WO2014129759A1 - Wastewater treatment device using separation membrane with which recovery of granules of active microorganisms is possible and method for treating wastewater using same - Google Patents

Wastewater treatment device using separation membrane with which recovery of granules of active microorganisms is possible and method for treating wastewater using same Download PDF

Info

Publication number
WO2014129759A1
WO2014129759A1 PCT/KR2014/000978 KR2014000978W WO2014129759A1 WO 2014129759 A1 WO2014129759 A1 WO 2014129759A1 KR 2014000978 W KR2014000978 W KR 2014000978W WO 2014129759 A1 WO2014129759 A1 WO 2014129759A1
Authority
WO
WIPO (PCT)
Prior art keywords
tank
granules
treated water
separation membrane
granule
Prior art date
Application number
PCT/KR2014/000978
Other languages
French (fr)
Korean (ko)
Inventor
유대환
정민기
송철우
Original Assignee
주식회사 부강테크
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 부강테크 filed Critical 주식회사 부강테크
Publication of WO2014129759A1 publication Critical patent/WO2014129759A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/30Aerobic and anaerobic processes
    • C02F3/302Nitrification and denitrification treatment
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/30Aerobic and anaerobic processes
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/44Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis

Definitions

  • the present invention relates to a wastewater treatment apparatus capable of recovering active microbial granules using a separator and a wastewater treatment method using the same, and more particularly, to a separator.
  • Highly active granules can be effectively recovered and maintained in the process, and inert solids are selectively separated / condensed using a membrane and discharged out of the process.
  • the reactor maintains high activity and inert solids are quickly discharged out of the process to discharge wastewater.
  • Biological wastewater treatment processes are achieved by keeping microorganisms active in the process while contacting the microorganisms and contaminants in the reactor and maintaining the time and conditions under which the reactions necessary for the microorganisms to degrade the contaminants can occur.
  • the rate of treatment of pollutants is determined by how much active microorganisms are present in the process.
  • a general biological treatment process is provided with a sedimentation basin for separating microorganisms and treated water at the rear of the reactor as shown in FIG. 1.
  • the sedimentation basin is designed and operated so that disturbance does not occur, and serves to maintain the high concentration of microorganisms in the reaction tank by inducing the separation of the microorganism and the treated water and returning the separated microorganism into the process.
  • Microorganisms used in biological treatment process are very diverse, but they are divided into heterotrophic microorganisms and autotrophic microorganisms according to the carbon source used, and these microorganisms are separated / concentrated in the sedimentation basin because their specific gravity is about 1.1 ⁇ 1.2.
  • concentration of microorganisms There is a limit of the concentration of microorganisms that can be.
  • the concentration of microorganisms that can be separated / concentrated by sedimentation in sedimentation basin of wastewater treatment process is known to be less than about 5,000 mg / L.
  • In order to ensure the volume of the reactor must be increased. Since the increase in the volume of the reactor is accompanied by an increase in the construction cost, efforts have been made to achieve high treatment efficiency while maximizing the active microorganism and reducing the size of the reactor.
  • microbial granules which are granular sludges in which microorganisms are fixed at high concentrations, which are produced by agglomeration of cells without external media, and are distinguished from biofilms. It is formed through the self-immobilization of microbial flocs under certain conditions during sewage and can be divided into aerobic and anaerobic granules. Microbial granules are dense microbial colonies containing millions of active microorganisms per gram and contain various bacterial species in the population. The shape and size of the microbial granules vary depending on the operating conditions, and generally shows a smooth surface shape with a particle size range of 0.2-7 mm (see FIG. 2).
  • SVI Sudden Volume Index: index of sedimentation capacity
  • the sludge from the treatment process is 80-120 mL / g and the SVI of the microbial granules is 80 mL / g.
  • the solid-liquid separation can be easily prevented sedimentation problems, such as sludge injuries, it is possible to reduce the settling time and volume of the sedimentation basin. Therefore, it is possible to maintain a high concentration in the process can reduce the volume of the reactor can reduce the site or cost.
  • EPS Extracelluar Polymeric Substance
  • the microbial cells are agglomerated at a high density and protected by an Extracelluar Polymeric Substance (EPS) matrix, they are highly resistant to external impact loads and toxic substances. In addition, it has an adsorption function on the EPS surface to remove heavy metals.
  • there is no separate carrier there is no problem of microbial detachment.
  • Patent Document 1 KR 100513352 B1
  • the prior art patent registration (KR 100513352 B1) regarding a wastewater treatment apparatus using anaerobic granule sludge is for a wastewater treatment apparatus in which a biological treatment tank in which a membrane is immersed and a reaction tank filled with anaerobic granule sludge is combined.
  • an ABR Anaerobic Baffled Reactor
  • UASB Upflow Anaerobic Sludge Blanket
  • the biological treatment tank of the shear is maintained in order to maintain the activity of the anaerobic granule sludge in the reactor and to prevent excessive growth of the biofilm in the reactor.
  • the treated water was extracted through the membrane, and the extracted treated water was injected into the reactor to remove organic matter and nitrogen from the wastewater containing high concentration of nitrogen.
  • Patent Document 2 KR 1020120089495 A
  • Korean Patent Application Publication (KR 1020120089495 A), which is a related art for wastewater treatment apparatus using aerobic granule sludge, relates to a wastewater treatment apparatus and method using biofilm and aerobic granule sludge, and introduces aerobic granule sludge to the upper part of the reactor.
  • Nitrification and denitrification were performed by the sludge clusters present in each layer in the granule sludge, and the high sedimentability of the granulated sludge enables solid-liquid separation within a short time and stably removes the organic matter even when an instantaneous organic impact load occurs.
  • FSS Fixed Suspended Solids
  • FSS + TCOD Biodegradable organics
  • the various types of solids are mixed, called mixed liquor suspended solids (MLSS), but it is technically very difficult to selectively recover only active microorganisms from the mixed liquor suspended solids.
  • the technical problem to be achieved by the present invention is to simultaneously achieve the goal of recovering the microbial granules and securing a stable treated water quality by using a membrane in treating the actual waste water by using the active microbial granules.
  • Wastewater treatment apparatus for achieving the above technical problem
  • the bioreactor, the microbial granules and the granules recovery tank for separating the inert solids, and the inert solids and the treated water separating the microbial granules growth and decomposition of contaminants It characterized in that it comprises a separation membrane bath.
  • the wastewater treatment apparatus further includes a concentrated separation membrane tank for concentrating the inert solid separated from the separation tank through a separate separation membrane.
  • the bioreactor is preferably configured in the order of anaerobic tank, anaerobic tank, aerobic tank to remove nitrogen and phosphorus.
  • the granule recovery tank is divided into granule recovery tank 1 and granule recovery tank 2, granule recovery of the heterotrophic microorganisms in the granule recovery tank 1 is returned to the front end of the anaerobic tank, granules of independent nutrient microorganisms in the granule recovery tank 2 It is recovered and returned to the front end of the aerobic tank.
  • Wastewater treatment apparatus the microbial granules and inert solids are quickly separated using the settling rate difference, granules are returned to the process and the inert solids which do not precipitate are separated / condensed using a separator to provide stable treated water quality.
  • the volume reduction of secured and disposed sludge can be achieved simultaneously.
  • Such wastewater treatment methods may further include the step of concentrating the inert solid separated in the separation membrane tank through the separation membrane in a separate concentration membrane tank.
  • a high concentration of microorganism granules in the process can be selectively dominated, and inert solids without contaminant purification ability can be selectively separated / discharged to maximize the activity of the reactor.
  • the permeation rate is maintained to be high, so that a large amount of water can be separated even with a small separator, thereby reducing the installation cost of the separator.
  • the phenomenon in which the membrane is clogged due to the growth of microorganisms can be reduced, thereby making it easy to maintain and reduce the chemicals required for cleaning the membrane.
  • the size of the reactor can be reduced by maximizing the microbial activity of the reactor, maintaining the high permeation rate, the installation cost of the membrane is reduced, and as a result, the overall initial investment cost is lowered, and the maintenance of the membrane becomes easier.
  • the total cost of operation can be reduced by reducing the management cost and reducing the amount of sludge generated.
  • untreated precipitated solids can be reliably filtered to obtain a stable treated water.
  • 1 is a conceptual diagram of a conventional wastewater treatment process.
  • FIG. 2 is a photograph showing a general granule generated in the sewage treatment.
  • 3 is a conceptual diagram relating to the properties of various substances contained in waste water.
  • FIG. 4 is a conceptual diagram of a wastewater treatment apparatus to which a granule recovery tank and a separator are applied according to the present invention.
  • FIG. 5 is a conceptual diagram of a bioreactor according to the present invention divided into an anaerobic tank, an anaerobic tank, an aerobic tank and a granule recovery tank.
  • FIG. 6 is a conceptual diagram divided into a bioreactor according to the present invention anaerobic tank, anaerobic, granule recovery tank 1, aerobic tank and granule recovery tank 2.
  • the present invention proposes a new process for further increasing the treatment efficiency while improving the conventional water treatment process for increasing the treatment efficiency of waste water.
  • the granules are applied to efficiently treat the wastewater containing various contaminants and the membrane filtration process.
  • MMS Mixed Liquor Suspended Solids
  • Wastewater treatment apparatus of the present invention characterized in that it comprises a bioreactor in which growth of microbial granules and decomposition of contaminants occurs, a granule recovery tank for separating microbial granules and inert solids, and a separation membrane tank for separating inert solids and treated water. It is done.
  • the bioreactor may be configured in the order of anaerobic tank, anaerobic tank, aerobic tank to remove nitrogen and phosphorus.
  • the granule recovery tank is divided into granule recovery tank 1 and granule recovery tank 2, and in the granule recovery tank 1, the granules of heterotrophic microorganisms are recovered and returned to the front end of the anaerobic tank. It is recovered and returned to the front end of the aerobic tank.
  • Method for treating wastewater according to the first embodiment of the present invention, (a) introducing the wastewater into the bioreactor to induce the growth of microbial granules and to decompose contaminants; (b) recovering the microbial granules from inert solids and treated water in a granule recovery tank installed at the rear of the bioreactor and returning them to the front of the bioreactor; (c) transferring the inert solid and the treated water separated from the microbial granule in the granule recovery tank to the separation membrane tank; And (d) separating the inert solid and the treated water in the separation tank.
  • Method for treating wastewater according to another embodiment of the present invention, (a) introducing the wastewater into a bioreactor consisting of an anaerobic tank, an anaerobic tank and an aerobic tank to induce growth of microbial granules and decompose contaminants; (b) recovering the microbial granules from the inert solid and the treated water in the granule recovery tank installed at the rear end of the aerobic tank and returning them to the front end of the anaerobic tank; (c) transferring the inert solid and the treated water separated from the microbial granule in the granule recovery tank to the separation membrane tank; And (d) separating the inert solid and the treated water in the separation tank.
  • Waste water treatment method (a) the waste water is introduced into the bioreactor consisting of anaerobic tank, anaerobic tank, granule recovery tank 1, aerobic tank and granule recovery tank 2 in the aerobic tank rear end to grow the microbial granules Inducing and decomposing contaminants; (b) recovering the granules of heterotrophic microorganisms from the inert solids and the treated water in the granule recovery tank 1 and returning them to the front end of the anaerobic tank and transferring the inert solids and the treated water separated from the heterotrophic granules to the aerobic tank.
  • step (c) recovering granules of autotrophic microorganisms from the granule recovery tank 2 at the rear end of the aerobic tank and returning them to the front end of the aerobic tank; (d) transferring the inert solid and the treated water separated from the granules of the autotrophic microorganism in the granule recovery tank 2 to the separation membrane tank; And (e) separating the inert solid and the treated water in the separation tank.
  • Each such wastewater treatment method may further include the step of concentrating the inert solid separated in the separation membrane tank through the separation membrane in a separate concentration membrane tank.
  • the process is configured as shown in FIG. 4, the present invention is composed of a bioreactor, granule recovery tank, separation membrane tank, concentrated separation membrane tank.
  • the biodegradable contaminants are degraded through biological reaction by granules in the reactor, whereby additional granules are formed.
  • the reactor is subjected to organic matter oxidation, nitrogen oxidation, nitrogen removal through denitrification and phosphorus removal according to given conditions.
  • the concentration of activated sludge is maintained at 20,000 mg / L or more to maximize the treatment of organic matter by the microorganism, nitrification, and denitrification.
  • the decomposed waste water is introduced into the granule recovery tank at the end of the reactor.
  • Granules recovery tanks separate granules and inert solids in a short residence time.
  • Granules which have settled quickly due to good sedimentation, are returned to the front end of the bioreactor using a pump.
  • Inert solids that do not precipitate are introduced into the separation membrane and filtered through a separation membrane having a nominal pore size of 0.001 to 0.4 ⁇ m to separate the treated water and the solids.
  • the treated water is discharged and the separated inert solids are introduced into the concentrated membrane bath and finally concentrated out of the process.
  • Figure 5 applies the granule recovery and membrane technology of the present invention in a process for removing nitrogen and phosphorus. It is composed of an anaerobic tank for removing phosphorus, an anaerobic tank for removing nitrogen through denitrification, and an aerobic tank for oxidizing ammonia nitrogen. After passing through the first membrane tank, the internal transport to return the nitrate nitrogen required for denitrification is carried out by an anoxic tank shear.
  • Influent wastewater is first treated with phosphorus-removing microorganisms in anaerobic tanks (Phase-removing aerobic microorganisms (PAOs) for aerobacter, Alcaligenes, Bacillus, Brevibacterium, Flavobacterium ( Flavobacterium, Lactobacillus, Micrococcus, etc. are preferred), and the main functions of elution of phosphorus in wastewater introduced from the outside, intake and storage of organic matter.
  • PAOs aerobic microorganisms
  • Alcaligenes Bacillus
  • Brevibacterium Flavobacterium ( Flavobacterium, Lactobacillus, Micrococcus, etc. are preferred)
  • phosphorous elution is performed while releasing poly-phosphate accumulated in microbial cells in the mixed solution in the form of ortho-phosphate.
  • organic intake and storage the organics in the mixture are taken into the cells.
  • PHA Phosphorous Removing Bacteria
  • PHA Poly Hydroxy Alkanoate
  • PHB Poly Hydroxy Butyrate
  • phosphorus is biologically removed even in a low oxygen demand (COD) environment.
  • COD low oxygen demand
  • a stirrer may be installed to sufficiently mix the phosphorus removing microorganism and the waste water.
  • denitrification reaction occurs in which annitrogen is removed from nitrogen, and denitrification by microorganism granules occurs by using organic substances present in the incoming wastewater as electron acceptors, and organic substances are simultaneously removed in this process. If denitrification is not sufficiently performed in an oxygen-free tank, the denitrification efficiency may be increased by artificially injecting an external organic carbon source.
  • the treated water then undergoes an aerobic process for oxidizing ammoniacal nitrogen.
  • the aerobic tank the ammonia nitrogen contained in the treated water is nitrified to nitrate nitrogen, and organic matter not removed in the anoxic tank is oxidized and converted into carbon dioxide.
  • the decomposed waste water is introduced into the granule recovery tank at the end of the reactor.
  • Granules recovery tanks separate granules and inert solids in a short residence time. Granules that have settled quickly due to good sedimentation are returned to the anaerobic shear using a pump. Inert solids that do not precipitate are introduced into the membrane bath and treated water and solids are separated through a membrane having a nominal pore size of 0.001 to 0.4 ⁇ m. The treated water is discharged and the separated inert solid is introduced into the concentrated membrane tank, concentrated and finally discharged out of the process, and the internal conveyance for conveying the nitrate nitrogen necessary for denitrification is performed at the front end of the anoxic tank.
  • Heterotrophic microorganisms as heterotrophic anaerobic microorganisms, methane-producing bacteria (eg, Methanosarcina genus, Methanothrix genus, Methanobacterium genus, Methnobrevibacter) Genus, Sulfate Reducing Bacteria- For example, Genus Desulfovibrio, Genus Desulfotomaculum, Genus Dissulfobacterium, Genus Dissulfobacter, Genus Dissulfococcus )), Nitrate-reducing bacteria (eg, genus Bacillus, genus Lactobacillus, genus Aeromonas, genus Streptococcus, genus Micrococcus), acid-producing bacteria ( For example, genus Clostridium, genus Acetivibrio, genus Baceroides, genus Rum
  • genus Bacillus, genus Pseudomonas, genus Aeromonas is preferred because it has an oxidation-type nitrogen-reducing activity)
  • granules are recovered in the granule recovery tank 1 and returned to the anaerobic tank for the activity in the anaerobic tank-anoxic tank.
  • Nitrifying microorganisms (nitrosomonas, nitrobacter, comamonas, flavoacterium, dysgonomonas nitrosomonas europas, nitrosomonas, Nitrosomonas europaea)
  • the granules of spp., Nitrosospira spp., Nitrobacter spp. genus Nitrospira, etc.) are recovered from the granule recovery tank 2 and returned to the front of the aerobic tank to be activated in the aerobic tank to continuously implement the optimum conditions for each microorganism.
  • granules composed of heterotrophic microorganisms and granules composed of autotrophic microorganisms may be separately generated and maintained to maintain maximum activity under optimal conditions. As a result, many pollutants can be treated in a short residence time.
  • Influent wastewater is first treated with phosphorus-removing microorganisms in anaerobic tanks (Phase-removing aerobic microorganisms (PAOs) for aerobacter, Alcaligenes, Bacillus, Brevibacterium, Flavobacterium ( Flavobacterium, Lactobacillus, Micrococcus, etc.) are preferred to have the main functions of elution of organic phosphorus in the wastewater coming in from the outside and intake and storage of organic matter.
  • PAOs aerobic microorganisms
  • phosphorous elution is performed while releasing poly-phosphate accumulated in microbial cells in the mixed solution in the form of ortho-phosphate.
  • the organic matter in the mixed solution is ingested into the cell, and the ingested organic matter is stored in the cell as a poly hydroxy alkanoate (PHA), ie, a secondary metabolite, mainly composed of glycogen and polyhydroxy butyrate (PHB).
  • PHA poly hydroxy alkanoate
  • PHB Phosphorous Removing Bacteria
  • DPB Phosphorous Removing Bacteria
  • COD low oxygen demand
  • a stirrer may be installed to sufficiently mix phosphorus removal microorganisms and waste water.
  • Denitrification reaction occurs in which the nitrogen is removed from the anaerobic bath.
  • Denitrification by granules of microorganisms occurs by using organic substances present in the introduced wastewater as electron acceptors, and organic substances are simultaneously removed in this process. If denitrification is not sufficiently performed in an oxygen-free tank, the denitrification efficiency may be increased by artificially injecting an external organic carbon source.
  • the granule recovery tank 1 the granules of heterotrophic microorganisms are recovered and returned to the front end of the anaerobic tank, and the treated water undergoes an aerobic process for oxidizing ammonia nitrogen.
  • the aerobic tank the ammonia nitrogen contained in the treated water is nitrated to nitrate nitrogen, and organic matter not removed in the anoxic tank is oxidized and converted into carbon dioxide.
  • the decomposed waste water is introduced into the granule recovery tank 2.
  • granule recovery tank 2 granules and inactive solids of autotrophic microorganisms are separated in a short residence time.
  • the granules of autotrophic microorganisms which settled quickly due to excellent sedimentation are returned to the front end of the aerobic tank using a pump.
  • Inert solids that do not precipitate are introduced into the separation membrane and the treated water and the solids are separated through filtration.
  • the treated water is discharged and the separated inert solids are introduced into the concentrated membrane bath and finally concentrated out of the process.
  • Internal conveyance for conveying the nitrate nitrogen required for denitrification consists of anoxic tank shear.
  • the present invention by maintaining the concentration of microorganisms in the bioreactor, anaerobic tank, anaerobic tank and aerobic tank using microbial granules of 20,000mg / L or more, it is possible to stably treat organic matter and nutrients in wastewater in a short time. And the land area for wastewater treatment can be minimized. In addition, by reducing the concentration of activated sludge flowing into the membrane tank, the contamination of the membrane can be minimized. As a result, the energy use of the cleaning process, which is necessary to remove the substances that increase the contamination of the membrane, is reduced, and the process is simplified, and thus the entire treatment process. This has the effect of being simplified.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Microbiology (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

Provided are device and method for treating sewage and wastewater, with which recovery of granules of active microorganisms is maximized and a stable quality of treated water is obtained. In a granule recovery vessel, granules of microorganisms exhibiting high activity and non-active solid substances are rapidly separated, and the granules are returned to a reaction vessel in order to secure a high concentration of granules in the process. Non-precipitated inactive solid substances are made to flow into a separation vessel and subjected to filtration in order to obtain excellent treated water. The organism reaction vessel is constituted by an anoxic vessel, an anaerobic vessel and an aerobic vessel, and removes nitrogen and phosphorous in the sewage. Granules of heterotrophic microorganisms are recovered from inactive solid substances and treated water in a granule recovery vessel (1) and returned to a stage prior to the anoxic vessel. The inactive solid substances separated from the heterotrophic microorganisms and treated water are sent to the aerobic vessel. Granules of autotrophic microorganisms are recovered in a granule recovery vessel (2) which is a post-stage of the aerobic vessel and returned to a stage prior to the aerobic vessel. The separated inactive solid substances and treated water are sent to a separation membrane vessel, and the inactive solid substances and treated water are separated in the separation membrane vessel.

Description

분리막을 이용한 활성 미생물 그래뉼의 회수가 가능한 오폐수 처리장치 및 이를 이용한 오폐수 처리방법Wastewater treatment device capable of recovering active microbial granules using a membrane and wastewater treatment method using the same
본 발명은 분리막을 이용한 활성 미생물 그래뉼의 회수가 가능한 오폐수 처리장치 및 이를 이용한 오폐수 처리방법(Wastewater processing apparatus using membrane for recovering active granule of microorganism and method using the same)에 관한 것으로서, 보다 상세하게는, 분리막을 이용하여 활성이 높은 그래뉼을 효과적으로 회수하여 공정 내에 유지하고, 비활성 고형물은 분리막을 이용하여 선택적 분리/농축하여 공정 밖으로 배출하여 반응조는 높은 활성을 유지하고 비활성 고형물은 공정 밖으로 신속하게 배출하여 오폐수를 짧은 시간 내에 효율적으로 처리하기 위한 장치 및 방법에 관한 것이다.The present invention relates to a wastewater treatment apparatus capable of recovering active microbial granules using a separator and a wastewater treatment method using the same, and more particularly, to a separator. Highly active granules can be effectively recovered and maintained in the process, and inert solids are selectively separated / condensed using a membrane and discharged out of the process.The reactor maintains high activity and inert solids are quickly discharged out of the process to discharge wastewater. An apparatus and method for efficiently processing in a short time.
생물학적 오폐수 처리공정은 공정 내에 활성을 가진 미생물을 유지하면서 미생물과 오염물질을 반응조 내에서 접촉시키고 미생물이 오염물질을 분해하기 위해 필요한 반응이 일어날 수 있는 시간과 조건을 유지함으로써 달성된다. 따라서 오염물질의 처리속도는 공정 내에 활성미생물이 얼마나 존재하는가에 의해 결정된다. 공정 내에 많은 미생물을 확보하기 위해 일반적인 생물학적 처리공정은 도 1과 같이 반응조 후단에 미생물과 처리수를 분리하기 위한 침전지를 구비한다. 침전지는 반응조와 달리 교란이 방생하지 않도록 설계/운영되며 미생물과 처리수가 분리 되도록 유도하고 분리된 미생물을 공정 내로 반송함으로써 반응조 내에 고농도의 미생물이 유지되도록 하는 역할을 수행한다.Biological wastewater treatment processes are achieved by keeping microorganisms active in the process while contacting the microorganisms and contaminants in the reactor and maintaining the time and conditions under which the reactions necessary for the microorganisms to degrade the contaminants can occur. Thus, the rate of treatment of pollutants is determined by how much active microorganisms are present in the process. In order to secure a large number of microorganisms in the process, a general biological treatment process is provided with a sedimentation basin for separating microorganisms and treated water at the rear of the reactor as shown in FIG. 1. Unlike the reaction tank, the sedimentation basin is designed and operated so that disturbance does not occur, and serves to maintain the high concentration of microorganisms in the reaction tank by inducing the separation of the microorganism and the treated water and returning the separated microorganism into the process.
생물학적 처리공정에 이용되는 미생물은 매우 다양하나 사용하는 탄소원에 따라 종속영양미생물과 독립영양미생물로 구분되어 지고, 이러한 미생물은 비중이 약 1.1~1.2 정도로 침전이 매우 천천히 이루어지기 때문에 침전지에서 분리/농축할 수 있는 미생물의 농도의 한계가 있다. 일반적으로 오폐수 처리공정의 침전지에서 침전을 통하여 분리/농축할 수 있는 미생물의 농도는 약 5,000 mg/L 이하로 알려져 있고 이와 같이 반응조에서 유지할 수 있는 미생물의 농도의 한계로 인하여 더 많은 미생물을 공정 내에 확보하기 위해서는 반응조의 부피를 증가시켜야 할 수밖에 없다. 반응조의 부피의 증가는 공사비의 증가를 수반하기 때문에 활성미생물을 극대화하여 반응조의 크기를 줄이면서 높은 처리효율을 달성하기 위한 노력이 진행되어 왔다.Microorganisms used in biological treatment process are very diverse, but they are divided into heterotrophic microorganisms and autotrophic microorganisms according to the carbon source used, and these microorganisms are separated / concentrated in the sedimentation basin because their specific gravity is about 1.1 ~ 1.2. There is a limit of the concentration of microorganisms that can be. In general, the concentration of microorganisms that can be separated / concentrated by sedimentation in sedimentation basin of wastewater treatment process is known to be less than about 5,000 mg / L. In order to ensure the volume of the reactor must be increased. Since the increase in the volume of the reactor is accompanied by an increase in the construction cost, efforts have been made to achieve high treatment efficiency while maximizing the active microorganism and reducing the size of the reactor.
이러한 목표를 달성할 수 있는 방법 중 하나가 미생물 그래뉼을 활용하는 것인데, 미생물 그래뉼은 미생물이 고농도로 고정되어 있는 입상슬러지로서 외부 매개체 없이 세포끼리 응집하여 생성된 된 것으로 생물막과 구분되며, 미생물 그래뉼은 하수 과정 중 특정조건에서 미생물 엉김물(floc)의 자가응집(self-immobilization)을 통해 형성되며, 호기성 그래뉼과 혐기성 그래뉼로 구분할 수 있다. 미생물 그래뉼은 단위 g당 수백만 개의 활성 미생물을 포함하는 고밀도 미생물 군체이며 다양한 박테리아 종을 군집체 안에 포함하고 있다. 미생물 그래뉼의 형태와 크기는 운전조건에 따라 다양한데 일반적으로 0.2 ~ 7mm의 입경 범위의 매끄러운 표면형태를 보인다(도 2 참조). 따라서 슬러지 엉김물(floc)과는 육안으로 확연히 구분이 가능하며 엉김물(floc)상태와 비교하여 균일하고 밀도가 높은 단단한 구조로 되어있어 우수한 침전특성을 가진다. 침전성의 지표가 되는 SVI(Sludge Volume Index: 오니의 용량지표를 말하며 활성오니의 폭기조 내 혼합액을 1,000mL 메스실린더에 취해 30분간 정치 후의 오니 1g이 점유하는 용적(mL)을 말함)의 경우 일반적인 오폐수 처리공정의 슬러지는 80~120mL/g 이나 미생물 그래뉼의 SVI는 80mL/g으로 침전이 신속하게 이루어진다. 따라서 고액분리가 용이하고 슬러지 부상과 같은 침전문제를 예방할 수 있으며 침전시간 및 침전지의 부피를 줄일 수 있다. 따라서 공정 내에 고농도로 유지가 가능하기 때문에 반응조의 부피를 줄일 수 있어 부지나 비용을 절감할 수 있다. 또한, 미생물 균체가 고밀도로 응집되어 있고 EPS(Extracelluar Polymeric Substance) 매트릭스로 보호되기 때문에 외부의 충격부하 및 독성물질에 대한 저항성이 높다. 그 외에 EPS표면에 흡착기능이 있어 중금속의 제거도 가능하다. 또한, 별도의 담체를 사용하지 않기 때문에 미생물 탈리의 문제가 없다는 장점을 가진다.One way to achieve this goal is to utilize microbial granules, which are granular sludges in which microorganisms are fixed at high concentrations, which are produced by agglomeration of cells without external media, and are distinguished from biofilms. It is formed through the self-immobilization of microbial flocs under certain conditions during sewage and can be divided into aerobic and anaerobic granules. Microbial granules are dense microbial colonies containing millions of active microorganisms per gram and contain various bacterial species in the population. The shape and size of the microbial granules vary depending on the operating conditions, and generally shows a smooth surface shape with a particle size range of 0.2-7 mm (see FIG. 2). Therefore, it can be clearly distinguished from sludge floc (floc) with the naked eye, and has a good sedimentation characteristic because it has a uniform and dense rigid structure compared to the floc state. SVI (Sludge Volume Index: index of sedimentation capacity) refers to the capacity indicator of sludge, and the volume (mL) occupied by 1 g of sludge after standing for 30 minutes after mixing the mixed liquid in the aeration tank of activated sludge with a 1,000 mL volume cylinder. The sludge from the treatment process is 80-120 mL / g and the SVI of the microbial granules is 80 mL / g. Therefore, the solid-liquid separation can be easily prevented sedimentation problems, such as sludge injuries, it is possible to reduce the settling time and volume of the sedimentation basin. Therefore, it is possible to maintain a high concentration in the process can reduce the volume of the reactor can reduce the site or cost. In addition, since the microbial cells are agglomerated at a high density and protected by an Extracelluar Polymeric Substance (EPS) matrix, they are highly resistant to external impact loads and toxic substances. In addition, it has an adsorption function on the EPS surface to remove heavy metals. In addition, since there is no separate carrier, there is no problem of microbial detachment.
(특허문헌 1) KR 100513352 B1 (Patent Document 1) KR 100513352 B1
혐기성 그래뉼 슬러지를 활용한 오폐수 처리장치에 관한 종래기술인 등록특허공보(KR 100513352 B1)는 막이 침지된 생물학적 처리조 및 혐기성 그래뉼 슬러지가 충진된 반응조가 결합된 오폐수처리장치에 대한 것으로, 생물학적 처리조 외에 따로 혐기성 그래뉼 슬러지를 충진한 ABR(Anaerobic Baffled Reactor) 반응조 또는 UASB(Upflow Anaerobic Sludge Blanket) 반응조를 설치하고, 반응조 내의 혐기성 그래뉼 슬러지의 활성 유지 및 반응조 내의 생물막의 과도한 성장을 막기 위하여 전단의 생물학적 처리조에 막을 침지하여 막을 통하여 처리수를 뽑아내고, 뽑아낸 처리수를 반응조에 주입하여 고농도 질소를 포함하는 폐수에서 유기물과 질소를 제거하고자 하였다.The prior art patent registration (KR 100513352 B1) regarding a wastewater treatment apparatus using anaerobic granule sludge is for a wastewater treatment apparatus in which a biological treatment tank in which a membrane is immersed and a reaction tank filled with anaerobic granule sludge is combined. Separately, an ABR (Anaerobic Baffled Reactor) or UASB (Upflow Anaerobic Sludge Blanket) reactor filled with anaerobic granule sludge is installed, and the biological treatment tank of the shear is maintained in order to maintain the activity of the anaerobic granule sludge in the reactor and to prevent excessive growth of the biofilm in the reactor. By dipping the membrane, the treated water was extracted through the membrane, and the extracted treated water was injected into the reactor to remove organic matter and nitrogen from the wastewater containing high concentration of nitrogen.
(특허문헌 2) KR 1020120089495 A (Patent Document 2) KR 1020120089495 A
한편, 호기성 그래뉼 슬러지를 활용한 오폐수 처리장치에 대한 종래기술인 공개특허공보(KR 1020120089495 A)는 생물막 및 호기성 그래뉼 슬러지를 이용한 오폐수 처리장치 및 방법에 관한 것으로, 호기성 그래뉼 슬러지를 반응조 상부에 도입하여 호기성 그래뉼 슬러지 내에 층별로 존재하는 슬러지 군집에 의하여 질산화 및 탈질이 이루어지고 그래뉼화된 슬러지의 높은 침강성으로 빠른 시간 내에 고액분리가 가능하고 순간적인 유기물 충격부하가 발생하여도 안정적으로 유기물을 제거하고자 하였다.On the other hand, Korean Patent Application Publication (KR 1020120089495 A), which is a related art for wastewater treatment apparatus using aerobic granule sludge, relates to a wastewater treatment apparatus and method using biofilm and aerobic granule sludge, and introduces aerobic granule sludge to the upper part of the reactor. Nitrification and denitrification were performed by the sludge clusters present in each layer in the granule sludge, and the high sedimentability of the granulated sludge enables solid-liquid separation within a short time and stably removes the organic matter even when an instantaneous organic impact load occurs.
일반적으로 오폐수 처리에 사용되는 질산화 미생물, 탈질미생물, 인축적미생물(PAO: Phosphate Accumulating Organisms), 인 및 질소 동시제거 미생물(dPAO: denitirifying Phosphate Accumulating Organisms), 글리코겐축적미생물(GAO: Glcogen Accumulating Organisms) 등 대부분의 미생물군에서 그래뉼화가 가능하기 때문에 어떤 오염물질 처리에도 적용이 가능하다.Nitrifying microorganisms, denitrifying microorganisms, Phosphate Accumulating Organisms (PAO), denitirifying Phosphate Accumulating Organisms (dPAO), Glcogen Accumulating Organisms (GAO), etc. Granulation is possible in most microbial populations and therefore can be applied to any contaminant treatment.
그러나 그래뉼을 실제 오폐수 처리에 적용하는 데는 치명적인 문제가 있다. 이러한 문제는 도 3과 같이 다양하게 구성되는 오폐수의 특성에 기인한다. 즉 오폐수 내에 용존성물질(SCOD: Soluble chemical oxygen demand, SCOD = SI + SS, SI: Soluble inert COD, SS: Readily biodegradable COD)만 존재하면 공정 내에는 활성미생물과 활성미생물의 부산물이 존재하게 되지만, 실제로 오폐수에는 입자성 물질(XCOD = XI + XS, XI: Inert suspended organic matter, XS: Slowly inert COD)이 다량 존재하여 공정 내에는 활성미생물, 미생물부산물, 생물학적으로 분해 불가능한 휘발성 고형물(XI = NBDVSS), 비휘발성 고형물(FSS: Fixed Suspended Solids)가 함께 혼합되어 존재(FSS + TCOD)하게 된다(TCOD = XCOD + SCOD, XCOD = NBDVSS(생물학적 분해 불가능한 유기물) + BDVSS(생물학적 분해가능한 유기물)). 이렇게 다양한 형태의 고형물이 혼합되어 있는 것은 혼합액 현탁고형물(MLSS: Mixed Liquor Suspended Solids)이라 하는데 혼합액 현탁고형물에서 활성미생물만을 선택적으로 회수하는 것은 기술적으로 매우 곤란하다.However, there is a fatal problem in applying granules to actual wastewater treatment. This problem is due to the characteristics of the waste water is configured in various ways as shown in FIG. In other words, if only dissolved dissolved substances (SCOD: Soluble chemical oxygen demand, SCOD = S I + S S , S I : Soluble inert COD, S S : Readily biodegradable COD) are present in the process, In reality, there is a large amount of particulate matter (XCOD = X I + X S , X I : Inert suspended organic matter, X S : Slowly inert COD) in the waste water. Impossible volatile solids (X I = NBDVSS), non-volatile solids (FSS: Fixed Suspended Solids) are mixed together and present (FSS + TCOD) (Biodegradable organics)). The various types of solids are mixed, called mixed liquor suspended solids (MLSS), but it is technically very difficult to selectively recover only active microorganisms from the mixed liquor suspended solids.
미생물 그래뉼의 경우 일반적인 부유물질에 비해 침전성이 우수하기 때문에 침전의 차이를 이용하여 다른 고형물과 분리/회수가 어느 정도 가능하다. 따라서 미생물 그래뉼을 이용하여 실제 오폐수를 처리할 때 미생물 그래뉼을 제외한 다른 고형물은 침전이 제대로 이루어지지 않고 처리수와 같이 유출되기 때문에 결과적으로 처리수질이 악화되어 수질기준 준수가 불가능하게 된다. 따라서 다양한 형태의 고형물이 존재하는 실제 오폐수를 처리하기 위하여 미생물 그래뉼을 적용하는 것은 현실적으로 어렵다.In the case of microbial granules, sedimentation is superior to that of ordinary suspended solids, and thus, separation and recovery with other solids are possible using the difference in sedimentation. Therefore, when the actual wastewater is treated using the microbial granules, other solids except the microbial granules do not settle properly and flow out together with the treated water, and as a result, the treated water quality deteriorates and it is impossible to comply with the water quality standards. Therefore, it is practically difficult to apply microbial granules to treat actual wastewater in which various types of solids are present.
본 발명이 이루고자 하는 기술적 과제는 활성 미생물 그래뉼을 활용하여 실제 오폐수를 처리함에 있어 분리막을 이용하여 미생물 그래뉼의 회수와 안정적인 처리수질 확보라는 목표를 동시에 달성하는 데 있다.The technical problem to be achieved by the present invention is to simultaneously achieve the goal of recovering the microbial granules and securing a stable treated water quality by using a membrane in treating the actual waste water by using the active microbial granules.
상기 기술적 과제를 달성하기 위한 본 발명에 따른 오폐수 처리장치는, 미생물 그래뉼의 성장 및 오염물의 분해가 발생하는 생물반응조, 미생물 그래뉼 및 비활성고형물을 분리하는 그래뉼회수조, 및 비활성고형물과 처리수를 분리하는 분리막조를 포함하는 것을 특징으로 한다.Wastewater treatment apparatus according to the present invention for achieving the above technical problem, the bioreactor, the microbial granules and the granules recovery tank for separating the inert solids, and the inert solids and the treated water separating the microbial granules growth and decomposition of contaminants It characterized in that it comprises a separation membrane bath.
바람직하게는, 오폐수 처리장치는 상기 분리막조에서 분리된 비활성고형물을 별도의 분리막을 통하여 농축하는 농축분리막조를 추가로 포함한다.Preferably, the wastewater treatment apparatus further includes a concentrated separation membrane tank for concentrating the inert solid separated from the separation tank through a separate separation membrane.
상기 생물반응조는 혐기조, 무산소조, 호기조의 순서로 구성되어 질소 및 인을 제거할 수 있도록 구성되는 것이 바람직하다.The bioreactor is preferably configured in the order of anaerobic tank, anaerobic tank, aerobic tank to remove nitrogen and phosphorus.
상기 그래뉼회수조는 그래뉼 회수조 1과 그래뉼 회수조 2로 분리되어 구성되고, 그래뉼 회수조 1에서는 종속영양미생물의 그래뉼이 회수되어 혐기조의 전단으로 반송되고, 그래뉼 회수조 2에서는 독립영양미생물의 그래뉼이 회수되어 호기조의 전단으로 반송된다.The granule recovery tank is divided into granule recovery tank 1 and granule recovery tank 2, granule recovery of the heterotrophic microorganisms in the granule recovery tank 1 is returned to the front end of the anaerobic tank, granules of independent nutrient microorganisms in the granule recovery tank 2 It is recovered and returned to the front end of the aerobic tank.
본 발명에 따른 오폐수 처리장치는, 미생물 그래뉼과 비활성 고형물을 침전속도 차를 이용하여 신속하게 분리하여 그래뉼은 공정 내로 반송하고 침전이 되지 않는 비활성 고형물은 분리막을 이용하여 분리/농축하여 안정적인 처리수질을 확보하고 폐기된 슬러지의 부피 저감을 동시에 달성할 수 있다.Wastewater treatment apparatus according to the present invention, the microbial granules and inert solids are quickly separated using the settling rate difference, granules are returned to the process and the inert solids which do not precipitate are separated / condensed using a separator to provide stable treated water quality. The volume reduction of secured and disposed sludge can be achieved simultaneously.
본 발명의 다른 측면에 의하면, (a) 오폐수를 생물반응조로 유입하여 미생물 그래뉼의 성장을 유도하고 오염물을 분해하는 단계; (b) 생물반응조의 후단에 설치된 그래뉼회수조에서 비활성고형물과 처리수로부터 미생물 그래뉼을 회수하여 생물반응조의 전단으로 반송하는 단계; (c) 상기 그래뉼회수조에서 미생물 그래뉼과 분리된 비활성고형물과 처리수를 분리막조로 이송하는 단계; 및 (d) 상기 분리막조에서 비활성고형물과 처리수를 분리하는 단계를 포함하는 오폐수 처리방법이 제공된다.According to another aspect of the invention, (a) introducing waste water into the bioreactor to induce the growth of microbial granules and to decompose contaminants; (b) recovering the microbial granules from inert solids and treated water in a granule recovery tank installed at the rear of the bioreactor and returning them to the front of the bioreactor; (c) transferring the inert solid and the treated water separated from the microbial granule in the granule recovery tank to the separation membrane tank; And (d) separating the inert solids and the treated water in the separation membrane tank.
또한, (a) 오폐수를 혐기조, 무산소조 및 호기조의 순서로 구성된 생물반응조로 유입하여 미생물 그래뉼의 성장을 유도하고 오염물을 분해하는 단계; (b) 상기 호기조의 후단에 설치된 그래뉼회수조에서 비활성고형물과 처리수로부터 미생물 그래뉼을 회수하여 혐기조의 전단으로 반송하는 단계; (c) 상기 그래뉼회수조에서 미생물 그래뉼과 분리된 비활성고형물과 처리수를 분리막조로 이송하는 단계; 및 (d) 상기 분리막조에서 비활성고형물과 처리수를 분리하는 단계를 포함하는 오폐수 처리방법이 제공된다.In addition, (a) introducing wastewater into the bioreactor consisting of anaerobic tank, anaerobic tank and aerobic tank to induce growth of microbial granules and decompose contaminants; (b) recovering the microbial granules from the inert solid and the treated water in the granule recovery tank installed at the rear end of the aerobic tank and returning them to the front end of the anaerobic tank; (c) transferring the inert solid and the treated water separated from the microbial granule in the granule recovery tank to the separation membrane tank; And (d) separating the inert solids and the treated water in the separation membrane tank.
또한, (a) 오폐수를 혐기조, 무산소조, 그래뉼 회수조 1, 호기조 및 호기조 후단의 그래뉼 회수조 2의 순서로 구성된 생물반응조로 유입하여 미생물 그래뉼의 성장을 유도하고 오염물을 분해하는 단계; (b) 상기 그래뉼 회수조 1에서 비활성고형물과 처리수로부터 종속영양미생물의 그래뉼을 회수하여 상기 혐기조의 전단으로 반송하고 종속영양미생물 그래뉼과 분리된 비활성고형물과 처리수를 상기 호기조로 이송하여 처리하는 단계; (c) 상기 호기조 후단의 그래뉼 회수조 2에서 독립영양미생물의 그래뉼이 회수되어 호기조의 전단으로 반송하는 단계; (d) 상기 그래뉼 회수조 2에서 독립영양미생물의 그래뉼과 분리된 비활성고형물과 처리수를 분리막조로 이송하는 단계; 및 (e) 상기 분리막조에서 비활성고형물과 처리수를 분리하는 단계를 포함하는 오폐수 처리방법이 제공된다.In addition, (a) introducing the waste water into the bioreactor consisting of anaerobic tank, anaerobic tank, granule recovery tank 1, aerobic tank and granule recovery tank 2 in the rear end of the aerobic tank to induce growth of microbial granules and decompose contaminants; (b) recovering the granules of heterotrophic microorganisms from the inert solids and the treated water in the granule recovery tank 1 and returning them to the front end of the anaerobic tank and transferring the inert solids and the treated water separated from the heterotrophic granules to the aerobic tank. step; (c) recovering granules of autotrophic microorganisms from the granule recovery tank 2 at the rear end of the aerobic tank and returning them to the front end of the aerobic tank; (d) transferring the inert solid and the treated water separated from the granules of the autotrophic microorganism in the granule recovery tank 2 to the separation membrane tank; And (e) there is provided a waste water treatment method comprising the step of separating the inert solid and the treated water in the separation membrane.
이러한 오폐수 처리방법들은, 상기 분리막조에서 분리된 비활성고형물은 별도의 농축분리막조에서 분리막을 통하여 농축 처리하는 단계를 추가로 포함할 수 있다.Such wastewater treatment methods may further include the step of concentrating the inert solid separated in the separation membrane tank through the separation membrane in a separate concentration membrane tank.
본 발명에 의하면, 공정 내에 고농도의 미생물 그래뉼은 선택적으로 우점화 시킬 수 있고 오염물질 정화능력이 없는 비활성 고형물은 선택적으로 분리/배출함으로써 반응조의 활성을 극대화할 수 있다. 또한, 분리막의 경우 일반적인 분리막 공정보다 고형물의 부하가 경감되기 때문에 투과속도가 높게 유지되어 적은 분리막으로도 많은 처리수를 분리할 수 있어 분리막의 설치비용이 절감된다. 또한, 무기성 고형물만을 선택적으로 분리하기 때문에 미생물의 성장에 의해 분리막이 막히는 현상을 저감시킬 수 있게 되어 유지관리가 용이하고 분리막의 세정에 필요한 약품을 절감할 수 있다. 따라서 실제 오폐수를 처리함에 있어 반응조의 미생물 활성을 극대화하여 반응조의 크기를 줄일 수 있고, 높은 투과속도를 유지하여 분리막의 설치비가 절감되어서 결과적으로 전체적인 초기 투자비가 낮아지게 되며, 막의 유지관리가 용이해지고 관리비용이 저감되고 발생하는 슬러지의 양이 줄어들어 전체적인 운전비의 절감이 가능하다 또한 미 침전된 비활성 고형물은 분리막으로 여과함으로써 우수한 처리수를 안정적으로 확보할 수 있다.According to the present invention, a high concentration of microorganism granules in the process can be selectively dominated, and inert solids without contaminant purification ability can be selectively separated / discharged to maximize the activity of the reactor. In addition, in the case of the separator, since the load of solids is reduced compared to a general separator process, the permeation rate is maintained to be high, so that a large amount of water can be separated even with a small separator, thereby reducing the installation cost of the separator. In addition, since only the inorganic solids are selectively separated, the phenomenon in which the membrane is clogged due to the growth of microorganisms can be reduced, thereby making it easy to maintain and reduce the chemicals required for cleaning the membrane. Therefore, in the treatment of the actual waste water, the size of the reactor can be reduced by maximizing the microbial activity of the reactor, maintaining the high permeation rate, the installation cost of the membrane is reduced, and as a result, the overall initial investment cost is lowered, and the maintenance of the membrane becomes easier. The total cost of operation can be reduced by reducing the management cost and reducing the amount of sludge generated. In addition, untreated precipitated solids can be reliably filtered to obtain a stable treated water.
도 1은 기존 오폐수 처리공정 개념도이다.1 is a conceptual diagram of a conventional wastewater treatment process.
도 2는 하수처리에서 발생하는 일반적인 그래뉼을 나타내는 사진이다.2 is a photograph showing a general granule generated in the sewage treatment.
도 3은 오폐수 내 함유된 다양한 물질의 특성과 관련된 개념도이다.3 is a conceptual diagram relating to the properties of various substances contained in waste water.
도 4는 본 발명에 따른 그래뉼회수조 및 분리막이 적용된 오폐수 처리장치의 개념도이다.4 is a conceptual diagram of a wastewater treatment apparatus to which a granule recovery tank and a separator are applied according to the present invention.
도 5는 본 발명에 따른 생물반응조가 혐기조, 무산소조, 호기조 및 그래뉼회수조로 구분된 개념도이다.5 is a conceptual diagram of a bioreactor according to the present invention divided into an anaerobic tank, an anaerobic tank, an aerobic tank and a granule recovery tank.
도 6은 본 발명에 따른 생물반응조가 혐기조, 무산소, 그래뉼 회수조 1, 호기조 및 그래뉼 회수조 2로 구분된 개념도이다.6 is a conceptual diagram divided into a bioreactor according to the present invention anaerobic tank, anaerobic, granule recovery tank 1, aerobic tank and granule recovery tank 2.
본 발명은 오폐수의 처리효율의 증대를 위한 종래의 수처리공정을 개선함과 동시에 그 처리효율을 더욱 증대하기 위한 새로운 공정을 제시한다. 이를 달성하기 위하여 그래뉼을 적용하여 다양한 오염물질이 혼합되어 있는 오폐수를 처리하는 공정과 분리막여과 공정을 효율적으로 결합하였다. 분리막 오염현상을 최소화하기 위하여 분리막 공정 전단에 그래뉼을 이용한 생물반응조, 혐기조, 무산소조 및 호기조를 구성함으로써 분리막여과 공정으로 유입되는 유입수의 혼합액 현탁고형물(MLSS: Mixed Liquor Suspended Solids)의 농도를 최소화시키고, 생물반응조 내 미생물의 농도를 20,000mg/L 이상으로 유지시켜 유기물 및 영양염류의 처리를 극대화하고, 소유부지 면적을 최소화할 수 있다.The present invention proposes a new process for further increasing the treatment efficiency while improving the conventional water treatment process for increasing the treatment efficiency of waste water. In order to achieve this, the granules are applied to efficiently treat the wastewater containing various contaminants and the membrane filtration process. Minimize the concentration of Mixed Liquor Suspended Solids (MLSS) of influent flowing into the membrane filtration process by constructing bioreactors, anaerobic tanks, anaerobic tanks, and aerobic tanks using granules in front of the membrane process to minimize membrane contamination. By maintaining the concentration of microorganisms in the bioreactor to more than 20,000mg / L, it is possible to maximize the treatment of organic matter and nutrients, and to minimize the land area.
본 발명의 오폐수 처리장치는, 미생물 그래뉼의 성장 및 오염물의 분해가 발생하는 생물반응조, 미생물 그래뉼 및 비활성고형물을 분리하는 그래뉼회수조, 및 비활성고형물과 처리수를 분리하는 분리막조를 포함하는 것을 특징으로 한다. 상기 생물반응조는 혐기조, 무산소조, 호기조의 순서로 구성되어 질소 및 인을 제거할 수 있다. 또한 그래뉼회수조는 그래뉼 회수조 1과 그래뉼 회수조 2로 분리되어 구성되고, 그래뉼 회수조 1에서는 종속영양미생물의 그래뉼이 회수되어 혐기조의 전단으로 반송되고, 그래뉼 회수조 2에서는 독립영양미생물의 그래뉼이 회수되어 호기조의 전단으로 반송된다.Wastewater treatment apparatus of the present invention, characterized in that it comprises a bioreactor in which growth of microbial granules and decomposition of contaminants occurs, a granule recovery tank for separating microbial granules and inert solids, and a separation membrane tank for separating inert solids and treated water. It is done. The bioreactor may be configured in the order of anaerobic tank, anaerobic tank, aerobic tank to remove nitrogen and phosphorus. In addition, the granule recovery tank is divided into granule recovery tank 1 and granule recovery tank 2, and in the granule recovery tank 1, the granules of heterotrophic microorganisms are recovered and returned to the front end of the anaerobic tank. It is recovered and returned to the front end of the aerobic tank.
본 발명의 첫 번째 실시예에 따른 오폐수의 처리방법, (a) 오폐수를 생물반응조로 유입하여 미생물 그래뉼의 성장을 유도하고 오염물을 분해하는 단계; (b) 생물반응조의 후단에 설치된 그래뉼회수조에서 비활성고형물과 처리수로부터 미생물 그래뉼을 회수하여 생물반응조의 전단으로 반송하는 단계; (c) 상기 그래뉼회수조에서 미생물 그래뉼과 분리된 비활성고형물과 처리수를 분리막조로 이송하는 단계; 및 (d) 상기 분리막조에서 비활성고형물과 처리수를 분리하는 단계를 포함하여 구성된다.Method for treating wastewater according to the first embodiment of the present invention, (a) introducing the wastewater into the bioreactor to induce the growth of microbial granules and to decompose contaminants; (b) recovering the microbial granules from inert solids and treated water in a granule recovery tank installed at the rear of the bioreactor and returning them to the front of the bioreactor; (c) transferring the inert solid and the treated water separated from the microbial granule in the granule recovery tank to the separation membrane tank; And (d) separating the inert solid and the treated water in the separation tank.
본 발명의 다른 실시 예에 따른 오폐수의 처리방법, (a) 오폐수를 혐기조, 무산소조 및 호기조의 순서로 구성된 생물반응조로 유입하여 미생물 그래뉼의 성장을 유도하고 오염물을 분해하는 단계; (b) 상기 호기조의 후단에 설치된 그래뉼회수조에서 비활성고형물과 처리수로부터 미생물 그래뉼을 회수하여 혐기조의 전단으로 반송하는 단계; (c) 상기 그래뉼회수조에서 미생물 그래뉼과 분리된 비활성고형물과 처리수를 분리막조로 이송하는 단계; 및 (d) 상기 분리막조에서 비활성고형물과 처리수를 분리하는 단계를 포함하여 구성된다.Method for treating wastewater according to another embodiment of the present invention, (a) introducing the wastewater into a bioreactor consisting of an anaerobic tank, an anaerobic tank and an aerobic tank to induce growth of microbial granules and decompose contaminants; (b) recovering the microbial granules from the inert solid and the treated water in the granule recovery tank installed at the rear end of the aerobic tank and returning them to the front end of the anaerobic tank; (c) transferring the inert solid and the treated water separated from the microbial granule in the granule recovery tank to the separation membrane tank; And (d) separating the inert solid and the treated water in the separation tank.
본 발명의 또 다른 실시 예에 따른 오폐수의 처리방법, (a) 오폐수를 혐기조, 무산소조, 그래뉼 회수조 1, 호기조 및 호기조 후단의 그래뉼 회수조 2의 순서로 구성된 생물반응조로 유입하여 미생물 그래뉼의 성장을 유도하고 오염물을 분해하는 단계; (b) 상기 그래뉼 회수조 1에서 비활성고형물과 처리수로부터 종속영양미생물의 그래뉼을 회수하여 상기 혐기조의 전단으로 반송하고 종속영양미생물 그래뉼과 분리된 비활성고형물과 처리수를 상기 호기조로 이송하여 처리하는 단계; (c) 상기 호기조 후단의 그래뉼 회수조 2에서 독립영양미생물의 그래뉼이 회수되어 호기조의 전단으로 반송하는 단계; (d) 상기 그래뉼 회수조 2에서 독립영양미생물의 그래뉼과 분리된 비활성고형물과 처리수를 분리막조로 이송하는 단계; 및 (e) 상기 분리막조에서 비활성고형물과 처리수를 분리하는 단계를 포함하여 구성된다.Waste water treatment method according to another embodiment of the present invention, (a) the waste water is introduced into the bioreactor consisting of anaerobic tank, anaerobic tank, granule recovery tank 1, aerobic tank and granule recovery tank 2 in the aerobic tank rear end to grow the microbial granules Inducing and decomposing contaminants; (b) recovering the granules of heterotrophic microorganisms from the inert solids and the treated water in the granule recovery tank 1 and returning them to the front end of the anaerobic tank and transferring the inert solids and the treated water separated from the heterotrophic granules to the aerobic tank. step; (c) recovering granules of autotrophic microorganisms from the granule recovery tank 2 at the rear end of the aerobic tank and returning them to the front end of the aerobic tank; (d) transferring the inert solid and the treated water separated from the granules of the autotrophic microorganism in the granule recovery tank 2 to the separation membrane tank; And (e) separating the inert solid and the treated water in the separation tank.
이러한 각각의 오폐수 처리방법은, 분리막조에서 분리된 비활성고형물은 별도의 농축분리막조에서 분리막을 통하여 농축 처리하는 단계를 추가로 포함할 수 있다.Each such wastewater treatment method may further include the step of concentrating the inert solid separated in the separation membrane tank through the separation membrane in a separate concentration membrane tank.
이하, 본 발명을 구체적으로 설명하기 위해 몇 가지 실시 예를 들어 상세하게 설명하기로 한다. 그러나 본 발명에 따른 실시 예는 여러 가지 다른 형태로 변형될 수 있으며, 본 발명의 범위가 아래에서 상술하는 실시 예에 한정되는 것으로 해석되어서는 안 된다. 본 발명의 실시 예는 이 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 본 발명을 더욱 쉽게 설명하기 위해서 제공되는 것이다.Hereinafter, some embodiments will be described in detail to specifically describe the present invention. However, embodiments according to the present invention may be modified in many different forms, and the scope of the present invention should not be construed as being limited to the embodiments described below. The embodiments of the present invention are provided to more easily explain the present invention to those skilled in the art.
본 발명에서는 도 4에 도시된 바와 같이 공정을 구성한다. 도 4를 참조하면, 본 발명은 생물반응조, 그래뉼 회수조, 분리막조, 농축분리막조로 구성된다. In the present invention, the process is configured as shown in FIG. 4, the present invention is composed of a bioreactor, granule recovery tank, separation membrane tank, concentrated separation membrane tank.
오폐수가 생물반응조로 유입되면 생물학적 분해가 가능한 오염물질은 반응조 내의 그래뉼에 의해 생물학적 반응을 통하여 분해가 발생하며, 이를 통하여 추가적인 그래뉼이 형성된다. 반응조는 주어진 조건에 따라 유기물 산화, 질소 산화, 탈질을 통한 질소 제거, 인 제거가 이루어진다. 생물반응조에서 수행되는 생물처리공정에서는 활성슬러지의 농도를 20,000mg/L 이상으로 유지시킴으로써 미생물에 의한 유기물 처리 및 질산화(Nitrification), 탈질화(Denitrification) 반응을 극대화할 수 있다. 분해가 완료된 오폐수는 반응조 말단의 그래뉼회수조로 유입된다. 그래뉼회수조에서는 짧은 체류시간에 그래뉼과 비활성 고형물이 분리된다. 침전성이 우수하여 신속하게 침전된 그래뉼은 펌프를 이용하여 생물반응조 전단으로 반송한다. 침전이 되지 않는 비활성 고형물은 분리막조로 유입되어 공칭공경 0.001 ~ 0.4μm 의 크기를 갖는 분리막을 통하여 여과되어 처리수 및 고형물이 분리된다. 처리수는 방류되고 분리된 비활성 고형물은 농축분리막조로 유입되어 농축 후 최종적으로 공정 밖으로 배출된다.When wastewater enters the bioreactor, the biodegradable contaminants are degraded through biological reaction by granules in the reactor, whereby additional granules are formed. The reactor is subjected to organic matter oxidation, nitrogen oxidation, nitrogen removal through denitrification and phosphorus removal according to given conditions. In the biological treatment process performed in the bioreactor, the concentration of activated sludge is maintained at 20,000 mg / L or more to maximize the treatment of organic matter by the microorganism, nitrification, and denitrification. The decomposed waste water is introduced into the granule recovery tank at the end of the reactor. Granules recovery tanks separate granules and inert solids in a short residence time. Granules, which have settled quickly due to good sedimentation, are returned to the front end of the bioreactor using a pump. Inert solids that do not precipitate are introduced into the separation membrane and filtered through a separation membrane having a nominal pore size of 0.001 to 0.4 μm to separate the treated water and the solids. The treated water is discharged and the separated inert solids are introduced into the concentrated membrane bath and finally concentrated out of the process.
오폐수 내에는 다양한 오염물질이 존재하는데 이를 제거하기 위한 반응조건이 다양하고 효과적인 오염물질의 제거를 위하여 혐기조, 무산소조 및 호기조를 적절히 구성할 수 있게 된다. There are various pollutants in the waste water, and the reaction conditions for removing them are various and the anaerobic tank, anoxic tank, and aerobic tank can be appropriately configured to remove the pollutants effectively.
도 5는 질소 및 인을 제거하기 위한 공정에 본 발명의 그래뉼 회수 및 분리막 기술을 적용한 것이다. 인을 제거하기 위한 혐기조와 탈질을 통하여 질소를 제거하기 위한 무산소조, 암모니아성 질소를 산화하기 위한 호기조로 구성된다. 첫 번째 분리막조를 거친 후 탈질에 필요한 질산성 질소를 반송하기 위한 내부반송은 무산소조 전단으로 이루어진다.Figure 5 applies the granule recovery and membrane technology of the present invention in a process for removing nitrogen and phosphorus. It is composed of an anaerobic tank for removing phosphorus, an anaerobic tank for removing nitrogen through denitrification, and an aerobic tank for oxidizing ammonia nitrogen. After passing through the first membrane tank, the internal transport to return the nitrate nitrogen required for denitrification is carried out by an anoxic tank shear.
유입되는 오폐수는 먼저 혐기조에서 인 제거 미생물(인 제거 통성 혐기성 미생물(PAOs)에는 에어로박터(Aerobacter), 알칼리지니스(Alcaligenes), 바실러스(Bacillus), 브레비박테리움(Brevibacterium), 플라보박테리움(Flavobacterium), 락토바실러스(Lactobacillus), 마이크로코커스(Micrococcus) 등이 바람직함)을 이용해 외부로부터 유입되는 오폐수 내 인의 용출과 유기물 섭취 및 저장의 주요 기능을 갖는다. 이때 인의 용출의 경우 미생물 세포 중에 축적된 폴리인산인(Poly-phosphate)을 오르토인산인(Ortho-phosphate) 형태로 혼합액에 방출하면서 인의 용출이 이루어지게 된다. 유기물 섭취 및 저장의 경우 혼합액 중 유기물은 세포 내에 섭취된다. 섭취된 유기물은 글리코겐 및 PHB(Poly Hydroxy Butyrate)를 주체로 한 PHA(Poly Hydroxy Alkanoate) 즉 이차 대사산물로서 세포 내에 저장되게 되거나 무산소 단계에서도 인의 섭취가 가능한 탈질 인 제거 박테리아(Dentrifying Phosphorous Removing Bacteria: DPB)라는 미생물 등을 이용함으로써 낮은 산소요구량(COD)의 환경에서도 생물학적으로 인이 제거된다. 혐기조 내에는 인제거미생물과 오폐수의 혼합이 충분히 이루어질 수 있도록 교반기가 설치될 수 있다. 그 후 무산소조에서 질소가 제거되는 탈질반응이 일어나게 되는데, 유입되는 오폐수 중에 존재하는 유기물을 전자수용체로 하여 미생물의 그래뉼에 의한 탈질이 일어나고 이 과정에서 유기물이 동시에 제거된다. 만약, 무산소조에서 탈질이 충분히 이루어지지 않는다면 외부 유기탄소원을 인위적으로 주입함으로써 탈질 효율을 높일 수도 있다.Influent wastewater is first treated with phosphorus-removing microorganisms in anaerobic tanks (Phase-removing aerobic microorganisms (PAOs) for aerobacter, Alcaligenes, Bacillus, Brevibacterium, Flavobacterium ( Flavobacterium, Lactobacillus, Micrococcus, etc. are preferred), and the main functions of elution of phosphorus in wastewater introduced from the outside, intake and storage of organic matter. In this case, phosphorous elution is performed while releasing poly-phosphate accumulated in microbial cells in the mixed solution in the form of ortho-phosphate. In the case of organic intake and storage, the organics in the mixture are taken into the cells. Ingested organics are dehydrogenating Phosphorous Removing Bacteria (PHA), which is stored in cells as PHA (Poly Hydroxy Alkanoate), which is mainly composed of glycogen and Poly Hydroxy Butyrate (PHB), which can be stored in cells or ingested at the anaerobic stage. By using microorganisms, etc.), phosphorus is biologically removed even in a low oxygen demand (COD) environment. In the anaerobic tank, a stirrer may be installed to sufficiently mix the phosphorus removing microorganism and the waste water. Thereafter, denitrification reaction occurs in which annitrogen is removed from nitrogen, and denitrification by microorganism granules occurs by using organic substances present in the incoming wastewater as electron acceptors, and organic substances are simultaneously removed in this process. If denitrification is not sufficiently performed in an oxygen-free tank, the denitrification efficiency may be increased by artificially injecting an external organic carbon source.
그 후 처리수는 암모니아성 질소를 산화하기 위한 호기 공정을 거치게 된다. 호기조에서는 처리수에 포함된 암모니아성 질소가 질산성 질소로 질산화되며, 무산소조에서 제거되지 않은 유기물이 산화되어 이산화탄소로 전환된다. 분해가 완료된 오폐수는 반응조 말단의 그래뉼회수조로 유입된다.The treated water then undergoes an aerobic process for oxidizing ammoniacal nitrogen. In the aerobic tank, the ammonia nitrogen contained in the treated water is nitrified to nitrate nitrogen, and organic matter not removed in the anoxic tank is oxidized and converted into carbon dioxide. The decomposed waste water is introduced into the granule recovery tank at the end of the reactor.
그래뉼회수조에서는 짧은 체류시간에 그래뉼과 비활성 고형물이 분리된다. 침전성이 우수하여 신속하게 침전된 그래뉼은 펌프를 이용하여 혐기조 전단으로 반송한다. 침전이 되지 않는 비활성 고형물은 분리막조로 유입되어 공칭공경 0.001 ~ 0.4μm의 크기를 갖는 분리막을 통하여 처리수 및 고형물이 분리된다. 처리수는 유출되고 분리된 비활성 고형물은 농축분리막조로 유입되어 농축 후 최종적으로 공정 밖으로 유출되며 탈질에 필요한 질산성 질소를 반송하기 위한 내부반송은 무산소조의 전단으로 이루어진다.Granules recovery tanks separate granules and inert solids in a short residence time. Granules that have settled quickly due to good sedimentation are returned to the anaerobic shear using a pump. Inert solids that do not precipitate are introduced into the membrane bath and treated water and solids are separated through a membrane having a nominal pore size of 0.001 to 0.4 μm. The treated water is discharged and the separated inert solid is introduced into the concentrated membrane tank, concentrated and finally discharged out of the process, and the internal conveyance for conveying the nitrate nitrogen necessary for denitrification is performed at the front end of the anoxic tank.
도 6은 질소 및 인을 제거하기 위한 공정으로 도 5와 목적은 동일하지만 종속영양미생물인 인 제거 및 탈질 미생물과 독립영양미생물인 질산화 미생물의 활성을 극대화하기 위해 그래뉼회수조를 2개로 서로 분리되게 구성한다. 종속영양미생물(종속영양형 혐기성 미생물로서는, 메탄생성 세균(예를 들면 메타노사르시나(Methanosarcina)속, 메타노트릭스(Methanothrix)속, 메타노박테리움 (Methanobacterium)속, 메타노브레비박터(Methnobrevibacter)속, 황산환원세균-예를 들면, 디설포비브리오(Desulfovibrio)속, 디설포토마큘럼(Desulfotomaculum)속, 디설포박테리움(Desulfobacterium)속, 디설포박터(Desulfobacter)속, 디설포코커스 (Desulfococcus속)), 질산환원세균(예를 들면, 바실러스(Bacillus)속, 락토바실러스(Lactobacillus)속, 에어로모나스(Aeromonas)속, 스트렙토코커스 (Streptococcus)속, 마이크로코커스(Micrococcus속)), 산생성 세균(예를 들면, 클로스트리듐(Clostridium)속, 아세티비브리오(Acetivibrio)속, 바세로이데스 (Baceroides)속, 루미노코커스(Ruminococcus속)), 통성 혐기성 세균(예를 들면, 바실러스(Bacillus)속, 락토바실러스(Lactobacillus)속, 에어로모나스(Aeromonas)속, 스트렙토코커스(Streptococcus)속, 마이크로코커스(Micrococcus속)) 등을 들 수 있는데, 특히 바실러스(Bacillus)속, 슈도모나스(Pseudomonas)속, 에어로모나스(Aeromonas)속, 스트렙토코커스(Streprococcus)속, 마이크로코커스 (Micrococcus)속은 산화형태 질소환원활성을 가지기 때문에 바람직함))의 그래뉼은 그래뉼 회수조 1에서 회수하여 혐기조 전단으로 반송함으로써 혐기조-무산소조에서 활동하게 한다. 독립영양미생물인 질산화 미생물(니트로소모나스(Nitrosomonas), 니트로백터(Nitrobacter), 코맨모나스(Comamonas), 플라보박테리움(Flavobacterium), 다스고노모나스(Dysgonomonas) 니트로소모나스 유로파(Nitrosomonas europaea), Nitrosomonas spp., Nitrosospira spp., Nitrobacter spp. genus Nitrospira 등)의 그래뉼은 그래뉼 회수조 2에서 회수하여 호기조의 전단으로 반송함으로써 호기조에서 활동하게 함으로써 각 미생물의 최적조건을 지속적으로 구현한다. 이러한 경우 종속영양미생물로 구성된 그래뉼과 독립영양미생물로 구성된 그래뉼이 별도로 생성/유지되어 최적의 조건에서 최대의 활성을 유지할 수 있다. 따라서 결과적으로 짧은 체류시간에 많은 오염물을 처리할 수 있게 된다.6 is a process for removing nitrogen and phosphorus, but the same purpose as in FIG. Configure. Heterotrophic microorganisms (as heterotrophic anaerobic microorganisms, methane-producing bacteria (eg, Methanosarcina genus, Methanothrix genus, Methanobacterium genus, Methnobrevibacter) Genus, Sulfate Reducing Bacteria- For example, Genus Desulfovibrio, Genus Desulfotomaculum, Genus Dissulfobacterium, Genus Dissulfobacter, Genus Dissulfococcus )), Nitrate-reducing bacteria (eg, genus Bacillus, genus Lactobacillus, genus Aeromonas, genus Streptococcus, genus Micrococcus), acid-producing bacteria ( For example, genus Clostridium, genus Acetivibrio, genus Baceroides, genus Ruminococcus, and anaerobic bacteria (eg, genus Bacillus) , Lactoba genus cillus, genus Aeromonas, genus Streptococcus, genus Micrococcus, etc. In particular, genus Bacillus, genus Pseudomonas, genus Aeromonas (Streprococcus genus, Micrococcus genus is preferred because it has an oxidation-type nitrogen-reducing activity)) granules are recovered in the granule recovery tank 1 and returned to the anaerobic tank for the activity in the anaerobic tank-anoxic tank. Nitrifying microorganisms (nitrosomonas, nitrobacter, comamonas, flavoacterium, dysgonomonas nitrosomonas europas, nitrosomonas, Nitrosomonas europaea) The granules of spp., Nitrosospira spp., Nitrobacter spp. genus Nitrospira, etc.) are recovered from the granule recovery tank 2 and returned to the front of the aerobic tank to be activated in the aerobic tank to continuously implement the optimum conditions for each microorganism. In this case, granules composed of heterotrophic microorganisms and granules composed of autotrophic microorganisms may be separately generated and maintained to maintain maximum activity under optimal conditions. As a result, many pollutants can be treated in a short residence time.
유입되는 오폐수는 먼저 혐기조에서 인 제거 미생물(인 제거 통성 혐기성 미생물(PAOs)에는 에어로박터(Aerobacter), 알칼리지니스(Alcaligenes), 바실러스(Bacillus), 브레비박테리움(Brevibacterium), 플라보박테리움(Flavobacterium), 락토바실러스(Lactobacillus), 마이크로코커스(Micrococcus) 등이 바람직함)을 이용해 외부로부터 유입되는 오폐수 내 인의 용출과 유기물 섭취 및 저장의 주요 기능을 갖게 한다. 이때 인의 용출의 경우 미생물 세포 중에 축적된 폴리인산인(Poly-phosphate)을 오르토인산인(Ortho-phosphate) 형태로 혼합액에 방출하면서 인의 용출이 이루어지게 된다. 유기물 섭취 및 저장의 경우 혼합액 중 유기물은 세포 내에 섭취됨과 동시에 상기 섭취된 유기물은 글리코겐 및 PHB(Poly Hydroxy Butyrate)를 주체로 한 PHA(Poly Hydroxy Alkanoate) 즉 이차 대사산물로서 세포 내에 저장되게 되거나 무산소 단계에서도 인의 섭취가 가능한 탈질 인 제거 박테리아(Dentrifying Phosphorous Removing Bacteria: DPB)라는 미생물 등을 이용함으로써 낮은 산소요구량(COD)의 환경에서도 생물학적으로 인이 제거된다. 상기 혐기조 내에는 인제거미생물과 오폐수의 혼합이 충분히 이루어질 수 있도록 교반기가 설치될 수 있다.Influent wastewater is first treated with phosphorus-removing microorganisms in anaerobic tanks (Phase-removing aerobic microorganisms (PAOs) for aerobacter, Alcaligenes, Bacillus, Brevibacterium, Flavobacterium ( Flavobacterium, Lactobacillus, Micrococcus, etc.) are preferred to have the main functions of elution of organic phosphorus in the wastewater coming in from the outside and intake and storage of organic matter. In this case, phosphorous elution is performed while releasing poly-phosphate accumulated in microbial cells in the mixed solution in the form of ortho-phosphate. In the case of intake and storage of organic matter, the organic matter in the mixed solution is ingested into the cell, and the ingested organic matter is stored in the cell as a poly hydroxy alkanoate (PHA), ie, a secondary metabolite, mainly composed of glycogen and polyhydroxy butyrate (PHB). Phosphorous Removing Bacteria (DPB) microorganisms can be used to remove phosphorus even in low oxygen demand (COD) environments. In the anaerobic tank, a stirrer may be installed to sufficiently mix phosphorus removal microorganisms and waste water.
그 후 무산소조에서 질소가 제거되는 탈질반응이 일어난다. 유입되는 오폐수 중에 존재하는 유기물을 전자수용체로 하여 미생물의 그래뉼에 의한 탈질이 일어나고 이 과정에서 유기물이 동시에 제거된다. 만약, 무산소조에서 탈질이 충분히 이루어지지 않는다면 외부 유기탄소원을 인위적으로 주입함으로써 탈질 효율을 높일 수도 있다.Thereafter, a denitrification reaction occurs in which the nitrogen is removed from the anaerobic bath. Denitrification by granules of microorganisms occurs by using organic substances present in the introduced wastewater as electron acceptors, and organic substances are simultaneously removed in this process. If denitrification is not sufficiently performed in an oxygen-free tank, the denitrification efficiency may be increased by artificially injecting an external organic carbon source.
그래뉼 회수조 1에서 종속영양미생물의 그래뉼은 회수되어 혐기조의 전단으로 반송하고 처리수는 암모니아성 질소를 산화하기 위한 호기 공정을 거치게 된다. 호기조에서는 처리수에 포함된 암모니아성 질소가 질산성 질소로 질산화 되며, 무산소조에서 제거되지 않은 유기물이 산화되어 이산화탄소로 전환된다.In the granule recovery tank 1, the granules of heterotrophic microorganisms are recovered and returned to the front end of the anaerobic tank, and the treated water undergoes an aerobic process for oxidizing ammonia nitrogen. In the aerobic tank, the ammonia nitrogen contained in the treated water is nitrated to nitrate nitrogen, and organic matter not removed in the anoxic tank is oxidized and converted into carbon dioxide.
분해가 완료된 오폐수는 그래뉼 회수조 2로 유입된다. 그래뉼 회수조 2에서는 짧은 체류시간에 독립영양 미생물의 그래뉼과 비활성 고형물이 분리된다. 침전성이 우수하여 신속하게 침전된 독립영양 미생물의 그래뉼은 펌프를 이용하여 호기조의 전단으로 반송한다. 침전이 되지 않는 비활성 고형물은 분리막조로 유입되어 여과를 통하여 처리수 및 고형물이 분리된다. 처리수는 유출되고 분리된 비활성 고형물은 농축분리막조로 유입되어 농축 후 최종적으로 공정 밖으로 유출된다. 탈질에 필요한 질산성 질소를 반송하기 위한 내부반송은 무산소조 전단으로 이루어진다.The decomposed waste water is introduced into the granule recovery tank 2. In granule recovery tank 2, granules and inactive solids of autotrophic microorganisms are separated in a short residence time. The granules of autotrophic microorganisms which settled quickly due to excellent sedimentation are returned to the front end of the aerobic tank using a pump. Inert solids that do not precipitate are introduced into the separation membrane and the treated water and the solids are separated through filtration. The treated water is discharged and the separated inert solids are introduced into the concentrated membrane bath and finally concentrated out of the process. Internal conveyance for conveying the nitrate nitrogen required for denitrification consists of anoxic tank shear.
이상에서 설명한 바와 같이 본 발명에 의하면, 미생물 그래뉼을 사용한 생물반응조, 혐기조, 무산소조 및 호기조 내 미생물의 농도를 20,000mg/L 이상으로 유지시킴으로써 오폐수 내 유기물 및 영양염류를 빠른 시간 내에 안정적으로 처리가 가능하고 오폐수 처리를 위한 부지면적을 최소화할 수 있다. 또한, 분리막조로 유입되는 활성슬러지의 농도를 저감시켜 분리막 오염을 최소화할 수 있어 분리막의 오염을 가중시키는 물질을 제거하기 위하여 반드시 필요한 세정공정의 에너지 사용이 감소할 뿐만 아니라 공정이 단순해져 전체 처리공정이 단순해지는 효과를 가진다.As described above, according to the present invention, by maintaining the concentration of microorganisms in the bioreactor, anaerobic tank, anaerobic tank and aerobic tank using microbial granules of 20,000mg / L or more, it is possible to stably treat organic matter and nutrients in wastewater in a short time. And the land area for wastewater treatment can be minimized. In addition, by reducing the concentration of activated sludge flowing into the membrane tank, the contamination of the membrane can be minimized. As a result, the energy use of the cleaning process, which is necessary to remove the substances that increase the contamination of the membrane, is reduced, and the process is simplified, and thus the entire treatment process. This has the effect of being simplified.
이상에서는 본 발명은 비록 한정된 실시 예와 도면에 의해 설명되었으나, 본 발명은 이것에 의해 한정되지 않으며 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에 의해 본 발명의 기술적 사상과 특허청구범위의 균등범위 내에서 다양한 수정 및 변형할 수 있음은 자명하다.The present invention has been described above by means of limited embodiments and drawings, but the present invention is not limited thereto and is intended by those skilled in the art to which the present invention pertains. Obviously, various modifications and variations can be made within the equivalent range.
* 도면 부호의 설명 *Explanation of Reference Numbers
SI: Soluble inert CODS I : Soluble inert COD
SS: Readily biodegradable CODS S : Readily biodegradable COD
SCOD: Soluble chemical oxygen demand, SCOD = SI + SS SCOD: Soluble chemical oxygen demand, SCOD = S I + S S
XI: Inert suspended organic matterX I : Inert suspended organic matter
XS: Slowly inert CODX S : Slowly inert COD
XCOD: XI + XS XCOD: X I + X S
TCOD: XCOD + SCODTCOD: XCOD + SCOD
NBDVSS: 생물학적 분해 불가능한 유기물NBDVSS: Biodegradable Organics
BDVSS: 생물학적 분해가능한 유기물BDVSS: Biodegradable Organics
FSS: Fixed Suspended SolidsFSS: Fixed Suspended Solids

Claims (10)

  1. 미생물 그래뉼의 성장 및 오염물의 분해가 발생하는 생물반응조,Bioreactor in which growth of microbial granules and decomposition of contaminants occur;
    미생물 그래뉼 및 비활성고형물을 분리하는 그래뉼회수조, 및A granule recovery tank for separating microbial granules and inert solids, and
    비활성고형물과 처리수를 분리하는 분리막조를 포함하는 것을 특징으로 하는 오폐수 처리장치.Wastewater treatment apparatus comprising a separation membrane tank for separating inert solids and treated water.
  2. 제 1 항에 있어서,The method of claim 1,
    상기 분리막조에서 분리된 비활성고형물을 별도의 분리막을 통하여 농축하는 농축분리막조를 추가로 포함하는 것을 특징으로 하는 오폐수 처리장치.Wastewater treatment apparatus further comprises a concentrated separation membrane tank for concentrating the inert solid separated from the separation tank through a separate separation membrane.
  3. 제 1 항에 있어서,The method of claim 1,
    상기 생물반응조는 혐기조, 무산소조, 호기조의 순서로 구성되어 질소 및 인을 제거할 수 있는 것을 특징으로 하는 오폐수 처리장치.The bioreactor is composed of an anaerobic tank, an anaerobic tank, an aerobic tank in order to remove nitrogen and phosphorus wastewater treatment apparatus.
  4. 제 1 항에 있어서,The method of claim 1,
    상기 그래뉼회수조는 그래뉼 회수조 1과 그래뉼 회수조 2로 분리되어 구성되고, 그래뉼 회수조 1에서는 종속영양미생물의 그래뉼이 회수되어 혐기조의 전단으로 반송되고, 그래뉼 회수조 2에서는 독립영양미생물의 그래뉼이 회수되어 호기조의 전단으로 반송되는 것을 특징으로 하는 오폐수 처리장치.The granule recovery tank is divided into granule recovery tank 1 and granule recovery tank 2, granule recovery of the heterotrophic microorganisms in the granule recovery tank 1 is returned to the front end of the anaerobic tank, granules of independent nutrient microorganisms in the granule recovery tank 2 Waste water treatment apparatus, characterized in that recovered and conveyed to the front end of the aerobic tank.
  5. (a) 오폐수를 생물반응조로 유입하여 미생물 그래뉼의 성장을 유도하고 오염물을 분해하는 단계;(a) introducing wastewater into the bioreactor to induce growth of microbial granules and to decompose contaminants;
    (b) 생물반응조의 후단에 설치된 그래뉼회수조에서 비활성고형물과 처리수로부터 미생물 그래뉼을 회수하여 생물반응조의 전단으로 반송하는 단계;(b) recovering the microbial granules from inert solids and treated water in a granule recovery tank installed at the rear of the bioreactor and returning them to the front of the bioreactor;
    (c) 상기 그래뉼회수조에서 미생물 그래뉼과 분리된 비활성고형물과 처리수를 분리막조로 이송하는 단계; 및(c) transferring the inert solid and the treated water separated from the microbial granule in the granule recovery tank to the separation membrane tank; And
    (d) 상기 분리막조에서 비활성고형물과 처리수를 분리하는 단계를 포함하는 오폐수 처리방법.(d) wastewater treatment method comprising the step of separating the inert solid and the treated water in the separation membrane tank.
  6. 제 5 항에 있어서,The method of claim 5,
    상기 분리막조에서 분리된 비활성고형물은 별도의 농축분리막조에서 분리막을 통하여 농축 처리하는 단계를 추가로 포함하는 것을 특징으로 하는 오폐수 처리방법.The inert solid separated in the separation tank is a wastewater treatment method further comprising the step of concentrating through the separation membrane in a separate separation membrane tank.
  7. (a) 오폐수를 혐기조, 무산소조 및 호기조의 순서로 구성된 생물반응조로 유입하여 미생물 그래뉼의 성장을 유도하고 오염물을 분해하는 단계;(a) introducing wastewater into a bioreactor consisting of anaerobic, anaerobic and aerobic tanks to induce growth of microbial granules and to decompose contaminants;
    (b) 상기 호기조의 후단에 설치된 그래뉼회수조에서 비활성고형물과 처리수로부터 미생물 그래뉼을 회수하여 혐기조의 전단으로 반송하는 단계;(b) recovering the microbial granules from the inert solid and the treated water in the granule recovery tank installed at the rear end of the aerobic tank and returning them to the front end of the anaerobic tank;
    (c) 상기 그래뉼회수조에서 미생물 그래뉼과 분리된 비활성고형물과 처리수를 분리막조로 이송하는 단계; 및(c) transferring the inert solid and the treated water separated from the microbial granule in the granule recovery tank to the separation membrane tank; And
    (d) 상기 분리막조에서 비활성고형물과 처리수를 분리하는 단계를 포함하는 오폐수 처리방법.(d) wastewater treatment method comprising the step of separating the inert solid and the treated water in the separation membrane tank.
  8. 제 7 항에 있어서,The method of claim 7, wherein
    상기 분리막조에서 분리된 비활성고형물은 별도의 농축분리막조에서 분리막을 통하여 농축 처리하는 단계를 추가로 포함하는 것을 특징으로 하는 오폐수 처리방법.The inert solid separated in the separation tank is a wastewater treatment method further comprising the step of concentrating through the separation membrane in a separate separation membrane tank.
  9. (a) 오폐수를 혐기조, 무산소조, 그래뉼 회수조 1, 호기조 및 호기조 후단의 그래뉼 회수조 2의 순서로 구성된 생물반응조로 유입하여 미생물 그래뉼의 성장을 유도하고 오염물을 분해하는 단계;(a) introducing wastewater into a bioreactor consisting of anaerobic tank, anaerobic tank, granule recovery tank 1, aerobic tank and granule recovery tank 2 at the rear end of the aerobic tank to induce growth of microbial granules and decompose contaminants;
    (b) 상기 그래뉼 회수조 1에서 비활성고형물과 처리수로부터 종속영양미생물의 그래뉼을 회수하여 상기 혐기조의 전단으로 반송하고 종속영양미생물 그래뉼과 분리된 비활성고형물과 처리수를 상기 호기조로 이송하여 처리하는 단계;(b) recovering the granules of heterotrophic microorganisms from the inert solids and the treated water in the granule recovery tank 1 and returning them to the front end of the anaerobic tank and transferring the inert solids and the treated water separated from the heterotrophic granules to the aerobic tank. step;
    (c) 상기 호기조 후단의 그래뉼 회수조 2에서 독립영양미생물의 그래뉼이 회수되어 호기조의 전단으로 반송하는 단계;(c) recovering granules of autotrophic microorganisms from the granule recovery tank 2 at the rear end of the aerobic tank and returning them to the front end of the aerobic tank;
    (d) 상기 그래뉼 회수조 2에서 독립영양미생물의 그래뉼과 분리된 비활성고형물과 처리수를 분리막조로 이송하는 단계; 및(d) transferring the inert solid and the treated water separated from the granules of the autotrophic microorganism in the granule recovery tank 2 to the separation membrane tank; And
    (e) 상기 분리막조에서 비활성고형물과 처리수를 분리하는 단계를 포함하는 오폐수 처리방법.(e) the wastewater treatment method comprising the step of separating the inert solid and the treated water in the separation membrane tank.
  10. 제 9 항에 있어서,The method of claim 9,
    상기 분리막조에서 분리된 비활성고형물은 별도의 농축분리막조에서 분리막을 통하여 농축 처리하는 단계를 추가로 포함하는 것을 특징으로 하는 오폐수 처리방법.The inert solid separated in the separation tank is a wastewater treatment method further comprising the step of concentrating through the separation membrane in a separate separation membrane tank.
PCT/KR2014/000978 2013-02-20 2014-02-05 Wastewater treatment device using separation membrane with which recovery of granules of active microorganisms is possible and method for treating wastewater using same WO2014129759A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2013-0018202 2013-02-20
KR1020130018202A KR20140104627A (en) 2013-02-20 2013-02-20 Wastewater processing apparatus using membrane for recovering active granule of microorganism and method using the same

Publications (1)

Publication Number Publication Date
WO2014129759A1 true WO2014129759A1 (en) 2014-08-28

Family

ID=51391503

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2014/000978 WO2014129759A1 (en) 2013-02-20 2014-02-05 Wastewater treatment device using separation membrane with which recovery of granules of active microorganisms is possible and method for treating wastewater using same

Country Status (2)

Country Link
KR (1) KR20140104627A (en)
WO (1) WO2014129759A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111450695A (en) * 2020-03-31 2020-07-28 清华大学 Method for treating waste gas by utilizing gas-phase suspended microorganisms and application thereof

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102057374B1 (en) * 2017-09-26 2020-02-11 한국과학기술연구원 Sewage treatment system using granule
KR102051259B1 (en) * 2019-05-21 2019-12-04 주식회사 블루뱅크 An eco-friendly denitration device based on salinity tolerant aerobic granular sludge

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001070984A (en) * 1999-09-07 2001-03-21 Nippon Steel Corp Method for removing nitrogen from waste water
JP2002336885A (en) * 2001-05-21 2002-11-26 Kurita Water Ind Ltd Method for aerobic treatment of waste water
KR100523557B1 (en) * 2003-04-21 2005-10-25 한국건설기술연구원 Apparatus and method for sewage treatment by self-granulated activated sludge
KR20060031141A (en) * 2004-10-07 2006-04-12 주식회사 포스코 Advanced wastewater treatment apparatus by crossflow membrane

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001070984A (en) * 1999-09-07 2001-03-21 Nippon Steel Corp Method for removing nitrogen from waste water
JP2002336885A (en) * 2001-05-21 2002-11-26 Kurita Water Ind Ltd Method for aerobic treatment of waste water
KR100523557B1 (en) * 2003-04-21 2005-10-25 한국건설기술연구원 Apparatus and method for sewage treatment by self-granulated activated sludge
KR20060031141A (en) * 2004-10-07 2006-04-12 주식회사 포스코 Advanced wastewater treatment apparatus by crossflow membrane

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111450695A (en) * 2020-03-31 2020-07-28 清华大学 Method for treating waste gas by utilizing gas-phase suspended microorganisms and application thereof

Also Published As

Publication number Publication date
KR20140104627A (en) 2014-08-29

Similar Documents

Publication Publication Date Title
Cheng et al. Enhancement of sludge reduction by ultrasonic pretreatment and packing carriers in the anaerobic side-stream reactor: performance, sludge characteristics and microbial community structure
KR100784933B1 (en) Apparatus for treating organic matter and nitrogen of high density organic wastewater
CN112771007A (en) Apparatus and method for biofilm management in water systems
WO2016021766A1 (en) System for advanced sewage and wastewater treatment using optimum microorganisms for pollutants and method therefor
Sanguanpak et al. Membrane fouling and micro-pollutant removal of membrane bioreactor treating landfill leachate
Irankhah et al. Highly efficient phenol degradation in a batch moving bed biofilm reactor: benefiting from biofilm-enhancing bacteria
KR100422211B1 (en) Management Unit and Method of Foul and Waste Water
WO2014129759A1 (en) Wastewater treatment device using separation membrane with which recovery of granules of active microorganisms is possible and method for treating wastewater using same
KR100643775B1 (en) Treatment hybrid process for remove nutrient using floating microorganism
KR100733823B1 (en) Compact apparatus and method for wastewater treatment using genus bacillus
CN112830634A (en) High-concentration wastewater COD and N synchronous degradation process in same tank
KR100275563B1 (en) Wastewater treatment methods using anaerobic condition and two stage altering-intermittent aerating condition
KR20010028550A (en) Treatment method for livestock waste water including highly concentrated organic, nitrogen and phosphate
KR100632487B1 (en) Gradually operated sequencing batch reactor and method thereof
WO2016159689A1 (en) Hybrid biological nutrient salts treatment system
Furukawa et al. Nitrification of polluted Urban river waters using zeolite‐coated nonwovens
KR101931346B1 (en) Membrane separation water treatment system with reverse osmosis membrane concentrated water treatment facility
KR20010045253A (en) Advanced method for treating wastewater and apparatus therefor
KR101048666B1 (en) Advanced wastewater treatment system which combined suspended and attached biological nutrient removal process and physical-chemical phosphorous removal process
KR20090021987A (en) Wastewater disposal system using internal circulation and rotating disk type nitrification tank
KR100489328B1 (en) System and method for wastewater treatment using partition type anoxic basin and membrane basin
KR200332092Y1 (en) System for wastewater treatment using partition type anoxic basin and membrane basin
KR20050029872A (en) Wastewater treatment apparatus and method
KR101877208B1 (en) Membrane separation water treatment system with reverse osmosis membrane concentrated water treatment facility
KR100364623B1 (en) A method for simultaneous removal of nitrogen and phosphorus in the sewage and waste water

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14754668

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205N DATED 27.10.2015)

122 Ep: pct application non-entry in european phase

Ref document number: 14754668

Country of ref document: EP

Kind code of ref document: A1