WO2014129143A1 - Refrigerator - Google Patents

Refrigerator Download PDF

Info

Publication number
WO2014129143A1
WO2014129143A1 PCT/JP2014/000687 JP2014000687W WO2014129143A1 WO 2014129143 A1 WO2014129143 A1 WO 2014129143A1 JP 2014000687 W JP2014000687 W JP 2014000687W WO 2014129143 A1 WO2014129143 A1 WO 2014129143A1
Authority
WO
WIPO (PCT)
Prior art keywords
storage
refrigerator
unit
storage space
cooling
Prior art date
Application number
PCT/JP2014/000687
Other languages
French (fr)
Japanese (ja)
Inventor
雅至 中川
上迫 豊志
森 貴代志
健一 柿田
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Priority to CN201480009418.7A priority Critical patent/CN105143797B/en
Priority to DE112014000893.1T priority patent/DE112014000893T5/en
Publication of WO2014129143A1 publication Critical patent/WO2014129143A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D17/00Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces
    • F25D17/04Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces for circulating air, e.g. by convection
    • F25D17/042Air treating means within refrigerated spaces
    • F25D17/045Air flow control arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D17/00Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces
    • F25D17/04Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces for circulating air, e.g. by convection
    • F25D17/06Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces for circulating air, e.g. by convection by forced circulation
    • F25D17/062Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces for circulating air, e.g. by convection by forced circulation in household refrigerators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D2317/00Details or arrangements for circulating cooling fluids; Details or arrangements for circulating gas, e.g. air, within refrigerated spaces, not provided for in other groups of this subclass
    • F25D2317/06Details or arrangements for circulating cooling fluids; Details or arrangements for circulating gas, e.g. air, within refrigerated spaces, not provided for in other groups of this subclass with forced air circulation
    • F25D2317/063Details or arrangements for circulating cooling fluids; Details or arrangements for circulating gas, e.g. air, within refrigerated spaces, not provided for in other groups of this subclass with forced air circulation with air guides
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D2500/00Problems to be solved
    • F25D2500/04Calculation of parameters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D2700/00Means for sensing or measuring; Sensors therefor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D2700/00Means for sensing or measuring; Sensors therefor
    • F25D2700/06Sensors detecting the presence of a product

Definitions

  • the present invention relates to a refrigerator provided with means for detecting the storage amount of a storage room.
  • an indirect cooling method in which cold air is circulated in the refrigerator with a fan is a common cooling method for household refrigerators.
  • a conventional refrigerator has a refrigerator temperature sensor for detecting the temperature of the refrigerator compartment and a freezer temperature sensor for detecting the temperature of the freezer compartment in the refrigerator.
  • the conventional refrigerator is keeping temperature in a warehouse at appropriate temperature by carrying out temperature control control according to the detection result output from these sensors.
  • a refrigerator that keeps the inside temperature uniform
  • a refrigerator provided with a movable cold air discharge device (see, for example, Patent Document 1).
  • FIG. 19 is a front view of a main part of the conventional refrigerator 100
  • FIG. 20 is a waveform diagram schematically showing the behavior of the components of the conventional refrigerator 100.
  • a movable cold air discharge device 102 provided in the refrigerator compartment 101 supplies cold air to the left and right to achieve uniform temperature in the cabinet.
  • the compressor is driven when the temperature detected by the temperature sensor in the freezer rises to a predetermined temperature (ON temperature). At this time, if the temperature detected by the temperature sensor in the refrigerator compartment is equal to or higher than a predetermined value (open temperature), an operation of closing the damper in the refrigerator compartment is performed to drive the cooling fan (hereinafter referred to as “open”). This operation is referred to as “simultaneous cooling a freezer compartment a”).
  • the damper of the refrigerator compartment is operated to “open ⁇ close”, and only the freezer compartment side is cooled. (Hereinafter, this operation is referred to as “freezer compartment cooling b”).
  • cooling stop c when the temperature detected by the temperature sensor in the freezer compartment decreases and reaches a predetermined temperature (OFF temperature), the compressor is stopped (hereinafter, this operation is referred to as “cooling stop c”).
  • the conventional refrigerator 100 repeats a series of operation
  • the operation of driving the compressor and the cooling fan with the refrigerator opener and the freezer damper closed is added to the above series of operations. (Hereinafter, this operation is referred to as “cooling in the refrigerator compartment alone”).
  • the conventional refrigerator 100 uniformly cools the entire interior of the refrigerator regardless of the storage condition in the storage, so that cold air is supplied even to places where there is no storage, resulting in waste of excessive cooling.
  • the present invention has been made in view of the above-described problems, and provides an easy-to-use refrigerator that ensures freshness while improving energy saving.
  • the refrigerator of the present invention is partitioned by a heat insulating wall and a heat insulating door, and stores a storage room for storing stored items, a storage state estimation unit for estimating a storage state in the storage room, and a storage result of the storage state estimation unit. And an arithmetic control unit that controls the output operation of the electrical functional component.
  • the storage room defines a plurality of storage spaces by one or a plurality of shelves, and the calculation control unit controls the output operation of the electrical functional component based on the estimation result of the storage state estimation unit, and supplies the storage space to the storage space. Change the amount of cooling.
  • the refrigerator of this invention reduces the cooling amount to the location where there is no storage thing by changing the cooling amount to storage space based on the estimation result of the storage condition estimation part in storage space, and wasteful cooling Reduce driving and improve energy-saving performance.
  • FIG. 1 is a front view of the refrigerator in the first embodiment of the present invention.
  • 2 is a cross-sectional view taken along line 2-2 of FIG.
  • FIG. 3 is an explanatory diagram for explaining the operation of the flaps of the refrigerator according to the first embodiment of the present invention.
  • FIG. 4 is a control block diagram of the refrigerator in the first embodiment of the present invention.
  • FIG. 5 is an explanatory diagram for explaining the storage condition detection operation of the refrigerator in the first embodiment of the present invention.
  • FIG. 6 is a flowchart showing storage condition detection control of the refrigerator in the first embodiment of the present invention.
  • FIG. 7 is a flowchart showing the cooling operation determination control using the storage condition detection control of the refrigerator in the first embodiment of the present invention.
  • FIG. 8 is a flowchart showing another example of the cooling operation determination control using the storage condition detection control of the refrigerator in the first embodiment of the present invention.
  • FIG. 9 is a flowchart showing still another example of the cooling operation determination control using the storage condition detection control of the refrigerator in the first embodiment of the present invention.
  • FIG. 10 is a waveform diagram schematically showing the temperature behavior of the temperature sensor according to the presence / absence of a stored item in the target storage space according to the first embodiment of the present invention.
  • FIG. 11 is a waveform diagram schematically illustrating another example of the temperature behavior of the temperature sensor depending on the presence / absence of an object in the target storage space according to the first embodiment of the present invention.
  • FIG. 12 is a waveform diagram schematically showing still another example of the temperature behavior of the temperature sensor depending on the presence / absence of an object in the target storage space according to the first embodiment of the present invention.
  • FIG. 13 is a flowchart showing LED control of the interior lighting of the refrigerator in the first embodiment of the present invention.
  • FIG. 14 is a characteristic diagram showing the LED output of the interior lighting of the refrigerator in the first embodiment of the present invention.
  • FIG. 15 is an explanatory diagram showing a matrix of illuminance in the refrigerator of the first embodiment of the present invention.
  • FIG. 16 is a cross-sectional view taken along line 2-2 in FIG. 1, showing a refrigerator in the second embodiment of the present invention.
  • FIG. 17 is a cross-sectional view taken along the line 2-2 in FIG.
  • FIG. 1 showing the refrigerator in the third embodiment of the present invention.
  • 18 is a cross-sectional view taken along line 2-2 in FIG. 1, showing a refrigerator according to a fourth embodiment of the present invention.
  • FIG. 19 is a front view of a conventional refrigerator.
  • FIG. 20 is a waveform diagram schematically showing the temperature behavior of a temperature sensor of a conventional refrigerator.
  • FIG. 1 is a front view of the refrigerator 50 according to the first embodiment of the present invention.
  • the refrigerator 50 includes a refrigerator body 11.
  • the refrigerator main body 11 is a heat insulating box, and mainly includes an outer box using a steel plate, an inner box formed of a resin such as ABS, and a heat insulating material such as urethane provided in a space between the outer box and the inner box.
  • the inside of the refrigerator main body 11 is insulated from the surroundings by the structure it has.
  • the refrigerator body 11 is partitioned into a plurality of storage rooms.
  • a refrigeration room 12 is provided at the top, and an ice making room 13 and a switching room 14 are provided side by side at the lower part of the refrigeration room 12.
  • a freezing room 15 is disposed below the ice making room 13 and the switching room 14, and a vegetable room 16 is disposed at the bottom.
  • a door for partitioning from outside air is formed in the front opening of the refrigerator main body 11 at the front of each storage room.
  • an operation unit 17 for setting the internal temperature of each compartment, ice making, rapid cooling, etc., and various information are notified to the user.
  • a display unit 91 which is an example of a notification means for performing the above is arranged.
  • FIG. 2 is a cross-sectional view of the refrigerator 50 in the first embodiment of the present invention taken along line 2-2 in FIG.
  • a plurality of storage shelves 18 are provided on the top and bottom, and a plurality of storage spaces are defined. Note that some of the storage shelves 18 are configured to be movable up and down.
  • an illumination state 19 composed of a lamp, a plurality of LEDs, etc., and a storage state detection composed of a light emitting unit 20, such as LEDs, and a light amount detection unit 21, such as an illuminance (light) sensor. Is provided.
  • the illumination unit 19 is on the left side so as to be located in front of half of the depth dimension in the refrigerator and in front (front) of the front end of the storage shelf 18 when viewed from the front side of the door opening side in the refrigerator 50. It arrange
  • positioning of the light quantity detection part 21 is not limited to the above-mentioned example, The position which can light-receive the light irradiated by the light emission part 20 via the stored object 33 (refer FIG. 5) and the structure in a warehouse. As long as it is arranged at any position, it may be arranged at any position in the storage.
  • the upper machine chamber formed with a step in the uppermost rear region in the refrigerator compartment 12 houses the compressor 30 and high-pressure side components of the refrigeration cycle such as a dryer for removing moisture. Yes.
  • the uppermost shelf 18 in the refrigerator compartment 12 is disposed at substantially the same height as the bottom wall of the upper machine room. That is, the uppermost storage space in the refrigerator compartment 12 is provided with an upper machine room facing the back surface. Therefore, the depth dimension of the uppermost storage space in the refrigerator compartment 12 is set smaller than the lower storage space.
  • a cooling chamber (not shown) for generating cold air is provided on the back of the freezing chamber 15.
  • a cooling fan 31 (see FIG. 4) that blows cooler and cold air that is cooling means cooled by the cooler to the refrigerator compartment 12, the ice making chamber 13, the switching chamber 14, the freezer compartment 15, and the vegetable compartment 16. 4) is arranged.
  • a defrosting unit 68 (see FIG. 4) configured by a radiant heater, a drain pan, a drain tube evaporating dish, and the like are configured to defrost the cooler and its surrounding frost and ice.
  • the temperature at which the refrigerating room 12 is controlled to cool is controlled by a damper 67 that cuts off or opens the cold air sent from the cooler, and a flap 74 that switches the flow of the cold air, and the temperature that does not freeze in order to perform refrigerated storage.
  • the temperature is usually controlled at 1 ° C. to 5 ° C. with the lower limit of.
  • the cooling amount referred to here is a value that depends on the amount of cold air and the temperature of the cold air, and the amount of cooling increases when the amount of cold air is large or when the temperature of the cold air is low.
  • the lowermost vegetable room 16 is temperature-controlled at 2 ° C. to 7 ° C. which is equal to or slightly higher than the refrigerator room 12.
  • the freezer compartment 15 is set in a freezing temperature zone and is normally temperature-controlled at ⁇ 22 ° C. to ⁇ 15 ° C. for frozen storage, but for example, ⁇ 30 ° C. to improve the frozen storage state. In some cases, the temperature is controlled to a low temperature of ⁇ 25 ° C.
  • the ice making chamber 13 uses the water sent from the water storage tank (not shown) in the refrigerator compartment 12 to make ice with an automatic ice maker (not shown) provided at the upper part of the room, and the ice is arranged at the lower part of the room. Stored in an ice storage container (not shown).
  • the switching chamber 14 has a refrigeration temperature zone set at 1 ° C. to 5 ° C., a vegetable temperature zone set at 2 ° C. to 7 ° C., and a freezing temperature zone normally set at ⁇ 22 ° C. to ⁇ 15 ° C. It is possible to switch to a preset temperature range between the refrigeration temperature range and the freezing temperature range.
  • the switching chamber 14 is a storage chamber provided with an independent door, which is provided in parallel with the ice making chamber 13, and often includes a drawer-type door.
  • the switching chamber 14 is a storage chamber that can be adjusted to a temperature including the refrigeration and freezing temperature zones.
  • the refrigeration function may be assigned to the refrigeration room 12 and the vegetable room 16, and the freezing function may be assigned to the freezing room 15, respectively, so that a storage room specialized for switching only in the intermediate temperature range between refrigeration and freezing may be used.
  • it is good also as a storage room fixed to freezing in connection with a specific temperature range, for example, the demand for frozen foods increasing in recent years.
  • FIG. 3 is an explanatory diagram for explaining the operation of the flap 74 in FIG. 2 of the refrigerator according to the first embodiment of the present invention.
  • the inside of the refrigerator compartment 12 is divided into storage spaces by one or a plurality of shelves 18.
  • the flap 74 is disposed in the duct 73 across the horizontal projection surface of the shelf 18 that defines the storage space, and the flow of cold air in the air passage can be switched in the duct 73 with a simple configuration. Moreover, the flap 74 can operate
  • the storage amount when the storage amount is small, by reducing the cooling amount to the target storage space by closing the flap 74, useless cooling operation can be omitted and the energy saving performance can be further improved.
  • the storage amount when the storage amount is large or increases, by keeping the flap 74 open, the entire interior is cooled, and the amount of cooling can be instantaneously changed to improve the freshness.
  • cooling amount of the flap 74 may be further finely adjusted not only by the fully opened or fully closed operation but also by slightly opening (for example, 30 °) according to the storage condition of the target storage space.
  • the duct 73 in the present embodiment is disposed only on the back side of the refrigerator compartment 12.
  • the door 73 may be actively cooled by extending the duct 73 to the top surface side of the refrigerator compartment 12.
  • a convection in the door pocket may be promoted and cooled by providing a slit shape on the side surface or bottom surface of the door pocket.
  • the storage space in the present embodiment is divided into two sections, an upper stage and a lower stage.
  • the air path is switched between the upper part, which is most difficult for the user to reach, and the lower part, which is relatively easy to use, and when the storage capacity is small, only the lower part is cooled to achieve both energy saving performance and usability. Optimal cooling operation can be realized.
  • the arrangement of the flaps 74 is not limited to the above, and a plurality of flaps 74 may be arranged at any position in the duct 73 as long as the cold air from the cooler can be supplied.
  • the storage space may be divided not only at the upper and lower steps, but also at the left and right portions, the front portion and the rear portion, and the cooling amount of each may be adjusted.
  • FIG. 4 is a control block diagram of the refrigerator 50 in the first embodiment of the present invention.
  • the refrigerator 50 includes a light amount detection unit 21, a temperature sensor 61, a door opening / closing detection unit 62, a calculation control unit 22, a light emitting unit 20, a compressor 30, a cooling fan 31, a temperature compensation heater 32, a damper. 67, a defrosting unit 68, a flap 74, and a display unit 91 are provided.
  • the calculation control unit 22 includes a storage state estimation unit 23, a temperature information determination unit 70, a door opening / closing information determination unit 71, a comparison information determination unit 24, a change information determination unit 25, a storage unit 64, an operation start determination unit 65, and an operation.
  • An end determination unit 66 is provided.
  • the door opening / closing detection unit 62 detects the opening operation or the closing operation, and inputs the signal to the arithmetic control unit 22 configured by a microcomputer or the like. Then, the door opening / closing information determination unit 71 that receives the signal determines the door opening / closing operation.
  • the arithmetic control unit 22 sequentially operates the light emitting units 20 according to a predetermined program.
  • the light amount detection unit 21 detects the light amount in the vicinity and inputs the information to the calculation control unit 22.
  • the storage status estimation unit 23 that has received the information obtains storage information such as the storage amount and the position of the storage items.
  • the obtained storage information is compared by, for example, the storage information before and after the door opening / closing operation by the comparison information determination unit 24, and the comparison information is obtained from the result.
  • the change information determination unit 25 compares the comparison information with a predetermined threshold value to obtain change information of the storage information such as the storage amount and the position of the storage item.
  • the operation start determination unit 65 of the arithmetic control unit 22 is based on the change information obtained by the change information determination unit 25, the compressor 30, the cooling fan 31, the temperature compensation heater 32, the damper 67, the defrosting related to the cooling operation.
  • the operations of the unit 68 and the flap 74 are determined, and the operation is started.
  • the operation end determination unit 66 of the arithmetic control unit 22 ends the operation of each component described above.
  • FIG. 5 is a diagram for explaining the storage state detection operation of the refrigerator 50 according to the first embodiment of the present invention.
  • Irradiation light 34 a output from the light emitting units 20 arranged on the left and right wall surfaces of the refrigerator 50 irradiates the refrigerator 33 and the stored items 33 stored in the refrigerator 12. Further, a part of the irradiation light 34 a is incident on the light amount detection unit 21 disposed in the refrigerator compartment 12.
  • FIG. 5 shows a case where the stored items 33 are stored in the refrigerator compartment 12. Further, FIG. 5 shows a region A in which the irradiation light 34a from both the left and right wall surfaces is shielded by the presence of the storage object 33, a region B in which any one of the irradiation light 34a is shielded, and any left and right irradiation light 34a. Also, a state where an unshielded region C is generated is shown.
  • the light amount detection unit 21 is in the region B where any one of the irradiation lights 34a is shielded, and detects and outputs the corresponding light amount.
  • the area A that is shielded together increases, and thus the amount of light detected by the light amount detector 21 decreases.
  • the light amount detection unit 21 detects a change in the light amount due to the presence of the stored item 33 and the difference in the amount of the stored item 33. And the detection result is discriminated by the storage state estimation unit 23 of the calculation control unit 22 using a predetermined threshold value set in advance, so that the presence / absence or amount of the stored items 33 in the warehouse (eg, more or less) Can be classified.
  • a new light source and material are provided by sharing the light emitting unit 20 with the illumination unit 19 provided in the refrigerator 50 or by using the substrate of the light emitting unit 20 and the substrate of the illumination unit 19 together.
  • the storage state can be detected with a simpler configuration.
  • FIG. 6 is a flowchart showing the storage amount detection control of the refrigerator 50 in the first embodiment of the present invention.
  • the arithmetic control unit 22 detects a door opening / closing operation from the normal main control (step S100) (step S101). It is confirmed that the door is closed (step S102), and if it is closed, the storage amount detection control (step S103) is started.
  • step S104 storage information of the storage room is obtained by the storage state estimation unit 23 (step S104).
  • the comparison information determination unit 24 compares the storage information before and after the door opening / closing operation, before and after the door opening / closing operations of the past several times, or before and after a certain time, and obtains comparison information (step S105).
  • the change information determination unit 25 obtains storage state change information based on the storage information obtained in step S104 and the comparison information obtained in step S105 (step S106). Then, the storage state change information obtained is stored in the storage unit 64 (step S107), and a database for a certain period is constructed.
  • step S108 the arithmetic control unit 22 performs cooling operation control.
  • FIG. 7 is a flowchart showing the cooling operation determination control using the storage state detection control of the refrigerator 50 in the first embodiment of the present invention.
  • step S110 when the door opening / closing operation is detected (step S111), the storage state detection control (step S112) is started.
  • storage state change information is obtained based on the storage information and the comparison information.
  • the calculation control unit 22 performs threshold determination on the storage status data A obtained from the storage information (step S113).
  • the process proceeds to temperature detection control, and temperature data C is acquired (step S115).
  • the temperature data C is smaller than the preset reference temperature data D (the temperature is low) (step S116, Yes)
  • an operation of opening the flap 74 “open ⁇ close” is performed to store the target.
  • the amount of cooling to the space is reduced (step S117). At this time, the cooling amount may be reduced by an operation such as reducing the rotation speed of the compressor 30 and the cooling fan 31 and reducing the opening degree of the damper 67 of the refrigerator compartment 12.
  • step S114 when it is determined that the storage status data A exceeds the preset standard storage status data B or less (NO in step S114), an operation of setting the flap 74 to “closed ⁇ open” is performed, and the entire interior is stored. Is cooled (step S118). Further, when the temperature data C is larger than the preset reference temperature data D (temperature is high) (step S116, NO), the flap 74 is operated to be “closed ⁇ open”, and the entire interior Is cooled (step S118). At this time, the cooling amount may be increased by an operation such as increasing the rotational speeds of the compressor 30 and the cooling fan 31 and increasing the opening degree of the damper 67 of the refrigerator compartment 12.
  • step S115 it is desirable to arrange
  • the temperature sensor 61 is disposed in the upper stage, and the cooling control is determined based on the detection result. This makes it possible to reliably detect a temperature rise in the target storage space, and to further improve energy saving performance and food freshness.
  • FIG. 8 is a flowchart showing another example of the cooling operation determination control using the storage condition detection control of the refrigerator in the first embodiment of the present invention. Only the parts different from FIG. 7 will be described in detail.
  • step S121 when the door opening / closing operation is detected during the main control (step S120) (step S121), the storage state change data E obtained from the storage state change information by the storage state detection control (step S122) is displayed. Then, threshold determination is performed (step S123). When it is determined that the storage state change data E is equal to or less than the reference storage state change data F set in advance (Yes in step S124), the process proceeds to temperature detection control (step S124). Therefore, when the internal temperature is low (step S126, Yes), an operation of opening the flap 74 from “open to closed” is performed to reduce the amount of cooling to the target storage space (step S127).
  • step S124 when it is determined that the storage state change data E exceeds the preset reference storage state change data F (NO in step S124), an operation to turn the flap 74 "closed to open” is performed, The whole is cooled (step S128). Further, even when the internal temperature is high (NO in step S126), the operation of setting the flap 74 to “closed ⁇ open” is performed to cool the entire internal chamber (step S128). In this way, it is also possible to control the cooling operation by determining the presence or amount of stored items based on the storage state change information.
  • FIG. 9 is a flowchart showing still another example of the cooling operation determination control using the storage condition detection control of the refrigerator in the first embodiment of the present invention. Only the parts different from FIG. 7 will be described in detail.
  • step S131 when the door opening / closing operation is detected during the main control (step S130) (step S131), the storage status data G obtained from the storage information by the storage status detection control is acquired (step S132).
  • the storage unit 64 acquires the reference storage status data H from the past storage information (step S133), and performs threshold determination for the storage status data G (step S134).
  • step S133 When it is determined that the storage status data G is equal to or less than the reference storage status data H (Yes in step S135), the process proceeds to temperature detection control (step S136). Therefore, when the internal temperature is low (step S137, Yes), an operation of opening the flap 74 from “open to closed” is performed to reduce the amount of cooling to the target storage space (step S138).
  • the flap 74 is operated to be "closed to open” to cool the entire interior. (Step S139). Further, even when the internal temperature is high (NO in step S137), the operation of setting the flap 74 to “closed ⁇ open” is performed to cool the entire internal chamber (step S139). Thus, based on the past data of the storage information stored in the storage unit 64, the presence / absence and amount of stored items may be determined to control the cooling operation.
  • FIGS. 10 to 12 show the temperature behavior of the temperature sensor 61 and the operation of each electric functional part when the stored items are inserted at different timings, with the timing of inserting the stored items being different during the door opening / closing operation.
  • FIG. 10 shows a case where the stored item 33 is put into the target space during the simultaneous cooling a of the freezer compartment.
  • FIG. 11 shows a case where the stored item 33 is put into the target space during the freezer compartment single cooling b.
  • FIG. 12 is a case where the storage thing 33 is thrown into the object space at the time of cooling stop c.
  • the conventional refrigerator (broken line) is cooled by cooling the portion without the stored item 33 in order to cool the entire interior regardless of the presence or absence of the stored item 33. There is too much waste.
  • the refrigerator 50 of the present embodiment detects the storage state after the door opening / closing operation.
  • the flap 74 is operated to “open ⁇ close”, and the target storage space is moved to the target storage space.
  • Reduce the amount of cooling At this time, the cooling amount may be reduced by an operation such as reducing the rotation speed of the compressor 30 and the cooling fan 31 and reducing the opening degree of the damper 67 of the refrigerator compartment 12. This eliminates unnecessary cooling operation and further improves the energy saving performance.
  • the refrigerator 33 when the refrigerator 33 is simultaneously cooled a, the stored item 33 is put into the target space, and when the stored item 33 is determined to be “present” or “large”, the flap 74 is set to “closed ⁇ open”.
  • the amount of cooling to the target space is increased, and the entire interior is cooled.
  • the cooling amount may be increased by an operation such as increasing the rotational speeds of the compressor 30 and the cooling fan 31 and increasing the opening degree of the damper 67 of the refrigerator compartment 12.
  • the damper 67 of the freezer compartment 15 is immediately opened to “open ⁇ ” when it is determined that the stored item 33 is “present” or “large” in the target storage space. Closed control is performed. Accordingly, it is possible to prevent warm air from the target space where the storage item 33 has been input from flowing into the freezer compartment 15. Then, after a certain time, or when the temperature detected by the temperature sensor 61 of the refrigerator compartment 12 is equal to or lower than a predetermined temperature, or when the temperature detected by the temperature sensor 61 of the freezer compartment 15 is equal to or higher than a predetermined temperature. The 15 dampers 67 are operated to be “closed ⁇ open”.
  • the damper 67 of the refrigerator compartment 12 is used. Perform “Close ⁇ Open” operation. Thereafter, the flap 74 is moved from “closed to open” to increase the amount of cooling to the target space and cool the entire interior. At this time, the cooling amount may be increased by an operation such as increasing the rotation speed of the compressor 30 and increasing the rotation speed of the cooling fan 31.
  • the refrigerator compartment 15 When it is determined that the stored item 33 is “present” or “large”, if the temperature detected by the temperature sensor 61 of the freezer compartment 15 is higher than a predetermined temperature (for example, ON temperature), the refrigerator compartment The cooling of the freezer compartment 15 is prioritized while the 12 dampers 67 and the flaps 74 are closed. Thereafter, when another predetermined temperature (for example, an OFF temperature) is reached, the damper 67 of the refrigerator compartment 12 is operated to “close ⁇ open”, and then the flap 74 is operated to “close ⁇ open”. It is possible to increase the amount of cooling to the target space.
  • a predetermined temperature for example, ON temperature
  • the compressor 30 when the stored item 33 is thrown into the target space at the time of cooling stop c and it is determined that the stored item 33 is “present” or “large”, the compressor 30 is set for a certain time (for example, After stopping for 10 minutes, the compressor 30 is driven at a high speed regardless of the temperature detected by the temperature sensor 61. And the operation
  • the damper 67 of the refrigerator compartment 12 was “open” and the damper 67 of the freezer compartment 15 was “closed” and adhered to the cooler. Cooling with frost may be performed.
  • the damper 67 of the freezer compartment 15 remains “closed”.
  • the stored thing 33 thrown into the refrigerator compartment 12 can be quickly cooled by starting, ensuring the startability of the compressor 30, and performing the independent operation of the refrigerator compartment 12, it is possible to improve the freshness. it can.
  • the temperature detected by the temperature sensor 61 of the freezer compartment 15 becomes equal to or higher than a predetermined temperature, the operation of setting the damper 67 of the freezer compartment 15 to “closed ⁇ open” is performed.
  • the stored item 33 is put into the target space, and it is determined that the stored item 33 is “present” or “large”.
  • the damper 67 of the freezer compartment 15 remains “closed”.
  • the flap 74 by performing the operation of “closing ⁇ opening” the flap 74, the stored items 33 put into the refrigerator compartment 12 can be quickly cooled, so that the freshness can be improved.
  • the damper 67 is controlled to be “closed ⁇ open”.
  • the present invention is not limited to this example, and the refrigerator compartment 12, the ice making chamber 13, the switching chamber 14, and the freezer compartment 15 are provided. And at least one of the vegetable compartments 16.
  • this Embodiment is not necessarily limited to the structure of the refrigerator 50 shown in FIG. 2,
  • the machine room is provided in the rear region of the lowermost store room of the heat insulation box which was common in the past, and the compressor 30 It is also possible to apply to a refrigerator of the type in which
  • the storage state detection unit has been described as a configuration including the light emitting unit 20 and the light amount detection unit 21, but the storage state detection unit of the present invention is not limited thereto.
  • the display unit 91 that is a recognition unit that displays on the outer surfaces of the refrigerator compartment doors 12a and 12b provided on the front side of the refrigerator compartment 12 that is a storage compartment provided with the light amount detector 21 allows the user to display the refrigerator compartment 12 with the display unit 91. The state of the stored items can be notified.
  • the user confirms the display shown on the display unit 91 as the recognition means, opens the refrigerator compartment doors 12a and 12b, and displays “nothing” or “low” in the stored items 33 without hesitation.
  • food can be placed on the storage shelf 18a which is the uppermost storage space, and the refrigerator compartment doors 12a and 12b can be quickly closed.
  • the stored item 33 as food is stored in the storage shelf 18a on the front side of the cold air discharge port (not shown), or the stored item 33 is excessively packed.
  • the target storage space is too packed in the display unit 91 on the outer surface of the refrigerator compartment doors 12a and 12b. Display that the operation is to increase.
  • the stored item 33 when the stored item 33 is excessively packed, or when the stored item 33 is stored in the vicinity of the cold air discharge port (not shown), the stored item 33 becomes a ventilation resistance of the cold air, and the unit time The amount of cool air circulation per hit decreases, and the time for cooling increases. Further, when the amount of cool air circulation is reduced, the air volume of the evaporator is reduced and the heat exchange amount is reduced, so that the evaporation temperature is lowered and the compressor input is also increased due to the expansion of the high / low pressure differential pressure of the refrigeration cycle.
  • the refrigerator 50 that realizes further energy saving can be provided to consumers, which can contribute to CO2 reduction.
  • a recognition means it is not limited to the display part 91,
  • voice is also possible.
  • the storage status information may be displayed on the display unit 91 with an indicator. Thereby, usability can be improved.
  • the configuration of the present embodiment is more effective than the conventional case when there is a possibility of storing a wide variety of foods, such as a home refrigerator.
  • FIG. 13 is an LED control flowchart of the interior lighting of the refrigerator in the first embodiment of the present invention.
  • FIG. 14 is an LED output characteristic diagram of the interior lighting of the refrigerator in the first embodiment of the present invention.
  • FIG. 15 is a matrix diagram of the illuminance in the refrigerator of the first embodiment of the present invention.
  • the output setting value of the light emitting unit 20 near the upper stage where the storage amount is small and the lower stage where the storage amount is large is changed.
  • the upper storage amount obtained by the storage state detection control of the flow of FIG. 6 is determined within the range defined by the storage state estimation unit 23, and is divided into three categories: “large”, “small”, and “none”. (Step S140). If it is classified as “many”, the output setting of the light emitting units 20a and 20b (hereinafter referred to as “upper side LEDs”) installed on the upper side of the illumination unit 19 is stored as 100% in the storage unit 64. Similarly, when it is classified as “less”, the output setting of the light emitting units 20a and 20b is stored as 50% in the storage unit 64. If it is classified as “none”, the output setting of the light emitting units 20a and 20b is stored as 20% in the storage unit 64 (step S141).
  • the detected lower storage amount is classified into three categories, “large”, “small”, and “none”, similarly to the upper storage amount (step S142).
  • the output setting of the light emitting units 20 c and 20 d (hereinafter referred to as “lower LED”) installed on the lower side of the illumination unit 19 is stored in the storage unit 64 as 100%.
  • the output setting of the light emitting units 20c and 20d is stored as 50% in the storage unit 64.
  • the output setting of the light emitting units 20c and 20d is stored as 20% in the storage unit 64 (step S143).
  • the illuminance of the surrounding environment where the refrigerator body 11 is installed is measured by the outside illuminance sensor 72 shown in FIG. 4 (step S144).
  • a specified value for example, 5 lux or more
  • the ambient illuminance is larger than a specified value (for example, 5 lux or more)
  • the ambient illuminance is smaller than a specified value (for example, less than 5 lux)
  • the image is dark, that is, at night when sleeping, and the LED output setting value is increased by a factor of 0.5 and stored.
  • the data is stored in the unit 64 (step S145).
  • the door opening / closing detector 62 determines the door state of the refrigerator compartment door 12a or 12b with the LED output setting value finally determined as described above held (step S146). Therefore, in the case of opening the door, the output setting stored in the storage unit 64 is instructed to the lighting unit 19 to light each LED and irradiate the inside of the cabinet. If the door remains closed, the logic is returned to step S146 to open the door. Each LED is turned off to stand by to stand by (step S147).
  • These specific dimming means include duty control of LED energization (variable pulse), variable LED forward current, variable number of LED lighting, etc., and if these are performed, dimming can be realized.
  • the storage amount is divided into three categories of “large”, “small” and “none”, and the LED output settings are “100%”, “50%”, Three categories of “20%” are used, but finer control becomes possible if the classification or linear relationship is made slightly finer. That is, as shown in FIG. 14, the LED output may be increased in a proportional relationship as the storage amount increases. When the ambient illuminance is low, the linear gradient when bright is small (half here).
  • the dimming of the interior lighting in the upper and lower two zones has been described, but the left and right two zones, the four zones divided into upper, lower, left and right, or any number of zones
  • the same storage amount detection and light control of the interior lighting may be performed.
  • the storage state estimation unit 23 detects the storage state (storage zone / storage amount) in the storage. Further, the daytime / nighttime is determined from the illuminance around the refrigerator main body 11 measured by the outside illuminance sensor 72, and the light emitting unit 20 is dimmed according to the combined state. Power consumption can be reduced, such as reducing the total lighting state at In addition, these light adjustments are not only performed automatically, but dazzle is reduced and visibility is improved particularly at night, and the convenience and satisfaction of the user can be greatly improved.
  • FIG. 16 is a cross-sectional view taken along line 2-2 of FIG. 1 of the refrigerator according to the second embodiment of the present invention.
  • the refrigerator 50 according to the second embodiment includes a storage state detection unit configured by a transmission unit 81 and a reception unit 82 for detecting the storage state in the target space in the refrigerator compartment 12. Is provided.
  • the transmitting unit 81 is located in front of half of the depth dimension in the refrigerator and in front (front) of the front end of the target storage shelf 18a when viewed from the front side of the door opening side in the refrigerator 50. It is arranged on the top surface in the refrigerator compartment 12.
  • the receiving unit 82 is disposed at a rear position in the refrigerator compartment 12.
  • positioning of the transmission part 81 and the receiving part 82 is not limited to the above-mentioned example,
  • the receiving part 82 radiates
  • the storage state estimation unit determines that the stored item 33 is “absent” or “low” based on the detection result of the receiving unit 82
  • the flap 74 shown in FIG. “Closed” is performed to reduce the amount of cooling to the target space. As a result, useless cooling operation can be omitted and the energy saving performance can be further improved.
  • the presence or absence of the storage item 33 in the target storage space is accurately detected, and based on the detection result, the output operation of the electric functional component is optimally performed according to the storage state in the storage space. Control.
  • a refrigerator that eliminates useless cooling operation and realizes high energy saving performance.
  • FIG. 17 is a cross-sectional view taken along line 2-2 of FIG. 1 of the refrigerator according to the third embodiment of the present invention.
  • the refrigerator 50 according to the third embodiment includes a storage state detection in which a transmission unit 83 and a reception unit 84 for detecting a storage state in the target space are integrally formed in the refrigerator compartment 12. Is provided.
  • the transmitting unit 83 and the receiving unit 84 are located in front of half of the depth dimension in the refrigerator and in front (front) of the front end of the storage shelf 18a when viewed from the front side of the door opening side in the refrigerator 50. Thus, it arrange
  • positioning of the transmission part 83 and the receiving part 84 is not limited to the above-mentioned example,
  • the receiving part 84 radiates
  • the temperature of the stored item 33 can be detected by using the reception unit 84 as an infrared sensor. If the calculation control unit (not shown) determines that the temperature of the stored item 33 is low and has been sufficiently cooled based on the detection result of the reception unit 84, the flap 74 shown in FIG. The amount of cooling to the target storage space is reduced. As a result, useless cooling operation can be omitted and the energy saving performance can be further improved.
  • the flap 74 shown in FIG. To increase the amount of cooling to the target storage space. Thereby, since the stored item 33 put into the refrigerator compartment 12 can be quickly cooled, the freshness can be improved.
  • the receiver 84 when an ultrasonic wave is used as a transmitter emitted from the transmitter 83, it is possible to estimate the presence / absence of a stored item by using the receiver 84 as an ultrasonic sensor. If it is determined from the detection result of the reception unit 84 that there is no stored item 33, the flap 74 shown in FIG. 3 is operated to “open ⁇ close” to reduce the amount of cooling to the target space. As a result, useless cooling operation can be omitted and the energy saving performance can be further improved.
  • the operation of turning the flap 74 shown in FIG. increase the amount of cooling to the target space. Therefore, since the stored item 33 put into the refrigerator compartment 12 can be quickly cooled, the freshness can be improved.
  • the transmitter 83 and the receiver 84 are arranged adjacent to each other, so that the presence / absence and temperature of the storage object 33 in the target storage space can be accurately detected with a simpler configuration. Then, based on the detection result, to provide a refrigerator that realizes high energy-saving performance by controlling the output operation of the electrical functional component optimally according to the storage situation in the storage space, thereby eliminating unnecessary cooling operation. Can do.
  • FIG. 18 is a cross-sectional view taken along line 2-2 of FIG. 1 of the refrigerator according to the fourth embodiment of the present invention.
  • a storage state detection unit 85 for detecting the storage state in the target space is disposed in the refrigerating chamber 12 at a rear position in the refrigerating chamber 12. ing.
  • the storage condition detection unit 85 in the present embodiment is preferably a wind speed sensor, a weight sensor, or the like.
  • the storage state detection unit 85 in this case is preferably arranged in the vicinity of the discharge port of the air passage that sends cold air to the storage space, but is not limited to the above-described example, and the position where the change in the wind speed in the target storage space can be detected As long as it is arranged at any position, it may be arranged at any position in the storage.
  • the storage state detection unit 85 determines the presence / absence of the storage item 33 in the target storage space from the change in the weight applied to the storage shelf 18a.
  • the storage status detection unit 85 is preferably arranged below the target storage shelf 18a.
  • a plurality of storage state detection units 85 are provided such as the front side and the back side, or the left side and the right side when viewed from the front side of the door opening side in the refrigerator 50. You may arrange.
  • the flap 74 shown in FIG. Reduce the amount of cooling to the target space. As a result, useless cooling operation can be omitted and the energy saving performance can be further improved.
  • the flap 74 illustrated in FIG. The operation of “closed ⁇ open” is performed to increase the amount of cooling to the target storage space.
  • the storage state detection unit 85 is arranged to detect the presence or amount of the storage item 33 in the target storage space with higher accuracy, and based on the detection result, the storage state in the storage space is matched. , Optimally control the output operation of electrical functional parts. Thus, it is possible to provide a refrigerator that eliminates useless cooling operation and realizes high energy saving performance.
  • the present invention is divided by a heat insulating wall and a heat insulating door, and stores a storage room for storing storage items, a storage state estimation unit for estimating a storage state in the storage room, and an estimation result of the storage state estimation unit And a calculation control unit for controlling the output operation of the electrical functional component.
  • the storage room defines a plurality of storage spaces by one or a plurality of shelves, and the calculation control unit controls the output operation of the electrical functional component based on the estimation result of the storage state estimation unit, and supplies the storage space to the storage space. Change the amount of cooling.
  • the present invention can provide a refrigerator that realizes high energy-saving performance by controlling the output operation of the electrical functional component optimally according to the storage situation in the storage space, thereby eliminating unnecessary cooling operation. .
  • the present invention is directed to the storage space when the estimation result of the storage state estimation unit is the storage amount in the storage space, and the arithmetic control unit determines that there is no food in the storage space or “low”. The amount of cooling may be reduced. With this configuration, the present invention can eliminate useless cooling operation and further improve energy saving performance.
  • the present invention is a flap for switching the flow of cold air in the air passage by the electric functional component, and when the arithmetic control unit determines that there is no food in the storage space, it is stored by the flap.
  • the air flow path on the space side may be closed to reduce the amount of cooling to the storage space.
  • the flap may be arranged in the air passage across the horizontal projection surface of the shelf that defines the storage space.
  • the present invention divides the storage space into two sections, an upper stage and a lower stage, and the air path is switched between the upper stage, which is most difficult for the user to reach, and the lower stage, which is relatively easy to use. May be configured to cool only the lower stage. With this configuration, the present invention can realize an optimal cooling operation that achieves both energy saving performance and usability.
  • the refrigerator of the present invention has a storage state detection function, and is useful as a household refrigerator or a commercial refrigerator that switches the operation mode to a power saving operation or the like using the detection result.

Abstract

The present invention is provided with: a storage compartment which is defined by heat insulating walls and a heat insulating door and which stores an object to be stored; a storage condition estimation unit (23) which estimates storage conditions within the storage compartment; and a calculation control unit (22) which controls the output operation of a flap (74) which is an electrical function component. The storage compartment has storage spaces separated by one or more storage shelves. On the basis of the result of the estimation performed by the storage condition estimation unit (23) with respect to the storage spaces, the calculation control unit (22) controls the output operation of the flap (74), which is an electrical function component, and changes the amount of cooling of the storage spaces.

Description

冷蔵庫refrigerator
 本発明は、貯蔵室の収納量を検知する手段を備えた冷蔵庫に関する。 The present invention relates to a refrigerator provided with means for detecting the storage amount of a storage room.
 近年の家庭用冷蔵庫の冷却方法としては、冷気をファンで冷蔵庫内に循環させる間接冷却方式が一般的である。このような従来の冷蔵庫は、冷蔵庫内に、冷蔵室の温度を検知する冷蔵室温度センサと、冷凍室の温度を検知する冷凍室温度センサとを有している。また、従来の冷蔵庫は、これらのセンサから出力される検知結果に応じて温調制御することで、庫内の温度を適温に保っている。 In recent years, an indirect cooling method in which cold air is circulated in the refrigerator with a fan is a common cooling method for household refrigerators. Such a conventional refrigerator has a refrigerator temperature sensor for detecting the temperature of the refrigerator compartment and a freezer temperature sensor for detecting the temperature of the freezer compartment in the refrigerator. Moreover, the conventional refrigerator is keeping temperature in a warehouse at appropriate temperature by carrying out temperature control control according to the detection result output from these sensors.
 例えば、庫内温度を均一に保つ冷蔵庫として、可動式の冷気吐出装置を設けた冷蔵庫がある(例えば、特許文献1を参照)。 For example, as a refrigerator that keeps the inside temperature uniform, there is a refrigerator provided with a movable cold air discharge device (see, for example, Patent Document 1).
 図19は、従来の冷蔵庫100の要部正面図であり、図20は、従来の冷蔵庫100の構成部品の挙動を模式的に示す波形図である。 FIG. 19 is a front view of a main part of the conventional refrigerator 100, and FIG. 20 is a waveform diagram schematically showing the behavior of the components of the conventional refrigerator 100.
 図19に示すように、従来の冷蔵庫100においては、冷蔵室101内に設けられた可動式の冷気吐出装置102が、左右に冷気を供給して庫内温度の均一化を図っている。 As shown in FIG. 19, in the conventional refrigerator 100, a movable cold air discharge device 102 provided in the refrigerator compartment 101 supplies cold air to the left and right to achieve uniform temperature in the cabinet.
 また、図20に示したように、従来の冷蔵庫100においては、冷凍室の温度センサの検知する温度が上がって所定の温度(ON温度)まで上昇すると圧縮機を駆動する。また、このとき冷蔵室の温度センサの検知温度が所定値の温度(開温度)以上であれば、冷蔵室のダンパを「閉→開」とする動作を行って、冷却ファンを駆動する(以下、この動作を「冷蔵室冷凍室同時冷却a」という)。 Also, as shown in FIG. 20, in the conventional refrigerator 100, the compressor is driven when the temperature detected by the temperature sensor in the freezer rises to a predetermined temperature (ON temperature). At this time, if the temperature detected by the temperature sensor in the refrigerator compartment is equal to or higher than a predetermined value (open temperature), an operation of closing the damper in the refrigerator compartment is performed to drive the cooling fan (hereinafter referred to as “open”). This operation is referred to as “simultaneous cooling a freezer compartment a”).
 その後、冷蔵室の温度センサの検知温度が所定の温度(閉温度)に到達すると、冷蔵室のダンパを「開→閉」とする動作を行い、冷凍室側のみを冷却運転する。(以下、この動作を「冷凍室単独冷却b」という)。 After that, when the temperature detected by the temperature sensor in the refrigerator compartment reaches a predetermined temperature (closed temperature), the damper of the refrigerator compartment is operated to “open → close”, and only the freezer compartment side is cooled. (Hereinafter, this operation is referred to as “freezer compartment cooling b”).
 その後、冷凍室の温度センサの検知温度が下がって所定の温度(OFF温度)に到達すると、圧縮機を停止する(以下、この動作を「冷却停止c」という)。 After that, when the temperature detected by the temperature sensor in the freezer compartment decreases and reaches a predetermined temperature (OFF temperature), the compressor is stopped (hereinafter, this operation is referred to as “cooling stop c”).
 そして、従来の冷蔵庫100は、その通常運転中に、冷蔵室冷凍室同時冷却a、冷凍室単独冷却b、冷却停止cの一連の動作を順に繰り返す。 And the conventional refrigerator 100 repeats a series of operation | movement of the refrigerator compartment simultaneous cooling a, the freezer compartment independent cooling b, and the cooling stop c in order during the normal driving | operation.
 なお、冷凍室のダンパを有する冷蔵庫100であれば、上記一連の動作に、冷蔵室のダンパを「開」、冷凍室のダンパを「閉」として、圧縮機および冷却ファンを駆動する動作が加えられる(以下、この動作を「冷蔵室単独冷却」という)。 In the refrigerator 100 having the freezer damper, the operation of driving the compressor and the cooling fan with the refrigerator opener and the freezer damper closed is added to the above series of operations. (Hereinafter, this operation is referred to as “cooling in the refrigerator compartment alone”).
 しかしながら、従来の冷蔵庫100は、庫内の収納状況に関わらず庫内全体を万遍なく冷却するため、収納物がない箇所に対しても冷気を供給し、冷やしすぎの無駄が生じている。 However, the conventional refrigerator 100 uniformly cools the entire interior of the refrigerator regardless of the storage condition in the storage, so that cold air is supplied even to places where there is no storage, resulting in waste of excessive cooling.
 また、近年就労形態が変化し、共働き世帯が増加している。また、大型スーパー等での買物の機会が増加している。これにより、休日に一週間分の食品をまとめ買いする人々が増加しており、冷蔵庫100の収納量が今までよりも大きく変化する傾向がある。また、まとめ買い前日には極端に冷蔵庫100の収納量が少ない場合も多く、一般家庭の生活パターンが変化しつつある。 In recent years, the working style has changed and the number of double-income households has increased. In addition, shopping opportunities at large supermarkets are increasing. Thereby, the number of people who buy food for a week on holidays is increasing, and the storage capacity of the refrigerator 100 tends to change more than ever. Moreover, the storage amount of the refrigerator 100 is often extremely small on the day before the bulk purchase, and the life pattern of a general household is changing.
 本発明は、上述した課題に鑑みてなされたものであり、省エネ性を高めながら、保鮮性を確保する使い勝手のよい冷蔵庫を提供する。 The present invention has been made in view of the above-described problems, and provides an easy-to-use refrigerator that ensures freshness while improving energy saving.
特開平8-247608号公報JP-A-8-247608
 本発明の冷蔵庫は、断熱壁と断熱扉とによって区画され、収納物を収納する収納室と、収納室内の収納状況を推定する収納状況推定部と、収納状況推定部の推定結果を記憶する記憶部と、電気機能部品の出力動作を制御する演算制御部を備える。収納室は、一つ又は複数の棚によって複数の収納空間を区画形成するとともに、演算制御部は収納状況推定部の推定結果に基づいて、電気機能部品の出力動作を制御し、収納空間への冷却量を変化させる。 The refrigerator of the present invention is partitioned by a heat insulating wall and a heat insulating door, and stores a storage room for storing stored items, a storage state estimation unit for estimating a storage state in the storage room, and a storage result of the storage state estimation unit. And an arithmetic control unit that controls the output operation of the electrical functional component. The storage room defines a plurality of storage spaces by one or a plurality of shelves, and the calculation control unit controls the output operation of the electrical functional component based on the estimation result of the storage state estimation unit, and supplies the storage space to the storage space. Change the amount of cooling.
 これによって、収納空間における収納状況に合わせて、最適に電気機能部品の出力動作を制御することができる。 This makes it possible to optimally control the output operation of the electrical functional component in accordance with the storage situation in the storage space.
 そして、本発明の冷蔵庫は、収納空間における収納状況推定部の推定結果に基づいて、収納空間への冷却量を変化させることにより、収納物がない箇所への冷却量を低減し、無駄な冷却運転を省き、省エネ性能を向上させる。 And the refrigerator of this invention reduces the cooling amount to the location where there is no storage thing by changing the cooling amount to storage space based on the estimation result of the storage condition estimation part in storage space, and wasteful cooling Reduce driving and improve energy-saving performance.
図1は、本発明の第1の実施の形態における冷蔵庫の正面図である。FIG. 1 is a front view of the refrigerator in the first embodiment of the present invention. 図2は、図1の2-2線断面図である。2 is a cross-sectional view taken along line 2-2 of FIG. 図3は、本発明の第1の実施の形態における冷蔵庫のフラップの動作を説明する説明図である。FIG. 3 is an explanatory diagram for explaining the operation of the flaps of the refrigerator according to the first embodiment of the present invention. 図4は、本発明の第1の実施の形態における冷蔵庫の制御ブロック図である。FIG. 4 is a control block diagram of the refrigerator in the first embodiment of the present invention. 図5は、本発明の第1の実施の形態における冷蔵庫の収納状況検出動作を説明する説明図である。FIG. 5 is an explanatory diagram for explaining the storage condition detection operation of the refrigerator in the first embodiment of the present invention. 図6は、本発明の第1の実施の形態における冷蔵庫の収納状況検知制御を示すフローチャートである。FIG. 6 is a flowchart showing storage condition detection control of the refrigerator in the first embodiment of the present invention. 図7は、本発明の第1の実施の形態における冷蔵庫の収納状況検知制御を利用した冷却運転判定制御を示すフローチャートである。FIG. 7 is a flowchart showing the cooling operation determination control using the storage condition detection control of the refrigerator in the first embodiment of the present invention. 図8は、本発明の第1の実施の形態における冷蔵庫の収納状況検知制御を利用した冷却運転判定制御の他の例を示すフローチャートである。FIG. 8 is a flowchart showing another example of the cooling operation determination control using the storage condition detection control of the refrigerator in the first embodiment of the present invention. 図9は、本発明の第1の実施の形態における冷蔵庫の収納状況検知制御を利用した冷却運転判定制御のさらに別の例を示すフローチャートである。FIG. 9 is a flowchart showing still another example of the cooling operation determination control using the storage condition detection control of the refrigerator in the first embodiment of the present invention. 図10は、本発明の第1の実施の形態における対象収納空間の収納物有無による温度センサの温度挙動を模式的に示す波形図である。FIG. 10 is a waveform diagram schematically showing the temperature behavior of the temperature sensor according to the presence / absence of a stored item in the target storage space according to the first embodiment of the present invention. 図11は、本発明の第1の実施の形態における対象収納空間の収納物有無による温度センサの温度挙動の他の例を模式的に示す波形図である。FIG. 11 is a waveform diagram schematically illustrating another example of the temperature behavior of the temperature sensor depending on the presence / absence of an object in the target storage space according to the first embodiment of the present invention. 図12は、本発明の第1の実施の形態における対象収納空間の収納物有無による温度センサの温度挙動のさらに別の例を模式的に示す波形図である。FIG. 12 is a waveform diagram schematically showing still another example of the temperature behavior of the temperature sensor depending on the presence / absence of an object in the target storage space according to the first embodiment of the present invention. 図13は、本発明の第1の実施の形態における冷蔵庫の庫内照明のLED制御を示すフローチャートである。FIG. 13 is a flowchart showing LED control of the interior lighting of the refrigerator in the first embodiment of the present invention. 図14は、本発明の第1の実施の形態における冷蔵庫の庫内照明のLED出力を示す特性図である。FIG. 14 is a characteristic diagram showing the LED output of the interior lighting of the refrigerator in the first embodiment of the present invention. 図15は、本発明の第1の実施の形態における冷蔵庫の庫内照度のマトリックスを示す説明図である。FIG. 15 is an explanatory diagram showing a matrix of illuminance in the refrigerator of the first embodiment of the present invention. 図16は、本発明の第2の実施の形態における冷蔵庫を示す図1における2-2線断面図である。FIG. 16 is a cross-sectional view taken along line 2-2 in FIG. 1, showing a refrigerator in the second embodiment of the present invention. 図17は、本発明の第3の実施の形態における冷蔵庫を示す図1における2-2線断面図である。FIG. 17 is a cross-sectional view taken along the line 2-2 in FIG. 1 showing the refrigerator in the third embodiment of the present invention. 図18は、本発明の第4の実施の形態における冷蔵庫を示す図1における2-2線断面図である。18 is a cross-sectional view taken along line 2-2 in FIG. 1, showing a refrigerator according to a fourth embodiment of the present invention. 図19は、従来の冷蔵庫の庫内正面図である。FIG. 19 is a front view of a conventional refrigerator. 図20は、従来の冷蔵庫の温度センサの温度挙動を模式的に示す波形図である。FIG. 20 is a waveform diagram schematically showing the temperature behavior of a temperature sensor of a conventional refrigerator.
 以下、本発明の実施の形態について、図面を参照しながら説明する。なお、この実施の形態によってこの発明が限定されるものではない。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. The present invention is not limited to the embodiments.
 (第1の実施の形態)
 以下、本発明の第1の実施の形態について説明する。
(First embodiment)
Hereinafter, a first embodiment of the present invention will be described.
 図1は、本発明の第1の実施の形態における冷蔵庫50の正面図である。 FIG. 1 is a front view of the refrigerator 50 according to the first embodiment of the present invention.
 図1に示したように、冷蔵庫50は、冷蔵庫本体11を備えている。冷蔵庫本体11は断熱箱体であり、主に鋼板を用いた外箱と、ABS等の樹脂で成形された内箱と、外箱と内箱との空間に設けたウレタン等の断熱材とを有する構造で、冷蔵庫本体11の内部は周囲と断熱されている。 As shown in FIG. 1, the refrigerator 50 includes a refrigerator body 11. The refrigerator main body 11 is a heat insulating box, and mainly includes an outer box using a steel plate, an inner box formed of a resin such as ABS, and a heat insulating material such as urethane provided in a space between the outer box and the inner box. The inside of the refrigerator main body 11 is insulated from the surroundings by the structure it has.
 冷蔵庫本体11は、複数の貯蔵室に断熱区画されている。最上部には、冷蔵室12が設けられ、冷蔵室12の下部には製氷室13および切換室14が横並びに設けられている。製氷室13および切換室14の下部には冷凍室15、最下部には野菜室16が、それぞれ配置されている。 The refrigerator body 11 is partitioned into a plurality of storage rooms. A refrigeration room 12 is provided at the top, and an ice making room 13 and a switching room 14 are provided side by side at the lower part of the refrigeration room 12. A freezing room 15 is disposed below the ice making room 13 and the switching room 14, and a vegetable room 16 is disposed at the bottom.
 各貯蔵室の前面には、外気と区画するための扉が、冷蔵庫本体11の前面開口部に構成されている。冷蔵室12の冷蔵室扉12a、12bの中央部付近には、各室の庫内温度設定や、製氷および急速冷却等の設定を行うための操作部17と、使用者にさまざまな情報を報知するための報知手段の一例である表示部91とが配置されている。 A door for partitioning from outside air is formed in the front opening of the refrigerator main body 11 at the front of each storage room. In the vicinity of the center of the refrigerator compartment doors 12a and 12b of the refrigerator compartment 12, an operation unit 17 for setting the internal temperature of each compartment, ice making, rapid cooling, etc., and various information are notified to the user. A display unit 91 which is an example of a notification means for performing the above is arranged.
 図2は、本発明の第1の実施の形態における冷蔵庫50の、図1における2-2線断面図である。 FIG. 2 is a cross-sectional view of the refrigerator 50 in the first embodiment of the present invention taken along line 2-2 in FIG.
 図2に示したように、冷蔵室12内には、上下に複数の収納棚18が設けられ、複数の収納空間を区画形成している。なお、一部の収納棚18は、上下に可動できるように構成されている。 As shown in FIG. 2, in the refrigerator compartment 12, a plurality of storage shelves 18 are provided on the top and bottom, and a plurality of storage spaces are defined. Note that some of the storage shelves 18 are configured to be movable up and down.
 また、冷蔵室12内には、ランプや複数のLED等で構成された照明部19、ならびに、LED等の発光部20および照度(光)センサ等の光量検知部21で構成された収納状況検知部が設けられている。 Also, in the refrigerator compartment 12, an illumination state 19 composed of a lamp, a plurality of LEDs, etc., and a storage state detection composed of a light emitting unit 20, such as LEDs, and a light amount detection unit 21, such as an illuminance (light) sensor. Is provided.
 照明部19は、冷蔵庫50内の扉開放側前面から見て、庫内の奥行寸法の1/2より手前で、かつ、収納棚18の先端よりも前方(手前)に位置するように、左側壁面および右側壁面にそれぞれ縦方向に配置されている。また、発光部20は、照明部19と近接する位置に隣接配置されており、光量検知部21は、冷蔵室12内の後方位置に配置されている。 The illumination unit 19 is on the left side so as to be located in front of half of the depth dimension in the refrigerator and in front (front) of the front end of the storage shelf 18 when viewed from the front side of the door opening side in the refrigerator 50. It arrange | positions in the vertical direction at the wall surface and the right wall surface, respectively. Further, the light emitting unit 20 is disposed adjacent to a position close to the illumination unit 19, and the light amount detection unit 21 is disposed at a rear position in the refrigerator compartment 12.
 なお、光量検知部21の配置は、上述の例に限定されず、収納物33(図5参照)、および庫内の構造物を介して、発光部20により照射される光を受光可能な位置に配置されている限り、庫内の何れの位置に配置しても構わない。 In addition, arrangement | positioning of the light quantity detection part 21 is not limited to the above-mentioned example, The position which can light-receive the light irradiated by the light emission part 20 via the stored object 33 (refer FIG. 5) and the structure in a warehouse. As long as it is arranged at any position, it may be arranged at any position in the storage.
 冷蔵室12内の最上部の後方領域に段部を有して形成された上部機械室内には、圧縮機30、および、水分除去を行うドライヤ等の冷凍サイクルの高圧側構成部品が収納されている。 The upper machine chamber formed with a step in the uppermost rear region in the refrigerator compartment 12 houses the compressor 30 and high-pressure side components of the refrigeration cycle such as a dryer for removing moisture. Yes.
 そして、冷蔵室12内の最上部の棚18は、上部機械室の底面壁と略同一の高さに配置されている。すなわち、冷蔵室12内の最上部の収納空間は、背面に対向して上部機械室を備えている。したがって、冷蔵室12内の最上部の収納空間の奥行寸法は、下部の収納空間より小さく設定されている。 And the uppermost shelf 18 in the refrigerator compartment 12 is disposed at substantially the same height as the bottom wall of the upper machine room. That is, the uppermost storage space in the refrigerator compartment 12 is provided with an upper machine room facing the back surface. Therefore, the depth dimension of the uppermost storage space in the refrigerator compartment 12 is set smaller than the lower storage space.
 冷凍室15の背面には、冷気を生成する冷却室(図示せず)が設けられている。その冷却室内には、冷却器、および、冷却器で冷却した冷却手段である冷気を、冷蔵室12、製氷室13、切換室14、冷凍室15および野菜室16に送風する冷却ファン31(図4参照)が配置されている。また、冷却器やその周辺に付着する霜や氷を除霜するためにラジアントヒータで構成された除霜部68(図4参照)、ドレンパンおよびドレンチューブ蒸発皿等が構成されている。 A cooling chamber (not shown) for generating cold air is provided on the back of the freezing chamber 15. In the cooling chamber, a cooling fan 31 (see FIG. 4) that blows cooler and cold air that is cooling means cooled by the cooler to the refrigerator compartment 12, the ice making chamber 13, the switching chamber 14, the freezer compartment 15, and the vegetable compartment 16. 4) is arranged. In addition, a defrosting unit 68 (see FIG. 4) configured by a radiant heater, a drain pan, a drain tube evaporating dish, and the like are configured to defrost the cooler and its surrounding frost and ice.
 冷蔵室12では、冷却器から送られた冷気を遮断、又は開放するダンパ67と、冷気の流れを切り替えるフラップ74によって冷蔵室12内の冷却量を調節し、冷蔵保存を行うために凍らない温度を下限として通常1℃~5℃に温度制御されている。 In the refrigerating room 12, the temperature at which the refrigerating room 12 is controlled to cool is controlled by a damper 67 that cuts off or opens the cold air sent from the cooler, and a flap 74 that switches the flow of the cold air, and the temperature that does not freeze in order to perform refrigerated storage. The temperature is usually controlled at 1 ° C. to 5 ° C. with the lower limit of.
 なお、ここで言う冷却量は、冷気の風量および冷気の温度に依存する値であり、冷気の風量が大きい場合や冷気の温度が低い場合は、冷却量が大きくなる。 Note that the cooling amount referred to here is a value that depends on the amount of cold air and the temperature of the cold air, and the amount of cooling increases when the amount of cold air is large or when the temperature of the cold air is low.
 最下部の野菜室16は、冷蔵室12と同等または若干高い2℃~7℃に温度制御されている。 The lowermost vegetable room 16 is temperature-controlled at 2 ° C. to 7 ° C. which is equal to or slightly higher than the refrigerator room 12.
 また、冷凍室15は、冷凍温度帯に設定されており、冷凍保存のために通常-22℃~-15℃に温度制御されているが、冷凍保存状態の向上のために、例えば-30℃や-25℃の低温に温度制御されるように設定される場合もある。 Further, the freezer compartment 15 is set in a freezing temperature zone and is normally temperature-controlled at −22 ° C. to −15 ° C. for frozen storage, but for example, −30 ° C. to improve the frozen storage state. In some cases, the temperature is controlled to a low temperature of −25 ° C.
 製氷室13は、冷蔵室12内の貯水タンク(図示せず)から送られた水により、室内上部に設けられた自動製氷機(図示せず)で氷をつくり、その氷を室内下部に配置した貯氷容器(図示せず)に貯蔵する。 The ice making chamber 13 uses the water sent from the water storage tank (not shown) in the refrigerator compartment 12 to make ice with an automatic ice maker (not shown) provided at the upper part of the room, and the ice is arranged at the lower part of the room. Stored in an ice storage container (not shown).
 切換室14は、1℃~5℃に設定される冷蔵温度帯、2℃~7℃に設定される野菜温度帯、通常-22℃~-15℃に設定される冷凍温度帯以外にも、冷蔵温度帯から冷凍温度帯の間で予め設定された温度帯に切り換えることができる。切換室14は、製氷室13に並設された、独立扉を備えた貯蔵室であり、引き出し式の扉を備えることが多い。 The switching chamber 14 has a refrigeration temperature zone set at 1 ° C. to 5 ° C., a vegetable temperature zone set at 2 ° C. to 7 ° C., and a freezing temperature zone normally set at −22 ° C. to −15 ° C. It is possible to switch to a preset temperature range between the refrigeration temperature range and the freezing temperature range. The switching chamber 14 is a storage chamber provided with an independent door, which is provided in parallel with the ice making chamber 13, and often includes a drawer-type door.
 なお、本実施の形態では、切換室14を、冷蔵および冷凍の温度帯を含めた温度に調整可能な貯蔵室であるとしている。しかし、冷蔵機能は冷蔵室12と野菜室16に、冷凍機能は冷凍室15に、それぞれ委ねて、冷蔵と冷凍の中間の温度帯のみの切り換えに特化した貯蔵室としてもよい。また、特定の温度帯、例えば、近年冷凍食品の需要が多くなってきたことに伴い、冷凍に固定された貯蔵室としてもよい。 In the present embodiment, it is assumed that the switching chamber 14 is a storage chamber that can be adjusted to a temperature including the refrigeration and freezing temperature zones. However, the refrigeration function may be assigned to the refrigeration room 12 and the vegetable room 16, and the freezing function may be assigned to the freezing room 15, respectively, so that a storage room specialized for switching only in the intermediate temperature range between refrigeration and freezing may be used. Moreover, it is good also as a storage room fixed to freezing in connection with a specific temperature range, for example, the demand for frozen foods increasing in recent years.
 図3は、本発明の第1の実施の形態における冷蔵庫の図2におけるフラップ74の動作を説明する説明図である。 FIG. 3 is an explanatory diagram for explaining the operation of the flap 74 in FIG. 2 of the refrigerator according to the first embodiment of the present invention.
 冷蔵室12内は一つ又は複数の棚18によって収納空間を区画されている。フラップ74は収納空間を区画形成する棚18の水平投影面に跨ってダクト73内に配置され、ダクト73内において簡易な構成で風路内の冷気の流れを切り替えることができる。また、フラップ74は収納状況推定部の推定結果に基づいて、動作を行い、収納空間への冷却量を調節することができる。 The inside of the refrigerator compartment 12 is divided into storage spaces by one or a plurality of shelves 18. The flap 74 is disposed in the duct 73 across the horizontal projection surface of the shelf 18 that defines the storage space, and the flow of cold air in the air passage can be switched in the duct 73 with a simple configuration. Moreover, the flap 74 can operate | move based on the estimation result of a storage condition estimation part, and can adjust the cooling amount to storage space.
 例えば、収納量が少ない場合には、フラップ74を閉として対象の収納空間への冷却量を低減することで、無駄な冷却運転を省き、更に省エネ性能を向上できる。一方、収納量が多い、又は増加した場合には、フラップ74を開とすることで、庫内全体を冷却し、瞬時に冷却量を変化させることで、保鮮性を向上させることができる。 For example, when the storage amount is small, by reducing the cooling amount to the target storage space by closing the flap 74, useless cooling operation can be omitted and the energy saving performance can be further improved. On the other hand, when the storage amount is large or increases, by keeping the flap 74 open, the entire interior is cooled, and the amount of cooling can be instantaneously changed to improve the freshness.
 なお、フラップ74は全開、又は全閉の動作だけでなく、対象収納空間の収納状況に合わせて、微開(例えば、30°)等とすることにより冷却量を更に細かく調節してもよい。 It should be noted that the cooling amount of the flap 74 may be further finely adjusted not only by the fully opened or fully closed operation but also by slightly opening (for example, 30 °) according to the storage condition of the target storage space.
 また、本実施の形態におけるダクト73は、冷蔵室12の奥側にのみ配置されている。しかし、ドアポケット内収納物の温度が必要以上に高くなるのを防ぐために、ダクト73を冷蔵室12の天面側まで延長することで、ドア側を積極的に冷却する構成にしてもよい。 Further, the duct 73 in the present embodiment is disposed only on the back side of the refrigerator compartment 12. However, in order to prevent the temperature of the stored contents in the door pocket from becoming higher than necessary, the door 73 may be actively cooled by extending the duct 73 to the top surface side of the refrigerator compartment 12.
 また更に、ドアポケットの側面、又は底面にスリット形状を設けることで、ドアポケット内の対流を促進させて冷却してもよい。 Furthermore, a convection in the door pocket may be promoted and cooled by providing a slit shape on the side surface or bottom surface of the door pocket.
 本実施の形態における収納空間は上段部と下段部の2区画に分割している。この構成により、使用者が一番手の届きにくい上段と比較的に使い勝手の良い下段で風路を切り替え、収納量が少ない場合には、下段のみを冷却することで、省エネ性能と使い勝手を両立する最適な冷却運転を実現できる。 The storage space in the present embodiment is divided into two sections, an upper stage and a lower stage. With this configuration, the air path is switched between the upper part, which is most difficult for the user to reach, and the lower part, which is relatively easy to use, and when the storage capacity is small, only the lower part is cooled to achieve both energy saving performance and usability. Optimal cooling operation can be realized.
 なお、フラップ74の配置は、上述に限定されず、冷却器からの冷気を供給できる位置であれば、ダクト73内の何れの位置に、複数個配置しても構わない。 The arrangement of the flaps 74 is not limited to the above, and a plurality of flaps 74 may be arranged at any position in the duct 73 as long as the cold air from the cooler can be supplied.
 また、収納空間の区画は、上段部と下段部のみならず、左部と右部、手前部と奥部で区画し、それぞれの冷却量を調節してもよい。 Further, the storage space may be divided not only at the upper and lower steps, but also at the left and right portions, the front portion and the rear portion, and the cooling amount of each may be adjusted.
 以上のように構成された冷蔵庫50について、その動作および作用を説明する。 About the refrigerator 50 comprised as mentioned above, the operation | movement and an effect | action are demonstrated.
 図4は、本発明の第1の実施の形態における冷蔵庫50の制御ブロック図である。 FIG. 4 is a control block diagram of the refrigerator 50 in the first embodiment of the present invention.
 図4に示したように、冷蔵庫50は、光量検知部21、温度センサ61、扉開閉検知部62、演算制御部22、発光部20、圧縮機30、冷却ファン31、温度補償ヒータ32、ダンパ67、除霜部68、フラップ74、および表示部91を備えている。 As shown in FIG. 4, the refrigerator 50 includes a light amount detection unit 21, a temperature sensor 61, a door opening / closing detection unit 62, a calculation control unit 22, a light emitting unit 20, a compressor 30, a cooling fan 31, a temperature compensation heater 32, a damper. 67, a defrosting unit 68, a flap 74, and a display unit 91 are provided.
 なお、外部環境を測定するために、外気温度センサ63および庫外照度センサ72をさらに備えていてもよいが、必須ではない。 In addition, in order to measure an external environment, you may further provide the outside temperature sensor 63 and the outside illumination intensity sensor 72, but it is not essential.
 また、演算制御部22は、収納状況推定部23、温度情報判定部70、扉開閉情報判定部71、比較情報判定部24、変化情報判定部25、記憶部64、運転開始判定部65および運転終了判定部66を有している。 In addition, the calculation control unit 22 includes a storage state estimation unit 23, a temperature information determination unit 70, a door opening / closing information determination unit 71, a comparison information determination unit 24, a change information determination unit 25, a storage unit 64, an operation start determination unit 65, and an operation. An end determination unit 66 is provided.
 本実施の形態の冷蔵庫50は、扉開閉動作が行われると扉開閉検知部62により開動作または閉動作を検知し、その信号をマイコン等で構成される演算制御部22に入力する。そして、その信号を受けた扉開閉情報判定部71によって、扉の開閉動作を判定する。扉が閉じたと扉開閉情報判定部71が判定した場合には、演算制御部22は、あらかじめ決められたプログラムにより、発光部20を順次動作させる。 In the refrigerator 50 of the present embodiment, when the door opening / closing operation is performed, the door opening / closing detection unit 62 detects the opening operation or the closing operation, and inputs the signal to the arithmetic control unit 22 configured by a microcomputer or the like. Then, the door opening / closing information determination unit 71 that receives the signal determines the door opening / closing operation. When the door opening / closing information determination unit 71 determines that the door is closed, the arithmetic control unit 22 sequentially operates the light emitting units 20 according to a predetermined program.
 光量検知部21は、近傍の光量を検知し、その情報を演算制御部22に入力する。そして、その情報を受けた収納状況推定部23によって収納量や収納物の位置等の収納情報が得られる。 The light amount detection unit 21 detects the light amount in the vicinity and inputs the information to the calculation control unit 22. The storage status estimation unit 23 that has received the information obtains storage information such as the storage amount and the position of the storage items.
 得られた収納情報は、比較情報判定部24によって、例えば、扉開閉動作前後の収納情報の比較がなされ、その結果から比較情報が得られる。 The obtained storage information is compared by, for example, the storage information before and after the door opening / closing operation by the comparison information determination unit 24, and the comparison information is obtained from the result.
 次に、変化情報判定部25によって、比較情報と所定の閾値とが比較されて、収納量や収納物の位置等の収納情報の変化情報が得られる。 Next, the change information determination unit 25 compares the comparison information with a predetermined threshold value to obtain change information of the storage information such as the storage amount and the position of the storage item.
 そして、演算制御部22の運転開始判定部65は、変化情報判定部25によって得られた変化情報に基づいて、冷却運転にまつわる圧縮機30、冷却ファン31、温度補償ヒータ32、ダンパ67、除霜部68およびフラップ74の動作を決定し、運転を開始する。また、演算制御部22の運転終了判定部66は、上述した各構成要素の運転を終了させる。 Then, the operation start determination unit 65 of the arithmetic control unit 22 is based on the change information obtained by the change information determination unit 25, the compressor 30, the cooling fan 31, the temperature compensation heater 32, the damper 67, the defrosting related to the cooling operation. The operations of the unit 68 and the flap 74 are determined, and the operation is started. In addition, the operation end determination unit 66 of the arithmetic control unit 22 ends the operation of each component described above.
 ここで、収納状況検知部を構成する発光部20および光量検知部21の動作を詳細に説明する。 Here, operations of the light emitting unit 20 and the light amount detecting unit 21 constituting the storage state detecting unit will be described in detail.
 図5は、本発明の第1の実施の形態における冷蔵庫50の収納状況検出動作を説明するための図である。 FIG. 5 is a diagram for explaining the storage state detection operation of the refrigerator 50 according to the first embodiment of the present invention.
 冷蔵庫50の左右両壁面に配置された発光部20から出力された照射光34aは、冷蔵室12内および冷蔵室12内部に収納された収納物33を照射する。また、この照射光34aの一部は、冷蔵室12内に配置した光量検知部21に入射する。図5は、冷蔵室12内に収納物33が収納されている場合を示している。さらに図5は、収納物33の存在により、左右両壁面からの照射光34aが共に遮蔽される領域A、何れか一方の照射光34aが遮蔽される領域B、および左右の何れの照射光34aも遮蔽されない領域Cが発生する様子を示している。 Irradiation light 34 a output from the light emitting units 20 arranged on the left and right wall surfaces of the refrigerator 50 irradiates the refrigerator 33 and the stored items 33 stored in the refrigerator 12. Further, a part of the irradiation light 34 a is incident on the light amount detection unit 21 disposed in the refrigerator compartment 12. FIG. 5 shows a case where the stored items 33 are stored in the refrigerator compartment 12. Further, FIG. 5 shows a region A in which the irradiation light 34a from both the left and right wall surfaces is shielded by the presence of the storage object 33, a region B in which any one of the irradiation light 34a is shielded, and any left and right irradiation light 34a. Also, a state where an unshielded region C is generated is shown.
 この場合、光量検知部21は、何れか一方の照射光34aが遮蔽される領域Bにあり、該当する光量を検知して出力する。また、収納物33の量が多い場合には、共に遮蔽される領域Aが増加するため、光量検知部21の検知光量は減少する。 In this case, the light amount detection unit 21 is in the region B where any one of the irradiation lights 34a is shielded, and detects and outputs the corresponding light amount. In addition, when the amount of the stored item 33 is large, the area A that is shielded together increases, and thus the amount of light detected by the light amount detector 21 decreases.
 また、収納量が少ない場合には、何れの照射光34aも遮蔽されない領域Cが増加するため、光量検知部21の検知光量は増加する。 In addition, when the storage amount is small, the area C where any irradiation light 34a is not shielded increases, and thus the amount of light detected by the light amount detector 21 increases.
 このように、収納物33の存在、および収納物33の量の違いに起因した光量変化を光量検知部21で検知する。そして、その検知結果を、演算制御部22の収納状況推定部23によって、予め設定した所定の閾値を用いて判別することにより、庫内の収納物33の有無、又は量(例:多いか少ないか)を分類することができる。 As described above, the light amount detection unit 21 detects a change in the light amount due to the presence of the stored item 33 and the difference in the amount of the stored item 33. And the detection result is discriminated by the storage state estimation unit 23 of the calculation control unit 22 using a predetermined threshold value set in advance, so that the presence / absence or amount of the stored items 33 in the warehouse (eg, more or less) Can be classified.
 なお、発光部20を、冷蔵庫50内に設けられている照明部19と兼用したり、発光部20の基板と照明部19の基板を兼用したりすることにより、新たな光源、材料を設けることなく、より簡易な構成で収納状態の検知が可能となる。 In addition, a new light source and material are provided by sharing the light emitting unit 20 with the illumination unit 19 provided in the refrigerator 50 or by using the substrate of the light emitting unit 20 and the substrate of the illumination unit 19 together. In addition, the storage state can be detected with a simpler configuration.
 次に、発光部20および光量検知部21を使った収納量検知制御を説明する。 Next, the storage amount detection control using the light emitting unit 20 and the light amount detection unit 21 will be described.
 図6は、本発明の第1の実施の形態における冷蔵庫50の収納量検知制御を示すフローチャートである。 FIG. 6 is a flowchart showing the storage amount detection control of the refrigerator 50 in the first embodiment of the present invention.
 図6において、演算制御部22は、通常のメイン制御(ステップS100)から、扉開閉動作を検知する(ステップS101)。扉が閉状態であることを確認し(ステップS102)、閉状態であれば、収納量検知制御(ステップS103)をスタートさせる。 In FIG. 6, the arithmetic control unit 22 detects a door opening / closing operation from the normal main control (step S100) (step S101). It is confirmed that the door is closed (step S102), and if it is closed, the storage amount detection control (step S103) is started.
 まず、収納状況推定部23で貯蔵室の収納情報を得る(ステップS104)。そして、比較情報判定部24で、扉開閉動作前後、過去複数回の扉開閉動作前後、または、一定時間前後の収納情報の比較がなされ、比較情報を得る(ステップS105)。 First, storage information of the storage room is obtained by the storage state estimation unit 23 (step S104). Then, the comparison information determination unit 24 compares the storage information before and after the door opening / closing operation, before and after the door opening / closing operations of the past several times, or before and after a certain time, and obtains comparison information (step S105).
 そして、変化情報判定部25によって、ステップS104で得た収納情報とステップS105で得た比較情報とに基づいて、収納状況の変化情報が得られる(ステップS106)。そして、得られた収納状況の変化情報を記憶部64に記憶し(ステップS107)、ある一定期間のデータベースを構築する。 Then, the change information determination unit 25 obtains storage state change information based on the storage information obtained in step S104 and the comparison information obtained in step S105 (step S106). Then, the storage state change information obtained is stored in the storage unit 64 (step S107), and a database for a certain period is constructed.
 そして、そのデータベースに基づいて、演算制御部22は、冷却運転制御を行う(ステップS108)。 Then, based on the database, the arithmetic control unit 22 performs cooling operation control (step S108).
 次に、前述した収納状況検知制御にもとづいて、冷却運転制御を行う具体例について、図7から図9を用いて説明する。 Next, a specific example of performing the cooling operation control based on the above-described storage state detection control will be described with reference to FIGS.
 図7は、本発明の第1の実施の形態における冷蔵庫50の収納状況検知制御を利用した冷却運転判定制御を示すフローチャートである。 FIG. 7 is a flowchart showing the cooling operation determination control using the storage state detection control of the refrigerator 50 in the first embodiment of the present invention.
 図7において、メイン制御(ステップS110)中に、扉開閉動作が検知される(ステップS111)と、収納状況検知制御(ステップS112)が開始される。 In FIG. 7, during the main control (step S110), when the door opening / closing operation is detected (step S111), the storage state detection control (step S112) is started.
 具体的には、図6のステップS104~ステップS107に示したように、収納情報と比較情報に基づいて収納状況の変化情報が得られる。 Specifically, as shown in steps S104 to S107 in FIG. 6, storage state change information is obtained based on the storage information and the comparison information.
 次に、演算制御部22は、収納情報から得た収納状況データAに対して閾値判定を行う(ステップS113)。そして、収納状況データAが、事前に設定した基準収納状況データB以下であると判定した場合(ステップS114,Yes)、温度検知制御に移行し、温度データCを取得する(ステップS115)。そして、温度データCが、事前に設定した基準温度データDよりも小さい(温度が低い)場合(ステップS116,Yes)には、フラップ74を「開→閉」とする動作を行い、対象の収納空間への冷却量を低減する(ステップS117)。この際に、合わせて、圧縮機30と冷却ファン31の回転数を低下させ、冷蔵室12のダンパ67の開度を小さくする等の動作によって冷却量を低減してもよい。 Next, the calculation control unit 22 performs threshold determination on the storage status data A obtained from the storage information (step S113). When it is determined that the storage status data A is equal to or less than the reference storage status data B set in advance (Yes in step S114), the process proceeds to temperature detection control, and temperature data C is acquired (step S115). When the temperature data C is smaller than the preset reference temperature data D (the temperature is low) (step S116, Yes), an operation of opening the flap 74 “open → close” is performed to store the target. The amount of cooling to the space is reduced (step S117). At this time, the cooling amount may be reduced by an operation such as reducing the rotation speed of the compressor 30 and the cooling fan 31 and reducing the opening degree of the damper 67 of the refrigerator compartment 12.
 一方、収納状況データAが、事前に設定した基準収納状況データB以下を超えると判定した場合(ステップS114,NO)には、フラップ74を「閉→開」とする動作を行い、庫内全体を冷却する(ステップS118)。また、温度データCが、事前に設定した基準温度データDよりも大きい(温度が高い)場合(ステップS116,NO)にも、フラップ74を「閉→開」とする動作を行い、庫内全体を冷却する(ステップS118)。この際に、合わせて、圧縮機30と冷却ファン31の回転数を増加させ、冷蔵室12のダンパ67の開度を大きくする等の動作によって冷却量を増加させてもよい。 On the other hand, when it is determined that the storage status data A exceeds the preset standard storage status data B or less (NO in step S114), an operation of setting the flap 74 to “closed → open” is performed, and the entire interior is stored. Is cooled (step S118). Further, when the temperature data C is larger than the preset reference temperature data D (temperature is high) (step S116, NO), the flap 74 is operated to be “closed → open”, and the entire interior Is cooled (step S118). At this time, the cooling amount may be increased by an operation such as increasing the rotational speeds of the compressor 30 and the cooling fan 31 and increasing the opening degree of the damper 67 of the refrigerator compartment 12.
 なお、温度検知制御(ステップS115)について、区画した収納空間ごとに温度センサ61を配置することが望ましい。例えば、本実施の形態においては、上段部に温度センサ61を配置し、この検知結果に基づいて、冷却制御の判定を行なう。このことにより、対象の収納空間における温度上昇を確実に検知し、更に省エネ性能と食品の保鮮性を高めることができる。 In addition, regarding temperature detection control (step S115), it is desirable to arrange | position the temperature sensor 61 for every divided storage space. For example, in the present embodiment, the temperature sensor 61 is disposed in the upper stage, and the cooling control is determined based on the detection result. This makes it possible to reliably detect a temperature rise in the target storage space, and to further improve energy saving performance and food freshness.
 図8は、本発明の第1の実施の形態における冷蔵庫の収納状況検知制御を利用した冷却運転判定制御の他の例を示すフローチャートである。図7と異なる部分についてのみ詳細な説明を行う。 FIG. 8 is a flowchart showing another example of the cooling operation determination control using the storage condition detection control of the refrigerator in the first embodiment of the present invention. Only the parts different from FIG. 7 will be described in detail.
 図8において、メイン制御(ステップS120)中に、扉開閉動作が検知される(ステップS121)と、収納状況検知制御(ステップS122)による収納状況の変化情報から得た収納状況変化データEに対して、閾値判定を行う(ステップS123)。そして、収納状況変化データEが、事前に設定した基準収納状況変化データF以下であると判定した場合(ステップS124,Yes)、温度検知制御に移行(ステップS124)する。そこで、庫内温度が低い場合(ステップS126,Yes)には、フラップ74を「開→閉」とする動作を行い、対象の収納空間への冷却量を低減する(ステップS127)。一方、収納状況変化データEが、事前に設定した基準収納状況変化データFを超えると判定した場合(ステップS124,NO)には、フラップ74を「閉→開」とする動作を行い、庫内全体を冷却する(ステップS128)。また、庫内温度が高い場合(ステップS126,NO)にも、フラップ74を「閉→開」とする動作を行い、庫内全体を冷却する(ステップS128)。このように、収納状況の変化情報に基づいて、収納物の有無や量を判別し、冷却運転の制御を行うのも良い。 In FIG. 8, when the door opening / closing operation is detected during the main control (step S120) (step S121), the storage state change data E obtained from the storage state change information by the storage state detection control (step S122) is displayed. Then, threshold determination is performed (step S123). When it is determined that the storage state change data E is equal to or less than the reference storage state change data F set in advance (Yes in step S124), the process proceeds to temperature detection control (step S124). Therefore, when the internal temperature is low (step S126, Yes), an operation of opening the flap 74 from “open to closed” is performed to reduce the amount of cooling to the target storage space (step S127). On the other hand, when it is determined that the storage state change data E exceeds the preset reference storage state change data F (NO in step S124), an operation to turn the flap 74 "closed to open" is performed, The whole is cooled (step S128). Further, even when the internal temperature is high (NO in step S126), the operation of setting the flap 74 to “closed → open” is performed to cool the entire internal chamber (step S128). In this way, it is also possible to control the cooling operation by determining the presence or amount of stored items based on the storage state change information.
 図9は、本発明の第1の実施の形態における冷蔵庫の収納状況検知制御を利用した冷却運転判定制御のさらに別の例を示すフローチャートである。図7と異なる部分についてのみ詳細な説明を行う。 FIG. 9 is a flowchart showing still another example of the cooling operation determination control using the storage condition detection control of the refrigerator in the first embodiment of the present invention. Only the parts different from FIG. 7 will be described in detail.
 図9において、メイン制御(ステップS130)中に、扉開閉動作が検知される(ステップS131)と、収納状況検知制御により収納情報から得た収納状況データGを取得する(ステップS132)。次に、記憶部64によって、過去の収納情報から基準収納状況データHを取得し(ステップS133)、収納状況データGに対して閾値判定を行なう(ステップS134)。収納状況データGが基準収納状況データH以下であると判定した場合(ステップS135,Yes)、温度検知制御に移行(ステップS136)する。そこで、庫内温度が低い場合(ステップS137,Yes)には、フラップ74を「開→閉」とする動作を行い、対象の収納空間への冷却量を低減する(ステップS138)。一方、収納状況データGが、事前に設定した基準収納状況データHを超えると判定した場合(S135,NO)には、フラップ74を「閉→開」とする動作を行い、庫内全体を冷却する(ステップS139)。また、庫内温度が高い場合(ステップS137,NO)にも、フラップ74を「閉→開」とする動作を行い、庫内全体を冷却する(ステップS139)。このように、記憶部64による収納情報の過去データに基づいて、収納物の有無や量を判別し、冷却運転の制御を行うのも良い。 In FIG. 9, when the door opening / closing operation is detected during the main control (step S130) (step S131), the storage status data G obtained from the storage information by the storage status detection control is acquired (step S132). Next, the storage unit 64 acquires the reference storage status data H from the past storage information (step S133), and performs threshold determination for the storage status data G (step S134). When it is determined that the storage status data G is equal to or less than the reference storage status data H (Yes in step S135), the process proceeds to temperature detection control (step S136). Therefore, when the internal temperature is low (step S137, Yes), an operation of opening the flap 74 from “open to closed” is performed to reduce the amount of cooling to the target storage space (step S138). On the other hand, when it is determined that the storage status data G exceeds the preset reference storage status data H (S135, NO), the flap 74 is operated to be "closed to open" to cool the entire interior. (Step S139). Further, even when the internal temperature is high (NO in step S137), the operation of setting the flap 74 to “closed → open” is performed to cool the entire internal chamber (step S139). Thus, based on the past data of the storage information stored in the storage unit 64, the presence / absence and amount of stored items may be determined to control the cooling operation.
 次に、図10~図12を用いて、対象収納空間の収納物33の有無による温度センサ61の温度挙動について詳細を説明する。なお、図10~図12は扉開閉動作時に収納物を投入するタイミングを異ならせおり、異なるタイミングで収納物を投入した際の温度センサ61の温度挙動および各電気機能部品の動作を示す。図10は、冷蔵室冷凍室同時冷却a時に、対象の空間に収納物33が投入された場合である。図11は、冷凍室単独冷却b時に、対象の空間に収納物33が投入された場合である。また、図12は、冷却停止c時に、対象の空間に収納物33が投入された場合である。 Next, the temperature behavior of the temperature sensor 61 depending on the presence / absence of the storage object 33 in the target storage space will be described in detail with reference to FIGS. 10 to 12 show the temperature behavior of the temperature sensor 61 and the operation of each electric functional part when the stored items are inserted at different timings, with the timing of inserting the stored items being different during the door opening / closing operation. FIG. 10 shows a case where the stored item 33 is put into the target space during the simultaneous cooling a of the freezer compartment. FIG. 11 shows a case where the stored item 33 is put into the target space during the freezer compartment single cooling b. Moreover, FIG. 12 is a case where the storage thing 33 is thrown into the object space at the time of cooling stop c.
 図10~図12に示すように、従来の冷蔵庫(破線)は、収納物33の有無に関わらず、庫内全体を冷却するために、収納物33がない箇所も冷却を行うことで、冷やしすぎの無駄が生じている。 As shown in FIG. 10 to FIG. 12, the conventional refrigerator (broken line) is cooled by cooling the portion without the stored item 33 in order to cool the entire interior regardless of the presence or absence of the stored item 33. There is too much waste.
 図10において、本実施の形態の冷蔵庫50は、扉開閉動作後の収納状況を検知する。そして、収納物33がない、又は少ないと判定し、かつ対象の収納空間における温度が所定値以下の場合には、フラップ74を「開→閉」とする動作を行い、対象の収納空間への冷却量を低減する。この際に、合わせて、圧縮機30および冷却ファン31の回転数を低下させ、冷蔵室12のダンパ67の開度を小さくする等の動作によって冷却量を低減してもよい。これによって、無駄な冷却運転を省き、更に省エネ性能を向上する。 In FIG. 10, the refrigerator 50 of the present embodiment detects the storage state after the door opening / closing operation. When it is determined that there is no or little storage 33 and the temperature in the target storage space is equal to or lower than a predetermined value, the flap 74 is operated to “open → close”, and the target storage space is moved to the target storage space. Reduce the amount of cooling. At this time, the cooling amount may be reduced by an operation such as reducing the rotation speed of the compressor 30 and the cooling fan 31 and reducing the opening degree of the damper 67 of the refrigerator compartment 12. This eliminates unnecessary cooling operation and further improves the energy saving performance.
 その後、冷蔵室冷凍室同時冷却a時に、対象の空間に収納物33が投入され、収納物33が「ある」、又は「多い」と判定した場合には、フラップ74を「閉→開」とする動作を行い、対象の空間への冷却量を増加させ、庫内全体を冷却する。これによって、収納物33投入時などの十分な冷却が必要な場合にも、瞬時に冷却量を変化させることで、保鮮性を向上させることができる。この際に、合わせて、圧縮機30および冷却ファン31の回転数を増加させ、冷蔵室12のダンパ67の開度を大きくする等の動作によって冷却量を増加させてもよい。 After that, when the refrigerator 33 is simultaneously cooled a, the stored item 33 is put into the target space, and when the stored item 33 is determined to be “present” or “large”, the flap 74 is set to “closed → open”. The amount of cooling to the target space is increased, and the entire interior is cooled. As a result, even when sufficient cooling is required, such as when the stored item 33 is charged, the freshness can be improved by instantaneously changing the cooling amount. At this time, the cooling amount may be increased by an operation such as increasing the rotational speeds of the compressor 30 and the cooling fan 31 and increasing the opening degree of the damper 67 of the refrigerator compartment 12.
 なお、冷凍室15のダンパ67を有する冷蔵庫50においては、対象の収納空間に収納物33が「ある」、又は「多い」と判定した時点で、すぐに冷凍室15のダンパ67を「開→閉」とする制御を行う。このことにより、収納物33の投入があった対象空間からの温かい空気が冷凍室15に流れ込むのを防ぐことができる。そして、一定時間後、または冷蔵室12の温度センサ61の検知する温度が、ある所定温度以下、または冷凍室15の温度センサ61の検知する温度がある所定温度以上になった時点で、冷凍室15のダンパ67を「閉→開」とする動作を行う。 In the refrigerator 50 having the damper 67 of the freezer compartment 15, the damper 67 of the freezer compartment 15 is immediately opened to “open →” when it is determined that the stored item 33 is “present” or “large” in the target storage space. Closed control is performed. Accordingly, it is possible to prevent warm air from the target space where the storage item 33 has been input from flowing into the freezer compartment 15. Then, after a certain time, or when the temperature detected by the temperature sensor 61 of the refrigerator compartment 12 is equal to or lower than a predetermined temperature, or when the temperature detected by the temperature sensor 61 of the freezer compartment 15 is equal to or higher than a predetermined temperature. The 15 dampers 67 are operated to be “closed → open”.
 また、図11において、冷凍室単独冷却b時に、対象の空間に収納物33が投入され、収納物33が「ある」、又は「多い」と判定した場合には、まず冷蔵室12のダンパ67を「閉→開」の動作を行う。その後、フラップ74を「閉→開」とする動作を行い、対象の空間への冷却量を増加させ、庫内全体を冷却する。この際に、合わせて、圧縮機30の回転数を増加、冷却ファン31の回転数を増加する等の動作によって冷却量を増加させてもよい。 In FIG. 11, when the stored item 33 is put into the target space and the stored item 33 is determined to be “present” or “large” during the freezer compartment cooling alone b, first, the damper 67 of the refrigerator compartment 12 is used. Perform “Close → Open” operation. Thereafter, the flap 74 is moved from “closed to open” to increase the amount of cooling to the target space and cool the entire interior. At this time, the cooling amount may be increased by an operation such as increasing the rotation speed of the compressor 30 and increasing the rotation speed of the cooling fan 31.
 なお、収納物33が「ある」、又は「多い」と判定したときに、冷凍室15の温度センサ61の検知する温度がある所定温度(例えば、ON温度)よりも高い場合には、冷蔵室12のダンパ67とフラップ74を「閉」のまま、冷凍室15の冷却を優先する。その後、別のある所定温度(例えば、OFF温度)になった時点で、冷蔵室12のダンパ67を「閉→開」の動作を行い、その後、フラップ74を「閉→開」とする動作を行い、対象の空間への冷却量を増加させてもよい。 When it is determined that the stored item 33 is “present” or “large”, if the temperature detected by the temperature sensor 61 of the freezer compartment 15 is higher than a predetermined temperature (for example, ON temperature), the refrigerator compartment The cooling of the freezer compartment 15 is prioritized while the 12 dampers 67 and the flaps 74 are closed. Thereafter, when another predetermined temperature (for example, an OFF temperature) is reached, the damper 67 of the refrigerator compartment 12 is operated to “close → open”, and then the flap 74 is operated to “close → open”. It is possible to increase the amount of cooling to the target space.
 また、図12において、冷却停止c時に、対象の空間に収納物33が投入され、収納物33が「ある」、又は「多い」と判定した場合には、圧縮機30が一定時間(例えば、10分間)停止後であれば、温度センサ61が検知する温度に関係なく、圧縮機30を高回転で駆動する。そして、冷蔵室12のダンパ67を「閉→開」、フラップ74を「閉→開」とする動作を行う。これにより、圧縮機30の起動性を確保しながら、冷蔵室12に投入した収納物33を素早く冷却することができるので、保鮮性を向上させることができる。 In FIG. 12, when the stored item 33 is thrown into the target space at the time of cooling stop c and it is determined that the stored item 33 is “present” or “large”, the compressor 30 is set for a certain time (for example, After stopping for 10 minutes, the compressor 30 is driven at a high speed regardless of the temperature detected by the temperature sensor 61. And the operation | movement which makes the damper 67 of the refrigerator compartment 12 "close-> open" and the flap 74 "close-> open" is performed. Thereby, since the stored goods 33 thrown into the refrigerator compartment 12 can be cooled quickly, ensuring the startability of the compressor 30, freshness can be improved.
 なお、冷凍室15のダンパ67を有する冷蔵庫50においては、圧縮機30が停止時に、冷蔵室12のダンパ67を「開」、冷凍室15のダンパ67を「閉」として、冷却器に付着した霜を使った冷却を行っている場合がある。このとき、収納物が「ある」、又は「多い」と判定した時点で、冷凍室15のダンパ67を「閉」のままとする。そして、圧縮機30の起動性を確保しつつ起動させ、冷蔵室12の単独運転をおこなうことにより冷蔵室12に投入した収納物33を素早く冷却することができるので、保鮮性を向上させることができる。ただし、冷凍室15の温度センサ61の検知する温度がある所定温度以上になった時点で、冷凍室15のダンパ67を「閉→開」とする動作を行う。 In the refrigerator 50 having the damper 67 of the freezer compartment 15, when the compressor 30 was stopped, the damper 67 of the refrigerator compartment 12 was “open” and the damper 67 of the freezer compartment 15 was “closed” and adhered to the cooler. Cooling with frost may be performed. At this time, when it is determined that the stored item is “present” or “large”, the damper 67 of the freezer compartment 15 remains “closed”. And since the stored thing 33 thrown into the refrigerator compartment 12 can be quickly cooled by starting, ensuring the startability of the compressor 30, and performing the independent operation of the refrigerator compartment 12, it is possible to improve the freshness. it can. However, when the temperature detected by the temperature sensor 61 of the freezer compartment 15 becomes equal to or higher than a predetermined temperature, the operation of setting the damper 67 of the freezer compartment 15 to “closed → open” is performed.
 また、冷凍室15のダンパ67を有する冷蔵庫50において、冷蔵室単独冷却時に、対象の空間に収納物33が投入され、収納物33が「ある」、又は「多い」と判定した場合には、冷凍室15のダンパ67を「閉」のままとする。このことで、収納物33の投入があった対象空間からの温かい空気が冷凍室15に流れ込むのを防ぐことができる。加えて、フラップ74を「閉→開」の動作を行うことで、冷蔵室12に投入した収納物33を素早く冷却することができるので、保鮮性を向上させることができる。そして、一定時間後、または冷蔵室12の温度センサ61の検知する温度がある所定温度以下、または冷凍室15の温度センサ61の検知する温度がある所定温度以上になった時点で冷凍室15のダンパ67を「閉→開」とする制御を行う。 Further, in the refrigerator 50 having the damper 67 of the freezer compartment 15, when the refrigerating room alone is cooled, the stored item 33 is put into the target space, and it is determined that the stored item 33 is “present” or “large”. The damper 67 of the freezer compartment 15 remains “closed”. Thus, it is possible to prevent warm air from the target space in which the storage item 33 has been input from flowing into the freezer compartment 15. In addition, by performing the operation of “closing → opening” the flap 74, the stored items 33 put into the refrigerator compartment 12 can be quickly cooled, so that the freshness can be improved. Then, after a predetermined time, or when the temperature detected by the temperature sensor 61 of the refrigerator compartment 12 is equal to or lower than a predetermined temperature, or when the temperature detected by the temperature sensor 61 of the freezer compartment 15 is equal to or higher than a predetermined temperature. The damper 67 is controlled to be “closed → open”.
 以上の動作により、収納空間における収納状況に合わせて、最適に電気機能部品の出力動作を制御することで、無駄な冷却運転を省き、高い省エネ性能を実現する冷蔵庫を提供することができる。 By the above operation, it is possible to provide a refrigerator that realizes high energy saving performance by controlling the output operation of the electrical functional component optimally according to the storage condition in the storage space, thereby eliminating unnecessary cooling operation.
 なお、本実施の形態の冷蔵庫50における自動急冷、自動節電の冷却運転については、例えば、庫内温度設定の変更や急速冷凍機能等の、使用者の意志による機能を優先させることも可能である。 As for the automatic rapid cooling and automatic power saving cooling operation in the refrigerator 50 of the present embodiment, it is possible to prioritize functions according to the user's will, such as changing the internal temperature setting or the quick freezing function. .
 なお、本実施の形態では、収納状況検知部を冷蔵室12に設けた例を示したが、本発明はこの例に限定されず、冷蔵室12、製氷室13、切換室14、冷凍室15および野菜室16の少なくとも一つに設けてもよい。 In the present embodiment, an example in which the storage state detection unit is provided in the refrigerator compartment 12 is shown, but the present invention is not limited to this example, and the refrigerator compartment 12, the ice making chamber 13, the switching chamber 14, and the freezer compartment 15 are provided. And at least one of the vegetable compartments 16.
 なお、本実施の形態は、必ずしも図2に示した冷蔵庫50の構成に限定されず、従来一般的であった、断熱箱体の最下部の貯蔵室後方領域に機械室を設けて圧縮機30を配置するタイプの冷蔵庫に適用することも可能である。 In addition, this Embodiment is not necessarily limited to the structure of the refrigerator 50 shown in FIG. 2, The machine room is provided in the rear region of the lowermost store room of the heat insulation box which was common in the past, and the compressor 30 It is also possible to apply to a refrigerator of the type in which
 なお、上述の説明において、収納状況検知部としては、発光部20と光量検知部21とを備えた構成として説明を行ったが、本発明の収納状況検知部はこれに限定されない。例えば、庫内温度変化の傾きや、冷却機能部品の動作時の電流変化等を用いて収納状況を検知する手段をも用いることが可能である。 In the above description, the storage state detection unit has been described as a configuration including the light emitting unit 20 and the light amount detection unit 21, but the storage state detection unit of the present invention is not limited thereto. For example, it is possible to use means for detecting the storage status using the inclination of the internal temperature change, the current change during the operation of the cooling functional component, or the like.
 また、光量検知部21が備えられた貯蔵室である冷蔵室12の前面側に設けられた冷蔵室扉12a、12bの外面に表示させる認知手段である表示部91によって、使用者に冷蔵室12内の収納物の状態を知らせることができる。 In addition, the display unit 91 that is a recognition unit that displays on the outer surfaces of the refrigerator compartment doors 12a and 12b provided on the front side of the refrigerator compartment 12 that is a storage compartment provided with the light amount detector 21 allows the user to display the refrigerator compartment 12 with the display unit 91. The state of the stored items can be notified.
 使用者は、この認知手段である表示部91に示された表示を確認して、冷蔵室扉12a、12bを開放し、迷うことなく収納物33が「無い」、又は「少ない」と表示された最上段の収納空間である収納棚18aへと食品を載置し、迅速に冷蔵室扉12a、12bを閉めることができる。 The user confirms the display shown on the display unit 91 as the recognition means, opens the refrigerator compartment doors 12a and 12b, and displays “nothing” or “low” in the stored items 33 without hesitation. In addition, food can be placed on the storage shelf 18a which is the uppermost storage space, and the refrigerator compartment doors 12a and 12b can be quickly closed.
 また、収納棚18aに、食品である収納物33が、冷気吐出口(図示せず)の前方側に収納されている場合や、収納物33が詰めすぎとなっている場合を想定する。このような場合、冷気吐出口近傍の光量検知部21で検知した光量が所定値より低い場合には、冷蔵室扉12a、12bの外面にある表示部91に、対象の収納空間が詰めすぎで増電運転になることを表示する。 Also, it is assumed that the stored item 33 as food is stored in the storage shelf 18a on the front side of the cold air discharge port (not shown), or the stored item 33 is excessively packed. In such a case, when the light amount detected by the light amount detection unit 21 in the vicinity of the cold air outlet is lower than a predetermined value, the target storage space is too packed in the display unit 91 on the outer surface of the refrigerator compartment doors 12a and 12b. Display that the operation is to increase.
 ここで、収納物33が詰めすぎである場合や、冷気吐出口(図示せず)の近傍に収納物33が収納されている場合には、収納物33が、冷気の通風抵抗となり、単位時間当たりの冷気循環量が低下して、冷却するのに時間が長くなる。また、冷気循環量が低下すると蒸発器の風量が低下して、熱交換量が低下するので、蒸発温度の低下を招き、冷凍サイクルの高低圧差圧の拡大により圧縮機入力も増加する。 Here, when the stored item 33 is excessively packed, or when the stored item 33 is stored in the vicinity of the cold air discharge port (not shown), the stored item 33 becomes a ventilation resistance of the cold air, and the unit time The amount of cool air circulation per hit decreases, and the time for cooling increases. Further, when the amount of cool air circulation is reduced, the air volume of the evaporator is reduced and the heat exchange amount is reduced, so that the evaporation temperature is lowered and the compressor input is also increased due to the expansion of the high / low pressure differential pressure of the refrigeration cycle.
 冷却時間を維持しようとすると、冷気を循環させるファン(図示せず)の回転数を増加させたり、圧縮機30の回転を増加させたりしなければならず、これもまた増電の要因となる。 In order to maintain the cooling time, it is necessary to increase the rotation speed of a fan (not shown) that circulates the cold air or increase the rotation of the compressor 30, which also causes a power increase. .
 よって、これらの電力使用量が多くなる増電傾向を使用者に報知し、最適な収納物33の配置を促すことで、冷蔵庫50の実際の使用上において、省エネルギー化を図ることができる。その結果、より省エネルギーを実現した冷蔵庫50を消費者に提供することができ、CO2削減に寄与することができる。 Therefore, it is possible to save energy in actual use of the refrigerator 50 by notifying the user of the power increase tendency that the amount of power consumption increases and urging the optimal arrangement of the storage items 33. As a result, the refrigerator 50 that realizes further energy saving can be provided to consumers, which can contribute to CO2 reduction.
 なお、認知手段としては、表示部91に限定されず、例えば音声で注意を促す構成も可能である。収納状況情報を表示部91にインジケータで表示してもよい。これにより、使い勝手の向上を図ることができる。 In addition, as a recognition means, it is not limited to the display part 91, For example, the structure which calls attention with an audio | voice is also possible. The storage status information may be displayed on the display unit 91 with an indicator. Thereby, usability can be improved.
 特に、本実施の形態の構成は、家庭用冷蔵庫のように、多種多様な食品が収納される可能性がある場合に、従来に比して効果が高い。 In particular, the configuration of the present embodiment is more effective than the conventional case when there is a possibility of storing a wide variety of foods, such as a home refrigerator.
 以上、収納状況検知結果に基づいた冷却運転制御について述べたが、次に、庫内の収納状況に合わせた庫内照明制御について説明する。 The cooling operation control based on the storage state detection result has been described above. Next, the interior lighting control according to the storage state in the storage will be described.
 図13は本発明の第1の実施の形態における冷蔵庫の庫内照明のLED制御フローチャートである。図14は本発明の第1の実施の形態における冷蔵庫の庫内照明のLED出力特性図である。図15は本発明の第1の実施の形態における冷蔵庫の庫内照度のマトリックス図である。 FIG. 13 is an LED control flowchart of the interior lighting of the refrigerator in the first embodiment of the present invention. FIG. 14 is an LED output characteristic diagram of the interior lighting of the refrigerator in the first embodiment of the present invention. FIG. 15 is a matrix diagram of the illuminance in the refrigerator of the first embodiment of the present invention.
 庫内の明るさは、収納量や収納場所などの収納状況によって変化するため、例えば、収納量の少ない上段付近と、収納量が多い下段付近の発光部20の出力設定値を変化させるなど、収納空間における収納状況に合わせて庫内照明制御を変化させることで、夜間の眩しさを低減するなど、最適な視認性を実現することができる。 Since the brightness in the cabinet changes depending on the storage status such as the storage amount and storage location, for example, the output setting value of the light emitting unit 20 near the upper stage where the storage amount is small and the lower stage where the storage amount is large is changed. By changing the interior lighting control in accordance with the storage condition in the storage space, it is possible to realize optimal visibility such as reducing glare at night.
 以下、図13~図15を用いて、その動作、作用を説明する。 Hereinafter, the operation and action will be described with reference to FIGS.
 まず、先の図6のフローの収納状況検知制御で求められた上段収納量が収納状況推定部23で規定された区分範囲で判定され、「多い」・「少ない」・「なし」に3区分に分類される(ステップS140)。「多い」と区分されると照明部19の上段側に設置されている発光部20a、20b、(以下これらを上段側LEDと呼ぶ)の出力設定を100%として記憶部64で記憶する。同様に「少ない」と区分されると発光部20a、20bの出力設定を50%として記憶部64で記憶する。そして「なし」と区分されると発光部20a、20bの出力設定を20%として記憶部64で記憶する(ステップS141)。 First, the upper storage amount obtained by the storage state detection control of the flow of FIG. 6 is determined within the range defined by the storage state estimation unit 23, and is divided into three categories: “large”, “small”, and “none”. (Step S140). If it is classified as “many”, the output setting of the light emitting units 20a and 20b (hereinafter referred to as “upper side LEDs”) installed on the upper side of the illumination unit 19 is stored as 100% in the storage unit 64. Similarly, when it is classified as “less”, the output setting of the light emitting units 20a and 20b is stored as 50% in the storage unit 64. If it is classified as “none”, the output setting of the light emitting units 20a and 20b is stored as 20% in the storage unit 64 (step S141).
 次に、検知された下段収納量が上段収納量と同様に、「多い」・「少ない」・「なし」に3区分に分類される(ステップS142)。「多い」と区分されると照明部19の下段側に設置されている発光部20c、20d(以下これらを下段側LEDと呼ぶ)の出力設定を100%として記憶部64で記憶する。同様に「少ない」と区分されると発光部20c、20dの出力設定を50%として記憶部64で記憶する。そして「なし」と区分されると発光部20c、20dの出力設定を20%として記憶部64で記憶する(ステップS143)。 Next, the detected lower storage amount is classified into three categories, “large”, “small”, and “none”, similarly to the upper storage amount (step S142). When it is classified as “large”, the output setting of the light emitting units 20 c and 20 d (hereinafter referred to as “lower LED”) installed on the lower side of the illumination unit 19 is stored in the storage unit 64 as 100%. Similarly, when it is classified as “less”, the output setting of the light emitting units 20c and 20d is stored as 50% in the storage unit 64. If it is classified as “none”, the output setting of the light emitting units 20c and 20d is stored as 20% in the storage unit 64 (step S143).
 続いて、図4に示す庫外照度センサ72で冷蔵庫本体11が設置された周囲環境の照度が測定される(ステップS144)。次に、その周囲照度が規定の値と比較して大きい場合(例えば5ルクス以上)は、明るいすなわち昼間の活動時と判断し、先に決定したLED出力設定値は変更せず維持する。また、周囲照度が規定の値よりも小さい場合(例えば5ルクス未満)は、暗いすなわち夜間の就寝時と判断し、LED出力設定値を0.5倍にして出力を落とす設定に変更して記憶部64で記憶する(ステップS145)。 Subsequently, the illuminance of the surrounding environment where the refrigerator body 11 is installed is measured by the outside illuminance sensor 72 shown in FIG. 4 (step S144). Next, when the ambient illuminance is larger than a specified value (for example, 5 lux or more), it is determined that the light is bright, that is, during daytime activity, and the previously determined LED output setting value is maintained without change. When the ambient illuminance is smaller than a specified value (for example, less than 5 lux), it is determined that the image is dark, that is, at night when sleeping, and the LED output setting value is increased by a factor of 0.5 and stored. The data is stored in the unit 64 (step S145).
 次に、以上のように最終決定されたLED出力設定値の保持状態で、冷蔵室扉12aあるいは12bの扉状態が扉開閉検知部62で判断される(ステップS146)。そこで、開扉の場合は記憶部64で記憶した出力設定を照明部19へ指示して各LEDを点灯させて庫内照射し、閉扉状態のままであればステップS146に論理を戻して開扉状態まで各LEDを消灯させて待機する(ステップS147)。これらの具体的な調光手段としては、LED通電のDuty制御(パルス可変)、LEDの順電流可変、LEDの点灯個数可変などがあり、これらを行えば調光が実現できる。 Next, the door opening / closing detector 62 determines the door state of the refrigerator compartment door 12a or 12b with the LED output setting value finally determined as described above held (step S146). Therefore, in the case of opening the door, the output setting stored in the storage unit 64 is instructed to the lighting unit 19 to light each LED and irradiate the inside of the cabinet. If the door remains closed, the logic is returned to step S146 to open the door. Each LED is turned off to stand by to stand by (step S147). These specific dimming means include duty control of LED energization (variable pulse), variable LED forward current, variable number of LED lighting, etc., and if these are performed, dimming can be realized.
 尚、ここまでの庫内照明を調光する点灯制御の説明において、収納量を「多い」・「少ない」・「なし」の3区分、LED出力設定を「100%」・「50%」・「20%」の3区分にしたが、もう少し細かく分類あるいは線形関係にすれば更に細かな制御が可能になる。すなわち、図14に示すように、収納量の増加に伴い比例関係でLED出力を増加させれば良い。また周囲照度が暗い時には、明るい時の線形傾きを小さく(ここでは半分)すれば良いことになる。 In the description of the lighting control for dimming the interior lighting so far, the storage amount is divided into three categories of “large”, “small” and “none”, and the LED output settings are “100%”, “50%”, Three categories of “20%” are used, but finer control becomes possible if the classification or linear relationship is made slightly finer. That is, as shown in FIG. 14, the LED output may be increased in a proportional relationship as the storage amount increases. When the ambient illuminance is low, the linear gradient when bright is small (half here).
 以上のように、LEDを調光して庫内照明を制御する内容を、ユーザー視点でまとめると図15に示すマトリックス図になる。 As described above, the contents of controlling the interior lighting by dimming the LEDs are summarized from the user's viewpoint, and a matrix diagram shown in FIG. 15 is obtained.
 図15において、周囲照度が「明るい」時は冷蔵庫を積極的に使用する場合であり、その時に収納量が多いと庫内が見え難いので、庫内照明を最も「明るく」点灯させる。逆に収納量が「少ない」と庫内は見え易いので、照明は「やや暗く」点灯させる。 In FIG. 15, when the ambient illuminance is “bright”, it is a case where the refrigerator is actively used. When the storage amount is large at that time, it is difficult to see the interior, so the interior lighting is turned on “brightest”. On the contrary, if the storage amount is “small”, the interior is easy to see, so the lighting is turned “slightly dark”.
 次に、周囲照度が「暗い」時は冷蔵庫をあまり使用しない就寝時の場合であり、眩しさ低減を行いたく、収納量が多くても庫内照明は「やや暗く」し、収納量が少なければさらに「暗く」して照明を点灯させる。 Next, when the ambient illuminance is “dark”, it is a bedtime when you do not use the refrigerator very much, and you want to reduce glare. Even if the amount of storage is large, the interior lighting is “slightly dark” and the amount of storage is small. If it is darker, turn on the light.
 尚、本実施の形態では、上段・下段2つのゾーンでの庫内照明の調光を説明したが、左側・右側2つゾーン、上下左右に分けた4つのゾーン、あるいは任意の数のゾーンとしても、同様の収納量の検知と庫内照明の調光を行えば良い。 In this embodiment, the dimming of the interior lighting in the upper and lower two zones has been described, but the left and right two zones, the four zones divided into upper, lower, left and right, or any number of zones However, the same storage amount detection and light control of the interior lighting may be performed.
 以上の様に、本実施の形態においては、収納状況推定部23により庫内の収納状態(収納ゾーン・収納量)を検知する。さらに庫外照度センサ72で測定した冷蔵庫本体11周囲の照度から昼間・夜間を判定し、その合わせた状態に応じて発光部20を調光するので、収納物の少ない部分への照射や、夜間での全灯状態が削減されるなどの消費電力の低減ができる。また、これらの調光は自動で行われるだけではなく、特に夜間には眩しさが低減されて視認性も上がり、ユーザーの利便性・満足感を格段に向上させることができる。 As described above, in the present embodiment, the storage state estimation unit 23 detects the storage state (storage zone / storage amount) in the storage. Further, the daytime / nighttime is determined from the illuminance around the refrigerator main body 11 measured by the outside illuminance sensor 72, and the light emitting unit 20 is dimmed according to the combined state. Power consumption can be reduced, such as reducing the total lighting state at In addition, these light adjustments are not only performed automatically, but dazzle is reduced and visibility is improved particularly at night, and the convenience and satisfaction of the user can be greatly improved.
 (第2の実施の形態)
 次に、本発明の第2の実施の形態における冷蔵庫について説明する。
(Second Embodiment)
Next, the refrigerator in the 2nd Embodiment of this invention is demonstrated.
 本実施の形態においては、第1の実施の形態で詳細に説明した構成および技術思想と異なる部分についてのみ詳細な説明を行う。また、第1の実施の形態で詳細に説明した構成と同じ部分、および、同じ技術思想を適用しても不具合が生じない部分については、本実施の形態と組み合わせて適用できるものとし、詳細な説明を省略する。 In the present embodiment, detailed description will be made only on portions different from the configuration and technical idea described in detail in the first embodiment. In addition, the same part as the configuration described in detail in the first embodiment and the part that does not cause a problem even if the same technical idea is applied can be applied in combination with this embodiment. Description is omitted.
 図16は、本発明の第2の実施の形態における冷蔵庫の図1における2-2線断面図である。図16に示すように、第2の実施の形態の冷蔵庫50は、冷蔵室12内に、対象空間における収納状況を検知するための発信部81と受信部82で構成された収納状況検知部が設けられている。 FIG. 16 is a cross-sectional view taken along line 2-2 of FIG. 1 of the refrigerator according to the second embodiment of the present invention. As shown in FIG. 16, the refrigerator 50 according to the second embodiment includes a storage state detection unit configured by a transmission unit 81 and a reception unit 82 for detecting the storage state in the target space in the refrigerator compartment 12. Is provided.
 発信部81は、冷蔵庫50内の扉開放側前面から見て、庫内の奥行寸法の1/2より手前で、かつ、対象の収納棚18aの先端よりも前方(手前)に位置するように、冷蔵室12内の天面に配置されている。また、受信部82は冷蔵室12内の後方位置に配置されている。 The transmitting unit 81 is located in front of half of the depth dimension in the refrigerator and in front (front) of the front end of the target storage shelf 18a when viewed from the front side of the door opening side in the refrigerator 50. It is arranged on the top surface in the refrigerator compartment 12. The receiving unit 82 is disposed at a rear position in the refrigerator compartment 12.
 なお、発信部81と受信部82の配置は、上述の例に限定されず、収納物33、および、庫内の構造物を介して、発信部81により照射される発信物を受信部82が受信できる位置に配置されている限り、庫内の何れの位置に配置しても構わない。 In addition, arrangement | positioning of the transmission part 81 and the receiving part 82 is not limited to the above-mentioned example, The receiving part 82 radiates | emits the irradiation thing irradiated by the transmission part 81 via the storage thing 33 and the structure in a warehouse. As long as it is arranged at a position where it can be received, it may be arranged at any position in the warehouse.
 なお、発信部81より照射される発信物は光や赤外線、超音波等がよい。 In addition, light, infrared rays, ultrasonic waves, etc. are good for the transmission thing irradiated from the transmission part 81. FIG.
 例えば、受信部82の検知結果により収納状況推定部(図示せず)が、収納物33が「無い」、又は「少ない」と判定した場合には、図3で示したフラップ74を「開→閉」とする動作を行い、対象空間への冷却量を低減する。このことで、無駄な冷却運転を省き、更に省エネ性能を向上できる。 For example, when the storage state estimation unit (not shown) determines that the stored item 33 is “absent” or “low” based on the detection result of the receiving unit 82, the flap 74 shown in FIG. “Closed” is performed to reduce the amount of cooling to the target space. As a result, useless cooling operation can be omitted and the energy saving performance can be further improved.
 また、対象の収納空間に収納物33を投入し、受信部82の検知結果により収納物33が「ある」、又は「多い」と判定した場合には、図3で示したフラップ74を「閉→開」とする動作を行い、対象空間への冷却量を増加させる。このことで、冷蔵室12に投入した収納物33を素早く冷却することができるので、保鮮性を向上させることができる。 3 is inserted into the target storage space, and the flap 74 shown in FIG. 3 is “closed” when it is determined that the stored item 33 is “present” or “large” based on the detection result of the receiving unit 82. → "Open" is performed to increase the amount of cooling to the target space. Thereby, since the stored item 33 put into the refrigerator compartment 12 can be quickly cooled, the freshness can be improved.
 以上の動作により、本実施の形態では対象の収納空間における収納物33の有無を精度よく検知し、検知結果に基づいて、収納空間における収納状況に合わせて、最適に電気機能部品の出力動作を制御する。このことで、無駄な冷却運転を省き、高い省エネ性能を実現する冷蔵庫を提供することができる。 With the above operation, in the present embodiment, the presence or absence of the storage item 33 in the target storage space is accurately detected, and based on the detection result, the output operation of the electric functional component is optimally performed according to the storage state in the storage space. Control. Thus, it is possible to provide a refrigerator that eliminates useless cooling operation and realizes high energy saving performance.
 (第3の実施の形態)
 次に、本発明の第3の実施の形態における冷蔵庫について説明する。
(Third embodiment)
Next, the refrigerator in the 3rd Embodiment of this invention is demonstrated.
 本実施の形態においては、第1の実施の形態で詳細に説明した構成および技術思想と異なる部分についてのみ詳細な説明を行う。また、第1の実施の形態で詳細に説明した構成と同じ部分、および、同じ技術思想を適用しても不具合が生じない部分については、本実施の形態と組み合わせて適用できるものとし、詳細な説明を省略する。 In the present embodiment, detailed description will be made only on portions different from the configuration and technical idea described in detail in the first embodiment. In addition, the same part as the configuration described in detail in the first embodiment and the part that does not cause a problem even if the same technical idea is applied can be applied in combination with this embodiment. Description is omitted.
 図17は、本発明の第3の実施の形態における冷蔵庫の図1における2-2線断面図である。図17に示すように、第3の実施の形態の冷蔵庫50は、冷蔵室12内に、対象空間における収納状況を検知するための発信部83と受信部84が一体で構成された収納状況検知部が設けられている。 FIG. 17 is a cross-sectional view taken along line 2-2 of FIG. 1 of the refrigerator according to the third embodiment of the present invention. As shown in FIG. 17, the refrigerator 50 according to the third embodiment includes a storage state detection in which a transmission unit 83 and a reception unit 84 for detecting a storage state in the target space are integrally formed in the refrigerator compartment 12. Is provided.
 発信部83と受信部84は、冷蔵庫50内の扉開放側前面から見て、庫内の奥行寸法の1/2より手前で、かつ、収納棚18aの先端よりも前方(手前)に位置するように、冷蔵室12内の天面に隣接して配置されている。 The transmitting unit 83 and the receiving unit 84 are located in front of half of the depth dimension in the refrigerator and in front (front) of the front end of the storage shelf 18a when viewed from the front side of the door opening side in the refrigerator 50. Thus, it arrange | positions adjacent to the top | upper surface in the refrigerator compartment 12. FIG.
 なお、発信部83と受信部84の配置は、上述の例に限定されず、収納物33、および、庫内の構造物を介して、発信部83により照射される発信物を受信部84が受信できる位置に配置されている限り、庫内の何れの位置に配置しても構わない。 In addition, arrangement | positioning of the transmission part 83 and the receiving part 84 is not limited to the above-mentioned example, The receiving part 84 radiates | emits the transmission thing irradiated by the transmission part 83 via the storage thing 33 and the structure in a warehouse. As long as it is arranged at a position where it can be received, it may be arranged at any position in the warehouse.
 なお、発信部83より照射される発信物は光や赤外線、超音波等がよい。 In addition, light, infrared rays, ultrasonic waves, etc. are good for the transmission thing irradiated from the transmission part 83. FIG.
 例えば、発信部83から照射される発信物として赤外線を用いた場合には、受信部84を赤外線センサとすることで、収納物33の温度を検知することも可能である。受信部84の検知結果により演算制御部(図示せず)が、収納物33の温度が低く、十分に冷却できていると判定した場合には、図3で示したフラップ74を「開→閉」とする動作を行い、対象の収納空間への冷却量を低減する。このことで、無駄な冷却運転を省き、更に省エネ性能を向上できる。 For example, when infrared rays are used as a transmission emitted from the transmission unit 83, the temperature of the stored item 33 can be detected by using the reception unit 84 as an infrared sensor. If the calculation control unit (not shown) determines that the temperature of the stored item 33 is low and has been sufficiently cooled based on the detection result of the reception unit 84, the flap 74 shown in FIG. The amount of cooling to the target storage space is reduced. As a result, useless cooling operation can be omitted and the energy saving performance can be further improved.
 また、対象の空間に収納物33を投入し、受信部84の検知結果により収納物33の温度が高いと判定した場合には、図3で示したフラップ74を「閉→開」とする動作を行い、対象の収納空間への冷却量を増加させる。このことで、冷蔵室12に投入した収納物33を素早く冷却することができるので、保鮮性を向上させることができる。 Further, when the stored item 33 is inserted into the target space and it is determined that the temperature of the stored item 33 is high based on the detection result of the receiving unit 84, the flap 74 shown in FIG. To increase the amount of cooling to the target storage space. Thereby, since the stored item 33 put into the refrigerator compartment 12 can be quickly cooled, the freshness can be improved.
 また、発信部83より照射される発信物として超音波を用いた場合には、受信部84を超音波センサとすることで、収納物の有無を推定することが可能である。受信部84の検知結果により収納物33がないと判定した場合には、図3で示したフラップ74を「開→閉」とする動作を行い、対象空間への冷却量を低減する。このことで、無駄な冷却運転を省き、更に省エネ性能を向上できる。 Further, when an ultrasonic wave is used as a transmitter emitted from the transmitter 83, it is possible to estimate the presence / absence of a stored item by using the receiver 84 as an ultrasonic sensor. If it is determined from the detection result of the reception unit 84 that there is no stored item 33, the flap 74 shown in FIG. 3 is operated to “open → close” to reduce the amount of cooling to the target space. As a result, useless cooling operation can be omitted and the energy saving performance can be further improved.
 また、対象の収納空間に収納物33を投入し、受信部84の検知結果により収納物33があると判定した場合には、図3で示したフラップ74を「閉→開」とする動作を行い、対象空間への冷却量を増加させる。このことで、冷蔵室12に投入した収納物33を素早く冷却することができるので、保鮮性を向上させることができる。 Further, when the stored item 33 is inserted into the target storage space and it is determined that there is the stored item 33 based on the detection result of the receiving unit 84, the operation of turning the flap 74 shown in FIG. And increase the amount of cooling to the target space. Thereby, since the stored item 33 put into the refrigerator compartment 12 can be quickly cooled, the freshness can be improved.
 以上の動作により、発信部83と受信部84を隣接して配置することで、より簡易的な構成で、対象の収納空間における収納物33の有無や温度を精度よく検知する。そして、その検知結果に基づいて、収納空間における収納状況に合わせて、最適に電気機能部品の出力動作を制御することで、無駄な冷却運転を省き、高い省エネ性能を実現する冷蔵庫を提供することができる。 By the above operation, the transmitter 83 and the receiver 84 are arranged adjacent to each other, so that the presence / absence and temperature of the storage object 33 in the target storage space can be accurately detected with a simpler configuration. Then, based on the detection result, to provide a refrigerator that realizes high energy-saving performance by controlling the output operation of the electrical functional component optimally according to the storage situation in the storage space, thereby eliminating unnecessary cooling operation. Can do.
 (第4の実施の形態)
 次に、本発明の第4の実施の形態について説明する。
(Fourth embodiment)
Next, a fourth embodiment of the present invention will be described.
 本実施の形態においては、第1の実施の形態で詳細に説明した構成および技術思想と異なる部分についてのみ詳細な説明を行う。また、第1の実施の形態で詳細に説明した構成と同じ部分、および、同じ技術思想を適用しても不具合が生じない部分については、本実施の形態と組み合わせて適用できるものとし、詳細な説明を省略する。 In the present embodiment, detailed description will be made only on portions different from the configuration and technical idea described in detail in the first embodiment. In addition, the same part as the configuration described in detail in the first embodiment and the part that does not cause a problem even if the same technical idea is applied can be applied in combination with this embodiment. Description is omitted.
 図18は、本発明の第4の実施の形態における冷蔵庫の図1における2-2線断面図である。図18に示すように、第4の実施の形態の冷蔵庫50は、冷蔵室12内に、対象空間における収納状況を検知するための収納状況検知部85が冷蔵室12内の後方位置に配置されている。 FIG. 18 is a cross-sectional view taken along line 2-2 of FIG. 1 of the refrigerator according to the fourth embodiment of the present invention. As shown in FIG. 18, in the refrigerator 50 according to the fourth embodiment, a storage state detection unit 85 for detecting the storage state in the target space is disposed in the refrigerating chamber 12 at a rear position in the refrigerating chamber 12. ing.
 本実施の形態における収納状況検知部85は、風速センサや重量センサ等がよい。 The storage condition detection unit 85 in the present embodiment is preferably a wind speed sensor, a weight sensor, or the like.
 収納状況検知部85に風速センサを用いることによって、対象の収納空間に収納物33が「ある」、又は「多い」場合には、収納物33が通風抵抗になり、収納空間における風速が低下するため、収納物33の有無を判定することができる。この場合の収納状況検知部85は、収納空間へ冷気を送る風路の吐出口付近に配置するのがよいが、上述の例に限定されず、対象の収納空間における風速の変化を検知できる位置に配置されている限り、庫内の何れの位置に配置しても構わない。 By using a wind speed sensor in the storage state detection unit 85, when the storage object 33 is “present” or “large” in the target storage space, the storage object 33 becomes a ventilation resistance, and the wind speed in the storage space decreases. Therefore, the presence / absence of the stored item 33 can be determined. The storage state detection unit 85 in this case is preferably arranged in the vicinity of the discharge port of the air passage that sends cold air to the storage space, but is not limited to the above-described example, and the position where the change in the wind speed in the target storage space can be detected As long as it is arranged at any position, it may be arranged at any position in the storage.
 また、収納状況検知部85に重量センサを用いることによって、収納棚18aにかかる重量の変化から対象の収納空間における収納物33の有無を判定することができる。この場合の収納状況検知部85は、対象の収納棚18aの下部に配置するのがよい。また、収納物33の検知精度を向上させるために、例えば、冷蔵庫50内の扉開放側前面から見て、手前側と奥側、又は左側と右側のように、収納状況検知部85を複数個配置してもよい。 Further, by using a weight sensor for the storage state detection unit 85, it is possible to determine the presence / absence of the storage item 33 in the target storage space from the change in the weight applied to the storage shelf 18a. In this case, the storage status detection unit 85 is preferably arranged below the target storage shelf 18a. Further, in order to improve the detection accuracy of the stored items 33, for example, a plurality of storage state detection units 85 are provided such as the front side and the back side, or the left side and the right side when viewed from the front side of the door opening side in the refrigerator 50. You may arrange.
 例えば、収納状況検知部85の検知結果により、収納物33が「無い」、又は「少ない」と判定した場合には、図3に示したフラップ74を「開→閉」とする動作を行い、対象空間への冷却量を低減する。このことで、無駄な冷却運転を省き、更に省エネ性能を向上できる。 For example, when it is determined from the detection result of the storage state detection unit 85 that the stored item 33 is “absent” or “less”, the flap 74 shown in FIG. Reduce the amount of cooling to the target space. As a result, useless cooling operation can be omitted and the energy saving performance can be further improved.
 また、対象の空間に収納物33を投入し、収納状況検知部85の検知結果により収納物33が「ある」、又は「多い」と判定した場合には、図3に示したフラップ74を「閉→開」とする動作を行い、対象の収納空間への冷却量を増加させる。このことで、冷蔵室12に投入した収納物33を素早く冷却することができるので、保鮮性を向上させることができる。 In addition, when the stored item 33 is inserted into the target space and it is determined that the stored item 33 is “present” or “large” based on the detection result of the storage state detection unit 85, the flap 74 illustrated in FIG. The operation of “closed → open” is performed to increase the amount of cooling to the target storage space. Thereby, since the stored item 33 put into the refrigerator compartment 12 can be quickly cooled, the freshness can be improved.
 以上の動作により、収納状況検知部85を配置することで、対象の収納空間における収納物33の有無や量をより精度よく検知し、その検知結果に基づいて、収納空間における収納状況に合わせて、最適に電気機能部品の出力動作を制御する。このことで、無駄な冷却運転を省き、高い省エネ性能を実現する冷蔵庫を提供することができる。 With the above operation, the storage state detection unit 85 is arranged to detect the presence or amount of the storage item 33 in the target storage space with higher accuracy, and based on the detection result, the storage state in the storage space is matched. , Optimally control the output operation of electrical functional parts. Thus, it is possible to provide a refrigerator that eliminates useless cooling operation and realizes high energy saving performance.
 以上説明したように、本発明は、断熱壁と断熱扉とによって区画され、収納物を収納する収納室と、収納室内の収納状況を推定する収納状況推定部と、収納状況推定部の推定結果を記憶する記憶部と、電気機能部品の出力動作を制御する演算制御部を備える。収納室は、一つ又は複数の棚によって複数の収納空間を区画形成するとともに、演算制御部は収納状況推定部の推定結果に基づいて、電気機能部品の出力動作を制御し、収納空間への冷却量を変化させる。この構成により本発明は、収納空間における収納状況に合わせて、最適に電気機能部品の出力動作を制御することで、無駄な冷却運転を省き、高い省エネ性能を実現する冷蔵庫を提供することができる。 As described above, the present invention is divided by a heat insulating wall and a heat insulating door, and stores a storage room for storing storage items, a storage state estimation unit for estimating a storage state in the storage room, and an estimation result of the storage state estimation unit And a calculation control unit for controlling the output operation of the electrical functional component. The storage room defines a plurality of storage spaces by one or a plurality of shelves, and the calculation control unit controls the output operation of the electrical functional component based on the estimation result of the storage state estimation unit, and supplies the storage space to the storage space. Change the amount of cooling. With this configuration, the present invention can provide a refrigerator that realizes high energy-saving performance by controlling the output operation of the electrical functional component optimally according to the storage situation in the storage space, thereby eliminating unnecessary cooling operation. .
 また、本発明は、収納状況推定部の推定結果が収納空間内の収納量であり、演算制御部が収納空間内に食品が「無い」、又は「少ない」と判別した場合に、収納空間への冷却量を低減させてもよい。この構成により本発明は、無駄な冷却運転を省き、更に省エネ性能を向上することができる。 Further, the present invention is directed to the storage space when the estimation result of the storage state estimation unit is the storage amount in the storage space, and the arithmetic control unit determines that there is no food in the storage space or “low”. The amount of cooling may be reduced. With this configuration, the present invention can eliminate useless cooling operation and further improve energy saving performance.
 また、本発明は、電気機能部品が風路内の冷気の流れを切り替えるフラップであり、演算制御部が収納空間内に食品が「無い」、又は「少ない」と判別した場合に、フラップにより収納空間側の風路を閉塞して、収納空間への冷却量を低減させてもよい。この構成により本発明は、冷却量を自由に調節することができ、収納物投入時などの十分な冷却が必要な場合にも、瞬時に冷却量を変化させることで、保鮮性を向上させることができる。 Further, the present invention is a flap for switching the flow of cold air in the air passage by the electric functional component, and when the arithmetic control unit determines that there is no food in the storage space, it is stored by the flap. The air flow path on the space side may be closed to reduce the amount of cooling to the storage space. With this configuration, the present invention can freely adjust the amount of cooling, and even when sufficient cooling is required, such as when storing things, the amount of cooling can be instantaneously changed to improve the freshness. Can do.
 また、本発明は、フラップを、収納空間を区画形成する棚の水平投影面に跨って風路内に配置してもよい。この構成により本発明は、1つの風路による簡易な構成で風路内の風の流れを切り替えることができる。 In the present invention, the flap may be arranged in the air passage across the horizontal projection surface of the shelf that defines the storage space. By this structure, this invention can switch the flow of the wind in an air path with the simple structure by one air path.
 また、本発明は、収納空間を上段部と下段部の2区画に分割し、使用者が一番手の届きにくい上段と比較的に使い勝手の良い下段で風路を切り替え、収納量が少ない場合には、下段のみを冷却する構成としてもよい。この構成により本発明は、省エネ性能と使い勝手を両立する最適な冷却運転を実現できる。 In addition, the present invention divides the storage space into two sections, an upper stage and a lower stage, and the air path is switched between the upper stage, which is most difficult for the user to reach, and the lower stage, which is relatively easy to use. May be configured to cool only the lower stage. With this configuration, the present invention can realize an optimal cooling operation that achieves both energy saving performance and usability.
 本発明の冷蔵庫は、収納状況検知機能を有し、その検知結果を用いて、節電運転等に運転モードを切換える家庭用冷蔵庫または業務用冷蔵庫等として有用である。 The refrigerator of the present invention has a storage state detection function, and is useful as a household refrigerator or a commercial refrigerator that switches the operation mode to a power saving operation or the like using the detection result.
 11 冷蔵庫本体
 12,101 冷蔵室
 12a,12b 冷蔵室扉
 13 製氷室
 14 切換室
 15 冷凍室
 16 野菜室
 17 操作部
 18,18a~18d 収納棚
 19 照明部
 20,20a~20e 発光部
 21 光量検知部
 22 演算制御部
 23 収納状況推定部
 24 比較情報判定部
 25 変化情報判定部
 27a~27c 扉棚
 28a~28d 風量調節部
 30 圧縮機
 31 冷却ファン
 32 温度補償ヒータ
 33 収納物
 34a,34b 照射光
 50,100 冷蔵庫
 61 温度センサ
 62 扉開閉検知部
 63 外気温度センサ
 64 記憶部
 65 運転開始判定部
 66 運転終了判定部
 67 ダンパ
 68 除霜部
 70 温度情報判定部
 71 扉開閉情報判定部
 72 庫外照度センサ
 73 ダクト
 74 フラップ
 81,83 発信部
 82,84 受信部
 85 収納状況検知部
 91 表示部
DESCRIPTION OF SYMBOLS 11 Refrigerator main body 12,101 Refrigeration room 12a, 12b Refrigeration room door 13 Ice making room 14 Switching room 15 Freezing room 16 Vegetable room 17 Operation part 18, 18a-18d Storage shelf 19 Illumination part 20, 20a-20e Light emission part 21 Light quantity detection part DESCRIPTION OF SYMBOLS 22 Computation control part 23 Storage condition estimation part 24 Comparison information determination part 25 Change information determination part 27a-27c Door shelf 28a-28d Air volume adjustment part 30 Compressor 31 Cooling fan 32 Temperature compensation heater 33 Storage thing 34a, 34b Irradiation light 50, DESCRIPTION OF SYMBOLS 100 Refrigerator 61 Temperature sensor 62 Door opening / closing detection part 63 Outside temperature sensor 64 Storage part 65 Operation start determination part 66 Operation end determination part 67 Damper 68 Defrost part 70 Temperature information determination part 71 Door opening / closing information determination part 72 Outside illumination intensity sensor 73 Duct 74 Flap 81, 83 Transmitter 82, 84 Receiver 85 Storage state Status detection part 91 Display part

Claims (11)

  1. 断熱壁と断熱扉とによって区画され、収納物を収納する収納室と、前記収納室内の収納状況を推定する収納状況推定部と、前記収納状況推定部の推定結果を記憶する記憶部と、電気機能部品の出力動作を制御する演算制御部と、を備え、前記収納室は、一つ又は複数の収納棚によって複数の収納空間を区画形成するとともに、前記演算制御部は前記収納状況推定部の推定結果に基づいて、前記電気機能部品の出力動作を制御し、前記収納空間への冷却量を変化させる冷蔵庫。 A storage room that is partitioned by a heat insulating wall and a heat insulating door, and stores storage items; a storage state estimation unit that estimates a storage state in the storage room; a storage unit that stores an estimation result of the storage state estimation unit; An arithmetic control unit that controls an output operation of the functional component, and the storage chamber defines a plurality of storage spaces by one or a plurality of storage shelves, and the arithmetic control unit is configured to store the storage state estimation unit. A refrigerator that controls an output operation of the electrical functional component based on the estimation result and changes a cooling amount to the storage space.
  2. 前記収納状況推定部の推定結果は前記収納空間内の収納量であり、前記演算制御部は前記収納空間内に食品が無い、又は少ないと判別した場合に、前記収納空間への冷却量を低減する請求項1に記載の冷蔵庫。 The estimation result of the storage state estimation unit is the storage amount in the storage space, and the arithmetic control unit reduces the cooling amount to the storage space when it is determined that there is no food in the storage space or there is little food. The refrigerator according to claim 1.
  3. 前記電気機能部品は風路内の冷気の流れを切り替えるフラップであり、前記演算制御部は前記収納空間内に食品が無い、又は少ないと判別した場合に、前記フラップにより前記収納空間側の風路を閉塞することで、前記収納空間への冷却量を低減する請求項1に記載の冷蔵庫。 The electric functional component is a flap for switching the flow of cold air in the air passage, and the arithmetic control unit determines that there is no food in the storage space or there is little food in the storage space, the air path on the storage space side by the flap. The refrigerator of Claim 1 which reduces the cooling amount to the said storage space by obstruct | occluding.
  4. 前記電気機能部品は風路内の冷気の流れを切り替えるフラップであり、前記演算制御部は前記収納空間内に食品が無い、又は少ないと判別した場合に、前記フラップにより前記収納空間側の風路を閉塞することで、前記収納空間への冷却量を低減する請求項2に記載の冷蔵庫。 The electric functional component is a flap for switching the flow of cold air in the air passage, and the arithmetic control unit determines that there is no food in the storage space or there is little food in the storage space, the air path on the storage space side by the flap. The refrigerator of Claim 2 which reduces the cooling amount to the said storage space by obstruct | occluding.
  5. 前記フラップは前記収納空間を区画形成する前記収納棚の水平投影面に跨って前記風路内に配置した請求項3に記載の冷蔵庫。 The refrigerator according to claim 3, wherein the flap is disposed in the air passage across a horizontal projection plane of the storage shelf that defines the storage space.
  6. 前記フラップは前記収納空間を区画形成する前記収納棚の水平投影面に跨って前記風路内に配置した請求項4に記載の冷蔵庫。 The refrigerator according to claim 4, wherein the flap is disposed in the air passage across a horizontal projection surface of the storage shelf that defines the storage space.
  7. 前記収納空間は上段部と下段部の2区画に分割したことを特徴とする請求項1から6のいずれか一項に記載の冷蔵庫。 The refrigerator according to any one of claims 1 to 6, wherein the storage space is divided into two sections of an upper stage and a lower stage.
  8. 前記収納状況推定部は、発信部と受信部からなる収納状況検知部の検知結果から収納状況を推定する請求項1に記載の冷蔵庫。 The refrigerator according to claim 1, wherein the storage state estimation unit estimates the storage state from a detection result of a storage state detection unit including a transmission unit and a reception unit.
  9. 前記発信部と前記受信部を一体に構成した請求項8に記載の冷蔵庫。 The refrigerator according to claim 8, wherein the transmitter and the receiver are integrated.
  10. 前記収納状況推定部は、風速センサからなる収納状況検知部の検知結果から収納状況を推定する請求項1に記載の冷蔵庫。 The refrigerator according to claim 1, wherein the storage state estimation unit estimates a storage state from a detection result of a storage state detection unit including a wind speed sensor.
  11. 前記収納状況推定部は、重量センサからなる収納状況検知部の検知結果から収納状況を推定する請求項1に記載の冷蔵庫。 The refrigerator according to claim 1, wherein the storage state estimation unit estimates a storage state from a detection result of a storage state detection unit including a weight sensor.
PCT/JP2014/000687 2013-02-19 2014-02-10 Refrigerator WO2014129143A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201480009418.7A CN105143797B (en) 2013-02-19 2014-02-10 Freezer
DE112014000893.1T DE112014000893T5 (en) 2013-02-19 2014-02-10 fridge

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-029603 2013-02-19
JP2013029603 2013-02-19

Publications (1)

Publication Number Publication Date
WO2014129143A1 true WO2014129143A1 (en) 2014-08-28

Family

ID=51390943

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/000687 WO2014129143A1 (en) 2013-02-19 2014-02-10 Refrigerator

Country Status (4)

Country Link
JP (1) JP2014185843A (en)
CN (1) CN105143797B (en)
DE (1) DE112014000893T5 (en)
WO (1) WO2014129143A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016200380A (en) * 2015-04-14 2016-12-01 三菱電機株式会社 Refrigerator and network system
WO2019032875A1 (en) * 2017-08-09 2019-02-14 Lineage Logistics, LLC Controlled blast cell cooling

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6266140B2 (en) * 2015-02-05 2018-01-24 三菱電機株式会社 refrigerator

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58160787A (en) * 1982-03-19 1983-09-24 サンデン株式会社 Vertical type freezing-refrigerating showcase
JPH08303922A (en) * 1995-05-11 1996-11-22 Matsushita Refrig Co Ltd Refrigerator
WO2011111382A1 (en) * 2010-03-09 2011-09-15 パナソニック株式会社 Refrigerator
WO2012153515A1 (en) * 2011-05-09 2012-11-15 パナソニック株式会社 Refrigerator

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59132069U (en) * 1983-02-23 1984-09-04 株式会社日立製作所 Freezer refrigerator
KR19990013073A (en) * 1997-07-31 1999-02-25 윤종용 Refrigerator
JP3935912B2 (en) * 2004-03-31 2007-06-27 シャープ株式会社 Refrigerator
JP5020302B2 (en) * 2009-11-04 2012-09-05 三菱電機株式会社 refrigerator
CN103097839B (en) * 2010-02-26 2015-06-17 Lg电子株式会社 Refrigerator

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58160787A (en) * 1982-03-19 1983-09-24 サンデン株式会社 Vertical type freezing-refrigerating showcase
JPH08303922A (en) * 1995-05-11 1996-11-22 Matsushita Refrig Co Ltd Refrigerator
WO2011111382A1 (en) * 2010-03-09 2011-09-15 パナソニック株式会社 Refrigerator
WO2012153515A1 (en) * 2011-05-09 2012-11-15 パナソニック株式会社 Refrigerator

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016200380A (en) * 2015-04-14 2016-12-01 三菱電機株式会社 Refrigerator and network system
WO2019032875A1 (en) * 2017-08-09 2019-02-14 Lineage Logistics, LLC Controlled blast cell cooling
US10375978B2 (en) 2017-08-09 2019-08-13 Lineage Logistics, LLC Controlled blast cell cooling

Also Published As

Publication number Publication date
CN105143797B (en) 2018-01-02
CN105143797A (en) 2015-12-09
JP2014185843A (en) 2014-10-02
DE112014000893T5 (en) 2015-11-26

Similar Documents

Publication Publication Date Title
JP6019407B2 (en) refrigerator
JP5789779B2 (en) refrigerator
KR100758208B1 (en) Refrigerator capable of photosynthesis function of vegetable and method for controlling the same
EP2878904A1 (en) Refrigerator
JP5059975B2 (en) refrigerator
TWI473958B (en) Refrigerator-freezer
CN108168189A (en) Refrigerating device and its control method
JP5630106B2 (en) refrigerator
JP2015038409A (en) Refrigerator
WO2014129143A1 (en) Refrigerator
JP6221044B2 (en) refrigerator
JP6209726B2 (en) refrigerator
KR20210049548A (en) Refrigerator and method for controlling the same
JP6212697B2 (en) refrigerator
JP6340543B2 (en) refrigerator
WO2023204130A1 (en) Refrigerator
JP6314308B2 (en) refrigerator
JP6212696B2 (en) refrigerator

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480009418.7

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14754131

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 112014000893

Country of ref document: DE

Ref document number: 1120140008931

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14754131

Country of ref document: EP

Kind code of ref document: A1