WO2014128904A1 - Battery control circuit, battery system, and movable body and power storage system equipped with same - Google Patents

Battery control circuit, battery system, and movable body and power storage system equipped with same Download PDF

Info

Publication number
WO2014128904A1
WO2014128904A1 PCT/JP2013/054447 JP2013054447W WO2014128904A1 WO 2014128904 A1 WO2014128904 A1 WO 2014128904A1 JP 2013054447 W JP2013054447 W JP 2013054447W WO 2014128904 A1 WO2014128904 A1 WO 2014128904A1
Authority
WO
WIPO (PCT)
Prior art keywords
ocv
battery
resistance
soc
ratio
Prior art date
Application number
PCT/JP2013/054447
Other languages
French (fr)
Japanese (ja)
Inventor
章 軍司
晋 山内
小西 宏明
孝亮 馮
Original Assignee
株式会社 日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社 日立製作所 filed Critical 株式会社 日立製作所
Priority to PCT/JP2013/054447 priority Critical patent/WO2014128904A1/en
Publication of WO2014128904A1 publication Critical patent/WO2014128904A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/007Regulation of charging or discharging current or voltage
    • H02J7/00712Regulation of charging or discharging current or voltage the cycle being controlled or terminated in response to electric parameters
    • H02J7/007182Regulation of charging or discharging current or voltage the cycle being controlled or terminated in response to electric parameters in response to battery voltage
    • H02J7/007186Regulation of charging or discharging current or voltage the cycle being controlled or terminated in response to electric parameters in response to battery voltage obtained with the battery disconnected from the charge or discharge circuit
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/02Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries for charging batteries from ac mains by converters
    • H02J7/04Regulation of charging current or voltage
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/007Regulation of charging or discharging current or voltage
    • H02J7/007188Regulation of charging or discharging current or voltage the charge cycle being controlled or terminated in response to non-electric parameters
    • H02J7/007192Regulation of charging or discharging current or voltage the charge cycle being controlled or terminated in response to non-electric parameters in response to temperature
    • H02J7/007194Regulation of charging or discharging current or voltage the charge cycle being controlled or terminated in response to non-electric parameters in response to temperature of the battery
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a battery control circuit for controlling a lithium ion secondary battery, a battery system using the lithium ion secondary battery as a storage medium, and a mobile body and an electric power storage system including the battery system.
  • the problem with electric vehicles is that the energy density of the drive battery is low and the mileage with one charge is short.
  • the problem of the power generation system using natural energy is that the amount of power generation is large and a large-capacity power storage means is required for leveling the output, resulting in high costs.
  • a secondary battery having a low energy density and a high energy density is required.
  • lithium ion secondary batteries have a higher energy density per weight than other secondary batteries such as nickel metal hydride batteries and lead batteries, they are expected to be applied to electric vehicles and power storage systems. However, in order to meet the demand for electric vehicles and power storage systems, higher energy density is required. In order to increase the energy density of the battery, it is necessary to increase the energy density of the positive electrode and the negative electrode.
  • Li 2 MO 3 —LiM′O 2 solid solution is expected as a high energy density positive electrode active material.
  • M is one or more elements selected from Mn, Ti, and Zr
  • M ′ is one or more elements selected from Ni, Co, Mn, Fe, Ti, Zr, Al, Mg, Cr, and V. It is.
  • the Li 2 MO 3 —LiM′O 2 solid solution is abbreviated as a solid solution positive electrode active material.
  • a solid solution in which Li 2 MO 3 having a layered structure and electrochemically inactive and LiM′O 2 having a layered structure and electrochemically active is mixed at the time of initial charge is 4.4 V (relative to lithium metal). Thereafter, all the potentials are expressed by potentials exceeding lithium metal) and are activated by charging at a potential exceeding 200 mAh / g, and are high-capacity positive electrode active materials that can exhibit a large electric capacity exceeding 200 mAh / g (see Patent Document 1). . Therefore, a battery using a solid solution positive electrode active material can achieve high energy density.
  • Non-Patent Document 1 when the ratio x of Li 2 MO 3 is as low as 0.1, a high capacity exceeding 200 mAh / g cannot be obtained, and when x is 0.3 to 0.7, It is disclosed that a high capacity can be obtained.
  • Non-Patent Document 2 discloses that Li 2 MO 3 alone does not provide a sufficient capacity unless the specific surface area is made very small, and the deterioration is severe in the case of a high specific surface area. For this reason, if the ratio of Li 2 MO 3 is too high, it does not function as an electrode, so that a high capacity is obtained and the ratio x of Li 2 MO 3 that functions appropriately as an electrode is 0.3 to 0.7. Presumed to be in range.
  • the solid solution positive electrode active materials described in the above cited references have a problem that the electrode resistance is high because the Li ion diffusion coefficient and the electronic conductivity are low. Therefore, in the case of a high capacity battery system using a solid solution positive electrode active material for the positive electrode, high output cannot be obtained due to high resistance. Therefore, in the case of such a high-capacity battery system, a high output cannot be obtained particularly during charging, and the charging time becomes long.
  • the present invention has been made to solve the above-described problems, and in particular, provides a battery control circuit, a battery system, and a mobile body and a power storage system including the battery control circuit that enable high input / output of the battery system. For the purpose.
  • the battery system according to the present invention includes xLi 2 MO 3- (1-x) LiM′O 2 (where 0.3 ⁇ x ⁇ 0.7, and M is at least one selected from Mn, Ti, and Zr). And M ′ is at least one selected from Ni, Co, Mn, Fe, Ti, Zr, Al, Mg, Cr, and V), and a lithium ion secondary battery using a solid solution expressed as a positive electrode active material And a battery control circuit that controls charging / discharging of the lithium ion secondary battery, and the control circuit is configured to control the charging state (SOC) increasing direction and the charging state (SOC) decreasing direction of the lithium ion secondary battery.
  • SOC charging state
  • SOC charging state
  • An open circuit voltage (OCV) ratio calculation unit calculated from various types of open circuit voltage (OCV) information and a resistance based on the open circuit voltage (OCV) ratio information calculated by the open circuit voltage (OCV) ratio calculation unit Resistance to estimate value And tough, and having a permissible maximum output calculating section tolerated maximum output operation on the basis of the resistance value calculated by the resistance estimator.
  • the present invention even when a solid solution positive electrode active material is used, it is an object to provide a battery control circuit, a battery system, a mobile body including the same, and a power storage system having a reduced charging time.
  • Schematic configuration diagram of an electric vehicle equipped with a battery system In schematic configuration diagram of power generation system with battery system
  • the present embodiment is an embodiment for explaining the present invention in detail, and is not limited to the present embodiment unless departing from the gist of the present invention, and can be implemented with appropriate modifications. Of course.
  • the solid solution positive electrode active material has a resistance value other than the open circuit potential OCV (Open Circuit Voltage) when the SOC (State Of Of Charge) is increased and decreased. It was also found that there is hysteresis, and that the resistance value has a correlation with the open circuit potential OCV.
  • OCV Open Circuit Voltage
  • the cause of the hysteresis is unknown, but due to the hysteresis of the resistance value, the resistance value may differ even at the same SOC and temperature depending on the charge / discharge history.
  • the SOC when the SOC is increased from the state where the SOC is 0 to 20% and the SOC is increased, the SOC is decreased from the state where the SOC is discharged from the state where the SOC is approximately 80 to 100%.
  • the resistance is low when the SOC is around 30%.
  • the resistance at a SOC near 30% is lower than when the SOC is decreased by discharging from a state near SOC 90%. It becomes close to the resistance when SOC is increased by charging from SOC 0%.
  • the SOC is reduced to about 30% when the discharge is reduced from the SOC 70% and the SOC is decreased, compared to the case where the SOC is reduced from the SOC 90% and the SOC is decreased.
  • the OCV at is close to when SOC is increased by charging from SOC 0%.
  • the battery control circuit according to the present invention has xLi 2 MO 3- (1-x) LiM′O 2 (where 0.3 ⁇ x ⁇ 0.7, and M is selected from Mn, Ti, and Zr).
  • Two types of OCV, a high resistance state and a low resistance state which are obtained by measuring the resistance of the lithium ion secondary battery and the hysteresis characteristics of the OCV in advance, with a battery system using a secondary battery as a power storage medium as a control target.
  • a storage unit that stores calculation parameters, two types of resistance calculation parameters, and an OCV-resistance correlation parameter indicating a correlation between the OCV ratio and the resistance ratio, and a current obtained during operation of the battery system
  • SOC calculating means for calculating the SOC of the lithium ion secondary battery at the time of obtaining the information based on information such as voltage, OCV calculating means for calculating OCV when no current is flowing, and the calculated OCV
  • An OCV ratio calculation means for calculating an OCV ratio from two kinds of OCVs of a high resistance state and a low resistance state, the calculated SOC and OCV ratio, two kinds of resistance calculation parameters, an OCV-resistance correlation parameter, and the like were measured.
  • Battery control parameter calculation means for calculating a control parameter of the battery system to be output externally based on information such as temperature is provided.
  • the power storage system 100 includes a battery system 10 and a host system 6 that acquires power information of the battery system 10.
  • the battery system 10 includes a lithium ion secondary battery 7 and a battery control circuit 1 that measures and estimates the state of the lithium ion secondary battery 7. As a result of measuring and estimating the state of the lithium ion secondary battery 7, the battery control circuit 1 outputs the obtained parameters such as the allowable maximum output W and SOC to the host system 6, and the host system 6 is based on the information. This is a system that controls charging / discharging of the lithium ion secondary battery 7 by limiting the load applied to the battery system 10.
  • the battery control circuit 1 includes a storage unit 2, a calculation unit 3, a temperature information acquisition unit 11, a current information acquisition unit 12, and a voltage information acquisition unit 13.
  • storage part 2 is comprised with memory
  • the calculating part 3 is comprised with CPU.
  • the temperature information acquisition unit 11, the current information acquisition unit 12, and the voltage information acquisition unit 13 acquire temperature, current, and voltage information measured from the lithium ion secondary battery 7, respectively.
  • the calculation unit 3 includes an SOC calculation unit 14, an OCV calculation unit 15, an OCV ratio calculation unit 16, and a battery control parameter calculation unit 5.
  • the SOC calculation unit 14 calculates the SOC of the lithium ion secondary battery 7 based on the current information acquired from the current information acquisition unit 12 described above.
  • the OCV calculation unit 15 receives the voltage information acquired by the voltage information acquisition unit 13 and the SOC information calculated by the SOC calculation unit 14.
  • the OCV calculation unit 15 receives the high resistance state OCV calculation parameter P1A and the low resistance state OCV calculation parameter P1B stored in advance in the storage unit 2. Based on the voltage information, the SOC information, the high resistance state OCV calculation parameter P1A, and the low resistance state OCV calculation parameter P1B, the OCV calculation unit calculates the OCV.
  • the OCV ratio calculation unit 16 calculates an OCV ratio based on the calculated OCV.
  • the battery control parameter calculation unit 5 includes a resistance estimation unit 17 and an allowable maximum output calculation unit 18.
  • the battery control parameter calculation unit 5 includes temperature information obtained from the temperature information acquisition unit 11, SOC information calculated by the SOC calculation unit 14, OCV ratio x obtained by the OCV ratio calculation unit, and a storage unit 2, the high resistance state resistance calculation parameter R1A, the low resistance state resistance calculation parameter R1B, and the OCV-resistance correlation parameter PS1 are input.
  • the resistance estimation unit 17 includes the SOC information calculated by the SOC calculation unit 14, the OCV ratio x calculated by the OCV ratio calculation unit 16, the high resistance state resistance calculation parameter R1A, the low resistance state resistance calculation parameter R1B, and OCV.
  • a resistance correlation parameter PS1 is input.
  • the resistance estimation unit 17 calculates the resistance Rr1 based on these pieces of information.
  • the allowable maximum output calculation unit 18 receives the resistance Rr1 calculated by the resistance estimation unit 17, the SOC information calculated by the SOC calculation unit 14, and the OCV ratio x calculated by the OCV ratio calculation unit 16. Then, the allowable maximum output calculation unit 18 calculates the allowable maximum output W based on these pieces of information.
  • a solid solution positive electrode active material is used as the positive electrode active material of the lithium ion secondary battery 7 controlled by the battery control circuit 1 according to the present invention.
  • a lithium ion secondary battery having the same basic configuration as the conventional one can be adopted.
  • a configuration in which a positive electrode, a negative electrode, and a separator that is sandwiched between the positive electrode and the negative electrode and impregnated with an organic electrolyte can be employed.
  • the separator impregnated with the organic electrolyte solution has an ionic conductivity through which lithium ions (Li + ) pass, preventing a short circuit by separating the positive electrode and the negative electrode.
  • the positive electrode is composed of a positive electrode active material, a conductive material, a binder, a current collector, and the like.
  • the battery control circuit according to the present invention measures and estimates the battery operating status and battery status, and outputs information related to the battery status to the outside.
  • the information to be output externally includes at least the allowable power of the battery.
  • FIG. 2 shows a schematic configuration diagram of a battery control circuit 101 and a battery system 110 including the battery control circuit 101 as a comparative example.
  • a configuration different from the present invention is a storage unit 102 and a calculation unit 103. Therefore, since these configurations are different, the power storage system 200 is also configured differently from the power storage system 100 of the present invention.
  • the storage unit 102 does not hold the high resistance state OCV calculation parameter P1A and the low resistance state OCV calculation parameter P1B, and has only one OCV calculation parameter P2. Similarly, there is no high resistance state resistance calculation parameter R1A and low resistance state resistance calculation parameter R1B, and there is only one resistance calculation parameter P2.
  • the calculation unit 103 does not include the OCV ratio calculation unit 17.
  • Information that can always be measured in the battery system 110 is mainly voltage, current, and temperature. Further, the allowable maximum power of the battery, which is important information in the battery system 110, is calculated using at least the resistance and the OCV as inputs. In the state where the battery is operated in accordance with the host system 6, the resistance and the OCV cannot be measured except when the measurement conditions are satisfied, and therefore it is necessary to estimate from the information that can be always measured.
  • the conventional battery control circuit 101 holds the OCV calculation parameter P2 and the resistance calculation parameter R2 acquired in advance in the storage unit 102. Then, the battery control parameter calculation unit 105 in the calculation unit 103 executes the calculation to estimate the resistance value from the resistance calculation parameter Rr2, the SOC at that time, the temperature, and the like.
  • the conventional lithium ion secondary battery 107 that does not include the solid solution positive electrode active material as the positive electrode active material, there is a correlation between the SOC and the OCV. Therefore, using the SOC and the OCV calculation parameter P2 obtained by current integration, , OCV is calculated, and battery control parameters such as allowable power of the battery are calculated using the OCV and the calculated resistance value. The calculated battery control parameters such as allowable power are output to the host system 106 to limit the load on the lithium ion secondary battery 107.
  • the battery control circuit 1 of the present embodiment has two types of OCV calculation parameters P1 (high resistance state P1A and low resistance state P1B) acquired in advance and two types of OCV calculation parameters P1.
  • the storage unit 2 stores a resistance calculation parameter R1 (high resistance state R1A, low resistance state R1B), an OCV-resistance correlation parameter PS1 indicating a correlation between the OCV ratio and the resistance ratio.
  • the calculation unit 3 calculates the OCV by the OCV calculation unit 15, and executes the OCV ratio calculation by the OCV ratio calculation unit 16.
  • the OCV calculation unit 15 calculates the OCV using a known technique when a condition is satisfied such as when no current is flowing.
  • the OCV ratio calculation unit 15 calculates the OCV ratio x from the OCV calculated by the OCV calculation, the SOC at the time of measuring the OCV, and the OCV calculation P1 (high resistance state P1A, low resistance state P1B). To do.
  • the OCV ratio x is output to the storage unit 2 and held in the storage unit 2.
  • the battery control parameter calculation unit 5 calculates the resistance ratio y from the OCV ratio x and the OCV-resistance correlation parameter PS1.
  • the resistance calculation parameter R1 high resistance state R1A, low resistance state R1B
  • the resistance value estimation unit 17 calculates an estimated resistance value Rr1 from the SOC, temperature, and the like at the time, and further calculates battery control parameters such as allowable power using the estimated resistance value Rr1. Battery control parameters such as the calculated resistance value and allowable power are output to the host system 6.
  • the allowable power when the resistance of the solid solution positive electrode active material is low, the allowable power is not unnecessarily limited, and thus a high output can be obtained. Further, when the resistance is high, the allowable power is not underestimated, so that safety and reliability are improved.
  • the host system can obtain an appropriate estimated value of the battery resistance, the reliability of current control for satisfying the required power is improved.
  • the resistance calculation parameter R1 (high resistance state R1A, low resistance state R1B) is updated in accordance with the deterioration of the battery. Also in the conventional battery system, the resistance calculation parameter R1 is updated according to deterioration, and the existing technology can be used.
  • the SOC can be calculated by integrating the current values.
  • control is generally performed assuming that the resistance state of the battery is one type. Therefore, when allowable power control is performed for a battery system using a secondary battery with hysteresis in resistance value, assuming that the resistance is higher than actual, high output can be obtained due to power limitation of the battery control circuit. It becomes impossible. Conversely, when the allowable power control is performed assuming a state of lower resistance than actual, an output exceeding the power limit is permitted. Furthermore, it is difficult to predict the current to satisfy the output in the control system in the higher order of the battery system that determines the output from the battery.
  • a battery control circuit, a battery system, and a battery control circuit that can be controlled in accordance with the resistance state of the solid solution positive electrode active material in the lithium ion secondary battery and can increase the output of the battery system.
  • a mobile body and a power storage system including the same can be provided.
  • the highly accurate resistance value can be used for various controls using the estimated resistance value, the stability and reliability of the control are improved.
  • the stability and reliability of the current / output control are also improved in the control system of the battery system.
  • the battery control circuit according to the present invention can be applied to control of any shape of a lithium ion secondary battery such as a cylindrical shape, a flat shape, a square shape, a coin shape, a button shape, and a sheet shape.
  • the negative electrode has a lower discharge potential and higher capacity.
  • the negative electrode is preferably made of lithium metal, carbon having a low discharge potential, Si, Sn having a large weight specific capacity, or lithium titanate (Li4Ti5O12) having high safety. Various materials can be used.
  • a lithium ion secondary battery was produced using the above-described positive electrode, negative electrode, separator, and electrolytic solution (electrolyte).
  • lithium metal is used for the negative electrode
  • a PP (polypropylene) porous ion conductive and insulating separator is used for the separator
  • the nonaqueous organic solvent ethylene carbonate (electrolyte) is used as the electrolyte (electrolyte).
  • EC ethyl methyl carbonate
  • DMC dimethyl carbonate
  • the lithium ion secondary battery was charged to 4.6 V with a constant current / constant potential charge of 0.05 C, and then discharged to 2.5 V with a constant current of 0.05 C.
  • “charging / discharging rate 1C” means that, when the battery is charged from a fully discharged state, 100% charging is completed in one hour, and when the battery is discharged from a fully charged state. Completing 100% discharge in 1 hour. That is, the charging or discharging speed is 100% per hour. Therefore, 0.05 C means that the speed of charging or discharging is 5% per hour.
  • the amount of change in SOC was 10%, and after changing the SOC, it was relaxed in an open circuit state for 2 hours before measuring the amount of voltage drop after 10 seconds during 0.1 C rate discharge.
  • the SOC was changed from (1) 0% ⁇ 90% ⁇ 0%. Then, the OCV and resistance at 0% ⁇ 90% were functionalized to calculate the OCV calculation parameter P1B and the resistance calculation parameter R1B for the low resistance state. Further, the OCV and resistance at 90% ⁇ 0% were functionalized to calculate the OCV calculation parameter P1A and the resistance calculation parameter R1A for the high resistance state.
  • the fill data (black triangle, black square, black circle) is the data that increased the SOC, and the white data (white triangle, white square, white circle) decreased the SOC. Data.
  • FIG. 3 is a diagram showing a change in resistance when the SOC is changed by the methods (1) to (3) described above. It can be seen that the resistance is different and has hysteresis even when the SOC is changed in the increasing direction and when the SOC is changed in the decreasing direction.
  • FIG. 4 is a diagram showing a change in the open circuit voltage OCV when the SOC is changed by the methods (1) to (3). Similar to the data shown in FIG. 3, it can be seen that the open circuit voltage OCV is different and has hysteresis even when the SOC is changed in the increasing direction and when the SOC is changed in the decreasing direction. . Similarly to the hysteresis of the resistance, the SOC is changed by a smaller width than the condition (1) where the SOC is changed by a large width.
  • the conditions (2) and (3) are the width of the hysteresis of the OCV. Is small.
  • FIG. 5 is a diagram showing the relationship between the OCV ratio and the resistance ratio when the SOC is changed by the methods (2) and (3).
  • the resistance ratio y can be calculated from the OCV ratio x using the above relational expression.
  • the resistance value can be estimated using the calculated resistance ratio and the resistance value when the SOC is changed by the method (1).
  • it is desirable that the range of the SOC to be changed is sufficiently wide, and it is desirable to change the maximum SOC width in the battery application. It is not limited to the value.
  • the relational expression between the OCV ratio x and the resistance ratio y is considered to be affected by the material composition and the battery shape, and the present invention is not limited to this value. This test result can also be applied to the resistance on the charging side.
  • the allowable maximum output calculation was executed at a point of 30% when the SOC increased during the measurement of (2).
  • the OCV at that time is estimated based on the OCV ratio x and the SOC, the resistance Rr1 is calculated from the resistance ratio y, the resistance calculation parameters R1A, R1B, and the SOC, and the allowable maximum output W is calculated from the OCV and the resistance Rr1.
  • the allowable minimum voltage was 3.0V.
  • an allowable maximum output calculation was also performed based on the resistance values in the high resistance state and the low resistance state. Further, the allowable maximum output was calculated from the actually measured OCV and resistance value.
  • Table 1 shows the maximum allowable output W calculated.
  • the value calculated by the present invention is close to 18.0 mW with respect to the value of 17.1 mW calculated from the actually measured OCV and resistance value Rr1, which is an appropriate output limit value.
  • the value calculated based on the resistance in the high resistance state is 12.8 mW, which is smaller than necessary, and the output of the system is small. Further, the value calculated based on the low resistance state is 36.5 mW, which is a value more than double, and greatly exceeds the value to be limited, which may cause a system abnormality. Therefore, by using the present invention, it is possible to appropriately limit the output even when a solid solution positive electrode active material is used.
  • Current control by host system 6 In the battery control circuit 1 of this embodiment, the estimated resistance value at the point where the SOC is 30% is output to the host system 6 externally. In the host system 6, a current for obtaining a power value of 10 mW assumed as necessary power was calculated based on the received resistance.
  • Table 2 shows the calculated current value based on the resistance value calculated according to the present invention and, for example, when the measured resistance is used, when the high resistance state is used, and when the low resistance state is set. A comparison of the cases with
  • the current value is close to the current based on the actually measured resistance.
  • the current is smaller than the value to be calculated, and control takes time.
  • the low resistance state it is considerably larger than the value to be calculated and there is a risk of overshoot. Therefore, by using the present invention, it is possible to control the current value even when a solid solution positive electrode active material is used.
  • a battery system 10 including a battery control circuit 1 includes a hybrid railway vehicle that runs on a diesel engine and a motor, an electric vehicle that runs on a motor using a battery as an energy source, a hybrid vehicle that runs on an engine and a motor, It can be applied to various vehicles such as a plug-in hybrid vehicle that can charge a battery from a battery, a fuel cell vehicle that extracts power from a chemical reaction between hydrogen and oxygen, and a power source for various mobile objects such as a robot using a battery as an energy source.
  • FIG. 6 shows an example of application to the drive system of the electric vehicle 30.
  • Electric power is supplied from the battery system 10 to the motor 20 via a motor controller (not shown), and the electric vehicle 30 is driven. Further, the electric power regenerated by the motor 20 during deceleration is stored in the battery system 10 via the motor controller.
  • the output density of the secondary battery is improved by mounting the battery system 10 including the battery control circuit according to the present invention, the output of the drive system of the electric vehicle 30 is improved. Further, since the allowable power during charging can be increased, the charging time is shortened.
  • vehicles can be widely applied to forklifts, on-site transportation vehicles such as factories, electric wheelchairs, various satellites, rockets, submarines, etc. It is applicable without limitation.
  • a battery system including a battery control circuit according to the present invention includes a power storage power source (power storage) for a power generation system using natural energy, such as a solar battery that converts solar light energy into electric power, or wind power generation that generates power using wind power.
  • a power storage power source power storage
  • FIG. 7 shows a schematic configuration of a power generation system 300 using natural energy.
  • the battery system 10 including the battery control circuit 1 according to the present invention to the power storage system 100, a necessary output can be obtained with a small number of secondary batteries, and the cost of the power generation system 300 is reduced. be able to.
  • the power generation system 300 using a solar cell and a wind power generator was illustrated here, application to an electric power storage system is not limited to this,
  • the battery system of the present invention is calculated from two types of open circuit voltage (OCV) information of the lithium ion secondary battery in a charging state (SOC) increasing direction and a charging state (SOC) decreasing direction.
  • An open circuit voltage (OCV) ratio calculation unit a resistance estimation unit that estimates a resistance value based on open circuit voltage (OCV) ratio information calculated by the open circuit voltage (OCV) ratio calculation unit, and the resistance estimation
  • An allowable maximum output calculation unit that calculates an allowable maximum output based on the resistance value calculated by the unit. Therefore, even if a solid body having hysteresis is used as the positive electrode active material, control according to the resistance state is possible.
  • the present invention is not limited to the above-described embodiments, and various designs can be made without departing from the spirit of the present invention described in the claims. It can be changed.
  • the above-described embodiment has been described in detail for easy understanding of the present invention, and is not necessarily limited to one having all the configurations described.
  • a part of the configuration of an embodiment can be replaced with the configuration of another embodiment, and the configuration of another embodiment can be added to the configuration of an embodiment.

Abstract

Provided are a lithium-ion secondary battery control system capable of increasing the output of a battery system, the battery system, and a movable body and a power storage system equipped with the battery system. The battery system according to the present invention is characterized by having a lithium-ion secondary battery in which a solid solution is used as a positive electrode active material and a battery control circuit for controlling the charging and discharging of the lithium-ion secondary battery, wherein the control circuit has: an open circuit voltage (OCV) ratio calculation unit for calculating an open circuit voltage (OCV) ratio from two kinds of open circuit voltage (OCV) information in the increasing and decreasing directions of the state-of-charge (SOC) of the lithium-ion secondary battery; a resistance estimation unit for, based on the open circuit voltage (OCV) ratio information calculated by the open circuit voltage (OCV) ratio calculation unit, estimating a resistance value; and an allowable maximum output calculation unit for, based on the resistance value calculated by the resistance estimation unit, calculating an allowable maximum output.

Description

電池制御回路、電池システム、並びにこれを備える移動体及び電力貯蔵システムBattery control circuit, battery system, and mobile body and power storage system including the same
 本発明は、リチウムイオン二次電池を制御する電池制御回路、リチウムイオン二次電池を蓄電媒体とする電池システム、並びにこれを備える移動体及び電力貯蔵システムに関する。 The present invention relates to a battery control circuit for controlling a lithium ion secondary battery, a battery system using the lithium ion secondary battery as a storage medium, and a mobile body and an electric power storage system including the battery system.
 近年、地球温暖化の防止や化石燃料の枯渇への懸念から、走行に必要となるエネルギが少ない電気自動車や、太陽光や風力等の自然エネルギを利用した発電システムに期待が集まっている。しかしながら、これらの技術には次の技術的課題があり、普及が進んでいない。 In recent years, due to concerns about the prevention of global warming and the depletion of fossil fuels, there are high expectations for electric vehicles that require less energy for driving and power generation systems that use natural energy such as sunlight and wind power. However, these technologies have the following technical problems and are not widely used.
 電気自動車の課題は、駆動用電池のエネルギ密度が低く、一充電での走行距離が短いことである。一方、自然エネルギを利用した発電システムの課題は、発電量の変動が大きく、出力の平準化のために大容量の蓄電手段が必要となり、高コストとなる点である。何れの技術においても安価で高エネルギ密度をもつ二次電池が求められている。 The problem with electric vehicles is that the energy density of the drive battery is low and the mileage with one charge is short. On the other hand, the problem of the power generation system using natural energy is that the amount of power generation is large and a large-capacity power storage means is required for leveling the output, resulting in high costs. In any technique, a secondary battery having a low energy density and a high energy density is required.
 リチウムイオン二次電池は、ニッケル水素電池や鉛電池等の他の二次電池に比べて重量当たりのエネルギ密度が高いため、電気自動車や電力貯蔵システムへの応用が期待されている。ただし、電気自動車や電力貯蔵システムの要請に応えるためには、さらなる高エネルギ密度化が必要である。電池の高エネルギ密度化のためには、正極及び負極のエネルギ密度を高める必要がある。 Since lithium ion secondary batteries have a higher energy density per weight than other secondary batteries such as nickel metal hydride batteries and lead batteries, they are expected to be applied to electric vehicles and power storage systems. However, in order to meet the demand for electric vehicles and power storage systems, higher energy density is required. In order to increase the energy density of the battery, it is necessary to increase the energy density of the positive electrode and the negative electrode.
 高エネルギ密度の正極活物質として、Li2MO3-LiM’O2固溶体が期待されている。なお、MはMn、Ti、Zrから選ばれる1種類以上の元素であり、M’はNi、Co、Mn、Fe、Ti、Zr、Al、Mg、Cr、Vから選ばれる1種類以上の元素である。以後、Li2MO3-LiM’O2固溶体を固溶体正極活物質と略記する。 Li 2 MO 3 —LiM′O 2 solid solution is expected as a high energy density positive electrode active material. M is one or more elements selected from Mn, Ti, and Zr, and M ′ is one or more elements selected from Ni, Co, Mn, Fe, Ti, Zr, Al, Mg, Cr, and V. It is. Hereinafter, the Li 2 MO 3 —LiM′O 2 solid solution is abbreviated as a solid solution positive electrode active material.
 層状構造であり電気化学的に不活性なLi2MO3と、層状構造であり電気化学的に活性なLiM’O2とが混合された固溶体は、初回充電時に4.4V(リチウム金属に対して、以後電位はすべてリチウム金属に対する電位を表記)を超える電位で充電することにより活性化して、200mAh/gを超える大きな電気容量を示しうる高容量な正極活物質である(特許文献1参照)。そのため、固溶体正極活物質を用いた電池では高エネルギ密度化が可能となる。 A solid solution in which Li 2 MO 3 having a layered structure and electrochemically inactive and LiM′O 2 having a layered structure and electrochemically active is mixed at the time of initial charge is 4.4 V (relative to lithium metal). Thereafter, all the potentials are expressed by potentials exceeding lithium metal) and are activated by charging at a potential exceeding 200 mAh / g, and are high-capacity positive electrode active materials that can exhibit a large electric capacity exceeding 200 mAh / g (see Patent Document 1). . Therefore, a battery using a solid solution positive electrode active material can achieve high energy density.
 また、非特許文献1には、Li2MO3の割合xが0.1と低い場合、200mAh/gを超えるような高容量が得られず、xが0.3~0.7のときに高い容量が得られることが開示されている。 Further, in Non-Patent Document 1, when the ratio x of Li 2 MO 3 is as low as 0.1, a high capacity exceeding 200 mAh / g cannot be obtained, and when x is 0.3 to 0.7, It is disclosed that a high capacity can be obtained.
 また、非特許文献2には、Li2MO3だけでは、非常に比表面積を小さくしない限り十分な容量が得られず、高比表面積の場合は劣化が激しいことが開示されている。このため、Li2MO3の割合が高すぎると電極として機能しないので、高容量が得られ、かつ、電極として適切に機能するLi2MO3の割合xは、0.3~0.7の範囲であるものと推定される。 Non-Patent Document 2 discloses that Li 2 MO 3 alone does not provide a sufficient capacity unless the specific surface area is made very small, and the deterioration is severe in the case of a high specific surface area. For this reason, if the ratio of Li 2 MO 3 is too high, it does not function as an electrode, so that a high capacity is obtained and the ratio x of Li 2 MO 3 that functions appropriately as an electrode is 0.3 to 0.7. Presumed to be in range.
米国特許第7468223号明細書US Pat. No. 7,468,223
 上述した各引用文献に記載の固溶体正極活物質は、Liイオン拡散係数及び電子伝導度が低いため、電極抵抗が高いことという問題がある。したがって、固溶体正極活物質を正極に用いた高容量な電池システムの場合、高抵抗なことで高い出力が得られない。そのため、このような高容量な電池システムの場合は、特に充電において高出力が得られず、充電時間が長くなることが課題となる。 The solid solution positive electrode active materials described in the above cited references have a problem that the electrode resistance is high because the Li ion diffusion coefficient and the electronic conductivity are low. Therefore, in the case of a high capacity battery system using a solid solution positive electrode active material for the positive electrode, high output cannot be obtained due to high resistance. Therefore, in the case of such a high-capacity battery system, a high output cannot be obtained particularly during charging, and the charging time becomes long.
 本発明は、上記の課題を解決するためになされたものであり、特に電池システムの高い入出力化を可能とする電池制御回路、電池システム、並びにこれを備える移動体及び電力貯蔵システムを提供することを目的とする。 The present invention has been made to solve the above-described problems, and in particular, provides a battery control circuit, a battery system, and a mobile body and a power storage system including the battery control circuit that enable high input / output of the battery system. For the purpose.
 本発明にかかる電池システムは、xLi2MO3-(1-x)LiM’O2(但し、0.3<x<0.7であり、MはMn、Ti、Zrから選ばれる少なくとも1種であり、M’はNi、Co、Mn、Fe、Ti、Zr、Al、Mg、Cr、Vから選ばれる少なくとも1種である)で表記される固溶体を正極活物質として用いるリチウムイオン二次電池と、前記リチウムイオン二次電池の充放電を制御する電池制御回路を有し、前記制御回路は、前記リチウムイオン二次電池の充電状態(SOC)増加方向と充電状態(SOC)減少方向の2種類の開回路電圧(OCV)情報から算出される開回路電圧(OCV)比率演算部と、前記開回路電圧(OCV)比率演算部で演算された開回路電圧(OCV)比率情報に基づいて抵抗値を推定する抵抗推定部と、前記抵抗推定部で算出された抵抗値に基づいて許容最大出力演算する許容最大出力演算部を有することを特徴とする。 The battery system according to the present invention includes xLi 2 MO 3- (1-x) LiM′O 2 (where 0.3 <x <0.7, and M is at least one selected from Mn, Ti, and Zr). And M ′ is at least one selected from Ni, Co, Mn, Fe, Ti, Zr, Al, Mg, Cr, and V), and a lithium ion secondary battery using a solid solution expressed as a positive electrode active material And a battery control circuit that controls charging / discharging of the lithium ion secondary battery, and the control circuit is configured to control the charging state (SOC) increasing direction and the charging state (SOC) decreasing direction of the lithium ion secondary battery. An open circuit voltage (OCV) ratio calculation unit calculated from various types of open circuit voltage (OCV) information and a resistance based on the open circuit voltage (OCV) ratio information calculated by the open circuit voltage (OCV) ratio calculation unit Resistance to estimate value And tough, and having a permissible maximum output calculating section tolerated maximum output operation on the basis of the resistance value calculated by the resistance estimator.
 本発明では、固溶体正極活物質を用いた場合であったとしても、充電時間を短縮した電池制御回路、電池システム、並びにこれを備える移動体及び電力貯蔵システムを提供することを目的とする。 In the present invention, even when a solid solution positive electrode active material is used, it is an object to provide a battery control circuit, a battery system, a mobile body including the same, and a power storage system having a reduced charging time.
本発明の実施形態としての電池制御回路と、それを備えた電池システムの概略構成図Schematic configuration diagram of a battery control circuit as an embodiment of the present invention and a battery system including the same 従来の電池制御回路と、それを備えた電池システムの概略構成図Schematic configuration diagram of a conventional battery control circuit and a battery system including the same SOCを変化させた際のOCVOCV when changing SOC SOCを変化させた際の抵抗Resistance when changing SOC 抵抗比率とOCV比率の相関関係Correlation between resistance ratio and OCV ratio 電池システムを搭載した電気自動車の概略構成図Schematic configuration diagram of an electric vehicle equipped with a battery system 電池システムを備えた発電システムの概略構成図でIn schematic configuration diagram of power generation system with battery system
 以下に、本発明に係る電池システムの実施形態を示す。ただし、本実施形態は、本発明を詳細に説明するための一形態であり、本発明の主旨を逸脱しない限り本実施形態に限定されるものではなく、適宜変形して実施することができることは勿論である。 Hereinafter, embodiments of the battery system according to the present invention will be described. However, the present embodiment is an embodiment for explaining the present invention in detail, and is not limited to the present embodiment unless departing from the gist of the present invention, and can be implemented with appropriate modifications. Of course.
 上述した課題を解決すべく検討した結果、固溶体正極活物質ではSOC(State Of Charge:充電状態)を高めていくときと低下させたときで、開回路電位OCV(Open Circuit Voltage)以外に抵抗値にもヒステリシスがあり、その抵抗値は開回路電位OCVと相関があることを見出した。 As a result of studying to solve the above-described problems, the solid solution positive electrode active material has a resistance value other than the open circuit potential OCV (Open Circuit Voltage) when the SOC (State Of Of Charge) is increased and decreased. It was also found that there is hysteresis, and that the resistance value has a correlation with the open circuit potential OCV.
 ヒステリシスの原因は不明であるが、抵抗値のヒステリシスのため、充放電の履歴によって同じSOCと温度であっても抵抗値が異なる場合がある。 The cause of the hysteresis is unknown, but due to the hysteresis of the resistance value, the resistance value may differ even at the same SOC and temperature depending on the charge / discharge history.
 具体的には、SOCが0~20%付近の状態から充電してSOCを増加させた場合の方が、SOCが80~100%付近の状態から放電してSOCを減少させた場合よりも、SOCが30%付近における抵抗が低くなる。 Specifically, when the SOC is increased from the state where the SOC is 0 to 20% and the SOC is increased, the SOC is decreased from the state where the SOC is discharged from the state where the SOC is approximately 80 to 100%. The resistance is low when the SOC is around 30%.
 また、SOC90%付近の状態から放電してSOCを減少させた場合よりも、SOC70%付近の状態から放電してSOCを減少させた場合の方が、SOCが30%付近における抵抗が低くなり、SOC0%から充電してSOCを増加させた場合の抵抗に近くなる。 In addition, when the SOC is reduced by discharging from a state near SOC 70%, the resistance at a SOC near 30% is lower than when the SOC is decreased by discharging from a state near SOC 90%. It becomes close to the resistance when SOC is increased by charging from SOC 0%.
 さらに、OCVに関しても、SOC90%から付近の状態から放電してSOCを減少させた場合よりも、SOC70%から付近の状態から放電してSOCを減少させた場合の方が、SOCが30%付近におけるOCVは、SOC0%から充電してSOCを増加させた場合に近くなる。 Further, with respect to the OCV, the SOC is reduced to about 30% when the discharge is reduced from the SOC 70% and the SOC is decreased, compared to the case where the SOC is reduced from the SOC 90% and the SOC is decreased. The OCV at is close to when SOC is increased by charging from SOC 0%.
 そして、電池の用途における最大のSOC幅でSOCを増加方向に変化させた時、(具体的にはSOCを0%から90%に変化された時、低抵抗状態と定義する)SOC=q%におけるOCVをOCVq,B、抵抗値をRq,Bとし、電池の用途における最大のSOC幅でSOCを減少方向で変化させた時、(具体的にはSOCを90%から0%に変化させた時、高抵抗状態と定義する)SOC=q%におけるOCVをOCVq,A、抵抗値をRq,Aとし、ある充放電履歴を経た時のSOC=q%におけるOCVをOCVq、抵抗値をRqとした場合、SOCを減少方向に広いSOC幅で変化させた時のOCV、抵抗値への近さを表すOCV比率、抵抗比率を下記の式で定義する。
 〔数1〕
OCV比率x=(OCVq、B-OCVq)/(OCVq、B-OCVq,A)
 〔数2〕
抵抗比率y=(Rq,B-Rq)/( Rq,B-Rq,A
OCV比率と抵抗比率は相関関係を持つ。なお、電池の用途における最大のSOC幅でSOCを変化させた場合を基準にOCV比率および抵抗比率を算出したが、十分に広いSOC幅であれば、電池の用途における最大のSOC幅でなくてもよい。
When the SOC is changed in the increasing direction with the maximum SOC width in the battery application (specifically, when the SOC is changed from 0% to 90%, the low resistance state is defined) SOC = q% When OCV is changed to OCV q, B , resistance value is R q, B, and the SOC is changed in the decreasing direction with the maximum SOC width in the battery application (specifically, the SOC is changed from 90% to 0%) The OCV at SOC = q% is defined as OCV q, A , the resistance value is R q, A, and the OCV at SOC = q% after a certain charge / discharge history is defined as OCV q , When the resistance value is R q , an OCV when the SOC is changed in a decreasing direction with a wide SOC width, an OCV ratio indicating a closeness to the resistance value, and a resistance ratio are defined by the following equations.
[Equation 1]
OCV ratio x = (OCV q, B −OCV q ) / (OCV q, B −OCV q, A )
[Equation 2]
Resistance ratio y = (R q, B -R q ) / (R q, B -R q, A )
The OCV ratio and the resistance ratio have a correlation. Note that the OCV ratio and the resistance ratio were calculated based on the case where the SOC was changed at the maximum SOC width in the battery application. However, if the SOC width is sufficiently wide, the maximum SOC width in the battery application Also good.
 そこで、本発明に係る電池制御回路は、xLi2MO3-(1-x)LiM’O2(但し、0.3<x<0.7であり、MはMn、Ti、Zrから選ばれる少なくとも1種であり、M’はNi、Co、Mn、Fe、Ti、Zr、Al、Mg、Cr、Vから選ばれる少なくとも1種である)で表記される固溶体を正極活物質として用いるリチウムイオン二次電池を蓄電媒体とする電池システムを制御対象とし、予め前記リチウムイオン二次電池の抵抗とOCVのヒステリシス特性を測定することで得られる、高抵抗状態と低抵抗状態との2種類のOCV算出パラメータと、同じく2種類の抵抗算出パラメータと、OCV比率と抵抗比率の相関関係を示すOCV-抵抗相関パラメータとを記憶する記憶部と、前記電池システムの稼働中に入手した電流、電圧などの情報に基づいて当該情報の入手時点の前記リチウムイオン二次電池のSOCを算出するSOC演算手段と、電流が流れていない時に、OCVを算出するOCV演算手段と、算出されたOCVと高抵抗状態と低抵抗状態との2種類のOCVからOCV比率を算出するOCV比率演算手段と、算出されたSOC,OCV比率や、2種類の抵抗算出パラメータ、OCV-抵抗相関パラメータ、計測された温度などの情報に基づいて外部出力する前記電池システムの制御パラメータを算出する電池制御パラメータ演算手段とを備えるものとした。 Therefore, the battery control circuit according to the present invention has xLi 2 MO 3- (1-x) LiM′O 2 (where 0.3 <x <0.7, and M is selected from Mn, Ti, and Zr). Lithium ion using a solid solution represented by at least one kind and M ′ as at least one selected from Ni, Co, Mn, Fe, Ti, Zr, Al, Mg, Cr, and V) as a positive electrode active material Two types of OCV, a high resistance state and a low resistance state, which are obtained by measuring the resistance of the lithium ion secondary battery and the hysteresis characteristics of the OCV in advance, with a battery system using a secondary battery as a power storage medium as a control target. A storage unit that stores calculation parameters, two types of resistance calculation parameters, and an OCV-resistance correlation parameter indicating a correlation between the OCV ratio and the resistance ratio, and a current obtained during operation of the battery system SOC calculating means for calculating the SOC of the lithium ion secondary battery at the time of obtaining the information based on information such as voltage, OCV calculating means for calculating OCV when no current is flowing, and the calculated OCV An OCV ratio calculation means for calculating an OCV ratio from two kinds of OCVs of a high resistance state and a low resistance state, the calculated SOC and OCV ratio, two kinds of resistance calculation parameters, an OCV-resistance correlation parameter, and the like were measured. Battery control parameter calculation means for calculating a control parameter of the battery system to be output externally based on information such as temperature is provided.
 以下、本発明の実施形態について添付図面を参照して説明する。なお、本実施形態は例示であり、本発明は以下に例示する実施形態に限定されない。 Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings. In addition, this embodiment is an illustration and this invention is not limited to embodiment illustrated below.
 まず、本発明にかかる電力貯蔵システム100を図1を用いて説明する。本発明に係る電力貯蔵システム100は、電池システム10及び当該電池システム10の電力情報を取得する上位システム6から構成される。 First, a power storage system 100 according to the present invention will be described with reference to FIG. The power storage system 100 according to the present invention includes a battery system 10 and a host system 6 that acquires power information of the battery system 10.
 この電池システム10は、リチウムイオン二次電池7、リチウムイオン二次電池7の状態を計測、推定する電池制御回路1から構成される。この電池制御回路1は、リチウムイオン二次電池7の状態を計測、推定した結果、得られた許容最大出力WやSOCなどのパラメータを上位システム6に出力し、当該情報に基づき上位システム6が電池システム10に与える負荷を制限することでリチウムイオン二次電池7の充放電を制御するシステムである。 The battery system 10 includes a lithium ion secondary battery 7 and a battery control circuit 1 that measures and estimates the state of the lithium ion secondary battery 7. As a result of measuring and estimating the state of the lithium ion secondary battery 7, the battery control circuit 1 outputs the obtained parameters such as the allowable maximum output W and SOC to the host system 6, and the host system 6 is based on the information. This is a system that controls charging / discharging of the lithium ion secondary battery 7 by limiting the load applied to the battery system 10.
 続いて、電池制御回路1の詳細について説明する。電池制御回路1は、記憶部2、演算部3、温度情報取得部11、電流情報取得部12、電圧情報取得部13から構成される。なお、記憶部2はメモリで構成され、演算部3はCPUで構成されている。温度情報取得部11、電流情報取得部12、電圧情報取得部13は、それぞれリチウムイオン二次電池7より計測された温度、電流、電圧の情報を取得する。 Subsequently, details of the battery control circuit 1 will be described. The battery control circuit 1 includes a storage unit 2, a calculation unit 3, a temperature information acquisition unit 11, a current information acquisition unit 12, and a voltage information acquisition unit 13. In addition, the memory | storage part 2 is comprised with memory and the calculating part 3 is comprised with CPU. The temperature information acquisition unit 11, the current information acquisition unit 12, and the voltage information acquisition unit 13 acquire temperature, current, and voltage information measured from the lithium ion secondary battery 7, respectively.
 これらの情報は、それぞれ演算部3に出力される。 These pieces of information are each output to the calculation unit 3.
 演算部3は、SOC演算部14、OCV演算部15、OCV比率演算部16、及び電池制御パラメータ演算部5を有する。 The calculation unit 3 includes an SOC calculation unit 14, an OCV calculation unit 15, an OCV ratio calculation unit 16, and a battery control parameter calculation unit 5.
 SOC演算部14は、上述した電流情報取得部12より取得された電流情報を元にリチウムイオン二次電池7のSOCを演算する。一方、OCV演算部15には、上述した電圧情報取得部13により取得された電圧情報、及びSOC演算部14で演算されたSOC情報が入力される。 The SOC calculation unit 14 calculates the SOC of the lithium ion secondary battery 7 based on the current information acquired from the current information acquisition unit 12 described above. On the other hand, the OCV calculation unit 15 receives the voltage information acquired by the voltage information acquisition unit 13 and the SOC information calculated by the SOC calculation unit 14.
 さらに、当該OCV演算部15には、記憶部2で予め記憶されていた高抵抗状態用OCV算出パラメータP1A、及び低抵抗状態用OCV算出パラメータP1Bが入力される。これらの電圧情報、SOC情報、高抵抗状態用OCV算出パラメータP1A、低抵抗状態用OCV算出パラメータP1Bに基づいて、OCV演算部でOCVが演算される。OCV比率演算部16では、演算されたOCVに基づいてOCV比率を演算する。 Further, the OCV calculation unit 15 receives the high resistance state OCV calculation parameter P1A and the low resistance state OCV calculation parameter P1B stored in advance in the storage unit 2. Based on the voltage information, the SOC information, the high resistance state OCV calculation parameter P1A, and the low resistance state OCV calculation parameter P1B, the OCV calculation unit calculates the OCV. The OCV ratio calculation unit 16 calculates an OCV ratio based on the calculated OCV.
 電池制御パラメータ演算部5は、抵抗推定部17、及び許容最大出力演算部18から構成される。なお、この電池制御パラメータ演算部5には、温度情報取得部11より得られた温度情報、SOC演算部14で演算されたSOC情報、OCV比率演算部により得られたOCV比率x、及び記憶部2に記憶されている高抵抗状態用抵抗算出パラメータR1A、低抵抗状態用抵抗算出パラメータR1B、OCV-抵抗相関パラメータPS1が入力される。 The battery control parameter calculation unit 5 includes a resistance estimation unit 17 and an allowable maximum output calculation unit 18. The battery control parameter calculation unit 5 includes temperature information obtained from the temperature information acquisition unit 11, SOC information calculated by the SOC calculation unit 14, OCV ratio x obtained by the OCV ratio calculation unit, and a storage unit 2, the high resistance state resistance calculation parameter R1A, the low resistance state resistance calculation parameter R1B, and the OCV-resistance correlation parameter PS1 are input.
 抵抗推定部17には、SOC演算部14で演算されたSOC情報、OCV比率演算部16で演算されたOCV比率x、高抵抗状態用抵抗算出パラメータR1A、低抵抗状態用抵抗算出パラメータR1B、OCV-抵抗相関パラメータPS1が入力される。抵抗推定部17は、これらの情報に基づいて抵抗Rr1を算出する。 The resistance estimation unit 17 includes the SOC information calculated by the SOC calculation unit 14, the OCV ratio x calculated by the OCV ratio calculation unit 16, the high resistance state resistance calculation parameter R1A, the low resistance state resistance calculation parameter R1B, and OCV. A resistance correlation parameter PS1 is input. The resistance estimation unit 17 calculates the resistance Rr1 based on these pieces of information.
 許容最大出力演算部18は、抵抗推定部17で算出された抵抗Rr1、SOC演算部14で演算されたSOC情報、OCV比率演算部16で演算されたOCV比率xが入力される。そして、当該許容最大出力演算部18は、これらの情報に基づいて許容最大出力Wを算出する。 The allowable maximum output calculation unit 18 receives the resistance Rr1 calculated by the resistance estimation unit 17, the SOC information calculated by the SOC calculation unit 14, and the OCV ratio x calculated by the OCV ratio calculation unit 16. Then, the allowable maximum output calculation unit 18 calculates the allowable maximum output W based on these pieces of information.
 続いて、本発明に係る電池制御回路1が制御するリチウムイオン二次電池7の正極活物質には、固溶体正極活物質が使用される。その他は、従来と同様の基本構成を有するリチウムイオン二次電池を採用することができる。例えば、正極と、負極と、正極と負極との間に挟みこまれ、有機電解液に含浸されたセパレータとを有する構成とすることができる。なお、有機電解液に含浸されたセパレータは、正極と負極とを隔てて短絡を防止し、リチウムイオン(Li+)が通過するイオン伝導性を有している。さらに、正極は、正極活物質、導電材、バインダ、集電体などから構成される。また、本発明に係る電池制御回路は、電池の稼働状況や電池状態を計測及び推定し、電池状態に関する情報を外部に出力する。外部出力する情報には、少なくとも電池の許容電力が含まれる。 Subsequently, a solid solution positive electrode active material is used as the positive electrode active material of the lithium ion secondary battery 7 controlled by the battery control circuit 1 according to the present invention. Other than the above, a lithium ion secondary battery having the same basic configuration as the conventional one can be adopted. For example, a configuration in which a positive electrode, a negative electrode, and a separator that is sandwiched between the positive electrode and the negative electrode and impregnated with an organic electrolyte can be employed. In addition, the separator impregnated with the organic electrolyte solution has an ionic conductivity through which lithium ions (Li + ) pass, preventing a short circuit by separating the positive electrode and the negative electrode. Furthermore, the positive electrode is composed of a positive electrode active material, a conductive material, a binder, a current collector, and the like. In addition, the battery control circuit according to the present invention measures and estimates the battery operating status and battery status, and outputs information related to the battery status to the outside. The information to be output externally includes at least the allowable power of the battery.
 一方、図2には、比較例として電池制御回路101と、それを備えた電池システム110の概略構成図を示す。本発明と異なる構成は、記憶部102、及び演算部103である。従って、これらの構成が異なるため、電力貯蔵システム200も本発明の電力貯蔵システム100とは異なる構成となっている。 On the other hand, FIG. 2 shows a schematic configuration diagram of a battery control circuit 101 and a battery system 110 including the battery control circuit 101 as a comparative example. A configuration different from the present invention is a storage unit 102 and a calculation unit 103. Therefore, since these configurations are different, the power storage system 200 is also configured differently from the power storage system 100 of the present invention.
 比較例の電池制御回路101では、記憶部102は、高抵抗状態用OCV算出パラメータP1Aや低抵抗状態用OCV算出パラメータP1Bが保持されておらず、一つのOCV算出パラメータP2しか無い。同様に高抵抗状態用抵抗算出パラメータR1A、低抵抗状態用抵抗算出パラメータR1Bも無く、一つの抵抗算出パラメータP2しか無い。 In the battery control circuit 101 of the comparative example, the storage unit 102 does not hold the high resistance state OCV calculation parameter P1A and the low resistance state OCV calculation parameter P1B, and has only one OCV calculation parameter P2. Similarly, there is no high resistance state resistance calculation parameter R1A and low resistance state resistance calculation parameter R1B, and there is only one resistance calculation parameter P2.
 また、OCV-抵抗相関パラメータPS1も無い。一方、演算部103にはOCV比率演算部17が無い構成となっている。 Also, there is no OCV-resistance correlation parameter PS1. On the other hand, the calculation unit 103 does not include the OCV ratio calculation unit 17.
 電池システム110において常時計測できる情報は、主に電圧、電流、温度である。また、電池システム110において重要な情報である電池の許容最大電力は、少なくとも抵抗とOCVを入力として算出される。そして、上位システム6に合わせて電池を作動させている状態において、抵抗とOCVは測定条件が整った時を除いて測定することはできないため、常時計測できる情報から推定する必要がある。 Information that can always be measured in the battery system 110 is mainly voltage, current, and temperature. Further, the allowable maximum power of the battery, which is important information in the battery system 110, is calculated using at least the resistance and the OCV as inputs. In the state where the battery is operated in accordance with the host system 6, the resistance and the OCV cannot be measured except when the measurement conditions are satisfied, and therefore it is necessary to estimate from the information that can be always measured.
 図2に示すように、従来の電池制御回路101は、事前に取得したOCV算出パラメータP2および抵抗算出パラメータR2を記憶部102に保持している。そして、演算部103内の電池制御パラメータ演算部105で演算を実行することで、抵抗算出パラメータRr2やその時点のSOC、温度などから抵抗値を推定する。 As shown in FIG. 2, the conventional battery control circuit 101 holds the OCV calculation parameter P2 and the resistance calculation parameter R2 acquired in advance in the storage unit 102. Then, the battery control parameter calculation unit 105 in the calculation unit 103 executes the calculation to estimate the resistance value from the resistance calculation parameter Rr2, the SOC at that time, the temperature, and the like.
 そして、固溶体正極活物質を正極活物質として含まないこれまでのリチウムイオン二次電池107では、SOCとOCVに相関があるので、電流積算により求めたその時点のSOCとOCV算出パラメータP2を用いて、OCVを算出し、さらにそのOCVと算出した抵抗値を用いて電池の許容電力などの電池制御パラメータを算出している。そして、許容電力などの算出された電池制御パラメータを上位システム106に外部出力し、リチウムイオン二次電池107に対する負荷を制限している。 In the conventional lithium ion secondary battery 107 that does not include the solid solution positive electrode active material as the positive electrode active material, there is a correlation between the SOC and the OCV. Therefore, using the SOC and the OCV calculation parameter P2 obtained by current integration, , OCV is calculated, and battery control parameters such as allowable power of the battery are calculated using the OCV and the calculated resistance value. The calculated battery control parameters such as allowable power are output to the host system 106 to limit the load on the lithium ion secondary battery 107.
 これに対して、図1に示すように、本実施形態の電池制御回路1は、事前に取得した2種類のOCV算出パラメータP1(高抵抗状態用P1A、低抵抗状態用P1B)と2種類の抵抗算出パラメータR1(高抵抗状態用R1A、低抵抗状態用R1B)とOCV比率と抵抗比率の相関関係を示すOCV-抵抗相関パラメータPS1を記憶部2に保持している。 On the other hand, as shown in FIG. 1, the battery control circuit 1 of the present embodiment has two types of OCV calculation parameters P1 (high resistance state P1A and low resistance state P1B) acquired in advance and two types of OCV calculation parameters P1. The storage unit 2 stores a resistance calculation parameter R1 (high resistance state R1A, low resistance state R1B), an OCV-resistance correlation parameter PS1 indicating a correlation between the OCV ratio and the resistance ratio.
 そして、演算部3は、電池制御パラメータ演算部5での電池制御パラメータ演算に加えて、OCV演算部15によりOCVの演算をし、OCV比率演算部16でOCVの比率演算を実行する。OCV演算部15では、公知の技術を用いて、電流が流れていない時など条件が満たされて時にOCVを算出する。また、OCV比率演算部15では、OCV演算によって算出されたOCVと、当該OCVを測定した時点でのSOC、OCV算出P1(高抵抗状態用P1A、低抵抗状態用P1B)からOCV比率xを算出する。このOCV比率xは、記憶部2に出力され、当該記憶部2内に保持される。 Then, in addition to the battery control parameter calculation in the battery control parameter calculation unit 5, the calculation unit 3 calculates the OCV by the OCV calculation unit 15, and executes the OCV ratio calculation by the OCV ratio calculation unit 16. The OCV calculation unit 15 calculates the OCV using a known technique when a condition is satisfied such as when no current is flowing. The OCV ratio calculation unit 15 calculates the OCV ratio x from the OCV calculated by the OCV calculation, the SOC at the time of measuring the OCV, and the OCV calculation P1 (high resistance state P1A, low resistance state P1B). To do. The OCV ratio x is output to the storage unit 2 and held in the storage unit 2.
 そして、電池制御パラメータ演算部5では、OCV比率xとOCV-抵抗相関パラメータPS1から抵抗比率yが算出され、加えて、抵抗算出パラメータR1(高抵抗状態用R1A、低抵抗状態用R1B)、その時点でのSOC、温度などから抵抗値推定部17で、推定抵抗値Rr1を算出し、さらにその推定抵抗値Rr1を用いて許容電力などの電池制御パラメータを算出する。そして算出された抵抗値や許容電力などの電池制御パラメータは上位システム6に出力される。 The battery control parameter calculation unit 5 calculates the resistance ratio y from the OCV ratio x and the OCV-resistance correlation parameter PS1. In addition, the resistance calculation parameter R1 (high resistance state R1A, low resistance state R1B), The resistance value estimation unit 17 calculates an estimated resistance value Rr1 from the SOC, temperature, and the like at the time, and further calculates battery control parameters such as allowable power using the estimated resistance value Rr1. Battery control parameters such as the calculated resistance value and allowable power are output to the host system 6.
 これにより、本実施形態によれば、固溶体正極活物質の抵抗が低い場合には、許容電力を不必要に小さく制限することがないので、高出力が得られる。また、抵抗が高い場合には、許容電力を過少に見積もることがないので、安全性、信頼性が向上する。 Thereby, according to the present embodiment, when the resistance of the solid solution positive electrode active material is low, the allowable power is not unnecessarily limited, and thus a high output can be obtained. Further, when the resistance is high, the allowable power is not underestimated, so that safety and reliability are improved.
 また、上位システムは電池抵抗の適切な推定値が得られるので、要求電力を満たすための電流制御の信頼性が向上する。 In addition, since the host system can obtain an appropriate estimated value of the battery resistance, the reliability of current control for satisfying the required power is improved.
 なお、抵抗算出パラメータR1(高抵抗状態用R1A、低抵抗状態用R1B)は、電池の劣化に合わせ更新する。従来の電池システムにおいても、抵抗算出パラメータR1は、劣化に合わせて更新されており、その既存の技術を用いることができる。 The resistance calculation parameter R1 (high resistance state R1A, low resistance state R1B) is updated in accordance with the deterioration of the battery. Also in the conventional battery system, the resistance calculation parameter R1 is updated according to deterioration, and the existing technology can be used.
 また、SOCは電流値を積算することで算出することができる。 Also, the SOC can be calculated by integrating the current values.
 以上、上述したように従来の電池制御回路では、一般に、電池の抵抗状態が1種類であることを仮定して制御していた。そのため、抵抗値にヒステリシスがある二次電池を用いた電池システムに対して、実際よりも高抵抗な状態を想定して許容電力制御をした場合は、電池制御回路の電力制限により高出力が得られなくなる。逆に、実際よりも低抵抗な状態を想定して許容電力制御をした場合は、電力制限を超える出力を許容することになる。さらに、電池からの出力を決定する電池システムの上位の制御システムにおいて、出力を満たすための電流の予測が困難になる。 As described above, in the conventional battery control circuit as described above, control is generally performed assuming that the resistance state of the battery is one type. Therefore, when allowable power control is performed for a battery system using a secondary battery with hysteresis in resistance value, assuming that the resistance is higher than actual, high output can be obtained due to power limitation of the battery control circuit. It becomes impossible. Conversely, when the allowable power control is performed assuming a state of lower resistance than actual, an output exceeding the power limit is permitted. Furthermore, it is difficult to predict the current to satisfy the output in the control system in the higher order of the battery system that determines the output from the battery.
 これに対し、本発明によれば、リチウムイオン二次電池内の固溶体正極活物質の抵抗状態に合わせた制御が可能となり、電池システムの高出力化を可能とする電池制御回路、電池システム、並びにこれを備える移動体及び電力貯蔵システムを提供することができる。また、推定抵抗値を用いた各種制御についても、精度の高い抵抗値を使用できるので、制御の安定性、信頼性が向上する。さらに、電池システムの上位の制御システムにおいても、電流・出力制御の安定性、信頼性が向上する。
《実験例》
 以下に、本発明に係る電池制御回路を用いた電池システムの実験例を示す。
(固溶体正極活物質を用いた正極の作製)
 0.5Li2MnO3-0.5LiNi1/3Co1/3Mn1/32で表記できる固溶体正極活物質と、炭素系導電材料と、あらかじめN-メチル-2-ピロジノン(NMP)に溶解させたバインダとを、質量パーセント(%)でそれぞれ85:10:5の割合で混合し、均一に混合されたスラリを厚み20μmのアルミニウム箔の集電体上に塗布した。その後、120℃で乾燥し、プレスにて電極密度が2.3g/cm3になるよう圧縮成形した。
(リチウムイオン二次電池の作製)
 次に、リチウムイオン二次電池の作製について説明する。本発明に係る電池制御回路は、円筒形、偏平型、角型、コイン型、ボタン型、シート型等何れの形状のリチウムイオン二次電池の制御にも適用できる。負極は放電電位が低く、高容量であるほど好ましく、負極には、リチウム金属、低い放電電位をもつ炭素、重量比容量が大きいSi、Snや、安全性が高いチタン酸リチウム(Li4Ti5O12)等の種々の材料を用いることができる。
On the other hand, according to the present invention, a battery control circuit, a battery system, and a battery control circuit that can be controlled in accordance with the resistance state of the solid solution positive electrode active material in the lithium ion secondary battery and can increase the output of the battery system. A mobile body and a power storage system including the same can be provided. Moreover, since the highly accurate resistance value can be used for various controls using the estimated resistance value, the stability and reliability of the control are improved. Furthermore, the stability and reliability of the current / output control are also improved in the control system of the battery system.
《Experimental example》
Below, the experiment example of the battery system using the battery control circuit which concerns on this invention is shown.
(Preparation of positive electrode using solid solution positive electrode active material)
0.5Li 2 MnO 3 -0.5LiNi 1/3 Co 1/3 Mn 1/3 O 2 solid solution positive electrode active material, carbon-based conductive material, N-methyl-2-pyrosinone (NMP) in advance The dissolved binder was mixed at a mass percent (%) ratio of 85: 10: 5, respectively, and the uniformly mixed slurry was applied onto an aluminum foil current collector with a thickness of 20 μm. Then, it dried at 120 degreeC and compression-molded so that the electrode density might be 2.3 g / cm < 3 > with a press.
(Production of lithium ion secondary battery)
Next, production of a lithium ion secondary battery will be described. The battery control circuit according to the present invention can be applied to control of any shape of a lithium ion secondary battery such as a cylindrical shape, a flat shape, a square shape, a coin shape, a button shape, and a sheet shape. The negative electrode has a lower discharge potential and higher capacity. The negative electrode is preferably made of lithium metal, carbon having a low discharge potential, Si, Sn having a large weight specific capacity, or lithium titanate (Li4Ti5O12) having high safety. Various materials can be used.
 前記した正極と、負極とセパレータと電解液(電解質)とを用いて、リチウムイオン二次電池を作製した。ここでは、負極にリチウム金属を用い、セパレータにはPP(ポリプロピレン)製多孔質のイオン伝導性および絶縁性を有するセパレータを用い、そして、電解液(電解質)として非水性の有機溶媒のエチレンカーボネート(EC)、エチルメチルカーボネート(EMC)、ジメチルカーボネート(DMC)を体積比1:2:2で混合したものに、六フッ化リン酸リチウム(LiPF6)を1mol/L溶解させたものを用いた。
(リチウムイオン二次電池の抵抗評価)
 前記のリチウムイオン二次電池を、0.05Cの定電流/定電位充電で4.6Vまで充電した後、0.05Cの定電流で2.5Vまで放電した。ここで、「充放電レート1C」とは、電池を放電し切った状態から充電する場合において、1時間で100%の充電を完了すること、及び電池を充電し切った状態から放電する場合において、1時間で100%の放電を完了することをいう。すなわち、充電または放電の速さが1時間当たり100%であることをいう。よって、0.05Cとは、充電または放電の速さが1時間当たり5%であることをいう。
A lithium ion secondary battery was produced using the above-described positive electrode, negative electrode, separator, and electrolytic solution (electrolyte). Here, lithium metal is used for the negative electrode, a PP (polypropylene) porous ion conductive and insulating separator is used for the separator, and the nonaqueous organic solvent ethylene carbonate (electrolyte) is used as the electrolyte (electrolyte). EC), ethyl methyl carbonate (EMC), and dimethyl carbonate (DMC) mixed at a volume ratio of 1: 2: 2 were used in which 1 mol / L of lithium hexafluorophosphate (LiPF 6 ) was dissolved. .
(Resistance evaluation of lithium ion secondary battery)
The lithium ion secondary battery was charged to 4.6 V with a constant current / constant potential charge of 0.05 C, and then discharged to 2.5 V with a constant current of 0.05 C. Here, “charging / discharging rate 1C” means that, when the battery is charged from a fully discharged state, 100% charging is completed in one hour, and when the battery is discharged from a fully charged state. Completing 100% discharge in 1 hour. That is, the charging or discharging speed is 100% per hour. Therefore, 0.05 C means that the speed of charging or discharging is 5% per hour.
 その後、SOCを変えながら25℃において、開回路電圧と0.1Cレート放電時の10秒後の電圧低下量ΔVを測定し、ΔV/電流=抵抗Rを算出した。SOCの変化量は10%ずつとし、SOCを変化させた後、0.1Cレート放電時の10秒後の電圧低下量を測定する前に2時間開回路状態で緩和させた。 Thereafter, the open circuit voltage and the voltage drop amount ΔV after 10 seconds at the time of 0.1C rate discharge were measured at 25 ° C. while changing the SOC, and ΔV / current = resistance R was calculated. The amount of change in SOC was 10%, and after changing the SOC, it was relaxed in an open circuit state for 2 hours before measuring the amount of voltage drop after 10 seconds during 0.1 C rate discharge.
 まず、SOCは(1)0%→90%→0%と変化させた。そして、0%→90%におけるOCVおよび抵抗を関数化して、低抵抗状態用のOCV算出パラメータP1B、および、抵抗算出パラメータR1Bを算出した。また、90%→0%におけるOCVおよび抵抗を関数化して、高抵抗状態用のOCV算出パラメータP1A、および、抵抗算出パラメータR1Aを算出した。 First, the SOC was changed from (1) 0% → 90% → 0%. Then, the OCV and resistance at 0% → 90% were functionalized to calculate the OCV calculation parameter P1B and the resistance calculation parameter R1B for the low resistance state. Further, the OCV and resistance at 90% → 0% were functionalized to calculate the OCV calculation parameter P1A and the resistance calculation parameter R1A for the high resistance state.
 次に、SOCを(2)0%→70%→30%→70%→0%、(3)0%→50%→30%→50%→0%と二種類の方法で変化させ、同様に開回路電圧OCV、及び0.1Cレート放電時の10秒後の電圧低下量ΔVを測定し、抵抗を算出した。そして、得られた開回路電圧OCVと抵抗、2種類のOCV算出パラメータP1、及び、抵抗算出パラメータR1を用いて、OCV比率と抵抗比率を算出した。 Next, change the SOC in two ways: (2) 0% → 70% → 30% → 70% → 0%, (3) 0% → 50% → 30% → 50% → 0% The open circuit voltage OCV and the voltage drop amount ΔV after 10 seconds during 0.1C rate discharge were measured, and the resistance was calculated. Then, the OCV ratio and the resistance ratio were calculated using the obtained open circuit voltage OCV and resistance, two kinds of OCV calculation parameters P1, and the resistance calculation parameter R1.
 図3及び図4では、塗りつぶしのデータ(黒三角、黒四角、黒丸)がSOCを増加させていったデータであり、白抜きのデータ(白三角、白四角、白丸)がSOCを減少させていったデータである。 In FIG. 3 and FIG. 4, the fill data (black triangle, black square, black circle) is the data that increased the SOC, and the white data (white triangle, white square, white circle) decreased the SOC. Data.
 図3は、上記(1)~(3)の方法でSOCを変化させた場合の抵抗変化を示す図である。SOCを増加させる方向で変化させた場合と、SOCを減少させる方向で変化させた場合で、同じSOCにおいても抵抗は異なり、ヒステリシスを持ことがわかる。 FIG. 3 is a diagram showing a change in resistance when the SOC is changed by the methods (1) to (3) described above. It can be seen that the resistance is different and has hysteresis even when the SOC is changed in the increasing direction and when the SOC is changed in the decreasing direction.
 また、SOCの変化幅が小さいほどヒステリシスの差異が小さくなり、(2)、(3)のSOCを減少させる方向で変化させた場合の抵抗値は、(1)のSOCを増加させる方向で変化させた場合の抵抗値とSOCを減少させる方向で変化させた場合のOCVおよび抵抗値との間の値となった。より具体的には、ヒステリシスは(1)の条件で最も大きく、(3)の条件で最も小さくなることがわかる。 Further, the smaller the change width of the SOC, the smaller the difference in hysteresis, and the resistance value when changing the SOC of (2) and (3) in the direction of decreasing changes in the direction of increasing the SOC of (1). It was a value between the resistance value in the case of the change and the OCV and the resistance value in the case of changing in the direction of decreasing the SOC. More specifically, it can be seen that the hysteresis is the largest under the condition (1) and the smallest under the condition (3).
 一方、図4は、上記(1)~(3)の方法でSOCを変化させた場合の開回路電圧OCVの変化を示す図である。図3に示したデータと同様、SOCを増加させる方向で変化させた場合と、SOCを減少させる方向で変化させた場合で、同じSOCにおいても開回路電圧OCVは異なり、ヒステリシスを持ことがわかる。また、抵抗のヒステリシスと同様、SOCを大きな幅で変化させている(1)の条件よりも小さな幅でSOCを変化させている(2)、(3)の条件の方がOCVのヒステリシスの幅が小さいことがわかる。 On the other hand, FIG. 4 is a diagram showing a change in the open circuit voltage OCV when the SOC is changed by the methods (1) to (3). Similar to the data shown in FIG. 3, it can be seen that the open circuit voltage OCV is different and has hysteresis even when the SOC is changed in the increasing direction and when the SOC is changed in the decreasing direction. . Similarly to the hysteresis of the resistance, the SOC is changed by a smaller width than the condition (1) where the SOC is changed by a large width. The conditions (2) and (3) are the width of the hysteresis of the OCV. Is small.
 図5は、(2)、及び(3)の方法でSOCを変化させた場合の、OCV比率と抵抗比率の関係を示す図である。(2)、(3)におけるOCV比率xと抵抗比率yには、図示するようにy=x2の相関関係がある。 FIG. 5 is a diagram showing the relationship between the OCV ratio and the resistance ratio when the SOC is changed by the methods (2) and (3). The OCV ratio x and the resistance ratio y in (2) and (3) have a correlation of y = x 2 as shown in the figure.
 以上の関係式を用いて、OCV比率xから抵抗比率yが算出できることがわかる。そして算出された抵抗比率と(1)の方法でSOCを変化させた場合の抵抗値を用いて、抵抗値が推定できる。OCVと抵抗値のヒステリシスの基準を測定するために、変化させるSOCの範囲は十分広いことが望ましく、電池の用途における最大のSOC幅で変化させることが望ましいが、その変化幅が本発明はその値に限定されるものではない。また、OCV比率xと抵抗比率yの関係式は、材料組成や電池形状の影響を受けるものと考えられ、本発明は、その値に限定されるものではない。また、本試験結果は、充電側の抵抗にも適用できる。
(許容電力の算出)
 次に、(2)の測定中におけるSOC増加時の30%のポイントで許容最大出力演算を実行した。OCV比率xとSOCをもとにその時点でのOCVを推定し、抵抗比率yと抵抗算出パラメータR1A,R1BとSOCから抵抗Rr1を算出し、OCVと抵抗Rr1から許容最大出力Wを算出した。許容最小電圧は3.0Vとした。また、比較のために高抵抗状態および低抵抗状態での抵抗値をもとに許容最大出力演算も実行した。また、実測したOCV、抵抗値から許容最大出力を算出した。
It can be seen that the resistance ratio y can be calculated from the OCV ratio x using the above relational expression. The resistance value can be estimated using the calculated resistance ratio and the resistance value when the SOC is changed by the method (1). In order to measure the criterion of the hysteresis of the OCV and the resistance value, it is desirable that the range of the SOC to be changed is sufficiently wide, and it is desirable to change the maximum SOC width in the battery application. It is not limited to the value. The relational expression between the OCV ratio x and the resistance ratio y is considered to be affected by the material composition and the battery shape, and the present invention is not limited to this value. This test result can also be applied to the resistance on the charging side.
(Calculation of allowable power)
Next, the allowable maximum output calculation was executed at a point of 30% when the SOC increased during the measurement of (2). The OCV at that time is estimated based on the OCV ratio x and the SOC, the resistance Rr1 is calculated from the resistance ratio y, the resistance calculation parameters R1A, R1B, and the SOC, and the allowable maximum output W is calculated from the OCV and the resistance Rr1. The allowable minimum voltage was 3.0V. For comparison, an allowable maximum output calculation was also performed based on the resistance values in the high resistance state and the low resistance state. Further, the allowable maximum output was calculated from the actually measured OCV and resistance value.
 表1に算出した許容最大出力Wを示す。 Table 1 shows the maximum allowable output W calculated.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 実測したOCV、抵抗値Rr1から算出した値17.1mWに対して、本発明により演算された値は18.0mWと近い値となり、適切な出力制限値となっている。 The value calculated by the present invention is close to 18.0 mW with respect to the value of 17.1 mW calculated from the actually measured OCV and resistance value Rr1, which is an appropriate output limit value.
 一方、高抵抗状態の抵抗をもとに演算された値は12.8mWと必要以上に小さい値となっており、システムの出力は小さくなる。また、低抵抗状態をもとに演算された値は36.5mWと倍以上の値であり、制限すべき値を大きく超えているため、システム異常を招く恐れがある。従って、本発明を用いることによって、固溶体正極活物質を用いた場合であったとしても適切な出力制限をかけることが可能となる。
(上位システム6による電流制御)
 本実施形態の電池制御回路1では、前記したSOCが30%のポイントにおける抵抗推定値を上位システム6に外部出力した。上位システム6では、必要電力として仮定した電力値10mWを得るための電流を、受信した抵抗をもとに算出した。
On the other hand, the value calculated based on the resistance in the high resistance state is 12.8 mW, which is smaller than necessary, and the output of the system is small. Further, the value calculated based on the low resistance state is 36.5 mW, which is a value more than double, and greatly exceeds the value to be limited, which may cause a system abnormality. Therefore, by using the present invention, it is possible to appropriately limit the output even when a solid solution positive electrode active material is used.
(Current control by host system 6)
In the battery control circuit 1 of this embodiment, the estimated resistance value at the point where the SOC is 30% is output to the host system 6 externally. In the host system 6, a current for obtaining a power value of 10 mW assumed as necessary power was calculated based on the received resistance.
 表2に、本発明により演算された抵抗値をもとにした演算した電流値と、例として、実測抵抗をもとにした場合、高抵抗状態をもとにした場合、低抵抗状態をもとにした場合を比較して示す。 Table 2 shows the calculated current value based on the resistance value calculated according to the present invention and, for example, when the measured resistance is used, when the high resistance state is used, and when the low resistance state is set. A comparison of the cases with
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 本実施形態では、実測抵抗をもとにした電流と近い値となるのに対し、高抵抗状態をもとにした場合は、算出すべき値より小さく、制御に時間がかかる。また、低抵抗状態をもとにした場合は、算出すべき値よりかなり大きく、オーバーシュートしてしまう恐れがある。従って、本発明を用いることによって、固溶体正極活物質を用いた場合であったとしても電流値の制御をすることが可能となる。
(電池システムの適用例)
 本発明に係る電池制御回路1を備える電池システム10は、ディーゼルエンジンとモータとで走行するハイブリッド鉄道車両、電池をエネルギ源としてモータで走行する電気自動車、エンジンとモータとで走行するハイブリッド自動車、外部から電池に充電できるプラグインハイブリッド自動車、水素と酸素の化学反応から電力を取り出す燃料電池自動車等の種々の乗り物や、電池をエネルギ源とするロボットなどの各種移動体の電源に適用できる。
In the present embodiment, the current value is close to the current based on the actually measured resistance. On the other hand, when the high resistance state is used, the current is smaller than the value to be calculated, and control takes time. Further, when the low resistance state is used, it is considerably larger than the value to be calculated and there is a risk of overshoot. Therefore, by using the present invention, it is possible to control the current value even when a solid solution positive electrode active material is used.
(Application example of battery system)
A battery system 10 including a battery control circuit 1 according to the present invention includes a hybrid railway vehicle that runs on a diesel engine and a motor, an electric vehicle that runs on a motor using a battery as an energy source, a hybrid vehicle that runs on an engine and a motor, It can be applied to various vehicles such as a plug-in hybrid vehicle that can charge a battery from a battery, a fuel cell vehicle that extracts power from a chemical reaction between hydrogen and oxygen, and a power source for various mobile objects such as a robot using a battery as an energy source.
 図6には、電気自動車30の駆動系への適用例を示している。電池システム10から、図示しないモータコントローラ等を介して、モータ20に電力が供給され、電気自動車30が駆動される。また、減速時にモータ20により回生された電力が、モータコントローラを介して、電池システム10に貯蔵される。本実施形態によれば、本発明に係る電池制御回路を備える電池システム10を搭載することにより、二次電池の出力密度が向上するので、電気自動車30の駆動系の出力が向上する。また、充電時の許容電力を大きくできるので、充電時間が短縮される。 FIG. 6 shows an example of application to the drive system of the electric vehicle 30. Electric power is supplied from the battery system 10 to the motor 20 via a motor controller (not shown), and the electric vehicle 30 is driven. Further, the electric power regenerated by the motor 20 during deceleration is stored in the battery system 10 via the motor controller. According to this embodiment, since the output density of the secondary battery is improved by mounting the battery system 10 including the battery control circuit according to the present invention, the output of the drive system of the electric vehicle 30 is improved. Further, since the allowable power during charging can be increased, the charging time is shortened.
 なお、乗り物としては、例示したもの以外に、フォークリフト、工場等の構内搬送車、電動車椅子、各種衛星、ロケット、潜水艦等に幅広く適用可能であり、バッテリ(二次電池)を備える乗り物であれば、限定されず適用可能である。 In addition to the illustrated vehicles, vehicles can be widely applied to forklifts, on-site transportation vehicles such as factories, electric wheelchairs, various satellites, rockets, submarines, etc. It is applicable without limitation.
 本発明に係る電池制御回路を備える電池システムは、太陽の光エネルギを電力に変換する太陽電池や、風力によって発電する風力発電等の、自然エネルギを利用した発電システムの電力貯蔵用電源(電力貯蔵システム)に適用できる。図7に、自然エネルギを利用した発電システム300の概略構成を示す。 A battery system including a battery control circuit according to the present invention includes a power storage power source (power storage) for a power generation system using natural energy, such as a solar battery that converts solar light energy into electric power, or wind power generation that generates power using wind power. System). FIG. 7 shows a schematic configuration of a power generation system 300 using natural energy.
 風力発電装置310や太陽電池(不図示)等の自然エネルギを利用した発電システム300では、気象条件によって発電量が大きく変化するので、安定な電力供給を実現するためには、電力系統320の負荷に合わせて電力貯蔵システム(電力貯蔵用電源)100から電力を充放電する必要がある。この電力貯蔵システム100に対して、本発明に係る電池制御回路1を備える電池システム10を適用することにより、少ない二次電池で必要な出力を得ることができ、発電システム300のコストを低減することができる。 In the power generation system 300 using natural energy such as a wind power generator 310 or a solar cell (not shown), the amount of power generation varies greatly depending on weather conditions. Therefore, in order to realize a stable power supply, the load of the power system 320 It is necessary to charge / discharge electric power from the power storage system (power storage power source) 100 in accordance with the above. By applying the battery system 10 including the battery control circuit 1 according to the present invention to the power storage system 100, a necessary output can be obtained with a small number of secondary batteries, and the cost of the power generation system 300 is reduced. be able to.
 なお、ここでは、太陽電池や風力発電装置を用いた発電システム300を例示したが、電力貯蔵システムへの適用はこれに限定されず、タンカーなどの大型船舶に搭載される電力システムや、工場等の自家発電システムなどの電力貯蔵システムにも、広く適用可能である。 In addition, although the power generation system 300 using a solar cell and a wind power generator was illustrated here, application to an electric power storage system is not limited to this, The electric power system mounted in large ships, such as a tanker, a factory, etc. It can be widely applied to power storage systems such as private power generation systems.
 本発明を簡単にまとめると本発明の電池システムは、前記リチウムイオン二次電池の充電状態(SOC)増加方向と充電状態(SOC)減少方向の2種類の開回路電圧(OCV)情報から算出される開回路電圧(OCV)比率演算部と、前記開回路電圧(OCV)比率演算部で演算された開回路電圧(OCV)比率情報に基づいて抵抗値を推定する抵抗推定部と、前記抵抗推定部で算出された抵抗値に基づいて許容最大出力演算する許容最大出力演算部を有する。そのため、ヒステリシスのあるような固容体を正極活物質に用いたとしても抵抗状態に合わせた制御が可能となる。以上、本発明の実施形態について詳述したが、本発明は、前記の実施形態に限定されるものではなく、特許請求の範囲に記載された本発明の精神を逸脱しない範囲で、種々の設計変更を行うことができるものである。例えば、前記した実施の形態は本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。また、ある実施形態の構成の一部を他の実施形態の構成に置き換えることが可能であり、また、ある実施形態の構成に他の実施形態の構成を加えることも可能である。さらに、各実施形態の構成の一部について、他の構成の追加・削除・置換をすることが可能である。 To summarize the present invention, the battery system of the present invention is calculated from two types of open circuit voltage (OCV) information of the lithium ion secondary battery in a charging state (SOC) increasing direction and a charging state (SOC) decreasing direction. An open circuit voltage (OCV) ratio calculation unit, a resistance estimation unit that estimates a resistance value based on open circuit voltage (OCV) ratio information calculated by the open circuit voltage (OCV) ratio calculation unit, and the resistance estimation An allowable maximum output calculation unit that calculates an allowable maximum output based on the resistance value calculated by the unit. Therefore, even if a solid body having hysteresis is used as the positive electrode active material, control according to the resistance state is possible. Although the embodiments of the present invention have been described in detail above, the present invention is not limited to the above-described embodiments, and various designs can be made without departing from the spirit of the present invention described in the claims. It can be changed. For example, the above-described embodiment has been described in detail for easy understanding of the present invention, and is not necessarily limited to one having all the configurations described. Further, a part of the configuration of an embodiment can be replaced with the configuration of another embodiment, and the configuration of another embodiment can be added to the configuration of an embodiment. Furthermore, it is possible to add, delete, and replace other configurations for a part of the configuration of each embodiment.
 1  電池制御回路
 2  記憶部
 3  演算部
 5  電池制御パラメータ演算部
 6  上位システム
 7  リチウムイオン二次電池
 10 電池システム
 11 温度情報取得部
 12 電流情報取得部
 13 電圧情報取得部
 14 SOC演算部
 15 OCV演算部
 16 OCV比率演算部
 17 抵抗推定部
 18 許容最大出力演算部
 100 電力貯蔵システム
DESCRIPTION OF SYMBOLS 1 Battery control circuit 2 Memory | storage part 3 Calculation part 5 Battery control parameter calculation part 6 Host system 7 Lithium ion secondary battery 10 Battery system 11 Temperature information acquisition part 12 Current information acquisition part 13 Voltage information acquisition part 14 SOC calculation part 15 OCV calculation Unit 16 OCV ratio calculation unit 17 resistance estimation unit 18 allowable maximum output calculation unit 100 power storage system

Claims (6)

  1.  xLi2MO3-(1-x)LiM’O2(但し、0.3<x<0.7であり、MはMn、Ti、Zrから選ばれる少なくとも1種であり、M’はNi、Co、Mn、Fe、Ti、Zr、Al、Mg、Cr、Vから選ばれる少なくとも1種である)で表記される固溶体を正極活物質として用いるリチウムイオン二次電池と、
     前記リチウムイオン二次電池の充放電を制御する電池制御回路を有する電池システムにおいて、
     前記制御回路は、
     前記リチウムイオン二次電池の充電状態(SOC)増加方向と充電状態(SOC)減少方向の2種類の開回路電圧(OCV)情報から算出される開回路電圧(OCV)比率演算部と、
     前記開回路電圧(OCV)比率演算部で演算された開回路電圧(OCV)比率情報に基づいて抵抗値を推定する抵抗推定部と、
     前記抵抗推定部で算出された抵抗値に基づいて許容最大出力演算する許容最大出力演算部を有することを特徴とする電池システム。
    xLi 2 MO 3- (1-x) LiM′O 2 (where 0.3 <x <0.7, M is at least one selected from Mn, Ti and Zr, M ′ is Ni, A lithium ion secondary battery using a solid solution represented by (Co, Mn, Fe, Ti, Zr, Al, Mg, Cr, V) as a positive electrode active material;
    In the battery system having a battery control circuit for controlling charging and discharging of the lithium ion secondary battery,
    The control circuit includes:
    An open circuit voltage (OCV) ratio calculation unit calculated from two types of open circuit voltage (OCV) information in a charging state (SOC) increasing direction and a charging state (SOC) decreasing direction of the lithium ion secondary battery;
    A resistance estimator for estimating a resistance value based on the open circuit voltage (OCV) ratio information calculated by the open circuit voltage (OCV) ratio calculator;
    A battery system comprising: an allowable maximum output calculation unit that calculates an allowable maximum output based on the resistance value calculated by the resistance estimation unit.
  2.  請求項1に記載の電池システムにおいて、
     前記制御回路は記憶部を有し、
     前記記憶部は、充電状態(SOC)増加方向と充電状態(SOC)減少方向の2種類の開回路電圧(OCV)算出パラメータを有することを特徴とする電池システム。
    The battery system according to claim 1,
    The control circuit has a storage unit,
    The battery unit has two types of open circuit voltage (OCV) calculation parameters, a charging state (SOC) increasing direction and a charging state (SOC) decreasing direction.
  3.  請求項2に記載の電池システムにおいて、
     前記記憶部は、充電状態(SOC)増加方向と充電状態(SOC)減少方向の2種類の抵抗算出パラメータを有することを特徴とする電池システム。
    The battery system according to claim 2,
    The battery unit has two types of resistance calculation parameters, a charging state (SOC) increasing direction and a charging state (SOC) decreasing direction.
  4.  請求項3に記載の電池システムにおいて、
     前記記憶部は、前記開回路電圧(OCV)比率情報と抵抗比率情報の相関パラメータを有することを特徴とする電池システム。
    The battery system according to claim 3,
    The battery system, wherein the storage unit has a correlation parameter between the open circuit voltage (OCV) ratio information and the resistance ratio information.
  5.  請求項4に記載の電池システムを備えることを特徴とする移動体。 A moving body comprising the battery system according to claim 4.
  6.  請求項4に記載の電池システムを備えることを特徴とする電力貯蔵システム。 An electric power storage system comprising the battery system according to claim 4.
PCT/JP2013/054447 2013-02-22 2013-02-22 Battery control circuit, battery system, and movable body and power storage system equipped with same WO2014128904A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2013/054447 WO2014128904A1 (en) 2013-02-22 2013-02-22 Battery control circuit, battery system, and movable body and power storage system equipped with same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2013/054447 WO2014128904A1 (en) 2013-02-22 2013-02-22 Battery control circuit, battery system, and movable body and power storage system equipped with same

Publications (1)

Publication Number Publication Date
WO2014128904A1 true WO2014128904A1 (en) 2014-08-28

Family

ID=51390732

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/054447 WO2014128904A1 (en) 2013-02-22 2013-02-22 Battery control circuit, battery system, and movable body and power storage system equipped with same

Country Status (1)

Country Link
WO (1) WO2014128904A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016076369A (en) * 2014-10-06 2016-05-12 旭化成株式会社 Lithium ion secondary battery
JP2020530905A (en) * 2018-02-20 2020-10-29 エルジー・ケム・リミテッド Charge capacity calculation device and method for energy storage system

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008041471A1 (en) * 2006-09-29 2008-04-10 Toyota Jidosha Kabushiki Kaisha Hybrid vehicle and hybrid vehicle travel control method
JP2009042091A (en) * 2007-08-09 2009-02-26 Nissan Motor Co Ltd Electric vehicle system
JP2012049017A (en) * 2010-08-27 2012-03-08 Hitachi Vehicle Energy Ltd Discharge control system
WO2012114966A1 (en) * 2011-02-22 2012-08-30 住友電気工業株式会社 Battery electrode and battery
WO2012127796A1 (en) * 2011-03-22 2012-09-27 株式会社豊田自動織機 Process for producing lithium-containing composite oxide, positive electrode active material, and secondary battery
WO2012169063A1 (en) * 2011-06-10 2012-12-13 日立ビークルエナジー株式会社 Battery control device and battery system

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008041471A1 (en) * 2006-09-29 2008-04-10 Toyota Jidosha Kabushiki Kaisha Hybrid vehicle and hybrid vehicle travel control method
JP2009042091A (en) * 2007-08-09 2009-02-26 Nissan Motor Co Ltd Electric vehicle system
JP2012049017A (en) * 2010-08-27 2012-03-08 Hitachi Vehicle Energy Ltd Discharge control system
WO2012114966A1 (en) * 2011-02-22 2012-08-30 住友電気工業株式会社 Battery electrode and battery
WO2012127796A1 (en) * 2011-03-22 2012-09-27 株式会社豊田自動織機 Process for producing lithium-containing composite oxide, positive electrode active material, and secondary battery
WO2012169063A1 (en) * 2011-06-10 2012-12-13 日立ビークルエナジー株式会社 Battery control device and battery system

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016076369A (en) * 2014-10-06 2016-05-12 旭化成株式会社 Lithium ion secondary battery
JP2020530905A (en) * 2018-02-20 2020-10-29 エルジー・ケム・リミテッド Charge capacity calculation device and method for energy storage system
US11467217B2 (en) 2018-02-20 2022-10-11 Lg Energy Solution, Ltd. Charge capacity calculation device and method for energy storage system

Similar Documents

Publication Publication Date Title
US10063072B2 (en) Battery module and assembled battery
Takami et al. High-power and long-life lithium-ion batteries using lithium titanium oxide anode for automotive and stationary power applications
US9153845B2 (en) Lithium ion battery control system and assembled battery control system
US9399404B2 (en) Charging system for all-solid-state battery
JP6098878B2 (en) Non-aqueous electrolyte secondary battery
JP5810320B2 (en) Lithium-ion battery charging method and battery-equipped device
US9209462B2 (en) Non-aqueous electrolyte solution type lithium ion secondary battery
US20150050522A1 (en) Lithium-rich layered oxide cathodes and rechargeable batteries containing lithium-rich layered oxides
JP5896024B2 (en) Charge control method and charge control device for secondary battery
CN107452942B (en) Secondary battery
CN103891040A (en) Secondary battery control device and SOC detection method
WO2014208253A1 (en) Secondary battery system
US20170104347A1 (en) Secondary battery apparatus
US9506989B2 (en) Battery remaining amount detection unit, electric vehicle, and electric power supply unit
JP4714229B2 (en) Lithium secondary battery
JP2009301850A (en) Lithium secondary battery
JP5775725B2 (en) Charge control system
JP2014199723A (en) Pre-doping agent, power storage device including the same, and method for manufacturing the power storage device
US20160181606A1 (en) Lithium ion secondary battery
JP6120083B2 (en) Method for producing non-aqueous electrolyte secondary battery
WO2014128904A1 (en) Battery control circuit, battery system, and movable body and power storage system equipped with same
JP5923831B2 (en) Lithium ion secondary battery control system, battery system, and mobile body and power storage system including the same
JP2013239375A (en) Lithium ion secondary battery and method for manufacturing the same
WO2014184861A1 (en) Battery system, mobile body and power storage system provided with battery system, and control method for battery system
JP2013239374A (en) Lithium ion secondary battery and method for manufacturing the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13876046

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13876046

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP