WO2014129376A1 - Wheel guard for vehicle - Google Patents

Wheel guard for vehicle Download PDF

Info

Publication number
WO2014129376A1
WO2014129376A1 PCT/JP2014/053338 JP2014053338W WO2014129376A1 WO 2014129376 A1 WO2014129376 A1 WO 2014129376A1 JP 2014053338 W JP2014053338 W JP 2014053338W WO 2014129376 A1 WO2014129376 A1 WO 2014129376A1
Authority
WO
WIPO (PCT)
Prior art keywords
wheel
wheel guard
vehicle
air flow
engine compartment
Prior art date
Application number
PCT/JP2014/053338
Other languages
French (fr)
Japanese (ja)
Inventor
アンドレアス クレンヘラー
Original Assignee
日産自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日産自動車株式会社 filed Critical 日産自動車株式会社
Publication of WO2014129376A1 publication Critical patent/WO2014129376A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D25/00Superstructure or monocoque structure sub-units; Parts or details thereof not otherwise provided for
    • B62D25/08Front or rear portions
    • B62D25/16Mud-guards or wings; Wheel cover panels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D35/00Vehicle bodies characterised by streamlining
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D35/00Vehicle bodies characterised by streamlining
    • B62D35/02Streamlining the undersurfaces
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/80Technologies aiming to reduce greenhouse gasses emissions common to all road transportation technologies
    • Y02T10/88Optimized components or subsystems, e.g. lighting, actively controlled glasses

Definitions

  • the present invention relates to a wheel guard for vehicles [wheel guard for a vehicle], and more particularly to a vehicle wheel guard that can improve engine cooling, drag acting on the vehicle, and the like.
  • Aerodynamics is improved by reducing the main aerodynamic forces against vehicle movement such as drag and lift, and increasing the power to move the vehicle.
  • Lift and drag are components of force acting on the movement of an object.
  • Lift is a component of force perpendicular to the approaching flow direction.
  • the drag is a force acting in the direction of the relative flow velocity, and acts in a direction opposite to the vehicle speed in the case of aerodynamics of the vehicle. Drag increases with speed and increases with the differential pressure across the object, so it is highly dependent on the shape of the object.
  • An object of the present invention is to provide a vehicle wheel guard that optimizes a vehicle shape so as to reduce drag and improve fuel efficiency.
  • a feature of the present invention is a vehicle wheel guard disposed as an inner wall of a wheel house, comprising at least one opening that allows air flow between the engine compartment of the vehicle and the wheel house.
  • a front portion disposed toward a front end of the vehicle, and a raised portion provided in the front portion that forms a recess communicating with the wheel house, wherein the at least one opening is the A wheel guard is provided that is open to the ridge.
  • FIG. 5 is a schematic side view showing the wheel guard shown in FIGS. 1 to 4 together with the front portion of the vehicle.
  • FIG. 5 is a perspective view showing a bottom portion of a vehicle including the wheel guard shown in FIGS. 1 to 4;
  • FIG. 1 to 3 show the overall arrangement of a wheel guard (also referred to as a wheel house lining and a wheel house inner panel) 10 and an under panel according to the present embodiment.
  • a wheel guard also referred to as a wheel house lining and a wheel house inner panel
  • the right front portion of the vehicle will be described, but the left front portion also has a similar structure symmetrically.
  • the wheel guard 10 is a vehicle part that forms a wheel house 11, and partitions the vehicle front part [front end] (engine compartment 23) and the wheel house 11. Its main purpose is to prevent sand, mud, stones and water on the road surface from splashing due to the rotation of the tire.
  • the radiator is used to lower the temperature of the internal combustion engine. This usually involves passing a liquid (engine coolant) through the engine block to heat the liquid (cooling the engine) and then passing it through a radiator to release the liquid heat to the atmosphere. Done in The liquid is again sent to the engine block and flows through the closed circuit to continue cooling the engine.
  • the position and orientation of the wheel guard 10 of this embodiment will be described with reference to FIG.
  • the wheel guard 10 includes a louver frame 16.
  • the louver frame 16 has an upper louver (upper opening) 18 and a lower louver (lower opening) 19.
  • the wheel guard 10 forms an arch that matches the front wheel of the vehicle.
  • the vehicle also includes a deflector 14 that is disposed in front of the wheel guard 10 and prevents inflow of airflow into the wheel house 11.
  • the engine compartment 23 is formed between two front wheels.
  • the air flow 90 flows into the front air intake 92 (see FIG. 9), passes through a radiator (not shown), and flows into the engine compartment 23.
  • the radiator is located in front of the engine and just behind the front air intake 92. Due to the air flow flowing in from the front air intake 92, heat dissipation in the radiator is promoted. If the flow rate of air passing through the radiator is increased, the cooling performance is improved.
  • the louver frame 16 protrudes from the front surface 24 of the wheel guard 10. As shown in FIG. 1, the radius of the inner side 20 of the wheel guard 10 near the engine compartment 23 is smaller than the radius of the outer side 22 of the wheel guard 10 that forms part of the vehicle outer surface. Therefore, the front surface 24 of the wheel guard 10 is a curved surface inclined with respect to the rotating shaft 25 of the wheel.
  • the louver frame 16 is configured along the curved surface of the front surface 24.
  • the wheel rotation shaft 25 is also referred to as a horizontal axis 25 of the vehicle, and an axis from the front end portion to the rear end portion of the vehicle that is orthogonal to the horizontal axis 25 is referred to as a vertical axis 27.
  • the deflector 14 is suspended from the bottom surface of the engine compartment 23 immediately before the wheel guard 10 and is arranged in parallel to the horizontal axis 25. Therefore, the deflector 14 is on a tangent line at the forefront portion of the front surface of the louver frame 16.
  • the louver frame 16 has an inner end near the engine compartment 23 and an outer end near the vehicle outer surface.
  • the length of the deflector 14 is made longer than the length of the louver frame 16 along the horizontal axis 25.
  • the inner end of the deflector 14 is disposed in front of the inner end of the louver frame 16 and is separated from the inner end of the louver frame 16.
  • the outer end of the deflector 14 extends several centimeters from the outer end of the louver frame 16 and is brought close to the wheel arch on the outer surface of the vehicle.
  • the louver frame 16 is formed integrally with the front surface 24 of the wheel guard 10.
  • a trapezoidal hollow raised portion 31 is formed on the louver frame 16 on the engine compartment 23 side.
  • the front surface 36 of the raised portion 31 (louver frame 16) is configured along the curved surface of the front surface 24 of the wheel guard 10.
  • the louver frame 16 forms a stair structure having two steps (treads) consisting of an upper step and a lower step.
  • the louver frame 16 includes a lower pedestal [lower base] 32 on the bottom of the engine compartment 23, an upper pedestal [upper base] 34 parallel to the lower pedestal 32, and an upper pedestal 34, a lower pedestal 32, and a front surface 24. Two adjacent trapezoidal end faces 38 are provided.
  • FIG. 3 shows a recess 33 formed on the back side of the hollow raised portion 31 (louver frame 16) of the staircase structure.
  • the recess 33 is formed in the wheel house 11 and communicates with the wheel house 11.
  • the lower pedestal 32 is larger than the upper pedestal 34 and has a wide trapezoidal shape.
  • the lower pedestal 32 has a front end and a rear end, and the rear end is in contact with the front surface 24 of the wheel guard 10.
  • the upper pedestal 34 is smaller than the lower pedestal 32 and has a wide trapezoidal shape.
  • the upper pedestal 34 also has a front end and a rear end, and the rear end is in contact with the front surface 24 of the wheel guard 10 several centimeters above the lower pedestal 32.
  • the upper pedestal 34 constitutes the upper part (upper stage) of the staircase structure and includes an upper part of the louver having three openings 40a. As shown in FIG. 4, the openings 40 a are arranged at equal intervals with an intermediate section [intermediate section] 42 (see FIG. 4) interposed therebetween. The three openings 40a are opened in the upper stage (tread surface) of the staircase structure.
  • the front portion of the upper pedestal 34 has a castle-like shape, and forms channels [channels] 44 (see FIG. 2) and ridges [ridges] 46 formed on the front surface 36 of the louver frame 16. is doing. The flow path 44 and the ridge 46 extend substantially vertically.
  • a rectangular protrusion 48 at the front portion of the upper pedestal 34 is formed in front of the intermediate portion 42 that partitions the opening 40a.
  • Each of the rectangular protrusions 48 is provided as a small upper base of the wedge-shaped ridge 46.
  • the inside of the ridge part 46 is hollow, and forms a part of the depression 31 described above on the wheel house 11 side (see FIG. 3).
  • each front surface of the ridge 46 has the same inclined surface on the surface defined by the front edge of the trapezoidal end surface 38.
  • an upper standing plate [upper riser plate] 50 that forms the rear surface of the flow path 44 is provided between the upper step (tread surface) and the lower step (tread surface) of the staircase structure.
  • Each upper standing plate 50 is parallel to the front surface 24 and is located behind the front end edge of the trapezoid side end surface 38.
  • the depth (in the horizontal direction) of each flow path 44 becomes deeper downward.
  • Each flow path 44 extends only a few centimeters above the lower pedestal 32. That is, the flow path 44 is shorter than the ridge portion 46 (extending to the lower pedestal 32), and the surface of the flow path 44 forms a steeper inclined surface than the ridge portion 46 on the front surface 36.
  • each flow path 44 is provided with a louver lower part having three openings 40b.
  • the three openings 40b are opened on the lower stage (tread surface) of the staircase structure.
  • a lower standing plate 51 is provided between the lower stage (tread) and the bottom of the engine compartment 23 on the front side of each flow path 44.
  • the louver frame 16 forms a two-tread vent structure that allows communication between the interior of the engine compartment 23 and the interior of the wheel house 11 to allow air flow from the former to the latter.
  • the two-step tread structure forms the above-described staircase structure, and the openings 40a and 40b for communicating the inside of the engine compartment 23 and the inside of the wheel house 11 are provided at the upper and lower steps (treads) of the staircase structure. ). That is, the openings 40a and 40b are open horizontally and parallel to each other and vertically upward.
  • Drag coefficient is a common dimensionless metric that is used to quantify the resistance (drag) of a moving vehicle.
  • FIG. 5 shows a vortex flow in a wheel house provided with a normal wheel guard 10 '.
  • FIG. 5 shows the wheel sides 52 'and the front lower surface 60' and rear surface 62 'of the wheel guard 10'.
  • a strong vortex is formed not only on the wheel side surfaces 52 'but also on the front lower surface 60' and the rear surface 62 'of the wheel guard 10'. This strong vortex formation is also shown in more detail in FIG.
  • the wheel guard 10 of the present embodiment shown in FIGS. 1 to 4 mainly suppresses the vortex generated on the front lower surface 60 '.
  • FIG. 6 shows a relative pressure distribution in a wheel house provided with a normal wheel guard 10 '.
  • the pressure in the vicinity of the wheel guard 10 ′ away from the front lower surface 60 ′ and the rear surface 62 ′ is uniformly slightly higher, and the other vicinity of the wheel guard 10 ′ (that is, the front The pressure in the region near the lower surface 60 'and the rear surface 62') is significantly increased.
  • the local pressure increase at the front lower surface 60 ' will be described with reference to FIG.
  • FIG. 7 shows an engine compartment 23 ′, a wheel rotation shaft 25 ′, and a deflector 14 ′ in addition to a normal wheel guard 10 ′ and the like.
  • the bottom of the engine compartment 23 ' is located below the rotary shaft 25'.
  • the wheel guard 10 ' forms a concentric circular arc with the wheel and is in contact with the bottom of the engine compartment 23'. Since the arc center of the wheel arch (that is, the rotation axis 25 ') is located above the bottom surface of the engine compartment 23', the wheel guard 10 'and the engine compartment 23' are connected at an acute angle at a corner 80 '. To do.
  • the shape of the corner portion 80 ′ causes a vortex (see FIG. 5) and a local pressure increase region (see FIG. 6) on the front lower surface 60 ′. Further, the deflector 14 'is also suspended forward by a few centimeters from the corner 80' as usual.
  • the deflector 14 is suspended at a right angle to the bottom of the engine compartment 23 just before the louver frame 16 (i.e., closer to the wheel house 11) than the conventional deflector 14 'shown in FIG.
  • the airflow is received more efficiently, and the airflow is further deflected away from the wheel house 11.
  • the advantage of the entire staircase structure of the louver frame 16 is easy to understand when viewed from the side.
  • the sharp corner 80 'formed by the conventional wheel guard 10' and the bottom of the engine compartment 23 ' is the main factor that generates a vortex on the front lower surface 60' (see FIG. 7).
  • the shape of this portion together with the deflector 14 not only the vortex flow is reduced, but also the pressure vibration in the wheel house 11 is reduced, and the vortex flow in the wheel house 11 and the air flow under the floor are reduced. It is also possible to improve the interference. Accordingly, an increase in pressure in the wheel house 11 can be suppressed.
  • the drag coefficient in the entire vehicle is reduced by the wheel guard 10, and aerodynamics and fuel efficiency are improved.
  • the drag coefficient of the entire vehicle was reduced by 0.2%.
  • the recess 33 is formed in front of the wheel house 11 by the staircase structure of the louver frame 16 (the front portion of the wheel house 11 is partially expanded), so that the air flow in the wheel house 11 is stagnated. Without underflowing (without increasing pressure). This flow is smoothly caused to flow backward by the air flow deflected by the deflector 14, and the generation of vortex is suppressed.
  • a streamline 82 indicates the airflow flowing from the engine compartment 23 into the wheel house 11 through the openings 40a and 40b. Due to the pressure reduction in front of the wheel house 11 by the staircase structure of the louver frame 16 and the deflector 14, a low pressure region is formed behind the deflector 14. The air in the engine compartment 23 is normally stagnant and high pressure, but the air flow from the engine compartment 23 (high pressure) to the rear region (low pressure) of the deflector 14 is increased to reduce the pressure in the engine compartment 23. . As a result, the air flow rate passing through the radiator is increased, and the heat dissipation performance of the radiator is improved. The change in cooling airflow passing through the radiator was measured by computer simulation and cavity experiment, and increased by 10.5%.
  • the louver frame 16 has a staircase structure, a front surface 24 and a flow path 44 extending in a substantially vertical direction are formed in the vicinity of the openings 40a and 40b. For this reason, the airflow is smoothly discharged downward from the openings 40 a and 40 b to the wheel house 11 along the front surface 24 and the flow path 44. It can be said that the air flow deflected by the deflector 14 is smoothly caused to flow backward by the downward air flow.
  • the air flow 90 discharged to the wheel house 11 through the louver frame 16 is clearly shown in FIG.
  • the air flow 90 flows into the engine compartment 23 from the front air intake 92 and is discharged to the wheel house 11 through the louver frame 16.
  • the staircase structure of the louver frame 16 suppresses mud splash and water splash by the air flow discharged downward from the openings 40a and 40b, so that road noise and splash Noise [splash noise] is also reduced.
  • This improvement in aerodynamics and engine cooling is between improved aerodynamics and engine cooling (increased staircase structure and opening size) and structural integrity (smaller opening increases robustness).
  • This is caused by the form of the louver frame 16 determined by the optimal tradeoff.
  • the total height of the louver frame 16 is about 530 mm
  • the lengths ⁇ widths of the openings 40a and 40b are about 45 mm ⁇ about 15 mm
  • the widths of the intermediate portions 42 of the upper base 34 are about 20 mm.
  • the 10.5% increase in cooling air flow and 0.2% decrease in drag coefficient described above were obtained experimentally using the model of the above dimensions.
  • a wheel guard 10 that allows an air flow between the engine compartment 23 of the vehicle and the wheel house 11 is provided. Since the air in the engine compartment 23 is always stagnant with the air in the wheel house 11 and has a high pressure, the air flow from the engine compartment 23 to the wheel house 11 through the openings 40a and 40b is increased to increase the pressure. Lower and increase the flow of cooling air through the radiator.
  • This effect is particularly noticeable when the front pressure of the wheel guard 10 is high when the vehicle is traveling, and the effect of increasing the air flow rate passing through the radiator becomes more pronounced.
  • the wheel guard 10 includes a plurality of openings 40a and 40b that allow an air flow between the engine compartment 23 and the wheel house 11 as in the present embodiment, air from the engine compartment 23 to the wheel house 11 is provided.
  • the flow rate further increases. Therefore, the above-described effect can be obtained more reliably.
  • the wheel guard 10 of the present embodiment further includes a raised portion 31 that forms a recess 33 communicating with the main volume portion [main volume] of the wheel house 11 at the front portion thereof (that is, the main volume portion has a wheel. Contain).
  • the wheel does not reach the recess and is completely contained within the main volume.
  • the raised portion 31 that is, the depression 33 on the back side thereof
  • the raised portion 31 reduces the pressure vibration in the wheel house 11, and also improves the interference between the vortex flow in the wheel house 11 and the air flow under the floor. Accordingly, an increase in pressure in the wheel house 11 can be suppressed.
  • the drag coefficient in the entire vehicle is reduced by the wheel guard 10, and aerodynamics and fuel efficiency are improved.
  • the drag coefficient in the entire vehicle is reduced by the wheel guard 10, and aerodynamics and fuel efficiency are improved.
  • turbulence and eddy currents are generated in the wheel house 11 to increase the drag and deteriorate the drag as a whole vehicle.
  • the raised portion 31 the depression 33
  • the structural strength of the raised portion 31 is improved, and the raised portion 31 is optimal for improving aerodynamics. Can be placed in the area.
  • the low pressure in the wheel house 11 also contributes to the formation of the raised portion 31 (the depression 33)). Therefore, the pressure in the engine compartment 23 can be greatly reduced, and the engine cooling effect can be further improved.
  • the raised portion 31 of the wheel guard 10 includes at least one staircase structure having an upper stage and a lower stage, so that road noise can be reduced. Moreover, since the upper stage and the lower stage are horizontal, it is possible to minimize the passage of mud and water from the wheel house 11 through the openings 40a and 40b.

Abstract

A wheel guard for a vehicle is disposed as the inner wall of a wheel well. The wheel guard is provided with: a front section which has an opening which permits an air flow between the engine compartment of the vehicle and the wheel well; and a protrusion section which is provided on the front section and which forms a recess connecting to the wheel well. At least one opening is provided in the protrusion section. This wheel guard forms an air flow from the engine compartment to the wheel well, is capable of reducing a swirl in the wheel well, and is capable of improving the aerodynamic properties of the vehicle. Also, the air flow is capable of improving the cooling of the engine.

Description

車両用ホイールガードVehicle wheel guard
 本発明は、車両用ホイールガード[wheel guard for a vehicle]に関し、特に、エンジン冷却や車両に作用する抗力などを改善することのできる車両用ホイールガードに関する。 The present invention relates to a wheel guard for vehicles [wheel guard for a vehicle], and more particularly to a vehicle wheel guard that can improve engine cooling, drag acting on the vehicle, and the like.
 燃料費が高騰し、環境により優しい車両への要求が以前より強くなるにつれて、燃費[fuel efficiency]向上がより一層望まれるようになってきている。車両を高速走行させるのに必要な力の60%は抗力などの空気力学的影響に打ち勝つために用いられているので、エアロダイナミクス[aerodynamics](空力性能[aerodynamic performance])の向上は燃費向上に直接的に寄与する。このため、車両のエアロダイナミクスを向上させる種々の技術が提案されている。 As fuel costs soar and demand for environmentally friendly vehicles becomes stronger than before, improvements in fuel efficiency have become more desirable. 60% of the force required to drive a vehicle at high speed is used to overcome drag and other aerodynamic effects, so improving aerodynamics (aerodynamic performance) improves fuel economy Contribute directly. For this reason, various techniques for improving the aerodynamics of the vehicle have been proposed.
 エアロダイナミクスは、抗力や揚力などの車両の動きに対する空気力学的な主たる力を低減して、車両を動かす力を増加させることで向上される。揚力や抗力は、物体の動きに対して作用する力の成分である。揚力は、接近する流れ方向に対して直角な力の成分である。抗力は、相対的流速の方向に作用する力であり、車両のエアロダイナミクスの場合、車両速度と反対方向に作用する。抗力は、速度と共に増加し、また、物体の前後部の差圧に伴って増加するので、物体の形状に高く依存する。 Aerodynamics is improved by reducing the main aerodynamic forces against vehicle movement such as drag and lift, and increasing the power to move the vehicle. Lift and drag are components of force acting on the movement of an object. Lift is a component of force perpendicular to the approaching flow direction. The drag is a force acting in the direction of the relative flow velocity, and acts in a direction opposite to the vehicle speed in the case of aerodynamics of the vehicle. Drag increases with speed and increases with the differential pressure across the object, so it is highly dependent on the shape of the object.
 本発明の目的は、抗力を減らして燃費を向上させるように車両形状を最適化する車両用ホイールガードを提供することにある。 An object of the present invention is to provide a vehicle wheel guard that optimizes a vehicle shape so as to reduce drag and improve fuel efficiency.
 本発明の特徴は、ホイールハウスの内壁として配される、車両用ホイールガードであって、前記車両のエンジンコンパートメントと前記ホイールハウスとの間の空気流れを許容する少なくとも一つの開口部を有する、前記車両の前部端に向けて配された前部と、前記ホイールハウスと連通する窪みを形成する、前記前部に設けられた隆起部とを備えており、前記少なくとも一つの開口部が、前記隆起部に開口されている、ホイールガードを提供する。 A feature of the present invention is a vehicle wheel guard disposed as an inner wall of a wheel house, comprising at least one opening that allows air flow between the engine compartment of the vehicle and the wheel house. A front portion disposed toward a front end of the vehicle, and a raised portion provided in the front portion that forms a recess communicating with the wheel house, wherein the at least one opening is the A wheel guard is provided that is open to the ridge.
ホイールガードの実施形態及びフロントアンダーパネルの平面図である。It is a top view of an embodiment of a wheel guard and a front under panel. エンジンコンパートメントから見た、前記ホイールガードの隆起部を示す斜視図である。It is a perspective view which shows the protruding part of the said wheel guard seen from the engine compartment. ホイールハウスから見た、前記隆起部を示す斜視図である。It is a perspective view which shows the said protruding part seen from the wheel house. 前記隆起部を示す平面図である。It is a top view which shows the said protruding part. 従来のホイールガードによる渦分布を説明する斜視図である。It is a perspective view explaining vortex distribution by the conventional wheel guard. 従来のホイールガードによる圧力分布を説明する側面図である。It is a side view explaining the pressure distribution by the conventional wheel guard. 従来のホイールガードを車両前部と共に示す概略側面図である。It is a schematic side view which shows the conventional wheel guard with a vehicle front part. 図1~図4に示されたホイールガードを車両前部と共に示す概略側面図である。FIG. 5 is a schematic side view showing the wheel guard shown in FIGS. 1 to 4 together with the front portion of the vehicle. 図1~図4に示されたホイールガードを備えた車両の底部を示す斜視図である。FIG. 5 is a perspective view showing a bottom portion of a vehicle including the wheel guard shown in FIGS. 1 to 4;
 以下に、図面を参照しつつ車両用ホイールガードの一実施形態を説明する。図1~3は、本実施形態のホイールガード(ホイールハウス内張[wheel well liner]やホイールハウス内板[wheel well inner panel]とも言われる)10及びアンダーパネルの全体配置を示している。なお、本実施形態では、車両の右前部を説明するが、左前部も対称に同様の構造を有している。 Hereinafter, an embodiment of a vehicle wheel guard will be described with reference to the drawings. 1 to 3 show the overall arrangement of a wheel guard (also referred to as a wheel house lining and a wheel house inner panel) 10 and an under panel according to the present embodiment. In the present embodiment, the right front portion of the vehicle will be described, but the left front portion also has a similar structure symmetrically.
 ホイールガード10は、ホイールハウス[wheel well]11を形成する車両部品であり、車両前部[front end](エンジンコンパートメント23)とホイールハウス11とを仕切っている。その主たる目的は、タイヤの回転によって砂、泥、石や路面上の水などが飛び散るのを防止することにある。 The wheel guard 10 is a vehicle part that forms a wheel house 11, and partitions the vehicle front part [front end] (engine compartment 23) and the wheel house 11. Its main purpose is to prevent sand, mud, stones and water on the road surface from splashing due to the rotation of the tire.
 ラジエータは、内燃機関の温度を下げるために用いられる。これは、通常、エンジンブロック内に液体(エンジン冷却水[engine coolant])を通過させて液体を加熱させた(エンジンを冷却した)後、ラジエータを通過させて大気に液体の熱を放出させることで行われる。液体は再びエンジンブロックに送られ、閉じた循環路内を流れてエンジン冷却を続ける。本実施形態のホイールガード10の位置及び向きについて、図1を参照しつつ説明する。ホイールガード10は、ルーバーフレーム[louver frame]16を備えている。ルーバーフレーム16は、上部ルーバー(上部開口[upper openings])18及び下部ルーバー(下部開口)19を有している。ホイールガード10は、車両の前輪に合わせたアーチを形成している。車両は、ホイールガード10の前方に配された、ホイールハウス11内への空気流の流入を防ぐデフレクタ14も備えている。 The radiator is used to lower the temperature of the internal combustion engine. This usually involves passing a liquid (engine coolant) through the engine block to heat the liquid (cooling the engine) and then passing it through a radiator to release the liquid heat to the atmosphere. Done in The liquid is again sent to the engine block and flows through the closed circuit to continue cooling the engine. The position and orientation of the wheel guard 10 of this embodiment will be described with reference to FIG. The wheel guard 10 includes a louver frame 16. The louver frame 16 has an upper louver (upper opening) 18 and a lower louver (lower opening) 19. The wheel guard 10 forms an arch that matches the front wheel of the vehicle. The vehicle also includes a deflector 14 that is disposed in front of the wheel guard 10 and prevents inflow of airflow into the wheel house 11.
 エンジンコンパートメント23は、二つの前輪の間に形成されている。空気流90は、前部エアインテーク92に流入し(図9参照)、ラジエータ(図示せず)を通過してエンジンコンパートメント23内に流入する。ラジエータは、エンジンの前方で、かつ、前部エアインテーク92のすぐ後に配置されている。前部エアインテーク92から流入した空気流によって、ラジエータでの放熱が促進される。ラジエータを通過する空気流量が増えれば、冷却性能が向上する。 The engine compartment 23 is formed between two front wheels. The air flow 90 flows into the front air intake 92 (see FIG. 9), passes through a radiator (not shown), and flows into the engine compartment 23. The radiator is located in front of the engine and just behind the front air intake 92. Due to the air flow flowing in from the front air intake 92, heat dissipation in the radiator is promoted. If the flow rate of air passing through the radiator is increased, the cooling performance is improved.
 ルーバーフレーム16は、ホイールガード10の前面24上に突設されている。図1に示されるように、エンジンコンパートメント23に近いホイールガード10の内側20の半径は、車両外表面の一部を形成するホイールガード10の外側22の半径よりも小さい。従って、ホイールガード10の前面24は、車輪の回転軸25に対して傾いている曲面である。ルーバーフレーム16は、前面24の曲面に沿って構成されている。以下、車輪の回転軸25は、車両の横軸25とも称することとし、横軸25と直交する、車両の前端部から後端部への軸は、縦軸27と称することとする。 The louver frame 16 protrudes from the front surface 24 of the wheel guard 10. As shown in FIG. 1, the radius of the inner side 20 of the wheel guard 10 near the engine compartment 23 is smaller than the radius of the outer side 22 of the wheel guard 10 that forms part of the vehicle outer surface. Therefore, the front surface 24 of the wheel guard 10 is a curved surface inclined with respect to the rotating shaft 25 of the wheel. The louver frame 16 is configured along the curved surface of the front surface 24. Hereinafter, the wheel rotation shaft 25 is also referred to as a horizontal axis 25 of the vehicle, and an axis from the front end portion to the rear end portion of the vehicle that is orthogonal to the horizontal axis 25 is referred to as a vertical axis 27.
 デフレクタ14は、ホイールガード10の直前で、エンジンコンパートメント23の底面から吊り下げられており、横軸25に対して平行に配されている。従って、デフレクタ14は、ルーバーフレーム16の前面の最前部における接線上にある。ルーバーフレーム16は、エンジンコンパートメント23に近い内側端と車両外表面に近い外側端とを有している。図8を参照して追って説明する空力的な目的のために、デフレクタ14の長さは、横軸25に沿ったルーバーフレーム16の長さよりも長くされている。車両の前後方向において、デフレクタ14の内側端は、ルーバーフレーム16の内側端の前方に配され、かつ、ルーバーフレーム16の内側端とは離間されている。また、車両の横方向において、デフレクタ14の外側端は、ルーバーフレーム16の外側端より数センチメートル延ばされており、車両外表面のホイールアーチに近づけられている。 The deflector 14 is suspended from the bottom surface of the engine compartment 23 immediately before the wheel guard 10 and is arranged in parallel to the horizontal axis 25. Therefore, the deflector 14 is on a tangent line at the forefront portion of the front surface of the louver frame 16. The louver frame 16 has an inner end near the engine compartment 23 and an outer end near the vehicle outer surface. For the aerodynamic purpose described later with reference to FIG. 8, the length of the deflector 14 is made longer than the length of the louver frame 16 along the horizontal axis 25. In the longitudinal direction of the vehicle, the inner end of the deflector 14 is disposed in front of the inner end of the louver frame 16 and is separated from the inner end of the louver frame 16. Further, in the lateral direction of the vehicle, the outer end of the deflector 14 extends several centimeters from the outer end of the louver frame 16 and is brought close to the wheel arch on the outer surface of the vehicle.
 図2及び図3に示されるように、ルーバーフレーム16は、ホイールガード10の前面24と一体的に成形されている。ルーバーフレーム16のエンジンコンパートメント23側に、台形の中空の隆起部31を形成している。隆起部31(ルーバーフレーム16)の前面36は、ホイールガード10の前面24の曲面に沿って構成されている。ルーバーフレーム16は、上段及び下段からなる二つの段(踏面[treads])を備えた階段構造[stair structure]を形成している。また、ルーバーフレーム16は、エンジンコンパートメント23の底部上の下台座[lower base]32、下台座32と平行な上台座[upper base]34、及び、上台座34と下台座32と前面24とに隣接する二つの台形側端面38を有している。図3は、階段構造の中空の隆起部31(ルーバーフレーム16)の裏側に形成される窪み[alcove]33を示している。窪み33は、ホイールハウス11内に形成され、ホイールハウス11と連通している。 2 and 3, the louver frame 16 is formed integrally with the front surface 24 of the wheel guard 10. As shown in FIG. A trapezoidal hollow raised portion 31 is formed on the louver frame 16 on the engine compartment 23 side. The front surface 36 of the raised portion 31 (louver frame 16) is configured along the curved surface of the front surface 24 of the wheel guard 10. The louver frame 16 forms a stair structure having two steps (treads) consisting of an upper step and a lower step. The louver frame 16 includes a lower pedestal [lower base] 32 on the bottom of the engine compartment 23, an upper pedestal [upper base] 34 parallel to the lower pedestal 32, and an upper pedestal 34, a lower pedestal 32, and a front surface 24. Two adjacent trapezoidal end faces 38 are provided. FIG. 3 shows a recess 33 formed on the back side of the hollow raised portion 31 (louver frame 16) of the staircase structure. The recess 33 is formed in the wheel house 11 and communicates with the wheel house 11.
 下台座32は、上台座34に比べて大きく、横に広い台形形状を有している。下台座32は、前端及び後端を有しており、後端は、ホイールガード10の前面24と接している。上台座34は、下台座32に比べて小さく、横に広い台形形状を有している。上台座34も、前端及び後端を有しており、後端は、下台座32の数センチメートル上方でホイールガード10の前面24と接している。 The lower pedestal 32 is larger than the upper pedestal 34 and has a wide trapezoidal shape. The lower pedestal 32 has a front end and a rear end, and the rear end is in contact with the front surface 24 of the wheel guard 10. The upper pedestal 34 is smaller than the lower pedestal 32 and has a wide trapezoidal shape. The upper pedestal 34 also has a front end and a rear end, and the rear end is in contact with the front surface 24 of the wheel guard 10 several centimeters above the lower pedestal 32.
 上台座34は、階段構造の上部(上段)を構成し、三つの開口部40aを有するルーバー上部を備えている。図4に示されるように、開口部40aは、それらの間に中間部[intermediate sections]42(図4参照)を介在させて等間隔に配置されている。三つの開口部40aは、階段構造の上段(踏面)に開口されている。上台座34の前部は、城郭風の形態を有しており、流路[channels]44(図2参照)とルーバーフレーム16の前面36上に形成された尾根部[ridges]46とを形成している。流路44及び尾根部46は、ほぼ垂直に延在されている。上台座34の前部の方形突出部[rectangular protrusions]48は、開口部40aを仕切っている中間部42の前方に形成されている。方形突出部48は、くさび状の尾根部46の小さな上部台座としてそれぞれ設けられている。尾根部46の内部は中空で、ホイールハウス11側で上述した窪み31の一部を形成する(図3参照)。構造的完全性[structural integrity]のために、尾根部46のそれぞれの前面は、台形側端面38の前端縁によって定義される面上に、同一の傾斜面を有している。 The upper pedestal 34 constitutes the upper part (upper stage) of the staircase structure and includes an upper part of the louver having three openings 40a. As shown in FIG. 4, the openings 40 a are arranged at equal intervals with an intermediate section [intermediate section] 42 (see FIG. 4) interposed therebetween. The three openings 40a are opened in the upper stage (tread surface) of the staircase structure. The front portion of the upper pedestal 34 has a castle-like shape, and forms channels [channels] 44 (see FIG. 2) and ridges [ridges] 46 formed on the front surface 36 of the louver frame 16. is doing. The flow path 44 and the ridge 46 extend substantially vertically. A rectangular protrusion 48 at the front portion of the upper pedestal 34 is formed in front of the intermediate portion 42 that partitions the opening 40a. Each of the rectangular protrusions 48 is provided as a small upper base of the wedge-shaped ridge 46. The inside of the ridge part 46 is hollow, and forms a part of the depression 31 described above on the wheel house 11 side (see FIG. 3). For structural integrity, each front surface of the ridge 46 has the same inclined surface on the surface defined by the front edge of the trapezoidal end surface 38.
 各流路44毎に、階段構造の上段(踏面)及び下段(踏面)の間に、流路44の後面を形成する上部立設板[upper riser plate]50が設けられている。各上部立設板50は、前面24と平行で、台形側端面38の前端縁より後方に位置している。各流路44の(水平方向の)深さは、下方に向けて深くなる。各流路44は、下台座32の数センチメートル上方までしか延在されていない。即ち、流路44は(下台座32まで延在されている)尾根部46より短く、流路44の表面は前面36上の尾根部46よりも急峻な傾斜面を形成している。 For each flow path 44, an upper standing plate [upper riser plate] 50 that forms the rear surface of the flow path 44 is provided between the upper step (tread surface) and the lower step (tread surface) of the staircase structure. Each upper standing plate 50 is parallel to the front surface 24 and is located behind the front end edge of the trapezoid side end surface 38. The depth (in the horizontal direction) of each flow path 44 becomes deeper downward. Each flow path 44 extends only a few centimeters above the lower pedestal 32. That is, the flow path 44 is shorter than the ridge portion 46 (extending to the lower pedestal 32), and the surface of the flow path 44 forms a steeper inclined surface than the ridge portion 46 on the front surface 36.
 各流路44の下端には、三つの開口部40bを有するルーバー下部が設けられている。三つの開口部40bは、階段構造の下段(踏面)上に開口されている。各流路44の前側には、下段(踏面)とエンジンコンパートメント23の底部との間に下部立設板51が設けられている。 The lower part of each flow path 44 is provided with a louver lower part having three openings 40b. The three openings 40b are opened on the lower stage (tread surface) of the staircase structure. A lower standing plate 51 is provided between the lower stage (tread) and the bottom of the engine compartment 23 on the front side of each flow path 44.
 従って、ルーバーフレーム16は、エンジンコンパートメント23の内部とホイールハウス11の内部とを連通させて前者から後者への空気流を許容する、二踏面の通気口構造[two-tread vent structure]を形成している。また、二踏面の通気口構造は、上述した階段構造を形成しており、エンジンコンパートメント23の内部とホイールハウス11の内部とを連通させる開口部40a及び40bは、階段構造の上段及び下段(踏面)に形成されている。即ち、開口部40a及び40bは、水平、かつ、互いに平行で、鉛直上方に向けて開口されている。 Accordingly, the louver frame 16 forms a two-tread vent structure that allows communication between the interior of the engine compartment 23 and the interior of the wheel house 11 to allow air flow from the former to the latter. ing. Further, the two-step tread structure forms the above-described staircase structure, and the openings 40a and 40b for communicating the inside of the engine compartment 23 and the inside of the wheel house 11 are provided at the upper and lower steps (treads) of the staircase structure. ). That is, the openings 40a and 40b are open horizontally and parallel to each other and vertically upward.
 車輪が回転することで、すぐに剥離する空気流が生じ、この剥離した空気流が車輪後方に大きな伴流[wake]を生じさせる。このような伴流(乱流[turbulence])や、大きな抗力及び揚力を生じさせる強い渦流[vortices]が生じると、車両のエアロダイナミクスを悪化させ、結果として燃費を悪化させる。従って、車輪及びホイールハウス11の構成は、車両のエアロダイナミクスにとって重要であり、車両全体での抗力係数や揚力係数に対する車輪の寄与度は、常に大きい。抗力係数は、動いている車両の抵抗(抗力)を定量化するのに用いられる、一般的な無次元の測定基準[common dimensionless metric]である。 Rotating the wheel creates an air flow that immediately delaminates, and this delaminated air flow creates a large wake behind the wheel. Such wakes (turbulence) and strong vortices that produce large drag and lift will worsen the aerodynamics of the vehicle and consequently fuel consumption. Therefore, the configuration of the wheel and the wheel house 11 is important for the aerodynamics of the vehicle, and the contribution of the wheel to the drag coefficient and the lift coefficient in the entire vehicle is always large. Drag coefficient is a common dimensionless metric that is used to quantify the resistance (drag) of a moving vehicle.
 通常のホイールガード10’を備えたホイールハウスにおける渦流を図5に示す。図5は、車輪両側面52’、並びに、ホイールガード10’の前方下部表面60’及び後面62’を示している。車輪両側面52’上だけでなく、ホイールガード10’の前方下部表面60’及び後面62’上にも、強い渦流が形成されている。この強い渦流の形成は、図7にもより詳しく示されている。図1~図4に示される本実施形態のホイールガード10は、主として、この前方下部表面60’に生じる渦流を抑制する。 FIG. 5 shows a vortex flow in a wheel house provided with a normal wheel guard 10 '. FIG. 5 shows the wheel sides 52 'and the front lower surface 60' and rear surface 62 'of the wheel guard 10'. A strong vortex is formed not only on the wheel side surfaces 52 'but also on the front lower surface 60' and the rear surface 62 'of the wheel guard 10'. This strong vortex formation is also shown in more detail in FIG. The wheel guard 10 of the present embodiment shown in FIGS. 1 to 4 mainly suppresses the vortex generated on the front lower surface 60 '.
 通常のホイールガード10’を備えたホイールハウスにおける相対的な圧力分布を図6に示す。ホイールハウス内において、前方下部表面60’及び後面62’から離れたホイールガード10’の近傍領域の圧力は一様にやや高くなっており、それ以外のホイールガード10’の近傍領域(即ち、前方下部表面60’及び後面62’に近い領域)の圧力は著しく増加している。この前方下部表面60’における局所的な圧力増加について、図7を参照しつつ説明する。 FIG. 6 shows a relative pressure distribution in a wheel house provided with a normal wheel guard 10 '. In the wheel house, the pressure in the vicinity of the wheel guard 10 ′ away from the front lower surface 60 ′ and the rear surface 62 ′ is uniformly slightly higher, and the other vicinity of the wheel guard 10 ′ (that is, the front The pressure in the region near the lower surface 60 'and the rear surface 62') is significantly increased. The local pressure increase at the front lower surface 60 'will be described with reference to FIG.
 図7は、通常のホイールガード10’等に加えて、エンジンコンパートメント23’、車輪の回転軸25’及びデフレクタ14’を示している。エンジンコンパートメント23’の底部は、通常通り、回転軸25’より下方に位置している。ホイールガード10’は、車輪と同心円状の円弧を形成しており、エンジンコンパートメント23’の底部と接している。ホイールアーチの円弧中心(即ち、回転軸25’)はエンジンコンパートメント23’の底面より上方に位置するので、ホイールガード10’とエンジンコンパートメント23’とは、角部[corner]80’で鋭角に接続する。そして、この角部80’の形状が、前方下部表面60’における渦流(図5参照)や局所的な圧力増加領域(図6参照)の原因となる。また、デフレクタ14’も、通常通り、角部80’より数センチメートル前方に吊り下げられている。 FIG. 7 shows an engine compartment 23 ′, a wheel rotation shaft 25 ′, and a deflector 14 ′ in addition to a normal wheel guard 10 ′ and the like. As usual, the bottom of the engine compartment 23 'is located below the rotary shaft 25'. The wheel guard 10 'forms a concentric circular arc with the wheel and is in contact with the bottom of the engine compartment 23'. Since the arc center of the wheel arch (that is, the rotation axis 25 ') is located above the bottom surface of the engine compartment 23', the wheel guard 10 'and the engine compartment 23' are connected at an acute angle at a corner 80 '. To do. The shape of the corner portion 80 ′ causes a vortex (see FIG. 5) and a local pressure increase region (see FIG. 6) on the front lower surface 60 ′. Further, the deflector 14 'is also suspended forward by a few centimeters from the corner 80' as usual.
 これらの二つの特性、即ち、ホイールガード10’とデフレクタ14’との間の距離、及び、鋭角に形成された角部80’は、渦流を発生させやすい配置[geometry prone to]であり、空気流の剥離が促進される。その結果として生じる回転する車輪周りのホイールハウス内の空気流の形態は、前方下部表面60’及び後面62’に高圧領域を生じさせる不安定で強い渦流が特徴である。従って、上記二つの特性は、抗力を増加させ、実質的に燃費を悪化させる。図1~図4に示される本実施形態のホイールガード10によるこの問題の解決について、図8を参照しつつ説明する。 These two characteristics, that is, the distance between the wheel guard 10 'and the deflector 14' and the corner 80 'formed at an acute angle, are arrangements that tend to generate eddy currents [geometry prone to] Stream separation is promoted. The resulting form of air flow in the wheelhouse around the rotating wheel is characterized by unstable and strong vortices that create high pressure regions on the front lower surface 60 'and the rear surface 62'. Therefore, the above two characteristics increase the drag and substantially deteriorate the fuel consumption. The solution of this problem by the wheel guard 10 of the present embodiment shown in FIGS. 1 to 4 will be described with reference to FIG.
 図8に示されるように、本実施形態のホイールガード10によれば、図7に示されるホイールガード10’に対する利点は明らかである。デフレクタ14は、ルーバーフレーム16の直前に(即ち、ホイールハウス11により近くに)、エンジンコンパートメント23の底部に対して直角に吊り下げられており、図7に示される従来のデフレクタ14’よりも、より効率的に空気流を受け止め、かつ、空気流をより偏向させてホイールハウス11から遠ざける。 As shown in FIG. 8, according to the wheel guard 10 of this embodiment, advantages over the wheel guard 10 'shown in FIG. 7 are obvious. The deflector 14 is suspended at a right angle to the bottom of the engine compartment 23 just before the louver frame 16 (i.e., closer to the wheel house 11) than the conventional deflector 14 'shown in FIG. The airflow is received more efficiently, and the airflow is further deflected away from the wheel house 11.
 図8に示されるように、ルーバーフレーム16の階段構造全体の利点は、側方から見ると分かりやすい。従来のホイールガード10’とエンジンコンパートメント23’の底部とによって形成される鋭角な角部80’は、前方下部表面60’に渦流を発生させる主要因である(図7参照)。この部分の形状を、デフレクタ14と共に最適化することで、渦流を減少させるだけでなく、ホイールハウス11内の圧力振動を低減し、かつ、ホイールハウス11内の渦流と床下の空気流との間の干渉を改善することもできる。従って、ホイールハウス11内の圧力増加を抑制することができる。このような空気流の状態の改善の結果、車両全体での抗力係数はホイールガード10によって低減され、エアロダイナミクス及び燃費が向上される。コンピュータシミュレーション及び空洞実験によって改良されたホイールガード10の効果を計測したところ、車両全体での抗力係数は0.2%低下した。 As shown in FIG. 8, the advantage of the entire staircase structure of the louver frame 16 is easy to understand when viewed from the side. The sharp corner 80 'formed by the conventional wheel guard 10' and the bottom of the engine compartment 23 'is the main factor that generates a vortex on the front lower surface 60' (see FIG. 7). By optimizing the shape of this portion together with the deflector 14, not only the vortex flow is reduced, but also the pressure vibration in the wheel house 11 is reduced, and the vortex flow in the wheel house 11 and the air flow under the floor are reduced. It is also possible to improve the interference. Accordingly, an increase in pressure in the wheel house 11 can be suppressed. As a result of the improvement of the air flow state, the drag coefficient in the entire vehicle is reduced by the wheel guard 10, and aerodynamics and fuel efficiency are improved. When the effect of the wheel guard 10 improved by computer simulation and cavity experiment was measured, the drag coefficient of the entire vehicle was reduced by 0.2%.
 換言すれば、ルーバーフレーム16の階段構造によってホイールハウス11の前方に窪み33が形成される(ホイールハウス11の前部が部分的に拡張される)ので、ホイールハウス11内の空気流は停滞せずに(圧力を増加させることなく)床下に流れる。この流れが、デフレクタ14によって偏向された空気流によって円滑に後方に流され、渦流の発生が抑制される。 In other words, the recess 33 is formed in front of the wheel house 11 by the staircase structure of the louver frame 16 (the front portion of the wheel house 11 is partially expanded), so that the air flow in the wheel house 11 is stagnated. Without underflowing (without increasing pressure). This flow is smoothly caused to flow backward by the air flow deflected by the deflector 14, and the generation of vortex is suppressed.
 改善された空気流に寄与するもう一つの要因は、図8に示される流線[streamline]82である。流線82は、エンジンコンパートメント23から開口部40a及び40bを通ってホイールハウス11に流入する空気流を示している。ルーバーフレーム16の階段構造とデフレクタ14とによるホイールハウス11前方の圧力低減によって、デフレクタ14の後方には低圧力領域が形成される。エンジンコンパートメント23内の空気は通常は停滞して高圧であるが、エンジンコンパートメント23(高圧)からデフレクタ14の後方領域(低圧)への空気流を増加させて、エンジンコンパートメント23内の圧力を低下させる。この結果、ラジエータを通過する空気流量が増加し、ラジエータの放熱性能が向上する。コンピュータシミュレーション及び空洞実験によってラジエータを通過する冷却空気流の変化を計測したところ、10.5%増加した。 Another factor contributing to the improved air flow is the streamline 82 shown in FIG. A streamline 82 indicates the airflow flowing from the engine compartment 23 into the wheel house 11 through the openings 40a and 40b. Due to the pressure reduction in front of the wheel house 11 by the staircase structure of the louver frame 16 and the deflector 14, a low pressure region is formed behind the deflector 14. The air in the engine compartment 23 is normally stagnant and high pressure, but the air flow from the engine compartment 23 (high pressure) to the rear region (low pressure) of the deflector 14 is increased to reduce the pressure in the engine compartment 23. . As a result, the air flow rate passing through the radiator is increased, and the heat dissipation performance of the radiator is improved. The change in cooling airflow passing through the radiator was measured by computer simulation and cavity experiment, and increased by 10.5%.
 また、このとき、開口部40a及び40bは水平に形成されている(上方に向けて開口されている)ので、ホイールハウス11に排出される空気流は下向きとなる。このため、ホイールハウス11内の空気流を床下へと円滑に排出させることができる。また、本実施形態では、ルーバーフレーム16が階段構造を有しているので、開口部40a及び40b近傍には、ほぼ鉛直方向に延在された前面24及び流路44が形成される。このため、空気流は、前面24及び流路44に沿って、開口部40a及び40bからホイールハウス11へと下向きに円滑に排出される。この下向きの空気流によって、デフレクタ14によって偏向された空気流が円滑に後方に流されるとも言える。 At this time, since the openings 40a and 40b are formed horizontally (opened upward), the air flow discharged to the wheel house 11 is directed downward. For this reason, the air flow in the wheel house 11 can be smoothly discharged under the floor. In the present embodiment, since the louver frame 16 has a staircase structure, a front surface 24 and a flow path 44 extending in a substantially vertical direction are formed in the vicinity of the openings 40a and 40b. For this reason, the airflow is smoothly discharged downward from the openings 40 a and 40 b to the wheel house 11 along the front surface 24 and the flow path 44. It can be said that the air flow deflected by the deflector 14 is smoothly caused to flow backward by the downward air flow.
 ルーバーフレーム16を通してホイールハウス11に排出される空気流90は、図9により明確に示されている。空気流90は、前部エアインテーク92からエンジンコンパートメント23内に流入し、ルーバーフレーム16を通してホイールハウス11に排出される。エアロダイナミクス及びエンジン冷却効果に加えて、ルーバーフレーム16の階段構造は、開口部40a及び40bから下向きに排出される空気流によって泥跳ねや水跳ねを抑制するので、ロードノイズ[road noise]やスプラッシュノイズ[splash noise]も低減する。 The air flow 90 discharged to the wheel house 11 through the louver frame 16 is clearly shown in FIG. The air flow 90 flows into the engine compartment 23 from the front air intake 92 and is discharged to the wheel house 11 through the louver frame 16. In addition to the aerodynamics and engine cooling effect, the staircase structure of the louver frame 16 suppresses mud splash and water splash by the air flow discharged downward from the openings 40a and 40b, so that road noise and splash Noise [splash noise] is also reduced.
 このようなエアロダイナミクスやエンジン冷却の改善は、エアロダイナミクス及びエンジン冷却の改善(階段構造及び開口部の大きさの増加)と構造的完全性(開口部が小さいほど堅牢性は増す)との間の最適なトレードオフで決定されたルーバーフレーム16の形態によってもたらされている。本実施形態では、ルーバーフレーム16の全高は約530mm、開口部40a及び40bそれぞれの長さ×幅は約45mm×約15mm、上台座34の中間部42それぞれの幅は約20mmである。上述した、冷却空気流の10.5%の増加と抗力係数の0.2%の低下は、上記寸法のモデルを用いて実験的に得られたものである。 This improvement in aerodynamics and engine cooling is between improved aerodynamics and engine cooling (increased staircase structure and opening size) and structural integrity (smaller opening increases robustness). This is caused by the form of the louver frame 16 determined by the optimal tradeoff. In this embodiment, the total height of the louver frame 16 is about 530 mm, the lengths × widths of the openings 40a and 40b are about 45 mm × about 15 mm, and the widths of the intermediate portions 42 of the upper base 34 are about 20 mm. The 10.5% increase in cooling air flow and 0.2% decrease in drag coefficient described above were obtained experimentally using the model of the above dimensions.
 本実施形態では、エンジン冷却を改善するために、車両のエンジンコンパートメント23とホイールハウス11との間の空気流を許容するホイールガード10が設けられている。エンジンコンパートメント23内の空気は、ホイールハウス11内の空気に対して常に停滞して高圧であるので、開口部40a及び40bを通してエンジンコンパートメント23からホイールハウス11への空気流を増加させて圧力を大きく下げて、ラジエータを通過する冷却空気流を増加させる。 In this embodiment, in order to improve engine cooling, a wheel guard 10 that allows an air flow between the engine compartment 23 of the vehicle and the wheel house 11 is provided. Since the air in the engine compartment 23 is always stagnant with the air in the wheel house 11 and has a high pressure, the air flow from the engine compartment 23 to the wheel house 11 through the openings 40a and 40b is increased to increase the pressure. Lower and increase the flow of cooling air through the radiator.
 この効果は車両走行時にホイールガード10の前部の圧力が高くなっている場合に特に顕著であり、ラジエータを通過する空気流量増加による効果はより顕著になる。 This effect is particularly noticeable when the front pressure of the wheel guard 10 is high when the vehicle is traveling, and the effect of increasing the air flow rate passing through the radiator becomes more pronounced.
 本実施形態のように、ホイールガード10が、エンジンコンパートメント23とホイールハウス11との間の空気流を許容する開口部40a及び40bを複数備えていると、エンジンコンパートメント23からホイールハウス11への空気流量がさらに増加する。従って、上述した効果がより確実に得られる。 When the wheel guard 10 includes a plurality of openings 40a and 40b that allow an air flow between the engine compartment 23 and the wheel house 11 as in the present embodiment, air from the engine compartment 23 to the wheel house 11 is provided. The flow rate further increases. Therefore, the above-described effect can be obtained more reliably.
 本実施形態のホイールガード10は、その前部に、ホイールハウス11の主容積部[main volume]と連通する窪み33を形成する隆起部31をさらに備えている(即ち、主容積部が車輪を収容する)。車輪は、窪みに届くことはなく、主容積部内に完全に収容される。隆起部31(即ち、その裏側の窪み33)によって、ホイールハウス11内前部の渦流が形成されやすい形状が排除され、渦流が低減される。また、隆起部31(窪み33)によって、ホイールハウス11内の圧力振動が低減され、かつ、ホイールハウス11内の渦流と床下の空気流との間の干渉も改善される。従って、ホイールハウス11内の圧力増加を抑制することができる。このような空気流の状態の改善の結果、車両全体での抗力係数はホイールガード10によって低減され、エアロダイナミクス及び燃費が向上される。典型的には、車輪周りの空気流の剥離のせいで、ホイールハウス11内には乱流や渦流が生じて抗力を大きくし、車両全体としての抗力を悪化させる。本実施形態では、隆起部31(窪み33)がホイールガード10と一体的に形成されているので、隆起部31の構造的強度が改善され、隆起部31をエアロダイナミクスを改善するのに最適な領域に配置することができる。 The wheel guard 10 of the present embodiment further includes a raised portion 31 that forms a recess 33 communicating with the main volume portion [main volume] of the wheel house 11 at the front portion thereof (that is, the main volume portion has a wheel. Contain). The wheel does not reach the recess and is completely contained within the main volume. The raised portion 31 (that is, the depression 33 on the back side thereof) eliminates the shape in which the eddy current in the front portion of the wheel house 11 is easily formed, and the eddy current is reduced. Further, the raised portion 31 (the depression 33) reduces the pressure vibration in the wheel house 11, and also improves the interference between the vortex flow in the wheel house 11 and the air flow under the floor. Accordingly, an increase in pressure in the wheel house 11 can be suppressed. As a result of the improvement of the air flow state, the drag coefficient in the entire vehicle is reduced by the wheel guard 10, and aerodynamics and fuel efficiency are improved. Typically, due to the separation of the airflow around the wheels, turbulence and eddy currents are generated in the wheel house 11 to increase the drag and deteriorate the drag as a whole vehicle. In the present embodiment, since the raised portion 31 (the depression 33) is formed integrally with the wheel guard 10, the structural strength of the raised portion 31 is improved, and the raised portion 31 is optimal for improving aerodynamics. Can be placed in the area.
 本実施形態のホイールガード10では、少なくとも一つの開口部40a(40b)が隆起部31に開口されているので、開口部40a(40b)を通して圧力の高いエンジンコンパートメント23から圧力の低いホイールハウス11内への空気流を増加させることができる(ホイールハウス11内の圧力が低いのは、隆起部31(窪み33)が形成されることも寄与している)。従って、エンジンコンパートメント23内の圧力を大きく低下させて、エンジン冷却効果をさらに向上させることができる。 In the wheel guard 10 of this embodiment, since at least one opening 40a (40b) is opened in the raised portion 31, the inside of the wheel house 11 having a low pressure from the engine compartment 23 having a high pressure through the opening 40a (40b). (The low pressure in the wheel house 11 also contributes to the formation of the raised portion 31 (the depression 33)). Therefore, the pressure in the engine compartment 23 can be greatly reduced, and the engine cooling effect can be further improved.
 本実施形態では、ホイールガード10の隆起部31が、上段と下段を有する少なくとも一つの階段構造を備えているので、ロードノイズを低減することができる。また、上段及び下段が水平とされているので、泥や水がホイールハウス11から開口部40a及び40bを通過するのを最小限にできる。 In the present embodiment, the raised portion 31 of the wheel guard 10 includes at least one staircase structure having an upper stage and a lower stage, so that road noise can be reduced. Moreover, since the upper stage and the lower stage are horizontal, it is possible to minimize the passage of mud and water from the wheel house 11 through the openings 40a and 40b.
 英国特許出願第1302827.9号(2013年2月19日出願)の全ての内容は、ここに参照されることで本明細書に援用される。本発明の実施形態を参照することで上述のように本発明が説明されたが、本発明は上述した実施形態に限定されるものではない。本発明の範囲は、請求の範囲に照らして決定される。 The entire contents of British Patent Application No. 1302827.9 (filed on Feb. 19, 2013) are hereby incorporated herein by reference. Although the present invention has been described above with reference to embodiments of the present invention, the present invention is not limited to the above-described embodiments. The scope of the invention is determined in light of the claims.

Claims (8)

  1.  ホイールハウスの内壁として配される、車両用ホイールガードであって、
     前記車両のエンジンコンパートメントと前記ホイールハウスとの間の空気流れを許容する少なくとも一つの開口部を有する、前記車両の前部端に向けて配された前部と、
     前記ホイールハウスと連通する窪みを形成する、前記前部に設けられた隆起部とを備えており、
     前記少なくとも一つの開口部が、前記隆起部に開口されている、ホイールガード。
    A vehicle wheel guard arranged as an inner wall of a wheel house,
    A front portion disposed toward the front end of the vehicle having at least one opening that allows air flow between the engine compartment of the vehicle and the wheel house;
    Forming a recess communicating with the wheel house, and a raised portion provided in the front portion;
    The wheel guard, wherein the at least one opening is opened in the raised portion.
  2.  請求項1に記載のホイールガードであって、
     前記隆起部が、上段と下段を有する少なくとも一つの階段構造を備えている、ホイールガード。
    The wheel guard according to claim 1,
    The wheel guard, wherein the raised portion includes at least one staircase structure having an upper stage and a lower stage.
  3.  請求項2に記載のホイールガードであって、
     前記上段及び前記下段が、水平とされている、ホイールガード。
    The wheel guard according to claim 2,
    A wheel guard in which the upper stage and the lower stage are horizontal.
  4.  請求項2又は3に記載のホイールガードであって、
     前記上段及び前記下段の少なくとも一方に、前記エンジンコンパートメントと前記ホイールハウスとの間の空気流れを許容する前記開口部が形成されている、ホイールガード。
    The wheel guard according to claim 2 or 3,
    The wheel guard, wherein the opening for allowing an air flow between the engine compartment and the wheel house is formed in at least one of the upper stage and the lower stage.
  5.  請求項4に記載のホイールガードであって、
     前記上段及び前記下段のそれぞれに、前記エンジンコンパートメントと前記ホイールハウスとの間の空気流れを許容する前記開口部が形成されている、ホイールガード。
    The wheel guard according to claim 4,
    The wheel guard, wherein the opening for allowing air flow between the engine compartment and the wheel house is formed in each of the upper stage and the lower stage.
  6.  請求項2~5の何れか一項に記載のホイールガードであって、
     前記隆起部が、前記階段構造を少なくとも二つ備えている、ホイールガード。
    The wheel guard according to any one of claims 2 to 5,
    The wheel guard, wherein the raised portion includes at least two of the staircase structures.
  7.  請求項6に記載のホイールガードであって、
     二つの前記階段構造のそれぞれの前記上段及び前記下段が、前記エンジンコンパートメントと前記ホイールハウスとの間の空気流れを許容する前記開口部を形成している、ホイールガード。
    The wheel guard according to claim 6,
    The wheel guard, wherein the upper stage and the lower stage of each of the two staircase structures form the opening that allows air flow between the engine compartment and the wheel house.
  8.  請求項6又は7に記載のホイールガードであって、
     少なくとも二つの前記階段構造のそれぞれの前記上段及び前記下段が、前記エンジンコンパートメントと前記ホイールハウスとの間の空気流れを許容する前記開口部を形成している、ホイールガード。
    The wheel guard according to claim 6 or 7,
    The wheel guard, wherein the upper stage and the lower stage of each of at least two of the staircase structures form the opening that allows air flow between the engine compartment and the wheel house.
PCT/JP2014/053338 2013-02-19 2014-02-13 Wheel guard for vehicle WO2014129376A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
GB1302827.9A GB2510898A (en) 2013-02-19 2013-02-19 Wheel guard for a vehicle
GB1302827.9 2013-02-19

Publications (1)

Publication Number Publication Date
WO2014129376A1 true WO2014129376A1 (en) 2014-08-28

Family

ID=48048568

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/053338 WO2014129376A1 (en) 2013-02-19 2014-02-13 Wheel guard for vehicle

Country Status (2)

Country Link
GB (1) GB2510898A (en)
WO (1) WO2014129376A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3239024B1 (en) 2016-04-27 2019-06-05 China-Euro Vehicle Technology AB Water separation in wheel houses
CN107727352B (en) * 2017-10-30 2023-11-17 吉林大学 Vehicle wind tunnel mud throwing test device and test method thereof
DE102018122712A1 (en) * 2018-09-17 2020-03-19 Dr. Ing. H.C. F. Porsche Aktiengesellschaft Wheel arch lattice

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004338602A (en) * 2003-05-16 2004-12-02 Nissan Motor Co Ltd Cooling duct structure of heat exchanger
JP2008207711A (en) * 2007-02-27 2008-09-11 Toyota Motor Corp Vehicular aerodynamic structure
DE102008039726A1 (en) * 2008-08-26 2010-03-04 Bayerische Motoren Werke Aktiengesellschaft Air guiding device for use in engine compartment of motor vehicle, has air guiding channel for guiding air from interior of sheath into wheel housing of motor vehicle to increase pressure in wheel housing
JP2013203096A (en) * 2012-03-27 2013-10-07 Kojima Press Industry Co Ltd Fender liner

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030160472A1 (en) * 2002-02-26 2003-08-28 Siemens Canada Limited Integrated splash shield and air intake system
JP4333788B2 (en) * 2007-09-11 2009-09-16 トヨタ自動車株式会社 Aerodynamic structure for vehicles
WO2010090241A1 (en) * 2009-02-04 2010-08-12 本田技研工業株式会社 Tire warmer

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004338602A (en) * 2003-05-16 2004-12-02 Nissan Motor Co Ltd Cooling duct structure of heat exchanger
JP2008207711A (en) * 2007-02-27 2008-09-11 Toyota Motor Corp Vehicular aerodynamic structure
DE102008039726A1 (en) * 2008-08-26 2010-03-04 Bayerische Motoren Werke Aktiengesellschaft Air guiding device for use in engine compartment of motor vehicle, has air guiding channel for guiding air from interior of sheath into wheel housing of motor vehicle to increase pressure in wheel housing
JP2013203096A (en) * 2012-03-27 2013-10-07 Kojima Press Industry Co Ltd Fender liner

Also Published As

Publication number Publication date
GB201302827D0 (en) 2013-04-03
GB2510898A (en) 2014-08-20

Similar Documents

Publication Publication Date Title
JP2012126178A (en) Rear spoiler
JP5660321B2 (en) Rear structure of the vehicle
JP6915520B2 (en) Fender liner structure
JP5983568B2 (en) Vehicle lower structure
US20140175830A1 (en) Rectifier of vehicle wheel house
JP5233927B2 (en) Vehicle lower structure
WO2014129376A1 (en) Wheel guard for vehicle
JP5983384B2 (en) Car body rear structure
US20130341962A1 (en) Air dam
JP5519342B2 (en) Vehicle under cover
JP2008247146A (en) Inner fender for vehicle
CN201580451U (en) Automobile front-wheel wind guide plate and wind guide structure
JP2008179217A (en) Vehicular straightening device
JP5464268B2 (en) Lower body structure
JP7155941B2 (en) vehicle front structure
JP5879056B2 (en) Body structure
JP2014054958A (en) Vehicle lower part structure
JP2016068785A (en) Vehicle structure
JP7375613B2 (en) Vehicle lower body structure
JP5820641B2 (en) Body structure
JP2017226401A (en) Wheel house structure having straightening function for guiding air flowing along vehicle side surface into inside of tire and discharging the air to vehicle bottom part
JP2018122719A (en) Engine room lower structure
JP5569338B2 (en) Aerodynamic equipment for vehicles
KR101400314B1 (en) wheel with pinwhell
CN205524099U (en) Enhancement mode car vehicle bottom backplate

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14754242

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14754242

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP