disk is rotated, for example, at 500 to 2000 rpm (S14). As the rotating device, for example, ACT-300A manufactured by Active Corporation can be used.
 そして、支持体表面を、例えばIPA(イソプロピルアルコール)を用いて洗浄する(S15)。これは、小さなゴミの除去を目的としている。
 その後、乾燥する(S16)。乾燥時間は例えば15秒間とする。
 そして、支持体上に前記の原料水溶液(発光塗料)を供給し、スピンコートにより塗布する(S17)。塗布時間は例えば1秒間とする。
 塗料を乾燥させる(S18)。これにより、支持体上にハイブリッド結晶を析出させる。乾燥時間は、溶剤種類によって異なるが、例えば30秒間とする。
 そして、ディスクの回転を停止させ(S19)、ハイブリッド結晶(蛍光発光体10)が形成された支持体を取り出す(S20)。
 なお、上述した説明では、具体的な材料、数値等を挙げて説明しているが、これらは一例であり、これに限定されるものではない。また、各ステップも、上記の例に限定されない。
Then, the support surface is cleaned using, for example, IPA (isopropyl alcohol) (S15). This is aimed at removing small trash.
Thereafter, it is dried (S16). The drying time is, for example, 15 seconds.
Then, the raw material aqueous solution (light-emitting paint) is supplied onto the support and applied by spin coating (S17). The application time is, for example, 1 second.
The paint is dried (S18). Thereby, a hybrid crystal is deposited on the support. Although drying time changes with kinds of solvent, it shall be 30 seconds, for example.
Then, the rotation of the disk is stopped (S19), and the support on which the hybrid crystal (fluorescent light emitter 10) is formed is taken out (S20).
In the above description, specific materials, numerical values, and the like are described. However, these are examples, and the present invention is not limited thereto. Each step is not limited to the above example.
 次に、ハイブリッド結晶に接するように、第二電極30を設ける(工程Z)
 第二電極30の形成方法としては、特に限定されるものではなく、従来公知の方法により、形成することができる。
Next, the second electrode 30 is provided in contact with the hybrid crystal (step Z).
The method for forming the second electrode 30 is not particularly limited, and can be formed by a conventionally known method.
 図3は、この工程Zのフローチャートである。
 ハイブリッド結晶が形成された支持体を取り出した(S20)後、マスキングを行う(S21)。
 そして、別途調製しておいた陰極塗料を、ハイブリッド結晶を覆うように、例えばキャスト法により塗布する(S22)。
 その後、乾燥する(S23)。乾燥は、例えば100℃で15秒間とする。最後に、装置から取り出す(S24)。
 このようにして、第一電極20と第二電極30との間に、ハイブリッド結晶(蛍光発光体10)が少なくとも配されてなる(蛍光)発光デバイス1が得られる。
 なお、上述した説明では、具体的な材料、数値等を挙げて説明しているが、これらは一例であり、これに限定されるものではない。また、各ステップも、上記の例に限定されない。
FIG. 3 is a flowchart of the process Z.
After the support on which the hybrid crystal is formed is taken out (S20), masking is performed (S21).
Then, the cathode paint prepared separately is applied by, for example, a casting method so as to cover the hybrid crystal (S22).
Thereafter, it is dried (S23). Drying is performed at 100 ° C. for 15 seconds, for example. Finally, it is taken out from the apparatus (S24).
In this way, a (fluorescence) light emitting device 1 in which at least a hybrid crystal (fluorescent light emitter 10) is disposed between the first electrode 20 and the second electrode 30 is obtained.
In the above description, specific materials, numerical values, and the like are described. However, these are examples, and the present invention is not limited thereto. Each step is not limited to the above example.
 また、第二電極30を、次のようにして形成することもできる。
 ハイブリッド結晶が形成された支持体を取り出した(S20)後、マスキングを行う(S21)。
 支持体を真空蒸着装置の成膜室内へ設置する(S30)。真空蒸着装置としては、例えば(株)サンバック社製のED-1250R1を用いることができる。
 成膜室内を減圧して(S31)、例えばAlを蒸着させる(S32)。
 蒸着が終了したら、成膜室の内部を冷却し(S33)、大気圧へ戻す(S34)、最後に、ハイブリッド結晶上にAl蒸着膜が形成された支持体を成膜室から取り出す(S35)。
 Al以外にも、例えばMg、MgAg、Ca、LiFを蒸着させることにより、第二電極30を形成することができる。
Moreover, the 2nd electrode 30 can also be formed as follows.
After the support on which the hybrid crystal is formed is taken out (S20), masking is performed (S21).
The support is placed in the film forming chamber of the vacuum deposition apparatus (S30). As the vacuum deposition apparatus, for example, ED-1250R1 manufactured by Sunbac Co., Ltd. can be used.
The film forming chamber is depressurized (S31), and for example, Al is deposited (S32).
When the deposition is completed, the inside of the film forming chamber is cooled (S33) and returned to atmospheric pressure (S34), and finally the support having the Al deposited film formed on the hybrid crystal is taken out from the film forming chamber (S35). .
In addition to Al, the second electrode 30 can be formed by evaporating, for example, Mg, MgAg, Ca, LiF.
 なお、第二電極30として、他方の基体に予め形成された導電部材を用いてもよい。
 導電部材は、例えば、PETからなる他方の基体上に、第二電極30としてAl膜が予め形成されたものを用いることができる。予め、第二電極30(導電部材)を別途、作製しておく。そして、第二電極30を設ける工程Zにおいて、この第二電極30を、結晶に接するように、重ねる(接触させる)だけでもよい。なお、第二電極30(Al)さえ有れば、他方の基体は無くても構わない。
As the second electrode 30, a conductive member previously formed on the other substrate may be used.
As the conductive member, for example, an Al film formed in advance as the second electrode 30 on the other substrate made of PET can be used. The second electrode 30 (conductive member) is separately prepared in advance. In the step Z of providing the second electrode 30, the second electrode 30 may be simply stacked (contacted) so as to be in contact with the crystal. As long as the second electrode 30 (Al) is present, the other substrate may be omitted.
 また、第一電極20及び一方の基体、並びに、第二電極30及び他方の基体として、可視域において透明な部材を(全て)用いてもよい。両方の電極と基体に、全て透明な部材を用いることで、得られる発光デバイス1は、両面発光が可能となる。 Further, (all) transparent members in the visible range may be used as the first electrode 20 and the one substrate, and the second electrode 30 and the other substrate. By using transparent members for both electrodes and the substrate, the light-emitting device 1 obtained can emit light on both sides.
<塗料>
 本発明の塗料は、固体の蛍光発光体10からなる(蛍光)発光デバイス1を作製するための塗料であって、有機溶剤に少なくともRu錯体を溶解させてなる溶液であることを特徴とする。
<Paint>
The coating material of the present invention is a coating material for producing a (fluorescence) light emitting device 1 comprising a solid fluorescent material 10 and is a solution in which at least a Ru complex is dissolved in an organic solvent.
 Ru錯体としては、特に限定されるものではないが、例えば、[Ru(dpbpy)](PF、[Ru(dpphen)](PF、[Ru(dmdpphen)](PF、[Ru(tmphen)](PF、[Ru(dmbpy)](PF、[Ru(dmbpy)](ClO、[Ru(bqn)](PF、[Ru(bpy)](ClO、[Ru(bpy)](PF、[Ru(dmdpphen)](ClO、などが挙げられる。その中でも特に、Ru(bpy)(PF[トリス(2,2’-ビピリジナート)ルテニウム(II)六フッ化リン酸二塩]が好ましい。
Ru(bpy)(PFの構造を、化1に示す。化1中、X=PFである。
The Ru complex is not particularly limited. For example, [Ru (dpbpy) 3 ] (PF 6 ) 2 , [Ru (dpphen) 3 ] (PF 6 ) 2 , [Ru (dmdpphen) 3 ] ( PF 6 ) 2 , [Ru (tmphen) 3 ] (PF 6 ) 2 , [Ru (dmbpy) 3 ] (PF 6 ) 2 , [Ru (dmbpy) 3 ] (ClO 4 ) 2 , [Ru (bqn) 3 ] (PF 6 ) 2 , [Ru (bpy) 3 ] (ClO 4 ) 2 , [Ru (bpy) 3 ] (PF 6 ) 2 , [Ru (dmdpphen) 3 ] (ClO 4 ) 2 , and the like. . Among them, Ru (bpy) 3 (PF 6 ) 2 [tris (2,2′-bipyridinate) ruthenium (II) hexafluorophosphate di-salt] is particularly preferable.
The structure of Ru (bpy) 3 (PF 6 ) 2 is shown in Chemical Formula 1. In Formula 1, X = PF.
 有機溶剤としては、特に限定されるものではないが、例えば、アセトニトリル等が挙げられる。
 蛍光発光体10は、誘電体を含有する。これにより、塗料を基体に塗布、乾燥することにより、塗膜を形成する際に、誘電体を添加することで塗料が増粘され、乾燥するまでの間、膜形状保持が維持できる。これにより、成膜性が向上し、得られる塗膜は表面平坦性の高いものとなる。また、誘電体を含有することにより、耐久性(寿命)が向上する。
Although it does not specifically limit as an organic solvent, For example, acetonitrile etc. are mentioned.
The fluorescent light emitter 10 contains a dielectric. Thereby, when a coating film is formed by applying and drying the coating material on the substrate, the viscosity of the coating material is increased by adding a dielectric, and the film shape can be maintained until drying. Thereby, film formability improves and the coating film obtained has a high surface flatness. Moreover, durability (life) improves by containing a dielectric material.
 本実施形態の塗料は、さらに半導体を含むことが好ましい。これにより、導電性が向上する。
 このような半導体としては、特に限定されるものではないが、例えばポリビニルカルバゾール等が挙げられる。
 半導体の添加量としては、特に限定されるものではないが、例えば50mol%以下程度とすることが好ましい。
It is preferable that the coating material of this embodiment further contains a semiconductor. Thereby, electroconductivity improves.
Such a semiconductor is not particularly limited, and examples thereof include polyvinyl carbazole.
The amount of the semiconductor added is not particularly limited, but is preferably about 50 mol% or less, for example.
 塗料を発光させる場合、塗料が乾燥されてなる塗膜の両側に第一電極と第二電極とを配し、その間に直流電圧を印加することにより、蛍光発光体が励起されて発光する。すなわち、塗膜の一方の面に第一電極が、他方の面に第二電極が、それぞれ電気的に接する構成とすればよい。
 本発明の塗料は、優れた耐環境性能があり、光、酸素および水分による劣化が抑えられる。これにより、本発明の塗料は、従来よりも長い発光時間を実現し、長寿命を有するものとなる。
 さらに、本発明の塗料に色素を加えることで色を変えることが可能である。これにより、本発明の塗料を、一般的な塗料と同様に、ペンキやマジック、ペン、印刷物、塗装物に適用することができる。
When the paint is caused to emit light, the first electrode and the second electrode are disposed on both sides of the coating film formed by drying the paint, and a direct-current voltage is applied between the first electrode and the second electrode, whereby the fluorescent light emitter is excited and emits light. That is, the first electrode may be in electrical contact with one surface of the coating film and the second electrode may be in electrical contact with the other surface.
The coating material of the present invention has excellent environmental resistance, and deterioration due to light, oxygen and moisture can be suppressed. Thereby, the coating material of this invention implement | achieves light emission time longer than before, and has a long lifetime.
Furthermore, it is possible to change the color by adding a pigment to the paint of the present invention. Thereby, the paint of this invention can be applied to a paint, a magic, a pen, a printed matter, and a coated matter like a general paint.
<塗布装置>
 次に、上述したような塗料を被処理体上に付与するための、塗布装置について説明する。
 本発明の塗布装置は、塗料を収納する第一手段と、前記第一手段から被処理体に向けて塗料を吐出させる第二手段とを、少なくとも備えたことを特徴とする。
 このような塗布装置としては、例えばラインマーカ、インクジェット・ノズル等が挙げられる。
 また、塗布装置により塗料が付与される被処理体としては、例えば、紙、布、木、ガラスなどが挙げられる。
<Coating device>
Next, a coating apparatus for applying the coating material as described above on the object to be processed will be described.
The coating apparatus of the present invention includes at least a first means for storing paint and a second means for discharging the paint from the first means toward the object to be processed.
Examples of such a coating apparatus include a line marker and an ink jet nozzle.
Moreover, as a to-be-processed object to which a coating material is provided with a coating device, paper, cloth, wood, glass etc. are mentioned, for example.
 以下では、本発明の効果を確認するために行った、実施例について説明する。
 なお、本発明は、以下の具体的な化合物や数値に限定されるものではない。
Below, the Example performed in order to confirm the effect of this invention is described.
In addition, this invention is not limited to the following specific compounds and numerical values.
(1)発光デバイスの作製
 図2および図3に示したような工程により、図1A、図1B、図1Cに示すような発光デバイスを作製した。
 まず、Ru錯体を有機溶剤に溶解させた溶液を用意した。
  ふた付のサンプル管を用意した(S1)。
  そして、Ru錯体として、Ru(bpy)(PFを所定量、秤量した(S2)。
  次に、有機溶剤としてアセトニトリルを追加したした溶液を作製した(S3)。
 この溶液を超音波溶解した(S4)。超音波溶解には、超音波洗浄機((株)カイジョー社製、SONO CLEANER 200R)を用いた。
(1) Production of Light-Emitting Device A light-emitting device as shown in FIGS. 1A, 1B, and 1C was produced through the steps shown in FIGS.
First, a solution in which a Ru complex was dissolved in an organic solvent was prepared.
A sample tube with a lid was prepared (S1).
Then, a predetermined amount of Ru (bpy) 3 (PF 6 ) 2 was weighed as a Ru complex (S2).
Next, a solution to which acetonitrile was added as an organic solvent was prepared (S3).
This solution was ultrasonically dissolved (S4). An ultrasonic cleaner (manufactured by Kaijo Corporation, SONO CLEANER 200R) was used for ultrasonic dissolution.
 次に、この超音波溶解した溶液をろ過した(S5)。ろ過には、0.5μm以下のフィルター(例えば、ADVANTEC社製、DISMIC)を用いた。
 ろ液に、誘電体として、所定量の酢酸セルロース(TAC)を添加した(S6)。
 そして、60℃にて酢酸セルロースを溶解し(S7)、さらに、超音波溶解した(S8)。
 以上のようにして、原料溶液(発光塗料)を調製した。
Next, this ultrasonically dissolved solution was filtered (S5). For filtration, a filter of 0.5 μm or less (for example, DISMIC manufactured by ADVANTEC) was used.
A predetermined amount of cellulose acetate (TAC) was added as a dielectric to the filtrate (S6).
And the cellulose acetate was melt | dissolved at 60 degreeC (S7), and also ultrasonically melt | dissolved (S8).
As described above, a raw material solution (light-emitting paint) was prepared.
 次に、得られた発光塗料を、第一電極20を備えた一方の基体に塗布して、乾燥させることにより、第一電極20を覆うように結晶を析出させた。
 まず、PET基材上に陽極としてITOが成膜されてなる支持体を予め用意し、所定の大きさにカットした(S10)。
 レーザードライエッチングにより、支持体表面を洗浄した(S11)。なお、酸を用いた湿式洗浄でもよい。
 支持体を、回転ディスク上に設置した(S12)。支持体は、回転ディスク上にテープで固定した。
 支持体表面を、アセトンを用いて拭き洗浄した(S13)。
 ディスクを500~2000rpmで回転させた(S14)。装置には、(株)アクティブ社製のACT-300Aを用いた。
Next, the obtained light-emitting paint was applied to one substrate provided with the first electrode 20 and dried, so that crystals were deposited so as to cover the first electrode 20.
First, a support formed by forming a film of ITO as an anode on a PET substrate was prepared in advance, and was cut into a predetermined size (S10).
The support surface was cleaned by laser dry etching (S11). In addition, wet cleaning using an acid may be used.
The support was placed on the rotating disk (S12). The support was fixed with tape on a rotating disk.
The support surface was wiped and washed with acetone (S13).
The disk was rotated at 500 to 2000 rpm (S14). As an apparatus, ACT-300A manufactured by Active Corporation was used.
 そして、支持体表面を、IPA(イソプロピルアルコール)を用いて洗浄した(S15)。
 その後、乾燥した(S16)。乾燥時間は15秒間とした。
 そして、回転状態にある支持体上に、前記の原料水溶液(発光塗料)を供給し、スピンコート法により塗布した(S17)。塗布時間(塗料を供給した時間)は1秒間とした。
 塗料の供給を停止してから、支持体を継続して回転状態とすることにより、塗料を乾燥させた(S18)。これにより、支持体上にハイブリッド結晶を析出させた。乾燥時間は、30秒間とした。
 そして、ディスクの回転を停止させ(S19)、膜形状のハイブリッド結晶(以下「ハイブリッド結晶膜」とも呼ぶ:蛍光発光体10)が形成された支持体(ハイブリッド結晶膜/第一電極/一方の基体)を取り出した(S20)。
And the support body surface was wash | cleaned using IPA (isopropyl alcohol) (S15).
Then, it dried (S16). The drying time was 15 seconds.
Then, the raw material aqueous solution (light-emitting coating material) was supplied onto the support in a rotating state and applied by spin coating (S17). The application time (time during which the paint was supplied) was 1 second.
After the supply of the paint was stopped, the paint was dried by continuously rotating the support (S18). As a result, hybrid crystals were deposited on the support. The drying time was 30 seconds.
Then, the rotation of the disk is stopped (S19), and a support (hybrid crystal film / first electrode / one substrate) on which a film-shaped hybrid crystal (hereinafter also referred to as “hybrid crystal film”: fluorescent substance 10) is formed. ) Was taken out (S20).
(2)結晶膜析出テスト
  Ru錯体として、Ru(bpy)(PFをアセトニトリルに重量比1:50の割合で溶解させ、その溶液に酢酸セルロースを添加して発光塗料を作成した。発光塗料をITO上にスピンコーティング(2000rpm)した。
 塗料中に添加される酢酸セルロースの添加量を変えて、成膜を行い、得られた結晶膜の成膜性について評価した。
 評価は、形状測定レーザマイクロスコープ(キーエンス社製、VK-X100)を用いて、結晶膜の表面粗さ(Ra)を測定した。また、膜の形状についても観察した。
 膜表面の顕微鏡(レーザーマイクロスコープ)写真を、図4~図9にそれぞれ示す。膜について酢酸セルロールの量と表面粗さとの関係を、図10に示す。
(2) Crystal film deposition test As a Ru complex, Ru (bpy) 3 (PF 6 ) 2 was dissolved in acetonitrile at a weight ratio of 1:50, and cellulose acetate was added to the solution to prepare a luminescent paint. The luminescent paint was spin coated (2000 rpm) on ITO.
Film formation was performed while changing the amount of cellulose acetate added to the paint, and the film formability of the obtained crystal film was evaluated.
The evaluation was performed by measuring the surface roughness (Ra) of the crystal film using a shape measurement laser microscope (VK-X100, manufactured by Keyence Corporation). The film shape was also observed.
Microscope (laser microscope) photographs of the film surface are shown in FIGS. 4 to 9, respectively. The relationship between the amount of cellulose acetate and the surface roughness of the membrane is shown in FIG.
 酢酸セルロースを添加しない塗料を用いた場合(図4)では、ITO基板が露出する弾きが生じており、膜形成が不十分であることが分かった。
 また、図10に示されるように、酢酸セルロースを添加することで表面粗さが1/10程度まで改善されたうえ、ITO基板が露出する弾きも改善された。
 これは酢酸セルロースを添加することで増粘して、塗料が乾燥するまでの間、膜形状保持が維持できていたためと考えられる。
In the case of using a paint not added with cellulose acetate (FIG. 4), it was found that the ITO substrate was exposed and the film formation was insufficient.
Moreover, as shown in FIG. 10, the surface roughness was improved to about 1/10 by adding cellulose acetate, and the repelling of the ITO substrate was also improved.
This is presumably because the film shape was maintained until the coating was dried by increasing the viscosity by adding cellulose acetate.
(3)電圧と輝度との関係
 ガラス/ITO上に、酢酸セルロースを1wt%で添加した塗料を用いて、ITO上にスピンコーティング(2000rpm)して、乾燥した固体状の発光体膜(固体発光膜)を形成した。この固体発光膜上に、PET上に蒸着されたAl電極を設置し、固体発光膜をITO電極とAl電極とで挟み込んだ。電極間に直流電圧を印加し、電圧と輝度との関係を確認した。
 測定には、輝度配光特性測定装置(浜松ホトニクス社製、C9920-11)、輝度計(コニカミノルタ社製、LS110)を用いた。
 作製した発光デバイスについて、電圧と輝度との関係を図11に示す。また、発光波長を図12に示す。
 図11及び図12に示されるように、発光デバイスは約3V付近から発光して、9Vが最高輝度であることが分かった。また、発光のピークは620nmであった。
 また、この発光デバイスについて、温度と輝度の半減時間との関係を図13に示す。従来の発光デバイスでは寿命は数秒間というものであり、非常に短かったが、図13に示されるように、本発明の発光デバイスでは、半減時間が1万時間と非常に長く、長寿命を有することが分かった。
(3) Relationship between voltage and brightness Using a paint in which cellulose acetate is added at 1 wt% on glass / ITO, spin coating (2000 rpm) on ITO and drying a solid phosphor film (solid light emission) Film). On this solid light emitting film, an Al electrode deposited on PET was placed, and the solid light emitting film was sandwiched between an ITO electrode and an Al electrode. A direct voltage was applied between the electrodes, and the relationship between voltage and luminance was confirmed.
For the measurement, a luminance distribution characteristic measurement device (Hamamatsu Photonics, C9920-11) and a luminance meter (Konica Minolta, LS110) were used.
FIG. 11 shows the relationship between the voltage and the luminance of the manufactured light emitting device. The emission wavelength is shown in FIG.
As shown in FIGS. 11 and 12, it was found that the light-emitting device emitted light from around 3V, and 9V had the highest luminance. The emission peak was 620 nm.
FIG. 13 shows the relationship between the temperature and the half-life time of the luminance of this light emitting device. The lifetime of the conventional light emitting device is several seconds, which is very short. However, as shown in FIG. 13, the light emitting device of the present invention has a very long half life of 10,000 hours and a long lifetime. I understood that.
(4)Ru(bpy)(PF量と膜厚、輝度との関係
  表1に示すように、Ru(bpy)(PFをアセトニトリルに任意の重量比割合で酢酸セルロースを1wt%溶解させ、ITO上にスピンコーティング(2000rpm)して、乾燥した固体発光膜を形成した。その上にPET上に蒸着されたAl電極を設置し、固体発光膜をITO電極とAl電極とで挟み込んだ。電極間に直流電圧を印加したところ、3Vから発光し9Vで輝度を確認した。
  Ru錯体[Ru(bpy)(PF]の量を変えて、発光デバイスを作製し、膜厚および輝度について評価した。
 発光デバイスについて、Ru(bpy)(PFの量と発光体膜厚との関係を、図14に示す。また、発光体膜厚と発光輝度との関係を、図15に示す。
(4) Relationship between the amount of Ru (bpy) 3 (PF 6 ) 2 , film thickness, and luminance As shown in Table 1, cellulose acetate in an arbitrary weight ratio of Ru (bpy) 3 (PF 6 ) 2 to acetonitrile 1 wt% was dissolved and spin-coated (2000 rpm) on ITO to form a dried solid light emitting film. On top of that, an Al electrode deposited on PET was placed, and the solid light emitting film was sandwiched between the ITO electrode and the Al electrode. When a DC voltage was applied between the electrodes, light was emitted from 3V and the luminance was confirmed at 9V.
The light emitting device was produced by changing the amount of the Ru complex [Ru (bpy) 3 (PF 6 ) 2 ], and the film thickness and the luminance were evaluated.
FIG. 14 shows the relationship between the amount of Ru (bpy) 3 (PF 6 ) 2 and the light emitter film thickness for the light emitting device. Further, FIG. 15 shows the relationship between the light emitter thickness and the light emission luminance.
Figure JPOXMLDOC01-appb-T000002
 
Figure JPOXMLDOC01-appb-T000002
 
 表1及び図14から明らかなように、Ru(bpy)(PFの濃度と膜厚は比例関係にあることが分かった。さらに図15から、膜厚と輝度も比例関係にあることが分かった。 As is clear from Table 1 and FIG. 14, it was found that the concentration of Ru (bpy) 3 (PF 6 ) 2 and the film thickness are in a proportional relationship. Furthermore, FIG. 15 shows that the film thickness and the luminance are also in a proportional relationship.
(5)陰極を構成する材料の検討
 Ru錯体[Ru(bpy)(PF]を、アセトニトリルに任意の重量比割合で酢酸セルロースを1wt%溶解させ、ITO上にスピンコーティング(2000rpm)して、乾燥した固体発光膜を形成した。その上にAl電極を真空蒸着装置で電極を設置し、固体発光膜をITO電極とAl電極とで挟み込んだ。電極間に直流電圧を印加したところ、9Vで最高輝度1156cd/mを確認した。
 作製した発光デバイスについて、電圧と輝度との関係を、図16に示す。
 なお、最高輝度の測定には、輝度計(コニカミノルタ社製、LS110)を用いた。
(5) Examination of material constituting cathode The Ru complex [Ru (bpy) 3 (PF 6 ) 2 ] is dissolved in acetonitrile at an arbitrary weight ratio of 1 wt% of cellulose acetate, and spin coated on ITO (2000 rpm) Thus, a dried solid light emitting film was formed. On top of that, an Al electrode was placed with a vacuum deposition apparatus, and the solid light-emitting film was sandwiched between the ITO electrode and the Al electrode. When a DC voltage was applied between the electrodes, a maximum luminance of 1156 cd / m 2 was confirmed at 9V.
FIG. 16 shows the relationship between voltage and luminance for the manufactured light-emitting device.
In addition, the luminance meter (Konica Minolta LS110) was used for the measurement of the maximum luminance.
 上記のAl電極に替えて、Mg電極を用いて発光デバイスを作製し、直流電圧を印加したところ、2.5Vから発光し9Vで輝度を確認した。
 また、上記のAl電極に替えて、ITO電極を用いて発光デバイスを作製し、直流電圧を印加したところ、7Vから発光し9Vで輝度を確認した。陰極として機能する電極(裏面電極)を、Alに代えて透明陽極(ITO)としても、発光することが確認できた。
 表2に示すように、本発明に係る発光デバイスは、様々な電極を用いることが可能である。
A light emitting device was fabricated using an Mg electrode instead of the Al electrode, and a direct current voltage was applied. The device emitted light from 2.5V, and the luminance was confirmed at 9V.
Moreover, it replaced with said Al electrode, the light emitting device was produced using the ITO electrode, and when direct current voltage was applied, it light-emitted from 7V and the brightness | luminance was confirmed at 9V. It was confirmed that light was emitted even when the electrode (back electrode) functioning as the cathode was replaced with Al as a transparent anode (ITO).
As shown in Table 2, the light emitting device according to the present invention can use various electrodes.
Figure JPOXMLDOC01-appb-T000003
 
Figure JPOXMLDOC01-appb-T000003
 
(6)その他の応用例
 アニオンの電気化学安定性を考慮して、[Ru(bpy)N(SOCF]を合成し、評価した。
 ここで、アニオンの電気化学安定性は、「ハロゲン<PF 、BF <N(SOCF 」である。
(6) Other application examples [Ru (bpy) 3 N (SO 2 CF 3 ) 2 ] was synthesized and evaluated in consideration of the electrochemical stability of the anion.
Here, the electrochemical stability of the anion is “halogen <PF 6 , BF 6 <N (SO 2 CF 3 ) 2 ”.
 次式により、[Ru(bpy)(N(SOCF]を合成した。
 Ru(bpy)3Cl2 + C11H13F6N34S2→(IPA)→Ru(bpy)(N(SO2CF3)2 )2+ other
 IPAを揮発させた後、水を加えることにより、[Ru(bpy)(N(SOCF]を得た。副生物は水に溶解した。
[Ru (bpy) 3 (N (SO 2 CF 3 ) 2 ) 2 ] was synthesized according to the following formula.
Ru (bpy) 3 Cl 2 + C 11 H 13 F 6 N 34 S 2 → (IPA) → Ru (bpy) 3 (N (SO 2 CF 3 ) 2 ) 2 + other
After volatilizing IPA, water was added to obtain [Ru (bpy) 3 (N (SO 2 CF 3 ) 2 ) 2 ]. The by-product dissolved in water.
 表3に示すように、[Ru(bpy)(N(SOCF]をアセトニトリルに任意の重量比割合で溶解させ、ITO上にコーティングし、乾燥した固体発光膜を形成した。その上にPET上に蒸着されたAl電極を設置し、固体発光膜をITO電極とAl電極とで挟み込んだ。電極間に直流電圧を印加したところ、3Vから発光し9Vで輝度を確認した。 As shown in Table 3, [Ru (bpy) 3 (N (SO 2 CF 3 ) 2 ) 2 ] is dissolved in acetonitrile at an arbitrary weight ratio and coated on ITO to form a dried solid light emitting film. did. On top of that, an Al electrode deposited on PET was placed, and the solid light emitting film was sandwiched between the ITO electrode and the Al electrode. When a DC voltage was applied between the electrodes, light was emitted from 3V and the luminance was confirmed at 9V.
Figure JPOXMLDOC01-appb-T000004
 
Figure JPOXMLDOC01-appb-T000004
 
 表4に示すように、[Ru(bpy)(PF]と、「1,3-Diallylimidazolium Bis(trifluoromethanesulfonyl)imide」とを、アセトニトリルに任意の重量比割合で溶解させ、ITO上にコーティングし、乾燥した固体発光膜を形成した。その上にPET上に蒸着されたAl電極を設置し、固体発光膜をITO電極とAl電極とで挟み込んだ。電極間に直流電圧を印加したところ、3V付近から発光し9Vで輝度を確認した。 As shown in Table 4, [Ru (bpy) 3 (PF 6 ) 2 ] and “1,3-Diallylimidazolium Bis (trifluoromethanesulfonyl) imide” were dissolved in acetonitrile at an arbitrary weight ratio, and the mixture was formed on ITO. The coated and dried solid light emitting film was formed. On top of that, an Al electrode deposited on PET was placed, and the solid light emitting film was sandwiched between the ITO electrode and the Al electrode. When a DC voltage was applied between the electrodes, light was emitted from around 3V, and the luminance was confirmed at 9V.
Figure JPOXMLDOC01-appb-T000005
 
Figure JPOXMLDOC01-appb-T000005
 
 表5に示すように、[Ru(bpy)(PF]と、「4-(ジシアノメチレン)-2-メチル-6-(4-ジメチルアミノスチリル)-4H-ピランをアセトニトリル」に任意の重量比割合で溶解させ、ITO上にコーティングし、乾燥した固体発光膜を形成した。その上にPET上に蒸着されたAl電極を設置し、固体発光膜をITO電極とAl電極とで挟み込んだ。電極間に直流電圧を印加したところ、3V付近から発光し9Vで輝度を確認した。 As shown in Table 5, [Ru (bpy) 3 (PF 6 ) 2 ] and “4- (dicyanomethylene) -2-methyl-6- (4-dimethylaminostyryl) -4H-pyran in acetonitrile” An arbitrary weight ratio was dissolved and coated on ITO to form a dried solid light emitting film. On top of that, an Al electrode deposited on PET was placed, and the solid light emitting film was sandwiched between the ITO electrode and the Al electrode. When a DC voltage was applied between the electrodes, light was emitted from around 3V, and the luminance was confirmed at 9V.
Figure JPOXMLDOC01-appb-T000006
 
Figure JPOXMLDOC01-appb-T000006
 
(7)塗料の作製と評価
 [Ru(bpy)Cl]をエタノールに重量比1:20で溶解させて塗料を作製した。この塗料をITO上に塗布、乾燥した。この塗膜の上にPET上に蒸着されたAl電極を設置し、固体発光膜をITO電極とAl電極とで挟み込んだ。電極間に、9Vの直流電圧を印加したところ、オレンジ~黄色の発光を確認した。
  [Ru(bpy)(PF]をエタノールに重量比1:20で溶解させて塗料を作製した。この塗料をITO上に塗布、乾燥した。この塗膜上にPET上に蒸着されたAl電極を設置し、固体発光膜をITO電極とAl電極とで挟み込んだ。電極間に、9Vの直流電圧を印加したところ、黄色~白色の発光を確認した。
(7) Preparation and Evaluation of Paint A paint was prepared by dissolving [Ru (bpy) 3 Cl 2 ] in ethanol at a weight ratio of 1:20. This paint was applied on ITO and dried. An Al electrode deposited on PET was placed on this coating film, and the solid light emitting film was sandwiched between the ITO electrode and the Al electrode. When a DC voltage of 9 V was applied between the electrodes, orange-yellow light emission was confirmed.
[Ru (bpy) 3 (PF 6 ) 2 ] was dissolved in ethanol at a weight ratio of 1:20 to prepare a paint. This paint was applied on ITO and dried. An Al electrode deposited on PET was placed on this coating film, and the solid light emitting film was sandwiched between the ITO electrode and the Al electrode. When a DC voltage of 9 V was applied between the electrodes, yellow to white light emission was confirmed.
 以上、本発明の実施形態として、具体例を挙げて説明したが、本発明の技術的範囲は前記実施形態に限定されるものではなく、本発明の趣旨を逸脱しない範囲において種々の変更を加えることが可能である。以上のことから、本発明は産業上極めて有用である。 The embodiments of the present invention have been described with specific examples. However, the technical scope of the present invention is not limited to the above-described embodiments, and various modifications are made without departing from the spirit of the present invention. It is possible. From the above, the present invention is extremely useful industrially.
 1 発光デバイス、10 蛍光発光体、11 物体、12 結晶、20 第一電極、 30 第二電極、40 N型半導体層、50 P型半導体層。 1 light emitting device, 10 fluorescent light emitter, 11 object, 12 crystal, 20 first electrode, 30 second electrode, 40 N-type semiconductor layer, 50 P-type semiconductor layer.

Claims (12)

  1.  第一電極と第二電極との間に、固体の蛍光発光体が少なくとも配されてなる発光デバイスであって、
     前記蛍光発光体は、誘電体からなる単一の物体内に、Ru錯体からなる結晶が複数、互いに離間して配された構造を有するハイブリッド結晶であることを特徴とする発光デバイス。
    A light-emitting device in which at least a solid fluorescent substance is disposed between the first electrode and the second electrode,
    The light emitting device according to claim 1, wherein the fluorescent substance is a hybrid crystal having a structure in which a plurality of crystals made of a Ru complex are arranged apart from each other in a single object made of a dielectric.
  2.  前記蛍光発光体は、さらに半導体を含むことを特徴とする請求項1に記載の発光デバイス。 The light-emitting device according to claim 1, wherein the fluorescent light emitter further includes a semiconductor.
  3.  前記第一電極または前記第二電極の一方、あるいは両方が、蛍光を透過する部材からなり、かつ、蛍光を透過する基体に配されていることを特徴とする請求項1又は2に記載の発光デバイス。 3. The light emitting device according to claim 1, wherein one or both of the first electrode and the second electrode are made of a member that transmits fluorescence and are arranged on a substrate that transmits fluorescence. 4. device.
  4.  前記誘電体が、酢酸セルロースであることを特徴とする請求項1に記載の発光デバイス。 The light emitting device according to claim 1, wherein the dielectric is cellulose acetate.
  5.  前記Ru錯体が、Ru(bpy)(PFであることを特徴とする請求項1に記載の発光デバイス。 The light-emitting device according to claim 1, wherein the Ru complex is Ru (bpy) 3 (PF 6 ) 2 .
  6.  第一電極と第二電極との間に、固体の蛍光発光体が少なくとも配され、該蛍光発光体は誘電体からなる単一の物体内に、Ru錯体からなる結晶が複数、互いに離間して配された構造を有するハイブリッド結晶である発光デバイスの作製方法であって、
     前記Ru錯体を有機溶剤に溶解させた溶液を用意する工程Aと、
     前記溶液を、前記第一電極を備えた一方の基体に塗布して、乾燥させることにより、該第一電極を覆うように前記結晶を析出させる工程Bと、
     前記結晶に接するように、前記第二電極を設ける工程Zと、
    を少なくとも備えたことを特徴とする発光デバイスの製造方法。
    At least a solid fluorescent substance is arranged between the first electrode and the second electrode, and the fluorescent substance is separated from each other by a plurality of crystals made of Ru complex in a single object made of dielectric. A method for manufacturing a light-emitting device, which is a hybrid crystal having an arranged structure,
    Preparing a solution prepared by dissolving the Ru complex in an organic solvent; and
    Applying the solution to one substrate provided with the first electrode, and drying the solution to deposit the crystal so as to cover the first electrode; and
    Providing the second electrode so as to contact the crystal; and
    A method for manufacturing a light emitting device, comprising:
  7.  前記工程Bは、スピンコート法を用いることを特徴とする請求項6に記載の発光デバイスの製造方法。 The method of manufacturing a light emitting device according to claim 6, wherein the step B uses a spin coating method.
  8.  前記工程Zは、前記第二電極として、他方の基体に予め形成された導電部材を用いることを特徴とする請求項5に記載の発光デバイスの製造方法。 The method of manufacturing a light emitting device according to claim 5, wherein the step Z uses a conductive member formed in advance on the other substrate as the second electrode.
  9.  前記第一電極及び前記一方の基体、並びに、前記第二電極及び前記他方の基体として、可視域において透明な部材を用いることを特徴とする請求項8記載の発光デバイスの製造方法。 9. The method for manufacturing a light emitting device according to claim 8, wherein a transparent member in the visible region is used as the first electrode and the one substrate, and the second electrode and the other substrate.
  10.  固体の蛍光発光体からなる発光デバイスを作製するための塗料であって、
     有機溶剤に少なくともRu錯体を溶解させてなる溶液であることを特徴とする塗料。
    A paint for producing a light emitting device comprising a solid fluorescent material,
    A paint comprising a solution in which at least a Ru complex is dissolved in an organic solvent.
  11.   さらに半導体を含むことを特徴とする請求項10に記載の塗料。 The paint according to claim 10, further comprising a semiconductor.
  12.  請求項10又は11に記載の塗料を収納する第一手段と、前記第一手段から被処理に向けて前記塗料を吐出させる第二手段とを、少なくとも備えたことを特徴とする塗布装置。 12. A coating apparatus comprising at least a first means for storing the paint according to claim 10 and a second means for discharging the paint from the first means toward the object to be processed.
PCT/JP2013/055304 2013-02-28 2013-02-28 Light-emitting device, manufacturing method therefor, coating and coating apparatus WO2014132381A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/JP2013/055304 WO2014132381A1 (en) 2013-02-28 2013-02-28 Light-emitting device, manufacturing method therefor, coating and coating apparatus
JP2015503010A JP6402414B2 (en) 2013-02-28 2014-02-27 Light emitting device and manufacturing method thereof
PCT/JP2014/054832 WO2014133065A1 (en) 2013-02-28 2014-02-27 Light-emitting device, manufacturing method therefor, coating and coating apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2013/055304 WO2014132381A1 (en) 2013-02-28 2013-02-28 Light-emitting device, manufacturing method therefor, coating and coating apparatus

Publications (1)

Publication Number Publication Date
WO2014132381A1 true WO2014132381A1 (en) 2014-09-04

Family

ID=51427683

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/JP2013/055304 WO2014132381A1 (en) 2013-02-28 2013-02-28 Light-emitting device, manufacturing method therefor, coating and coating apparatus
PCT/JP2014/054832 WO2014133065A1 (en) 2013-02-28 2014-02-27 Light-emitting device, manufacturing method therefor, coating and coating apparatus

Family Applications After (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/054832 WO2014133065A1 (en) 2013-02-28 2014-02-27 Light-emitting device, manufacturing method therefor, coating and coating apparatus

Country Status (2)

Country Link
JP (1) JP6402414B2 (en)
WO (2) WO2014132381A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6996260B2 (en) * 2017-11-30 2022-01-17 コニカミノルタ株式会社 Organic functional thin film, organic functional laminated film, organic electroluminescence element, photoelectric conversion element and coating liquid for forming organic functional thin film

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0792321A (en) * 1993-09-21 1995-04-07 Sumitomo Chem Co Ltd Polarizing plate
JP2005339992A (en) * 2004-05-27 2005-12-08 Toppan Printing Co Ltd Organic electroluminescent element and manufacturing method thereof
JP2011103234A (en) * 2009-11-11 2011-05-26 Dainippon Printing Co Ltd Organic solid membrane, electrochemical light-emitting element, electrochemical light-emitting device, and method of manufacturing electrochemical light-emitting element and method of driving the same
WO2012099236A1 (en) * 2011-01-20 2012-07-26 国立大学法人九州大学 Organic electroluminescent element

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0792321A (en) * 1993-09-21 1995-04-07 Sumitomo Chem Co Ltd Polarizing plate
JP2005339992A (en) * 2004-05-27 2005-12-08 Toppan Printing Co Ltd Organic electroluminescent element and manufacturing method thereof
JP2011103234A (en) * 2009-11-11 2011-05-26 Dainippon Printing Co Ltd Organic solid membrane, electrochemical light-emitting element, electrochemical light-emitting device, and method of manufacturing electrochemical light-emitting element and method of driving the same
WO2012099236A1 (en) * 2011-01-20 2012-07-26 国立大学法人九州大学 Organic electroluminescent element

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
KAZUKI NISHIMURA ET AL.: "Solution Electrochemiluminescent Cell with a High Luminance Using a Rubrene : investigation of using an Ion Conductive Assistant Dopant to improve Transportation of carrier", IEICE TECHNICAL REPORT. OME, vol. 101, no. 692, 28 February 2002 (2002-02-28), pages 1 - 6 *

Also Published As

Publication number Publication date
JPWO2014133065A1 (en) 2017-02-02
JP6402414B2 (en) 2018-10-10
WO2014133065A1 (en) 2014-09-04

Similar Documents

Publication Publication Date Title
US10128409B2 (en) All-inorganic perovskite-based films, devices, and methods
JP5710479B2 (en) Organic electroluminescence device
US7115216B2 (en) Screen printable electroluminescent polymer ink
KR100749631B1 (en) Anthracene derivatives and organic electroluminescent display using the same as a luminescent material
US20090136779A1 (en) Conjugated compounds containing hydroindoloacridine structural elements, and their use
JP4635997B2 (en) Electrochemiluminescence device and driving method of electrochemiluminescence element
JPH0525473A (en) Organic electroluminescent element
JP7389018B2 (en) Manufacturing method of Sn-based perovskite layer and solar cell
JP2019521127A (en) Manganese (II) complex, method for producing the same and use in organic light emitting diode
JP4104312B2 (en) Light emitting element
JP2011057651A (en) New pyrene compound, and organic el element having the same
JP2015153774A (en) Organic electroluminescent element and display device
WO2014132381A1 (en) Light-emitting device, manufacturing method therefor, coating and coating apparatus
US20230403930A1 (en) Light emitting element, display device, lighting device, and method for producing light emitting element
JP2005302657A (en) Organic light emitting device
US20020051893A1 (en) High brightness and low voltage operated LEDs based on inorganic salts as emitters and conductive materials as cathodic contacts
JP3848188B2 (en) Organic EL display device and manufacturing method thereof
Margapoti et al. Optoelectronic properties of OLEC devices based on phenylquinoline and phenylpyridine ionic iridium complexes
JP2008047450A (en) Electrochemical light-emitting element and electrochemical light-emitting device
Kumari et al. Self-assembled molecules as selective contacts in CsPbBr 3 nanocrystal light emitting diodes
JP6064914B2 (en) ORGANIC ELECTROLUMINESCENCE ELEMENT EVALUATION METHOD, EVALUATION DEVICE, EVALUATION PROGRAM, RECORDING MEDIUM, AND MANUFACTURING METHOD
JP6070818B2 (en) Fluorescent light emitter, light emitting device, and manufacturing method thereof
JP2001052869A (en) Organic electroluminescent element
JP2010010576A (en) Organic light emitting element array
TWI569492B (en) Organic light-emitting element

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13876332

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13876332

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP