WO2014128833A1 - Copper foil for graphene production, and graphene production method - Google Patents

Copper foil for graphene production, and graphene production method Download PDF

Info

Publication number
WO2014128833A1
WO2014128833A1 PCT/JP2013/054001 JP2013054001W WO2014128833A1 WO 2014128833 A1 WO2014128833 A1 WO 2014128833A1 JP 2013054001 W JP2013054001 W JP 2013054001W WO 2014128833 A1 WO2014128833 A1 WO 2014128833A1
Authority
WO
WIPO (PCT)
Prior art keywords
copper foil
graphene
producing
layer
graphene production
Prior art date
Application number
PCT/JP2013/054001
Other languages
French (fr)
Japanese (ja)
Inventor
倫也 古曳
和彦 坂口
Original Assignee
Jx日鉱日石金属株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jx日鉱日石金属株式会社 filed Critical Jx日鉱日石金属株式会社
Priority to PCT/JP2013/054001 priority Critical patent/WO2014128833A1/en
Publication of WO2014128833A1 publication Critical patent/WO2014128833A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/16Metallic material, boron or silicon on metallic substrates or on substrates of boron or silicon
    • C23C14/165Metallic material, boron or silicon on metallic substrates or on substrates of boron or silicon by cathodic sputtering
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/182Graphene
    • C01B32/184Preparation
    • C01B32/186Preparation by chemical vapour deposition [CVD]
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/02Pretreatment of the material to be coated
    • C23C16/0272Deposition of sub-layers, e.g. to promote the adhesion of the main coating
    • C23C16/0281Deposition of sub-layers, e.g. to promote the adhesion of the main coating of metallic sub-layers
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/26Deposition of carbon only
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D1/00Electroforming
    • C25D1/04Wires; Strips; Foils
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D3/00Electroplating: Baths therefor
    • C25D3/02Electroplating: Baths therefor from solutions
    • C25D3/38Electroplating: Baths therefor from solutions of copper

Definitions

  • the present invention relates to a copper foil for producing graphene and a method for producing graphene.
  • Graphite has a layered structure in which a number of flat carbon 6-membered ring layers are stacked, but those with a single atomic layer to several atomic layers are called graphene or graphene sheets.
  • Graphene sheets have unique electrical, optical and mechanical properties, and in particular have a high carrier moving speed. Therefore, graphene sheets are expected to have a wide range of applications in the industry, such as fuel cell separators, transparent electrodes, conductive thin films for display elements, mercury-free fluorescent lamps, composite materials, and drug delivery system (DDS) carriers. ing.
  • Non-Patent Document 1 describes that Cu is used as a substrate, but graphene does not grow in the surface direction in a short time on the Cu foil, and the Cu layer formed on the Si substrate is annealed. The substrate is formed as coarse particles.
  • an object of the present invention is to provide a copper foil for producing graphene that can produce large-area graphene at high quality and at low cost.
  • the copper foil for producing graphene of the present invention has a surface roughness Rz of 0.5 ⁇ m or less, and the (111) plane ratio occupies 60% or more on the surface.
  • the copper foil for producing graphene of the present invention is formed by forming a Cu plating layer and / or a Cu sputter layer on the surface of the copper foil base material, the surface roughness Rz is 0.5 ⁇ m or less, and (111) The percentage of the surface occupies 60% or more.
  • the copper foil base material is an electrolytic copper foil. It is preferable to form the Cu plating layer and / or the Cu sputter layer on the drum surface side of the electrolytic copper foil.
  • the graphene production method of the present invention uses the graphene production copper foil, arranges the heated graphene production copper foil in a predetermined chamber, supplies hydrogen gas and a carbon-containing gas, and supplies the graphene.
  • a copper foil capable of producing a large area graphene with high quality and low cost can be obtained.
  • % means “% by mass” unless otherwise specified.
  • an electrolytic copper foil or a rolled copper foil can be used as the copper foil for producing graphene of the present invention.
  • the composition of the copper foil is preferably 99.8% or more in purity, and the thickness of the copper foil is not particularly limited, but is generally 5 to 150 ⁇ m. Furthermore, it is preferable to set the thickness of the copper foil to 12 to 50 ⁇ m in order to facilitate the etching removal described later while ensuring handling properties. If the thickness of the copper foil is less than 12 ⁇ m, it may be easily broken and inferior in handleability, and if the thickness exceeds 50 ⁇ m, it may be difficult to remove by etching.
  • the copper foil for producing graphene of the present invention has a surface roughness Rz of 0.5 ⁇ m or less, and the (111) plane accounts for 60% or more on the surface. This is because the smoother the copper foil surface, the fewer steps that hinder the growth of graphene, and the graphene film is uniformly formed on the copper foil surface.
  • the ratio of the (111) plane on the copper foil surface is preferably 70% or more, more preferably 80% or more, and more preferably 90% or more.
  • Rz is a ten-point average roughness measured in accordance with JIS B0601-1994. In the case of electrolytic copper foil, Rz is measured in the direction perpendicular to the drum rotation direction, and in the case of rolled copper foil, Rz is measured in the vertical direction of rolling.
  • the drum surface of the electrolytic copper foil (the cathode drum side on which the copper foil is deposited) is smoother than the opposite surface, but the Rz is still about 1.2 to 1.4 ⁇ m.
  • the Rz of the rolled copper foil is about 0.7 ⁇ m. Therefore, when a Cu plating layer or a Cu sputter layer is formed on the surface of a copper foil base material made of electrolytic copper foil or rolled copper foil, the surface roughness Rz is 0.5 ⁇ m or less, and the (111) surface occupies 60% or more. The surface can be easily formed.
  • a Cu plating layer or a Cu sputter layer is formed on a smoother surface (for example, a drum surface in the case of electrolytic copper foil) among the front and back surfaces of the copper foil, or Cu is formed on the smooth surface. It is preferable to form a plating layer and form a Cu sputter layer on the Cu plating layer.
  • FIB FIB etc.
  • Rz of the surface of copper foil is not specifically limited, when productivity etc. are considered, it is 0.005 micrometer or more, Preferably it is 0.01 micrometer or more, More preferably, it is 0.05 micrometer or more. In order to make the Rz of the copper foil surface about 0.01 ⁇ m, for example, an electrolytic copper foil is manufactured using a cathode drum having a mirror finish to reduce the roughness of the copper foil substrate itself, or to a mirror finish.
  • the rolled copper foil is manufactured using the rolled roll to reduce the roughness of the copper foil base itself, and the Cu plating layer and the Cu sputtered layer are sufficiently thick on the copper foil base as described above (for example, about 20 ⁇ m). There is a method of forming the film.
  • the composition and thickness of the copper foil base material may be the same as the values of the copper foil alone.
  • the Cu plating layer can be formed by known bright copper plating.
  • the bright copper plating can be formed by electroplating using a commercially available copper sulfate plating bath containing a brightener.
  • Examples of plating bath compositions include Cu ions: 70-100 g / L, sulfuric acid: 80-100 g / L, Cl ions: 40-80 mg / L, bis (3-sulfopropyl) disulfide disodium: 10-30 mg / L L, dialkylamino group-containing polymer (weight average molecular weight 8500): 10 to 30 mg / L.
  • the plating conditions can be, for example, an average current density of 20 to 100 A / dm 2 and a plating bath temperature of 45 to 65 ° C.
  • the thickness of the Cu plating layer can be, for example, 10 to 20 ⁇ m.
  • the thickness of the Cu sputter can be set to 0.1 to 1.0 ⁇ m, for example.
  • the sputtering conditions can be, for example, a discharge voltage of 500 to 700 V, a discharge current of 15 to 25 A, and a degree of vacuum of 3.9 to 6.7 ⁇ 10 ⁇ 2 Pa in Ar gas using a Cu target.
  • the above-mentioned Cu plating layer and Cu sputtered layer may be laminated, and any of them may be an upper layer.
  • the copper foil for producing graphene according to the embodiment of the present invention can be produced, for example, as follows. First, after manufacturing the copper ingot of a predetermined composition and performing hot rolling, annealing and cold rolling are repeated and a rolled sheet is obtained. The rolled sheet is annealed and recrystallized, and finally cold-rolled to a predetermined thickness with a reduction ratio of 80 to 99.9% (preferably 85 to 99.9%, more preferably 90 to 99.9%). To obtain copper foil.
  • an electrolytic copper foil can be manufactured by supplying an electrolytic solution between a rotating cathode drum and an anode opposite to the rotating cathode drum, and depositing the electrolytic copper foil on the drum surface that becomes the cathode.
  • a Cu plating layer and / or a Cu sputter layer are formed on the smooth surface of the copper foil, a graphene copper foil having a smoother surface layer than the copper foil itself is obtained.
  • the graphene producing copper foil 10 of the present invention described above is placed in a chamber (vacuum chamber or the like) 100, the graphene producing copper foil 10 is heated by the heater 104, and the inside of the chamber 100 is decompressed or evacuated. .
  • the carbon-containing gas G is supplied together with hydrogen gas from the gas inlet 102 into the chamber 100 (FIG. 1A).
  • the carbon-containing gas G include, but are not limited to, carbon dioxide, carbon monoxide, methane, ethane, propane, ethylene, acetylene, alcohol, and the like. Good.
  • the heating temperature of the graphene-producing copper foil 10 may be equal to or higher than the decomposition temperature of the carbon-containing gas G, for example, 1000 ° C. or higher.
  • the carbon-containing gas G may be heated to a decomposition temperature or higher in the chamber 100, and the decomposition gas may be brought into contact with the copper foil 10 for producing graphene.
  • the copper foil 10 for producing graphene by heating the copper foil 10 for producing graphene, the copper plating layer and / or the sputtered copper layer is in a semi-molten state and flows into the recesses on the surface of the copper foil. Unevenness is reduced.
  • the cracked gas comes into contact with the smooth surface of the graphene-producing copper foil 10 as described above, and the graphene 20 is formed on the surface of the graphene-producing copper foil 10 (FIG. 1B).
  • the transfer sheet 30 is laminated
  • FIG. 1C this laminated body is continuously immersed in the etching tank 110 through the sink roll 120, and the copper foil 10 for graphene production is removed by etching (FIG. 1C).
  • the graphene 20 laminated on the predetermined transfer sheet 30 can be manufactured.
  • the substrate 40 is laminated on the surface of the graphene 20, and the transfer sheet 30 is peeled off while transferring the graphene 20 onto the substrate 40,
  • the stacked graphene 20 can be manufactured.
  • various resin sheets such as polyethylene and polyurethane
  • etching solution for etching and removing the copper foil 10 for producing graphene for example, a sulfuric acid solution, a sodium persulfate solution, hydrogen peroxide, a sodium persulfate solution, or a solution obtained by adding sulfuric acid to hydrogen peroxide can be used.
  • substrate 40 for example, Si, SiC, Ni, or Ni alloy can be used.
  • the electrolytic copper foil is a JTC (product name) foil having a thickness of 18 ⁇ m manufactured by JX Nippon Mining & Metals
  • the rolled copper foil is a tough pitch copper (JIS H3100 alloy manufactured by JX Nippon Mining & Metals).
  • a foil having a thickness of 18 ⁇ m consisting of number C1100 (hereinafter referred to as “TPC”) was used.
  • Example 1 On the drum surface side of the electrolytic copper foil substrate of Table 1, a 6 ⁇ m thick Cu electroplating layer was formed by the following Cu plating bath.
  • the plating bath temperature was 55 ° C., and the average current density during plating was 50 A / dm 2.
  • Cu plating bath Cu ion 100 g / L, sulfuric acid 80 g / L, Cl ion 50 mg / L, bis (3-sulfopropyl) disulfide disodium 30 mg / L, dialkylamino group-containing polymer (weight average molecular weight 8500) 30 mg / L L ⁇ Example 2>
  • a Cu electroplating layer having a thickness of 4 ⁇ m was formed on the drum surface side of the electrolytic copper foil substrate of Table 1 by the following Cu plating bath.
  • the plating bath temperature was 55 ° C., and the current density during plating was 30 A / dm 2.
  • Cu plating bath Cu ion 100 g / L, sulfuric acid 80 g / L, Cl ion 50 mg / L, bis (3-sulfopropyl) disulfide disodium 10 mg / L, dialkylamino group-containing polymer (weight average molecular weight 8500) 10 mg / L L ⁇ Example 3>
  • a Cu electroplating layer having a thickness of 10 ⁇ m was formed on the drum surface side of the electrolytic copper foil substrate of Table 1 by the following Cu plating bath.
  • the plating bath temperature was 55 ° C., and the average current density during plating was 50 A / dm 2.
  • Cu plating bath Cu ion 100 g / L, sulfuric acid 80 g / L, Cl ion 50 mg / L, bis (3-sulfopropyl) disulfide disodium 20 mg / L, dialkylamino group-containing polymer (weight average molecular weight 8500) 20 mg / L L
  • Example 4 A Cu electroplating layer having a thickness of 6 ⁇ m was formed on the electrolytic copper foil base material drum surface side of Example 1, and a Cu sputtering layer having a thickness of 0.5 ⁇ m was formed on the Cu electroplating layer by Cu sputtering.
  • a 0.5 ⁇ m Cu sputter layer was formed by Cu sputtering.
  • Cu sputtering conditions Ar gas, discharge voltage 500V, discharge current 15A, degree of vacuum 5 ⁇ 10 ⁇ 2 Pa ⁇ Example 6> A Cu electroplating layer having a thickness of 20 ⁇ m was formed on the electrolytic copper foil base drum surface side of Example 1, and a Cu sputter layer having a thickness of 2.0 ⁇ m was formed on the Cu electroplating layer by Cu sputtering.
  • Cu sputtering conditions Ar gas, discharge voltage 500V, discharge current 15A, degree of vacuum 5 ⁇ 10 ⁇ 2 Pa.
  • Ratio of surface (111) plane (%) (111) plane X-ray diffraction integrated intensity ( ⁇ ) / ⁇ (111) plane X-ray diffraction integrated intensity ( ⁇ ) + (200) plane X-ray diffraction integral Intensity ( ⁇ ) + (311) plane X-ray diffraction integral intensity ( ⁇ ) + (220) plane diffraction integral intensity ( ⁇ ) + (331) plane X-ray diffraction integral intensity ( ⁇ ) ⁇ ⁇ 100
  • ⁇ Measurement of surface roughness (Rz)> The surface roughness of the obtained sample was measured. Using a non-contact laser surface roughness meter (confocal microscope (HD100D manufactured by Lasertec Corporation), ten-point average roughness (Rz) was measured according to JIS B0601-1994. Measurement standard length 0.8 mm, The measurement position was changed 10 times under the conditions of an evaluation length of 4 mm, a cut-off value of 0.8 mm, and a feed rate of 0.1 mm / second, and values were obtained for 10 measurements in the following directions. In addition, when the copper foil base material was an electrolytic copper foil, Rz was measured in a direction perpendicular to the drum rotation direction, and when the copper foil base material was a rolled copper foil, Rz was measured in the vertical direction of rolling.
  • Comparative Example 1 in which the surface roughness Rz exceeds 0.5 ⁇ m and the (111) plane is less than 60% on the surface, the sheet resistance of graphene exceeds 400 ⁇ / ⁇ , and the quality of graphene is inferior. Further, in Comparative Example 2 where the surface roughness Rz exceeded 0.5 ⁇ m, the sheet resistance of graphene exceeded 400 ⁇ / ⁇ , and the quality of graphene was inferior.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Metallurgy (AREA)
  • Mechanical Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nanotechnology (AREA)
  • Electrochemistry (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

[Problem] To provide a copper foil for graphene production and a graphene production method using the copper foil, whereby it is possible to produce high-quality large-area graphene at a low cost. [Solution] A copper foil (10) for graphene production which has a surface roughness (Rz) of 0.5 μm or less, with at least 60% of the surface being constituted by the (111) plane.

Description

グラフェン製造用銅箔及びグラフェンの製造方法Copper foil for producing graphene and method for producing graphene
 本発明は、グラフェンを製造するための銅箔及びグラフェンの製造方法に関する。 The present invention relates to a copper foil for producing graphene and a method for producing graphene.
 グラファイトは平らに並んだ炭素6員環の層がいくつも積み重なった層状構造をもつが、その単原子層~数原子層程度のものはグラフェン又はグラフェンシートと呼ばれる。グラフェンシートは独自の電気的、光学的及び機械的特性を有し、特にキャリア移動速度が高速である。そのため、グラフェンシートは、例えば、燃料電池用セパレータ、透明電極、表示素子の導電性薄膜、無水銀蛍光灯、コンポジット材、ドラッグデリバリーシステム(DDS)のキャリアーなど、産業界での幅広い応用が期待されている。 Graphite has a layered structure in which a number of flat carbon 6-membered ring layers are stacked, but those with a single atomic layer to several atomic layers are called graphene or graphene sheets. Graphene sheets have unique electrical, optical and mechanical properties, and in particular have a high carrier moving speed. Therefore, graphene sheets are expected to have a wide range of applications in the industry, such as fuel cell separators, transparent electrodes, conductive thin films for display elements, mercury-free fluorescent lamps, composite materials, and drug delivery system (DDS) carriers. ing.
 グラフェンシートを製造する方法として、グラファイトを粘着テープで剥がす方法が知られているが、得られるグラフェンシートの層数が一定でなく、大面積のグラフェンシートが得難く、大量生産にも適さないという問題がある。
 そこで、シート状の単結晶グラファイト化金属触媒上に炭素系物質を接触させた後、熱処理することによりグラフェンシートを成長させる技術(化学気相成長(CVD)法)が開発されている(特許文献1)。この単結晶グラファイト化金属触媒としては、Ni、Cu、Wなどの金属基板が記載されている。
 同様に,NiやCuの金属箔やSi基板上に形成した銅層上に化学気相成長法でグラフェンを製膜する技術が報告されている。なお,グラフェンの製膜は1000℃程度で行われる(非特許文献1)。
As a method of producing a graphene sheet, a method of peeling graphite with an adhesive tape is known, but the number of layers of the obtained graphene sheet is not constant, it is difficult to obtain a large area graphene sheet, and it is not suitable for mass production There's a problem.
Thus, a technique (chemical vapor deposition (CVD) method) has been developed in which a graphene sheet is grown by bringing a carbon-based material into contact with a sheet-like single crystal graphitized metal catalyst and then performing heat treatment (Patent Literature). 1). As this single crystal graphitized metal catalyst, a metal substrate of Ni, Cu, W or the like is described.
Similarly, a technique for forming graphene by chemical vapor deposition on a copper layer formed on a Ni or Cu metal foil or Si substrate has been reported. The graphene film is formed at about 1000 ° C. (Non-patent Document 1).
特開2009-143799号公報JP 2009-143799 A
 しかしながら、特許文献1のように単結晶の金属基板を製造することは容易でなく極めて高コストであり、又、大面積の基板が得られ難く、ひいては大面積のグラフェンシートが得難いという問題がある。又、Niの金属箔を用いて化学気相成長法でグラフェンを製膜すると、Ni中に炭素が固溶し、その後冷却する過程でNi中の炭素が再析出するため、グラフェンの層数が不均一になるという問題がある。
 一方,非特許文献1には、Cuを基板として使用することが記載されているが,Cu箔上では短時間にグラフェンが面方向に成長せず,Si基板上に形成したCu層を焼鈍で粗大粒として基板としている。この場合、グラフェンの大きさはSi基板サイズに制約され,製造コストも高い。
 そこで、本発明者はグラフェン成長用の基材である銅箔を鋭意検討した結果、銅箔表面を極めて平滑にし、かつ銅層の面方位を均一にした銅箔を発明した。上記銅箔を用いることで、グラフェンの成長を妨げる因子を抑制し、銅箔表面に均一なグラフェンが製膜される。
 すなわち、本発明は、大面積のグラフェンを高品質かつ低コストで生産可能なグラフェン製造用銅箔の提供を目的とする。
However, as in Patent Document 1, it is not easy to manufacture a single crystal metal substrate, which is extremely expensive, and it is difficult to obtain a large-area substrate, and thus it is difficult to obtain a large-area graphene sheet. . In addition, when graphene is formed by chemical vapor deposition using Ni metal foil, carbon is dissolved in Ni, and then the carbon in Ni is reprecipitated in the process of cooling, so the number of graphene layers is There is a problem of non-uniformity.
On the other hand, Non-Patent Document 1 describes that Cu is used as a substrate, but graphene does not grow in the surface direction in a short time on the Cu foil, and the Cu layer formed on the Si substrate is annealed. The substrate is formed as coarse particles. In this case, the size of graphene is limited by the Si substrate size, and the manufacturing cost is high.
Therefore, as a result of intensive studies on the copper foil as a base material for graphene growth, the present inventors have invented a copper foil in which the copper foil surface is extremely smooth and the plane orientation of the copper layer is uniform. By using the copper foil, a factor that hinders the growth of graphene is suppressed, and uniform graphene is formed on the surface of the copper foil.
That is, an object of the present invention is to provide a copper foil for producing graphene that can produce large-area graphene at high quality and at low cost.
 本発明のグラフェン製造用銅箔は、表面粗さRzが0.5μm以下であり、表面において(111)面の割合が60%以上を占める。 The copper foil for producing graphene of the present invention has a surface roughness Rz of 0.5 μm or less, and the (111) plane ratio occupies 60% or more on the surface.
 又、本発明のグラフェン製造用銅箔は、銅箔基材の表面にCuめっき層及び/又はCuスパッタ層を形成してなり、表面粗さRzが0.5μm以下であり、表面において(111)面の割合が60%以上を占める。
 前記銅箔基材が電解銅箔であることが好ましい。
 前記電解銅箔のドラム面側に前記Cuめっき層及び/又は前記Cuスパッタ層を形成してなることが好ましい。
Further, the copper foil for producing graphene of the present invention is formed by forming a Cu plating layer and / or a Cu sputter layer on the surface of the copper foil base material, the surface roughness Rz is 0.5 μm or less, and (111) The percentage of the surface occupies 60% or more.
It is preferable that the copper foil base material is an electrolytic copper foil.
It is preferable to form the Cu plating layer and / or the Cu sputter layer on the drum surface side of the electrolytic copper foil.
 又、本発明のグラフェンの製造方法は、前記グラフェン製造用銅箔を用い、所定の室内に、加熱した前記グラフェン製造用銅箔を配置すると共に、水素ガスと炭素含有ガスを供給し、前記グラフェン製造用銅箔の前記銅めっき層の表面にグラフェンを形成するグラフェン形成工程と、前記グラフェンの表面に転写シートを積層し、前記グラフェンを前記転写シート上に転写しながら、前記グラフェン製造用銅箔をエッチング除去するグラフェン転写工程と、を有する。 The graphene production method of the present invention uses the graphene production copper foil, arranges the heated graphene production copper foil in a predetermined chamber, supplies hydrogen gas and a carbon-containing gas, and supplies the graphene. A graphene forming step of forming graphene on the surface of the copper plating layer of the copper foil for manufacturing, a transfer sheet is laminated on the surface of the graphene, and the graphene manufacturing copper foil is transferred while transferring the graphene onto the transfer sheet And a graphene transfer step of removing by etching.
 本発明によれば、大面積のグラフェンを高品質かつ低コストで生産可能とする銅箔が得られる。 According to the present invention, a copper foil capable of producing a large area graphene with high quality and low cost can be obtained.
本発明の実施形態に係るグラフェンの製造方法を示す工程図である。It is process drawing which shows the manufacturing method of the graphene which concerns on embodiment of this invention.
 以下、本発明の実施形態に係るグラフェン製造用銅箔及びグラフェンの製造方法について説明する。なお、本発明において%とは、特に断らない限り、質量%を示すものとする。 Hereinafter, a copper foil for producing graphene and a method for producing graphene according to embodiments of the present invention will be described. In the present invention, “%” means “% by mass” unless otherwise specified.
 本発明のグラフェン製造用銅箔としては、電解銅箔又は圧延銅箔を用いることができる。銅箔の組成としては、純度99.8%以上であることが好ましく、又、銅箔の厚みは特に制限されないが、一般的には5~150μmである。さらに、ハンドリング性を確保しつつ、後述するエッチング除去を容易に行うため、銅箔の厚みを12~50μmとすると好ましい。銅箔の厚みが12μm未満であると、破断し易くなってハンドリング性に劣り、厚みが50μmを超えるとエッチング除去がし難くなる場合がある。 As the copper foil for producing graphene of the present invention, an electrolytic copper foil or a rolled copper foil can be used. The composition of the copper foil is preferably 99.8% or more in purity, and the thickness of the copper foil is not particularly limited, but is generally 5 to 150 μm. Furthermore, it is preferable to set the thickness of the copper foil to 12 to 50 μm in order to facilitate the etching removal described later while ensuring handling properties. If the thickness of the copper foil is less than 12 μm, it may be easily broken and inferior in handleability, and if the thickness exceeds 50 μm, it may be difficult to remove by etching.
 本発明のグラフェン製造用銅箔は、表面粗さRzが0.5μm以下であり、表面において(111)面が60%以上を占める。これは、銅箔表面が平滑であるほど、グラフェンの成長を妨げる段差が少なくなり、グラフェンが銅箔表面に均一に製膜されるためである。又、表面において(111)面の割合を60%として(111)面への配向を高くすることにより、その上にグラフェンが安定して結晶成長する。なお、銅箔表面において(111)面の割合が70%以上であることが好ましく、80%以上であることが更に好ましく、90%以上であることがより好ましい。
 なお、銅箔表面において(111)面の割合の上限は特に設ける必要は無いが、製造性等を考慮すると99.9%以下が好ましく、99%以下がより好ましい。
 なお、RzはJIS B0601-1994に準拠して十点平均粗さを測定する。又、電解銅箔の場合、Rzはドラム回転方向に垂直な方向で測定し、圧延銅箔の場合、Rzは圧延垂直方向で測定する。
The copper foil for producing graphene of the present invention has a surface roughness Rz of 0.5 μm or less, and the (111) plane accounts for 60% or more on the surface. This is because the smoother the copper foil surface, the fewer steps that hinder the growth of graphene, and the graphene film is uniformly formed on the copper foil surface. In addition, by setting the ratio of the (111) plane to 60% on the surface and increasing the orientation to the (111) plane, the graphene grows stably on the surface. Note that the ratio of the (111) plane on the copper foil surface is preferably 70% or more, more preferably 80% or more, and more preferably 90% or more.
In addition, although it is not necessary to provide the upper limit of the ratio of the (111) plane on the copper foil surface, it is preferably 99.9% or less, more preferably 99% or less in consideration of manufacturability and the like.
Rz is a ten-point average roughness measured in accordance with JIS B0601-1994. In the case of electrolytic copper foil, Rz is measured in the direction perpendicular to the drum rotation direction, and in the case of rolled copper foil, Rz is measured in the vertical direction of rolling.
 ところで、銅箔単体の表面のRzを0.5μm以下に平滑にするのは容易ではない。例えば、電解銅箔のドラム面(銅箔が析出する陰極ドラム側)は反対面より平滑であるが、それでもRzが1.2~1.4μm程度である。また、圧延銅箔のRzは0.7μm程度である。
 そこで、電解銅箔又は圧延銅箔からなる銅箔基材の表面にCuめっき層又はCuスパッタ層を形成すると、表面粗さRzが0.5μm以下で、かつ (111)面が60%以上を占める表面を容易に形成することができる。特に、上記銅箔の表裏面のうち、より平滑な面(例えば、電解銅箔の場合はドラム面)の上にCuめっき層若しくはCuスパッタ層を形成するか、又は上記平滑面の上にCuめっき層を形成し、Cuめっき層の上にCuスパッタ層を形成することが好ましい。
 なお、FIB等によりCu層の断面の金属組織の観察をすることにより、Cuスパッタ層であるか、又はCuめっき層であるかを判定することができる。一般的にCuスパッタ層は再結晶を起こしにくいため、結晶粒は微細である。また、Cuめっき層は再結晶を起こすため、Cuめっき層の結晶粒はCuスパッタ層で観察される結晶粒よりも大きい場合が多い。
 なお、銅箔の表面のRzは特に限定されないが、製造性等を考慮すると0.005μm以上、好ましくは0.01μm以上、より好ましくは0.05μm以上である。
 銅箔の表面のRzを0.01μm程度にする方法には、例えば鏡面仕上げにした陰極ドラムを用いて電解銅箔を製造して銅箔基体自体の粗さを小さくし、または、鏡面仕上げにした圧延ロールを用いて圧延銅箔を製造して銅箔基体自体の粗さを小さくすると共に、上述のように銅箔基体の上にCuめっき層やCuスパッタ層を十分厚め(例えば20μm程度)に形成する方法等がある。
 銅箔基材の組成及び厚みは、上記した銅箔単体の値と同様としてよい。
By the way, it is not easy to smooth the Rz of the surface of the copper foil alone to 0.5 μm or less. For example, the drum surface of the electrolytic copper foil (the cathode drum side on which the copper foil is deposited) is smoother than the opposite surface, but the Rz is still about 1.2 to 1.4 μm. The Rz of the rolled copper foil is about 0.7 μm.
Therefore, when a Cu plating layer or a Cu sputter layer is formed on the surface of a copper foil base material made of electrolytic copper foil or rolled copper foil, the surface roughness Rz is 0.5 μm or less, and the (111) surface occupies 60% or more. The surface can be easily formed. In particular, a Cu plating layer or a Cu sputter layer is formed on a smoother surface (for example, a drum surface in the case of electrolytic copper foil) among the front and back surfaces of the copper foil, or Cu is formed on the smooth surface. It is preferable to form a plating layer and form a Cu sputter layer on the Cu plating layer.
In addition, by observing the metal structure of the cross section of Cu layer by FIB etc., it can be determined whether it is a Cu sputtered layer or a Cu plating layer. In general, since the Cu sputtered layer hardly causes recrystallization, the crystal grains are fine. In addition, since the Cu plating layer causes recrystallization, the crystal grains of the Cu plating layer are often larger than the crystal grains observed in the Cu sputter layer.
In addition, although Rz of the surface of copper foil is not specifically limited, when productivity etc. are considered, it is 0.005 micrometer or more, Preferably it is 0.01 micrometer or more, More preferably, it is 0.05 micrometer or more.
In order to make the Rz of the copper foil surface about 0.01 μm, for example, an electrolytic copper foil is manufactured using a cathode drum having a mirror finish to reduce the roughness of the copper foil substrate itself, or to a mirror finish. The rolled copper foil is manufactured using the rolled roll to reduce the roughness of the copper foil base itself, and the Cu plating layer and the Cu sputtered layer are sufficiently thick on the copper foil base as described above (for example, about 20 μm). There is a method of forming the film.
The composition and thickness of the copper foil base material may be the same as the values of the copper foil alone.
 Cuめっき層は、公知の光沢銅めっきにより形成することができる。光沢銅めっきは、市販の光沢剤を含む硫酸銅めっき浴を用いて電気めっきすることにより形成することができる。めっき浴組成の一例としては、Cuイオン:70~100g/L、硫酸:80~100g/L、Clイオン:40~80mg/L、ビス(3-スルフォプロピル)ジスルファイド2ナトリウム:10~30mg/L、ジアルキルアミノ基含有重合体(重量平均分子量8500):10~30mg/Lが挙げられる。又、めっき条件は、例えば平均電流密度:20~100A/dm2、めっき浴温度:45~65℃とすることができる。Cuめっき層の厚みは、例えば10~20μmとすることができる。 The Cu plating layer can be formed by known bright copper plating. The bright copper plating can be formed by electroplating using a commercially available copper sulfate plating bath containing a brightener. Examples of plating bath compositions include Cu ions: 70-100 g / L, sulfuric acid: 80-100 g / L, Cl ions: 40-80 mg / L, bis (3-sulfopropyl) disulfide disodium: 10-30 mg / L L, dialkylamino group-containing polymer (weight average molecular weight 8500): 10 to 30 mg / L. The plating conditions can be, for example, an average current density of 20 to 100 A / dm 2 and a plating bath temperature of 45 to 65 ° C. The thickness of the Cu plating layer can be, for example, 10 to 20 μm.
 又、Cuスパッタの厚みは例えば0.1~1.0μmとすることができる。スパッタ条件は例えば、Cuターゲットを用いたArガス中で、放電電圧500~700V、放電電流15~25A、真空度3.9~6.7x10-2Paとすることができる。
 さらに、上記したCuめっき層とCuスパッタ層を積層してもよく、その順序はいずれが上層であってもよい。
The thickness of the Cu sputter can be set to 0.1 to 1.0 μm, for example. The sputtering conditions can be, for example, a discharge voltage of 500 to 700 V, a discharge current of 15 to 25 A, and a degree of vacuum of 3.9 to 6.7 × 10 −2 Pa in Ar gas using a Cu target.
Furthermore, the above-mentioned Cu plating layer and Cu sputtered layer may be laminated, and any of them may be an upper layer.
 以上のように規定したグラフェン製造用銅箔を用いることで、大面積のグラフェンを高品質かつ低コストで生産することができる。 By using the graphene-producing copper foil specified as described above, large-area graphene can be produced at high quality and at low cost.
<グラフェン製造用銅箔の製造>
 本発明の実施形態に係るグラフェン製造用銅箔は、例えば以下のようにして製造することができる。まず、所定の組成の銅インゴットを製造し、熱間圧延を行った後、焼鈍と冷間圧延を繰り返し、圧延板を得る。この圧延板を焼鈍して再結晶させ,所定の厚みまで圧下率を80~99.9%(好ましくは85~99.9%、更に好ましくは90~99.9%)として最終冷間圧延して銅箔を得る。
 又、電解銅箔は、回転する陰極ドラムと、これに対向する陽極との間に電解液を供給し、陰極となるドラム面に電解銅箔を析出させることで製造できる。
 上記銅箔の平滑面に、Cuめっき層及び/又はCuスパッタ層を形成することで、銅箔自身よりもさらに平滑な表層をもつグラフェン用銅箔を得る。
<Manufacture of copper foil for graphene production>
The copper foil for producing graphene according to the embodiment of the present invention can be produced, for example, as follows. First, after manufacturing the copper ingot of a predetermined composition and performing hot rolling, annealing and cold rolling are repeated and a rolled sheet is obtained. The rolled sheet is annealed and recrystallized, and finally cold-rolled to a predetermined thickness with a reduction ratio of 80 to 99.9% (preferably 85 to 99.9%, more preferably 90 to 99.9%). To obtain copper foil.
Moreover, an electrolytic copper foil can be manufactured by supplying an electrolytic solution between a rotating cathode drum and an anode opposite to the rotating cathode drum, and depositing the electrolytic copper foil on the drum surface that becomes the cathode.
By forming a Cu plating layer and / or a Cu sputter layer on the smooth surface of the copper foil, a graphene copper foil having a smoother surface layer than the copper foil itself is obtained.
<グラフェンの製造方法>
 次に、図1を参照し、本発明の実施形態に係るグラフェンの製造方法について説明する。
 まず、室(真空チャンバ等)100内に、上記した本発明のグラフェン製造用銅箔10を配置し、グラフェン製造用銅箔10をヒータ104で加熱すると共に、室100内を減圧又は真空引きする。そして、ガス導入口102から室100内に炭素含有ガスGを水素ガスと共に供給する(図1(a))。炭素含有ガスGとしては、二酸化炭素、一酸化炭素、メタン、エタン、プロパン、エチレン、アセチレン、アルコール等が挙げられるがこれらに限定されず、これらのうち1種又は2種以上の混合ガスとしてもよい。又、グラフェン製造用銅箔10の加熱温度は炭素含有ガスGの分解温度以上とすればよく、例えば1000℃以上とすることができる。又、室100内で炭素含有ガスGを分解温度以上に加熱し、分解ガスをグラフェン製造用銅箔10に接触させてもよい。このとき、グラフェン製造用銅箔10を加熱することで、銅めっき層及び/又は銅スパッタ層が半溶融状態になって銅箔表面の凹部に流動し、グラフェン製造用銅箔10の最表面の凹凸が小さくなる。そして、このように平滑となったグラフェン製造用銅箔10の表面に分解ガス(炭素ガス)が接触し、グラフェン製造用銅箔10の表面にグラフェン20を形成する(図1(b))。
<Graphene production method>
Next, with reference to FIG. 1, a method for producing graphene according to an embodiment of the present invention will be described.
First, the graphene producing copper foil 10 of the present invention described above is placed in a chamber (vacuum chamber or the like) 100, the graphene producing copper foil 10 is heated by the heater 104, and the inside of the chamber 100 is decompressed or evacuated. . Then, the carbon-containing gas G is supplied together with hydrogen gas from the gas inlet 102 into the chamber 100 (FIG. 1A). Examples of the carbon-containing gas G include, but are not limited to, carbon dioxide, carbon monoxide, methane, ethane, propane, ethylene, acetylene, alcohol, and the like. Good. Further, the heating temperature of the graphene-producing copper foil 10 may be equal to or higher than the decomposition temperature of the carbon-containing gas G, for example, 1000 ° C. or higher. Further, the carbon-containing gas G may be heated to a decomposition temperature or higher in the chamber 100, and the decomposition gas may be brought into contact with the copper foil 10 for producing graphene. At this time, by heating the copper foil 10 for producing graphene, the copper plating layer and / or the sputtered copper layer is in a semi-molten state and flows into the recesses on the surface of the copper foil. Unevenness is reduced. Then, the cracked gas (carbon gas) comes into contact with the smooth surface of the graphene-producing copper foil 10 as described above, and the graphene 20 is formed on the surface of the graphene-producing copper foil 10 (FIG. 1B).
 そして、グラフェン製造用銅箔10を常温に冷却し、グラフェン20の表面に転写シート30を積層し、グラフェン20を転写シート30上に転写する。次に、この積層体をシンクロール120を介してエッチング槽110に連続的に浸漬し、グラフェン製造用銅箔10をエッチング除去する(図1(c))。このようにして、所定の転写シート30上に積層されたグラフェン20を製造することができる。
 さらに、グラフェン製造用銅箔10が除去された積層体を引き上げ、グラフェン20の表面に基板40を積層し、グラフェン20を基板40上に転写しながら、転写シート30を剥がすと、基板40上に積層されたグラフェン20を製造することができる。
And the copper foil 10 for graphene manufacture is cooled to normal temperature, the transfer sheet 30 is laminated | stacked on the surface of the graphene 20, and the graphene 20 is transcribe | transferred on the transfer sheet 30. FIG. Next, this laminated body is continuously immersed in the etching tank 110 through the sink roll 120, and the copper foil 10 for graphene production is removed by etching (FIG. 1C). Thus, the graphene 20 laminated on the predetermined transfer sheet 30 can be manufactured.
Furthermore, when the laminated body from which the copper foil 10 for producing graphene is removed is pulled up, the substrate 40 is laminated on the surface of the graphene 20, and the transfer sheet 30 is peeled off while transferring the graphene 20 onto the substrate 40, The stacked graphene 20 can be manufactured.
 転写シート30としては、各種樹脂シート(ポリエチレン、ポリウレタン等のポリマーシート)を用いることができる。グラフェン製造用銅箔10をエッチング除去するエッチング液としては、例えば硫酸溶液、過硫酸ナトリウム溶液、過酸化水素、及び過硫酸ナトリウム溶液又は過酸化水素に硫酸を加えた溶液を用いることができる。又、基板40としては、例えばSi、 SiC、Ni又はNi合金を用いることができる。 As the transfer sheet 30, various resin sheets (polymer sheets such as polyethylene and polyurethane) can be used. As an etching solution for etching and removing the copper foil 10 for producing graphene, for example, a sulfuric acid solution, a sodium persulfate solution, hydrogen peroxide, a sodium persulfate solution, or a solution obtained by adding sulfuric acid to hydrogen peroxide can be used. As the substrate 40, for example, Si, SiC, Ni, or Ni alloy can be used.
<試料の作製>
 銅箔基材として、電解銅箔はJX日鉱日石金属株式会社製の厚みの18μmのJTC(製品名)箔、圧延銅箔としてはJX日鉱日石金属株式会社製のタフピッチ銅(JIS H3100 合金番号C1100(以下「TPC」と記載する。))からなる厚み18μmの箔を使用した。
<Preparation of sample>
As the copper foil base material, the electrolytic copper foil is a JTC (product name) foil having a thickness of 18 μm manufactured by JX Nippon Mining & Metals, and the rolled copper foil is a tough pitch copper (JIS H3100 alloy manufactured by JX Nippon Mining & Metals). A foil having a thickness of 18 μm consisting of number C1100 (hereinafter referred to as “TPC”) was used.
<実施例1>
 表1の電解銅箔基材のドラム面側に、以下のCuめっき浴によりCu電気めっき層を厚み6μm形成した。めっき浴温を55℃とし、めっき時の平均電流密度を50A/dm2とした。
  Cuめっき浴:Cuイオン100g/L、硫酸80g/L、Clイオン50mg/L、ビス(3-スルフォプロピル)ジスルファイド2ナトリウム30mg/L、ジアルキルアミノ基含有重合体(重量平均分子量8500)30mg/L
<実施例2>
 表1の電解銅箔基材のドラム面側に、以下のCuめっき浴によりCu電気めっき層を厚み4μm形成した。めっき浴温を55℃とし、めっき時の電流密度を30A/dm2とした。
  Cuめっき浴:Cuイオン100g/L、硫酸80g/L、Clイオン50mg/L、ビス(3-スルフォプロピル)ジスルファイド2ナトリウム10mg/L、ジアルキルアミノ基含有重合体(重量平均分子量8500)10mg/L
<実施例3>
 表1の電解銅箔基材のドラム面側に、以下のCuめっき浴によりCu電気めっき層を厚み10μm形成した。めっき浴温を55℃とし、めっき時の平均電流密度を50A/dm2とした。
  Cuめっき浴:Cuイオン100g/L、硫酸80g/L、Clイオン50mg/L、ビス(3-スルフォプロピル)ジスルファイド2ナトリウム20mg/L、ジアルキルアミノ基含有重合体(重量平均分子量8500)20mg/L
<Example 1>
On the drum surface side of the electrolytic copper foil substrate of Table 1, a 6 μm thick Cu electroplating layer was formed by the following Cu plating bath. The plating bath temperature was 55 ° C., and the average current density during plating was 50 A / dm 2.
Cu plating bath: Cu ion 100 g / L, sulfuric acid 80 g / L, Cl ion 50 mg / L, bis (3-sulfopropyl) disulfide disodium 30 mg / L, dialkylamino group-containing polymer (weight average molecular weight 8500) 30 mg / L L
<Example 2>
A Cu electroplating layer having a thickness of 4 μm was formed on the drum surface side of the electrolytic copper foil substrate of Table 1 by the following Cu plating bath. The plating bath temperature was 55 ° C., and the current density during plating was 30 A / dm 2.
Cu plating bath: Cu ion 100 g / L, sulfuric acid 80 g / L, Cl ion 50 mg / L, bis (3-sulfopropyl) disulfide disodium 10 mg / L, dialkylamino group-containing polymer (weight average molecular weight 8500) 10 mg / L L
<Example 3>
A Cu electroplating layer having a thickness of 10 μm was formed on the drum surface side of the electrolytic copper foil substrate of Table 1 by the following Cu plating bath. The plating bath temperature was 55 ° C., and the average current density during plating was 50 A / dm 2.
Cu plating bath: Cu ion 100 g / L, sulfuric acid 80 g / L, Cl ion 50 mg / L, bis (3-sulfopropyl) disulfide disodium 20 mg / L, dialkylamino group-containing polymer (weight average molecular weight 8500) 20 mg / L L
<実施例4>
 実施例1の電解銅箔基材ドラム面側にCu電気めっき層を厚み6μm形成し、そのCu電気めっき層の上にCuスパッタにより厚み0.5μmのCuスパッタ層を形成した。
 Cuスパッタ条件:Arガス、放電電圧500V、放電電流15A、真空度5x10-2Pa
<実施例5>
 表1の圧延銅箔基材の表面に、Cuスパッタにより0.5μmのCuスパッタ層を形成した。
 Cuスパッタ条件:Arガス、放電電圧500V、放電電流15A、真空度5x10-2Pa
<実施例6>
 実施例1の電解銅箔基材ドラム面側にCu電気めっき層を厚み20μm形成し、そのCu電気めっき層の上にCuスパッタにより厚み2.0μmのCuスパッタ層を形成した。
 Cuスパッタ条件:Arガス、放電電圧500V、放電電流15A、真空度5x10-2Pa。
<Example 4>
A Cu electroplating layer having a thickness of 6 μm was formed on the electrolytic copper foil base material drum surface side of Example 1, and a Cu sputtering layer having a thickness of 0.5 μm was formed on the Cu electroplating layer by Cu sputtering.
Cu sputtering conditions: Ar gas, discharge voltage 500V, discharge current 15A, degree of vacuum 5 × 10 −2 Pa
<Example 5>
On the surface of the rolled copper foil base material of Table 1, a 0.5 μm Cu sputter layer was formed by Cu sputtering.
Cu sputtering conditions: Ar gas, discharge voltage 500V, discharge current 15A, degree of vacuum 5 × 10 −2 Pa
<Example 6>
A Cu electroplating layer having a thickness of 20 μm was formed on the electrolytic copper foil base drum surface side of Example 1, and a Cu sputter layer having a thickness of 2.0 μm was formed on the Cu electroplating layer by Cu sputtering.
Cu sputtering conditions: Ar gas, discharge voltage 500V, discharge current 15A, degree of vacuum 5 × 10 −2 Pa.
<比較例1>
 表1の電解銅箔をそのまま用いた。
<比較例2>
 表1の圧延銅箔をそのまま用いた。
<Comparative Example 1>
The electrolytic copper foil of Table 1 was used as it was.
<Comparative example 2>
The rolled copper foil of Table 1 was used as it was.
<表面の方位>
 得られた試料の表面の(111)、(200)、(311)、(220)、(331)面のX線回折積分強度をそれぞれ測定した。測定は、リガク製RINT2500を使用し、X線照射条件はCo管球を使用し、管電圧25KV、管電流20mAとした。
 そして、表面の(111)面の割合を以下の式で算出した。
   表面の(111)面の割合(%)=(111)面のX線回折積分強度(-)/{(111)面のX線回折積分強度(-)+(200)面のX線回折積分強度(-)+(311)面のX線回折積分強度(-)+(220)面の回折積分強度(-)+(331)面のX線回折積分強度(-)}×100
<Surface orientation>
The X-ray diffraction integrated intensities of the (111), (200), (311), (220), and (331) planes of the surface of the obtained sample were measured. For the measurement, RINT 2500 made by Rigaku was used, the X-ray irradiation conditions were a Co tube, tube voltage 25 KV, tube current 20 mA.
And the ratio of the (111) plane of the surface was computed with the following formula | equation.
Ratio of surface (111) plane (%) = (111) plane X-ray diffraction integrated intensity (−) / {(111) plane X-ray diffraction integrated intensity (−) + (200) plane X-ray diffraction integral Intensity (−) + (311) plane X-ray diffraction integral intensity (−) + (220) plane diffraction integral intensity (−) + (331) plane X-ray diffraction integral intensity (−)} × 100
<表面粗さ(Rz)の測定>
 得られた試料の表面粗さを測定した。
 非接触のレーザー表面粗さ計(コンフォーカル顕微鏡(レーザーテック社製HD100D)を使用し、JIS B0601-1994に準拠して十点平均粗さ(Rz)を測定した。測定基準長さ0.8mm、評価長さ4mm、カットオフ値0.8mm、送り速さ0.1mm/秒の条件で測定位置を変えて10回行ない、以下の各方向で10回の測定での値を求めた。
 なお、銅箔基材が電解銅箔の場合、Rzはドラム回転方向に垂直な方向で測定し、銅箔基材が圧延銅箔の場合、Rzは圧延垂直方向で測定した。
<Measurement of surface roughness (Rz)>
The surface roughness of the obtained sample was measured.
Using a non-contact laser surface roughness meter (confocal microscope (HD100D manufactured by Lasertec Corporation), ten-point average roughness (Rz) was measured according to JIS B0601-1994. Measurement standard length 0.8 mm, The measurement position was changed 10 times under the conditions of an evaluation length of 4 mm, a cut-off value of 0.8 mm, and a feed rate of 0.1 mm / second, and values were obtained for 10 measurements in the following directions.
In addition, when the copper foil base material was an electrolytic copper foil, Rz was measured in a direction perpendicular to the drum rotation direction, and when the copper foil base material was a rolled copper foil, Rz was measured in the vertical direction of rolling.
<グラフェンの製造>
 各実施例のグラフェン製造用銅箔(縦横100X100mm)を真空チャンバーに設置し、1000℃に加熱した。真空(圧力:0.2Torr)下でこの真空チャンバーに水素ガスとメタンガスを供給し(供給ガス流量:10~100cc/min)、銅箔を1000℃まで30分で昇温した後、1時間保持し、銅箔表面にグラフェンを成長させた。
 グラフェンが表面に成長した銅箔のグラフェン側にPETフィルムを張り合わせ、銅箔を酸でエッチング除去した後、四探針法でグラフェンのシート抵抗を測定した。なお、エッチングの反応時間は予め反応時間とシート抵抗との関係を調査し、シート抵抗が安定するために必要な時間とした。
 グラフェンのシート抵抗が400Ω/□以下であれば、実用上問題はない。
<Manufacture of graphene>
The copper foil for producing graphene of each example (vertical and horizontal 100 × 100 mm) was placed in a vacuum chamber and heated to 1000 ° C. Hydrogen gas and methane gas are supplied to this vacuum chamber under vacuum (pressure: 0.2 Torr) (supply gas flow rate: 10 to 100 cc / min), and the copper foil is heated to 1000 ° C. in 30 minutes and then held for 1 hour. Then, graphene was grown on the copper foil surface.
After sticking a PET film on the graphene side of the copper foil with graphene grown on the surface and etching away the copper foil with acid, the sheet resistance of the graphene was measured by a four-probe method. Note that the etching reaction time was determined in advance by investigating the relationship between the reaction time and the sheet resistance and stabilizing the sheet resistance.
If the sheet resistance of graphene is 400Ω / □ or less, there is no practical problem.
 得られた結果を表に示す。 The results obtained are shown in the table.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1から明らかなように、表面粗さRzが0.5μm以下であり、表面において(111)面が60%以上を占める各実施例の場合、グラフェンのシート抵抗が400Ω/□以下となり、グラフェンの品質が優れていた。 As is clear from Table 1, in each of the examples in which the surface roughness Rz is 0.5 μm or less and the (111) plane occupies 60% or more on the surface, the sheet resistance of graphene is 400 Ω / □ or less, The quality was excellent.
 一方、表面粗さRzが0.5μmを超え、表面において(111)面が60%未満の比較例1の場合、グラフェンのシート抵抗が400Ω/□を超え、グラフェンの品質が劣った。
 又、表面粗さRzが0.5μmを超えた比較例2の場合も、グラフェンのシート抵抗が400Ω/□を超え、グラフェンの品質が劣った。
On the other hand, in the case of Comparative Example 1 in which the surface roughness Rz exceeds 0.5 μm and the (111) plane is less than 60% on the surface, the sheet resistance of graphene exceeds 400Ω / □, and the quality of graphene is inferior.
Further, in Comparative Example 2 where the surface roughness Rz exceeded 0.5 μm, the sheet resistance of graphene exceeded 400Ω / □, and the quality of graphene was inferior.
 10             グラフェン製造用銅箔
 20             グラフェン
 30             転写シート
10 Copper foil for graphene production 20 Graphene 30 Transfer sheet

Claims (5)

  1.  表面粗さRzが0.5μm以下であり、表面において(111)面の割合が60%以上を占めるグラフェン製造用銅箔。 A graphene-producing copper foil having a surface roughness Rz of 0.5 μm or less and a (111) plane ratio of 60% or more on the surface.
  2.  銅箔基材の表面にCuめっき層及び/又はCuスパッタ層を形成してなり、表面粗さRzが0.5μm以下であり、表面において(111)面の割合が60%以上を占めるグラフェン製造用銅箔。 For the production of graphene, which is formed by forming a Cu plating layer and / or a Cu sputter layer on the surface of a copper foil substrate, the surface roughness Rz is 0.5 μm or less, and the proportion of the (111) plane accounts for 60% or more on the surface Copper foil.
  3.  前記銅箔基材が電解銅箔である請求項2に記載のグラフェン製造用銅箔。 The copper foil for producing graphene according to claim 2, wherein the copper foil base material is an electrolytic copper foil.
  4.  前記電解銅箔のドラム面側に前記Cuめっき層及び/又は前記Cuスパッタ層を形成してなる請求項3に記載のグラフェン製造用銅箔。 The copper foil for producing graphene according to claim 3, wherein the Cu plating layer and / or the Cu sputter layer is formed on the drum surface side of the electrolytic copper foil.
  5.  請求項1~4のいずれかに記載のグラフェン製造用銅箔を用いたグラフェンの製造方法であって、
     所定の室内に、加熱した前記グラフェン製造用銅箔を配置すると共に水素ガスと炭素含有ガスを供給し、前記グラフェン製造用銅箔の前記銅めっき層の表面にグラフェンを形成するグラフェン形成工程と、
     前記グラフェンの表面に転写シートを積層し、前記グラフェンを前記転写シート上に転写しながら、前記グラフェン製造用銅箔をエッチング除去するグラフェン転写工程と、を有するグラフェンの製造方法。
    A method for producing graphene using the copper foil for producing graphene according to any one of claims 1 to 4,
    A graphene forming step of arranging the heated copper foil for producing graphene in a predetermined chamber and supplying a hydrogen gas and a carbon-containing gas, and forming graphene on the surface of the copper plating layer of the copper foil for producing graphene,
    A graphene transfer process comprising: laminating a transfer sheet on the surface of the graphene; and transferring the graphene onto the transfer sheet while etching and removing the copper foil for producing graphene.
PCT/JP2013/054001 2013-02-19 2013-02-19 Copper foil for graphene production, and graphene production method WO2014128833A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2013/054001 WO2014128833A1 (en) 2013-02-19 2013-02-19 Copper foil for graphene production, and graphene production method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2013/054001 WO2014128833A1 (en) 2013-02-19 2013-02-19 Copper foil for graphene production, and graphene production method

Publications (1)

Publication Number Publication Date
WO2014128833A1 true WO2014128833A1 (en) 2014-08-28

Family

ID=51390667

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/054001 WO2014128833A1 (en) 2013-02-19 2013-02-19 Copper foil for graphene production, and graphene production method

Country Status (1)

Country Link
WO (1) WO2014128833A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108839407A (en) * 2018-06-04 2018-11-20 南京大学 A kind of graphene-based PCB copper-clad plate and preparation method

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011105530A1 (en) * 2010-02-26 2011-09-01 独立行政法人産業技術総合研究所 Carbon film laminate

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011105530A1 (en) * 2010-02-26 2011-09-01 独立行政法人産業技術総合研究所 Carbon film laminate

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
ISHIHARA,M. ET AL.: "Direct evidence of advantage of Cu(lll) for graphene synthesis by using Raman mapping and electron backscatter diffraction", MATERIALS LETTERS, vol. 65, 2011, pages 2864 - 2867 *
LI,X. ET AL.: "Large-Area Synthesis of High- Quality and Uniform Graphene Films on Copper Foils", SCIENCE, vol. 324, 2009, pages 1312 - 1314 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108839407A (en) * 2018-06-04 2018-11-20 南京大学 A kind of graphene-based PCB copper-clad plate and preparation method

Similar Documents

Publication Publication Date Title
JP5847834B2 (en) Copper foil for producing graphene, method for producing the same, and method for producing graphene
JP5909082B2 (en) Copper foil for producing graphene and method for producing graphene
JP6078024B2 (en) Rolled copper foil for producing a two-dimensional hexagonal lattice compound and a method for producing a two-dimensional hexagonal lattice compound
TWI527635B (en) A copper foil for graphene production, and a method for producing graphene
TWI585219B (en) Production method of copper foil and graphene for graphene production
US20140290565A1 (en) Method of manufacturing graphene using metal catalyst
WO2014027528A1 (en) Rolled copper foil for graphene production and graphene production method
JP5926035B2 (en) Copper foil for producing graphene, method for producing copper foil for producing graphene, and method for producing graphene
JP2012183581A (en) Copper foil for graphene production and graphene production method using the same
JP2014037578A (en) Copper foil for producing graphene and method for producing graphene using the same
JP2012251209A (en) Copper foil for producing graphene, and method for producing graphene
WO2014128834A1 (en) Copper foil for graphene production, and graphene production method
WO2014128833A1 (en) Copper foil for graphene production, and graphene production method
US10253409B2 (en) Method of manufacturing graphene using metal catalyst
KR20110140115A (en) Method of manufacturing graphene on the face centered cubic metal catalyst with the single oriented texture
JP2014036986A (en) Graphene manufacturing rolled copper foil, and graphene manufacturing method
JP5918010B2 (en) Copper foil for producing graphene, method for producing copper foil for producing graphene, and method for producing graphene
TWI499693B (en) Production method of copper foil and graphene for graphene production
TWI521101B (en) Production method of copper foil and graphene for graphene production
JP2013006709A (en) Copper foil for graphene production, method for producing copper for graphene production, and method for producing graphene
JP2015203149A (en) Rolled copper foil for production of two-dimensional hexagonal lattice compound and production method of two-dimensional hexagonal lattice compound
JP2014118314A (en) Rolled copper foil for manufacturing a multilayer graphene and method for manufacturing a multilayer graphene
JP5918075B2 (en) Rolled copper foil for producing graphene and method for producing graphene
TWI516316B (en) A copper foil for graphene production, and a method for producing graphene using the same
KR20130045147A (en) Method of manufacturing graphene on the face centered cubic metal catalyst with the single oriented texture

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13875453

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13875453

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP