WO2014126207A1 - Method for detecting organic acid in sample - Google Patents

Method for detecting organic acid in sample Download PDF

Info

Publication number
WO2014126207A1
WO2014126207A1 PCT/JP2014/053506 JP2014053506W WO2014126207A1 WO 2014126207 A1 WO2014126207 A1 WO 2014126207A1 JP 2014053506 W JP2014053506 W JP 2014053506W WO 2014126207 A1 WO2014126207 A1 WO 2014126207A1
Authority
WO
WIPO (PCT)
Prior art keywords
hib
sample
concentration
organic acid
acid
Prior art date
Application number
PCT/JP2014/053506
Other languages
French (fr)
Japanese (ja)
Inventor
靖司 松▲崎▼
彰 本多
照雄 宮▲崎▼
正 池上
Original Assignee
味の素株式会社
学校法人東京医科大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 味の素株式会社, 学校法人東京医科大学 filed Critical 味の素株式会社
Publication of WO2014126207A1 publication Critical patent/WO2014126207A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/04Preparation or injection of sample to be analysed
    • G01N30/06Preparation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/68Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving proteins, peptides or amino acids
    • G01N33/6803General methods of protein analysis not limited to specific proteins or families of proteins
    • G01N33/6806Determination of free amino acids
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/68Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving proteins, peptides or amino acids
    • G01N33/6893Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving proteins, peptides or amino acids related to diseases not provided for elsewhere
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/04Preparation or injection of sample to be analysed
    • G01N30/06Preparation
    • G01N2030/067Preparation by reaction, e.g. derivatising the sample
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/88Integrated analysis systems specially adapted therefor, not covered by a single one of the groups G01N30/04 - G01N30/86
    • G01N2030/8809Integrated analysis systems specially adapted therefor, not covered by a single one of the groups G01N30/04 - G01N30/86 analysis specially adapted for the sample
    • G01N2030/8813Integrated analysis systems specially adapted therefor, not covered by a single one of the groups G01N30/04 - G01N30/86 analysis specially adapted for the sample biological materials
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2560/00Chemical aspects of mass spectrometric analysis of biological material
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2800/00Detection or diagnosis of diseases
    • G01N2800/08Hepato-biliairy disorders other than hepatitis
    • G01N2800/085Liver diseases, e.g. portal hypertension, fibrosis, cirrhosis, bilirubin
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/62Detectors specially adapted therefor
    • G01N30/72Mass spectrometers
    • G01N30/7233Mass spectrometers interfaced to liquid or supercritical fluid chromatograph
    • G01N30/724Nebulising, aerosol formation or ionisation
    • G01N30/7266Nebulising, aerosol formation or ionisation by electric field, e.g. electrospray

Definitions

  • the present invention relates to a method for detecting organic acids such as 3-hydroxybutyric acid and 3-hydroxyisobutyric acid in a sample with high sensitivity.
  • 3-Hydroxybutyric acid is the most stable ketone body in serum and is synthesized in the liver during starvation and undernutrition. For this reason, 3-HB is useful as a biomarker for evaluating fatty acid catabolism in the liver.
  • an enzyme spectrophotometric method for detecting NADH after adding NAD and D-3-hydroxybutyrate dehydrogenase is used (see, for example, Non-Patent Document 1 or 2).
  • these methods have a problem of low detection sensitivity of 3-HB in serum.
  • 3HB is enzymatically converted to acetoacetic acid (AA), then derivatized with p-nitrobenzenediazonium fluoroboric acid, and this derivative is detected by high-sensitivity HPLC (high-performance liquid) that is detected by spectrophotometry or ultraviolet light.
  • HPLC high-performance liquid
  • a method for quantification by a chromatography assay has been reported (for example, see Non-Patent Document 3 or 4).
  • a method for directly detecting 3-HB a method for detecting by derivatization after gas chromatography-mass spectrometry (GC-MS) (for example, see Non-Patent Document 5 or 6), or a method without derivatization.
  • GC-MS gas chromatography-mass spectrometry
  • LC-MS / MS liquid chromatography-tandem mass spectrometry
  • ESI electrospray ionization
  • BCAA branched chain amino acids
  • BCAA is a branched chain ⁇ -keto acid (from valine to ⁇ -ketoisovaleric acid) by BCAT (BCAA aminotransferase) and BCKDH complex (branched ⁇ -keto acid dehydrogenase complex) in mitochondria.
  • BCAT BCAA aminotransferase
  • BCKDH complex branched ⁇ -keto acid dehydrogenase complex
  • 3-HIB is expected to be used as an index reflecting the amino acid catabolism state in skeletal muscle, that is, as a BCAA catabolism marker in skeletal muscle.
  • a method that can detect a trace amount of 3-HIB in a biological sample with sufficient sensitivity has not been reported so far.
  • LC-MS / MS method LC-N-ESI-MS / MS
  • ESI electrospray ionization
  • a method for example, see Non-Patent Document 7
  • the method has low sensitivity, for example, a large amount of serum is required to detect 3-HIB in serum.
  • 3-HB in blood is detected by the GC-MS method, it has been reported that 3-HIB could not be separated from 3-HB by chromatography (for example, non-patent literature). 8).
  • 3-hydroxyisovaleric acid 3-HMB
  • leucine is metabolized in the mitochondria via KIC to the CoA form (isovaleryl CoA), but about 5 to 10% of KIC passes through the mitochondrial membrane, and in the cytoplasm, 3-fold by KIC-dioxygenase.
  • the effects of 3-HMB include protein synthesis promotion by mTOR pathway, protein degradation inhibition by inhibition of ubiquitin / proteasome pathway, and muscle synthesis by promotion of cholesterol synthesis by hydroxymethylglutaryl-CoA (HMG-CoA) converted from HMB-CoA. Sheath stabilization is known.
  • 3-HMB is expected to be used as a marker for synthesis of liver protein (albumin etc.) derived from BCAA and skeletal muscle hypertrophy.
  • 3-HMB is used as a supplement for the purpose of enhancing muscles, in order to study the blood dynamics when 3-HMB is ingested, the blood 3
  • -HMB concentration was measured by LC-N-ESI-MS / MS without derivatization (see, for example, Non-Patent Document 10).
  • HILIC Hydrophilic Interaction Chromatography
  • the detection limit is 0.4 ⁇ M, and 3-HMB in a biological sample (blood, saliva, etc.) is in a smaller amount than 3-HB or 3-HMB, so a method for detecting with higher sensitivity is required (for example, refer nonpatent literature 11.).
  • 2-hydroxybutyric acid (2-HB) is an organic acid similar in structure to 3-HB and the like.
  • 2-HB ⁇ -ketobutyric acid, which is a metabolite of threonine and methionine, is produced as a by-product of the catabolism reaction by 2-DHB dehydrogenase ( ⁇ -HBDH), which is an NADH-dependent LDH or LDH isozyme.
  • ⁇ -HBDH 2-DHB dehydrogenase
  • ⁇ -ketobutyric acid is metabolized to propionyl CoA, which is a precursor of succinyl CoA
  • the increase in 2-HB is due to increased catabolism of ⁇ -ketobutyric acid by LDH or ⁇ -HBDH, or from ⁇ -ketobutyric acid to propionyl-CoA.
  • ⁇ -ketobutyric acid is also associated with the production of glutathione because cysteine, which is a precursor amino acid of glutathione, which is a powerful antioxidant, is also produced as a by-product when metabolized from cystathione.
  • the present invention is highly sensitive to organic acids, particularly organic acids such as 3-HB, 3-HIB, 3-HMB, and 2-HB that can be expected to be used as biomarkers contained in biological samples.
  • the purpose is to provide a method of detecting well.
  • a method for detecting an organic acid in a sample according to the present invention is a method for detecting an organic acid in a sample.
  • the organic acid in a sample is represented by the following general formulas (1) -1 to (1) -3: (In the formula (1) -1 to 3, one of R 1 and R 2 represents a hydroxyalkyl group having 1 to 6 carbon atoms, and the other represents a hydrogen atom or an alkyl group having 1 to 6 carbon atoms).
  • Derivatives are synthesized by ester linkage with a derivatization reagent represented by any of the above, and the derivatives are detected by an electrospray ionization LC-MS / MS (liquid chromatography-tandem mass spectrometry) method in positive ion mode. It is characterized by.
  • the derivatization reagent is composed of 2-pyridinemethanol, 1-piperidineethanol, and 2- (2-hydroxyethyl) -1-methylpyrrolidine. It is preferable that it is 1 or more types selected from a group.
  • the organic acid is represented by the following general formula (2) (in the formula (2), R 3 is a group having 2 to 6 carbon atoms). It is preferably an organic acid represented by a hydroxyalkyl group.
  • the organic acid is 3-hydroxybutyric acid, 3-hydroxyisobutyric acid, 3-hydroxyisovaleric acid, and 2-hydroxybutyric acid. It is preferable that it is 1 or more types selected from the group which consists of.
  • the sample is preferably a biological sample.
  • the sample is preferably serum, tears, saliva, or urine.
  • the method for evaluating the likelihood of developing cirrhosis according to the present invention is selected from the group consisting of 3-hydroxyisobutyric acid, 3-hydroxyisovaleric acid, and 2-hydroxybutyric acid in a biological sample collected from a subject.
  • One or more organic acids detected by the method for detecting an organic acid in the sample of [1] or [2], and measuring the concentration of the organic acid in the biological sample; and the quantifying step Comparing the organic acid concentration obtained in step 1 with a preset threshold and evaluating the possibility of developing cirrhosis in the subject, wherein the biological sample is serum or saliva To do.
  • the method for evaluating the possibility of developing hepatic encephalopathy includes the step of [1] or [2], wherein 3-hydroxyisobutyric acid in a biological sample collected from a subject who has developed cirrhosis is used.
  • the biological sample collects the quantitative step of detecting the organic acid in the sample and measuring the 3-hydroxyisobutyric acid concentration in the biological sample, and the 3-hydroxyisobutyric acid concentration obtained in the quantitative step. Comparing with the 3-hydroxyisobutyric acid concentration in the biological sample collected from the subject before the determined time point, and evaluating the possibility of developing hepatic encephalopathy in the subject, It is serum or saliva.
  • the biomarker of hepatic encephalopathy or the onset possibility thereof according to the present invention is characterized by comprising 3-hydroxyisobutyric acid.
  • the method for evaluating an energy supply source according to the present invention comprises at least one organic substance selected from the group consisting of 3-hydroxyisobutyric acid and 3-hydroxybutyric acid in a biological sample collected from a subject during exercise.
  • the method for monitoring an energy supply source according to the present invention includes 3-hydroxyisolation in a plurality of biological samples collected from a subject over time from immediately before the start of exercise to after a lapse of a certain period after the end of exercise.
  • One or more organic acids selected from the group consisting of butyric acid and 3-hydroxybutyric acid are detected by the organic acid detection method in the sample of [1] or [2], respectively, and the organic acid in each biological sample is detected.
  • the monitoring process for examining the time-dependent change of the organic acid concentration by measuring the acid concentration, and the time-dependent change of the organic acid concentration obtained in the monitoring process energy during or after exercise in the subject
  • An evaluation step for evaluating a supply source wherein the organic acid concentration in the biological sample is used as a marker of an energy supply source, and the biological sample is serum or saliva. It is characterized by that.
  • the method for detecting an organic acid in a sample according to the present invention is a method of derivatizing an organic acid such as 3-HIB, 3-HB, 3-HMB, 2-HB and the like and detecting it by LC-P-ESI-MS / MS It is possible to directly detect the organic acid to be detected in the sample.
  • the detection sensitivity is much higher than the detection method by conventional enzyme spectrophotometry and LC-MS / MS, so that not only serum but also organic acids such as tears and saliva are used. It can be expected to be useful for organic acid detection from a biological sample having a relatively low content.
  • FIG. 3 shows a typical P-ESI MS spectrum of 3-HB (2 PM-3-HB) derivatized with 2-pyridinemethanol.
  • Example 1 it is the figure which showed the total ion chromatogram (upper stage) and the MS chromatogram (lower stage) of the sample containing only 3-HB derivatized with 2-pyridinemethanol. It is the figure which showed the MS spectrum of FIG. 2A.
  • Example 1 it is the figure which showed the total ion chromatogram (upper part) and the MS chromatogram (lower part) of the sample containing only 3-HIB derivatized with 2-pyridinemethanol. It is the figure which showed the MS spectrum of FIG. 2C.
  • Example 1 it is the figure which showed the product ion chromatogram when using m / z 196 of the sample containing 3-HB and 3-HIB derivatized with 2-pyridinemethanol as a precursor ion. It is the figure which showed the MS / MS spectrum of the 3-HIB peak of FIG. 2E.
  • Example 2 it is the figure which showed the total ion chromatogram (upper part) and MS chromatogram (lower part) of the sample containing only 3-HB derivatized with 1-piperidine ethanol. It is the figure which showed the MS spectrum of FIG. 3A.
  • Example 2 it is the figure which showed the total ion chromatogram (upper part) and MS chromatogram (lower part) of the sample containing only 3-HIB derivatized with 1-piperidine ethanol. It is the figure which showed the MS spectrum of FIG. 3C.
  • Example 2 it is the figure which showed the product ion chromatogram when using m / z 216 of the sample containing 3-HB and 3-HIB derivatized with 1-piperidine ethanol as a precursor ion. It is the figure which showed the MS / MS spectrum of the 3-HIB peak of FIG. 3E.
  • Example 3 the figure which showed the total ion chromatogram (upper part) and MS chromatogram (lower part) of the sample containing only 3-HB derivatized with 2- (2-hydroxyethyl) -1-methylpyrrolidine. is there. It is the figure which showed the MS spectrum of FIG. 4A.
  • Example 3 the figure which shows the total ion chromatogram (upper part) and MS chromatogram (lower part) of the sample containing only 3-HIB derivatized with 2- (2-hydroxyethyl) -1-methylpyrrolidine. is there. It is the figure which showed the MS spectrum of FIG. 4C.
  • Example 3 a product ion chromatogram when m / z 216 of a sample containing 3-HB and 3-HIB derivatized with 2- (2-hydroxyethyl) -1-methylpyrrolidine is used as a precursor ion is shown.
  • FIG. It is the figure which showed the MS / MS spectrum of the 3-HIB peak of FIG. 4E.
  • Comparative Example 1 the total ion chromatogram (upper) and MS chromatogram (lower) of a sample containing only 3-HB derivatized with 3-pyridinemethanol are shown. It is the figure which showed MS spectrum of FIG. 5A.
  • comparative example 1 it is the figure which shows the total ion chromatogram (upper part) and the MS chromatogram (lower part) of the sample containing only 3-HIB derivatized with 3-pyridinemethanol. It is the figure which showed the MS spectrum of FIG. 5C.
  • Comparative Example 1 a product ion chromatogram of a sample containing 3-HB and 3-HIB derivatized with 3-pyridinemethanol when m / z 196 is used as a precursor ion is shown. It is the figure which showed the MS / MS spectrum of the 3-HIB peak of FIG. 5E.
  • Comparative Example 2 it is a diagram showing a product ion chromatogram when m / z 204 of a sample containing 3-HB and 3-HIB derivatized with 2-diethylaminoethanol is used as a precursor ion. It is the figure which showed the MS / MS spectrum of the 3-HIB peak of FIG. 6E.
  • Comparative Example 3 the total ion chromatogram (upper) and MS chromatogram (lower) of a sample containing only 3-HB derivatized with 3-hydroxy-1-methylpiperidine are shown. It is the figure which showed MS spectrum of FIG. 7A.
  • Comparative Example 3 the total ion chromatogram (upper) and MS chromatogram (lower) of a sample containing only 3-HIB derivatized with 3-hydroxy-1-methylpiperidine are shown. It is the figure which showed MS spectrum of FIG. 7C.
  • Comparative Example 3 it is a diagram showing a product ion chromatogram when m / z 202 of a sample containing 3-HB and 3-HIB derivatized with 3-hydroxy-1-methylpiperidine is used as a precursor ion. . It is the figure which showed the MS / MS spectrum of the 3-HIB peak of FIG. 7E.
  • Comparative Example 4 it is a diagram showing a product ion chromatogram when m / z 196 of a sample containing 3-HB and 3-HIB derivatized with 4-pyridinemethanol is used as a precursor ion. It is the figure which showed the MS / MS spectrum of the 3-HIB peak of FIG. 8E.
  • FIG. 6 shows a typical SRM chromatogram of 3-HB (2 PM-3-HB) derivatized with 2-pyridinemethanol and [ 13 C 4 ] isotopes in Example 4.
  • Example 5 it is the figure which showed the result of having measured the 3-HB density
  • Example 8 the total ion chromatogram (top) of a sample containing 3-HMB and 2-HB derivatized with 2-pyridinemethanol, and the product ion chromatogram when m / z 196 is used as a precursor ion
  • FIG. 4 is a diagram showing a product ion chromatogram (lower stage) when m / z 210 is a precursor ion.
  • FIG. 11B is a diagram showing an MS spectrum (2-HB 2PM ester derivative) in the middle product ion chromatogram of FIG. 11A. It is the figure which showed MS spectrum (2-PM ester derivative of 3-HMB) of the product ion chromatogram of the lower stage of FIG. 11A.
  • Example 9 2-pyridine derivatized with methanol 3-HB and 3-HIB and 3-HMB and total ion chromatogram of a sample containing 2-HB and 3-HB- 13 C 4 (1 stage) , Product ion chromatogram when m / z 196 is used as a precursor ion (second stage), product ion chromatogram when m / z 200 is used as a precursor ion (third stage), and m / z 210 as a precursor ion
  • FIG. 6 is a diagram showing a product ion chromatogram (fourth stage). In Example 10, it is the figure which showed the measurement result of the 3-HB density
  • Example 10 it is the figure which showed the measurement result of 3-HB density
  • Example 11 it is the figure which showed the result of having investigated the correlation of the serum concentration of 3-HB and the concentration in saliva (fluid).
  • Example 11 it is the figure which showed the result of having investigated the correlation of the serum concentration of 3-HIB, and the concentration in saliva (fluid).
  • Example 11 it is the figure which showed the result of having investigated the correlation of the density
  • Example 12 it is the figure which showed the test subject's exercise
  • Example 12 it is the figure which showed the time-dependent change of the density
  • Example 12 it is the figure which showed the time-dependent change of the amount of urine excretion per unit time (micromol / h) in each test
  • Example 12 it is the figure which showed the time-dependent change of the density
  • Example 13 it is the figure which showed the measurement result of the 3-HIB density
  • Example 13 it is the figure which showed the measurement result of the 3-HIB density
  • change in serum 3-HIB concentration upper
  • change in serum albumin concentration middle
  • change in serum 3-HIB concentration over time upper stage
  • change in serum albumin concentration over time (middle stage)
  • the method for detecting an organic acid in a sample according to the present invention is a method for detecting an organic acid in a sample, Derivatives are synthesized by ester linkage with a derivatizing reagent represented by any of the following general formulas (1) -1 to (1) -3, and the derivatives are detected by LC-P-ESI-MS / MS method It is characterized by doing.
  • esterifying with a derivatizing reagent represented by any one of the following general formulas (1) -1 to 3 the ionization efficiency of organic acids by P-ESI is improved, and the detection sensitivity by LC-MS / MS is remarkable. To improve.
  • R 1 and R 2 each represents a hydroxyalkyl group having 1 to 6 carbon atoms, and the other represents a hydrogen atom or an alkyl group having 1 to 6 carbon atoms. That is, when R 1 is a hydroxyalkyl group having 1 to 6 carbon atoms, R 2 is a hydrogen atom or an alkyl group having 1 to 6 carbon atoms, and R 2 is a hydroxyalkyl group having 1 to 6 carbon atoms, 1 is a hydrogen atom or an alkyl group having 1 to 6 carbon atoms.
  • An organic acid can be efficiently ionized by using a compound having a 6- or 5-membered heterocycle containing a nitrogen atom and having a hydroxyl group linked with an alkyl group in the vicinity of the nitrogen atom as a derivatization reagent. Furthermore, since the retention time of LC of the obtained derivative (esterified product) is relatively long, it can be clearly separated from the reagent used for derivatization.
  • the alkyl group having 1 to 6 carbon atoms may be a linear alkyl group or a branched alkyl group. Specifically, methyl group, ethyl group, n-propyl group, i-propyl group, n-butyl group, i-butyl group, s-butyl group, t-butyl group, n-pentyl group, n-hexyl Groups and the like.
  • R 1 or R 2 in the general formulas (1) -1 to 3 is preferably a methyl group, an ethyl group, an n-propyl group, or an i-propyl group.
  • the hydroxyalkyl group having 1 to 6 carbon atoms may be a group in which one hydrogen atom in a linear alkyl group having 1 to 6 carbon atoms is substituted with a hydroxyl group.
  • a group in which one hydrogen atom in the branched chain alkyl group is substituted with a hydroxyl group may be used. Specific examples include 2-hydroxyethyl group, 3-hydroxypropyl group, 4-hydroxybutyl group, 5-hydroxypentyl group, 6-hydroxyhexyl group and the like.
  • the derivatization reagent represented by the general formula (1) includes at least one selected from the group consisting of 2-pyridinemethanol, 1-piperidineethanol, and 2- (2-hydroxyethyl) -1-methylpyrrolidine. Preferably there is.
  • organic acids having similar structures such as 3-HIB, 3-HB, 3-HMB and 2-HB can be separated well by LC. As a result, both of them can be detected simultaneously (detection by one LC-P-ESI-MS / MS for one sample).
  • the retention time is slow, and the influence of the peak by the derivatization reagent on the derivatized organic acid ester peak to be detected is small. Methanol is particularly preferred.
  • the LC-P-ESI-MS / MS method can be performed by a conventional method except that the compound represented by the general formula (1) is used as a derivatization reagent.
  • HPLC and MS in LC-MS / MS can be performed in the same manner as known conditions for detecting a carboxylic acid ester or under appropriately modified conditions.
  • the detection method according to the present invention only one type of organic acid may be detected in one LC-P-ESI-MS / MS, or two or more types of organic acid may be detected simultaneously.
  • the organic acid to be detected in the detection method according to the present invention is not particularly limited as long as it is a compound having a carboxyl group, and the detection method is applicable to detection of many organic acids having a carboxyl group. it can.
  • the detection method according to the present invention is preferably used for detection and quantification of organic acids which are intermediate metabolites such as glycolysis, TCA cycle, and fatty acid synthesis. Especially, it is preferable that the detection method concerning this invention is used for the detection of the organic acid represented by following General formula (2).
  • R 3 represents a hydroxyalkyl group having 2 to 6 carbon atoms.
  • the hydroxyalkyl group having 2 to 6 carbon atoms may be a branched hydroxyalkyl group or a linear hydroxyalkyl group.
  • Examples of the hydroxyalkyl group include 2-hydroxyethyl group, 3-hydroxypropyl group, 2-hydroxypropyl group, 4-hydroxybutyl group, 2-hydroxybutyl group, 2- (hydroxymethyl) propyl group, 2- Examples thereof include a hydroxypentyl group, 3-hydroxy-2, 2-dimethylpropyl group, 3-hydroxypentyl group, 5-hydroxypentyl group, 6-hydroxyhexyl group, 2-hydroxyhexyl group and the like.
  • R 3 is preferably a hydroxyalkyl group having 2 to 3 carbon atoms.
  • the organic acid represented by the general formula (2) is preferably at least one selected from the group consisting of 3-HIB, 3-HB, 3-HMB, and 2-HB. More preferably, HB and 3-HIB or 3-HIB, 3-HB and 3-HMB are detected simultaneously.
  • 3-HB is a marker for fatty acid catabolism in the liver
  • 3-HIB and 3-HMB can be BCAA catabolism markers in skeletal muscle. That is, the detection method according to the present invention can simultaneously detect a fatty acid catabolism marker in the liver and a BCAA catabolism marker in skeletal muscle.
  • the organic acid to be detected is quantitatively detected based on a calibration curve created using an organic acid with a known concentration. can do.
  • the sample used in the detection method according to the present invention is not particularly limited as long as it is a sample containing an organic acid.
  • biological samples, lakes, seas, rivers, soils, etc. Examples include samples collected from nature, cultured cells, cultures of microorganisms such as yeast and bacteria, and the like. Since the detection method according to the present invention is very sensitive, it is generally preferable to perform on a sample that contains only a very small amount of organic acid or a sample that contains a very small amount of organic acid. More preferably.
  • the biological sample may be a sample collected from a living body, and is preferably collected from an animal such as a human, a mouse, or a rat.
  • tissue extract such as a tissue piece collected from the tissue.
  • An extract such as a tissue piece can be prepared by homogenizing a tissue piece or the like by a conventional method.
  • the sample used in the detection method according to the present invention is preferably serum, tears, saliva, or urine.
  • the detection sensitivity when 3-HIB is detected by the detection method according to the present invention is 100 times or more compared with the case where detection is performed by LC-N-ESI-MS / MS without conventional derivatization. . Further, the sensitivity is 10 times or more higher than when a derivative obtained by derivatizing 3-HIB with HCl-butanol is detected by positive ESI-LC-MS / MS. For this reason, the detection method according to the present invention can be used for simultaneous determination of 3-HIB and 3-HB, and for 3-HIB and 3-HB in 5 ⁇ L or less of serum, 5 ⁇ L or less of saliva, tears, or cell culture solution. Simultaneous determination of HB, 3-HMB and 2-HB is possible.
  • the detection method according to the present invention can be used to make non-invasive treatment using saliva and tear fluid as a measurement sample.
  • BCAA catabolism in skeletal muscle can be more directly evaluated by detecting 3-HIB by the detection method according to the present invention. That is, the detection method according to the present invention is also useful as a new clinical test for evaluating BCAA catabolism in skeletal muscle.
  • the 3-HIB concentration in serum, tears, saliva and the like can also be used as an index (biomarker) for predicting the effect by administering the BCAA preparation.
  • the degree of catabolism of BCAA in skeletal muscle is, for example, cirrhosis, hepatic encephalopathy, myositis, steroid myopathy, heart failure, bad epidemic due to use of anticancer agents, rhabdomyolysis, disuse muscle atrophy, Blood albumin levels in patients suffering from diseases such as hyperthyroidism, chronic fatigue syndrome, sarcopenia (aging muscle weakening phenomenon), mitochondrial fatty acid oxidation disorders, dialysis patients, surgically invasive patients, elderly people, etc. Or an indicator (biomarker) of malnutrition or muscle protein degradation for a person whose blood BCAA concentration is low or may be low.
  • 3-HIB concentrations in serum, tears, saliva, etc. can be used as an indicator of nutritional status
  • 3-HIB concentrations in biological samples can be used, for example, for drug discovery screening, particularly for the treatment of various diseases described above. It is expected to be used as a marker showing the pharmacological effect of drug candidates and as a marker for toxicity evaluation in the safety test of active ingredients.
  • 3-HIB concentration, 3-HB concentration, and 3-HMB concentration in serum or saliva are the energy source balance of liver and skeletal muscle during or after exercise (dependency of energy metabolism tissue and nutrient supply) Can be an index (biomarker) for evaluating If the 3-HB concentration or 3-HIB concentration in serum or saliva has not changed much since resting during or after exercise, it can be evaluated that sugar is used as an energy supply source.
  • 3-HIB concentration in serum or saliva is preferable to 3-HIB, and 3-HIB concentration in saliva is more preferable than 3-HMB .
  • a biomarker for evaluating the energy production state by different tissues and different nutrient sources in the liver and skeletal muscle during or after exercise it is necessary to measure both 3-HIB concentration and 3-HB concentration.
  • 3-HIB and / or 3-HB in saliva or serum from saliva or blood collected from a subject during exercise is detected by the detection method according to the present invention, and 3-HIB concentration and / or Alternatively, the energy source during exercise in the subject can be evaluated by measuring the 3-HB concentration and comparing the concentration with a predetermined threshold value set in advance.
  • the threshold is preferably set for each subject, but is set based on the results of measuring 3-HIB concentration and the like after performing an exercise that is expected to have the same amount of exercise load for many subjects. Also good.
  • blood or saliva is sampled from a subject over time between immediately before the start of exercise and after a lapse of a certain period after the end of exercise, and the 3-HIB concentration and / or 3-HB concentration in each sample is recorded.
  • the 3-HIB concentration and / or the 3-HB concentration in blood or saliva can be monitored (change over time). Based on the 3-HIB concentration and / or 3-HB concentration change over time obtained as a result of monitoring, the energy source during exercise in the subject can be evaluated.
  • blood or saliva is collected as a sample from the subject at rest in advance, and the 3-HIB concentration and / or 3-HB concentration in each sample is determined. It is preferable to measure by the detection method according to the present invention and use the obtained measurement value as a reference for evaluation of the energy supply source during exercise.
  • overwork state In such an overwork state, by measuring the concentration of 3-HB and 3-HIB in serum or saliva, the energy supply balance by catabolism derived from fatty acid catabolism of liver and BCAA catabolism derived from skeletal muscle protein, Since the degree of dependence can be evaluated, it can be an indicator of overwork status. For example, 3-HIB concentration and 3-HB concentration at rest (normal state) when not exercising, and 3-HIB concentration and 3-HB in saliva or serum after exercise that does not cause overwork The concentration is measured by the detection method according to the present invention, and from these measured values, the 3-HIB concentration and 3-HB concentration in the overwork state and the 3-HIB concentration and 3-HB in the non-overwork state are determined.
  • a threshold for dividing the density is set in advance.
  • the detection method according to the present invention 3 -Assess the energy source balance in the subject by measuring the HIB and 3-HB concentrations and comparing the concentrations to a preset overwork threshold. Specifically, if the subject's 3-HIB concentration and 3-HB concentration are lower than the overwork threshold, the subject's exercise load is appropriate, and the subject is likely not overworked, When the 3-HIB concentration of the subject is equal to or higher than the overwork threshold, it can be evaluated that the subject's exercise load is excessive and the subject is likely to be overworked.
  • the overwork threshold is preferably set for each subject, but it is set from the results of measuring 3-HIB concentration or 3-HB concentration after performing exercise to such an extent that many healthy subjects do not overwork. Also good. Collecting saliva or blood over time from an exercising subject and measuring and monitoring 3-HIB and 3-HB concentrations over time, thereby ending exercise before a dangerous overwork condition You can also.
  • the sample collection from the subject does not necessarily have to be during exercise, and the results obtained from the sample taken at rest of the subject who is performing a long-term exercise program or training are the same as those before the exercise program or before training.
  • it can also be used for evaluation of the overwork state. That is, by monitoring the 3-HIB concentration and 3-HB concentration during exercise or long-term by the method according to the present invention, an appropriate amount of exercise can be evaluated and an overwork state can be prevented.
  • 3-HIB concentration monitoring and 3-HB concentration monitoring are, for example, the treatment of BCAA preparations and the start of nutrition therapy for the prevention of skeletal muscle atrophy and the improvement of undernutrition for patients with cirrhosis and undernutrition or bedridden conditions. It can be used to determine whether or not there is a need and to determine their treatment.
  • the detection method according to the present invention by measuring the concentration of 3-HIB or 3-HB by the detection method according to the present invention, the energy source-dependent balance (energy metabolism state) of lipids and amino acids in the liver and skeletal muscles is measured in the field of sports medicine. It is also possible to monitor using saliva or tears as well as blood. Furthermore, in the area of weight management and beauty by anti-aging and dieting, saliva or tears are analyzed by the detection method according to the present invention, and the concentration of 3-HIB or 3-HB is measured, so that sugar, amino acid, fatty acid It is also possible to effectively manage nutrition, exercise, and physical condition while evaluating the metabolic state. Furthermore, the detection method according to the present invention can also be used for evaluation of nutrition and intake effects when supplements and nutrient drinks containing nutrients such as BCAA are ingested.
  • 3-HIB, 3-HMB, and 2-HB can be used as biomarkers for cirrhosis.
  • a threshold value for separating a cirrhosis patient from a healthy person is set in advance, and the concentrations of 3-HIB, 3-HMB, and 2-HB in the body fluid of the subject are measured by the detection method according to the present invention. The possibility of developing cirrhosis can be evaluated by comparing the concentration with a predetermined threshold value.
  • the concentration of 3-HIB or the like in the body fluid of the subject is equal to or higher than a predetermined threshold
  • the subject is highly likely to develop cirrhosis.
  • the threshold value for separating a cirrhosis patient from a healthy person can be set experimentally.
  • the detection method according to the present invention is applied to a body fluid collected from a population known not to develop cirrhosis and a body fluid collected from a population known to develop cirrhosis.
  • the concentration can be set as appropriate by measuring the concentration of 3-HIB and the like in these body fluids and comparing the measured values of both groups.
  • the threshold value for separating the cirrhosis patient group from the healthy subject group can be 18 ⁇ M, preferably 20 ⁇ M, more preferably 24 ⁇ M.
  • 3-HIB or 3-HMB is preferable, and since the difference between the cirrhosis patient group and the healthy group is clearer, 3-HIB in saliva or 3-HMB in saliva is more preferable.
  • liver cirrhosis progresses and the urea cycle, which is one of the liver functions, decreases, ammonia is metabolized to glutamine and alanine in a compensatory manner in the skeletal muscle and detoxified.
  • glutamic acid generated as a by-product in the process of BCAA being catabolized in skeletal muscle to be branched chain ⁇ -keto acid by BCAT is used for ammonia detoxification. Therefore, it is necessary to increase catabolism of skeletal muscle BCAA during ammonia detoxification that compensates for skeletal muscle at the time of cirrhosis, resulting in an increase in 3-HIB concentration in body fluids.
  • encephalopathy is likely to be induced if ammonia detoxification is insufficient and the concentration of ammonia in body fluids increases. Therefore, in addition to the decrease in the ammonia detoxification ability in the liver of cirrhotic patients, a decrease in the ability to compensate for ammonia detoxification through skeletal muscle BCAA catabolism is considered to cause hepatic encephalopathy.
  • 3-HIB can be used as a biomarker for hepatic encephalopathy or its onset, and can provide useful information for its prevention and early treatment.
  • a protein-restricted diet is recommended, or BCAA intake is recommended even if encephalopathy has not been manifested. It may be possible to prevent the development of hepatic encephalopathy by making recommendations.
  • a biological sample collected from a subject who has developed cirrhosis, in particular, 3-HIB concentration in serum or saliva is measured by the detection method according to the present invention, and the obtained 3-HIB concentration is measured with the biological sample.
  • the possibility of developing hepatic encephalopathy can be evaluated.
  • the 3-HIB concentration obtained is significantly lower than the 3-HIB concentration of a previously collected biological sample, or as a result of monitoring, the 3-HIB concentration of a previously collected biological sample When the tendency to become lower than this continues for a certain degree, it is evaluated that the subject is highly likely to develop hepatic encephalopathy.
  • Whether the 3-HIB concentration in cirrhosis patients is lowered can also be evaluated using a threshold value that separates cirrhosis patients from healthy individuals.
  • the 3-HIB concentration in a biological sample collected from a subject who has developed cirrhosis, particularly serum or saliva, is measured by the detection method according to the present invention, and the obtained 3-HIB concentration is The possibility of developing hepatic encephalopathy can be evaluated by comparing with a predetermined threshold value (for example, the threshold value that separates the cirrhosis patient from the healthy person).
  • a predetermined threshold value for example, the threshold value that separates the cirrhosis patient from the healthy person.
  • the subject develops hepatic encephalopathy when the 3-HIB concentration of the subject is below a predetermined threshold or when the state of being below the predetermined threshold continues to some extent. It can be evaluated that there is a high possibility of doing.
  • a living body having a very small content of 3-HIB such as saliva or tears
  • sample collection such as blood collection and special collection devices (needle, syringe, blood collection tube, noncoagulant) Samples can be collected regardless of location, time, and sampler. In this case, there is no need to go to hospital or hospitalization, and it is possible to collect samples by the patient at home.
  • measurement with a saliva sample is also effective for children who do not like blood collection, elderly people, and patients who cannot collect blood for religious reasons.
  • 3-HMB can be used as a marker for protein synthesis and skeletal muscle hypertrophy in BCAA-derived liver and skeletal muscle
  • 2-HB is a marker for early insulin resistance and glucose intolerance. is there.
  • the concentrations of 3-HIB and 3-HB in biological samples such as saliva and blood are unlikely to decrease even when left at room temperature for a long time. Therefore, even when it is difficult to immediately refrigerate / freeze a biological sample collected from a subject, 3-HIB and 3-HB can function as stable and excellent biomarkers. For this reason, even when the location for collecting the biological sample from the subject and the test location for detecting an organic acid such as 3-HIB in the biological sample are separated, such as in a health checkup, for example. By using the detection method according to the present invention, the concentrations of 3-HIB and 3-HB can be accurately measured.
  • reagents used in the following examples and the like are as follows.
  • D-3-HB, L-3-HB, and 3-HIB sodium salts were manufactured by Sigma-Aldrich Chemical.
  • DL-3-HB- 13 C 4 sodium salt was manufactured by Taiyo Nippon Sanso Co., Ltd.
  • 2-pyridinemethanol, 2-methyl-6-nitrobenzoic anhydride, 1-piperidineethanol, 2- (2-hydroxyethyl) -1-methylpyrrolidine, 3-pyridinemethanol, 2-diethylaminoethanol, 3-hydroxy- 1-methylpiperidine and 4-pyridinemethanol were manufactured by Tokyo Chemical Industry Co., Ltd., and 4-dimethylaminopyridine was manufactured by Wako Pure Chemical Industries.
  • a 3-HB dehydrogenase manufactured by Roche Diagnostics was used.
  • Serum was collected from blood collected from healthy individuals and stored at ⁇ 20 ° C. until the time of use for measurement. Serum (10 [mu] L), placed in a 1.5mL centrifuge plastic tube, further acetonitrile / water (1/19 containing DL-3-HB- 13 C 4 sodium salt of 769pmol (100ng) as an internal standard, volume ratio ) After the solution (100 ⁇ L) was added and stirred for 1 minute, it was centrifuged at 2000 ⁇ g for 1 minute. The supernatant was put in a water / acetonitrile (1/19, volume ratio) solution and subjected to deproteinization treatment, and then the liquid phase was recovered and evaporated to dryness at 80 ° C. under nitrogen gas blowing.
  • 3-HB-free serum was prepared by adding normal serum (10 ⁇ L) to 150 mM Tris-HCl (pH 8.6) supplemented with 1.8 mM NAD and 0.075 U 3-hydroxybutyrate dehydrogenase at 37 ° C. For 30 minutes.
  • reaction solution prepared by adding the 2PM derivatization mixed reagent (50 ⁇ L) prepared immediately before to a dried sample containing an organic acid was allowed to stand at room temperature for 30 minutes. Subsequently, n-hexane (1 mL) was added to the reaction solution and stirred for 30 seconds, followed by centrifugation at 700 ⁇ g for 1 minute, and the collected supernatant was evaporated at 80 ° C. under nitrogen gas blowing. The residue was redissolved in a 1% by volume formic acid aqueous solution (150 ⁇ L), centrifuged again at 7000 ⁇ g for 1 minute, and the collected supernatant was subjected to ESI-LC-MS / MS as a measurement sample.
  • the LC-MS / MS system is a triple quadrupole mass spectrometer TSQ Vantage (manufactured by Thermo Fisher Scientific) equipped with a HESI-II probe and Prominence Ultra Fast Liquid Chromatography (UFLC) system (manufactured by Shimadzu Corporation). . Separation in chromatography was performed at 40 ° C. using a Hypersil GOLD aQ column (2.1 ⁇ 150 mm, 3 ⁇ m, manufactured by Thermo Fisher Scientific).
  • the mobile phase was allowed to flow for 5 minutes at a flow rate of 300 ⁇ L / min as acetonitrile / water (1/19, volume ratio) containing 0.2% by volume of formic acid. After 5 minutes, the mobile phase was changed to acetonitrile containing 0.2% by volume of formic acid and allowed to flow for 7 minutes at a flow rate of 300 ⁇ L / min.
  • General MS / MS conditions are as follows: Spray voltage: 3000V Nebulizer temperature: 450 ° C, Sheath gas (nitrogen) pressure: 50 psi, Auxiliary gas (nitrogen) flow rate: 15 arbitrary units, Ion transfer capillary temperature: 220 ° C. Impact gas (argon) pressure: 1.0 mTorr, Collision energy: 15V Ion polarity: positive mode.
  • FIG. 1B shows a typical P-ESI MS spectrum of 3-HB (2 PM-3-HB) derivatized with 2-pyridinemethanol.
  • [M + H] + ions are found at m / z 196 as the base peak.
  • FIG. 1A product ion MS spectrum (FIG. 1A) when m / z 196 is used as a precursor ion, a fragment ion of [C 5 H 4 NCH 2 OH + H] + is seen at m / z 110 as the most prominent peak.
  • SRM is performed using m / z 196 ⁇ m / z 110 for detection of 2 PM-3-HB, and m / z 200 ⁇ m / z 110 for detection of [ 13 C 4 ] isotope (internal standard). It was performed using.
  • ⁇ Create calibration curve> For the preparation of the calibration curve, a sample stock solution (200 ng / ⁇ L) in which D-3-HB sodium salt was dissolved in acetonitrile / water (1/19, volume ratio) was further added to acetonitrile / water (1/19). D-3-HB sodium standard solution (1 to 200 ng / 100 ⁇ L) having a known concentration prepared by appropriately diluting using a volume ratio). Each standard solution as an internal standard, were added DL-3-HB- 13 C 4 sodium salt (100 ng), after the mixture was evaporated to dryness and the obtained by the derivatization (esterification with derivatives) , Measured by ESI-LC-MS / MS. To examine the matrix effect of the calibration curve, 3-HB-free serum was added as a blank matrix to each standard solution.
  • Example 1 3-HB and 3-HIB derivatized with 2-pyridinemethanol were detected by LC-P-ESI-MS / MS. Specifically, a sample solution in which only D-3-HB sodium salt (standard, 1 ⁇ g) was dissolved in acetonitrile / water (1/19, volume ratio) (100 ⁇ L), D-3-HIB sodium salt (standard) Sample solution in which only 1 ⁇ g) is dissolved, and a sample solution in which D-3-HB sodium salt (standard, 1 ⁇ g) and D-3-HIB sodium salt (standard, 1 ⁇ g) are dissolved, Each was evaporated to dryness and then derivatized (esterified with a derivative) with the mixed reagent for 2PM derivatization.
  • FIG. 2 shows the results of detection of 3-HB and 3-HIB derivatized with 2-pyridinemethanol by LC-P-ESI-MS / MS.
  • 2A shows the total ion chromatogram (upper) and MS chromatogram (lower) of the sample containing only derivatized 3-HB
  • FIG. 2B shows the MS spectrum of FIG. 2A
  • FIG. 2C shows the derivatized 3 -Total ion chromatogram (top) and MS chromatogram (bottom) of a sample containing only HIB
  • Fig. 2D contains the MS spectrum of Fig. 2C
  • Fig. 2E contains derivatized 3-HB and 3-HIB.
  • a product ion chromatogram when m / z 196 of the sample is used as a precursor ion is shown in FIG. 2F, and an MS / MS spectrum of the 3-HIB peak in FIG. 2E is shown. *
  • Example 2 3-HB and 3-HIB derivatized with 1-piperidineethanol were detected by LC-P-ESI-MS / MS.
  • a derivatization reagent instead of the mixed reagent for 2PM derivatization, 2-methyl-6-nitrobenzoic anhydride (67 mg), 4-dimethylaminopyridine (20 mg), pyridine (900 ⁇ L), and Derivatization was performed in the same manner as in Example 1 except that a mixed reagent for 1PE derivatization composed of 1-piperidineethanol (100 ⁇ L) was used, and measurement was performed by LC-P-ESI-MS / MS.
  • FIG. 3 shows the results of detection of 3-HB and 3-HIB derivatized with 1-piperidineethanol by LC-P-ESI-MS / MS.
  • 3A shows the total ion chromatogram (upper) and MS chromatogram (lower) of the sample containing only derivatized 3-HB
  • FIG. 3B shows the MS spectrum of FIG. 3A
  • FIG. 3C shows the derivatized 3 -Total ion chromatogram (top) and MS chromatogram (bottom) of a sample containing only HIB
  • Fig. 3D contains the MS spectrum of Fig. 3C
  • Fig. 3E contains derivatized 3-HB and 3-HIB.
  • FIG. 3F shows a product ion chromatogram when m / z 216 of the sample is used as a precursor ion
  • FIG. 3F shows an MS / MS spectrum of the 3-HIB peak in FIG. 3E.
  • Example 3 3-HB and 3-HIB derivatized with 2- (2-hydroxyethyl) -1-methylpyrrolidine were detected by LC-P-ESI-MS / MS.
  • a derivatization reagent instead of the mixed reagent for 2PM derivatization, 2-methyl-6-nitrobenzoic anhydride (67 mg), 4-dimethylaminopyridine (20 mg), pyridine (900 ⁇ L), and Derivatization was performed in the same manner as in Example 1 except that a mixed reagent for 1PE derivatization consisting of 2- (2-hydroxyethyl) -1-methylpyrrolidine (100 ⁇ L) was used, and LC-P-ESI-MS / MS It was measured.
  • FIG. 4 shows the results of detecting 3-HB and 3-HIB derivatized with 2- (2-hydroxyethyl) -1-methylpyrrolidine by LC-P-ESI-MS / MS.
  • 4A shows the total ion chromatogram (upper) and MS chromatogram (lower) of a sample containing only derivatized 3-HB
  • FIG. 4B shows the MS spectrum of FIG. 4A
  • FIG. 4C shows the derivatized 3 -The total ion chromatogram (top) and MS chromatogram (bottom) of the sample containing only HIB
  • Fig. 4D contains the MS spectrum of Fig. 4C
  • Fig. 4E contains derivatized 3-HB and 3-HIB.
  • FIG. 4F shows a product ion chromatogram when m / z 216 of the sample is used as a precursor ion
  • FIG. 4F shows an MS / MS spectrum of the 3-HIB peak in FIG. 4E.
  • FIG. 5 shows the results of detection of 3-HB and 3-HIB derivatized with 3-pyridinemethanol by LC-P-ESI-MS / MS.
  • 5A shows the total ion chromatogram (upper) and MS chromatogram (lower) of the sample containing only derivatized 3-HB
  • FIG. 5B shows the MS spectrum of FIG. 5A
  • FIG. 5C shows the derivatized 3 -Total ion chromatogram (top) and MS chromatogram (bottom) of a sample containing only HIB
  • Fig. 5D contains the MS spectrum of Fig. 5C
  • Fig. 5E contains derivatized 3-HB and 3-HIB.
  • a product ion chromatogram when m / z 196 of the sample is used as a precursor ion is shown in FIG. 5F, and an MS / MS spectrum of the 3-HIB peak in FIG. 5E is shown. *
  • FIG. 6 shows the results of detecting 3-HB and 3-HIB derivatized with 2-diethylaminoethanol by LC-P-ESI-MS / MS.
  • 6A shows the total ion chromatogram (upper) and MS chromatogram (lower) of the sample containing only derivatized 3-HB
  • FIG. 6B shows the MS spectrum of FIG. 6A
  • FIG. 6C shows the derivatized 3 -Total ion chromatogram (top) and MS chromatogram (bottom) of a sample containing only HIB
  • Fig. 6D shows the MS spectrum of Fig. 6C
  • Fig. 6E contains derivatized 3-HB and 3-HIB.
  • a product ion chromatogram when m / z 204 of the sample is used as a precursor ion is shown in FIG. 6F, and an MS / MS spectrum of the 3-HIB peak in FIG. 6E is shown. *
  • FIG. 7 shows the results of detection of 3-HB and 3-HIB derivatized with 3-hydroxy-1-methylpiperidine by LC-P-ESI-MS / MS.
  • FIG. 7A shows the total ion chromatogram (upper) and MS chromatogram (lower) of the sample containing only derivatized 3-HB
  • FIG. 7B shows the MS spectrum of FIG. 7A
  • Fig. 7D includes the MS spectrum of Fig. 7C
  • Fig. 7E includes derivatized 3-HB and 3-HIB.
  • a product ion chromatogram when m / z 202 of the sample is used as a precursor ion is shown in FIG. 7F, and an MS / MS spectrum of the 3-HIB peak in FIG. 7E is shown. *
  • FIG. 8 shows the results of detection of 3-HB and 3-HIB derivatized with 4-pyridinemethanol by LC-P-ESI-MS / MS.
  • 8A shows the total ion chromatogram (upper) and MS chromatogram (lower) of a sample containing only derivatized 3-HB
  • FIG. 8B shows the MS spectrum of FIG. 8A
  • FIG. 8C shows the derivatized 3 -Total ion chromatogram (top) and MS chromatogram (bottom) of a sample containing only HIB
  • Fig. 8D contains the MS spectrum of Fig. 8C
  • Fig. 8E contains derivatized 3-HB and 3-HIB.
  • a product ion chromatogram when m / z 196 of the sample is used as a precursor ion is shown in FIG. 8F, and an MS / MS spectrum of the 3-HIB peak in FIG. 8E is shown.
  • Example 4 A sample obtained by adding DL-3-HB- 13 C 4 sodium salt as an internal standard to 10 ⁇ L of serum collected from a healthy person was derivatized with 2-pyridinemethanol in the same manner as in Example 1, and LC-P-ESI -Measured by MS / MS.
  • FIG. 9 shows a typical SRM chromatogram of 3-HB (2 PM-3-HB) and [ 13 C 4 ] isotopes derivatized with 2-pyridinemethanol. From the chromatogram, the peak area ratio of 2 PM-3-HB to the [ 13 C 4 ] isotope was calculated, and the ratio was applied to a calibration curve to determine the 3-HB concentration in serum.
  • Example 5 In the same manner as in Example 4, serum 3-HB concentration collected from healthy male subjects every 2-3 hours was measured. The measurement results are shown in FIG. In the figure, the black arrow indicates the time spent eating, and the shaded portion indicates sleep time. As a result, it was found that 3-HB in 10 ⁇ L of serum can be detected by the detection method according to the present invention. It was also found that 3-HB in serum tended to decrease with food intake, and that 3-HB concentration in serum was controlled by food intake.
  • Example 6 The accuracy and accuracy of the detection method according to the present invention were examined using serum collected from healthy individuals as a sample. Specifically, a sample obtained by adding DL-3-HB- 13 C 4 sodium salt as an internal standard to 10 ⁇ L of serum collected from a healthy person was derivatized with 2-pyridinemethanol in the same manner as in Example 1, Measured by LC-P-ESI-MS / MS. The reproducibility was measured by LC-P-ESI-MS / MS for each of four types of samples (samples A to D). The measurement results are shown in Table 1. The measurement results were analyzed by one-way ANOVA. At that time, the analysis error was divided into two causes: sample preparation and SRM measurement.
  • Example 7 The sensitivity of 2 PM-3-HB measured by LC-P-ESI-MS / MS was compared with the sensitivity measured by LC-N-ESI-MS / MS. Specifically, a dilution series with a known concentration of 2 PM-3-HB solution was measured by LC-P-ESI-MS / MS (SRM), and the minimum concentration at which 2 PM-3-HB was detected (minimum detection sensitivity) ). Similarly, a dilution series with a known concentration of the 3-HB solution was measured by LC-N-ESI-MS / MS (SRM) to examine the minimum detection sensitivity. Each measurement sample was added with 3-HB-free serum as a blank matrix.
  • Example 8 3-HMB and 2-HB derivatized with 2-pyridinemethanol were detected by LC-P-ESI-MS / MS. Specifically, D-3-HMB sodium salt (standard, 1 ⁇ g) and D-2-HB sodium salt (standard, 1 ⁇ g) were dissolved in acetonitrile / water (1/19, volume ratio) (100 ⁇ L). The prepared sample solution was prepared, evaporated and dried, and then derivatized (esterified with a derivative) using the mixed reagent for 2PM derivatization.
  • FIG. 11 shows the results of detection of 3-HMB and 2-HB derivatized with 2-pyridinemethanol by LC-P-ESI-MS / MS.
  • FIG. 11A shows a total ion chromatogram of the sample containing derivatized 3-HMB and 2-HB (upper stage), a product ion chromatogram when using m / z 196 as a precursor ion (middle stage), and m / z.
  • Product ion chromatograms (lower row) when 210 is used as a precursor ion are respectively shown.
  • 11B shows the MS spectrum of the middle product ion chromatogram of FIG. 11A
  • FIG. 11C shows the MS spectrum of the lower product ion chromatogram of FIG. 11A.
  • FIG. 12 shows the results of detection of 3-HB, 3-HIB, 3-HMB, and 2-HB derivatized with 2-pyridinemethanol by LC-P-ESI-MS / MS.
  • 12 shows the total ion chromatogram of the sample, the product ion chromatogram when m / z 196 is used as the precursor ion in the second stage from the top, and m / z 200 as the precursor ion in the third stage from the top.
  • the product ion chromatogram when m / z 210 is used as the precursor ion is shown at the bottom, respectively.
  • Example 10 The stability of 3-HIB and 3-HB in serum and saliva when serum and saliva collected from a subject were allowed to stand at room temperature for a certain time was examined.
  • ⁇ Saliva> Saliva collected (fluid) from one healthy person into one tube was dispensed into six tubes. One of the 6 tubes was stored frozen at ⁇ 20 ° C. immediately after collection. The remaining five were each allowed to stand at room temperature for 1, 2, 4, 6, or 24 hours and then stored at ⁇ 20 ° C. The frozen saliva sample was naturally thawed at room temperature during analysis. After mixing using a vortex mixer, centrifugation (3000 rpm, 15 minutes) was performed to decompose the viscous protein (mucin), which was precipitated together with meals contained in saliva, and the supernatant was used for analysis.
  • mucin viscous protein
  • Example 11 The correlation between the concentrations of 3-HIB, 3-HB, and 2-HB in serum and saliva (fluid) collected from the subjects was examined. Specifically, serum and saliva were collected from 3 healthy individuals (subjects ⁇ , ⁇ , and ⁇ ), 5 samples each, and the concentrations of 3-HIB, 3-HB, and 2-HB were determined. Measured and examined the correlation between serum concentration and saliva concentration. The concentrations of 3-HIB, 3-HB, and 2-HB in serum and saliva were measured in the same manner as in Example 10. The measurement result of 3-HB concentration is shown in FIG. 15A, the measurement result of 3-HIB concentration is shown in FIG. 15B, and the measurement result of 2-HB concentration is shown in FIG. 15C. As a result, it was confirmed that the saliva concentration correlated with the serum concentration in any of 3-HIB, 3-HB, and 2-HB.
  • Example 12 The 3-HIB and 3-HB concentrations in serum, saliva, and urine before and after running exercise were measured, and changes over time were observed. Specifically, a subject (a healthy male person) collected urine for 24 hours from 11:00 am on the previous day to 11:00 am on the day of running exercise, and then jogged for 60 minutes (traveling distance: about 9 km, speed: about 6.7) Min / km), and the time until the lapse of 24 hours (12:00 noon on the day following the running day) was set as the experiment period. The subjects took lunch and dinner the previous day, lunch and dinner on the day of running exercise, and breakfast the next day from 11:00 am the previous day until the end of the experiment period. FIG. 16 shows the exercise and meal status of the subject, and blood, saliva, and urine collection time points. The 60-minute jogging performed was an exercise with a slightly higher load than the exercise performed on a daily basis for the subject.
  • FIGS. 17 shows changes over time in the concentrations of 3-HIB and 3-HB in serum.
  • FIG. 18 shows the change over time of urinary excretion per unit time ([urinary excretion] / [elapsed time from previous collection]) ( ⁇ mol / h) at each collection time of 3-HIB and 3-HB. Each is shown.
  • FIG. 19 shows changes over time in the concentrations of 3-HIB and 3-HB in saliva.
  • the lower diagram in FIG. 19 is a diagram showing the measurement results during the upper running exercise with the vertical axis scale enlarged.
  • the concentration of 3-HIB increases in both serum and saliva due to running exercise, and after a certain amount of time has elapsed since the end of exercise, the concentration decreases rapidly and returns to the normal state before exercise.
  • Skeletal muscle BCAA catabolism does not persist after exercise compared to during exercise, and normal individuals may not undergo catabolism of BCAA or free BCAA derived from skeletal muscle protein degradation only by performing transient exercise. confirmed.
  • the 3-HIB concentration in saliva hardly fluctuated from 30 minutes after the end of exercise to the end of the experiment period, and was hardly affected by meals and the like.
  • the serum 3-HIB concentration decreased to a normal state at 1 hour after the end of exercise, but slightly increased at 4 hours after the end of exercise. Since 2.25 hours after the end of exercise, food was consumed, the increase in serum 3-HIB concentration at the end of 4 hours after the end of exercise may have been slightly affected by the diet. It was.
  • the 3-HB and 3-HIB concentrations in serum and saliva are increased by exercise, and these are simultaneously evaluated as liver fatty acid catabolism (fat burning) markers and skeletal muscle BCAA catabolism markers by exercise.
  • the concentration of 3-HIB in saliva during running exercise does not change much from the start of exercise (normal state) until 15 minutes after the start of exercise, but then tends to increase gradually.
  • the salivary 3-HB concentration during running exercise does not change much from the exercise start point (normal state) until 35 minutes after the start of exercise, but then increases more rapidly than the 3-HIB concentration A trend was observed.
  • Sugar is preferentially used as an energy source during exercise, but fat and amino acids are used as energy sources as exercise time and intensity increase. From these results, increases in 3-HB concentration and 3-HIB concentration indicate that fats and amino acids were used as energy sources instead of sugar, and when both increased, the dependence on energy production Is considered to indicate the point of transition from sugar metabolism to lipid and amino acid metabolism.
  • FIG. 18 shows urinary 3-HB excretion and 3-HIB excretion per unit time before and after exercise. Unlike serum and saliva, urinary 3-HB excretion and 3-HIB excretion were not increased by exercise, and urinary 3-HIB excretion tended to decrease (1 hour after exercise) ). The urinary 3-HB excretion thereafter tended to increase until 3 hours of exercise and then once decreased, but then tended to increase again until 12.5 hours of exercise. Urinary 3-HIB excretion increased up to 9.5 hours of exercise while repeating slight increases and decreases. Neither urinary 3-HB or 3-HIB excretion was associated with changes in serum or saliva concentrations, but it was presumed that reabsorption in the kidney tissue had an effect. When using urine as a sample, considering the necessity of correction with urine or animal urine as needed, or creatinine As a result, it was found that evaluation with serum or saliva is preferable to urinary excretion.
  • Example 13 Blood and saliva were collected from 15 healthy subjects and 20 cirrhosis patients, and 3-HIB and 3-HMB concentrations in serum and saliva were measured and compared.
  • the 3-HIB concentration and 3-HMB concentration in serum and saliva were measured in the same manner as in Example 10.
  • the measurement results of 3-HIB and 3-HMB concentrations in serum are shown in FIG. 20A
  • the measurement results of 3-HIB and 3-HMB concentrations in saliva are shown in FIG. 20B.
  • the 3-HIB and 3-HMB concentrations in the cirrhosis patient group tended to be higher than those in the healthy group, indicating that these are useful as cirrhosis markers. It was done.
  • 3-HIB and 3-HMB concentrations in saliva were significantly higher in the cirrhosis patient group than in the healthy group.
  • Example 14 Blood was collected from 48 healthy subjects and 32 cirrhosis patients, and the 3-HIB concentration in serum was measured in the same manner as in Example 10. As a result, the average value of serum 3-HIB was 12.6 ⁇ 0.7 ⁇ M for healthy subjects and 27.7 ⁇ 3.6 ⁇ M for cirrhosis patients.
  • Example 15 Blood was collected twice from a patient with hepatic encephalopathy (male) over time, and the 3-HIB concentration in serum was measured in the same manner as in Example 10. Table 4 shows the measurement results. As a result, the 3-HIB concentration in the serum of patients with hepatic encephalopathy was much lower than the average value (12.6 ⁇ M) of healthy subjects.
  • Example 16 Blood was collected over time from cirrhosis patient A (female) with relatively mild cirrhosis and cirrhosis patient B (female) with relatively severe cirrhosis. Serum 3-HIB ( ⁇ M) and albumin ( g / dL) and ammonia concentration ( ⁇ g / dL) were measured. Albumin and ammonia were usually measured by a standard method commonly used in clinical examinations. The albumin concentration was measured by BCG method using the obtained patient serum using albumin HR-II (manufactured by Wako Pure Chemical Industries, Ltd.).
  • the ammonia concentration was measured using Fuji Dry Chem slide NH3-WII (Fuji Film Co., Ltd.) and using Fuji Dry Chem biochemical analyzer.
  • the 3-HIB concentration in serum was measured in the same manner as in Example 10.
  • the albumin concentration in serum was measured as one of the liver function (liver protein synthesis ability) markers.
  • Serum ammonia concentration was measured as a hepatic encephalopathy marker or to know the ammonia clearance status. Both patients were administered the BCAA agent for a certain period during the measurement period.
  • FIG. 21 shows the measurement results of cirrhosis patient A
  • FIG. 22 shows the measurement results of cirrhosis patient B.
  • the upper graph is a graph showing the change in serum 3-HIB concentration over time
  • the middle graph is the graph showing the change in serum albumin concentration over time
  • the lower graph is the serum ammonia concentration. It is the graph which showed change with time.
  • BCAA indicates the BCAA administration period.
  • the serum albumin concentration is higher than the reference value (3.8 g / dL) and the cirrhosis patient A has a relatively mild symptom of cirrhosis
  • the serum 3-HIB concentration varies, but cirrhosis.
  • the serum ammonia concentration was lower than the upper limit of the reference value (86 ⁇ g / dL), and the risk of developing hepatic encephalopathy was I was able to evaluate that it was not so high.
  • the detection method according to the present invention can be used in fields such as clinical tests because organic acids useful as biomarkers such as 3-HIB and 3-HB can be detected with high sensitivity and quantitative.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Molecular Biology (AREA)
  • Immunology (AREA)
  • Physics & Mathematics (AREA)
  • Biomedical Technology (AREA)
  • Hematology (AREA)
  • Urology & Nephrology (AREA)
  • General Health & Medical Sciences (AREA)
  • Pathology (AREA)
  • General Physics & Mathematics (AREA)
  • Biochemistry (AREA)
  • Analytical Chemistry (AREA)
  • Cell Biology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Biotechnology (AREA)
  • Microbiology (AREA)
  • Food Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Biophysics (AREA)
  • Bioinformatics & Computational Biology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Investigating Or Analysing Biological Materials (AREA)
  • Other Investigation Or Analysis Of Materials By Electrical Means (AREA)

Abstract

Provided is a method whereby an organic acid, in particular an organic acid such as 3-HB, 3-HIB, etc. potentially usable as a biomarker, in a sample can be highly sensitively and highly accurately detected. The method for detecting an organic acid in a sample is characterized by comprising: ester-binding the organic acid in the sample to a derivatizing reagent represented by any of general formulae (1)-1 to (1)-3 [wherein one of R1 and R2 represents a C1-6 hydroxyalkyl group and the other represents a hydrogen atom or a C1-6 alkyl group] to synthesize a derivative; and detecting the derivative by the positive ion mode electrospray ionization LC-MS/MS (liquid chromatography-tandem mass spectrometry) method.

Description

試料中の有機酸の検出方法Method for detecting organic acid in sample
 本発明は、試料中の3-ヒドロキシ酪酸、3-ヒドロキシイソ酪酸等の有機酸を高感度に検出するための方法に関する。
 本願は、2013年2月15日に、日本に出願された特願2013-28168号に基づき優先権を主張し、その内容をここに援用する。
The present invention relates to a method for detecting organic acids such as 3-hydroxybutyric acid and 3-hydroxyisobutyric acid in a sample with high sensitivity.
This application claims priority based on Japanese Patent Application No. 2013-28168 filed in Japan on February 15, 2013, the contents of which are incorporated herein by reference.
 3-ヒドロキシ酪酸(3-HB)は、血清中で最も安定的なケトン体であり、飢餓や低栄養状態時に肝臓で合成される。このため、3-HBは、肝臓での脂肪酸異化を評価するバイオマーカーとして有用である。3-HBの定量には、NADとD-3-ヒドロキシ酪酸デヒドロゲナーゼを添加した後にNADHを検出する酵素分光光度法が使用されている(例えば、非特許文献1又は2参照。)。しかしながら、血清中には様々な酵素が存在しており、NADHの産生が阻害され得るため、これらの方法は、血清中の3-HBの検出感度が低いという問題がある。その他にもNADHの定量方法としては、3HBをアセト酢酸(AA)に酵素変換した後にp-ニトロベンゼンジアゾニウムフルオロホウ酸で誘導体化し、この誘導体を、分光光度又は紫外線により検出する高感度HPLC(高速液体クロマトグラフィー)アッセイにより定量する方法が報告されている(例えば、非特許文献3又は4参照。)。また、3-HBを直接検出する方法としては、誘導体化後にガスクロマトグラフィー-質量分析(GC-MS)法により検出する方法(例えば、非特許文献5又は6参照。)や、誘導体化せずに、正イオンモードのエレクトロスプレーイオン化(ESI)によるLC-MS/MS(液体クロマトグラフィー-タンデム質量分析)法(LC-P-ESI-MS/MS)によって検出する方法(例えば、非特許文献7参照。)も報告されているが、これらの方法の検出感度は、酵素分光光度法と同様に低い。 3-Hydroxybutyric acid (3-HB) is the most stable ketone body in serum and is synthesized in the liver during starvation and undernutrition. For this reason, 3-HB is useful as a biomarker for evaluating fatty acid catabolism in the liver. For quantification of 3-HB, an enzyme spectrophotometric method for detecting NADH after adding NAD and D-3-hydroxybutyrate dehydrogenase is used (see, for example, Non-Patent Document 1 or 2). However, since various enzymes exist in serum and NADH production can be inhibited, these methods have a problem of low detection sensitivity of 3-HB in serum. As another NADH determination method, 3HB is enzymatically converted to acetoacetic acid (AA), then derivatized with p-nitrobenzenediazonium fluoroboric acid, and this derivative is detected by high-sensitivity HPLC (high-performance liquid) that is detected by spectrophotometry or ultraviolet light. A method for quantification by a chromatography assay has been reported (for example, see Non-Patent Document 3 or 4). Further, as a method for directly detecting 3-HB, a method for detecting by derivatization after gas chromatography-mass spectrometry (GC-MS) (for example, see Non-Patent Document 5 or 6), or a method without derivatization. In addition, a method of detecting by LC-MS / MS (liquid chromatography-tandem mass spectrometry) (LC-P-ESI-MS / MS) by electrospray ionization (ESI) in positive ion mode (for example, Non-Patent Document 7). See also), but the detection sensitivity of these methods is as low as that of the enzyme spectrophotometry.
 一方で、消化器疾患患者において、代謝・消化・吸収能低下あるいは栄養過多状態により、栄養代謝異常が生じる。多くの消化器疾患では、糖・脂質代謝異常がみられるため、エネルギー供給源としてアミノ酸の重要性が高い。特に分岐鎖アミノ酸(BCAA:バリン、ロイシン、イソロイシン)は、飢餓や低栄養状態、長時間運動や代謝疾患時に、糖質・脂質に代わって骨格筋のミトコンドリア内で異化され、エネルギー源となる。骨格筋で異化されたBCAAは、アセチルCoAやスクシニルCoAに代謝される。BCAAは、ミトコンドリア内で共通の酵素反応によって、ミトコンドリア膜を通過できないCoAが結合される。具体的には、BCAAは、ミトコンドリア内でBCAT(BCAAアミノ基転移酵素)とBCKDH complex(分岐鎖αケト酸脱水素酵素複合体)によって、分岐鎖αケト酸(バリンからα-ケトイソ吉草酸へ、ロイシンからα-ケトイソカプロン酸(KIC)へ、イソロイシンからα-ケト-β-メチル吉草酸へ)を経て、CoA体(α-ケトイソ吉草酸からイソブチリルCoAへ、KICからイソバレリルCoAへ、α-ケト-β-メチル吉草酸からα-メチルブチリルCoAへ)に代謝される。BCAAの異化過程では、CoAの結合が必須であるが、バリンのみは、異化経路の途中で、特異的酵素反応によってCoAが一旦外され、中間代謝産物の3-ヒドロキシイソ酪酸(3-HIB)ができる。CoAが結合していない3-HIBは、分子量が小さいためミトコンドリア膜を通過し、一部が細胞外へ漏出する。実際に、飢餓状態や肝硬変患者では、骨格筋の萎縮と共に血清3-HIB濃度が上昇する。 On the other hand, nutritional metabolism abnormalities occur in patients with gastrointestinal diseases due to decreased metabolism / digestion / absorption capacity or overnutrition. Many gastrointestinal diseases have abnormal sugar and lipid metabolism, so amino acids are highly important as an energy source. In particular, branched chain amino acids (BCAA: valine, leucine, isoleucine) are catabolized in the mitochondria of skeletal muscle instead of carbohydrates and lipids during starvation, undernutrition, long-term exercise, and metabolic diseases, and become energy sources. BCAA catabolized in skeletal muscle is metabolized to acetyl CoA and succinyl CoA. BCAA is bound to CoA that cannot pass through the mitochondrial membrane by a common enzymatic reaction in mitochondria. Specifically, BCAA is a branched chain α-keto acid (from valine to α-ketoisovaleric acid) by BCAT (BCAA aminotransferase) and BCKDH complex (branched α-keto acid dehydrogenase complex) in mitochondria. , Leucine to α-ketoisocaproic acid (KIC), isoleucine to α-keto-β-methylvaleric acid), and CoA form (α-ketoisovaleric acid to isobutyryl CoA, KIC to isovaleryl CoA, α-keto -Β-methylvaleric acid to α-methylbutyryl CoA). In the catabolism process of BCAA, CoA binding is essential, but in the middle of catabolism, CoA is once removed by a specific enzyme reaction in the middle of catabolism, and the intermediate metabolite 3-hydroxyisobutyric acid (3-HIB) Can do. Since 3-HIB to which CoA is not bound has a low molecular weight, it passes through the mitochondrial membrane, and a part of it leaks out of the cell. In fact, in patients with starvation or cirrhosis, serum 3-HIB levels increase with skeletal muscle atrophy.
 このことから、3-HIBは骨格筋におけるアミノ酸異化状態を反映する指標、すなわち骨格筋におけるBCAA異化マーカーとしての利用が期待される。しかしながら、生体試料中の微量の3-HIBを充分な感度で検出できる方法は、現在までには報告されていない。例えば、3-HIBを直接検出する方法としては、誘導体化せずに、負イオンモードのエレクトロスプレーイオン化(ESI)によるLC-MS/MS法(LC-N-ESI-MS/MS)によって検出する方法(例えば、非特許文献7参照。)が報告されているが、当該方法は感度が低いため、例えば血清中の3-HIBを検出するためには多量の血清を必要とする。また、GC-MS法により、血液中の3-HBを検出した場合には、3-HIBは3-HBとはクロマトグラフィーによっては分離できなかったことが報告されている(例えば、非特許文献8参照。)。 From this, 3-HIB is expected to be used as an index reflecting the amino acid catabolism state in skeletal muscle, that is, as a BCAA catabolism marker in skeletal muscle. However, a method that can detect a trace amount of 3-HIB in a biological sample with sufficient sensitivity has not been reported so far. For example, as a method of directly detecting 3-HIB, it is detected by LC-MS / MS method (LC-N-ESI-MS / MS) by electrospray ionization (ESI) in negative ion mode without derivatization. Although a method (for example, see Non-Patent Document 7) has been reported, since the method has low sensitivity, for example, a large amount of serum is required to detect 3-HIB in serum. In addition, when 3-HB in blood is detected by the GC-MS method, it has been reported that 3-HIB could not be separated from 3-HB by chromatography (for example, non-patent literature). 8).
 3-HBや3-HIB以外の有機酸の検出方法としては、マロン酸をジ-(1-メチル-3-ピペリジニル)マロン酸に誘導体化した後、LC-P-ESI-MS/MS)によって検出する方法(例えば、非特許文献9参照。)が報告されている。当該方法では、マロン酸にアミン残基を導入してマロン酸エステルとすることにより、イオン化が促進され、検出感度が顕著に増大した。 As a method for detecting organic acids other than 3-HB and 3-HIB, malonic acid is derivatized to di- (1-methyl-3-piperidinyl) malonic acid and then LC-P-ESI-MS / MS). A detection method (for example, see Non-Patent Document 9) has been reported. In this method, by introducing an amine residue into malonic acid to form a malonic ester, ionization was promoted and detection sensitivity was remarkably increased.
 また、BCAAの1つであるロイシンの代謝産物として、3-ヒドロキシイソ吉草酸(3-HMB)が挙げられる。ロイシンは、他のBCAAと同様にミトコンドリア内でKICを経てCoA体(イソバレリルCoA)に代謝されるが、KICの5~10%程度がミトコンドリア膜を通過し、細胞質内においてKIC-dioxygenaseによって3-HMBに代謝される。3-HMBの作用としては、mTOR経路により蛋白合成促進、ユビキチン/プロテアソーム経路の抑制による蛋白質分解抑制、HMB-CoAから変換されたヒドロキシメチルグルタリル-CoA(HMG-CoA)によるコレステロール合成促進による筋鞘安定化等が知られている。これらの作用により、3-HMBは、BCAA由来の肝臓蛋白(アルブミン等)合成マーカーや骨格筋肥大のマーカーとしての利用が期待される。実際に、3-HMBは筋肉増強効果を目的としたサプリメントとして利用されていることから、3-HMBを摂取した場合の血中動態を検討するため、3-HMB摂取後のラットの血中3-HMB濃度を、誘導体化せずにLC-N-ESI-MS/MSによって測定したことが報告されている(例えば、非特許文献10参照。)。また、HILIC(親水性相互作用クロマトグラフィー)-MS/MSにより、3-HBと3-HMBを誘導体化せずに同時測定する方法も報告されているが、当該測定方法では、3-HMBの検出限界は0.4μMであり、生体試料中(血液や唾液など)の3-HMBは、3-HBや3-HMBより微量であるため、より高感度に検出する方法が求められている(例えば、非特許文献11参照。)。 Also, as a metabolite of leucine, which is one of BCAAs, 3-hydroxyisovaleric acid (3-HMB) can be mentioned. Like other BCAAs, leucine is metabolized in the mitochondria via KIC to the CoA form (isovaleryl CoA), but about 5 to 10% of KIC passes through the mitochondrial membrane, and in the cytoplasm, 3-fold by KIC-dioxygenase. Metabolized to HMB. The effects of 3-HMB include protein synthesis promotion by mTOR pathway, protein degradation inhibition by inhibition of ubiquitin / proteasome pathway, and muscle synthesis by promotion of cholesterol synthesis by hydroxymethylglutaryl-CoA (HMG-CoA) converted from HMB-CoA. Sheath stabilization is known. Due to these effects, 3-HMB is expected to be used as a marker for synthesis of liver protein (albumin etc.) derived from BCAA and skeletal muscle hypertrophy. Actually, since 3-HMB is used as a supplement for the purpose of enhancing muscles, in order to study the blood dynamics when 3-HMB is ingested, the blood 3 It has been reported that -HMB concentration was measured by LC-N-ESI-MS / MS without derivatization (see, for example, Non-Patent Document 10). In addition, a method of simultaneously measuring 3-HB and 3-HMB without derivatization by HILIC (Hydrophilic Interaction Chromatography) -MS / MS has been reported. The detection limit is 0.4 μM, and 3-HMB in a biological sample (blood, saliva, etc.) is in a smaller amount than 3-HB or 3-HMB, so a method for detecting with higher sensitivity is required ( For example, refer nonpatent literature 11.).
 また、3-HB等と構造類似の有機酸として、2-ヒドロキシ酪酸(2-HB)がある。2-HBは、スレオニンとメチオニンの代謝産物であるαケト酪酸が、NADH依存性のLDHやLDHのアイソザイムである2-HB脱水素酵素(α-HBDH)による異化反応の副産物として生成される。また、αケト酪酸は、スクシニルCoAの前駆体であるプロピオニルCoAに代謝されることから、2-HBの上昇は、LDHやα-HBDHによるαケト酪酸の異化亢進か、αケト酪酸からプロピオニルCoAへの代謝不全によって生じる。さらに、αケト酪酸は、強力な抗酸化物質であるグルタチオンの前駆体アミノ酸であるシステインがシスタチオンより代謝される際の副産物としても産生されるため、グルタチオンの生成とも関連している。2-HBは、非糖尿病者のインスリン抵抗性やグルコース不耐性を予測する早期マーカーとして利用できるとの報告がある(例えば、非特許文献12参照。)。これは、インスリン抵抗性やグルコース不耐性発症には、肝臓での脂質過酸化や酸化ストレスが関与しており、肝臓でのグルタチオン生成亢進や脂質過酸化に伴うNADHやNADの増加によるものと考えられる。この検討では、UHPLC-MSやHILIC-MS/MS装置にて、血清中や全血中の2-HBを測定しているが、血清中の濃度(1μg/mL=約9.6μM以上)より微量な生体試料(唾液など)での測定は、これまで検討されていない(例えば、非特許文献11及び非特許文献2参照。)。 Further, 2-hydroxybutyric acid (2-HB) is an organic acid similar in structure to 3-HB and the like. In 2-HB, α-ketobutyric acid, which is a metabolite of threonine and methionine, is produced as a by-product of the catabolism reaction by 2-DHB dehydrogenase (α-HBDH), which is an NADH-dependent LDH or LDH isozyme. Further, since α-ketobutyric acid is metabolized to propionyl CoA, which is a precursor of succinyl CoA, the increase in 2-HB is due to increased catabolism of α-ketobutyric acid by LDH or α-HBDH, or from α-ketobutyric acid to propionyl-CoA. Caused by metabolic failure. Furthermore, α-ketobutyric acid is also associated with the production of glutathione because cysteine, which is a precursor amino acid of glutathione, which is a powerful antioxidant, is also produced as a by-product when metabolized from cystathione. There is a report that 2-HB can be used as an early marker for predicting insulin resistance and glucose intolerance in non-diabetics (see, for example, Non-patent Document 12). This is because the development of insulin resistance and glucose intolerance involves lipid peroxidation and oxidative stress in the liver, and is due to increased glutathione production in the liver and an increase in NADH and NAD + associated with lipid peroxidation. Conceivable. In this study, 2-HB in serum and whole blood was measured with a UHPLC-MS or HILIC-MS / MS apparatus. From the serum concentration (1 μg / mL = about 9.6 μM or more) The measurement with a very small amount of biological sample (saliva etc.) has not been studied so far (for example, see Non-Patent Document 11 and Non-Patent Document 2).
 本発明は、有機酸、特に、生体試料中に含まれているバイオマーカーとしての利用が期待できる3-HBや3-HIB、3-HMB、2-HB等の有機酸を、高感度に精度よく検出する方法の提供を目的とする。 The present invention is highly sensitive to organic acids, particularly organic acids such as 3-HB, 3-HIB, 3-HMB, and 2-HB that can be expected to be used as biomarkers contained in biological samples. The purpose is to provide a method of detecting well.
 すなわち、本発明は、下記[1]~[6]の試料中の有機酸の検出方法、下記[7]、[8]、[10]の評価方法、下記[11]のモニタリング方法、及び下記[9]のバイオマーカーを提供するものである。
[1] 本発明に係る試料中の有機酸の検出方法は、試料中の有機酸を検出する方法であって、試料中の有機酸を下記一般式(1)-1~(1)-3(式(1)-1~3中、R及びRは、一方が炭素数1~6のヒドロキシアルキル基を表し、他方が水素原子又は炭素数1~6のアルキル基を表す。)のいずれかで表される誘導体化試薬とエステル結合させることにより誘導体を合成し、当該誘導体を、正イオンモードのエレクトロスプレーイオン化LC-MS/MS(液体クロマトグラフィー-タンデム質量分析)法により検出することを特徴とする。
That is, the present invention provides a method for detecting an organic acid in the following samples [1] to [6], a method for evaluating [7], [8] and [10] below, a method for monitoring [11] below and The biomarker according to [9] is provided.
[1] A method for detecting an organic acid in a sample according to the present invention is a method for detecting an organic acid in a sample. The organic acid in a sample is represented by the following general formulas (1) -1 to (1) -3: (In the formula (1) -1 to 3, one of R 1 and R 2 represents a hydroxyalkyl group having 1 to 6 carbon atoms, and the other represents a hydrogen atom or an alkyl group having 1 to 6 carbon atoms). Derivatives are synthesized by ester linkage with a derivatization reagent represented by any of the above, and the derivatives are detected by an electrospray ionization LC-MS / MS (liquid chromatography-tandem mass spectrometry) method in positive ion mode. It is characterized by.
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000003
[2] 前記[1]の試料中の有機酸の検出方法においては、前記誘導体化試薬が2-ピリジンメタノール、1-ピペリジンエタノール、及び2-(2-ヒドロキシエチル)-1-メチルピロリジンからなる群より選択される1種以上であることが好ましい。
[3] 前記[1]又は[2]の試料中の有機酸の検出方法においては、前記有機酸が下記一般式(2)(式(2)中、Rは、炭素数2~6のヒドロキシアルキル基を表す。)で表される有機酸であることが好ましい。
[2] In the method for detecting an organic acid in the sample of [1], the derivatization reagent is composed of 2-pyridinemethanol, 1-piperidineethanol, and 2- (2-hydroxyethyl) -1-methylpyrrolidine. It is preferable that it is 1 or more types selected from a group.
[3] In the method for detecting an organic acid in the sample of [1] or [2], the organic acid is represented by the following general formula (2) (in the formula (2), R 3 is a group having 2 to 6 carbon atoms). It is preferably an organic acid represented by a hydroxyalkyl group.
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000004
[4] 前記[1]又は[2]の試料中の有機酸の検出方法においては、前記有機酸が3-ヒドロキシ酪酸、3-ヒドロキシイソ酪酸、3-ヒドロキシイソ吉草酸、及び2-ヒドロキシ酪酸からなる群より選択される1種以上であることが好ましい。
[5] 前記[1]~[4]のいずれかの試料中の有機酸の検出方法においては、前記試料が生体試料であることが好ましい。
[6] 前記[1]~[4]のいずれかの試料中の有機酸の検出方法においては、前記試料は、血清、涙液、唾液、又は尿であることが好ましい。
[7] 本発明に係る肝硬変発症可能性の評価方法は、被検者から採取した生体試料中の3-ヒドロキシイソ酪酸、3-ヒドロキシイソ吉草酸、及び2-ヒドロキシ酪酸からなる群より選択される1種以上の有機酸を、前記[1]又は[2]の試料中の有機酸の検出方法により検出し、当該生体試料中の当該有機酸の濃度を測定する定量工程と、前記定量工程において得られた有機酸濃度を、予め設定された閾値と比較し、前記被験者における肝硬変発症の可能性を評価する評価工程と、を有し、前記生体試料が血清又は唾液であることを特徴とする。
[8] 本発明に係る肝性脳症発症可能性の評価方法は、肝硬変を発症している被検者から採取した生体試料中の3-ヒドロキシイソ酪酸を、前記[1]又は[2]の試料中の有機酸の検出方法により検出し、当該生体試料中の3-ヒドロキシイソ酪酸濃度を測定する定量工程と、前記定量工程において得られた3-ヒドロキシイソ酪酸濃度を、前記生体試料が採取された時点以前に前記被験者から採取された生体試料中の3-ヒドロキシイソ酪酸濃度と比較し、前記被験者における肝性脳症発症の可能性を評価する評価工程と、を有し、前記生体試料が血清又は唾液であることを特徴とする。
[9] 本発明に係る肝性脳症又はその発症可能性のバイオマーカーは、3-ヒドロキシイソ酪酸からなることを特徴とする。
[10] 本発明に係るエネルギー供給源の評価方法は、運動中の被検者から採取した生体試料中の3-ヒドロキシイソ酪酸及び3-ヒドロキシ酪酸からなる群より選択される1種以上の有機酸を、前記[1]又は[2]の試料中の有機酸の検出方法により検出し、当該生体試料中の前記有機酸濃度を測定する定量工程と、前記定量工程において得られた前記有機酸濃度を、予め設定された閾値、又は前記被験者から運動前に採取された生体試料中の前記有機酸濃度と比較し、前記被験者における運動中又は運動後のエネルギー供給源を評価する評価工程と、を有し、前記生体試料が血清又は唾液であることを特徴とする。
[11] 本発明に係るエネルギー供給源のモニタリング方法は、運動開始直前から運動終了後一定期間経過後までの間に経時的に被検者から採取された複数の生体試料中の3-ヒドロキシイソ酪酸及び3-ヒドロキシ酪酸からなる群より選択される1種以上の有機酸を、前記[1]又は[2]の試料中の有機酸の検出方法によりそれぞれ検出し、各生体試料中の前記有機酸濃度を測定することにより、前記有機酸濃度の経時的変化を調べるモニタリング工程と、前記モニタリング工程において得られた前記有機酸濃度の経時的変化に基づき、前記被験者における運動中又は運動後のエネルギー供給源を評価する評価工程と、を有し、前記生体試料中の前記有機酸濃度をエネルギー供給源のマーカーとし、かつ前記生体試料が血清又は唾液であることを特徴とする。
[4] In the method for detecting an organic acid in the sample of [1] or [2], the organic acid is 3-hydroxybutyric acid, 3-hydroxyisobutyric acid, 3-hydroxyisovaleric acid, and 2-hydroxybutyric acid. It is preferable that it is 1 or more types selected from the group which consists of.
[5] In the method for detecting an organic acid in a sample according to any one of [1] to [4], the sample is preferably a biological sample.
[6] In the method for detecting an organic acid in a sample according to any one of [1] to [4], the sample is preferably serum, tears, saliva, or urine.
[7] The method for evaluating the likelihood of developing cirrhosis according to the present invention is selected from the group consisting of 3-hydroxyisobutyric acid, 3-hydroxyisovaleric acid, and 2-hydroxybutyric acid in a biological sample collected from a subject. One or more organic acids detected by the method for detecting an organic acid in the sample of [1] or [2], and measuring the concentration of the organic acid in the biological sample; and the quantifying step Comparing the organic acid concentration obtained in step 1 with a preset threshold and evaluating the possibility of developing cirrhosis in the subject, wherein the biological sample is serum or saliva To do.
[8] The method for evaluating the possibility of developing hepatic encephalopathy according to the present invention includes the step of [1] or [2], wherein 3-hydroxyisobutyric acid in a biological sample collected from a subject who has developed cirrhosis is used. The biological sample collects the quantitative step of detecting the organic acid in the sample and measuring the 3-hydroxyisobutyric acid concentration in the biological sample, and the 3-hydroxyisobutyric acid concentration obtained in the quantitative step. Comparing with the 3-hydroxyisobutyric acid concentration in the biological sample collected from the subject before the determined time point, and evaluating the possibility of developing hepatic encephalopathy in the subject, It is serum or saliva.
[9] The biomarker of hepatic encephalopathy or the onset possibility thereof according to the present invention is characterized by comprising 3-hydroxyisobutyric acid.
[10] The method for evaluating an energy supply source according to the present invention comprises at least one organic substance selected from the group consisting of 3-hydroxyisobutyric acid and 3-hydroxybutyric acid in a biological sample collected from a subject during exercise. A quantitative step of detecting an acid by the method for detecting an organic acid in a sample of [1] or [2] and measuring the concentration of the organic acid in the biological sample, and the organic acid obtained in the quantitative step Comparing the concentration with a pre-set threshold or the organic acid concentration in a biological sample collected from the subject before exercise, and evaluating an energy source during or after exercise in the subject; and And the biological sample is serum or saliva.
[11] The method for monitoring an energy supply source according to the present invention includes 3-hydroxyisolation in a plurality of biological samples collected from a subject over time from immediately before the start of exercise to after a lapse of a certain period after the end of exercise. One or more organic acids selected from the group consisting of butyric acid and 3-hydroxybutyric acid are detected by the organic acid detection method in the sample of [1] or [2], respectively, and the organic acid in each biological sample is detected. Based on the monitoring process for examining the time-dependent change of the organic acid concentration by measuring the acid concentration, and the time-dependent change of the organic acid concentration obtained in the monitoring process, energy during or after exercise in the subject An evaluation step for evaluating a supply source, wherein the organic acid concentration in the biological sample is used as a marker of an energy supply source, and the biological sample is serum or saliva. It is characterized by that.
 本発明に係る試料中の有機酸の検出方法は、3-HIBや3-HB、3-HMB、2-HB等の有機酸を誘導体化してLC-P-ESI-MS/MSによって検出する方法であり、試料中の検出対象たる有機酸を直接検出することができる。また、特定の誘導体化試薬を用いることにより、従来の酵素分光光度法やLC-MS/MSによる検出方法よりも非常に検出感度が高いため、血清のみならず、涙液や唾液等の有機酸含有量が比較的低い生体試料からの有機酸検出にも有用であることが期待できる。 The method for detecting an organic acid in a sample according to the present invention is a method of derivatizing an organic acid such as 3-HIB, 3-HB, 3-HMB, 2-HB and the like and detecting it by LC-P-ESI-MS / MS It is possible to directly detect the organic acid to be detected in the sample. In addition, by using a specific derivatization reagent, the detection sensitivity is much higher than the detection method by conventional enzyme spectrophotometry and LC-MS / MS, so that not only serum but also organic acids such as tears and saliva are used. It can be expected to be useful for organic acid detection from a biological sample having a relatively low content.
2-ピリジンメタノールで誘導体化された3-HB(2PM-3-HB)の典型的なP-ESI MSスペクトラムを示した図である。FIG. 3 shows a typical P-ESI MS spectrum of 3-HB (2 PM-3-HB) derivatized with 2-pyridinemethanol. 実施例1において、2-ピリジンメタノールで誘導体化された3-HBのみを含む試料の総イオンクロマトグラム(上段)とMSクロマトグラム(下段)を示した図である。In Example 1, it is the figure which showed the total ion chromatogram (upper stage) and the MS chromatogram (lower stage) of the sample containing only 3-HB derivatized with 2-pyridinemethanol. 図2AのMSスペクトラムを示した図である。It is the figure which showed the MS spectrum of FIG. 2A. 実施例1において、2-ピリジンメタノールで誘導体化された3-HIBのみを含む試料の総イオンクロマトグラム(上段)とMSクロマトグラム(下段)を示した図である。In Example 1, it is the figure which showed the total ion chromatogram (upper part) and the MS chromatogram (lower part) of the sample containing only 3-HIB derivatized with 2-pyridinemethanol. 図2CのMSスペクトラムを示した図である。It is the figure which showed the MS spectrum of FIG. 2C. 実施例1において、2-ピリジンメタノールで誘導体化された3-HBと3-HIBを含む試料のm/z 196を前駆イオンとした時のプロダクトイオンクロマトグラムを示した図である。In Example 1, it is the figure which showed the product ion chromatogram when using m / z 196 of the sample containing 3-HB and 3-HIB derivatized with 2-pyridinemethanol as a precursor ion. 図2Eの3-HIBピークのMS/MSスペクトラムを示した図である。It is the figure which showed the MS / MS spectrum of the 3-HIB peak of FIG. 2E. 実施例2において、1-ピペリジンエタノールで誘導体化された3-HBのみを含む試料の総イオンクロマトグラム(上段)とMSクロマトグラム(下段)を示した図である。In Example 2, it is the figure which showed the total ion chromatogram (upper part) and MS chromatogram (lower part) of the sample containing only 3-HB derivatized with 1-piperidine ethanol. 図3AのMSスペクトラムを示した図である。It is the figure which showed the MS spectrum of FIG. 3A. 実施例2において、1-ピペリジンエタノールで誘導体化された3-HIBのみを含む試料の総イオンクロマトグラム(上段)とMSクロマトグラム(下段)を示した図である。In Example 2, it is the figure which showed the total ion chromatogram (upper part) and MS chromatogram (lower part) of the sample containing only 3-HIB derivatized with 1-piperidine ethanol. 図3CのMSスペクトラムを示した図である。It is the figure which showed the MS spectrum of FIG. 3C. 実施例2において、1-ピペリジンエタノールで誘導体化された3-HBと3-HIBを含む試料のm/z 216を前駆イオンとした時のプロダクトイオンクロマトグラムを示した図である。In Example 2, it is the figure which showed the product ion chromatogram when using m / z 216 of the sample containing 3-HB and 3-HIB derivatized with 1-piperidine ethanol as a precursor ion. 図3Eの3-HIBピークのMS/MSスペクトラムを示した図である。It is the figure which showed the MS / MS spectrum of the 3-HIB peak of FIG. 3E. 実施例3において、2-(2-ヒドロキシエチル)-1-メチルピロリジンで誘導体化された3-HBのみを含む試料の総イオンクロマトグラム(上段)とMSクロマトグラム(下段)を示した図である。In Example 3, the figure which showed the total ion chromatogram (upper part) and MS chromatogram (lower part) of the sample containing only 3-HB derivatized with 2- (2-hydroxyethyl) -1-methylpyrrolidine. is there. 図4AのMSスペクトラムを示した図である。It is the figure which showed the MS spectrum of FIG. 4A. 実施例3において、2-(2-ヒドロキシエチル)-1-メチルピロリジンで誘導体化された3-HIBのみを含む試料の総イオンクロマトグラム(上段)とMSクロマトグラム(下段)を示した図である。In Example 3, the figure which shows the total ion chromatogram (upper part) and MS chromatogram (lower part) of the sample containing only 3-HIB derivatized with 2- (2-hydroxyethyl) -1-methylpyrrolidine. is there. 図4CのMSスペクトラムを示した図である。It is the figure which showed the MS spectrum of FIG. 4C. 実施例3において、2-(2-ヒドロキシエチル)-1-メチルピロリジンで誘導体化された3-HBと3-HIBを含む試料のm/z 216を前駆イオンとした時のプロダクトイオンクロマトグラムを示した図である。In Example 3, a product ion chromatogram when m / z 216 of a sample containing 3-HB and 3-HIB derivatized with 2- (2-hydroxyethyl) -1-methylpyrrolidine is used as a precursor ion is shown. FIG. 図4Eの3-HIBピークのMS/MSスペクトラムを示した図である。It is the figure which showed the MS / MS spectrum of the 3-HIB peak of FIG. 4E. 比較例1において、3-ピリジンメタノールで誘導体化された3-HBのみを含む試料の総イオンクロマトグラム(上段)とMSクロマトグラム(下段)を示した図である。In Comparative Example 1, the total ion chromatogram (upper) and MS chromatogram (lower) of a sample containing only 3-HB derivatized with 3-pyridinemethanol are shown. 図5AのMSスペクトラムを示した図である。It is the figure which showed MS spectrum of FIG. 5A. 比較例1において、3-ピリジンメタノールで誘導体化された3-HIBのみを含む試料の総イオンクロマトグラム(上段)とMSクロマトグラム(下段)を示した図である。In comparative example 1, it is the figure which shows the total ion chromatogram (upper part) and the MS chromatogram (lower part) of the sample containing only 3-HIB derivatized with 3-pyridinemethanol. 図5CのMSスペクトラムを示した図である。It is the figure which showed the MS spectrum of FIG. 5C. 比較例1において、3-ピリジンメタノールで誘導体化された3-HBと3-HIBを含む試料のm/z 196を前駆イオンとした時のプロダクトイオンクロマトグラムを示した図である。In Comparative Example 1, a product ion chromatogram of a sample containing 3-HB and 3-HIB derivatized with 3-pyridinemethanol when m / z 196 is used as a precursor ion is shown. 図5Eの3-HIBピークのMS/MSスペクトラムを示した図である。It is the figure which showed the MS / MS spectrum of the 3-HIB peak of FIG. 5E. 比較例2において、2-ジエチルアミノエタノールで誘導体化された3-HBのみを含む試料の総イオンクロマトグラム(上段)とMSクロマトグラム(下段)を示した図である。In comparative example 2, it is the figure which shows the total ion chromatogram (upper part) and the MS chromatogram (lower part) of the sample containing only 3-HB derivatized with 2-diethylaminoethanol. 図6AのMSスペクトラムを示した図である。It is the figure which showed MS spectrum of FIG. 6A. 比較例2において、2-ジエチルアミノエタノールで誘導体化された3-HIBのみを含む試料の総イオンクロマトグラム(上段)とMSクロマトグラム(下段)を示した図である。In comparative example 2, it is the figure which shows the total ion chromatogram (upper part) and the MS chromatogram (lower part) of the sample containing only 3-HIB derivatized with 2-diethylaminoethanol. 図6CのMSスペクトラムを示した図である。It is the figure which showed the MS spectrum of FIG. 6C. 比較例2において、2-ジエチルアミノエタノールで誘導体化された3-HBと3-HIBを含む試料のm/z 204を前駆イオンとした時のプロダクトイオンクロマトグラムを示した図である。In Comparative Example 2, it is a diagram showing a product ion chromatogram when m / z 204 of a sample containing 3-HB and 3-HIB derivatized with 2-diethylaminoethanol is used as a precursor ion. 図6Eの3-HIBピークのMS/MSスペクトラムを示した図である。It is the figure which showed the MS / MS spectrum of the 3-HIB peak of FIG. 6E. 比較例3において、3-ヒドロキシ-1-メチルピペリジンで誘導体化された3-HBのみを含む試料の総イオンクロマトグラム(上段)とMSクロマトグラム(下段)を示した図である。In Comparative Example 3, the total ion chromatogram (upper) and MS chromatogram (lower) of a sample containing only 3-HB derivatized with 3-hydroxy-1-methylpiperidine are shown. 図7AのMSスペクトラムを示した図である。It is the figure which showed MS spectrum of FIG. 7A. 比較例3において、3-ヒドロキシ-1-メチルピペリジンで誘導体化された3-HIBのみを含む試料の総イオンクロマトグラム(上段)とMSクロマトグラム(下段)を示した図である。In Comparative Example 3, the total ion chromatogram (upper) and MS chromatogram (lower) of a sample containing only 3-HIB derivatized with 3-hydroxy-1-methylpiperidine are shown. 図7CのMSスペクトラムを示した図である。It is the figure which showed MS spectrum of FIG. 7C. 比較例3において、3-ヒドロキシ-1-メチルピペリジンで誘導体化された3-HBと3-HIBを含む試料のm/z 202を前駆イオンとした時のプロダクトイオンクロマトグラムを示した図である。In Comparative Example 3, it is a diagram showing a product ion chromatogram when m / z 202 of a sample containing 3-HB and 3-HIB derivatized with 3-hydroxy-1-methylpiperidine is used as a precursor ion. . 図7Eの3-HIBピークのMS/MSスペクトラムを示した図である。It is the figure which showed the MS / MS spectrum of the 3-HIB peak of FIG. 7E. 比較例4において、4-ピリジンメタノールで誘導体化された3-HBのみを含む試料の総イオンクロマトグラム(上段)とMSクロマトグラム(下段)を示した図である。In comparative example 4, it is the figure which showed the total ion chromatogram (upper part) and the MS chromatogram (lower part) of the sample containing only 3-HB derivatized with 4-pyridinemethanol. 図8AのMSスペクトラムを示した図である。It is the figure which showed MS spectrum of FIG. 8A. 比較例4において、4-ピリジンメタノールで誘導体化された3-HIBのみを含む試料の総イオンクロマトグラム(上段)とMSクロマトグラム(下段)を示した図である。In comparative example 4, it is the figure which showed the total ion chromatogram (upper part) and the MS chromatogram (lower part) of the sample containing only 3-HIB derivatized with 4-pyridinemethanol. 図8CのMSスペクトラムを示した図である。It is the figure which showed the MS spectrum of FIG. 8C. 比較例4において、4-ピリジンメタノールで誘導体化された3-HBと3-HIBを含む試料のm/z 196を前駆イオンとした時のプロダクトイオンクロマトグラムを示した図である。In Comparative Example 4, it is a diagram showing a product ion chromatogram when m / z 196 of a sample containing 3-HB and 3-HIB derivatized with 4-pyridinemethanol is used as a precursor ion. 図8Eの3-HIBピークのMS/MSスペクトラムを示した図である。It is the figure which showed the MS / MS spectrum of the 3-HIB peak of FIG. 8E. 実施例4において、2-ピリジンメタノールで誘導体化された3-HB(2PM-3-HB)と[13]同位体の典型的なSRMクロマトグラムを示した図である。FIG. 6 shows a typical SRM chromatogram of 3-HB (2 PM-3-HB) derivatized with 2-pyridinemethanol and [ 13 C 4 ] isotopes in Example 4. 実施例5において、男性健常者から2時間おきに採取した血清中の3-HB濃度を測定した結果を示した図である。In Example 5, it is the figure which showed the result of having measured the 3-HB density | concentration in the serum extract | collected from a healthy male person every 2 hours. 実施例8において、2-ピリジンメタノールで誘導体化された3-HMBと2-HBを含む試料の総イオンクロマトグラム(上段)と、m/z 196を前駆イオンとした時のプロダクトイオンクロマトグラム(中段)と、m/z 210を前駆イオンとした時のプロダクトイオンクロマトグラム(下段)を示した図である。In Example 8, the total ion chromatogram (top) of a sample containing 3-HMB and 2-HB derivatized with 2-pyridinemethanol, and the product ion chromatogram when m / z 196 is used as a precursor ion ( FIG. 4 is a diagram showing a product ion chromatogram (lower stage) when m / z 210 is a precursor ion. 図11Aの中段のプロダクトイオンクロマトグラムのMSスペクトラム(2-HBの2PMエステル誘導体)を示した図である。FIG. 11B is a diagram showing an MS spectrum (2-HB 2PM ester derivative) in the middle product ion chromatogram of FIG. 11A. 図11Aの下段のプロダクトイオンクロマトグラムのMSスペクトラム(3-HMBの2PMエステル誘導体)を示した図である。It is the figure which showed MS spectrum (2-PM ester derivative of 3-HMB) of the product ion chromatogram of the lower stage of FIG. 11A. 実施例9において、2-ピリジンメタノールで誘導体化された3-HBと3-HIBと3-HMBと2-HBと3-HB-13を含む試料の総イオンクロマトグラム(1段目)、m/z 196を前駆イオンとした時のプロダクトイオンクロマトグラム(2段目)、m/z 200を前駆イオンとした時のプロダクトイオンクロマトグラム(3段目)、m/z 210を前駆イオンとした時のプロダクトイオンクロマトグラム(4段目)を示した図である。In Example 9, 2-pyridine derivatized with methanol 3-HB and 3-HIB and 3-HMB and total ion chromatogram of a sample containing 2-HB and 3-HB- 13 C 4 (1 stage) , Product ion chromatogram when m / z 196 is used as a precursor ion (second stage), product ion chromatogram when m / z 200 is used as a precursor ion (third stage), and m / z 210 as a precursor ion FIG. 6 is a diagram showing a product ion chromatogram (fourth stage). 実施例10において、採血後室温で放置された血清中の3-HB濃度及び3-HIB濃度の測定結果を示した図である。In Example 10, it is the figure which showed the measurement result of the 3-HB density | concentration and 3-HIB density | concentration in the serum left at room temperature after blood collection. 実施例10において、採取後室温で放置された唾液中の3-HB濃度及び3-HIB濃度の測定結果を示した図である。In Example 10, it is the figure which showed the measurement result of 3-HB density | concentration and 3-HIB density | concentration in the saliva left at room temperature after collection | recovery. 実施例11において、3-HBの血清中濃度と唾液(流涎)中濃度の相関性を調べた結果を示した図である。In Example 11, it is the figure which showed the result of having investigated the correlation of the serum concentration of 3-HB and the concentration in saliva (fluid). 実施例11において、3-HIBの血清中濃度と唾液(流涎)中濃度の相関性を調べた結果を示した図である。In Example 11, it is the figure which showed the result of having investigated the correlation of the serum concentration of 3-HIB, and the concentration in saliva (fluid). 実施例11において、2-HBの血清中濃度と唾液(流涎)中濃度の相関性を調べた結果を示した図である。In Example 11, it is the figure which showed the result of having investigated the correlation of the density | concentration in the serum of 2-HB, and the density | concentration in saliva (fluid). 実施例12において、被験者の運動と食事状況、及び血液、唾液、尿の採取時点を示した図である。In Example 12, it is the figure which showed the test subject's exercise | movement, the meal condition, and the collection time of blood, saliva, and urine. 実施例12において、被験者の血清中の3-HIB及び3-HBの濃度の経時的変化を示した図である。In Example 12, it is the figure which showed the time-dependent change of the density | concentration of 3-HIB and 3-HB in a test subject's serum. 実施例12において、被験者の3-HIB及び3-HBの各採取時点における単位時間当たり尿排泄量(μmol/h)の経時的変化を示した図である。In Example 12, it is the figure which showed the time-dependent change of the amount of urine excretion per unit time (micromol / h) in each test | inspection time of a subject's 3-HIB and 3-HB. 実施例12において、被験者の唾液中の3-HIB及び3-HBの濃度の経時的変化を示した図である。In Example 12, it is the figure which showed the time-dependent change of the density | concentration of 3-HIB and 3-HB in a test subject's saliva. 実施例13において、肝硬変患者群と健常者群の血清中の3-HIB濃度及び3-HMB濃度の測定結果を示した図である。In Example 13, it is the figure which showed the measurement result of the 3-HIB density | concentration and 3-HMB density | concentration in serum of a cirrhosis patient group and a healthy subject group. 実施例13において、肝硬変患者群と健常者群の唾液中の3-HIB濃度及び3-HMB濃度の測定結果を示した図である。In Example 13, it is the figure which showed the measurement result of the 3-HIB density | concentration and 3-HMB density | concentration in the saliva of a cirrhosis patient group and a healthy subject group. 実施例16において、肝硬変の症状が比較的軽い肝硬変患者Aの血清中3-HIB濃度の経時的変化(上段)と血清中アルブミン濃度の経時的変化(中段)と血清中アンモニア濃度の経時的変化(下段)を示した図である。In Example 16, change in serum 3-HIB concentration (upper), change in serum albumin concentration (middle), and change in serum ammonia concentration over time in cirrhosis patient A having relatively mild symptoms of cirrhosis It is the figure which showed (lower stage). 実施例16において、肝硬変の症状が比較的重い肝硬変患者Bの血清中3-HIB濃度の経時的変化(上段)と血清中アルブミン濃度の経時的変化(中段)と血清中アンモニア濃度の経時的変化(下段)を示した図である。In Example 16, change in serum 3-HIB concentration over time (upper stage), change in serum albumin concentration over time (middle stage), and change in serum ammonia concentration over time in cirrhosis patient B with relatively severe cirrhosis symptoms It is the figure which showed (lower stage).
 本発明に係る試料中の有機酸の検出方法(以下、「本発明に係る検出方法」ということがある。)は、試料中の有機酸を検出する方法であって、試料中の有機酸を下記一般式(1)-1~(1)-3のいずれかで表される誘導体化試薬とエステル結合させることにより誘導体を合成し、当該誘導体をLC-P-ESI-MS/MS法により検出することを特徴とする。下記一般式(1)-1~3のいずれかで表される誘導体化試薬によってエステル化することにより、有機酸のP-ESIによるイオン化効率が改善され、LC-MS/MSによる検出感度が顕著に向上する。 The method for detecting an organic acid in a sample according to the present invention (hereinafter sometimes referred to as “the detection method according to the present invention”) is a method for detecting an organic acid in a sample, Derivatives are synthesized by ester linkage with a derivatizing reagent represented by any of the following general formulas (1) -1 to (1) -3, and the derivatives are detected by LC-P-ESI-MS / MS method It is characterized by doing. By esterifying with a derivatizing reagent represented by any one of the following general formulas (1) -1 to 3, the ionization efficiency of organic acids by P-ESI is improved, and the detection sensitivity by LC-MS / MS is remarkable. To improve.
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000005
 一般式(1)-1~3中、R及びRは、一方が炭素数1~6のヒドロキシアルキル基を表し、他方が水素原子又は炭素数1~6のアルキル基を表す。つまり、Rが炭素数1~6のヒドロキシアルキル基の場合、Rが水素原子又は炭素数1~6のアルキル基であり、Rが炭素数1~6のヒドロキシアルキル基の場合、Rが水素原子又は炭素数1~6のアルキル基である。窒素原子を含む6員又は5員のヘテロ環を有し、当該窒素原子付近にアルキル基で連結された水酸基が存在する化合物を誘導体化試薬として用いることにより、有機酸を効率よくイオン化することができ、さらに得られた誘導体(エステル化体)のLCの保持時間は比較的長いため、誘導体化に使用した試薬と明確に分離することができる。 In general formulas (1) -1 to 3, R 1 and R 2 each represents a hydroxyalkyl group having 1 to 6 carbon atoms, and the other represents a hydrogen atom or an alkyl group having 1 to 6 carbon atoms. That is, when R 1 is a hydroxyalkyl group having 1 to 6 carbon atoms, R 2 is a hydrogen atom or an alkyl group having 1 to 6 carbon atoms, and R 2 is a hydroxyalkyl group having 1 to 6 carbon atoms, 1 is a hydrogen atom or an alkyl group having 1 to 6 carbon atoms. An organic acid can be efficiently ionized by using a compound having a 6- or 5-membered heterocycle containing a nitrogen atom and having a hydroxyl group linked with an alkyl group in the vicinity of the nitrogen atom as a derivatization reagent. Furthermore, since the retention time of LC of the obtained derivative (esterified product) is relatively long, it can be clearly separated from the reagent used for derivatization.
 炭素数1~6のアルキル基としては、直鎖状のアルキル基であってもよく、分岐鎖状のアルキル基であってもよい。具体的には、メチル基、エチル基、n-プロピル基、i-プロピル基、n-ブチル基、i-ブチル基、s-ブチル基、t-ブチル基、n-ペンチル基、n-へキシル基等が挙げられる。一般式(1)-1~3中のR又はRとしては、メチル基、エチル基、n-プロピル基、又はi-プロピル基が好ましい。 The alkyl group having 1 to 6 carbon atoms may be a linear alkyl group or a branched alkyl group. Specifically, methyl group, ethyl group, n-propyl group, i-propyl group, n-butyl group, i-butyl group, s-butyl group, t-butyl group, n-pentyl group, n-hexyl Groups and the like. R 1 or R 2 in the general formulas (1) -1 to 3 is preferably a methyl group, an ethyl group, an n-propyl group, or an i-propyl group.
 炭素数1~6のヒドロキシアルキル基としては、炭素数1~6の直鎖状のアルキル基中の1個の水素原子が水酸基に置換されている基であってもよく、炭素数1~6の分岐鎖状のアルキル基中の1個の水素原子が水酸基に置換されている基であってもよい。具体的には、2-ヒドロキシエチル基、3-ヒドロキシプロピル基、4-ヒドロキシブチル基、5-ヒドロキシペンチル基、6-ヒドロキシヘキシル基等が挙げられる。 The hydroxyalkyl group having 1 to 6 carbon atoms may be a group in which one hydrogen atom in a linear alkyl group having 1 to 6 carbon atoms is substituted with a hydroxyl group. A group in which one hydrogen atom in the branched chain alkyl group is substituted with a hydroxyl group may be used. Specific examples include 2-hydroxyethyl group, 3-hydroxypropyl group, 4-hydroxybutyl group, 5-hydroxypentyl group, 6-hydroxyhexyl group and the like.
 一般式(1)で表される誘導体化試薬としては、2-ピリジンメタノール、1-ピペリジンエタノール、及び2-(2-ヒドロキシエチル)-1-メチルピロリジンからなる群より選択される1種以上であることが好ましい。これらの化合物によってカルボキシル基をエステル化することにより、3-HIBと3-HBと3-HMBと2-HBのように構造類似の有機酸同士を、LCにより良好に分離することが可能となり、ひいては、両者の同時検出(一の試料に対する1回のLC-P-ESI-MS/MSによる検出)が可能となる。一般式(1)で表される誘導体化試薬としては、中でも、リテンションタイムが遅く、誘導体化された検出対象の有機酸エステルのピークに対する誘導体化試薬によるピークの影響が小さいことから、2-ピリジンメタノールが特に好ましい。 The derivatization reagent represented by the general formula (1) includes at least one selected from the group consisting of 2-pyridinemethanol, 1-piperidineethanol, and 2- (2-hydroxyethyl) -1-methylpyrrolidine. Preferably there is. By esterifying the carboxyl group with these compounds, organic acids having similar structures such as 3-HIB, 3-HB, 3-HMB and 2-HB can be separated well by LC. As a result, both of them can be detected simultaneously (detection by one LC-P-ESI-MS / MS for one sample). Among the derivatization reagents represented by the general formula (1), the retention time is slow, and the influence of the peak by the derivatization reagent on the derivatized organic acid ester peak to be detected is small. Methanol is particularly preferred.
 本発明に係る検出方法において、LC-P-ESI-MS/MS法は、誘導体化試薬として前記一般式(1)で表される化合物を用いる以外は、常法により行うことができる。具体的には、LC-MS/MSにおけるHPLCやMSは、カルボン酸エステルを検出するための公知の条件と同様に、又は適宜改変した条件で行うことができる。 In the detection method according to the present invention, the LC-P-ESI-MS / MS method can be performed by a conventional method except that the compound represented by the general formula (1) is used as a derivatization reagent. Specifically, HPLC and MS in LC-MS / MS can be performed in the same manner as known conditions for detecting a carboxylic acid ester or under appropriately modified conditions.
 本発明に係る検出方法では、1回のLC-P-ESI-MS/MSにおいて、1種類の有機酸のみを検出してもよく、2種類以上の有機酸を同時に検出してもよい。本発明に係る検出方法において検出対象とされる有機酸としては、カルボキシル基を有する化合物であれば特に限定されるものではなく、当該検出方法は、カルボキシル基を有する多くの有機酸の検出に適用できる。本発明に係る検出方法は、解糖系、TCAサイクル、脂肪酸合成系等の中間代謝物たる有機酸の検出や定量に用いられることが好ましい。中でも、本発明に係る検出方法は、下記一般式(2)で表される有機酸の検出に用いられることが好ましい。 In the detection method according to the present invention, only one type of organic acid may be detected in one LC-P-ESI-MS / MS, or two or more types of organic acid may be detected simultaneously. The organic acid to be detected in the detection method according to the present invention is not particularly limited as long as it is a compound having a carboxyl group, and the detection method is applicable to detection of many organic acids having a carboxyl group. it can. The detection method according to the present invention is preferably used for detection and quantification of organic acids which are intermediate metabolites such as glycolysis, TCA cycle, and fatty acid synthesis. Especially, it is preferable that the detection method concerning this invention is used for the detection of the organic acid represented by following General formula (2).
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000006
 一般式(2)中、Rは、炭素数2~6のヒドロキシアルキル基を表す。炭素数2~6のヒドロキシアルキル基としては、分岐鎖状のヒドロキシアルキル基であってもよく、直鎖状のヒドロキシアルキル基であってもよい。当該ヒドロキシアルキル基としては、例えば、2-ヒドロキシエチル基、3-ヒドロキシプロピル基、2-ヒドロキシプロピル基、4-ヒドロキシブチル基、2-ヒドロキシブチル基、2-( ヒドロキシメチル)プロピル基、2-ヒドロキシペンチル基、3-ヒドロキシ-2、2-ジメチルプロピル基、3-ヒドロキシペンチル基、5-ヒドロキシペンチル基、6-ヒドロキシヘキシル基、2-ヒドロキシヘキシル基等が挙げられる。 In the general formula (2), R 3 represents a hydroxyalkyl group having 2 to 6 carbon atoms. The hydroxyalkyl group having 2 to 6 carbon atoms may be a branched hydroxyalkyl group or a linear hydroxyalkyl group. Examples of the hydroxyalkyl group include 2-hydroxyethyl group, 3-hydroxypropyl group, 2-hydroxypropyl group, 4-hydroxybutyl group, 2-hydroxybutyl group, 2- (hydroxymethyl) propyl group, 2- Examples thereof include a hydroxypentyl group, 3-hydroxy-2, 2-dimethylpropyl group, 3-hydroxypentyl group, 5-hydroxypentyl group, 6-hydroxyhexyl group, 2-hydroxyhexyl group and the like.
 一般式(2)で表される有機酸としては、Rが、炭素数2~3のヒドロキシアルキル基であることが好ましい。特に、一般式(2)で表される有機酸としては、3-HIB、3-HB、3-HMB、及び2-HBからなる群より選択される1種以上であることが好ましく、3-HBと3-HIB、又は3-HIBと3-HBと3-HMBを同時に検出することがより好ましい。前述のように、3-HBは肝臓での脂肪酸異化のマーカーであり、3-HIB及び3-HMBは骨格筋におけるBCAA異化マーカーとなり得る。つまり、本発明に係る検出方法により、肝臓での脂肪酸異化のマーカーと骨格筋におけるBCAA異化マーカーを同時に検出することができる。 In the organic acid represented by the general formula (2), R 3 is preferably a hydroxyalkyl group having 2 to 3 carbon atoms. In particular, the organic acid represented by the general formula (2) is preferably at least one selected from the group consisting of 3-HIB, 3-HB, 3-HMB, and 2-HB. More preferably, HB and 3-HIB or 3-HIB, 3-HB and 3-HMB are detected simultaneously. As described above, 3-HB is a marker for fatty acid catabolism in the liver, and 3-HIB and 3-HMB can be BCAA catabolism markers in skeletal muscle. That is, the detection method according to the present invention can simultaneously detect a fatty acid catabolism marker in the liver and a BCAA catabolism marker in skeletal muscle.
 本発明に係る検出方法では、他のLC-MS/MSを利用した検出方法と同様に、検出対象たる有機酸を、濃度既知の有機酸を用いて作成した検量線に基づいて定量的に検出することができる。検量線作成時には、より定量性を高めるために、濃度既知の有機酸の希釈系列の全てに、一定量の安定同位体を添加しておくことも好ましい。 In the detection method according to the present invention, as in other detection methods using LC-MS / MS, the organic acid to be detected is quantitatively detected based on a calibration curve created using an organic acid with a known concentration. can do. When preparing a calibration curve, it is also preferable to add a certain amount of stable isotopes to all dilution series of organic acids with known concentrations in order to improve the quantitativeness.
 本発明に係る検出方法に供される試料としては、有機酸が含まれている試料であれば特に限定されるものではなく、具体的には、生体試料、湖沼や海、河川、土壌等の自然界から採取された試料、培養細胞や酵母、細菌等の微生物の培養物等が挙げられる。本発明に係る検出方法は、非常に高感度であることから、一般的に有機酸が極微量しか含まれていない試料や、そもそも微量にした試料に対して行うことが好ましく、生体試料に対して行うことがより好ましい。生体試料としては、生体から採取された試料であればよく、ヒトやマウス、ラット等の動物から採取されたものであることが好ましい。また、血液、血漿、血清、涙液、唾液、脳脊髄液、腹水、胸水、関節液、骨髄液、胆汁、尿、鼻汁、乳汁、汗、精液等であってもよく、骨格筋や肝臓等の組織から採取された組織片等の抽出物(組織抽出物)であってもよい。組織片等の抽出物は、組織片等を常法によりホモジナイズすることにより調製することができる。本発明に係る検出方法に供される試料としては、血清、涙液、唾液、又は尿であることが好ましい。 The sample used in the detection method according to the present invention is not particularly limited as long as it is a sample containing an organic acid. Specifically, biological samples, lakes, seas, rivers, soils, etc. Examples include samples collected from nature, cultured cells, cultures of microorganisms such as yeast and bacteria, and the like. Since the detection method according to the present invention is very sensitive, it is generally preferable to perform on a sample that contains only a very small amount of organic acid or a sample that contains a very small amount of organic acid. More preferably. The biological sample may be a sample collected from a living body, and is preferably collected from an animal such as a human, a mouse, or a rat. It may also be blood, plasma, serum, tears, saliva, cerebrospinal fluid, ascites, pleural effusion, joint fluid, bone marrow, bile, urine, nasal discharge, milk, sweat, semen, etc., skeletal muscle, liver, etc. It may be an extract (tissue extract) such as a tissue piece collected from the tissue. An extract such as a tissue piece can be prepared by homogenizing a tissue piece or the like by a conventional method. The sample used in the detection method according to the present invention is preferably serum, tears, saliva, or urine.
 また、生体試料中の有機酸の検出においては、従来の分析方法では、感度が不十分なためにより多くの生体試料を必要としたり、含有量が少なすぎてそもそも検出不可能な場合が多い。これに対して、本発明に係る検出方法は、非常に検出感度が高いため、従来よりも少量の生体試料から目的の有機酸を検出することができる。また、従来は含有量が極微量であるために検出ができなかった生体試料中の有機酸をも検出し得る。 Also, in the detection of organic acids in biological samples, conventional analytical methods often require more biological samples because of insufficient sensitivity, or are too low to be detected in the first place. On the other hand, since the detection method according to the present invention has very high detection sensitivity, the target organic acid can be detected from a smaller amount of biological sample than in the past. In addition, it is possible to detect an organic acid in a biological sample that could not be detected because the content is extremely small.
 例えば、3-HIBを本発明に係る検出方法により検出した場合の検出感度は、従来の誘導体化せずにLC-N-ESI-MS/MSで検出した場合と比べて、100倍以上である。また、3-HIBをHCl-ブタノールを用いて誘導体化した誘導体をポジティブESI-LC-MS/MSにより検出した場合と比べても、10倍以上高感度である。このため、本発明に係る検出方法は、5μL以下の血清のほか、5μL以下の唾液、涙液、又は細胞培養液でも、3-HIBと3-HBの同時定量や、3-HIBと3-HBと3-HMBと2-HBの同時定量が可能である。 For example, the detection sensitivity when 3-HIB is detected by the detection method according to the present invention is 100 times or more compared with the case where detection is performed by LC-N-ESI-MS / MS without conventional derivatization. . Further, the sensitivity is 10 times or more higher than when a derivative obtained by derivatizing 3-HIB with HCl-butanol is detected by positive ESI-LC-MS / MS. For this reason, the detection method according to the present invention can be used for simultaneous determination of 3-HIB and 3-HB, and for 3-HIB and 3-HB in 5 μL or less of serum, 5 μL or less of saliva, tears, or cell culture solution. Simultaneous determination of HB, 3-HMB and 2-HB is possible.
 唾液と涙液中の3-HIBと3-HBの濃度は、血清中濃度と高い相関が認められることから、本発明に係る検出方法を用いることにより、唾液や涙液を測定試料として非侵襲的に、肝臓での脂肪酸異化と骨格筋でのBCAA異化の評価が可能である。 Since the concentration of 3-HIB and 3-HB in saliva and tear fluid is highly correlated with the serum concentration, the detection method according to the present invention can be used to make non-invasive treatment using saliva and tear fluid as a measurement sample. In particular, it is possible to evaluate fatty acid catabolism in the liver and BCAA catabolism in skeletal muscle.
 これまで、骨格筋におけるBCAAの異化を把握する血清マーカーはなく、臨床的には血液中のBCAA濃度の定量及び芳香族アミノ酸との比(Fischer比)、又は血清アルブミン値による間接的な方法によって推測するのみであった。これに対して、3-HIBを本発明に係る検出方法によって検出することにより、骨格筋におけるBCAA異化をより直接的に評価できる。つまり、本発明に係る検出方法は、骨格筋におけるBCAA異化を評価するための新しい臨床検査としても有用である。その他にも、血清や涙液、唾液等中の3-HIB濃度は、BCAA製剤を投与することによる効果予測の指標(バイオマーカー)として使用することもできる。 Until now, there is no serum marker to grasp the catabolism of BCAA in skeletal muscle, clinically quantified by the BCAA concentration in blood and the ratio with aromatic amino acid (Fischer ratio), or indirect method by serum albumin level I only guessed. On the other hand, BCAA catabolism in skeletal muscle can be more directly evaluated by detecting 3-HIB by the detection method according to the present invention. That is, the detection method according to the present invention is also useful as a new clinical test for evaluating BCAA catabolism in skeletal muscle. In addition, the 3-HIB concentration in serum, tears, saliva and the like can also be used as an index (biomarker) for predicting the effect by administering the BCAA preparation.
 なお、骨格筋におけるBCAAの異化の程度は、例えば、肝硬変、肝性脳症、筋炎、ステロイド筋症、心不全、抗がん剤の使用による悪疫質、横紋筋融解症、廃用性筋萎縮、甲状腺機能亢進症、慢性疲労症候群、サルコペニア(加齢性筋肉減弱現象)、ミトコンドリア脂肪酸酸化異常症等の疾患に罹患している患者、透析患者、手術侵襲患者、高齢者等の、血中アルブミン濃度や血中BCAA濃度が低下している若しくは低下しているおそれのある者についての、低栄養や筋蛋白分解の指標(バイオマーカー)とすることができる。また、マラソンやトライアスロン等の筋蛋白質異化が亢進しやすいアスリートについての低栄養や筋蛋白分解の指標とすることもできる。また、血清や涙液、唾液等中の3-HIB濃度は栄養状態の指標とすることができるため、生体試料中の3-HIB濃度は、例えば、創薬スクリーニング、特に前述の各種疾患に対する治療剤候補の薬理効果を示すマーカーとして、また有効成分の安全性試験における毒性評価のマーカーとしても使用することが期待される。 The degree of catabolism of BCAA in skeletal muscle is, for example, cirrhosis, hepatic encephalopathy, myositis, steroid myopathy, heart failure, bad epidemic due to use of anticancer agents, rhabdomyolysis, disuse muscle atrophy, Blood albumin levels in patients suffering from diseases such as hyperthyroidism, chronic fatigue syndrome, sarcopenia (aging muscle weakening phenomenon), mitochondrial fatty acid oxidation disorders, dialysis patients, surgically invasive patients, elderly people, etc. Or an indicator (biomarker) of malnutrition or muscle protein degradation for a person whose blood BCAA concentration is low or may be low. It can also be used as an indicator of undernutrition and muscle protein degradation for athletes who are prone to increase muscle protein catabolism such as marathons and triathlons. In addition, since 3-HIB concentrations in serum, tears, saliva, etc. can be used as an indicator of nutritional status, 3-HIB concentrations in biological samples can be used, for example, for drug discovery screening, particularly for the treatment of various diseases described above. It is expected to be used as a marker showing the pharmacological effect of drug candidates and as a marker for toxicity evaluation in the safety test of active ingredients.
 運動によるエネルギー消費増加に伴い、肝臓での脂肪酸異化が亢進し、体液(血、唾液)中の3-HB量が増加する。また、骨格筋のBCAA異化が亢進している状態では、3-HIB量及び3-HMB量が増加する。このため、血清又は唾液中の3-HIB濃度及び3-HB濃度、3-HMB濃度は、運動中又は運動後における肝臓と骨格筋のエネルギー供給源バランス(エネルギー代謝組織と供給栄養素の依存度)を評価する指標(バイオマーカー)となり得る。運動中又は運動後に、血清又は唾液中の3-HB濃度や3-HIB濃度が、安静時からさほど変化がない場合には、糖がエネルギー供給源として使用されていると評価できる。運動中又は運動後に、血清又は唾液中の3-HB濃度や3-HIB濃度が安静時よりも有意に上昇した場合には、肝臓での脂肪酸異化又は骨格筋におけるBCAA異化によりエネルギーが産生されていると評価できる。運動中や飢餓時などを含め、エネルギー産生亢進時の栄養源は、通常、糖に次いで、脂質、遊離アミノ酸、そして蛋白質由来のアミノ酸となる。したがって、運動中の血中では、3-HB濃度上昇に次いで、3-HIB濃度の上昇が出現することとなる。しかし、血中3-HIB濃度上昇の出現が早期の場合、脂質よるエネルギー産生が低下していることを示しており、脂質栄養不足又は肝機能の低下が原因として考えられる。また、運動後、栄養補給しても3-HIB濃度の上昇が持続する場合は、骨格筋蛋白質の異化によるエネルギー産生が生じている可能性が考えられる。運動中又は運動後の骨格筋BCAAのエネルギー供給源としての利用を評価するバイオマーカーとしては、3-HMBよりも、血清又は唾液中3-HIB濃度が好ましく、唾液中3-HIB濃度がより好ましい。運動中又は運動後の肝臓と骨格筋での異なる組織と異なる栄養源によるエネルギー産生状態を評価するバイオマーカーとしては、3-HIB濃度と3-HB濃度の両方を測定する必要がある。 As energy consumption increases due to exercise, fatty acid catabolism in the liver increases and the amount of 3-HB in body fluids (blood, saliva) increases. Further, in the state where BCAA catabolism of skeletal muscle is increased, the amount of 3-HIB and 3-HMB increase. Therefore, 3-HIB concentration, 3-HB concentration, and 3-HMB concentration in serum or saliva are the energy source balance of liver and skeletal muscle during or after exercise (dependency of energy metabolism tissue and nutrient supply) Can be an index (biomarker) for evaluating If the 3-HB concentration or 3-HIB concentration in serum or saliva has not changed much since resting during or after exercise, it can be evaluated that sugar is used as an energy supply source. During or after exercise, if 3-HB or 3-HIB concentration in serum or saliva is significantly higher than at rest, energy is produced by fatty acid catabolism in the liver or BCAA catabolism in skeletal muscle. Can be evaluated. Nutrient sources for increased energy production, including during exercise and starvation, are usually lipids, free amino acids, and amino acids derived from proteins, following sugar. Therefore, in the blood during exercise, an increase in 3-HIB concentration appears after an increase in 3-HB concentration. However, when the rise in blood 3-HIB concentration appears early, it indicates that energy production by lipids is reduced, which may be caused by insufficient lipid nutrition or decreased liver function. In addition, if the 3-HIB concentration continues to increase even after nutritional supplementation after exercise, there is a possibility that energy production is caused by catabolism of skeletal muscle protein. As a biomarker for evaluating the use of skeletal muscle BCAA as an energy source during or after exercise, 3-HIB concentration in serum or saliva is preferable to 3-HIB, and 3-HIB concentration in saliva is more preferable than 3-HMB . As a biomarker for evaluating the energy production state by different tissues and different nutrient sources in the liver and skeletal muscle during or after exercise, it is necessary to measure both 3-HIB concentration and 3-HB concentration.
 具体的には、運動中の被検者から採取した唾液又は血液から唾液中又は血清中の3-HIB及び/又は3-HBを本発明に係る検出方法により検出して3-HIB濃度及び/又は3-HB濃度を測定し、当該濃度を予め設定された所定の閾値と比較することにより、当該被験者における運動時のエネルギー供給源を評価することができる。当該閾値は、被験者ごとに設定することが好ましいが、多数の被験者について運動負荷量が同程度となることが期待される運動を行った後の3-HIB濃度等を測定した結果から設定してもよい。 Specifically, 3-HIB and / or 3-HB in saliva or serum from saliva or blood collected from a subject during exercise is detected by the detection method according to the present invention, and 3-HIB concentration and / or Alternatively, the energy source during exercise in the subject can be evaluated by measuring the 3-HB concentration and comparing the concentration with a predetermined threshold value set in advance. The threshold is preferably set for each subject, but is set based on the results of measuring 3-HIB concentration and the like after performing an exercise that is expected to have the same amount of exercise load for many subjects. Also good.
 また、運動開始直前から運動終了後一定期間経過後までの間に経時的に被検者から血液又は唾液をサンプルとして採取し、各サンプル中の3-HIB濃度及び/又は3-HB濃度を本発明に係る検出方法によって測定することにより、血液又は唾液中の3-HIB濃度及び/又は3-HB濃度をモニタリングする(経時的変化を調べる)ことができる。モニタリングの結果得られた3-HIB濃度及び/又は3-HB濃度の経時的変化に基づいて、当該被験者における運動時のエネルギー供給源を評価することができる。なお、運動開始直前が安静時(平常状態)ではない場合には、予め、安静時の被験者から血液又は唾液をサンプルとして採取し、各サンプル中の3-HIB濃度及び/又は3-HB濃度を本発明に係る検出方法によって測定しておき、得られた測定値を運動時のエネルギー供給源の評価の参考にすることが好ましい。 In addition, blood or saliva is sampled from a subject over time between immediately before the start of exercise and after a lapse of a certain period after the end of exercise, and the 3-HIB concentration and / or 3-HB concentration in each sample is recorded. By measuring with the detection method according to the invention, the 3-HIB concentration and / or the 3-HB concentration in blood or saliva can be monitored (change over time). Based on the 3-HIB concentration and / or 3-HB concentration change over time obtained as a result of monitoring, the energy source during exercise in the subject can be evaluated. In addition, when it is not at rest (normal state) immediately before the start of exercise, blood or saliva is collected as a sample from the subject at rest in advance, and the 3-HIB concentration and / or 3-HB concentration in each sample is determined. It is preferable to measure by the detection method according to the present invention and use the obtained measurement value as a reference for evaluation of the energy supply source during exercise.
 過度の運動に加え、休養と栄養が不十分であると、相対的運動負荷量が過大となる、いわゆるオーバーワーク状態となる。飢餓時などの低栄養状態では、肝臓での脂肪酸異化によって得られるケトン体産生亢進と、骨格筋での蛋白質分解によって得られるBCAA異化亢進によるエネルギー産生が活性化するため、血清又は唾液中の3-HB濃度と3-HIB濃度が上昇する。特に、持久性競技者や減量や食事制限を行っているスポーツ選手や愛好家は、糖消費後のエネルギー源となる脂質貯蔵量が少ないため、骨格筋のアミノ酸をエネルギー源としての利用依存度が高くなる。その様な骨格筋アミノ酸の利用度の増加や持続により、筋蛋白質分解が亢進し、骨格筋萎縮等の症状を伴う全身のエネルギー代謝不全状態が生じる。この様な場合の多くは、いわゆるオーバーワーク状態に陥っている。この様なオーバーワーク状態では、血清又は唾液中の3-HB濃度と3-HIB濃度測定を行うことにより、肝臓の脂肪酸異化由来のケトン体と骨格筋蛋白由来のBCAA異化によるエネルギー供給源バランス、依存度を評価できることから、オーバーワーク状態の指標ともなり得る。例えば、運動をしていない安静時(平常状態)における3-HIB濃度及び3-HB濃度と、オーバーワークとならない程度の運動を行った後の唾液又は血清中の3-HIB濃度及び3-HB濃度とを本発明に係る検出方法によって測定しておき、これらの測定値から、オーバーワーク状態における3-HIB濃度及び3-HB濃度と、オーバーワークではない状態における3-HIB濃度及び3-HB濃度とを分ける閾値(オーバーワーク閾値)を予め設定しておく。オーバーワークが引き起こされる様な過度な繰り返しの運動後の被検者から採取した唾液又は血液から唾液中又は血清中の3-HIB及び3-HB濃度を本発明に係る検出方法により検出して3-HIB濃度及び3-HB濃度を測定し、当該濃度を予め設定されたオーバーワーク閾値と比較することにより、当該被験者におけるエネルギー供給源バランスを評価する。具体的には、当該被験者の3-HIB濃度と3-HB濃度がオーバーワーク閾値よりも低い場合には、当該被験者の運動負荷量は適正であり、被験者はオーバーワークではない可能性が高く、当該被験者の3-HIB濃度がオーバーワーク閾値以上である場合には、当該被験者の運動負荷量は過大であって、当該被験者はオーバーワークである可能性が高い、と評価できる。また、当該被験者の3-HB濃度のみが閾値以上である場合には、当該被験者がエネルギー不足状態であっても、当該被験者はまだオーバーワークに至っていない可能性が高い、と評価できる。当該オーバーワーク閾値は、被験者ごとに設定することが好ましいが、多数の健常者についてオーバーワークとならない程度の運動を行った後の3-HIB濃度又は3-HB濃度を測定した結果から設定してもよい。運動中の被験者から経時的に唾液又は血液を採取し、3-HIB濃度と3-HB濃度を経時的に測定してモニタリングすることにより、危険なオーバーワーク状態となる前に運動を終了させることもできる。この場合、被験者からの試料採取は必ずしも運動中である必要はなく、長期の運動プログラムやトレーニングを行っている被験者の安静時から採取した試料から得られる結果を、運動プログラム前やトレーニング前の同一被験者から採取した試料から得られた結果と比較することにより、オーバーワーク状態の評価に用いることもできる。すなわち、本発明に係る方法によって運動中あるいは長期的な3-HIB濃度と3-HB濃度をモニタリングすることにより、適正な運動量を評価し、オーバーワーク状態を予防することができる。 In addition to excessive exercise, inadequate rest and nutrition results in a so-called overwork state where the relative exercise load becomes excessive. In an undernutrition state such as starvation, energy production by activation of ketone bodies obtained by fatty acid catabolism in the liver and BCAA catabolism obtained by proteolysis in skeletal muscle is activated. -HB and 3-HIB concentrations increase. In particular, endurance athletes and athletes and enthusiasts who are losing weight or restricting their diets are less dependent on the use of amino acids in their skeletal muscles as energy sources because they have less lipid storage as an energy source after sugar consumption. Get higher. Increased and sustained utilization of such skeletal muscle amino acids increases muscle protein degradation, resulting in a systemic energy metabolism deficiency state accompanied by symptoms such as skeletal muscle atrophy. Many of these cases are in a so-called overwork state. In such an overwork state, by measuring the concentration of 3-HB and 3-HIB in serum or saliva, the energy supply balance by catabolism derived from fatty acid catabolism of liver and BCAA catabolism derived from skeletal muscle protein, Since the degree of dependence can be evaluated, it can be an indicator of overwork status. For example, 3-HIB concentration and 3-HB concentration at rest (normal state) when not exercising, and 3-HIB concentration and 3-HB in saliva or serum after exercise that does not cause overwork The concentration is measured by the detection method according to the present invention, and from these measured values, the 3-HIB concentration and 3-HB concentration in the overwork state and the 3-HIB concentration and 3-HB in the non-overwork state are determined. A threshold for dividing the density (overwork threshold) is set in advance. By detecting the 3-HIB and 3-HB concentrations in saliva or serum from saliva or blood collected from a subject after excessive repetitive exercise that causes overwork, the detection method according to the present invention 3 -Assess the energy source balance in the subject by measuring the HIB and 3-HB concentrations and comparing the concentrations to a preset overwork threshold. Specifically, if the subject's 3-HIB concentration and 3-HB concentration are lower than the overwork threshold, the subject's exercise load is appropriate, and the subject is likely not overworked, When the 3-HIB concentration of the subject is equal to or higher than the overwork threshold, it can be evaluated that the subject's exercise load is excessive and the subject is likely to be overworked. Further, when only the 3-HB concentration of the subject is equal to or higher than the threshold value, it can be evaluated that there is a high possibility that the subject has not yet overworked even if the subject is in an energy-deficient state. The overwork threshold is preferably set for each subject, but it is set from the results of measuring 3-HIB concentration or 3-HB concentration after performing exercise to such an extent that many healthy subjects do not overwork. Also good. Collecting saliva or blood over time from an exercising subject and measuring and monitoring 3-HIB and 3-HB concentrations over time, thereby ending exercise before a dangerous overwork condition You can also. In this case, the sample collection from the subject does not necessarily have to be during exercise, and the results obtained from the sample taken at rest of the subject who is performing a long-term exercise program or training are the same as those before the exercise program or before training. By comparing with the result obtained from the sample collected from the subject, it can also be used for evaluation of the overwork state. That is, by monitoring the 3-HIB concentration and 3-HB concentration during exercise or long-term by the method according to the present invention, an appropriate amount of exercise can be evaluated and an overwork state can be prevented.
 また、例えば、本発明に係る検出方法によって、一の個体から経時的に採取された生体試料(血清、涙液、唾液等)中の3-HIBや3-HBの濃度測定することにより、骨格筋のBCAA異化や肝臓における脂肪酸異化の状態をモニタリングすることもできる。3-HIB濃度モニタリングや3-HB濃度モニタリングは、例えば、肝硬変患者、低栄養状態や寝たきり状態の患者に対する、骨格筋萎縮予防、低栄養状態改善を目的としたBCAA製剤投与や栄養療法の開始の必要性の有無の判断やそれらの治療の判定に利用可能である。例えば、3-HB濃度に変化がみられないのにも関わらず、3-HIB濃度のみ上昇傾向がみられる場合には、肝機能の低下による肝臓での低エネルギー産生能を、骨格筋蛋白異化によるアミノ酸由来のエネルギー産生で代償する低栄養状態である可能性が高いと評価できる。 Further, for example, by measuring the concentration of 3-HIB or 3-HB in a biological sample (serum, tears, saliva, etc.) collected from one individual over time by the detection method according to the present invention, The state of muscle BCAA catabolism and fatty acid catabolism in the liver can also be monitored. 3-HIB concentration monitoring and 3-HB concentration monitoring are, for example, the treatment of BCAA preparations and the start of nutrition therapy for the prevention of skeletal muscle atrophy and the improvement of undernutrition for patients with cirrhosis and undernutrition or bedridden conditions. It can be used to determine whether or not there is a need and to determine their treatment. For example, if only 3-HIB concentration is increasing despite the fact that 3-HB concentration does not change, the ability to produce low energy in the liver due to the decrease in liver function is reduced by skeletal muscle protein catabolism. It can be evaluated that there is a high possibility of undernutrition that compensates for energy production derived from amino acids.
 その他にも、本発明に係る検出方法によって3-HIBや3-HBの濃度を測定することにより、スポーツ医学領域において、肝臓と骨格筋における脂質とアミノ酸のエネルギー源依存バランス(エネルギー代謝状態)を、血液はもちろんのこと、唾液又は涙液等を用いてもモニターすることも可能となる。さらに、アンチエイジングやダイエットによる体重管理や美容の領域において、本発明に係る検出方法によって唾液又は涙液を分析して3-HIBや3-HBの濃度を測定することにより、糖、アミノ酸、脂肪酸の代謝状態を評価しながら、効果的に栄養・運動・体調管理を行うことも可能となる。さらに、本発明に係る検出方法は、BCAA等の栄養素が含まれるサプリメントや栄養ドリンクを摂取した際の栄養・摂取効果などの評価にも利用できる。 In addition, by measuring the concentration of 3-HIB or 3-HB by the detection method according to the present invention, the energy source-dependent balance (energy metabolism state) of lipids and amino acids in the liver and skeletal muscles is measured in the field of sports medicine. It is also possible to monitor using saliva or tears as well as blood. Furthermore, in the area of weight management and beauty by anti-aging and dieting, saliva or tears are analyzed by the detection method according to the present invention, and the concentration of 3-HIB or 3-HB is measured, so that sugar, amino acid, fatty acid It is also possible to effectively manage nutrition, exercise, and physical condition while evaluating the metabolic state. Furthermore, the detection method according to the present invention can also be used for evaluation of nutrition and intake effects when supplements and nutrient drinks containing nutrients such as BCAA are ingested.
 また、健常者群よりも肝硬変患者群の方が、体液中の3-HIB、3-HMB、及び2-HBの濃度が高い傾向にある。そこで、3-HIB、3-HMB、及び2-HBは、肝硬変のバイオマーカーとして利用できる。具体的には、予め肝硬変患者と健常者とを分ける閾値を設定し、被検者の体液中の3-HIB、3-HMB、及び2-HBの濃度を本発明に係る検出方法によって測定し、当該濃度を所定の閾値と比較することにより、肝硬変発症可能性を評価することができる。具体的には、被検者の体液中、特に血清又は唾液中の3-HIB等の濃度が所定の閾値以上であった場合に、前記被検者が肝硬変を発症している可能性が高いと評価することができる。肝硬変患者と健常者とを分ける閾値は、実験的に設定することができる。例えば、肝硬変を発症していないことが分かっている集団から採取された体液と、肝硬変を発症していることが分かっている集団から採取された体液とに対して、本発明に係る検出方法を行ってこれらの体液中の3-HIB等の濃度を測定し、両集団の測定値を比較することにより、適宜設定することができる。例えば、血清中の3-HIB濃度の場合、肝硬変患者群と健常者群を分ける閾値としては、18μM、好ましくは20μM、さらに好ましくは24μMとすることができる。肝硬変のバイオマーカーとしては、3-HIB又は3-HMBが好ましく、肝硬変患者群と健常者群の差がよりはっきりしていることから、唾液中の3-HIB又は唾液中の3-HMBがより好ましい。 In addition, the concentration of 3-HIB, 3-HMB, and 2-HB in the body fluid tends to be higher in the cirrhosis patient group than in the healthy group. Therefore, 3-HIB, 3-HMB, and 2-HB can be used as biomarkers for cirrhosis. Specifically, a threshold value for separating a cirrhosis patient from a healthy person is set in advance, and the concentrations of 3-HIB, 3-HMB, and 2-HB in the body fluid of the subject are measured by the detection method according to the present invention. The possibility of developing cirrhosis can be evaluated by comparing the concentration with a predetermined threshold value. Specifically, when the concentration of 3-HIB or the like in the body fluid of the subject, particularly serum or saliva, is equal to or higher than a predetermined threshold, the subject is highly likely to develop cirrhosis. Can be evaluated. The threshold value for separating a cirrhosis patient from a healthy person can be set experimentally. For example, the detection method according to the present invention is applied to a body fluid collected from a population known not to develop cirrhosis and a body fluid collected from a population known to develop cirrhosis. The concentration can be set as appropriate by measuring the concentration of 3-HIB and the like in these body fluids and comparing the measured values of both groups. For example, in the case of 3-HIB concentration in serum, the threshold value for separating the cirrhosis patient group from the healthy subject group can be 18 μM, preferably 20 μM, more preferably 24 μM. As a biomarker for cirrhosis, 3-HIB or 3-HMB is preferable, and since the difference between the cirrhosis patient group and the healthy group is clearer, 3-HIB in saliva or 3-HMB in saliva is more preferable.
 肝硬変が進行し、肝機能の一つである尿素回路が低下すると、アンモニアは骨格筋で代償的にグルタミンやアラニンに代謝されて無毒化される。その際に、BCAAが骨格筋でBCATにより分岐鎖α-ケト酸に異化される過程で副産物として生じるグルタミン酸が、アンモニア解毒に用いられている。そのため、肝硬変時に骨格筋で代償するアンモニア解毒の際にも骨格筋BCAA異化の亢進が必要であり、結果として、体液中の3-HIB濃度は上昇する。アンモニア解毒が不十分で、体液中のアンモニア濃度が高くなると、脳症が誘発されやすくなると考えられている。したがって、肝硬変患者の肝臓でのアンモニア解毒能の低下に加え、骨格筋BCAA異化を介したアンモニア解毒代償能の低下が生じると、肝性脳症をきたすものと考えられる。この様な理由で、3-HIBは、肝性脳症又はその発症可能性のバイオマーカーとして利用でき、その予防や早期治療のために有用な情報を提供することができる。例えば、3-HIB濃度から肝性脳症を発症するリスクが高いと評価された肝硬変患者に対しては、脳症が顕在化していない場合であっても蛋白制限食を推奨したり、BCAAの摂取を推奨したりすることにより、肝性脳症の発症を予防し得る可能性がある。 When liver cirrhosis progresses and the urea cycle, which is one of the liver functions, decreases, ammonia is metabolized to glutamine and alanine in a compensatory manner in the skeletal muscle and detoxified. At that time, glutamic acid generated as a by-product in the process of BCAA being catabolized in skeletal muscle to be branched chain α-keto acid by BCAT is used for ammonia detoxification. Therefore, it is necessary to increase catabolism of skeletal muscle BCAA during ammonia detoxification that compensates for skeletal muscle at the time of cirrhosis, resulting in an increase in 3-HIB concentration in body fluids. It is thought that encephalopathy is likely to be induced if ammonia detoxification is insufficient and the concentration of ammonia in body fluids increases. Therefore, in addition to the decrease in the ammonia detoxification ability in the liver of cirrhotic patients, a decrease in the ability to compensate for ammonia detoxification through skeletal muscle BCAA catabolism is considered to cause hepatic encephalopathy. For these reasons, 3-HIB can be used as a biomarker for hepatic encephalopathy or its onset, and can provide useful information for its prevention and early treatment. For example, for cirrhosis patients who are evaluated to have a high risk of developing hepatic encephalopathy from 3-HIB levels, a protein-restricted diet is recommended, or BCAA intake is recommended even if encephalopathy has not been manifested. It may be possible to prevent the development of hepatic encephalopathy by making recommendations.
 例えば、肝硬変患者から経時的に採取した体液(血清、涙液、唾液等)中の3-HIB濃度をモニタリングした場合に、3-HIB濃度が低下傾向にある場合には、当該肝硬変患者が肝性脳症を発症する可能性が高い。そこで、肝硬変を発症している被検者から採取した生体試料、特に血清又は唾液中の3-HIB濃度を本発明に係る検出方法によって測定し、得られた3-HIB濃度を、当該生体試料が採取された時点以前に前記被験者から採取された生体試料中の3-HIB濃度と比較することにより、肝性脳症発症可能性を評価できる。具体的には、得られた3-HIB濃度が、以前に採取された生体試料の3-HIB濃度よりも有意に低い場合や、モニタリングの結果、以前に採取された生体試料の3-HIB濃度よりも低くなる傾向がある程度継続している場合には、当該被検者が肝性脳症を発症する可能性が高いと評価する。 For example, when monitoring the 3-HIB concentration in body fluid (serum, tears, saliva, etc.) collected from a cirrhotic patient over time, and the 3-HIB concentration tends to decrease, The possibility of developing encephalopathy is high. Therefore, a biological sample collected from a subject who has developed cirrhosis, in particular, 3-HIB concentration in serum or saliva is measured by the detection method according to the present invention, and the obtained 3-HIB concentration is measured with the biological sample. By comparing with the 3-HIB concentration in the biological sample collected from the subject before the time when was collected, the possibility of developing hepatic encephalopathy can be evaluated. Specifically, when the 3-HIB concentration obtained is significantly lower than the 3-HIB concentration of a previously collected biological sample, or as a result of monitoring, the 3-HIB concentration of a previously collected biological sample When the tendency to become lower than this continues for a certain degree, it is evaluated that the subject is highly likely to develop hepatic encephalopathy.
 肝硬変患者における3-HIB濃度が低下しているか否かは、肝硬変患者と健常者とを分ける閾値を用いても評価することができる。具体的には、肝硬変を発症している被検者から採取した生体試料、特に血清又は唾液中の3-HIB濃度を本発明に係る検出方法によって測定し、得られた3-HIB濃度を、所定の閾値(例えば、前記の肝硬変患者と健常者とを分ける閾値)と比較することにより、肝性脳症発症可能性を評価することができる。具体的には、被検者の3-HIB濃度が所定の閾値未満であった場合や、所定の閾値未満である状態がある程度継続している場合に、前記被検者が肝性脳症を発症する可能性が高いと評価することができる。 Whether the 3-HIB concentration in cirrhosis patients is lowered can also be evaluated using a threshold value that separates cirrhosis patients from healthy individuals. Specifically, the 3-HIB concentration in a biological sample collected from a subject who has developed cirrhosis, particularly serum or saliva, is measured by the detection method according to the present invention, and the obtained 3-HIB concentration is The possibility of developing hepatic encephalopathy can be evaluated by comparing with a predetermined threshold value (for example, the threshold value that separates the cirrhosis patient from the healthy person). Specifically, the subject develops hepatic encephalopathy when the 3-HIB concentration of the subject is below a predetermined threshold or when the state of being below the predetermined threshold continues to some extent. It can be evaluated that there is a high possibility of doing.
 本発明に係る検出方法を用いることにより、3-HIB等の含有量が比較的高い血液等の生体試料以外にも、唾液又は涙液等の3-HIB等の含有量が極微量である生体試料を用いてモニターすることも可能となる。特に、非侵襲的に採取される涙液、唾液等を試料とすることにより、医療有資格者に限られる採血などの試料採取や特別な採取器具(針、注射筒、採血管、非凝固薬など)を必要とすることなく、場所、時間、採取者を問わずに試料の採取が可能となる。この場合には、通院や入院の必要がなく、在宅で患者本人による試料の採取も可能である。また、採血を好まない子供もしくは高齢者や宗教上の理由で採血が出来ない患者に対しても、唾液試料での測定は有効である。 By using the detection method according to the present invention, in addition to a biological sample such as blood having a relatively high content of 3-HIB and the like, a living body having a very small content of 3-HIB such as saliva or tears It is also possible to monitor using a sample. In particular, by using non-invasively collected tears, saliva, etc. as samples, sample collection such as blood collection and special collection devices (needle, syringe, blood collection tube, noncoagulant) Samples can be collected regardless of location, time, and sampler. In this case, there is no need to go to hospital or hospitalization, and it is possible to collect samples by the patient at home. In addition, measurement with a saliva sample is also effective for children who do not like blood collection, elderly people, and patients who cannot collect blood for religious reasons.
 3-HMBは、BCAA由来の肝臓や骨格筋における蛋白合成のマーカーや骨格筋肥大のマーカーとして利用可能であり、また、2-HBは、早期インスリン抵抗性のマーカーや、グルコース不耐性のマーカーである。本発明に係る検出方法を用いることにより、血液や唾液等を用いて、これらのバイオマーカーを感度よく検出することができる。 3-HMB can be used as a marker for protein synthesis and skeletal muscle hypertrophy in BCAA-derived liver and skeletal muscle, and 2-HB is a marker for early insulin resistance and glucose intolerance. is there. By using the detection method according to the present invention, these biomarkers can be detected with high sensitivity using blood, saliva, or the like.
 なお、後記実施例10に示すように、唾液や血液等の生体試料中の3-HIB及び3-HBは、長時間室温で放置した場合でも、濃度が低下し難い。このため、被験者から採取された生体試料を直ちに冷蔵・冷凍保存することが困難な場合であっても、3-HIB及び3-HBは安定した優れたバイオマーカーとして機能し得る。このため、例えば健康診断等のように、被験者から生体試料を採取する場所と、当該生体試料中の3-HIB等の有機酸を検出するための試験場所とが離れている場合であっても、本発明に係る検出方法を用いることにより、3-HIB及び3-HBの濃度を精度よく測定することができる。 As shown in Example 10 below, the concentrations of 3-HIB and 3-HB in biological samples such as saliva and blood are unlikely to decrease even when left at room temperature for a long time. Therefore, even when it is difficult to immediately refrigerate / freeze a biological sample collected from a subject, 3-HIB and 3-HB can function as stable and excellent biomarkers. For this reason, even when the location for collecting the biological sample from the subject and the test location for detecting an organic acid such as 3-HIB in the biological sample are separated, such as in a health checkup, for example. By using the detection method according to the present invention, the concentrations of 3-HIB and 3-HB can be accurately measured.
 次に実施例等を示して本発明をさらに詳細に説明するが、本発明はこれらに限定されるものではない。 Next, the present invention will be described in more detail with reference to examples and the like, but the present invention is not limited thereto.
<試薬類>
 以下の実施例等で用いた試薬は次の通りである。D-3-HB、L-3-HB、及び3-HIBナトリウム塩は、シグマアルドリッチケミカル社製のものを用いた。DL-3-HB-13ナトリウム塩は、太陽日酸社製のものを用いた。2-ピリジンメタノール、2-メチル-6-ニトロ安息香酸無水物、1-ピペリジンエタノール、2-(2-ヒドロキシエチル)-1-メチルピロリジン、3-ピリジンメタノール、2-ジエチルアミノエタノール、3-ヒドロキシ-1-メチルピペリジン、及び4-ピリジンメタノールは、東京化成工業社製のものを、4-ジメチルアミノピリジンは和光純薬社製のものを用いた。3-HBデヒドロゲナーゼは、Roche Diagnostics社製のものを用いた。
<Reagents>
The reagents used in the following examples and the like are as follows. D-3-HB, L-3-HB, and 3-HIB sodium salts were manufactured by Sigma-Aldrich Chemical. DL-3-HB- 13 C 4 sodium salt was manufactured by Taiyo Nippon Sanso Co., Ltd. 2-pyridinemethanol, 2-methyl-6-nitrobenzoic anhydride, 1-piperidineethanol, 2- (2-hydroxyethyl) -1-methylpyrrolidine, 3-pyridinemethanol, 2-diethylaminoethanol, 3-hydroxy- 1-methylpiperidine and 4-pyridinemethanol were manufactured by Tokyo Chemical Industry Co., Ltd., and 4-dimethylaminopyridine was manufactured by Wako Pure Chemical Industries. A 3-HB dehydrogenase manufactured by Roche Diagnostics was used.
<血清試料の調製>
 健常人から採取した血液から血清を回収し、測定に使用する時点まで-20℃で保存したものを用いた。血清(10μL)を、1.5mLの遠心分離用プラスチックチューブにいれ、さらに内部標準として769pmol(100ng)のDL-3-HB-13ナトリウム塩を含むアセトニトリル/水(1/19、容量比)溶液(100μL)を添加して1分間撹拌した後、2000×gで1分間遠心分離処理した。上清を、水/アセトニトリル(1/19、容量比)溶液に入れ、脱蛋白処理をした後、液相を回収して80℃、窒素ガス吹き付け下でエバポレートして乾燥させた。
<Preparation of serum sample>
Serum was collected from blood collected from healthy individuals and stored at −20 ° C. until the time of use for measurement. Serum (10 [mu] L), placed in a 1.5mL centrifuge plastic tube, further acetonitrile / water (1/19 containing DL-3-HB- 13 C 4 sodium salt of 769pmol (100ng) as an internal standard, volume ratio ) After the solution (100 μL) was added and stirred for 1 minute, it was centrifuged at 2000 × g for 1 minute. The supernatant was put in a water / acetonitrile (1/19, volume ratio) solution and subjected to deproteinization treatment, and then the liquid phase was recovered and evaporated to dryness at 80 ° C. under nitrogen gas blowing.
<3-HB-フリー血清の調製>
 3-HB-フリー血清は、正常な血清(10μL)を1.8mMのNADと0.075Uの3-ヒドロキシ酪酸デヒドロゲナーゼを添加した150mMのTris-HCl(pH8.6)に添加して、37℃で30分間インキュベートすることにより調製した。
<Preparation of 3-HB-free serum>
3-HB-free serum was prepared by adding normal serum (10 μL) to 150 mM Tris-HCl (pH 8.6) supplemented with 1.8 mM NAD and 0.075 U 3-hydroxybutyrate dehydrogenase at 37 ° C. For 30 minutes.
<2-ピリジンメタノールを誘導体化試薬とする有機酸のエステル化反応>
 2-ピリジンメタノールを誘導体化試薬とする有機酸のエステル化反応は、シイナらによるカルボキシエステルの合成方法(非特許文献13参照。)を改良して行った。具体的には、2-メチル-6-ニトロ安息香酸無水物(67mg)、4-ジメチルアミノピリジン(20mg)、ピリジン(900μL)、及び2-ピリジンメタノール(100μL)からなる2PM誘導体化用混合試薬を用いた。まず、直前に調製した前記2PM誘導体化用混合試薬(50μL)を、有機酸を含む乾燥させたサンプルに加えた反応溶液を、室温で30分間静置した。次いで、当該反応液にn-ヘキサン(1mL)を加えて30秒間撹拌した後、700×gで1分間遠心分離処理し、回収した上清を、80℃、窒素ガス吹き付け下でエバポレートした。残留物を1容量%のギ酸水溶液(150μL)に再溶解させ、再度7000×gで1分間遠心分離処理し、回収した上清を、測定試料としてESI-LC-MS/MSに供した。
<Esterification reaction of organic acid using 2-pyridinemethanol as derivatization reagent>
The esterification reaction of an organic acid using 2-pyridinemethanol as a derivatization reagent was performed by improving the method for synthesizing carboxyesters by Siina et al. (See Non-Patent Document 13). Specifically, a mixed reagent for 2PM derivatization comprising 2-methyl-6-nitrobenzoic anhydride (67 mg), 4-dimethylaminopyridine (20 mg), pyridine (900 μL), and 2-pyridinemethanol (100 μL) Was used. First, the reaction solution prepared by adding the 2PM derivatization mixed reagent (50 μL) prepared immediately before to a dried sample containing an organic acid was allowed to stand at room temperature for 30 minutes. Subsequently, n-hexane (1 mL) was added to the reaction solution and stirred for 30 seconds, followed by centrifugation at 700 × g for 1 minute, and the collected supernatant was evaporated at 80 ° C. under nitrogen gas blowing. The residue was redissolved in a 1% by volume formic acid aqueous solution (150 μL), centrifuged again at 7000 × g for 1 minute, and the collected supernatant was subjected to ESI-LC-MS / MS as a measurement sample.
<LC-P-ESI-MS/MS>
 LC-MS/MSシステムは、HESI-IIプローブとProminence Ultra Fast Liquid Chromatography(UFLC)システム(島津製作所製)を備えたトリプル四重極型質量分析計TSQ Vantage(Thermo Fisher Scientific社製)を用いた。クロマトグラフィーにおける分離は、Hypersil GOLD aQカラム(2.1×150mm、3μm、Thermo Fisher Scientific社製)を用いて40℃で行った。はじめに、移動相を0.2容量%のギ酸を含むアセトニトリル/水(1/19、容量比)として流速300μL/分で5分間流した。5分後に、移動相を0.2容量%のギ酸を含むアセトニトリルに変更し、流速300μL/分で7分間流した。一般的なMS/MS条件は、以下の通りである;
スプレー電圧:3000V、
噴霧器温度:450℃、
シースガス(窒素)圧:50psi、
補助ガス(窒素)流量:15任意単位、
イオントランスファーキャピラリー温度:220℃、
衝突ガス(アルゴン)圧:1.0mTorr、
衝突エネルギー:15V、
イオン極性:正モード。
<LC-P-ESI-MS / MS>
The LC-MS / MS system is a triple quadrupole mass spectrometer TSQ Vantage (manufactured by Thermo Fisher Scientific) equipped with a HESI-II probe and Prominence Ultra Fast Liquid Chromatography (UFLC) system (manufactured by Shimadzu Corporation). . Separation in chromatography was performed at 40 ° C. using a Hypersil GOLD aQ column (2.1 × 150 mm, 3 μm, manufactured by Thermo Fisher Scientific). First, the mobile phase was allowed to flow for 5 minutes at a flow rate of 300 μL / min as acetonitrile / water (1/19, volume ratio) containing 0.2% by volume of formic acid. After 5 minutes, the mobile phase was changed to acetonitrile containing 0.2% by volume of formic acid and allowed to flow for 7 minutes at a flow rate of 300 μL / min. General MS / MS conditions are as follows:
Spray voltage: 3000V
Nebulizer temperature: 450 ° C,
Sheath gas (nitrogen) pressure: 50 psi,
Auxiliary gas (nitrogen) flow rate: 15 arbitrary units,
Ion transfer capillary temperature: 220 ° C.
Impact gas (argon) pressure: 1.0 mTorr,
Collision energy: 15V
Ion polarity: positive mode.
 図1Bに、2-ピリジンメタノールで誘導体化された3-HB(2PM-3-HB)の典型的なP-ESI MSスペクトラムを示す。2PM-3-HBは、[M+H]イオンがベースピークとしてm/z 196にみられる。このm/z 196を前駆イオンとした時のプロダクトイオンMSスペクトラム(図1A)では、[CNCHOH+H]のフラグメントイオンが最も突出したピークとしてm/z 110にみられる。SRMは、2PM-3-HBの検出にはm/z 196→m/z 110を用いて行い、[13]同位体(内部標準)の検出にはm/z 200→m/z 110を用いて行った。 FIG. 1B shows a typical P-ESI MS spectrum of 3-HB (2 PM-3-HB) derivatized with 2-pyridinemethanol. In 2 PM-3-HB, [M + H] + ions are found at m / z 196 as the base peak. In the product ion MS spectrum (FIG. 1A) when m / z 196 is used as a precursor ion, a fragment ion of [C 5 H 4 NCH 2 OH + H] + is seen at m / z 110 as the most prominent peak. SRM is performed using m / z 196 → m / z 110 for detection of 2 PM-3-HB, and m / z 200 → m / z 110 for detection of [ 13 C 4 ] isotope (internal standard). It was performed using.
<キャリブレーションカーブの作成>
 キャリブレーションカーブの作成には、アセトニトリル/水(1/19、容量比)にD-3-HBナトリウム塩を溶解させた標品保存溶液(200ng/μL)を、さらにアセトニトリル/水(1/19、容量比)を用いて適宜希釈することにより調製した濃度既知のD-3-HBナトリウム標準溶液(1~200ng/100μL)を用いた。各標準溶液には、内部標準として、DL-3-HB-13ナトリウム塩(100ng)を添加し、混合物をエバポレートして乾燥させた後に、誘導体化(誘導体によるエステル化)をしたものを、ESI-LC-MS/MSにより測定した。キャリブレーションカーブのマトリックス効果を調べるために、各標準溶液にブランクマトリックスとして、3-HB-フリー血清を添加した。
<Create calibration curve>
For the preparation of the calibration curve, a sample stock solution (200 ng / μL) in which D-3-HB sodium salt was dissolved in acetonitrile / water (1/19, volume ratio) was further added to acetonitrile / water (1/19). D-3-HB sodium standard solution (1 to 200 ng / 100 μL) having a known concentration prepared by appropriately diluting using a volume ratio). Each standard solution as an internal standard, were added DL-3-HB- 13 C 4 sodium salt (100 ng), after the mixture was evaporated to dryness and the obtained by the derivatization (esterification with derivatives) , Measured by ESI-LC-MS / MS. To examine the matrix effect of the calibration curve, 3-HB-free serum was added as a blank matrix to each standard solution.
<LC-N-ESI-MS/MS>
 3-HBのLC-N-ESI-MS/MSは、誘導体化を行わずに、LC-P-ESI-MS/MSで用いたLC-MS/MSシステムと同じものを用いて実施した。クロマトグラフィーにおける分離は、Hypersil GOLD aQカラム(2.1×150mm、3μm、Thermo Fisher Scientific社製)を用いて40℃で行った。移動相は、0.1容量%のギ酸を含むメタノール/水(1/9、容量比)を流速200μL/分で流した。一般的なMS/MS条件は、以下の通りである;
スプレー電圧:2500V、
噴霧器温度:450℃、
シースガス(窒素)圧:50psi、
補助ガス(窒素)流量:15任意単位、
イオントランスファーキャピラリー温度:220℃、
衝突ガス(アルゴン)圧:1.0mTorr、
衝突エネルギー:15V、
イオン極性:負モード、
3-HBのSRM(選択反応モニタリング):m/z 103 → m/z 59、
13]のSRM:m/z 107 → m/z 61。
<LC-N-ESI-MS / MS>
LC-N-ESI-MS / MS of 3-HB was performed using the same LC-MS / MS system used in LC-P-ESI-MS / MS without derivatization. Separation in chromatography was performed at 40 ° C. using a Hypersil GOLD aQ column (2.1 × 150 mm, 3 μm, manufactured by Thermo Fisher Scientific). As the mobile phase, methanol / water (1/9, volume ratio) containing 0.1% by volume of formic acid was allowed to flow at a flow rate of 200 μL / min. General MS / MS conditions are as follows:
Spray voltage: 2500V
Nebulizer temperature: 450 ° C,
Sheath gas (nitrogen) pressure: 50 psi,
Auxiliary gas (nitrogen) flow rate: 15 arbitrary units,
Ion transfer capillary temperature: 220 ° C.
Impact gas (argon) pressure: 1.0 mTorr,
Collision energy: 15V
Ion polarity: negative mode,
3-HB SRM (selective reaction monitoring): m / z 103 → m / z 59,
[ 13 C 4 ] SRM: m / z 107 → m / z 61.
<統計処理>
 以下の実施例等における数値は、平均±SD(標準偏差)である。キャリブレーションカーブの直線性は単回帰分析により分析した。再現性は、一元配置分散分析法(one-way ANOVA)(JMPソフトウェア、SAS Institute社製)により分析した。推定値±95%信頼限界を、精度指標として得た(非特許文献14参照。)。値を算出するために、JMPソフトウェアを用いた再現性試験においては、直交回帰分析を行った。異なるグループ間の差の統計的有意性は、Student’s two-tailed t-testにより評価した。全ての分析では、P<0.05で有意差ありとした。
<Statistical processing>
The numerical values in the following examples and the like are mean ± SD (standard deviation). The linearity of the calibration curve was analyzed by single regression analysis. Reproducibility was analyzed by one-way analysis of variance (one-way ANOVA) (JMP software, manufactured by SAS Institute). An estimated value ± 95% confidence limit was obtained as an accuracy index (see Non-Patent Document 14). In order to calculate the values, orthogonal regression analysis was performed in a reproducibility test using JMP software. Statistical significance of differences between different groups was assessed by Student's two-tailed t-test. In all analyses, P <0.05 was considered significant.
[実施例1] 
 2-ピリジンメタノールで誘導体化された3-HB及び3-HIBを、LC-P-ESI-MS/MSにより検出した。具体的には、アセトニトリル/水(1/19、容量比)(100μL)にD-3-HBナトリウム塩(標品、1μg)のみを溶解させた試料溶液、D-3-HIBナトリウム塩(標品、1μg)のみを溶解させた試料溶液、及びD-3-HBナトリウム塩(標品、1μg)とD-3-HIBナトリウム塩(標品、1μg)を溶解させた試料溶液を調製し、それぞれをエバポレートして乾燥させた後に、前記2PM誘導体化用混合試薬により誘導体化(誘導体によるエステル化)をした。最終的に1容量%のギ酸水溶液(1mL)に再溶解させ、1μL(D-3-HBナトリウム塩、D-3-HIBナトリウム塩それぞれ1ng相当)を、前述の通りにLC-P-ESI-MS/MSにより測定した。
[Example 1]
3-HB and 3-HIB derivatized with 2-pyridinemethanol were detected by LC-P-ESI-MS / MS. Specifically, a sample solution in which only D-3-HB sodium salt (standard, 1 μg) was dissolved in acetonitrile / water (1/19, volume ratio) (100 μL), D-3-HIB sodium salt (standard) Sample solution in which only 1 μg) is dissolved, and a sample solution in which D-3-HB sodium salt (standard, 1 μg) and D-3-HIB sodium salt (standard, 1 μg) are dissolved, Each was evaporated to dryness and then derivatized (esterified with a derivative) with the mixed reagent for 2PM derivatization. Finally, it was redissolved in a 1% by volume aqueous formic acid solution (1 mL), and 1 μL (corresponding to 1 ng each of D-3-HB sodium salt and D-3-HIB sodium salt) was added to LC-P-ESI- Measured by MS / MS.
 2-ピリジンメタノールで誘導体化された3-HB及び3-HIBを、LC-P-ESI-MS/MSにより検出した結果を図2に示す。図2Aに誘導体化された3-HBのみを含む試料の総イオンクロマトグラム(上段)とMSクロマトグラム(下段)を、図2Bに前記図2AのMSスペクトラムを、図2Cに誘導体化された3-HIBのみを含む試料の総イオンクロマトグラム(上段)とMSクロマトグラム(下段)を、図2Dに前記図2CのMSスペクトラムを、図2Eに誘導体化された3-HBと3-HIBを含む試料のm/z 196を前駆イオンとした時のプロダクトイオンクロマトグラムを、図2Fに前記図2Eの3-HIBピークのMS/MSスペクトラムを、それぞれ示す。  FIG. 2 shows the results of detection of 3-HB and 3-HIB derivatized with 2-pyridinemethanol by LC-P-ESI-MS / MS. 2A shows the total ion chromatogram (upper) and MS chromatogram (lower) of the sample containing only derivatized 3-HB, FIG. 2B shows the MS spectrum of FIG. 2A, and FIG. 2C shows the derivatized 3 -Total ion chromatogram (top) and MS chromatogram (bottom) of a sample containing only HIB, Fig. 2D contains the MS spectrum of Fig. 2C, and Fig. 2E contains derivatized 3-HB and 3-HIB. A product ion chromatogram when m / z 196 of the sample is used as a precursor ion is shown in FIG. 2F, and an MS / MS spectrum of the 3-HIB peak in FIG. 2E is shown. *
 この結果、測定に供した試料には1ngしか含まれていなかったにもかかわらず、低感度高情報量のスキャンモードで、3-HBと3-HIBの誘導体はいずれもスペクトル解析することができた。また、LCクロマトグラムにおいて、3-HBの誘導体と3-HIBの誘導体の分離が良好であった。また、LCの保持時間が遅いため、カラムから最初に出てくる誘導体化試薬等(例えば、4-ジメチルアミノピリジンなど)の3-HBの誘導体や3-HIBの誘導体のピークに対する影響は非常に小さかった。つまり、これらの結果から、2-ピリジンメタノールで誘導体化することにより、3-HBや3-HIB等の有機酸を、精度よく高感度に検出できることがわかった。 As a result, even though the sample used for measurement contained only 1 ng, both 3-HB and 3-HIB derivatives could be spectrally analyzed in the scan mode with low sensitivity and high information content. It was. In the LC chromatogram, the separation of the 3-HB derivative and the 3-HIB derivative was good. In addition, since the LC retention time is slow, the effect of the derivatization reagent (eg, 4-dimethylaminopyridine, etc.) that emerges first from the column on the peaks of 3-HB derivatives and 3-HIB derivatives is very high. It was small. That is, from these results, it was found that organic acids such as 3-HB and 3-HIB can be detected with high accuracy and high sensitivity by derivatization with 2-pyridinemethanol.
[実施例2] 
 1-ピペリジンエタノールで誘導体化された3-HB及び3-HIBを、LC-P-ESI-MS/MSにより検出した。具体的には、誘導体化試薬として、2PM誘導体化用混合試薬に代えて、2-メチル-6-ニトロ安息香酸無水物(67mg)、4-ジメチルアミノピリジン(20mg)、ピリジン(900μL)、及び1-ピペリジンエタノール(100μL)からなる1PE誘導体化用混合試薬を用いた以外は、実施例1と同様にして誘導体化し、LC-P-ESI-MS/MSにより測定した。
[Example 2]
3-HB and 3-HIB derivatized with 1-piperidineethanol were detected by LC-P-ESI-MS / MS. Specifically, as a derivatization reagent, instead of the mixed reagent for 2PM derivatization, 2-methyl-6-nitrobenzoic anhydride (67 mg), 4-dimethylaminopyridine (20 mg), pyridine (900 μL), and Derivatization was performed in the same manner as in Example 1 except that a mixed reagent for 1PE derivatization composed of 1-piperidineethanol (100 μL) was used, and measurement was performed by LC-P-ESI-MS / MS.
 図3に、1-ピペリジンエタノールで誘導体化された3-HB及び3-HIBを、LC-P-ESI-MS/MSにより検出した結果を示す。図3Aに誘導体化された3-HBのみを含む試料の総イオンクロマトグラム(上段)とMSクロマトグラム(下段)を、図3Bに前記図3AのMSスペクトラムを、図3Cに誘導体化された3-HIBのみを含む試料の総イオンクロマトグラム(上段)とMSクロマトグラム(下段)を、図3Dに前記図3CのMSスペクトラムを、図3Eに誘導体化された3-HBと3-HIBを含む試料のm/z 216を前駆イオンとした時のプロダクトイオンクロマトグラムを、図3Fに前記図3Eの3-HIBピークのMS/MSスペクトラムを、それぞれ示す。  FIG. 3 shows the results of detection of 3-HB and 3-HIB derivatized with 1-piperidineethanol by LC-P-ESI-MS / MS. 3A shows the total ion chromatogram (upper) and MS chromatogram (lower) of the sample containing only derivatized 3-HB, FIG. 3B shows the MS spectrum of FIG. 3A, and FIG. 3C shows the derivatized 3 -Total ion chromatogram (top) and MS chromatogram (bottom) of a sample containing only HIB, Fig. 3D contains the MS spectrum of Fig. 3C, and Fig. 3E contains derivatized 3-HB and 3-HIB. FIG. 3F shows a product ion chromatogram when m / z 216 of the sample is used as a precursor ion, and FIG. 3F shows an MS / MS spectrum of the 3-HIB peak in FIG. 3E. *
 この結果、測定に供した試料には1ngしか含まれていなかったにもかかわらず、低感度高情報量のスキャンモードで、3-HBと3-HIBの誘導体はいずれもスペクトル解析することができた。また、LCクロマトグラムにおいて、3-HBの誘導体と3-HIBの誘導体の分離が良好であった。また、3-HBの誘導体と3-HIBの誘導体のいずれのピークも、プロダクトイオンクロマトグラムにおけるS/Nが良好であり、感度が特に良好であった。つまり、これらの結果から、1-ピリジンエタノールで誘導体化することにより、3-HBや3-HIB等の有機酸を、精度よく高感度に検出できることがわかった。 As a result, even though the sample used for measurement contained only 1 ng, both 3-HB and 3-HIB derivatives could be spectrally analyzed in the scan mode with low sensitivity and high information content. It was. In the LC chromatogram, the separation of the 3-HB derivative and the 3-HIB derivative was good. In addition, each peak of the 3-HB derivative and the 3-HIB derivative had a good S / N in the product ion chromatogram and a particularly good sensitivity. That is, from these results, it was found that organic acids such as 3-HB and 3-HIB can be detected with high accuracy and high sensitivity by derivatization with 1-pyridineethanol.
[実施例3] 
 2-(2-ヒドロキシエチル)-1-メチルピロリジンで誘導体化された3-HB及び3-HIBを、LC-P-ESI-MS/MSにより検出した。具体的には、誘導体化試薬として、2PM誘導体化用混合試薬に代えて、2-メチル-6-ニトロ安息香酸無水物(67mg)、4-ジメチルアミノピリジン(20mg)、ピリジン(900μL)、及び2-(2-ヒドロキシエチル)-1-メチルピロリジン(100μL)からなる1PE誘導体化用混合試薬を用いた以外は、実施例1と同様にして誘導体化し、LC-P-ESI-MS/MSにより測定した。
[Example 3]
3-HB and 3-HIB derivatized with 2- (2-hydroxyethyl) -1-methylpyrrolidine were detected by LC-P-ESI-MS / MS. Specifically, as a derivatization reagent, instead of the mixed reagent for 2PM derivatization, 2-methyl-6-nitrobenzoic anhydride (67 mg), 4-dimethylaminopyridine (20 mg), pyridine (900 μL), and Derivatization was performed in the same manner as in Example 1 except that a mixed reagent for 1PE derivatization consisting of 2- (2-hydroxyethyl) -1-methylpyrrolidine (100 μL) was used, and LC-P-ESI-MS / MS It was measured.
 2-(2-ヒドロキシエチル)-1-メチルピロリジンで誘導体化された3-HB及び3-HIBを、LC-P-ESI-MS/MSにより検出した結果を図4に示す。図4Aに誘導体化された3-HBのみを含む試料の総イオンクロマトグラム(上段)とMSクロマトグラム(下段)を、図4Bに前記図4AのMSスペクトラムを、図4Cに誘導体化された3-HIBのみを含む試料の総イオンクロマトグラム(上段)とMSクロマトグラム(下段)を、図4Dに前記図4CのMSスペクトラムを、図4Eに誘導体化された3-HBと3-HIBを含む試料のm/z 216を前駆イオンとした時のプロダクトイオンクロマトグラムを、図4Fに前記図4Eの3-HIBピークのMS/MSスペクトラムを、それぞれ示す。  FIG. 4 shows the results of detecting 3-HB and 3-HIB derivatized with 2- (2-hydroxyethyl) -1-methylpyrrolidine by LC-P-ESI-MS / MS. 4A shows the total ion chromatogram (upper) and MS chromatogram (lower) of a sample containing only derivatized 3-HB, FIG. 4B shows the MS spectrum of FIG. 4A, and FIG. 4C shows the derivatized 3 -The total ion chromatogram (top) and MS chromatogram (bottom) of the sample containing only HIB, Fig. 4D contains the MS spectrum of Fig. 4C, and Fig. 4E contains derivatized 3-HB and 3-HIB. FIG. 4F shows a product ion chromatogram when m / z 216 of the sample is used as a precursor ion, and FIG. 4F shows an MS / MS spectrum of the 3-HIB peak in FIG. 4E. *
 この結果、測定に供した試料には1ngしか含まれていなかったにもかかわらず、低感度高情報量のスキャンモードで、3-HBと3-HIBの誘導体はいずれもスペクトル解析することができた。また、LCクロマトグラムにおいて、3-HBの誘導体と3-HIBの誘導体の分離が良好であった。また、3-HBの誘導体と3-HIBの誘導体のいずれのピークも、プロダクトイオンクロマトグラムにおけるS/Nが良好であり、感度が特に良好であった。つまり、これらの結果から、2-(2-ヒドロキシエチル)-1-メチルピロリジンで誘導体化することにより、3-HBや3-HIB等の有機酸を、精度よく高感度に検出できることがわかった。 As a result, even though the sample used for measurement contained only 1 ng, both 3-HB and 3-HIB derivatives could be spectrally analyzed in the scan mode with low sensitivity and high information content. It was. In the LC chromatogram, the separation of the 3-HB derivative and the 3-HIB derivative was good. In addition, each peak of the 3-HB derivative and the 3-HIB derivative had a good S / N in the product ion chromatogram and a particularly good sensitivity. In other words, these results indicate that organic acids such as 3-HB and 3-HIB can be detected with high accuracy and high sensitivity by derivatization with 2- (2-hydroxyethyl) -1-methylpyrrolidine. .
[比較例1]
 3-ピリジンメタノールで誘導体化された3-HB及び3-HIBを、LC-P-ESI-MS/MSにより検出した。具体的には、誘導体化試薬として、2PM誘導体化用混合試薬に代えて、2-メチル-6-ニトロ安息香酸無水物(67mg)、4-ジメチルアミノピリジン(20mg)、ピリジン(900μL)、及び3-ピリジンメタノール(100μL)からなる3PM誘導体化用混合試薬を用いた以外は、実施例1と同様にして誘導体化し、LC-P-ESI-MS/MSにより測定した。
[Comparative Example 1]
3-HB and 3-HIB derivatized with 3-pyridinemethanol were detected by LC-P-ESI-MS / MS. Specifically, as a derivatization reagent, instead of the mixed reagent for 2PM derivatization, 2-methyl-6-nitrobenzoic anhydride (67 mg), 4-dimethylaminopyridine (20 mg), pyridine (900 μL), and Derivatization was performed in the same manner as in Example 1 except that a mixed reagent for derivatization of 3PM consisting of 3-pyridinemethanol (100 μL) was used, and measurement was performed by LC-P-ESI-MS / MS.
 3-ピリジンメタノールで誘導体化された3-HB及び3-HIBを、LC-P-ESI-MS/MSにより検出した結果を図5に示す。図5Aに誘導体化された3-HBのみを含む試料の総イオンクロマトグラム(上段)とMSクロマトグラム(下段)を、図5Bに前記図5AのMSスペクトラムを、図5Cに誘導体化された3-HIBのみを含む試料の総イオンクロマトグラム(上段)とMSクロマトグラム(下段)を、図5Dに前記図5CのMSスペクトラムを、図5Eに誘導体化された3-HBと3-HIBを含む試料のm/z 196を前駆イオンとした時のプロダクトイオンクロマトグラムを、図5Fに前記図5Eの3-HIBピークのMS/MSスペクトラムを、それぞれ示す。  FIG. 5 shows the results of detection of 3-HB and 3-HIB derivatized with 3-pyridinemethanol by LC-P-ESI-MS / MS. 5A shows the total ion chromatogram (upper) and MS chromatogram (lower) of the sample containing only derivatized 3-HB, FIG. 5B shows the MS spectrum of FIG. 5A, and FIG. 5C shows the derivatized 3 -Total ion chromatogram (top) and MS chromatogram (bottom) of a sample containing only HIB, Fig. 5D contains the MS spectrum of Fig. 5C, and Fig. 5E contains derivatized 3-HB and 3-HIB. A product ion chromatogram when m / z 196 of the sample is used as a precursor ion is shown in FIG. 5F, and an MS / MS spectrum of the 3-HIB peak in FIG. 5E is shown. *
 この結果、3-HBと3-HIBの誘導体はいずれも検出することができたが、LCクロマトグラムにおいて、3-HBの誘導体と3-HIBの誘導体の分離が不良であった。また、LCの保持時間が3PM誘導体化用混合試薬中の4-ジメチルアミノピリジンと重なった。特に3-HBの3-ピリジンメタノール誘導体は、4-ジメチルアミノピリジンによるマトリックス効果により感度が極端に悪くなった。 As a result, both 3-HB and 3-HIB derivatives could be detected, but the separation of 3-HB derivative and 3-HIB derivative was poor in the LC chromatogram. The LC retention time overlapped with 4-dimethylaminopyridine in the mixed reagent for 3PM derivatization. In particular, the 3-pyridine methanol derivative of 3-HB was extremely insensitive due to the matrix effect of 4-dimethylaminopyridine.
[比較例2]
 2-ジエチルアミノエタノールで誘導体化された3-HB及び3-HIBを、LC-P-ESI-MS/MSにより検出した。具体的には、誘導体化試薬として、2PM誘導体化用混合試薬に代えて、2-メチル-6-ニトロ安息香酸無水物(67mg)、4-ジメチルアミノピリジン(20mg)、ピリジン(900μL)、及び2-ジエチルアミノエタノール(100μL)からなる2DEAE誘導体化用混合試薬を用いた以外は、実施例1と同様にして誘導体化し、LC-P-ESI-MS/MSにより測定した。
[Comparative Example 2]
3-HB and 3-HIB derivatized with 2-diethylaminoethanol were detected by LC-P-ESI-MS / MS. Specifically, as a derivatization reagent, instead of the mixed reagent for 2PM derivatization, 2-methyl-6-nitrobenzoic anhydride (67 mg), 4-dimethylaminopyridine (20 mg), pyridine (900 μL), and Derivatization was performed in the same manner as in Example 1 except that a mixed reagent for 2DEAE derivatization consisting of 2-diethylaminoethanol (100 μL) was used, and measurement was performed by LC-P-ESI-MS / MS.
 2-ジエチルアミノエタノールで誘導体化された3-HB及び3-HIBを、LC-P-ESI-MS/MSにより検出した結果を図6に示す。図6Aに誘導体化された3-HBのみを含む試料の総イオンクロマトグラム(上段)とMSクロマトグラム(下段)を、図6Bに前記図6AのMSスペクトラムを、図6Cに誘導体化された3-HIBのみを含む試料の総イオンクロマトグラム(上段)とMSクロマトグラム(下段)を、図6Dに前記図6CのMSスペクトラムを、図6Eに誘導体化された3-HBと3-HIBを含む試料のm/z 204を前駆イオンとした時のプロダクトイオンクロマトグラムを、図6Fに前記図6Eの3-HIBピークのMS/MSスペクトラムを、それぞれ示す。  FIG. 6 shows the results of detecting 3-HB and 3-HIB derivatized with 2-diethylaminoethanol by LC-P-ESI-MS / MS. 6A shows the total ion chromatogram (upper) and MS chromatogram (lower) of the sample containing only derivatized 3-HB, FIG. 6B shows the MS spectrum of FIG. 6A, and FIG. 6C shows the derivatized 3 -Total ion chromatogram (top) and MS chromatogram (bottom) of a sample containing only HIB, Fig. 6D shows the MS spectrum of Fig. 6C, and Fig. 6E contains derivatized 3-HB and 3-HIB. A product ion chromatogram when m / z 204 of the sample is used as a precursor ion is shown in FIG. 6F, and an MS / MS spectrum of the 3-HIB peak in FIG. 6E is shown. *
 この結果、3-HBと3-HIBの誘導体はいずれも検出することができたが、LCクロマトグラムにおいて、3-HBの誘導体と3-HIBの誘導体の分離が不良であった。また、LCの保持時間が2DEAE誘導体化用混合試薬中の4-ジメチルアミノピリジンと重なった。特に3-HIBの2-ジエチルアミノエタノール誘導体は、4-ジメチルアミノピリジンによるマトリックス効果により感度が極端に悪くなった。さらに、6.5分付近に、2-ジエチルアミノエタノールの試薬由来と思われる巨大なブロードのピークが出現した。 As a result, both 3-HB and 3-HIB derivatives could be detected, but the separation of 3-HB derivative and 3-HIB derivative was poor in the LC chromatogram. The LC retention time overlapped with 4-dimethylaminopyridine in the mixed reagent for 2DEAE derivatization. Particularly, 3-HIB 2-diethylaminoethanol derivative was extremely insensitive due to the matrix effect of 4-dimethylaminopyridine. Further, a huge broad peak that appeared to be derived from the reagent of 2-diethylaminoethanol appeared around 6.5 minutes.
[比較例3]
 3-ヒドロキシ-1-メチルピペリジンで誘導体化された3-HB及び3-HIBを、LC-P-ESI-MS/MSにより検出した。具体的には、誘導体化試薬として、2PM誘導体化用混合試薬に代えて、2-メチル-6-ニトロ安息香酸無水物(67mg)、4-ジメチルアミノピリジン(20mg)、ピリジン(900μL)、及び3-ヒドロキシ-1-メチルピペリジン(100μL)からなる3H1MP誘導体化用混合試薬を用いた以外は、実施例1と同様にして誘導体化し、LC-P-ESI-MS/MSにより測定した。
[Comparative Example 3]
3-HB and 3-HIB derivatized with 3-hydroxy-1-methylpiperidine were detected by LC-P-ESI-MS / MS. Specifically, as a derivatization reagent, instead of the mixed reagent for 2PM derivatization, 2-methyl-6-nitrobenzoic anhydride (67 mg), 4-dimethylaminopyridine (20 mg), pyridine (900 μL), and Derivatization was performed in the same manner as in Example 1 except that a mixed reagent for 3H1MP derivatization composed of 3-hydroxy-1-methylpiperidine (100 μL) was used, and measurement was performed by LC-P-ESI-MS / MS.
 3-ヒドロキシ-1-メチルピペリジンで誘導体化された3-HB及び3-HIBを、LC-P-ESI-MS/MSにより検出した結果を図7に示す。図7Aに誘導体化された3-HBのみを含む試料の総イオンクロマトグラム(上段)とMSクロマトグラム(下段)を、図7Bに前記図7AのMSスペクトラムを、図7Cに誘導体化された3-HIBのみを含む試料の総イオンクロマトグラム(上段)とMSクロマトグラム(下段)を、図7Dに前記図7CのMSスペクトラムを、図7Eに誘導体化された3-HBと3-HIBを含む試料のm/z 202を前駆イオンとした時のプロダクトイオンクロマトグラムを、図7Fに前記図7Eの3-HIBピークのMS/MSスペクトラムを、それぞれ示す。  FIG. 7 shows the results of detection of 3-HB and 3-HIB derivatized with 3-hydroxy-1-methylpiperidine by LC-P-ESI-MS / MS. FIG. 7A shows the total ion chromatogram (upper) and MS chromatogram (lower) of the sample containing only derivatized 3-HB, FIG. 7B shows the MS spectrum of FIG. 7A, and FIG. -Total ion chromatogram (top) and MS chromatogram (bottom) of a sample containing only HIB, Fig. 7D includes the MS spectrum of Fig. 7C, and Fig. 7E includes derivatized 3-HB and 3-HIB. A product ion chromatogram when m / z 202 of the sample is used as a precursor ion is shown in FIG. 7F, and an MS / MS spectrum of the 3-HIB peak in FIG. 7E is shown. *
 この結果、3-HBと3-HIBの誘導体はいずれもピークが3本ずつ検出された。また、LCクロマトグラムにおいて、3-HBの誘導体と3-HIBの誘導体の分離が不良であった。また、LCの保持時間が3H1MP誘導体化用混合試薬中の4-ジメチルアミノピリジンと重なった。さらに、7分付近に、3-ヒドロキシ-1-メチルピペリジンの試薬由来と思われる巨大なブロードのピークが出現した。 As a result, three peaks were detected for each of the 3-HB and 3-HIB derivatives. Further, in the LC chromatogram, the separation of the 3-HB derivative and the 3-HIB derivative was poor. The LC retention time overlapped with 4-dimethylaminopyridine in the mixed reagent for 3H1MP derivatization. Further, a huge broad peak that appeared to be derived from the 3-hydroxy-1-methylpiperidine reagent appeared around 7 minutes.
[比較例4]
 4-ピリジンメタノールで誘導体化された3-HB及び3-HIBを、LC-P-ESI-MS/MSにより検出した。具体的には、誘導体化試薬として、2PM誘導体化用混合試薬に代えて、2-メチル-6-ニトロ安息香酸無水物(67mg)、4-ジメチルアミノピリジン(20mg)、ピリジン(900μL)、及び4-ピリジンメタノール(100μL)からなる3H1MP誘導体化用混合試薬を用いた以外は、実施例1と同様にして誘導体化し、LC-P-ESI-MS/MSにより測定した。
[Comparative Example 4]
3-HB and 3-HIB derivatized with 4-pyridinemethanol were detected by LC-P-ESI-MS / MS. Specifically, as a derivatization reagent, instead of the mixed reagent for 2PM derivatization, 2-methyl-6-nitrobenzoic anhydride (67 mg), 4-dimethylaminopyridine (20 mg), pyridine (900 μL), and Derivatization was performed in the same manner as in Example 1 except that a mixed reagent for derivatization of 3H1MP consisting of 4-pyridinemethanol (100 μL) was used, and measurement was performed by LC-P-ESI-MS / MS.
 4-ピリジンメタノールで誘導体化された3-HB及び3-HIBを、LC-P-ESI-MS/MSにより検出した結果を図8に示す。図8Aに誘導体化された3-HBのみを含む試料の総イオンクロマトグラム(上段)とMSクロマトグラム(下段)を、図8Bに前記図8AのMSスペクトラムを、図8Cに誘導体化された3-HIBのみを含む試料の総イオンクロマトグラム(上段)とMSクロマトグラム(下段)を、図8Dに前記図8CのMSスペクトラムを、図8Eに誘導体化された3-HBと3-HIBを含む試料のm/z 196を前駆イオンとした時のプロダクトイオンクロマトグラムを、図8Fに前記図8Eの3-HIBピークのMS/MSスペクトラムを、それぞれ示す。 FIG. 8 shows the results of detection of 3-HB and 3-HIB derivatized with 4-pyridinemethanol by LC-P-ESI-MS / MS. 8A shows the total ion chromatogram (upper) and MS chromatogram (lower) of a sample containing only derivatized 3-HB, FIG. 8B shows the MS spectrum of FIG. 8A, and FIG. 8C shows the derivatized 3 -Total ion chromatogram (top) and MS chromatogram (bottom) of a sample containing only HIB, Fig. 8D contains the MS spectrum of Fig. 8C, and Fig. 8E contains derivatized 3-HB and 3-HIB. A product ion chromatogram when m / z 196 of the sample is used as a precursor ion is shown in FIG. 8F, and an MS / MS spectrum of the 3-HIB peak in FIG. 8E is shown.
 この結果、3-HBと3-HIBの誘導体はいずれも検出することができたが、LCクロマトグラムにおいて、3-HBの誘導体と3-HIBの誘導体の分離が不良であった。また、LCの保持時間が3H1MP誘導体化用混合試薬中の4-ジメチルアミノピリジンと重なった。 As a result, both 3-HB and 3-HIB derivatives could be detected, but the separation of 3-HB derivative and 3-HIB derivative was poor in the LC chromatogram. The LC retention time overlapped with 4-dimethylaminopyridine in the mixed reagent for 3H1MP derivatization.
[実施例4]
 健常者から採取された10μLの血清に内部標準としてDL-3-HB-13ナトリウム塩を添加した試料を、実施例1と同様にして2-ピリジンメタノールで誘導体化し、LC-P-ESI-MS/MSにより測定した。図9に、2-ピリジンメタノールで誘導体化された3-HB(2PM-3-HB)と[13]同位体の典型的なSRMクロマトグラムを示した。当該クロマトグラムより、2PM-3-HBの[13]同位体に対するピークエリア面積比を算出し、当該比率をキャリブレーションカーブに当てはめて血清中の3-HB濃度を決定した。当該クロマトグラム中の2PM-3-HBのピークは5.1pmol(76μM)に相当した。クロマトグラムAの4.53分に見られたピークは、2PM-3HIB標品との比較から、3-HIBの2PMエステル誘導体であると同定された。
[Example 4]
A sample obtained by adding DL-3-HB- 13 C 4 sodium salt as an internal standard to 10 μL of serum collected from a healthy person was derivatized with 2-pyridinemethanol in the same manner as in Example 1, and LC-P-ESI -Measured by MS / MS. FIG. 9 shows a typical SRM chromatogram of 3-HB (2 PM-3-HB) and [ 13 C 4 ] isotopes derivatized with 2-pyridinemethanol. From the chromatogram, the peak area ratio of 2 PM-3-HB to the [ 13 C 4 ] isotope was calculated, and the ratio was applied to a calibration curve to determine the 3-HB concentration in serum. The peak of 2 PM-3-HB in the chromatogram corresponded to 5.1 pmol (76 μM). The peak seen at 4.53 minutes in chromatogram A was identified as a 2PM ester derivative of 3-HIB by comparison with 2 PM-3HIB preparation.
[実施例5]
 実施例4と同様にして、男性健常者から2~3時間おきに採取した血清中の3-HB濃度を測定した。測定結果を図10に示す。図中、黒矢印は、食事をとった時間を示し、網掛け部分は睡眠時間を示す。この結果、本発明に係る検出方法により、10μLの血清中の3-HBを検出できることがわかった。また、血清中の3-HBは、食事の摂取により低下する傾向があることがわかり、血清中の3-HB濃度は、食事摂取によってコントロールされていることもわかった。
[Example 5]
In the same manner as in Example 4, serum 3-HB concentration collected from healthy male subjects every 2-3 hours was measured. The measurement results are shown in FIG. In the figure, the black arrow indicates the time spent eating, and the shaded portion indicates sleep time. As a result, it was found that 3-HB in 10 μL of serum can be detected by the detection method according to the present invention. It was also found that 3-HB in serum tended to decrease with food intake, and that 3-HB concentration in serum was controlled by food intake.
[実施例6]
 健常者から採取された血清を試料として、本発明に係る検出方法の精度と確度を調べた。具体的には、健常者から採取された10μLの血清に内部標準としてDL-3-HB-13ナトリウム塩を添加した試料を、実施例1と同様にして2-ピリジンメタノールで誘導体化し、LC-P-ESI-MS/MSにより測定した。
 再現性は、4種のサンプル(サンプルA~D)をそれぞれ3回ずつLC-P-ESI-MS/MSにより測定した。測定結果を表1に示す。測定結果は、one-way ANOVAにより分析したが、その際、分析誤差は、サンプル調製とSRM測定の2つの原因に分けた。表2に示すように、サンプル調製時の誤差は、測定間誤差よりも有意に大きくなかったため、分散は、サンプル調製によるものではないと考えられた。試料間又は試料内における分散の試験間変動計数は、それぞれ、2.2%又は1.2%だった。なお、表2中、「S」は偏差平方和を、「f」は自由度を、「V」は不偏分散を、「F」は分散比([Vサンプル調製]/[V誤差])の観測値を、「F(3、8、α)」は自由度3、8、有意水準αの時のF値を、それぞれ意味する。この結果、200pmolという微量の3-HBを検出できたことから、当該検出方法が感度に優れていることがわかった。また、4種のいずれのサンプルにおいても、測定間のばらつきが非常に小さく、かつ200pmolという微量の3-HBを検出できたことから、当該検出方法が精度に優れていることもわかった。
[Example 6]
The accuracy and accuracy of the detection method according to the present invention were examined using serum collected from healthy individuals as a sample. Specifically, a sample obtained by adding DL-3-HB- 13 C 4 sodium salt as an internal standard to 10 μL of serum collected from a healthy person was derivatized with 2-pyridinemethanol in the same manner as in Example 1, Measured by LC-P-ESI-MS / MS.
The reproducibility was measured by LC-P-ESI-MS / MS for each of four types of samples (samples A to D). The measurement results are shown in Table 1. The measurement results were analyzed by one-way ANOVA. At that time, the analysis error was divided into two causes: sample preparation and SRM measurement. As shown in Table 2, the error during sample preparation was not significantly greater than the error between measurements, so the variance was considered not due to sample preparation. The inter-test variation counts of dispersion between or within samples were 2.2% or 1.2%, respectively. In Table 2, “S” is the sum of deviation squares, “f” is the degree of freedom, “V” is unbiased variance, and “F 0 ” is the dispersion ratio ([V sample preparation ] / [V error ]). “F (3, 8, α)” means the F value when the degree of freedom is 3 and 8, and the significance level is α. As a result, since a trace amount of 3-HB of 200 pmol could be detected, it was found that the detection method was excellent in sensitivity. Further, in any of the four types of samples, the variation between measurements was very small, and a very small amount of 3-HB of 200 pmol could be detected, indicating that the detection method was excellent in accuracy.
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000008
 添加回収試験は、10μLの血清サンプル(n=2)に既知量の3-HB(158.7、又は317.5、又は476.2pmol)を入れた。脱蛋白処理と誘導化反応を行った後、各サンプルにつき3回SRMで測定した。表3に示すように、3-HBの既知添加量の回収率は、93.7~98.2%の範囲内にあり、平均は96.7%だった。加えて、10μLの血清を添加しなかった場合の内在性の3-HB量は、直交回帰分析により算出された3-HBの推定量の95%信頼限界の範囲内であった。なお、表3中、「a」が付された数値は表1から得られた値であり、「回収率(%)」は下記式で表される値であり、「推定量±95%信頼限界」は直交回帰分析により算出された値である。 In the addition recovery test, a known amount of 3-HB (158.7, or 317.5, or 476.2 pmol) was placed in a 10 μL serum sample (n = 2). After deproteinization treatment and derivatization reaction, each sample was measured three times by SRM. As shown in Table 3, the recovery rate of the known added amount of 3-HB was in the range of 93.7 to 98.2%, and the average was 96.7%. In addition, the amount of endogenous 3-HB when 10 μL of serum was not added was within the 95% confidence limit of the estimated amount of 3-HB calculated by orthogonal regression analysis. In Table 3, numerical values with “a” are values obtained from Table 1, “recovery rate (%) b ” is a value represented by the following formula, and “estimated amount ± 95% The “confidence limit c ” is a value calculated by orthogonal regression analysis.
Figure JPOXMLDOC01-appb-M000009
Figure JPOXMLDOC01-appb-M000009
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000010
[実施例7]
 2PM-3-HBのLC-P-ESI-MS/MSによる測定感度を、LC-N-ESI-MS/MSによる測定感度と比較した。
 具体的には、2PM-3-HB溶液の濃度既知の希釈系列について、LC-P-ESI-MS/MS(SRM)により測定し、2PM-3-HBが検出された最小濃度(最小検出感度)を調べた。同様に、3-HB溶液の濃度既知の希釈系列について、LC-N-ESI-MS/MS(SRM)により測定し、最小検出感度を調べた。なお、各測定試料には、ブランクマトリックスとして3-HB-フリー血清を添加した。
 この結果、LC-P-ESI-MS/MSにより、オンカラム注入量が6.0fmolの2PM-3-HBをも検出することができた(S/N=3)。これに対して、LC-N-ESI-MS/MSでは、オンカラム注入量が481fmolの3-HBまでしか検出できなかった(S/N=3)。
[Example 7]
The sensitivity of 2 PM-3-HB measured by LC-P-ESI-MS / MS was compared with the sensitivity measured by LC-N-ESI-MS / MS.
Specifically, a dilution series with a known concentration of 2 PM-3-HB solution was measured by LC-P-ESI-MS / MS (SRM), and the minimum concentration at which 2 PM-3-HB was detected (minimum detection sensitivity) ). Similarly, a dilution series with a known concentration of the 3-HB solution was measured by LC-N-ESI-MS / MS (SRM) to examine the minimum detection sensitivity. Each measurement sample was added with 3-HB-free serum as a blank matrix.
As a result, LC-P-ESI-MS / MS was able to detect 2 PM-3-HB with an on-column injection amount of 6.0 fmol (S / N = 3). In contrast, LC-N-ESI-MS / MS was able to detect only up to 3-HB with an on-column injection amount of 481 fmol (S / N = 3).
[実施例8] 
 2-ピリジンメタノールで誘導体化された3-HMB及び2-HBを、LC-P-ESI-MS/MSにより検出した。具体的には、アセトニトリル/水(1/19、容量比)(100μL)に、D-3-HMBナトリウム塩(標品、1μg)とD-2-HBナトリウム塩(標品、1μg)を溶解させた試料溶液を調製し、エバポレートして乾燥させた後に、前記2PM誘導体化用混合試薬により誘導体化(誘導体によるエステル化)をした。最終的に1容量%のギ酸水溶液(20μL)に再溶解させ、1μL(D-3-HMBナトリウム塩、D-2-HBナトリウム塩それぞれ50ng相当)を、前述の通りにLC-P-ESI-MS/MSにより測定した。
[Example 8]
3-HMB and 2-HB derivatized with 2-pyridinemethanol were detected by LC-P-ESI-MS / MS. Specifically, D-3-HMB sodium salt (standard, 1 μg) and D-2-HB sodium salt (standard, 1 μg) were dissolved in acetonitrile / water (1/19, volume ratio) (100 μL). The prepared sample solution was prepared, evaporated and dried, and then derivatized (esterified with a derivative) using the mixed reagent for 2PM derivatization. Finally, it was redissolved in 1% by volume aqueous formic acid solution (20 μL), and 1 μL (corresponding to 50 ng each of D-3-HMB sodium salt and D-2-HB sodium salt) was added as described above to LC-P-ESI- Measured by MS / MS.
 2-ピリジンメタノールで誘導体化された3-HMB及び2-HBを、LC-P-ESI-MS/MSにより検出した結果を図11に示す。図11Aに誘導体化された3-HMBと2-HBを含む試料の総イオンクロマトグラム(上段)と、m/z 196を前駆イオンとした時のプロダクトイオンクロマトグラム(中段)と、m/z 210を前駆イオンとした時のプロダクトイオンクロマトグラム(下段)を、それぞれ示す。また、図11Bに前記図11Aの中段のプロダクトイオンクロマトグラムのMSスペクトラムを、図11Cに前記図11Aの下段のプロダクトイオンクロマトグラムのMSスペクトラムを、それぞれ示す。 FIG. 11 shows the results of detection of 3-HMB and 2-HB derivatized with 2-pyridinemethanol by LC-P-ESI-MS / MS. FIG. 11A shows a total ion chromatogram of the sample containing derivatized 3-HMB and 2-HB (upper stage), a product ion chromatogram when using m / z 196 as a precursor ion (middle stage), and m / z. Product ion chromatograms (lower row) when 210 is used as a precursor ion are respectively shown. 11B shows the MS spectrum of the middle product ion chromatogram of FIG. 11A, and FIG. 11C shows the MS spectrum of the lower product ion chromatogram of FIG. 11A.
 この結果、測定に供した試料には50ngしか含まれていなかったにもかかわらず、低感度高情報量のスキャンモードで、3-HMB及び2-HBの誘導体はいずれも同時にスペクトル解析することができた。
 また、3-HMB及び2-HBの2PMエステル誘導体を各100pg又は10pg含有する試料を用いて、LC-P-ESI-MS/MSにより同様にして測定したところ、どちらの試料を測定した場合でも、3-HMB及び2-HBの誘導体はいずれも同時にスペクトル解析することができた(図示せず。)。
これらの結果から、2-ピリジンメタノールで誘導体化することにより、構造類似の3-HMB及び2-HBを、10pgという極微量しか含まれていない場合であっても精度よく高感度に同時検出できることがわかった。
As a result, even though the sample used for measurement contained only 50 ng, both 3-HMB and 2-HB derivatives could be simultaneously analyzed in the low-sensitivity high-information scan mode. did it.
In addition, when a sample containing 100 pg or 10 pg each of 2-HM ester derivatives of 3-HMB and 2-HB was measured in the same manner by LC-P-ESI-MS / MS, either sample was measured. , 3-HMB and 2-HB derivatives could all be analyzed simultaneously (not shown).
From these results, by derivatizing with 2-pyridinemethanol, it is possible to simultaneously detect highly structurally similar 3-HMB and 2-HB with high sensitivity even in the case where only a trace amount of 10 pg is contained. I understood.
[実施例9] 
 2-ピリジンメタノールで誘導体化された3-HB、3-HIB、3-HMB、及び2-HBを、LC-P-ESI-MS/MSにより検出した。具体的には、アセトニトリル/水(1/19、容量比)(100μL)に、D-3-HBナトリウム塩(標品、30ng)とD-3-HIBナトリウム塩(標品、30ng)とD-3-HMBナトリウム塩(標品、30ng)とD-2-HBナトリウム塩(標品、30ng)とDL-3-HB-13ナトリウム塩(標品、80ng)を溶解させた試料溶液を調製し、エバポレートして乾燥させた後に、前記2PM誘導体化用混合試薬により誘導体化(誘導体によるエステル化)をした。最終的に1容量%のギ酸水溶液(1mL)に再溶解させ、1μL(D-3-HBナトリウム塩、D-3-HIBナトリウム塩、D-3-HMBナトリウム塩、D-2-HBナトリウム塩がそれぞれ3ng相当、DL-3-HB-13ナトリウム塩が8ng相当)を、前述の通りにLC-P-ESI-MS/MSにより測定した。
[Example 9]
3-HB, 3-HIB, 3-HMB, and 2-HB derivatized with 2-pyridinemethanol were detected by LC-P-ESI-MS / MS. Specifically, acetonitrile / water (1/19, volume ratio) (100 μL), D-3-HB sodium salt (standard, 30 ng), D-3-HIB sodium salt (standard, 30 ng) and D Sample solution in which -3-HMB sodium salt (standard, 30 ng), D-2-HB sodium salt (standard, 30 ng) and DL-3-HB- 13 C 4 sodium salt (standard, 80 ng) were dissolved After evaporating and drying, derivatization (esterification with a derivative) was performed using the mixed reagent for 2PM derivatization. Finally, redissolved in 1% by volume aqueous formic acid solution (1 mL), and 1 μL (D-3-HB sodium salt, D-3-HIB sodium salt, D-3-HMB sodium salt, D-2-HB sodium salt) Each corresponding to 3 ng and DL-3-HB- 13 C 4 sodium salt corresponding to 8 ng) was measured by LC-P-ESI-MS / MS as described above.
 2-ピリジンメタノールで誘導体化された3-HB、3-HIB、3-HMB、及び2-HBを、LC-P-ESI-MS/MSにより検出した結果を図12に示す。図12の上段に試料の総イオンクロマトグラムを、上から2段目にm/z 196を前駆イオンとした時のプロダクトイオンクロマトグラムを、上から3段目にm/z 200を前駆イオンとした時のプロダクトイオンクロマトグラムを、最下段にm/z 210を前駆イオンとした時のプロダクトイオンクロマトグラムを、それぞれ示す。 FIG. 12 shows the results of detection of 3-HB, 3-HIB, 3-HMB, and 2-HB derivatized with 2-pyridinemethanol by LC-P-ESI-MS / MS. 12 shows the total ion chromatogram of the sample, the product ion chromatogram when m / z 196 is used as the precursor ion in the second stage from the top, and m / z 200 as the precursor ion in the third stage from the top. The product ion chromatogram when m / z 210 is used as the precursor ion is shown at the bottom, respectively.
 この結果、測定に供した試料には3ngしか含まれていなかったにもかかわらず、低感度高情報量のスキャンモードで、3-HB、3-HIB、3-HMB、及び2-HBの2PMエステル誘導体は、いずれもスペクトル解析することができた。また、LCクロマトグラムにおいて、3-HBの誘導体と3-HIBの誘導体と3-HMBの誘導体と2-HBの誘導体の分離が良好であった。つまり、これらの結果から、2-ピリジンメタノールで誘導体化することにより、構造類似の3-HB、3-HIB、3-HMB、及び2-HBを、精度よく高感度に同時検出できることがわかった。 As a result, even though the sample used for the measurement contained only 3 ng, in the scan mode with low sensitivity and high information content, 2 PM of 3-HB, 3-HIB, 3-HMB, and 2-HB was obtained. All the ester derivatives could be spectrally analyzed. In the LC chromatogram, the separation of the 3-HB derivative, the 3-HIB derivative, the 3-HMB derivative, and the 2-HB derivative was good. In other words, these results indicate that structurally similar 3-HB, 3-HIB, 3-HMB, and 2-HB can be detected simultaneously with high accuracy and high sensitivity by derivatization with 2-pyridinemethanol. .
[実施例10]
 被検者から採取された血清と唾液を一定時間室温放置した場合における、血清中と唾液中の3-HIB及び3-HBの安定性を検討した。
[Example 10]
The stability of 3-HIB and 3-HB in serum and saliva when serum and saliva collected from a subject were allowed to stand at room temperature for a certain time was examined.
<血清>
 健常者から6本の採血管に血液を採取した。6本の採血管のうちの1本については、採血後速やかに遠心分離処理を行い、回収した血清を-20℃で凍結保存した。残りの5本については、それぞれ、室温で1、2、4、6、又は24時間放置した後、遠心分離処理を行い、回収した血清を-20℃で保存した。
 -20℃で保存後の各血清中の3-HIB及び3-HBの濃度を、内部標準としてDL-3-HB-13ナトリウム塩を用い、誘導体化試薬として2-ピリジンメタノールを用いて、実施例4と同様にしてLC-P-ESI-MS/MSにより測定した。クロマトグラムより、2PM-3-HBの[13]同位体に対するピークエリア面積比を算出し、当該比率をキャリブレーションカーブに当てはめて、血清中の3-HB濃度及び3-HIB濃度を決定した。測定結果を図13に示す。この結果、血清中の3-HB濃度及び3-HIB濃度は、採血後室温で放置される時間が6時間に至るまで減少するが、その後24時間まで変化はなかった。
<Serum>
Blood was collected from 6 healthy blood collection tubes. One of the six blood collection tubes was centrifuged immediately after blood collection, and the collected serum was stored frozen at -20 ° C. The remaining 5 bottles were allowed to stand at room temperature for 1, 2, 4, 6, or 24 hours, respectively, centrifuged, and the collected serum was stored at -20 ° C.
The concentration of 3-HIB and 3-HB in each serum after storage at -20 ° C., using a DL-3-HB- 13 C 4 sodium salt as an internal standard, using 2-pyridinemethanol as a derivatizing reagent In the same manner as in Example 4, the measurement was performed by LC-P-ESI-MS / MS. From the chromatogram, calculate the peak area ratio of 2 PM-3-HB to the [ 13 C 4 ] isotope and apply the ratio to the calibration curve to determine the 3-HB and 3-HIB concentrations in the serum. did. The measurement results are shown in FIG. As a result, the 3-HB concentration and 3-HIB concentration in the serum decreased until the time allowed to stand at room temperature after blood collection reached 6 hours, but did not change until 24 hours thereafter.
<唾液>
 健常者から1本のチューブに採取(流涎)した唾液を6本のチューブに分注した。6本のチューブのうちの1本については、採取後速やかに-20℃で凍結保存した。残りの5本については、それぞれ、室温で1、2、4、6、又は24時間放置した後、-20℃で保存した。凍結保存した唾液試料は、分析時に室温で自然解凍した。ボルテックスミキサーを用いて混和した後、遠心分離処理(3000rpm、15分間)し、粘性蛋白質(ムチン)を分解し、唾液中に含まれている食べかす等と共に沈殿させ、上清を分析に用いた。
 -20℃で保存後の各唾液中の3-HIB及び3-HBの濃度を、内部標準としてDL-3-HB-13ナトリウム塩を用い、誘導体化試薬として2-ピリジンメタノールを用いて、実施例4と同様にしてLC-P-ESI-MS/MSにより測定した。クロマトグラムより、2PM-3-HBの[13]同位体に対するピークエリア面積比を算出し、当該比率をキャリブレーションカーブに当てはめて、唾液中の3-HB濃度及び3-HIB濃度を決定した。測定結果を図14に示す。この結果、唾液中の3-HB濃度及び3-HIB濃度は、採取後室温で放置される時間にかかわらず、ほぼ安定していた。
<Saliva>
Saliva collected (fluid) from one healthy person into one tube was dispensed into six tubes. One of the 6 tubes was stored frozen at −20 ° C. immediately after collection. The remaining five were each allowed to stand at room temperature for 1, 2, 4, 6, or 24 hours and then stored at −20 ° C. The frozen saliva sample was naturally thawed at room temperature during analysis. After mixing using a vortex mixer, centrifugation (3000 rpm, 15 minutes) was performed to decompose the viscous protein (mucin), which was precipitated together with meals contained in saliva, and the supernatant was used for analysis.
The concentration of 3-HIB and 3-HB in the saliva after storage at -20 ° C., using a DL-3-HB- 13 C 4 sodium salt as an internal standard, using 2-pyridinemethanol as a derivatizing reagent In the same manner as in Example 4, the measurement was performed by LC-P-ESI-MS / MS. From the chromatogram, calculate the peak area ratio of 2 PM-3-HB to the [ 13 C 4 ] isotope and apply the ratio to the calibration curve to determine the 3-HB concentration and 3-HIB concentration in saliva. did. The measurement results are shown in FIG. As a result, the 3-HB concentration and 3-HIB concentration in saliva were almost stable regardless of the time of standing at room temperature after collection.
[実施例11]
 被検者から採取された血清と唾液(流涎)中における、3-HIB、3-HB、及び2-HBの濃度の相関性を調べた。具体的には、健常人3名(被検者α、β、γ)から、各5サンプルずつ、血清及び唾液を採取し、これらの3-HIB、3-HB、及び2-HBの濃度を測定し、血清中濃度と唾液中濃度の相関性を調べた。血清中及び唾液中の3-HIB、3-HB、及び2-HBの濃度は、実施例10と同様にして測定した。3-HB濃度の測定結果を図15Aに、3-HIB濃度の測定結果を図15Bに、2-HB濃度の測定結果を図15Cに、それぞれ示す。この結果、3-HIB、3-HB、及び2-HBのいずれにおいても、唾液中濃度は、血清中濃度と相関することが確認された。
[Example 11]
The correlation between the concentrations of 3-HIB, 3-HB, and 2-HB in serum and saliva (fluid) collected from the subjects was examined. Specifically, serum and saliva were collected from 3 healthy individuals (subjects α, β, and γ), 5 samples each, and the concentrations of 3-HIB, 3-HB, and 2-HB were determined. Measured and examined the correlation between serum concentration and saliva concentration. The concentrations of 3-HIB, 3-HB, and 2-HB in serum and saliva were measured in the same manner as in Example 10. The measurement result of 3-HB concentration is shown in FIG. 15A, the measurement result of 3-HIB concentration is shown in FIG. 15B, and the measurement result of 2-HB concentration is shown in FIG. 15C. As a result, it was confirmed that the saliva concentration correlated with the serum concentration in any of 3-HIB, 3-HB, and 2-HB.
[実施例12]
 走運動前後の血清中、唾液中、及び尿中の3-HIB濃度及び3-HB濃度を測定し、経時的変化を観察した。
 具体的には、被験者(男性健常者)に、前日の午前11時から走運動当日の午前11時までの24時間蓄尿した後、60分間ジョギング(走行距離:約9km、速度:約6.7分/km)し、その後24時間経過時点(走運動日の翌日の昼12時)までを実験期間とした。被験者は、前日の午前11時から実験期間終了時点までの間、前日の昼食及び夕食、走運動当日の昼食及び夕食、翌日の朝食を摂取した。被験者の運動と食事状況、及び血液、唾液、尿の採取時点を図16に示す。なお、実施した60分間ジョギングは、当該被験者にとって日常的に行っている運動よりもやや負荷の高い運動であった。
[Example 12]
The 3-HIB and 3-HB concentrations in serum, saliva, and urine before and after running exercise were measured, and changes over time were observed.
Specifically, a subject (a healthy male person) collected urine for 24 hours from 11:00 am on the previous day to 11:00 am on the day of running exercise, and then jogged for 60 minutes (traveling distance: about 9 km, speed: about 6.7) Min / km), and the time until the lapse of 24 hours (12:00 noon on the day following the running day) was set as the experiment period. The subjects took lunch and dinner the previous day, lunch and dinner on the day of running exercise, and breakfast the next day from 11:00 am the previous day until the end of the experiment period. FIG. 16 shows the exercise and meal status of the subject, and blood, saliva, and urine collection time points. The 60-minute jogging performed was an exercise with a slightly higher load than the exercise performed on a daily basis for the subject.
 血清中、唾液中、及び尿中の3-HIB濃度及び3-HB濃度は、実施例10と同様にして測定した。採取された各サンプル中の3-HIB及び3-HBの測定結果を図17~19に示す。図17は、血清中の3-HIB及び3-HBの濃度の経時的変化を示す。図18は、3-HIB及び3-HBの各採取時点における単位時間当たり尿排泄量([尿排泄量]/[前回採取時からの経過時間])(μmol/h)の経時的変化を、それぞれ示す。図19は、唾液中の3-HIB及び3-HBの濃度の経時的変化を示す。図19の下段の図は、上段の走運動中の測定結果を、縦軸スケールを拡大して示した図である。
 この結果、本発明に係る検出方法により、被験者から採取された血清、唾液、尿のいずれにおいても、3-HIBと3-HBの両方を検出できることが確認された。
Serum, saliva, and urine 3-HIB and 3-HB concentrations were measured in the same manner as in Example 10. The measurement results of 3-HIB and 3-HB in each sample collected are shown in FIGS. FIG. 17 shows changes over time in the concentrations of 3-HIB and 3-HB in serum. FIG. 18 shows the change over time of urinary excretion per unit time ([urinary excretion] / [elapsed time from previous collection]) (μmol / h) at each collection time of 3-HIB and 3-HB. Each is shown. FIG. 19 shows changes over time in the concentrations of 3-HIB and 3-HB in saliva. The lower diagram in FIG. 19 is a diagram showing the measurement results during the upper running exercise with the vertical axis scale enlarged.
As a result, it was confirmed that the detection method according to the present invention can detect both 3-HIB and 3-HB in serum, saliva, and urine collected from a subject.
 3-HBは、走運動により、血清中と唾液中のいずれにおいても濃度は上昇したが、血清中3-HB濃度は、走運動後もそのまま上昇しており、唾液中3-HB濃度は、走運動直後は低下したものの、その後再び上昇した(図17及び図19上段)。これらの結果から、運動によって上昇する血清中の3-HB濃度と同様に、唾液中の3-HB濃度も運動により上昇する事が確認された。また、運動後は、血清中と唾液中ともに、3-HB濃度は、食事を摂取するまで上昇し続けることから、運動後の肝脂肪酸異化(脂肪の燃焼)を、血液と唾液の両試料にてモニターできることも確認できた。 The concentration of 3-HB increased in both serum and saliva due to running exercise, but the serum 3-HB concentration also increased after running exercise, and the concentration of 3-HB in saliva was Although it decreased immediately after the running exercise, it increased again after that (FIG. 17 and FIG. 19 upper stage). From these results, it was confirmed that the 3-HB concentration in saliva increased by exercise as well as the 3-HB concentration in serum increased by exercise. After exercise, the 3-HB concentration in both serum and saliva continues to rise until the meal is consumed, so liver fatty acid catabolism (burning of fat) after exercise is applied to both blood and saliva samples. It was also confirmed that it can be monitored.
 一方で、3-HIBは、血清中と唾液中のいずれにおいても、走運動により濃度が上昇し、運動終了後ある程度時間が経過すると速やかに濃度は低下し、運動前の平常状態にまで戻ることが確認された(図17及び図19上段)。運動中に比べて運動後は、骨格筋BCAA異化反応は持続せず、健常人では、一過性の運動を行ったのみでは、骨格筋蛋白質分解由来BCAA又は遊離BCAAの異化は生じないことが確認された。特に唾液中3-HIB濃度は、運動終了後30分経過時点から実験期間終了時点までの間、ほとんど変動せず、食事等の影響を受けにくいことがわかった。これに対して、血清中3-HIB濃度は、運動終了後1時間経過時点では平常状態にまで低下したものの、運動終了後4時間経過時点ではやや上昇していた。運動終了後2.25時間経過時点で食事を摂取しているため、この運動終了後4時間経過時点での血清中3-HIB濃度の上昇は、わずかながら食事の影響を受けた可能性が考えられた。 On the other hand, the concentration of 3-HIB increases in both serum and saliva due to running exercise, and after a certain amount of time has elapsed since the end of exercise, the concentration decreases rapidly and returns to the normal state before exercise. Was confirmed (FIG. 17 and the upper stage of FIG. 19). Skeletal muscle BCAA catabolism does not persist after exercise compared to during exercise, and normal individuals may not undergo catabolism of BCAA or free BCAA derived from skeletal muscle protein degradation only by performing transient exercise. confirmed. In particular, it was found that the 3-HIB concentration in saliva hardly fluctuated from 30 minutes after the end of exercise to the end of the experiment period, and was hardly affected by meals and the like. On the other hand, the serum 3-HIB concentration decreased to a normal state at 1 hour after the end of exercise, but slightly increased at 4 hours after the end of exercise. Since 2.25 hours after the end of exercise, food was consumed, the increase in serum 3-HIB concentration at the end of 4 hours after the end of exercise may have been slightly affected by the diet. It was.
 これらの結果から、血清中と唾液中の3-HB濃度及び3-HIB濃度は、運動により上昇することから、運動による肝脂肪酸異化(脂肪燃焼)マーカー及び骨格筋BCAA異化マーカーとしてこれらを同時に評価が可能であり、運動時又は運動後の組織別(肝と骨格筋)のエネルギー代謝状態(ひいては、エネルギー供給源のバランス)を評価するマーカーとして有用であること、食事等の影響を受けにくいことから、3-HIBについては、血清中濃度よりも唾液中濃度のほうがマーカーとして好ましいこと、がわかった。 From these results, the 3-HB and 3-HIB concentrations in serum and saliva are increased by exercise, and these are simultaneously evaluated as liver fatty acid catabolism (fat burning) markers and skeletal muscle BCAA catabolism markers by exercise. Be useful as a marker for assessing the energy metabolism state (and hence the balance of energy supply sources) of tissues (liver and skeletal muscle) during or after exercise, and being less susceptible to meals, etc. From the results, it was found that for 3-HIB, the concentration in saliva is more preferable as a marker than the concentration in serum.
 図19下段に示すように、走運動中の唾液中3-HIB濃度は、運動開始から15分経過時点までは、運動開始時点(平常状態)からあまり変化がないが、その後ゆるやかに上昇する傾向が観察された。走運動中の唾液中3-HB濃度は、運動開始から35分経過時点までは運動開始時点(平常状態)からあまり変化がないが、その後は3-HIB濃度と比較してより急激に上昇する傾向が観察された。運動時のエネルギー源として、まずは糖が優先的に利用されるが、運動時間や強度が増すにつれ、脂肪やアミノ酸がエネルギー源として利用される。これらの結果から、3-HB濃度及び3-HIB濃度の上昇は、糖の代わりに脂肪やアミノ酸がエネルギー源として利用された事を示しており、両者が上昇した時点は、エネルギー産生の依存度が糖代謝から脂質、アミノ酸代謝へ移行したポイントを示していると考えられる。また、近年、運動早期から、糖や脂質に加え、アミノ酸もエネルギー源として利用されていると示唆されているが、3-HBよりも3-HIBの方が早期に上昇し始める結果は、アミノ酸代謝も運動早期から活性化されることを示していると考えられる。本実施例では、唾液中の3-HIB濃度は、走運動終了後速やかに定常状態にまで低下したが、運動負荷が過大となりすぎた場合、いわゆるオーバーワーク状態には、運動終了後にも定常状態にまで戻りにくくなると推察される。 As shown in the lower part of FIG. 19, the concentration of 3-HIB in saliva during running exercise does not change much from the start of exercise (normal state) until 15 minutes after the start of exercise, but then tends to increase gradually. Was observed. The salivary 3-HB concentration during running exercise does not change much from the exercise start point (normal state) until 35 minutes after the start of exercise, but then increases more rapidly than the 3-HIB concentration A trend was observed. Sugar is preferentially used as an energy source during exercise, but fat and amino acids are used as energy sources as exercise time and intensity increase. From these results, increases in 3-HB concentration and 3-HIB concentration indicate that fats and amino acids were used as energy sources instead of sugar, and when both increased, the dependence on energy production Is considered to indicate the point of transition from sugar metabolism to lipid and amino acid metabolism. In recent years, it has been suggested that in addition to sugar and lipids, amino acids are also used as an energy source from the early days of exercise, but 3-HIB starts to rise earlier than 3-HB. It is thought that metabolism is also activated from the early stage of exercise. In this example, the concentration of 3-HIB in saliva decreased to a steady state immediately after the end of running, but when the exercise load becomes excessive, the so-called overwork state is a steady state even after the end of exercise. It is estimated that it will be difficult to return to
 図18に、運動前後の単位時間当たりの尿中3-HB排泄量及び3-HIB排泄量を示す。血清や唾液とは異なり、運動によって、尿中3-HB排泄量及び3-HIB排泄量の増加はみられず、尿中3-HIB排泄量は、寧ろ低下傾向にあった(運動1時間後)。尿中3-HB排泄量は、その後、運動3時間まで増加傾向にあり、その後一旦減少したが、運動12.5時間まで再度増加傾向にあった。尿中3-HIB排泄量は、多少の増減を繰り返しながら、運動9.5時間まで増加した。尿中3-HBと3-HIB排泄量ともに、血清や唾液のそれぞれの濃度変化との関連はみられず、腎臓組織における再吸収が影響した結果と推測された。尿を試料とする場合、随時尿か畜尿か、又はクレアチニン等での補正の必要を考慮すると、3-HBと3-HIBともに、運動時、運動後の組織別エネルギー代謝状態を評価するマーカーとしては、尿中排泄量より、血清や唾液での評価が好ましいことがわかった。 FIG. 18 shows urinary 3-HB excretion and 3-HIB excretion per unit time before and after exercise. Unlike serum and saliva, urinary 3-HB excretion and 3-HIB excretion were not increased by exercise, and urinary 3-HIB excretion tended to decrease (1 hour after exercise) ). The urinary 3-HB excretion thereafter tended to increase until 3 hours of exercise and then once decreased, but then tended to increase again until 12.5 hours of exercise. Urinary 3-HIB excretion increased up to 9.5 hours of exercise while repeating slight increases and decreases. Neither urinary 3-HB or 3-HIB excretion was associated with changes in serum or saliva concentrations, but it was presumed that reabsorption in the kidney tissue had an effect. When using urine as a sample, considering the necessity of correction with urine or animal urine as needed, or creatinine As a result, it was found that evaluation with serum or saliva is preferable to urinary excretion.
[実施例13]
 健常者15名と肝硬変患者20名から血液及び唾液を採取し、血清中と唾液中の3-HIB濃度及び3-HMB濃度を測定し、比較した。血清中と唾液中の3-HIB濃度及び3-HMB濃度は、実施例10と同様にして測定した。
 血清中の3-HIB濃度及び3-HMB濃度の測定結果を図20Aに、唾液中の3-HIB濃度及び3-HMB濃度の測定結果を図20Bに、それぞれ示す。この結果、唾液中と血清中のいずれにおいても、肝硬変患者群の3-HIB濃度及び3-HMB濃度は、健常者群よりも高い傾向が観察され、これらが肝硬変マーカーとして有用であることが示された。特に唾液中の3-HIB濃度及び3-HMB濃度は、肝硬変患者群のほうが健常者群よりも有意に高かった。
[Example 13]
Blood and saliva were collected from 15 healthy subjects and 20 cirrhosis patients, and 3-HIB and 3-HMB concentrations in serum and saliva were measured and compared. The 3-HIB concentration and 3-HMB concentration in serum and saliva were measured in the same manner as in Example 10.
The measurement results of 3-HIB and 3-HMB concentrations in serum are shown in FIG. 20A, and the measurement results of 3-HIB and 3-HMB concentrations in saliva are shown in FIG. 20B. As a result, in both saliva and serum, the 3-HIB and 3-HMB concentrations in the cirrhosis patient group tended to be higher than those in the healthy group, indicating that these are useful as cirrhosis markers. It was done. In particular, 3-HIB and 3-HMB concentrations in saliva were significantly higher in the cirrhosis patient group than in the healthy group.
[実施例14]
 健常者48名と肝硬変患者32名から血液を採取し、実施例10と同様にして血清中の3-HIB濃度を測定した。この結果、血清中3-HIB濃度は、健常者の平均値が12.6±0.7μMであり、肝硬変患者の平均値が27.7±3.6μMであった。
[Example 14]
Blood was collected from 48 healthy subjects and 32 cirrhosis patients, and the 3-HIB concentration in serum was measured in the same manner as in Example 10. As a result, the average value of serum 3-HIB was 12.6 ± 0.7 μM for healthy subjects and 27.7 ± 3.6 μM for cirrhosis patients.
[実施例15]
 肝性脳症患者(男性)から経時的に2回血液を採取し、実施例10と同様にして血清中の3-HIB濃度を測定した。測定結果を表4に示す。この結果、肝性脳症患者の血清中の3-HIB濃度は、健常者の平均値(12.6μM)よりもはるかに低かった。
[Example 15]
Blood was collected twice from a patient with hepatic encephalopathy (male) over time, and the 3-HIB concentration in serum was measured in the same manner as in Example 10. Table 4 shows the measurement results. As a result, the 3-HIB concentration in the serum of patients with hepatic encephalopathy was much lower than the average value (12.6 μM) of healthy subjects.
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000011
[実施例16]
 肝硬変の症状が比較的軽い肝硬変患者A(女性)と肝硬変の症状が比較的重い肝硬変患者B(女性)から経時的に血液を採取し、血清中の3-HIB濃度(μM)、アルブミン濃度(g/dL)、及びアンモニア濃度(μg/dL)を測定した。アルブミンとアンモニアの測定は、通常、臨床検査で常用されている規定法によって測定した。アルブミン濃度の測定は、得られた患者血清をアルブミンHR-II(和光純薬社製)を用いて、BCG法により測定した。アンモニア濃度は、富士ドライケムスライド NH3-WII(富士フィルム社製)を用いて、富士ドライケム生化学分析装置を用いて測定した。血清中の3-HIB濃度は、実施例10と同様にして測定した。血清中のアルブミン濃度は、肝機能(肝蛋白合成能)マーカーの1つとして測定した。血清中のアンモニア濃度は、肝性脳症マーカーとして、又はアンモニアクレアランス状態を知るために測定した。なお、両患者には、測定期間中の一定期間、BCAA剤を投与した。図21に肝硬変患者Aの測定結果を、図22に肝硬変患者Bの測定結果を、それぞれ示す。図21及び22中、上段は血清中の3-HIB濃度の経時的変化を示したグラフであり、中段は血清中アルブミン濃度の経時的変化を示したグラフであり、下段は血清中アンモニア濃度の経時的変化を示したグラフである。図21の上段中、「BCAA」は、BCAA投与期間を示す。
[Example 16]
Blood was collected over time from cirrhosis patient A (female) with relatively mild cirrhosis and cirrhosis patient B (female) with relatively severe cirrhosis. Serum 3-HIB (μM) and albumin ( g / dL) and ammonia concentration (μg / dL) were measured. Albumin and ammonia were usually measured by a standard method commonly used in clinical examinations. The albumin concentration was measured by BCG method using the obtained patient serum using albumin HR-II (manufactured by Wako Pure Chemical Industries, Ltd.). The ammonia concentration was measured using Fuji Dry Chem slide NH3-WII (Fuji Film Co., Ltd.) and using Fuji Dry Chem biochemical analyzer. The 3-HIB concentration in serum was measured in the same manner as in Example 10. The albumin concentration in serum was measured as one of the liver function (liver protein synthesis ability) markers. Serum ammonia concentration was measured as a hepatic encephalopathy marker or to know the ammonia clearance status. Both patients were administered the BCAA agent for a certain period during the measurement period. FIG. 21 shows the measurement results of cirrhosis patient A, and FIG. 22 shows the measurement results of cirrhosis patient B. 21 and 22, the upper graph is a graph showing the change in serum 3-HIB concentration over time, the middle graph is the graph showing the change in serum albumin concentration over time, and the lower graph is the serum ammonia concentration. It is the graph which showed change with time. In the upper part of FIG. 21, “BCAA” indicates the BCAA administration period.
 図21に示すように、血清中アルブミン濃度が基準値(3.8g/dL)よりも高く、肝硬変の症状が比較的軽い肝硬変患者Aの血清中3-HIB濃度は、変動があるものの、肝硬変患者の平均値よりも高い傾向にあり、特にBCAA剤投与期間中には高くなったが、血清中アンモニア濃度は、基準値上限値(86μg/dL)よりも低く、肝性脳症発症のリスクはさほど高くないと評価できた。
 一方で、血清中アルブミン濃度が基準値よりも低い傾向にあり、肝硬変の症状が比較的重い肝硬変患者Bでは、図22に示すように、血清中3-HIB濃度が肝硬変患者の平均値よりも低い傾向にあり、血清中のアンモニア濃度も基準値上限値を超える場合があった。また、その後にBCAA剤を投与すると、血清中3-HIB濃度が高くなると同時に、血清中のアンモニア濃度は低下する傾向が観察された(図示せず。)。このように、肝硬変患者において、血清中3-HIB濃度が低くなると、血清中アンモニア濃度が高くなる傾向にあり、血清中3-HIB濃度が高くなると、血清中アンモニア濃度が低くなる傾向にあることから、体液中の3-HIB濃度が、肝硬変患者の肝性脳症のマーカーとなり得ることが示された。
As shown in FIG. 21, although the serum albumin concentration is higher than the reference value (3.8 g / dL) and the cirrhosis patient A has a relatively mild symptom of cirrhosis, the serum 3-HIB concentration varies, but cirrhosis. Although it tended to be higher than the average value of patients, especially during the BCAA drug administration period, the serum ammonia concentration was lower than the upper limit of the reference value (86 μg / dL), and the risk of developing hepatic encephalopathy was I was able to evaluate that it was not so high.
On the other hand, in the case of cirrhosis patient B in which the serum albumin concentration tends to be lower than the reference value and the symptoms of cirrhosis are relatively severe, as shown in FIG. 22, the serum 3-HIB concentration is higher than the average value of cirrhosis patients. There was a tendency that the ammonia concentration in the serum exceeded the upper limit of the reference value. Further, when BCAA agent was administered thereafter, the serum 3-HIB concentration increased, and at the same time, the ammonia concentration in the serum tended to decrease (not shown). Thus, in patients with cirrhosis, when the serum 3-HIB concentration decreases, the serum ammonia concentration tends to increase, and when the serum 3-HIB concentration increases, the serum ammonia concentration tends to decrease. From these results, it was shown that 3-HIB concentration in body fluid can be a marker of hepatic encephalopathy in cirrhosis patients.
 本発明に係る検出方法は、3-HIBや3-HB等のバイオマーカーとして有用な有機酸を、高感度かつ定量的に検出できることから、臨床検査等の分野で利用が可能である。 The detection method according to the present invention can be used in fields such as clinical tests because organic acids useful as biomarkers such as 3-HIB and 3-HB can be detected with high sensitivity and quantitative.

Claims (11)

  1.  試料中の有機酸を検出する方法であって、
     試料中の有機酸を下記一般式(1)-1~(1)-3
    Figure JPOXMLDOC01-appb-C000001
    (式(1)-1~3中、R及びRは、一方が炭素数1~6のヒドロキシアルキル基を表し、他方が水素原子又は炭素数1~6のアルキル基を表す。)
    のいずれかで表される誘導体化試薬とエステル結合させることにより誘導体を合成し、当該誘導体を、正イオンモードのエレクトロスプレーイオン化LC-MS/MS(液体クロマトグラフィー-タンデム質量分析)法により検出することを特徴とする、試料中の有機酸の検出方法。
    A method for detecting an organic acid in a sample, comprising:
    The organic acid in the sample is represented by the following general formulas (1) -1 to (1) -3
    Figure JPOXMLDOC01-appb-C000001
    (In the formula (1) -1 to 3, one of R 1 and R 2 represents a hydroxyalkyl group having 1 to 6 carbon atoms, and the other represents a hydrogen atom or an alkyl group having 1 to 6 carbon atoms.)
    A derivative is synthesized by ester linkage with a derivatization reagent represented by any of the above, and the derivative is detected by an electrospray ionization LC-MS / MS (liquid chromatography-tandem mass spectrometry) method in positive ion mode A method for detecting an organic acid in a sample.
  2.  前記誘導体化試薬が2-ピリジンメタノール、1-ピペリジンエタノール、及び2-(2-ヒドロキシエチル)-1-メチルピロリジンからなる群より選択される1種以上である、請求項1に記載の試料中の有機酸の検出方法。 2. The sample according to claim 1, wherein the derivatization reagent is at least one selected from the group consisting of 2-pyridinemethanol, 1-piperidineethanol, and 2- (2-hydroxyethyl) -1-methylpyrrolidine. Method for detecting organic acids.
  3.  前記有機酸が下記一般式(2)
    Figure JPOXMLDOC01-appb-C000002
    (式(2)中、Rは、炭素数2~6のヒドロキシアルキル基を表す。)
    で表される有機酸である、請求項1又は2に記載の試料中の有機酸の検出方法。
    The organic acid is represented by the following general formula (2)
    Figure JPOXMLDOC01-appb-C000002
    (In Formula (2), R 3 represents a hydroxyalkyl group having 2 to 6 carbon atoms.)
    The method for detecting an organic acid in a sample according to claim 1, wherein the organic acid is represented by the formula:
  4.  前記有機酸が3-ヒドロキシ酪酸、3-ヒドロキシイソ酪酸、3-ヒドロキシイソ吉草酸、及び2-ヒドロキシ酪酸からなる群より選択される1種以上である、請求項1又は2に記載の試料中の有機酸の検出方法。 The sample according to claim 1 or 2, wherein the organic acid is at least one selected from the group consisting of 3-hydroxybutyric acid, 3-hydroxyisobutyric acid, 3-hydroxyisovaleric acid, and 2-hydroxybutyric acid. Method for detecting organic acids.
  5.  前記試料が生体試料である、請求項1~4のいずれか一項に記載の試料中の有機酸の検出方法。 The method for detecting an organic acid in a sample according to any one of claims 1 to 4, wherein the sample is a biological sample.
  6.  前記試料は、血清、涙液、唾液、又は尿である、請求項1~4のいずれか一項に記載の試料中の有機酸の検出方法。 The method for detecting an organic acid in a sample according to any one of claims 1 to 4, wherein the sample is serum, tears, saliva, or urine.
  7.  被検者から採取した生体試料中の3-ヒドロキシイソ酪酸、3-ヒドロキシイソ吉草酸、及び2-ヒドロキシ酪酸からなる群より選択される1種以上の有機酸を、請求項1又は2に記載の試料中の有機酸の検出方法により検出し、前記生体試料中の前記有機酸の濃度を測定する定量工程と、
     前記定量工程において得られた有機酸濃度を、予め設定された閾値、又は前記生体試料が採取された時点以前に前記被験者から採取された生体試料中の前記有機酸濃度と比較し、前記被験者における肝硬変発症の可能性を評価する評価工程と、
    を有し、
     前記生体試料が血清又は唾液であることを特徴とする、肝硬変発症可能性の評価方法。
    3. One or more organic acids selected from the group consisting of 3-hydroxyisobutyric acid, 3-hydroxyisovaleric acid, and 2-hydroxybutyric acid in a biological sample collected from a subject according to claim 1 or 2. A quantitative step of detecting the organic acid in the sample by measuring the concentration of the organic acid in the biological sample;
    Compare the organic acid concentration obtained in the quantification step with a preset threshold value or the organic acid concentration in the biological sample collected from the subject before the biological sample was collected, An evaluation process for evaluating the likelihood of developing cirrhosis,
    Have
    The method for evaluating the possibility of developing cirrhosis, wherein the biological sample is serum or saliva.
  8.  肝硬変を発症している被検者から採取した生体試料中の3-ヒドロキシイソ酪酸を、請求項1又は2に記載の試料中の有機酸の検出方法により検出し、当該生体試料中の3-ヒドロキシイソ酪酸濃度を測定する定量工程と、
     前記定量工程において得られた3-ヒドロキシイソ酪酸濃度を、予め設定された閾値、又は前記生体試料が採取された時点以前に前記被験者から採取された生体試料中の3-ヒドロキシイソ酪酸濃度と比較し、前記被験者における肝性脳症発症の可能性を評価する評価工程と、
    を有し、
     前記生体試料が血清又は唾液であることを特徴とする、肝性脳症発症可能性の評価方法。
    3-hydroxyisobutyric acid in a biological sample collected from a subject who has developed cirrhosis is detected by the method for detecting an organic acid in a sample according to claim 1 or 2, and 3-hydroxyisobutyric acid in the biological sample is detected. A quantitative process for measuring hydroxyisobutyric acid concentration;
    The 3-hydroxyisobutyric acid concentration obtained in the quantification step is compared with a preset threshold value or a 3-hydroxyisobutyric acid concentration in a biological sample collected from the subject before the biological sample was collected. And an evaluation step for evaluating the possibility of developing hepatic encephalopathy in the subject,
    Have
    A method for evaluating the possibility of developing hepatic encephalopathy, wherein the biological sample is serum or saliva.
  9.  3-ヒドロキシイソ酪酸からなることを特徴とする、肝性脳症又はその発症可能性のバイオマーカー。 A biomarker of hepatic encephalopathy or its onset possibility, characterized by comprising 3-hydroxyisobutyric acid.
  10.  運動中の被検者から採取した生体試料中の3-ヒドロキシイソ酪酸及び3-ヒドロキシ酪酸からなる群より選択される1種以上の有機酸を、請求項1又は2に記載の試料中の有機酸の検出方法により検出し、当該生体試料中の前記有機酸濃度を測定する定量工程と、
     前記定量工程において得られた前記有機酸濃度を、予め設定された閾値、又は前記被験者から運動前に採取された生体試料中の前記有機酸濃度と比較し、前記被験者における運動中又は運動後のエネルギー供給源を評価する評価工程と、
    を有し、
     前記生体試料が血清又は唾液であることを特徴とする、エネルギー供給源の評価方法。
    The organic acid in the sample according to claim 1 or 2, wherein one or more organic acids selected from the group consisting of 3-hydroxyisobutyric acid and 3-hydroxybutyric acid in a biological sample collected from a subject in motion are used. A quantitative step of detecting by the acid detection method and measuring the concentration of the organic acid in the biological sample;
    The organic acid concentration obtained in the quantification step is compared with a preset threshold value or the organic acid concentration in a biological sample collected before exercise from the subject, and during or after exercise in the subject An evaluation process for evaluating energy sources;
    Have
    The method for evaluating an energy source, wherein the biological sample is serum or saliva.
  11.  運動開始直前から運動終了後一定期間経過後までの間に経時的に被検者から採取された複数の生体試料中の3-ヒドロキシイソ酪酸及び3-ヒドロキシ酪酸からなる群より選択される1種以上の有機酸を、請求項1又は2に記載の試料中の有機酸の検出方法によりそれぞれ検出し、各生体試料中の前記有機酸濃度を測定することにより、前記有機酸濃度の経時的変化を調べるモニタリング工程と、
     前記モニタリング工程において得られた前記有機酸濃度の経時的変化に基づき、前記被験者における運動中又は運動後のエネルギー供給源を評価する評価工程と、
    を有し、
     前記生体試料中の前記有機酸濃度をエネルギー供給源のマーカーとし、かつ前記生体試料が血清又は唾液であることを特徴とする、エネルギー供給源のモニタリング方法。
    One selected from the group consisting of 3-hydroxyisobutyric acid and 3-hydroxybutyric acid in a plurality of biological samples collected over time from immediately before the start of exercise to after a lapse of a certain period after the end of exercise The above-mentioned organic acid is detected by the method for detecting an organic acid in a sample according to claim 1 or 2, and the organic acid concentration in each biological sample is measured. Monitoring process to examine
    An evaluation step for evaluating an energy supply source during or after exercise in the subject based on the change over time of the organic acid concentration obtained in the monitoring step;
    Have
    An energy supply source monitoring method, wherein the organic acid concentration in the biological sample is used as a marker of an energy supply source, and the biological sample is serum or saliva.
PCT/JP2014/053506 2013-02-15 2014-02-14 Method for detecting organic acid in sample WO2014126207A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-028168 2013-02-15
JP2013028168 2013-02-15

Publications (1)

Publication Number Publication Date
WO2014126207A1 true WO2014126207A1 (en) 2014-08-21

Family

ID=51354206

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/053506 WO2014126207A1 (en) 2013-02-15 2014-02-14 Method for detecting organic acid in sample

Country Status (1)

Country Link
WO (1) WO2014126207A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016136991A1 (en) * 2015-02-27 2016-09-01 味の素株式会社 Method for determining undernutrition using marker protein in saliva,and diagnostic drug used in same
CN110618214A (en) * 2019-10-16 2019-12-27 台州科技职业学院 Method for determining and confirming beta-hydroxy-beta-methylbutyric acid and calcium salt thereof in liquid beverage
CN115267014A (en) * 2022-08-08 2022-11-01 杭州凯莱谱精准医疗检测技术有限公司 Method for detecting organic acid in tricarboxylic acid cycle

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007132741A (en) * 2005-11-09 2007-05-31 Aska Pharmaceutical Co Ltd Method of measuring steroid
JP2011247869A (en) * 2010-04-27 2011-12-08 Kobe Univ Inspection method of specific disease using metabolome analysis method
WO2012049874A1 (en) * 2010-10-13 2012-04-19 ヒューマン・メタボローム・テクノロジーズ株式会社 Biomarker for diagnosis of fatty liver diseases, method for measuring same, computer program and storage medium

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007132741A (en) * 2005-11-09 2007-05-31 Aska Pharmaceutical Co Ltd Method of measuring steroid
JP2011247869A (en) * 2010-04-27 2011-12-08 Kobe Univ Inspection method of specific disease using metabolome analysis method
WO2012049874A1 (en) * 2010-10-13 2012-04-19 ヒューマン・メタボローム・テクノロジーズ株式会社 Biomarker for diagnosis of fatty liver diseases, method for measuring same, computer program and storage medium

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
DESHPANDE,P.: "Development and validation of LC-MS/MS method for the estimation of beta-hydroxy-beta-methylbutyrate in rat plasma and its application to pharmacokinetic studies", BIOMEDICAL CHROMATOGRAPHY, vol. 27, 24 May 2012 (2012-05-24), pages 142 - 147 *
HONDA,A. ET AL.: "Highly sensitive quantification of serum malonate, a possible marker for de novo lipogenesis, by LC-ESI-MS/MS", JOURNAL OF LIPID RESEARCH, vol. 50, October 2009 (2009-10-01), pages 2124 - 2130 *
JUTILA,M. ET AL.: "Piperidyl and morpholinyl esters as derivatives for the structural determination of long-chain fatty acids by mass spectrometry", BIOMEDICAL AND ENVIRONMENTAL MASS SPECTROMETRY, vol. 17, December 1988 (1988-12-01), pages 433 - 436 *
TERUO MIYAZAKI: "Kankohen Kanja no Kakkakukin ni Okeru Shibosan beta Sanka Kassei no Hyoka", ACTA HEPATOLOGICA JAPONICA, vol. 54, no. SUPPLE, 25 April 2013 (2013-04-25), pages A175 *
TERUO MIYAZAKI: "Kokkakukin Branched Chain Amino Acid Ika Marker to shite no Kecchu 3-Hydroxyisobutyric Acid Sokutei no Yuyosei", JAPANESE JOURNAL OF PHYSICAL FITNESS AND SPORTS MEDICINE, vol. 61, no. 6, 1 December 2012 (2012-12-01), pages 632 *
TERUO MIYAZAKI: "Shokaki Shikkan Kanja ni Okeru Kecchu 3-Hydroxyisobutyric Acid Nodo no Hikaku", ACTA HEPATOLOGICA JAPONICA, vol. 53, no. SUPPL, 10 September 2012 (2012-09-10), pages A649 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016136991A1 (en) * 2015-02-27 2016-09-01 味の素株式会社 Method for determining undernutrition using marker protein in saliva,and diagnostic drug used in same
CN110618214A (en) * 2019-10-16 2019-12-27 台州科技职业学院 Method for determining and confirming beta-hydroxy-beta-methylbutyric acid and calcium salt thereof in liquid beverage
CN115267014A (en) * 2022-08-08 2022-11-01 杭州凯莱谱精准医疗检测技术有限公司 Method for detecting organic acid in tricarboxylic acid cycle
CN115267014B (en) * 2022-08-08 2023-05-26 杭州凯莱谱精准医疗检测技术有限公司 Method for detecting organic acid in tricarboxylic acid cycle

Similar Documents

Publication Publication Date Title
Jacob et al. A targeted metabolomics approach for clinical diagnosis of inborn errors of metabolism
Wishart Metabolomics for investigating physiological and pathophysiological processes
Liepinsh et al. Mildronate treatment alters γ-butyrobetaine and l-carnitine concentrations in healthy volunteers
Wilkinson et al. Effects of leucine and its metabolite β‐hydroxy‐β‐methylbutyrate on human skeletal muscle protein metabolism
Churchward‐Venne et al. Supplementation of a suboptimal protein dose with leucine or essential amino acids: effects on myofibrillar protein synthesis at rest and following resistance exercise in men
Williamson et al. The nitration product 5-nitro-γ-tocopherol is increased in the Alzheimer brain
Talasniemi et al. Analytical investigation: assay of D-lactate in diabetic plasma and urine
Stabler et al. Quantification of serum and urinary S-adenosylmethionine and S-adenosylhomocysteine by stable-isotope-dilution liquid chromatography-mass spectrometry
Kasumov et al. Plasma levels of asymmetric dimethylarginine in patients with biopsy-proven nonalcoholic fatty liver disease
Chen et al. d-Ribose contributes to the glycation of serum protein
Zhang et al. Simultaneous determination of arginine and seven metabolites in plasma by reversed-phase liquid chromatography with a time-controlled ortho-phthaldialdehyde precolumn derivatization
Mulder et al. A metabolomics‐based molecular pathway analysis of how the sodium‐glucose co‐transporter‐2 inhibitor dapagliflozin may slow kidney function decline in patients with diabetes
Luier et al. Tuberculosis metabolomics reveals adaptations of man and microbe in order to outcompete and survive
US20190101525A1 (en) Method for determining the extent of aging of a subject and treating the subject to suppress the extent of aging
Miyazaki et al. Simultaneous quantification of salivary 3-hydroxybutyrate, 3-hydroxyisobutyrate, 3-hydroxy-3-methylbutyrate, and 2-hydroxybutyrate as possible markers of amino acid and fatty acid catabolic pathways by LC–ESI–MS/MS
Hu et al. Sensitive analysis of fatty acid esters of hydroxy fatty acids in biological lipid extracts by shotgun lipidomics after one-step derivatization
Chou et al. Elevated urinary D-lactate levels in patients with diabetes and microalbuminuria
Nomi et al. Simultaneous quantitation of advanced glycation end products in soy sauce and beer by liquid chromatography-tandem mass spectrometry without ion-pair reagents and derivatization
Hannaian et al. Leucine-enriched amino acids maintain peripheral mTOR-Rheb localization independent of myofibrillar protein synthesis and mTORC1 signaling postexercise
Shibasaki et al. Simultaneous determination of prednisolone, prednisone, cortisol, and cortisone in plasma by GC–MS: estimating unbound prednisolone concentration in patients with nephrotic syndrome during oral prednisolone therapy
RU2558042C2 (en) High-sensitivity method for measuring number of components recovered from medicinal herbs
May et al. Plasma and tissue homoarginine concentrations in healthy and obese humans
Liu et al. Establishment of a two-dimensional chiral HPLC system for the simultaneous detection of lactate and 3-hydroxybutyrate enantiomers in human clinical samples
Pujos-Guillot et al. Therapeutic paracetamol treatment in older persons induces dietary and metabolic modifications related to sulfur amino acids
EP4103946A1 (en) In-vitro diagnosis of histamine intolerance syndrome

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14751772

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14751772

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP