WO2014126203A1 - FEEDSTOCK SUPPLY SOURCE FOR GROWING ZnO-CONTAINING FILM, ZnO-CONTAINING-FILM MANUFACTURING DEVICE AND MANUFACTURING METHOD, AND LIGHT-EMITTING ELEMENT CONTAINING ZnO-CONTAINING FILM - Google Patents

FEEDSTOCK SUPPLY SOURCE FOR GROWING ZnO-CONTAINING FILM, ZnO-CONTAINING-FILM MANUFACTURING DEVICE AND MANUFACTURING METHOD, AND LIGHT-EMITTING ELEMENT CONTAINING ZnO-CONTAINING FILM Download PDF

Info

Publication number
WO2014126203A1
WO2014126203A1 PCT/JP2014/053486 JP2014053486W WO2014126203A1 WO 2014126203 A1 WO2014126203 A1 WO 2014126203A1 JP 2014053486 W JP2014053486 W JP 2014053486W WO 2014126203 A1 WO2014126203 A1 WO 2014126203A1
Authority
WO
WIPO (PCT)
Prior art keywords
zno
raw material
containing film
reaction vessel
supply source
Prior art date
Application number
PCT/JP2014/053486
Other languages
French (fr)
Japanese (ja)
Inventor
松潤 康
熊谷 義直
纐纈 明伯
Original Assignee
東京エレクトロン株式会社
国立大学法人東京農工大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東京エレクトロン株式会社, 国立大学法人東京農工大学 filed Critical 東京エレクトロン株式会社
Publication of WO2014126203A1 publication Critical patent/WO2014126203A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/02631Physical deposition at reduced pressure, e.g. MBE, sputtering, evaporation
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/40Oxides
    • C23C16/407Oxides of zinc, germanium, cadmium, indium, tin, thallium or bismuth
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/448Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for generating reactive gas streams, e.g. by evaporation or sublimation of precursor materials
    • C23C16/4481Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for generating reactive gas streams, e.g. by evaporation or sublimation of precursor materials by evaporation using carrier gas in contact with the source material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45563Gas nozzles
    • C23C16/45578Elongated nozzles, tubes with holes
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/458Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for supporting substrates in the reaction chamber
    • C23C16/4582Rigid and flat substrates, e.g. plates or discs
    • C23C16/4583Rigid and flat substrates, e.g. plates or discs the substrate being supported substantially horizontally
    • C23C16/4584Rigid and flat substrates, e.g. plates or discs the substrate being supported substantially horizontally the substrate being rotated
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/46Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for heating the substrate
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B25/00Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
    • C30B25/02Epitaxial-layer growth
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/16Oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02551Group 12/16 materials
    • H01L21/02554Oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/0257Doping during depositing
    • H01L21/02573Conductivity type
    • H01L21/02579P-type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/0262Reduction or decomposition of gaseous compounds, e.g. CVD
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/26Materials of the light emitting region
    • H01L33/28Materials of the light emitting region containing only elements of group II and group VI of the periodic system

Definitions

  • Embodiments of the present invention relate to a raw material supply source for ZnO-containing film growth, a ZnO-containing film manufacturing apparatus, a manufacturing method, and a light-emitting element including the ZnO-containing film.
  • ZnO zinc oxide
  • GaN gallium nitride
  • Patent Document 1 describes a semiconductor element in which a p-type MgZnO layer is formed on an n-type ZnO substrate using a molecular beam epitaxy method. This p-type MgZnO layer is formed using zinc (Zn) and oxygen gas (O 2 ) as main raw materials, and nitrogen gas (N 2 ) is used as a p-type dopant raw material.
  • Patent Document 2 a reaction gas composed of zinc chloride (ZnCl 2 ) and water (H 2 O) is introduced into a reaction container in which a substrate is accommodated under normal pressure, and ammonia (NH 3 ) is introduced. It is described that a ZnO-containing film to which nitrogen is added is grown on a substrate by introducing it into a reaction vessel as a p-type impurity source gas.
  • Patent Document 1 the molecular beam epitaxy method described in Patent Document 1 needs to grow a ZnO-containing film while maintaining an ultrahigh vacuum state, and is not suitable for mass production of a semiconductor film.
  • a raw material supply source for growing a ZnO-containing film supplies a raw material for growing a ZnO-containing film into a reaction vessel that houses a substrate on which the ZnO-containing film is to be formed.
  • a raw material supply source that communicates with the inside of the reaction vessel and contains a solid raw material containing Zn, a heating part that heats the raw material storage part, and the inside of the raw material storage part to be at normal pressure
  • a carrier gas supply source for supplying a carrier gas not containing chlorine and hydrogen into the raw material container
  • a reaction gas supply source for supplying a reaction gas containing nitric oxide into the reaction vessel so that the inside of the reaction vessel has a normal pressure
  • a control device wherein the control device is configured to control the heating unit to a temperature at which Zn is vaporized in the raw material storage unit when supplying the carrier gas into the raw material storage unit.
  • Zn is vaporized under normal pressure in the raw material container by heating the inside of the raw material container.
  • the vaporized Zn is transported by a carrier gas not containing chlorine and hydrogen supplied into the raw material container, and supplied as a raw material gas into the reaction vessel.
  • a reaction gas containing nitric oxide is supplied into the reaction vessel so that the reaction vessel has a normal pressure, and the reaction gas and the raw material gas react to form a ZnO-containing film on the substrate.
  • the source gas does not contain chlorine and etching of the ZnO-containing film does not occur, the ZnO-containing film can be grown at a low temperature.
  • the doping amount of nitrogen as an acceptor has a property that depends on the growth temperature, and the doping concentration of nitrogen becomes high at a low temperature of 700 ° C. or lower.
  • the source gas does not contain hydrogen, generation of crystal defects due to etching with hydrogen gas is prevented. Therefore, according to this raw material supply source, a raw material gas for growing a ZnO-containing film capable of producing a ZnO semiconductor film having high crystallinity and having high doping concentration of nitrogen added under normal pressure. Can be supplied.
  • An apparatus for producing a ZnO film according to an aspect of the present invention includes an installation table on which a substrate on which a ZnO film is to be formed is disposed, a reaction container that houses the installation table, a solid container that contains Zn and communicates with the inside of the reaction container.
  • a carrier gas that supplies a carrier gas that does not contain chlorine and hydrogen into the raw material container so that the inside of the raw material container is at a normal pressure, a raw material container that contains the raw material, a heating unit that heats the installation base and the raw material container
  • the heating unit is controlled so that the inside of the raw material storage unit is set to a first temperature at which Zn is vaporized, and the installation base is set to a second temperature equal to or higher than the first temperature. .
  • Zn is vaporized under normal pressure in the raw material container by heating the raw material container.
  • the vaporized Zn is transported by a carrier gas not containing chlorine and hydrogen supplied into the raw material container, and supplied as a raw material gas into the reaction vessel.
  • a reaction gas containing nitric oxide is supplied into the reaction vessel so that the reaction vessel has a normal pressure, and the reaction gas and the raw material gas react to form a ZnO-containing film on the substrate.
  • the source gas does not contain chlorine and etching of the ZnO-containing film does not occur, the ZnO-containing film can be grown at a low temperature.
  • the doping amount of nitrogen as an acceptor has a property that depends on the growth temperature, and the doping concentration of nitrogen becomes high at a low temperature of 700 ° C. or lower.
  • the source gas does not contain hydrogen, generation of crystal defects due to etching with hydrogen gas is prevented. For this reason, according to this manufacturing apparatus, it is possible to produce a ZnO semiconductor film having high crystallinity and having high doping concentration of nitrogen added under normal pressure.
  • the reaction gas may not contain oxygen.
  • the partial pressure of the nitric oxide gas that contributes to doping of the ZnO-containing film can be increased in the reaction vessel, a ZnO semiconductor film to which nitrogen having a higher doping concentration is added can be manufactured. it can.
  • the first temperature may be 300 ° C. to 400 ° C.
  • the second temperature may be 400 ° C. to 600 ° C.
  • a method for producing a ZnO film according to an aspect of the present invention includes a mounting base on which a substrate on which a ZnO-containing film is to be formed is disposed, a reaction container that houses the mounting base, and inside the reaction container, and contains Zn.
  • a ZnO-containing film using a manufacturing apparatus comprising a gas supply source, a reaction gas supply source for supplying a reaction gas containing nitric oxide into the reaction vessel, and a control device so that the inside of the reaction vessel has a normal pressure
  • a ZnO semiconductor film having a high crystallinity and having a high doping concentration of nitrogen added under normal pressure can be produced.
  • the substrate may be a ZnO substrate, and in the installation step, the substrate may be installed such that a ZnO-containing film grows on the + C surface of the substrate.
  • a ZnO semiconductor film to which nitrogen having a higher doping concentration is added can be manufactured.
  • a light-emitting element includes a ZnO-containing film manufactured under normal pressure, and the ZnO-containing film has a nitrogen doping concentration of 1 ⁇ 10 20 atm / cm 3 or more. It is characterized by.
  • the price of the light emitting element can be reduced by using ZnO as a material.
  • a ZnO semiconductor film to which nitrogen having a high doping concentration is added can be manufactured under normal pressure.
  • FIG. 2 is a cross-sectional view taken along line II-II in FIG. It is a flowchart which shows the manufacturing method of the ZnO containing film
  • (A) is a graph which shows the relationship between the growth temperature of the produced ZnO film
  • FIG. 1 is a cross-sectional view schematically showing a ZnO-containing film manufacturing apparatus 1 according to an embodiment, and shows a cross section of the manufacturing apparatus 1.
  • 2 is a cross-sectional view taken along line II-II of the manufacturing apparatus 1 shown in FIG.
  • the manufacturing apparatus 1 includes a raw material container 10, a reaction vessel 20, a carrier gas supply source 16, a reaction gas supply source 32, and an inert gas supply source.
  • the manufacturing apparatus 1 is an apparatus that forms a ZnO-containing film to which nitrogen is added on a substrate 2 under normal pressure.
  • “normal pressure” means a pressure excluding an ultra-high vacuum state, and specifically means a range of 0.7 atm to 1.3 atm.
  • the raw material container 10, the carrier gas supply source 16, the reactive gas supply source 32, and the inert gas supply source 34 function as a raw material supply source MS.
  • the reaction vessel 20 is a means for accommodating the substrate 2 on which the ZnO-containing film is to be formed, and defines a reaction space S1 as its internal space.
  • the reaction vessel 20 includes a side wall 22a, an upper wall 22b, and a bottom wall 22c.
  • the side wall 22a has a substantially cylindrical shape extending in the vertical direction along the axis Z.
  • the upper wall 22b is provided on the upper end side of the side wall 22a.
  • An exhaust pipe 30 having an exhaust hole 30a is attached to the upper wall 22b.
  • the exhaust pipe 30 is connected to the exhaust device 36.
  • the exhaust device 36 is controlled by a control device 40 described later, controls the flow rate of the exhausted gas, and adjusts the pressure in the reaction vessel 20.
  • the exhaust device 36 has a vacuum pump such as a dry pump.
  • the inside of the reaction vessel 20 and the raw material container 10 are maintained at normal pressure by the exhaust device 36.
  • the bottom wall 22 c is provided on the lower end side of the side wall 22 a and supports a structure accommodated in the reaction vessel 20.
  • a cylindrical reaction tube 24 whose upper end is closed is provided inside the reaction vessel 20.
  • the reaction tube 24 is made of a heat resistant material such as quartz (SiO 2 ) or silicon carbide (SiC).
  • a plurality of openings 24 a are formed on the side surface of the reaction tube 24.
  • An installation table 26 is provided in the hollow portion in the reaction tube 24.
  • the installation table 26 includes a support portion 26a and a plurality of mounting tables 26b.
  • the mounting table 26b has a disk shape and can hold a plurality of substrates 2 horizontally on the upper surface thereof. In one example, as shown in FIG. 2, seven substrates 2 can be placed on the upper surface of one placement table 26b.
  • a plurality of mounting tables 26b are spaced apart at predetermined intervals along the axis Z, and a plurality of mounting tables 26b are supported by a long support portion 26a.
  • a rotation mechanism 28 is provided on the base end side of the support portion 26a.
  • the rotation mechanism 28 is configured to be capable of rotating a plurality of mounting tables 26b with the support portion 26a as a rotation axis.
  • the reaction vessel 20 further includes a heater (heating unit) H1 for heating the inside of the reaction vessel 20.
  • a plurality of heaters H ⁇ b> 1 are provided along the inner periphery of the side wall 22 a of the reaction vessel 20.
  • the heater H1 is a heating means that uses principles such as resistance heating, lamp heating, and high-frequency heating. As an example, a heating furnace using resistance heating can be employed.
  • the heater H ⁇ b> 1 is connected to the heater power supply 38, generates heat by the electric power supplied from the heater power supply 38, and heats the inside of the reaction vessel 20, that is, the installation table 26.
  • the heater power supply 38 is controlled by a control device 40 to be described later, controls the power supplied to the heater H1, and adjusts the amount of heat generated by the heater H1.
  • the raw material storage unit 10 includes a storage container 12.
  • the storage container 12 defines a storage space S2 as its internal space.
  • the raw material accommodating part 10 accommodates the stage 14 and the solid raw material M arrange
  • the solid material M contains Zn that is a material for the ZnO-containing film.
  • the raw material storage unit 10 further includes a heater (heating unit) H2 for heating the inside of the raw material storage unit 10.
  • the heater H2 is a heating means that uses principles such as resistance heating, lamp heating, and high-frequency heating. As an example, a heating furnace using resistance heating may be employed.
  • the heater H ⁇ b> 2 is connected to the heater power supply 15, generates heat by the electric power supplied from the heater power supply 15, and can heat the stage 14.
  • the heater power supply 15 is controlled by the control device 40, controls the power supplied to the heater H2, and adjusts the amount of heat generated by the heater H2.
  • a part of Zn contained in the solid material M is gasified by heating the inside of the material container 10 using the heater H2.
  • the carrier gas supply source 16 supplies the carrier gas into the raw material container 10 so that the inside of the raw material container 10 has a normal pressure.
  • the carrier gas supply source 16 communicates with the inside of the raw material container 10 through a conduit P1.
  • the carrier gas supply source 16 supplies a carrier gas from a gas source stored therein.
  • the conduit P1 introduces the carrier gas supplied from the carrier gas supply source 16 into the storage container 12.
  • the carrier gas supply source 16 is connected to the control device 40, controls the gas flow rate supplied to the conduit P ⁇ b> 1, and adjusts the flow rate of the carrier gas supplied into the raw material storage unit 10.
  • the carrier gas supplied from the carrier gas supply source 16 is an inert gas that does not contain chlorine (Cl) and hydrogen (H).
  • nitrogen gas (N 2 ) can be used as the carrier gas.
  • not containing chlorine and hydrogen is a concept including not only containing no chlorine and hydrogen but also containing a negligible amount of chlorine and hydrogen in the production of a ZnO film.
  • not including chlorine and hydrogen indicates that the content ratios of chlorine and hydrogen in the carrier gas are each 1% or less (molar concentration).
  • the raw material container 10 communicates with the inside of the reaction vessel 20 through a conduit P2.
  • One end of the conduit P ⁇ b> 2 is connected to the raw material container 10, the other end of the conduit P ⁇ b> 2 penetrates the reaction vessel 20, and an axis line extends between the side wall 22 a of the reaction vessel 20 and the side wall of the reaction tube 24. It extends along the Z direction.
  • a plurality of gas supply holes h ⁇ b> 2 for supplying a source gas containing Zn transported from the source container 10 into the reaction container 20 is formed in a portion of the conduit P ⁇ b> 2 located in the reaction container 20.
  • the reaction gas supply source 32 supplies the reaction gas into the reaction container 20 so that the inside of the reaction container 20 becomes normal pressure.
  • the reaction gas supplied from the reaction gas supply source 32 is a gas containing nitric oxide (NO).
  • the reaction gas may further contain nitrogen gas. Further, the reaction gas may not contain at least any of chlorine, hydrogen, and oxygen. In particular, since the reaction gas does not contain oxygen, the partial pressure of nitrogen that contributes as an acceptor of the ZnO-containing film can be increased.
  • the reactive gas supply source 32 communicates with the inside of the reaction vessel 20 through a conduit P3.
  • the conduit P3 passes through the upper surfaces of the reaction vessel 20 and the reaction tube 24, and extends along the axis Z direction into the space between the side wall of the reaction tube 24 and the installation base 26.
  • a plurality of gas supply holes h3 for supplying a reaction gas containing nitrogen monoxide conveyed from the reaction gas supply source 32 into the reaction vessel 20 is formed in a portion of the conduit P3 located in the reaction tube 24.
  • the inert gas supply source 34 supplies an inert gas into the reaction vessel 20 so that the inside of the reaction vessel 20 becomes a normal pressure.
  • the inert gas supplied from the inert gas supply source 34 is, for example, nitrogen gas.
  • the inert gas supply source 34 communicates with the inside of the reaction vessel 20 through a conduit P4.
  • the conduit P4 passes through the reaction vessel 20 and the reaction tube 24, and extends in the space between the side wall of the reaction tube 24 and the installation base 26 along the axis Z direction.
  • a plurality of gas supply holes h4 for supplying the inert gas conveyed from the inert gas supply source 34 into the reaction vessel 20 are formed in a portion of the conduit P4 located in the reaction tube 24.
  • the raw material gas supplied from the raw material container 10 As described above, the raw material gas supplied from the raw material container 10, the reactive gas supplied from the reactive gas supply source 32, and the inert gas supplied from the inert gas supply source 34 pass through different paths. It will be introduced into the reaction vessel 20.
  • the inert gas supply source 34 is not an essential configuration.
  • the manufacturing apparatus 1 may include a control device 40 that controls each part of the manufacturing apparatus 1.
  • the control device 40 controls the flow rate of the carrier gas using the carrier gas supply source 16, controls the flow rate of the reactive gas using the reactive gas supply source 32, controls the flow rate of the inert gas using the inert gas supply source 34, and controls the flow of the inert gas. Control of the rotation speed of the mounting table 26b, temperature control of the raw material container 10 by the heater power supply 15, temperature control of the reaction vessel 20 by the heater power supply 38, and the like are performed.
  • the control device 40 may be a programmable computer device, for example.
  • the carrier gas supplied from the carrier gas supply source 16 is introduced into the raw material container 10 via the conduit P1.
  • the carrier gas introduced into the raw material storage unit 10 transports Zn vaporized in the raw material storage unit 10 and flows into the reaction vessel 20 through the conduit P2 as a raw material gas containing Zn.
  • the source gas containing Zn ejected from the gas supply hole h ⁇ b> 2 of the conduit P ⁇ b> 2 passes through the opening 24 a and flows in the direction of the substrate 2 arranged inside the reaction tube 24.
  • reaction gas and the inert gas supplied from each of the reaction gas supply source 32 and the inert gas supply source 34 react directly through the gas supply hole h3 of the conduit P3 and the gas supply hole h4 of the conduit P4, respectively. It flows into the tube 24.
  • Zn contained in the source gas reacts with NO contained in the reaction gas, and a ZnO-containing film 2A grows on the substrate 2 disposed on the mounting table 26b.
  • This ZnO-containing film 2A is a p-type ZnO-containing semiconductor film in which nitrogen is doped at a high concentration as an acceptor.
  • the source gas, the reaction gas, and the inert gas in the reaction tube 24 that contributed to the growth of the ZnO-containing film 2A are provided on the side facing the opening 24a into which the source gas flows by the suction action of the exhaust device 36. It passes through the part 24 a and flows out of the reaction tube 24. Then, the source gas, the reaction gas, and the inert gas flow out of the reaction vessel 20 through the exhaust pipe 30.
  • FIG. 3 illustrates a method for manufacturing the ZnO-containing film 2A according to an embodiment using the manufacturing apparatus 1 described above.
  • the substrate 2 is carried into the reaction vessel 20, and then installed on the mounting table 26b of the installation table 26 (installation process).
  • the substrate 2 is a 1 cm square ZnO substrate manufactured by a hydrothermal synthesis method.
  • the substrate 2 may be placed so that the + C plane of the ZnO crystal structure of the substrate 2 is the upper surface. That is, the substrate 2 may be installed so that the ZnO-containing film 2A is formed on the + C plane of the substrate 2. This is because, as will be described later, by forming the ZnO-containing film 2A on the + C surface of the substrate 2, a higher concentration of nitrogen is added to the ZnO-containing film 2A.
  • step S2 the heater H1 and the heater H2 are controlled, and the inside of the raw material container 10 and the reaction vessel 20 are heated (film formation preparation step).
  • step S ⁇ b> 2 the control device 40 controls the heater power supply 15 to bring the inside of the raw material container 10 to a temperature at which Zn is vaporized (first temperature), and controls the heater power supply 38 to set the installation table 26. The temperature is higher than the temperature at which Zn vaporizes (second temperature).
  • the control device 40 controls the heater power supply 15 and sets the inside of the raw material container 10 to 300 ° C. to 400 ° C., controls the heater power supply 38, and sets the installation table to 400 ° C. to 600 ° C. Can be brought to ° C.
  • the control device 40 may control the rotation mechanism 28 and rotate the mounting table 26b on which the substrate 2 is mounted.
  • control device 40 controls the carrier gas supply source 16, the reactive gas supply source 32, and the inert gas supply source 34 while maintaining the heating, and the source gas, the reactive gas, and the reactive gas supply source 34, respectively.
  • An inert gas is supplied into the reaction vessel 20 (film formation step).
  • the control device 40 controls the exhaust device 36 and maintains the inside of the reaction vessel 20 and the raw material container 10 at normal pressure. In this way, the ZnO-containing film 2A is formed on the substrate 2.
  • the Zn contained in the solid raw material M in the raw material container 10 is heated under normal pressure by heating the raw material container 10 under normal pressure. Is vaporized.
  • the vaporized Zn is transported by a carrier gas not containing chlorine and hydrogen supplied into the raw material container 10 and supplied as a raw material gas into the reaction vessel.
  • a reaction gas containing nitrogen monoxide is supplied into the reaction vessel 20 so that the inside of the reaction vessel becomes normal pressure, and the reaction gas reacts with the raw material gas to form the ZnO-containing film 2A. .
  • the ZnO-containing film 2A can be grown at a relatively low temperature of 400 ° C. to 600 ° C.
  • the amount of doping (doping) of the acceptor nitrogen has a property that depends on the growth temperature, and the doping concentration of nitrogen becomes high at a low temperature of 700 ° C. or lower.
  • the inventors have found that the combination of Zn and nitric oxide is highly reactive. Therefore, according to the manufacturing apparatus 1 and the manufacturing method, the ZnO semiconductor film 2A to which nitrogen having a high doping concentration is added can be manufactured under normal pressure.
  • the source gas does not contain hydrogen, generation of crystal defects due to etching with hydrogen gas is prevented. Therefore, according to the manufacturing apparatus 1 and the manufacturing method, the ZnO semiconductor film 2A having excellent crystallinity can be manufactured.
  • the partial pressure of the nitric oxide gas that contributes to the doping of the ZnO-containing film 2A can be increased in the reaction vessel 20 by preventing the reaction gas from containing oxygen, nitrogen having a higher doping concentration can be obtained.
  • a ZnO semiconductor film to which is added can be manufactured.
  • control device 40 controls the heater power supply 15 and controls the inside of the raw material container 10 to 300 ° C. to 400 ° C. Further, by controlling the heater power supply 38 and controlling the installation base at 400 ° C. to 600 ° C., Zn can be vaporized appropriately and the ZnO-containing film 2A can be grown appropriately.
  • a sample of the ZnO-containing film 2A was manufactured using the manufacturing apparatus 1 shown in FIG. 1, and various characteristics were evaluated. Sample manufacturing conditions are as follows.
  • FIG. 4 is a graph showing the relationship between the depth ( ⁇ m) of a sample prepared under the above manufacturing conditions and the nitrogen doping concentration (atm / cm 3 ).
  • the ZnO-containing film 2A was produced by crystal growth on each of the + C plane and the ⁇ C plane of the substrate 2.
  • the growth temperature of the ZnO-containing film 2A that is, the temperature of the installation table 26 was set to 400 ° C. This measurement was performed using a secondary ion mass spectrometer (SIMS).
  • the ZnO-containing film 2A is crystal-grown up to a depth of 0 to 0.7 ⁇ m, and the substrate 2 is a base after the depth of 0.7 ⁇ m.
  • the ZnO-containing film 2A grown on the + C plane of the substrate 2 is doped with nitrogen exceeding 1 ⁇ 10 21 atm / cm 3 at a depth of 0.7 ⁇ m or less. It was confirmed that a ZnO film having a high doping concentration was formed.
  • the nitrogen doping concentration is 1 ⁇ . It was confirmed that it was 10 20 atm / cm 3 or more.
  • FIG. 5A is a graph showing the relationship between the growth temperature of the sample produced under the above manufacturing conditions and the ⁇ FWHM value obtained by X-ray diffraction measurement.
  • the ZnO-containing film 2A was produced by crystal growth on the + C plane of the substrate 2.
  • the ⁇ FWHM value is a difference value of the FWHM value of the substrate 2 with respect to the FWHM value of the sample.
  • the ⁇ FWHM value was measured for the tilt component (X-ray rocking curve half-value width of (0002) plane) and twist component (X-ray rocking curve half-value width of (10-11) plane).
  • the ⁇ FWHM value when the growth temperature is changed from 400 ° C. to 600 ° C. is ⁇ 10 to 10 arcsec. From this value, it was confirmed that the FWHM value of the sample hardly changed even when compared with the FWHM value of the substrate 2, and a very high quality crystal was obtained.
  • FIG. 5B is a graph showing the relationship between the growth temperature of the sample prepared under the above manufacturing conditions and the ⁇ lattice constant of the a axis and c axis obtained by X-ray diffraction measurement.
  • the ZnO-containing film 2A was produced by crystal growth on the + C plane of the substrate 2.
  • the ⁇ lattice constant is a difference value of the lattice constant of the substrate 2 with respect to the lattice constant of the sample.
  • the ⁇ lattice constants of the a axis and the c axis when the growth temperature is changed from 400 ° C. to 600 ° C. are ⁇ 0.0007 to 0.0001 ⁇ . From this value, it was confirmed that the lattice constant of the sample hardly changed even when compared with the lattice constant of the substrate 2, and a very high quality crystal was obtained.
  • FIG. 6 shows the PL spectra of samples 1 to 3 made with different growth temperatures.
  • the horizontal axis in FIG. 6 represents the light energy, and the vertical axis represents the PL intensity.
  • 6A shows the PL spectrum of Sample 1 with a growth temperature of 400 ° C.
  • FIG. 6B shows the PL spectrum of Sample 2 with a growth temperature of 500 ° C.
  • FIG. 6C shows the growth temperature. It is a PL spectrum of the sample 3 which made 600 degreeC.
  • Other manufacturing conditions except for the growth temperatures of Samples 1 to 3 are the same as the above-described sample manufacturing conditions.
  • the ZnO-containing films 2A of Samples 1 to 3 were produced by crystal growth on the + C plane of the substrate 2.
  • the peak of PL emission of Sample 2 and Sample 3 was observed at 3.2 eV to 3.5 eV.
  • sample 1 no PL emission peak was observed at 3.2 eV to 3.5 eV. Note that the peak observed in the vicinity of 3.8 eV is due to the laser for PL emission, and not due to the prepared sample.
  • FIG. 7 shows the film thickness of the ZnO-containing film 2A of samples prepared at different growth temperatures. As shown in FIG. 7, in the range where the growth temperature is lower than 500 ° C., the thickness of the ZnO-containing film 2A increases as the temperature approaches 500 ° C., and in the range where the growth temperature is higher than 500 ° C., the thickness is higher than 500 ° C.
  • the film thickness of the ZnO-containing film 2A decreases as the height increases. However, it was confirmed that in the range of 400 ° C. to 600 ° C., the change in the growth rate of the ZnO-containing film 2A is small and the influence due to the change in the growth temperature is small.
  • the ZnO-containing film 2A doped with nitrogen of 1 ⁇ 10 20 atm / cm 3 or more can be grown on the substrate 2 under normal pressure. .
  • the light emitting element 42 includes a ZnO-containing film 2A grown on the ZnO substrate 2 at room temperature.
  • the substrate 2 serving as a base is an n-type semiconductor containing ZnO as a main component.
  • the ZnO-containing film 2A is a p-type semiconductor to which nitrogen having a doping concentration of 1 ⁇ 10 20 atm / cm 3 or more is added, and forms a pn junction at the interface with the substrate 2.
  • An electrode E1 is formed on the ZnO-containing film 2A.
  • An electrode E2 is formed on the entire lower surface of the substrate 2.
  • the electrodes E1 and E2 can be formed by using, for example, Ti / Au as a material and using a vapor deposition method.
  • the light emitting element 42 emits light by connecting the electrode E2 to the ground and changing the voltage applied to the electrode E1. According to the light emitting element 42, the price of the light emitting element can be reduced by using ZnO as a semiconductor material.
  • steps S2 to S3 in FIG. 3 may be performed in an arbitrary order or may be performed simultaneously.
  • the raw material container 10 is provided outside the reaction vessel 20.
  • the raw material container 10 can be accommodated in the reaction vessel 20.
  • the raw material container 10 and the reaction vessel 20 do not necessarily need to be at normal pressure using the exhaust device 36.
  • the raw material container 10 and the reaction vessel 20 may be maintained at normal pressure by taking outside air from the exhaust pipe 30 provided in the reaction vessel 20 without providing the exhaust device 36.

Abstract

This feedstock supply source (MS) for growing a ZnO-containing film supplies, into a reaction vessel (20) that contains a substrate (2) on which a ZnO-containing film (2A) is to be formed, a feedstock for growing said ZnO-containing film. Said feedstock supply source is provided with the following: a feedstock-holding part (10) that connects to the interior of the reaction vessel (20) and holds a zinc-containing solid feedstock (M); a heater (H2) that heats the feedstock-holding part; a carrier-gas supply source (16) that supplies a carrier gas, said carrier gas containing no chlorine or hydrogen, into the feedstock-holding part (10) so as to make the pressure inside the feedstock-holding part (10) equal to standard pressure; a reaction-gas supply source (32) that supplies a carbon-monoxide-containing reaction gas into the reaction vessel (20) so as to make the pressure inside the reaction vessel (20) equal to standard pressure; and a control device (40). When the carrier gas is supplied into the feedstock-holding part (10), the control device (40) controls the heater (H2) so as to bring the interior of the feedstock-holding part (10) to a temperature at which zinc vaporizes.

Description

ZnO含有膜成長用の原料供給源、ZnO含有膜の製造装置、製造方法及びZnO含有膜を含む発光素子Raw material supply source for growth of ZnO-containing film, ZnO-containing film manufacturing apparatus, manufacturing method, and light-emitting element including ZnO-containing film
 本発明の実施形態は、ZnO含有膜成長用の原料供給源、ZnO含有膜の製造装置、製造方法及びZnO含有膜を含む発光素子に関する。 Embodiments of the present invention relate to a raw material supply source for ZnO-containing film growth, a ZnO-containing film manufacturing apparatus, a manufacturing method, and a light-emitting element including the ZnO-containing film.
 近年、酸化亜鉛(ZnO)を材料として用いた半導体素子が注目されている。例えば、発光ダイオードの材料としてZnOを用いることにより、窒化ガリウム(GaN)を材料と用いた場合と比較して低価格且つ高品質な発光ダイオードを作製することが可能となる。しかし、ZnO含有膜はアクセプタをドーピングすることが難しいため、ZnO含有膜をp型化することは困難であった。 In recent years, semiconductor elements using zinc oxide (ZnO) as a material have attracted attention. For example, by using ZnO as the material of the light emitting diode, it is possible to manufacture a light emitting diode having a low cost and high quality as compared with the case of using gallium nitride (GaN) as the material. However, since it is difficult to dope the acceptor with the ZnO-containing film, it has been difficult to make the ZnO-containing film p-type.
 従来、ZnOを主成分とするp型半導体の形成方法として、ZnO含有膜を結晶成長させる際に窒素等のアクセプタを添加する方法が知られている。例えば、特許文献1には、分子線エピタキシー法を用いて、n型ZnO基板上にp型MgZnO層を形成した半導体素子が記載されている。このp型MgZnO層は、主原料として亜鉛(Zn)及び酸素ガス(O)を用いて形成されおり、p型ドーパントの原料として窒素ガス(N)が用いられている。 Conventionally, as a method for forming a p-type semiconductor containing ZnO as a main component, a method of adding an acceptor such as nitrogen when a ZnO-containing film is grown is known. For example, Patent Document 1 describes a semiconductor element in which a p-type MgZnO layer is formed on an n-type ZnO substrate using a molecular beam epitaxy method. This p-type MgZnO layer is formed using zinc (Zn) and oxygen gas (O 2 ) as main raw materials, and nitrogen gas (N 2 ) is used as a p-type dopant raw material.
 また、特許文献2には、常圧下において、塩化亜鉛(ZnCl)及び水(HO)からなる反応ガスを基板が収容される反応容器内に導入し、且つ、アンモニア(NH)をp型不純物原料ガスとして反応容器内に導入することによって、基板上に窒素が添加されたZnO含有膜を結晶成長させることが記載されている。 In Patent Document 2, a reaction gas composed of zinc chloride (ZnCl 2 ) and water (H 2 O) is introduced into a reaction container in which a substrate is accommodated under normal pressure, and ammonia (NH 3 ) is introduced. It is described that a ZnO-containing film to which nitrogen is added is grown on a substrate by introducing it into a reaction vessel as a p-type impurity source gas.
特開2008-211203号公報JP 2008-211203 A 特開2010-157574号公報JP 2010-157574 A
 しかしながら、特許文献1に記載された分子線エピタキシー法は、超高真空状態を維持してZnO含有膜を成長させる必要があり、半導体膜を量産するには不向きである。 However, the molecular beam epitaxy method described in Patent Document 1 needs to grow a ZnO-containing film while maintaining an ultrahigh vacuum state, and is not suitable for mass production of a semiconductor film.
 これに対し、特許文献2に記載の方法では、常圧化においてZnO含有膜を成長させているので、量産性を向上させることができる。しかし、この方法では、窒素源であるアンモニアが分解することによって処理容器内に水素ガス(H)が発生し、この水素ガスによってZnO含有膜の表面がエッチングされてしまう。これにより、ZnO含有膜の結晶に欠陥が生じる場合がある。 On the other hand, in the method described in Patent Document 2, since the ZnO-containing film is grown at normal pressure, mass productivity can be improved. However, in this method, ammonia, which is a nitrogen source, is decomposed to generate hydrogen gas (H 2 ) in the processing container, and the surface of the ZnO-containing film is etched by this hydrogen gas. This may cause defects in the crystals of the ZnO-containing film.
 このため、当技術分野においては、常圧下において、高いドーピング濃度の窒素が添加され、且つ、結晶性に優れたZnO半導体膜を作製することができる、原料供給源、製造装置、製造方法、及びこれらによって作製された発光素子が要請されている。 For this reason, in this technical field, a raw material supply source, a manufacturing apparatus, a manufacturing method, and a ZnO semiconductor film that can be doped with high doping concentration of nitrogen and excellent in crystallinity under normal pressure, and There is a demand for light-emitting elements manufactured using these.
 上述の課題を解決するため、本発明の態様に係るZnO含有膜成長用の原料供給源は、ZnO含有膜が形成されるべき基板を収容する反応容器内にZnO含有膜成長用の原料を供給する原料供給源であって、反応容器内部に連通し、Znを含有する固体原料を収容する原料収容部と、原料収容部を加熱する加熱部と、原料収容部内が常圧になるように、塩素及び水素を含まないキャリアガスを原料収容部内に供給するキャリアガス供給源と、反応容器内が常圧になるように、一酸化窒素を含む反応ガスを反応容器内に供給する反応ガス供給源と、制御装置と、を備え、制御装置は、原料収容部内にキャリアガスを供給する際に、加熱部を制御することにより、原料収容部内をZnが気化する温度にする、ことを特徴とする。 In order to solve the above-described problems, a raw material supply source for growing a ZnO-containing film according to an aspect of the present invention supplies a raw material for growing a ZnO-containing film into a reaction vessel that houses a substrate on which the ZnO-containing film is to be formed. A raw material supply source that communicates with the inside of the reaction vessel and contains a solid raw material containing Zn, a heating part that heats the raw material storage part, and the inside of the raw material storage part to be at normal pressure, A carrier gas supply source for supplying a carrier gas not containing chlorine and hydrogen into the raw material container, and a reaction gas supply source for supplying a reaction gas containing nitric oxide into the reaction vessel so that the inside of the reaction vessel has a normal pressure And a control device, wherein the control device is configured to control the heating unit to a temperature at which Zn is vaporized in the raw material storage unit when supplying the carrier gas into the raw material storage unit. .
 この原料供給源によれば、原料収容部内を加熱することにより、原料収容部内においてZnが常圧下で気化する。気化したZnは、原料収容部内に供給される塩素及び水素を含まないキャリアガスによって搬送され、反応容器内部に原料ガスとして供給される。また、反応容器内が常圧になるように、一酸化窒素を含む反応ガスが反応容器内に供給され、この反応ガスと原料ガスとが反応することにより、基板上にZnO含有膜が形成される。ここで、原料ガスは、塩素を含まず、ZnO含有膜のエッチングが生じることがないため、ZnO含有膜を低温によって成長させることが可能である。アクセプタである窒素のドーピング量は成長温度に依存する性質があり、少なくとも700℃以下の低温においては窒素のドーピング濃度が高くなる。また、原料ガスは水素を含まないため、水素ガスによるエッチングに起因する結晶欠陥の発生が防止される。このため、この原料供給源によれば、常圧下において、高いドーピング濃度の窒素が添加され、且つ、結晶性に優れたZnO半導体膜を作製することが可能なZnO含有膜成長用の原料ガスを供給することができる。 According to this raw material supply source, Zn is vaporized under normal pressure in the raw material container by heating the inside of the raw material container. The vaporized Zn is transported by a carrier gas not containing chlorine and hydrogen supplied into the raw material container, and supplied as a raw material gas into the reaction vessel. In addition, a reaction gas containing nitric oxide is supplied into the reaction vessel so that the reaction vessel has a normal pressure, and the reaction gas and the raw material gas react to form a ZnO-containing film on the substrate. The Here, since the source gas does not contain chlorine and etching of the ZnO-containing film does not occur, the ZnO-containing film can be grown at a low temperature. The doping amount of nitrogen as an acceptor has a property that depends on the growth temperature, and the doping concentration of nitrogen becomes high at a low temperature of 700 ° C. or lower. In addition, since the source gas does not contain hydrogen, generation of crystal defects due to etching with hydrogen gas is prevented. Therefore, according to this raw material supply source, a raw material gas for growing a ZnO-containing film capable of producing a ZnO semiconductor film having high crystallinity and having high doping concentration of nitrogen added under normal pressure. Can be supplied.
 本発明の態様に係るZnO膜の製造装置は、ZnO膜が形成されるべき基板が配置される設置台と、設置台を収容する反応容器と、反応容器内部に連通し、Znを含有する固体原料を収容する原料収容部と、設置台及び原料収容部を加熱する加熱部と、原料収容部内が常圧になるように、塩素及び水素を含まないキャリアガスを原料収容部内に供給するキャリアガス供給源と、反応容器内が常圧になるように、一酸化窒素を含む反応ガスを反応容器内に供給する反応ガス供給源と、制御装置と、を備え、制御装置は、原料収容部内にキャリアガスを供給する際に、加熱部を制御することにより、原料収容部内をZnが気化する第1温度にするとともに、設置台を第1温度以上の第2温度にする、ことを特徴とする。 An apparatus for producing a ZnO film according to an aspect of the present invention includes an installation table on which a substrate on which a ZnO film is to be formed is disposed, a reaction container that houses the installation table, a solid container that contains Zn and communicates with the inside of the reaction container. A carrier gas that supplies a carrier gas that does not contain chlorine and hydrogen into the raw material container so that the inside of the raw material container is at a normal pressure, a raw material container that contains the raw material, a heating unit that heats the installation base and the raw material container A supply source, a reaction gas supply source for supplying a reaction gas containing nitric oxide into the reaction vessel so that the inside of the reaction vessel is at a normal pressure, and a control device. When supplying the carrier gas, the heating unit is controlled so that the inside of the raw material storage unit is set to a first temperature at which Zn is vaporized, and the installation base is set to a second temperature equal to or higher than the first temperature. .
 この製造装置によれば、原料収容部内を加熱することにより、原料収容部内においてZnが常圧下で気化する。気化したZnは、原料収容部内に供給される塩素及び水素を含まないキャリアガスによって搬送され、反応容器内部に原料ガスとして供給される。また、反応容器内が常圧になるように、一酸化窒素を含む反応ガスが反応容器内に供給され、この反応ガスと原料ガスとが反応することにより、基板上にZnO含有膜が形成される。ここで、原料ガスは、塩素を含まず、ZnO含有膜のエッチングが生じることがないため、ZnO含有膜を低温によって成長させることが可能である。アクセプタである窒素のドーピング量は成長温度に依存する性質があり、少なくとも700℃以下の低温においては窒素のドーピング濃度が高くなる。また、原料ガスは水素を含まないため、水素ガスによるエッチングに起因する結晶欠陥の発生が防止される。このため、この製造装置によれば、常圧下において、高いドーピング濃度の窒素が添加され、且つ、結晶性に優れたZnO半導体膜を作製することができる。 According to this manufacturing apparatus, Zn is vaporized under normal pressure in the raw material container by heating the raw material container. The vaporized Zn is transported by a carrier gas not containing chlorine and hydrogen supplied into the raw material container, and supplied as a raw material gas into the reaction vessel. In addition, a reaction gas containing nitric oxide is supplied into the reaction vessel so that the reaction vessel has a normal pressure, and the reaction gas and the raw material gas react to form a ZnO-containing film on the substrate. The Here, since the source gas does not contain chlorine and etching of the ZnO-containing film does not occur, the ZnO-containing film can be grown at a low temperature. The doping amount of nitrogen as an acceptor has a property that depends on the growth temperature, and the doping concentration of nitrogen becomes high at a low temperature of 700 ° C. or lower. In addition, since the source gas does not contain hydrogen, generation of crystal defects due to etching with hydrogen gas is prevented. For this reason, according to this manufacturing apparatus, it is possible to produce a ZnO semiconductor film having high crystallinity and having high doping concentration of nitrogen added under normal pressure.
 前記制御装置では、反応ガスは、酸素を含まないようにしてもよい。この場合には、反応容器内において、ZnO含有膜のドーピングに寄与する一酸化窒素ガスの分圧を高めることができるため、より高いドーピング濃度の窒素が添加されたZnO半導体膜を作製することができる。 In the control device, the reaction gas may not contain oxygen. In this case, since the partial pressure of the nitric oxide gas that contributes to doping of the ZnO-containing film can be increased in the reaction vessel, a ZnO semiconductor film to which nitrogen having a higher doping concentration is added can be manufactured. it can.
 前記制御装置では、第1温度は、300℃~400℃であり、第2温度は、400℃~600℃であってもよい。第1温度を上記温度範囲とすることにより、Znを適切に気体化し、第2温度を上記温度範囲とすることにより、ZnO含有膜を適切に成長させることができる。 In the control device, the first temperature may be 300 ° C. to 400 ° C., and the second temperature may be 400 ° C. to 600 ° C. By setting the first temperature to the above temperature range, Zn can be appropriately gasified, and by setting the second temperature to the above temperature range, a ZnO-containing film can be appropriately grown.
 本発明の態様に係るZnO膜の製造方法は、ZnO含有膜が形成されるべき基板が配置される設置台と、設置台を収容する反応容器と、反応容器内部に連通し、Znを含有する固体原料を収容する原料収容部と、設置台及び原料収容部を加熱する加熱部と、原料収容部内が常圧になるように、塩素及び水素を含まないキャリアガスを原料収容部内に供給するキャリアガス供給源と、反応容器内が常圧になるように、一酸化窒素を含む反応ガスを反応容器内に供給する反応ガス供給源と、制御装置と、を備える製造装置を用いたZnO含有膜の製造方法であって、設置台に基板を設置する設置工程と、制御装置が、キャリアガス供給源及び反応ガス供給源を制御することにより、キャリアガスを原料収容部内に供給するとともに、反応ガスを反応容器内に供給し、且つ、加熱部を制御することにより、原料収容部内をZnが気化する第1温度にするとともに、設置台を第1温度以上の第2温度にする、成膜工程と、を備えることを特徴とする。 A method for producing a ZnO film according to an aspect of the present invention includes a mounting base on which a substrate on which a ZnO-containing film is to be formed is disposed, a reaction container that houses the mounting base, and inside the reaction container, and contains Zn. A carrier for supplying a carrier gas containing no chlorine and hydrogen into the raw material container so that the inside of the raw material container is at a normal pressure, a raw material container for storing the solid raw material, a heating unit for heating the installation base and the raw material container A ZnO-containing film using a manufacturing apparatus comprising a gas supply source, a reaction gas supply source for supplying a reaction gas containing nitric oxide into the reaction vessel, and a control device so that the inside of the reaction vessel has a normal pressure And a control device that controls the carrier gas supply source and the reactive gas supply source to supply the carrier gas into the raw material container and to react with the reactive gas. The A film forming step of supplying the inside of the reaction vessel to a first temperature at which Zn is vaporized by controlling the heating unit and setting the installation table to a second temperature equal to or higher than the first temperature. It is characterized by providing.
 この製造方法によれば、上述のように、常圧下において、高いドーピング濃度の窒素が添加され、且つ、結晶性に優れたZnO半導体膜を作製することができる。 According to this manufacturing method, as described above, a ZnO semiconductor film having a high crystallinity and having a high doping concentration of nitrogen added under normal pressure can be produced.
 前記製造方法では、基板がZnO基板であり、設置工程において、基板の+C面上にZnO含有膜が成長するように、基板を設置してもよい。この場合には、より高いドーピング濃度の窒素が添加されたZnO半導体膜を作製することができる。 In the manufacturing method, the substrate may be a ZnO substrate, and in the installation step, the substrate may be installed such that a ZnO-containing film grows on the + C surface of the substrate. In this case, a ZnO semiconductor film to which nitrogen having a higher doping concentration is added can be manufactured.
 本発明の態様に係る発光素子は、常圧下において製造されたZnO含有膜を含む発光素子であって、ZnO含有膜は、窒素のドーピング濃度が1×1020atm/cm以上である、ことを特徴とする。 A light-emitting element according to an embodiment of the present invention includes a ZnO-containing film manufactured under normal pressure, and the ZnO-containing film has a nitrogen doping concentration of 1 × 10 20 atm / cm 3 or more. It is characterized by.
 この発光素子によれば、ZnOを材料として用いることにより、発光素子の低価格化を図ることができる。 According to this light emitting element, the price of the light emitting element can be reduced by using ZnO as a material.
 本発明の原料供給源、製造装置、製造方法によれば、常圧下において、高いドーピング濃度の窒素が添加されたZnO半導体膜を作製することができる。 According to the raw material supply source, manufacturing apparatus, and manufacturing method of the present invention, a ZnO semiconductor film to which nitrogen having a high doping concentration is added can be manufactured under normal pressure.
一実施形態に係るZnO含有膜の製造装置の断面図である。It is sectional drawing of the manufacturing apparatus of the ZnO containing film | membrane which concerns on one Embodiment. 図1のII-II線に沿った断面図である。FIG. 2 is a cross-sectional view taken along line II-II in FIG. 一実施形態に係るZnO含有膜の製造方法を示すフロー図である。It is a flowchart which shows the manufacturing method of the ZnO containing film | membrane which concerns on one Embodiment. 基板上に成長したZnO膜の深さと窒素のドーピング濃度との関係を示すグラフである。It is a graph which shows the relationship between the depth of the ZnO film | membrane grown on the board | substrate, and the doping concentration of nitrogen. (a)は、作製されたZnO膜の成長温度とX線回折測定により得られたΔFWHM値との関係を示すグラフであり、(b)は、作製されたZnO膜の成長温度とX線回折測定により得られたΔ格子定数との関係を示すグラフである。(A) is a graph which shows the relationship between the growth temperature of the produced ZnO film | membrane, and (DELTA) FWHM value obtained by X-ray-diffraction measurement, (b) is the growth temperature and X-ray diffraction of the produced ZnO film | membrane. It is a graph which shows the relationship with (DELTA) lattice constant obtained by measurement. 異なる成長温度により作製されたZnO膜のフォトルミネッセンス(PL)スペクトルを示す図である。It is a figure which shows the photoluminescence (PL) spectrum of the ZnO film | membrane produced by different growth temperature. 基板上に成長したZnO膜の成長温度と膜厚との関係を示すグラフである。It is a graph which shows the relationship between the growth temperature and film thickness of the ZnO film | membrane grown on the board | substrate. 一実施形態に係るZnO含有膜を含む発光素子を示す図である。It is a figure which shows the light emitting element containing the ZnO containing film | membrane which concerns on one Embodiment.
 以下、実施の形態に係るZnO含有膜成長用の原料供給源、ZnO含有膜の製造装置、製造方法及びZnO含有膜を含む発光素子について説明する。同一要素には、同一符号を用いることとし、重複する説明は省略する。 Hereinafter, a raw material supply source for ZnO-containing film growth, a ZnO-containing film manufacturing apparatus, a manufacturing method, and a light-emitting element including the ZnO-containing film according to the embodiments will be described. The same reference numerals are used for the same elements, and duplicate descriptions are omitted.
 まず、一実施形態に係るZnO含有膜の製造装置について説明する。図1は、一実施形態に係るZnO含有膜の製造装置1を概略的に示す断面図であり、当該製造装置1の断面を示している。図2は、図1に示される製造装置1のII―II線に沿った断面図である。 First, a ZnO-containing film manufacturing apparatus according to an embodiment will be described. FIG. 1 is a cross-sectional view schematically showing a ZnO-containing film manufacturing apparatus 1 according to an embodiment, and shows a cross section of the manufacturing apparatus 1. 2 is a cross-sectional view taken along line II-II of the manufacturing apparatus 1 shown in FIG.
 製造装置1は、原料収容部10、反応容器20、キャリアガス供給源16、反応ガス供給源32、及び不活性ガス供給源34を備えている。製造装置1は、常圧下において基板2上に窒素が添加されたZnO含有膜を形成する装置である。本明細書において、「常圧」とは、超高真空状態を除く圧力の意味であり、具体的には、0.7atm~1.3atmの範囲を意味する。原料収容部10、キャリアガス供給源16、反応ガス供給源32、及び不活性ガス供給源34は、原料供給源MSとして機能する。 The manufacturing apparatus 1 includes a raw material container 10, a reaction vessel 20, a carrier gas supply source 16, a reaction gas supply source 32, and an inert gas supply source. The manufacturing apparatus 1 is an apparatus that forms a ZnO-containing film to which nitrogen is added on a substrate 2 under normal pressure. In the present specification, “normal pressure” means a pressure excluding an ultra-high vacuum state, and specifically means a range of 0.7 atm to 1.3 atm. The raw material container 10, the carrier gas supply source 16, the reactive gas supply source 32, and the inert gas supply source 34 function as a raw material supply source MS.
 反応容器20は、ZnO含有膜が形成されるべき基板2を収容する手段であり、その内部空間として反応空間S1を画成している。この反応容器20は、側壁22a、上壁22b、及び底壁22cを含んでいる。一例としては、側壁22aは、軸線Zに沿って上下方向に延在する略筒形状をなしている。 The reaction vessel 20 is a means for accommodating the substrate 2 on which the ZnO-containing film is to be formed, and defines a reaction space S1 as its internal space. The reaction vessel 20 includes a side wall 22a, an upper wall 22b, and a bottom wall 22c. As an example, the side wall 22a has a substantially cylindrical shape extending in the vertical direction along the axis Z.
 上壁22bは、側壁22aの上端側に設けられている。上壁22bには排気孔30aを有する排気管30が取り付けられている。排気管30は、排気装置36に接続されている。排気装置36は、後述する制御装置40によって制御され、排気される気体の流量を制御し、そして、反応容器20内の圧力を調整する。排気装置36は、ドライポンプなどの真空ポンプを有している。排気装置36によって、反応容器20内及び原料収容部10が常圧に維持される。底壁22cは、側壁22aの下端側に設けられており、反応容器20内に収容される構造物を支持する。 The upper wall 22b is provided on the upper end side of the side wall 22a. An exhaust pipe 30 having an exhaust hole 30a is attached to the upper wall 22b. The exhaust pipe 30 is connected to the exhaust device 36. The exhaust device 36 is controlled by a control device 40 described later, controls the flow rate of the exhausted gas, and adjusts the pressure in the reaction vessel 20. The exhaust device 36 has a vacuum pump such as a dry pump. The inside of the reaction vessel 20 and the raw material container 10 are maintained at normal pressure by the exhaust device 36. The bottom wall 22 c is provided on the lower end side of the side wall 22 a and supports a structure accommodated in the reaction vessel 20.
 反応容器20の内部には、上端が閉鎖された円筒状の反応管24が設けられている。反応管24は、例えば石英(SiO)、炭化シリコン(SiC)等の耐熱性材料からなる。反応管24の側面には、複数の開口部24aが形成されている。 A cylindrical reaction tube 24 whose upper end is closed is provided inside the reaction vessel 20. The reaction tube 24 is made of a heat resistant material such as quartz (SiO 2 ) or silicon carbide (SiC). A plurality of openings 24 a are formed on the side surface of the reaction tube 24.
 反応管24内の中空部には、設置台26が設けられている。設置台26は、支持部26a及び複数の載置台26bを含んでいる。載置台26bは、円板状をなし、その上面に複数の基板2を水平に保持し得る。一例では、図2に示されるように、1つの載置台26bの上面には、7枚の基板2が載置され得る。載置台26bは、軸線Zに沿って所定の間隔によって離間し、複数配置されており、これらの載置台26bが長尺状の支持部26aによって支持されている。 An installation table 26 is provided in the hollow portion in the reaction tube 24. The installation table 26 includes a support portion 26a and a plurality of mounting tables 26b. The mounting table 26b has a disk shape and can hold a plurality of substrates 2 horizontally on the upper surface thereof. In one example, as shown in FIG. 2, seven substrates 2 can be placed on the upper surface of one placement table 26b. A plurality of mounting tables 26b are spaced apart at predetermined intervals along the axis Z, and a plurality of mounting tables 26b are supported by a long support portion 26a.
 支持部26aの基端側には、回転機構28が設けられている。回転機構28は、支持部26aを回転軸として、複数の載置台26bを回転可能に構成されている。また、反応容器20は、反応容器20内部を加熱するヒータ(加熱部)H1を更に備えている。ヒータH1は、反応容器20の側壁22aの内周に沿って複数設けられている。ヒータH1は、抵抗加熱、ランプ加熱、高周波加熱等の原理を用いた加熱手段である。一例としては、抵抗加熱を用いた加熱炉を採用することができる。ヒータH1は、ヒータ電源38に接続されており、ヒータ電源38から供給される電力によって熱を発生し、そして、反応容器20内部、すなわち設置台26を加熱する。ヒータ電源38は、後述する制御装置40によって制御され、ヒータH1に供給する電力を制御し、そして、ヒータH1の発熱量を調整する。 A rotation mechanism 28 is provided on the base end side of the support portion 26a. The rotation mechanism 28 is configured to be capable of rotating a plurality of mounting tables 26b with the support portion 26a as a rotation axis. The reaction vessel 20 further includes a heater (heating unit) H1 for heating the inside of the reaction vessel 20. A plurality of heaters H <b> 1 are provided along the inner periphery of the side wall 22 a of the reaction vessel 20. The heater H1 is a heating means that uses principles such as resistance heating, lamp heating, and high-frequency heating. As an example, a heating furnace using resistance heating can be employed. The heater H <b> 1 is connected to the heater power supply 38, generates heat by the electric power supplied from the heater power supply 38, and heats the inside of the reaction vessel 20, that is, the installation table 26. The heater power supply 38 is controlled by a control device 40 to be described later, controls the power supplied to the heater H1, and adjusts the amount of heat generated by the heater H1.
 原料収容部10は、収容容器12を備えている。収容容器12は、その内部空間として収容空間S2を画成している。原料収容部10は、ステージ14及び、ステージ14上に配置される固体原料Mを収容空間S2内に収容する。固体原料Mは、ZnO含有膜の原料となるZnを含有する。 The raw material storage unit 10 includes a storage container 12. The storage container 12 defines a storage space S2 as its internal space. The raw material accommodating part 10 accommodates the stage 14 and the solid raw material M arrange | positioned on the stage 14 in accommodation space S2. The solid material M contains Zn that is a material for the ZnO-containing film.
 原料収容部10は、原料収容部10内部を加熱するヒータ(加熱部)H2を更に備えている。ヒータH2は、抵抗加熱、ランプ加熱、高周波加熱等の原理を用いた加熱手段である。一例としては、抵抗加熱を用いた加熱炉を採用し得る。ヒータH2は、ヒータ電源15に接続されており、ヒータ電源15から供給される電力によって熱を発生し、そして、ステージ14を加熱し得る。ヒータ電源15は、制御装置40によって制御され、ヒータH2に供給する電力を制御し、そして、ヒータH2の発熱量を調整する。ヒータH2を用いて原料収容部10内部を加熱することにより、固体原料Mに含まれるZnの一部が気体化する。 The raw material storage unit 10 further includes a heater (heating unit) H2 for heating the inside of the raw material storage unit 10. The heater H2 is a heating means that uses principles such as resistance heating, lamp heating, and high-frequency heating. As an example, a heating furnace using resistance heating may be employed. The heater H <b> 2 is connected to the heater power supply 15, generates heat by the electric power supplied from the heater power supply 15, and can heat the stage 14. The heater power supply 15 is controlled by the control device 40, controls the power supplied to the heater H2, and adjusts the amount of heat generated by the heater H2. A part of Zn contained in the solid material M is gasified by heating the inside of the material container 10 using the heater H2.
 キャリアガス供給源16は、原料収容部10内が常圧になるように、キャリアガスを原料収容部10内に供給する。キャリアガス供給源16は、導管P1を介して原料収容部10の内部と連通している。キャリアガス供給源16は、その内部に貯えるガス源からキャリアガスを供給する。導管P1は、キャリアガス供給源16から供給されたキャリアガスを収容容器12内に導入する。キャリアガス供給源16は、制御装置40に接続され、導管P1に供給するガス流量を制御し、そして、原料収容部10内へ供給されるキャリアガスの流量を調整する。 The carrier gas supply source 16 supplies the carrier gas into the raw material container 10 so that the inside of the raw material container 10 has a normal pressure. The carrier gas supply source 16 communicates with the inside of the raw material container 10 through a conduit P1. The carrier gas supply source 16 supplies a carrier gas from a gas source stored therein. The conduit P1 introduces the carrier gas supplied from the carrier gas supply source 16 into the storage container 12. The carrier gas supply source 16 is connected to the control device 40, controls the gas flow rate supplied to the conduit P <b> 1, and adjusts the flow rate of the carrier gas supplied into the raw material storage unit 10.
 キャリアガス供給源16から供給されるキャリアガスは、塩素(Cl)及び水素(H)を含まない不活性ガスである。一例では、窒素ガス(N)をキャリアガスとして用いることができる。ここで、「塩素及び水素を含まない」とは、塩素及び水素を全く含まないことだけではなく、ZnO膜の製造において無視できる程度の塩素及び水素を含んでいることを含む概念である。具体的には、「塩素及び水素を含まない」とは、キャリアガス内の塩素及び水素の含有割合がそれぞれ1%以下(モル濃度)であることを示している。 The carrier gas supplied from the carrier gas supply source 16 is an inert gas that does not contain chlorine (Cl) and hydrogen (H). In one example, nitrogen gas (N 2 ) can be used as the carrier gas. Here, “not containing chlorine and hydrogen” is a concept including not only containing no chlorine and hydrogen but also containing a negligible amount of chlorine and hydrogen in the production of a ZnO film. Specifically, “not including chlorine and hydrogen” indicates that the content ratios of chlorine and hydrogen in the carrier gas are each 1% or less (molar concentration).
 また、原料収容部10は、導管P2を介して反応容器20の内部と連通している。導管P2の一端は原料収容部10に接続されており、導管P2の他端側は反応容器20を貫通し、そして、反応容器20の側壁22aと反応管24の側壁との間の空間に軸線Z方向に沿って延びている。導管P2の反応容器20内に位置する部分には、原料収容部10から搬送されたZnを含む原料ガスを反応容器20内に供給する複数のガス供給孔h2が形成されている。 In addition, the raw material container 10 communicates with the inside of the reaction vessel 20 through a conduit P2. One end of the conduit P <b> 2 is connected to the raw material container 10, the other end of the conduit P <b> 2 penetrates the reaction vessel 20, and an axis line extends between the side wall 22 a of the reaction vessel 20 and the side wall of the reaction tube 24. It extends along the Z direction. A plurality of gas supply holes h <b> 2 for supplying a source gas containing Zn transported from the source container 10 into the reaction container 20 is formed in a portion of the conduit P <b> 2 located in the reaction container 20.
 反応ガス供給源32は、反応容器20内が常圧になるように、反応ガスを反応容器20内に供給する。反応ガス供給源32から供給される反応ガスは、一酸化窒素(NO)を含むガスである。反応ガスは、更に窒素ガスを含んでいてもよい。また、反応ガスは、少なくとも塩素、水素、及び酸素の何れかを含まないこととしてもよい。特に、反応ガスが酸素を含まないことにより、ZnO含有膜のアクセプタとして寄与する窒素の分圧を高めることができる。反応ガス供給源32は、導管P3を介して反応容器20の内部と連通している。導管P3は反応容器20及び反応管24の上面を貫通し、そして、反応管24の側壁と設置台26との間の空間に軸線Z方向に沿って延びている。導管P3の反応管24内に位置する部分には、反応ガス供給源32から搬送された一酸化窒素を含む反応ガスを反応容器20内に供給する複数のガス供給孔h3が形成されている。 The reaction gas supply source 32 supplies the reaction gas into the reaction container 20 so that the inside of the reaction container 20 becomes normal pressure. The reaction gas supplied from the reaction gas supply source 32 is a gas containing nitric oxide (NO). The reaction gas may further contain nitrogen gas. Further, the reaction gas may not contain at least any of chlorine, hydrogen, and oxygen. In particular, since the reaction gas does not contain oxygen, the partial pressure of nitrogen that contributes as an acceptor of the ZnO-containing film can be increased. The reactive gas supply source 32 communicates with the inside of the reaction vessel 20 through a conduit P3. The conduit P3 passes through the upper surfaces of the reaction vessel 20 and the reaction tube 24, and extends along the axis Z direction into the space between the side wall of the reaction tube 24 and the installation base 26. A plurality of gas supply holes h3 for supplying a reaction gas containing nitrogen monoxide conveyed from the reaction gas supply source 32 into the reaction vessel 20 is formed in a portion of the conduit P3 located in the reaction tube 24.
 不活性ガス供給源34は、反応容器20内が常圧になるように、不活性ガスを反応容器20内に供給する。不活性ガス供給源34から供給される不活性ガスは、例えば窒素ガスである。不活性ガス供給源34は、導管P4を介して反応容器20の内部と連通している。導管P4は反応容器20及び反応管24を貫通し、そして、反応管24の側壁と設置台26との間の空間に軸線Z方向に沿って延びている。導管P4の反応管24内に位置する部分には、不活性ガス供給源34から搬送された不活性ガスを反応容器20内に供給する複数のガス供給孔h4が形成されている。上記のように、原料収容部10から供給される原料ガス、反応ガス供給源32から供給される反応ガス、及び不活性ガス供給源34から供給される不活性ガスは、それぞれ異なる経路を介して反応容器20内に導入されることになる。なお、不活性ガス供給源34は、必須の構成ではない。 The inert gas supply source 34 supplies an inert gas into the reaction vessel 20 so that the inside of the reaction vessel 20 becomes a normal pressure. The inert gas supplied from the inert gas supply source 34 is, for example, nitrogen gas. The inert gas supply source 34 communicates with the inside of the reaction vessel 20 through a conduit P4. The conduit P4 passes through the reaction vessel 20 and the reaction tube 24, and extends in the space between the side wall of the reaction tube 24 and the installation base 26 along the axis Z direction. A plurality of gas supply holes h4 for supplying the inert gas conveyed from the inert gas supply source 34 into the reaction vessel 20 are formed in a portion of the conduit P4 located in the reaction tube 24. As described above, the raw material gas supplied from the raw material container 10, the reactive gas supplied from the reactive gas supply source 32, and the inert gas supplied from the inert gas supply source 34 pass through different paths. It will be introduced into the reaction vessel 20. The inert gas supply source 34 is not an essential configuration.
 製造装置1は、製造装置1の各部の制御を行う制御装置40を備え得る。制御装置40は、キャリアガス供給源16によってキャリアガスの流量の制御、反応ガス供給源32によって反応ガスの流量の制御、不活性ガス供給源34によって不活性ガスの流量の制御、回転機構28によって載置台26bの回転速度の制御、ヒータ電源15によって原料収容部10の温度制御、ヒータ電源38によって反応容器20の温度制御等を行う。この制御装置40は、例えば、プログラム可能なコンピュータ装置であり得る。 The manufacturing apparatus 1 may include a control device 40 that controls each part of the manufacturing apparatus 1. The control device 40 controls the flow rate of the carrier gas using the carrier gas supply source 16, controls the flow rate of the reactive gas using the reactive gas supply source 32, controls the flow rate of the inert gas using the inert gas supply source 34, and controls the flow of the inert gas. Control of the rotation speed of the mounting table 26b, temperature control of the raw material container 10 by the heater power supply 15, temperature control of the reaction vessel 20 by the heater power supply 38, and the like are performed. The control device 40 may be a programmable computer device, for example.
 次に、製造装置1内における、原料ガス、反応ガス及び不活性ガスの流れについて説明する。キャリアガス供給源16から供給されたキャリアガスは、導管P1を介して、原料収容部10内に導入される。原料収容部10に導入されたキャリアガスは、原料収容部10内において気化したZnを搬送し、Znを含む原料ガスとして導管P2を介して反応容器20内に流入する。そして、導管P2のガス供給孔h2から噴出されたZnを含む原料ガスは、開口部24aを通過し、そして、反応管24の内部に配置された基板2の方向へと流れる。 Next, the flow of the raw material gas, the reactive gas, and the inert gas in the manufacturing apparatus 1 will be described. The carrier gas supplied from the carrier gas supply source 16 is introduced into the raw material container 10 via the conduit P1. The carrier gas introduced into the raw material storage unit 10 transports Zn vaporized in the raw material storage unit 10 and flows into the reaction vessel 20 through the conduit P2 as a raw material gas containing Zn. Then, the source gas containing Zn ejected from the gas supply hole h <b> 2 of the conduit P <b> 2 passes through the opening 24 a and flows in the direction of the substrate 2 arranged inside the reaction tube 24.
 反応ガス供給源32、及び不活性ガス供給源34のそれぞれから供給された反応ガス、及び不活性ガスは、それぞれ導管P3のガス供給孔h3及び導管P4のガス供給孔h4を介して、直接反応管24内に流入する。これにより、反応管24の内部空間では、原料ガスに含まれるZnと反応ガスに含まれるNOとが反応し、載置台26bに配置された基板2上にZnO含有膜2Aが成長する。このZnO含有膜2Aは、窒素がアクセプタとして高濃度にドーピングされた、p型のZnO含有半導体膜である。 The reaction gas and the inert gas supplied from each of the reaction gas supply source 32 and the inert gas supply source 34 react directly through the gas supply hole h3 of the conduit P3 and the gas supply hole h4 of the conduit P4, respectively. It flows into the tube 24. As a result, in the internal space of the reaction tube 24, Zn contained in the source gas reacts with NO contained in the reaction gas, and a ZnO-containing film 2A grows on the substrate 2 disposed on the mounting table 26b. This ZnO-containing film 2A is a p-type ZnO-containing semiconductor film in which nitrogen is doped at a high concentration as an acceptor.
 ZnO含有膜2Aの成長に寄与した反応管24内の原料ガス、反応ガス及び不活性ガスは、排気装置36の吸引作用によって、原料ガスが流入した開口部24aに対向する側に設けられた開口部24aを通過し、そして、反応管24の外部に流出する。そして、原料ガス、反応ガス、及び不活性ガスは、排気管30を介して反応容器20の外部に流出する。 The source gas, the reaction gas, and the inert gas in the reaction tube 24 that contributed to the growth of the ZnO-containing film 2A are provided on the side facing the opening 24a into which the source gas flows by the suction action of the exhaust device 36. It passes through the part 24 a and flows out of the reaction tube 24. Then, the source gas, the reaction gas, and the inert gas flow out of the reaction vessel 20 through the exhaust pipe 30.
 次に、図3は、上述の製造装置1を用いた一実施形態に係るZnO含有膜2Aの製造方法について説明する。一実施形態では、まず、工程S1において、反応容器20内に基板2を搬入し、そして、設置台26の載置台26bに設置する(設置工程)。一例では、基板2は、水熱合成法で作製された1cm角のZnO基板である。一実施形態では、工程S1において、基板2のZnO結晶構造のうち+C面が上面となるように、基板2を設置してもよい。つまり、基板2の+C面上にZnO含有膜2Aが形成されるように基板2を設置してもよい。後述するように、基板2の+C面上にZnO含有膜2Aを形成することによって、ZnO含有膜2Aに、より高い濃度の窒素が添加されるためである。 Next, FIG. 3 illustrates a method for manufacturing the ZnO-containing film 2A according to an embodiment using the manufacturing apparatus 1 described above. In one embodiment, first, in step S1, the substrate 2 is carried into the reaction vessel 20, and then installed on the mounting table 26b of the installation table 26 (installation process). In one example, the substrate 2 is a 1 cm square ZnO substrate manufactured by a hydrothermal synthesis method. In one embodiment, in step S1, the substrate 2 may be placed so that the + C plane of the ZnO crystal structure of the substrate 2 is the upper surface. That is, the substrate 2 may be installed so that the ZnO-containing film 2A is formed on the + C plane of the substrate 2. This is because, as will be described later, by forming the ZnO-containing film 2A on the + C surface of the substrate 2, a higher concentration of nitrogen is added to the ZnO-containing film 2A.
 続いて、工程S2において、ヒータH1及びヒータH2を制御し、そして、原料収容部10内及び反応容器20内を加熱する(成膜準備工程)。工程S2においては、制御装置40が、ヒータ電源15を制御することにより原料収容部10内をZnが気化する温度(第1温度)にするとともに、ヒータ電源38を制御することにより設置台26をZnが気化する温度以上の温度(第2温度)にする。具体的には、制御装置40は、ヒータ電源15を制御し、そして、原料収容部10内を300℃~400℃にするとともに、ヒータ電源38を制御し、そして、設置台を400℃~600℃にし得る。この際に、均一なZnO膜を成長させるために、制御装置40は、回転機構28を制御し、そして、基板2が載置された載置台26bを回転させてもよい。 Subsequently, in step S2, the heater H1 and the heater H2 are controlled, and the inside of the raw material container 10 and the reaction vessel 20 are heated (film formation preparation step). In step S <b> 2, the control device 40 controls the heater power supply 15 to bring the inside of the raw material container 10 to a temperature at which Zn is vaporized (first temperature), and controls the heater power supply 38 to set the installation table 26. The temperature is higher than the temperature at which Zn vaporizes (second temperature). Specifically, the control device 40 controls the heater power supply 15 and sets the inside of the raw material container 10 to 300 ° C. to 400 ° C., controls the heater power supply 38, and sets the installation table to 400 ° C. to 600 ° C. Can be brought to ° C. At this time, in order to grow a uniform ZnO film, the control device 40 may control the rotation mechanism 28 and rotate the mounting table 26b on which the substrate 2 is mounted.
 続く工程S3において、上記加熱を維持しつつ、制御装置40は、キャリアガス供給源16、反応ガス供給源32、及び不活性ガス供給源34を制御し、そして、それぞれ原料ガス、反応ガス、及び不活性ガスを反応容器20内に供給する(成膜工程)。制御装置40は、排気装置36を制御し、そして、反応容器20内及び原料収容部10を常圧に維持する。このようにして、基板2上にZnO含有膜2Aが成膜される。 In the subsequent step S3, the control device 40 controls the carrier gas supply source 16, the reactive gas supply source 32, and the inert gas supply source 34 while maintaining the heating, and the source gas, the reactive gas, and the reactive gas supply source 34, respectively. An inert gas is supplied into the reaction vessel 20 (film formation step). The control device 40 controls the exhaust device 36 and maintains the inside of the reaction vessel 20 and the raw material container 10 at normal pressure. In this way, the ZnO-containing film 2A is formed on the substrate 2.
 以上説明したZnO含有膜の製造装置1及びZnO含有膜の製造方法においては、常圧下において原料収容部10内を加熱することにより、原料収容部10内において固体原料Mに含まれるZnが常圧下で気化される。気化されたZnは、原料収容部10内に供給される塩素及び水素を含まないキャリアガスによって搬送され、反応容器内部に原料ガスとして供給される。また、反応容器内が常圧になるように、一酸化窒素を含む反応ガスが反応容器20内に供給され、この反応ガスと原料ガスとが反応することにより、ZnO含有膜2Aが形成される。ここで、原料ガスは、塩素を含まず、ZnO含有膜のエッチングが生じることがないため、ZnO含有膜2Aを400℃~600℃という比較的低温によって、成長させることが可能である。アクセプタである窒素の添加(ドーピング)量は成長温度に依存する性質があり、少なくとも700℃以下の低温においては窒素のドーピング濃度が高くなる。更に、発明者は、Znと一酸化窒素の組み合わせは反応性が高いことを見出した。このため、この製造装置1及び製造方法によれば、常圧下において、高いドーピング濃度の窒素が添加されたZnO半導体膜2Aを作製することができる。また、原料ガスは水素を含まないため、水素ガスによるエッチングに起因する結晶欠陥の発生が防止される。したがって、この製造装置1及び製造方法によれば、優れた結晶性を有するZnO半導体膜2Aを作製することができる。 In the ZnO-containing film manufacturing apparatus 1 and the ZnO-containing film manufacturing method described above, the Zn contained in the solid raw material M in the raw material container 10 is heated under normal pressure by heating the raw material container 10 under normal pressure. Is vaporized. The vaporized Zn is transported by a carrier gas not containing chlorine and hydrogen supplied into the raw material container 10 and supplied as a raw material gas into the reaction vessel. Further, a reaction gas containing nitrogen monoxide is supplied into the reaction vessel 20 so that the inside of the reaction vessel becomes normal pressure, and the reaction gas reacts with the raw material gas to form the ZnO-containing film 2A. . Here, since the source gas does not contain chlorine and etching of the ZnO-containing film does not occur, the ZnO-containing film 2A can be grown at a relatively low temperature of 400 ° C. to 600 ° C. The amount of doping (doping) of the acceptor nitrogen has a property that depends on the growth temperature, and the doping concentration of nitrogen becomes high at a low temperature of 700 ° C. or lower. Furthermore, the inventors have found that the combination of Zn and nitric oxide is highly reactive. Therefore, according to the manufacturing apparatus 1 and the manufacturing method, the ZnO semiconductor film 2A to which nitrogen having a high doping concentration is added can be manufactured under normal pressure. In addition, since the source gas does not contain hydrogen, generation of crystal defects due to etching with hydrogen gas is prevented. Therefore, according to the manufacturing apparatus 1 and the manufacturing method, the ZnO semiconductor film 2A having excellent crystallinity can be manufactured.
 また、反応ガスが酸素を含まないようにすることにより、反応容器20内において、ZnO含有膜2Aのドーピングに寄与する一酸化窒素ガスの分圧を高めることができるため、より高いドーピング濃度の窒素が添加されたZnO半導体膜を作製することができる。 Moreover, since the partial pressure of the nitric oxide gas that contributes to the doping of the ZnO-containing film 2A can be increased in the reaction vessel 20 by preventing the reaction gas from containing oxygen, nitrogen having a higher doping concentration can be obtained. A ZnO semiconductor film to which is added can be manufactured.
 また、制御装置40が、ヒータ電源15を制御し、そして、原料収容部10内を300℃~400℃に制御する。また、ヒータ電源38を制御し、そして、設置台を400℃~600℃に制御することにより、Znを適切に気化し、ZnO含有膜2Aを適切に成長させることができる。 Further, the control device 40 controls the heater power supply 15 and controls the inside of the raw material container 10 to 300 ° C. to 400 ° C. Further, by controlling the heater power supply 38 and controlling the installation base at 400 ° C. to 600 ° C., Zn can be vaporized appropriately and the ZnO-containing film 2A can be grown appropriately.
 図1に示された製造装置1を用いてZnO含有膜2Aのサンプルを製造し、各種特性について評価した。サンプルの製造条件は、次に示す通りである。 A sample of the ZnO-containing film 2A was manufactured using the manufacturing apparatus 1 shown in FIG. 1, and various characteristics were evaluated. Sample manufacturing conditions are as follows.
(サンプルの製造条件)
・反応容器内圧力=1atm
・基板2:ZnO基板
・キャリアガス:N
・反応ガス:NO+N(NOの分圧:4.4×10-3atm)
・不活性ガス:N
・キャリアガスの流量:300sccm
・反応ガスの流量:750sccm
・不活性ガスの流量:1200sccm
・原料収容部10内の温度:375℃
・成長時間:5時間
(Sample manufacturing conditions)
-Reaction vessel pressure = 1 atm
-Substrate 2: ZnO substrate-Carrier gas: N 2
Reaction gas: NO + N 2 (NO partial pressure: 4.4 × 10 −3 atm)
・ Inert gas: N 2
・ Flow rate of carrier gas: 300 sccm
・ Reaction gas flow rate: 750 sccm
Inert gas flow rate: 1200 sccm
・ Temperature inside raw material container 10: 375 ° C.
・ Growth time: 5 hours
 図4は、上記製造条件で作製されたサンプルの深さ(μm)と窒素のドーピング濃度(atm/cm)との関係を示すグラフである。ZnO含有膜2Aは、基板2の+C面及び-C面のそれぞれの上に結晶成長させることで作製した。ZnO含有膜2Aの成長温度、すなわち設置台26の温度は400℃とした。この測定は、二次イオン質量分析装置(SIMS)を用いて行った。 FIG. 4 is a graph showing the relationship between the depth (μm) of a sample prepared under the above manufacturing conditions and the nitrogen doping concentration (atm / cm 3 ). The ZnO-containing film 2A was produced by crystal growth on each of the + C plane and the −C plane of the substrate 2. The growth temperature of the ZnO-containing film 2A, that is, the temperature of the installation table 26 was set to 400 ° C. This measurement was performed using a secondary ion mass spectrometer (SIMS).
 なお、図4において、深さ0~0.7μmまでは結晶成長されたZnO含有膜2Aであり、深さ0.7μm以降は下地となる基板2である。図4に示されるように、基板2の+C面上に成長させたZnO含有膜2Aでは、深さ0.7μm以下において、1×1021atm/cmを超える窒素がドーピングされており、非常にドーピング濃度の高いZnO膜が形成されていることが確認された。一方、基板2の-C面上に成長させたZnO含有膜2Aでは、窒素の一部が下地である基板2に拡散しており、深さ0.7μm以下では、窒素のドーピング濃度は1×1020atm/cm以上であることが確認された。 In FIG. 4, the ZnO-containing film 2A is crystal-grown up to a depth of 0 to 0.7 μm, and the substrate 2 is a base after the depth of 0.7 μm. As shown in FIG. 4, the ZnO-containing film 2A grown on the + C plane of the substrate 2 is doped with nitrogen exceeding 1 × 10 21 atm / cm 3 at a depth of 0.7 μm or less. It was confirmed that a ZnO film having a high doping concentration was formed. On the other hand, in the ZnO-containing film 2A grown on the −C plane of the substrate 2, a part of nitrogen diffuses into the underlying substrate 2, and at a depth of 0.7 μm or less, the nitrogen doping concentration is 1 ×. It was confirmed that it was 10 20 atm / cm 3 or more.
 図5(a)は、上記製造条件で作製されたサンプルの成長温度とX線回折測定によって得られたΔFWHM値との関係を示すグラフである。ここでは、ZnO含有膜2Aは、基板2の+C面上に結晶成長させることにより作製した。ΔFWHM値は、サンプルのFWHM値に対する基板2のFWHM値の差分値である。ΔFWHM値は、tilt成分((0002)面のX線ロッキングカーブ半値幅)及びtwist成分((10-11)面のX線ロッキングカーブ半値幅)について測定した。図5(a)に示されるように、成長温度を400℃~600℃に変化させたときのΔFWHM値は、-10~10arcsecである。この値から、サンプルのFWHM値は、基板2のFWHM値と比較しても殆ど変化がなく、非常に高品質な結晶が得られていることが確認された。 FIG. 5A is a graph showing the relationship between the growth temperature of the sample produced under the above manufacturing conditions and the ΔFWHM value obtained by X-ray diffraction measurement. Here, the ZnO-containing film 2A was produced by crystal growth on the + C plane of the substrate 2. The ΔFWHM value is a difference value of the FWHM value of the substrate 2 with respect to the FWHM value of the sample. The ΔFWHM value was measured for the tilt component (X-ray rocking curve half-value width of (0002) plane) and twist component (X-ray rocking curve half-value width of (10-11) plane). As shown in FIG. 5A, the ΔFWHM value when the growth temperature is changed from 400 ° C. to 600 ° C. is −10 to 10 arcsec. From this value, it was confirmed that the FWHM value of the sample hardly changed even when compared with the FWHM value of the substrate 2, and a very high quality crystal was obtained.
 図5(b)は、上記製造条件で作製されたサンプルの成長温度とX線回折測定によって得られたa軸及びc軸のΔ格子定数との関係を示すグラフである。ここでは、ZnO含有膜2Aは、基板2の+C面上に結晶成長させることで作製した。Δ格子定数は、サンプルの格子定数に対する基板2の格子定数の差分値である。図5(b)に示されるように、成長温度を400℃~600℃に変化させたときのa軸及びc軸のΔ格子定数は、-0.0007~0.0001Åである。この値から、サンプルの格子定数は、基板2の格子定数と比較しても殆ど変化がなく、非常に高品質な結晶が得られていることが確認された。 FIG. 5B is a graph showing the relationship between the growth temperature of the sample prepared under the above manufacturing conditions and the Δ lattice constant of the a axis and c axis obtained by X-ray diffraction measurement. Here, the ZnO-containing film 2A was produced by crystal growth on the + C plane of the substrate 2. The Δ lattice constant is a difference value of the lattice constant of the substrate 2 with respect to the lattice constant of the sample. As shown in FIG. 5B, the Δ lattice constants of the a axis and the c axis when the growth temperature is changed from 400 ° C. to 600 ° C. are −0.0007 to 0.0001Å. From this value, it was confirmed that the lattice constant of the sample hardly changed even when compared with the lattice constant of the substrate 2, and a very high quality crystal was obtained.
 また、異なる成長温度によって作製されたサンプルについて、室温におけるフォトルミネッセンス(PL)によって評価した。図6は、異なる成長温度によって作製されたサンプル1~3のPLスペクトルを示す。図6の横軸は光のエネルギーを示し、縦軸はPL強度を示す。図6(a)は成長温度を400℃としたサンプル1のPLスペクトルであり、図6(b)は成長温度を500℃としたサンプル2のPLスペクトルであり、図6(c)は成長温度を600℃としたサンプル3のPLスペクトルである。サンプル1~3の成長温度を除く他の製造条件は、上述したサンプルの製造条件と同じである。ここでは、サンプル1~3のZnO含有膜2Aは、基板2の+C面上に結晶成長させることで作製した。 Also, samples prepared at different growth temperatures were evaluated by photoluminescence (PL) at room temperature. FIG. 6 shows the PL spectra of samples 1 to 3 made with different growth temperatures. The horizontal axis in FIG. 6 represents the light energy, and the vertical axis represents the PL intensity. 6A shows the PL spectrum of Sample 1 with a growth temperature of 400 ° C., FIG. 6B shows the PL spectrum of Sample 2 with a growth temperature of 500 ° C., and FIG. 6C shows the growth temperature. It is a PL spectrum of the sample 3 which made 600 degreeC. Other manufacturing conditions except for the growth temperatures of Samples 1 to 3 are the same as the above-described sample manufacturing conditions. Here, the ZnO-containing films 2A of Samples 1 to 3 were produced by crystal growth on the + C plane of the substrate 2.
 図6(b)及び図6(c)に示されるように、サンプル2及びサンプル3のPL発光のピークは3.2eV~3.5eVに観察された。一方、サンプル1については、3.2eV~3.5eVにおいてPL発光のピークは観察されなかった。なお、3.8eV付近において観察されるピークは、PL発光用のレーザに因るものであり、作製されたサンプルに起因するものではない。 As shown in FIG. 6B and FIG. 6C, the peak of PL emission of Sample 2 and Sample 3 was observed at 3.2 eV to 3.5 eV. On the other hand, for sample 1, no PL emission peak was observed at 3.2 eV to 3.5 eV. Note that the peak observed in the vicinity of 3.8 eV is due to the laser for PL emission, and not due to the prepared sample.
 次に、基板2の+C面上及び-C面上に、異なる成長温度によってZnO含有膜2Aを成長させたときのZnO含有膜2Aの膜厚を評価した。ZnO含有膜2Aの成長時間は、5時間であり、成長温度を除く他の製造条件は、上述したサンプルと同じとした。図7は、異なる成長温度によって作製されたサンプルのZnO含有膜2Aの膜厚を示す。図7に示されるように、成長温度が500℃より低い範囲においては、500℃に近づくほどZnO含有膜2Aの膜厚が大きくなり、成長温度が500℃より高い範囲においては、500℃よりも高くなるほどZnO含有膜2Aの膜厚が小さくなることが確認された。しかし、400℃~600℃の範囲においては、ZnO含有膜2Aの成長速度の変化は小さく、成長温度の変化に因る影響は小さいことが確認された。 Next, the film thickness of the ZnO-containing film 2A when the ZnO-containing film 2A was grown on the + C plane and the −C plane of the substrate 2 at different growth temperatures was evaluated. The growth time of the ZnO-containing film 2A was 5 hours, and other manufacturing conditions except for the growth temperature were the same as those of the above-described sample. FIG. 7 shows the film thickness of the ZnO-containing film 2A of samples prepared at different growth temperatures. As shown in FIG. 7, in the range where the growth temperature is lower than 500 ° C., the thickness of the ZnO-containing film 2A increases as the temperature approaches 500 ° C., and in the range where the growth temperature is higher than 500 ° C., the thickness is higher than 500 ° C. It has been confirmed that the film thickness of the ZnO-containing film 2A decreases as the height increases. However, it was confirmed that in the range of 400 ° C. to 600 ° C., the change in the growth rate of the ZnO-containing film 2A is small and the influence due to the change in the growth temperature is small.
 上述したように、一実施形態に係る製造装置1によれば、常圧下において、基板2上に1×1020atm/cm以上の窒素がドーピングされたZnO含有膜2Aを成長させることができる。 As described above, according to the manufacturing apparatus 1 according to the embodiment, the ZnO-containing film 2A doped with nitrogen of 1 × 10 20 atm / cm 3 or more can be grown on the substrate 2 under normal pressure. .
 この含有膜2Aを含む発光素子42を図8に示す。この発光素子42は、常温下において、ZnO基板2上に成長されたZnO含有膜2Aを含んでいる。下地となる基板2は、ZnOを主成分とするn型半導体である。ZnO含有膜2Aは、1×1020atm/cm以上のドーピング濃度の窒素が添加されたp型半導体であり、基板2との界面にpn接合を形成している。ZnO含有膜2Aの上には、電極E1が形成されている。基板2の下面全面には電極E2が形成されている。電極E1及びE2は、例えばTi/Auを材料として用い、蒸着法を用いて形成することができる。電極E2をグランドに接続し、電極E1に加える電圧を変化させることにより、発光素子42が発光する。この発光素子42によれば、ZnOを半導体の材料として用いることにより、発光素子の低価格化を図ることができる。 A light emitting element 42 including the containing film 2A is shown in FIG. The light emitting element 42 includes a ZnO-containing film 2A grown on the ZnO substrate 2 at room temperature. The substrate 2 serving as a base is an n-type semiconductor containing ZnO as a main component. The ZnO-containing film 2A is a p-type semiconductor to which nitrogen having a doping concentration of 1 × 10 20 atm / cm 3 or more is added, and forms a pn junction at the interface with the substrate 2. An electrode E1 is formed on the ZnO-containing film 2A. An electrode E2 is formed on the entire lower surface of the substrate 2. The electrodes E1 and E2 can be formed by using, for example, Ti / Au as a material and using a vapor deposition method. The light emitting element 42 emits light by connecting the electrode E2 to the ground and changing the voltage applied to the electrode E1. According to the light emitting element 42, the price of the light emitting element can be reduced by using ZnO as a semiconductor material.
 以上、実施形態について説明してきたが、上述した実施形態に限定されることなく種々の変形態様を構成可能である。例えば、図3の工程S2~S3は、任意の順序によって行われてもよいし、同時に行われてもよい。 The embodiment has been described above, but various modifications can be made without being limited to the above-described embodiment. For example, steps S2 to S3 in FIG. 3 may be performed in an arbitrary order or may be performed simultaneously.
 また、上記実施形態では、原料収容部10が反応容器20の外部に設けられているが、原料収容部10を反応容器20内に収容することもできる。また、原料収容部10及び反応容器20は、必ずしも排気装置36を用いて常圧にする必要はない。例えば、原料収容部10及び反応容器20は、排気装置36を備えずに、反応容器20に設けられた排気管30から外気を取り入れて、常圧に維持してもよい。 In the above embodiment, the raw material container 10 is provided outside the reaction vessel 20. However, the raw material container 10 can be accommodated in the reaction vessel 20. Further, the raw material container 10 and the reaction vessel 20 do not necessarily need to be at normal pressure using the exhaust device 36. For example, the raw material container 10 and the reaction vessel 20 may be maintained at normal pressure by taking outside air from the exhaust pipe 30 provided in the reaction vessel 20 without providing the exhaust device 36.
 1…製造装置、2…基板、2A…ZnO含有膜、10…原料収容部、12…収容容器、14…ステージ、15…ヒータ電源、16…キャリアガス供給源、20…反応容器、24…反応管、24a…開口部、26…設置台、28…回転機構、30…排気管、30a…排気孔、32…反応ガス供給源、34…不活性ガス供給源、36…排気装置、38…ヒータ電源、40…制御装置、42…発光素子、H1…ヒータ、H2…ヒータ、M…固体原料、MS…原料供給源、S1…反応空間、S2…収容空間。
 
DESCRIPTION OF SYMBOLS 1 ... Manufacturing apparatus, 2 ... Board | substrate, 2A ... ZnO containing film | membrane, 10 ... Raw material accommodating part, 12 ... Storage container, 14 ... Stage, 15 ... Heater power supply, 16 ... Carrier gas supply source, 20 ... Reaction container, 24 ... Reaction Pipe, 24a ... opening, 26 ... installation base, 28 ... rotating mechanism, 30 ... exhaust pipe, 30a ... exhaust hole, 32 ... reactive gas supply source, 34 ... inert gas supply source, 36 ... exhaust device, 38 ... heater Power source 40... Control device 42 Light emitting element H1 Heater H2 Heater M Solid source MS Material feed source S1 Reaction space S2 Storage space

Claims (7)

  1.  ZnO含有膜が形成されるべき基板を収容する反応容器内にZnO含有膜成長用の原料を供給する原料供給源であって、
     前記反応容器内部に連通し、Znを含有する固体原料を収容する原料収容部と、
     前記原料収容部を加熱する加熱部と、
     前記原料収容部内が常圧になるように、塩素及び水素を含まないキャリアガスを前記原料収容部内に供給するキャリアガス供給源と、
     前記反応容器内が常圧になるように、一酸化窒素を含む反応ガスを前記反応容器内に供給する反応ガス供給源と、
     制御装置と、を備え、
     前記制御装置は、前記原料収容部内に前記キャリアガスを供給する際に、前記加熱部を制御することにより、前記原料収容部内をZnが気化する温度にする、ことを特徴とするZnO含有膜成長用の原料供給源。
    A raw material supply source for supplying a raw material for growing a ZnO-containing film into a reaction vessel containing a substrate on which a ZnO-containing film is to be formed,
    A raw material container that communicates with the inside of the reaction vessel and contains a solid raw material containing Zn; and
    A heating unit for heating the raw material container;
    A carrier gas supply source for supplying a carrier gas not containing chlorine and hydrogen into the raw material container so that the inside of the raw material container has a normal pressure;
    A reaction gas supply source for supplying a reaction gas containing nitric oxide into the reaction vessel so that the inside of the reaction vessel has a normal pressure;
    A control device,
    The control device, when supplying the carrier gas into the raw material container, controls the heating unit so that the temperature inside the raw material container is vaporized by Zn. Raw material supply for.
  2.  ZnO含有膜が形成されるべき基板が配置される設置台と、
     前記設置台を収容する反応容器と、
     前記反応容器内部に連通し、Znを含有する固体原料を収容する原料収容部と、
     前記設置台及び前記原料収容部を加熱する加熱部と、
     前記原料収容部内が常圧になるように、塩素及び水素を含まないキャリアガスを前記原料収容部内に供給するキャリアガス供給源と、
     前記反応容器内が常圧になるように、一酸化窒素を含む反応ガスを前記反応容器内に供給する反応ガス供給源と、
     制御装置と、を備え、
     前記制御装置は、
     前記原料収容部内に前記キャリアガスを供給する際に、前記加熱部を制御することにより、前記原料収容部内をZnが気化する第1温度にするとともに、前記設置台を前記第1温度以上の第2温度にする、ことを特徴とするZnO含有膜の製造装置。
    An installation table on which a substrate on which a ZnO-containing film is to be formed is disposed;
    A reaction vessel containing the installation table;
    A raw material container that communicates with the inside of the reaction vessel and contains a solid raw material containing Zn; and
    A heating unit for heating the installation table and the raw material storage unit;
    A carrier gas supply source for supplying a carrier gas not containing chlorine and hydrogen into the raw material container so that the inside of the raw material container has a normal pressure;
    A reaction gas supply source for supplying a reaction gas containing nitric oxide into the reaction vessel so that the inside of the reaction vessel has a normal pressure;
    A control device,
    The control device includes:
    When supplying the carrier gas into the raw material container, the heating unit is controlled to bring the raw material container into a first temperature at which Zn is vaporized, and the installation table is set to a first temperature higher than the first temperature. An apparatus for producing a ZnO-containing film, characterized in that the temperature is set to two temperatures.
  3.  前記反応ガスは、酸素を含まない、ことを特徴とする請求項2に記載のZnO含有膜の製造装置。 3. The apparatus for producing a ZnO-containing film according to claim 2, wherein the reaction gas does not contain oxygen.
  4.  前記第1温度は、300℃~400℃であり、
     前記第2温度は、400℃~600℃である、ことを特徴とする請求項2又は3に記載のZnO含有膜の製造装置。
    The first temperature is 300 ° C. to 400 ° C.,
    4. The ZnO-containing film manufacturing apparatus according to claim 2, wherein the second temperature is 400 ° C. to 600 ° C.
  5.  ZnO含有膜が形成されるべき基板が配置される設置台と、
     前記設置台を収容する反応容器と、
     前記反応容器内部に連通し、Znを含有する固体原料を収容する原料収容部と、
     前記設置台及び前記原料収容部を加熱する加熱部と、
     前記原料収容部内が常圧になるように、塩素及び水素を含まないキャリアガスを前記原料収容部内に供給するキャリアガス供給源と、
     前記反応容器内が常圧になるように、一酸化窒素を含む反応ガスを前記反応容器内に供給する反応ガス供給源と、
     制御装置と、を備える製造装置を用いたZnO含有膜の製造方法であって、
     前記設置台に前記基板を設置する設置工程と、
     前記制御装置が、前記キャリアガス供給源及び前記反応ガス供給源を制御することにより、前記キャリアガスを前記原料収容部内に供給するとともに、前記反応ガスを前記反応容器内に供給し、且つ、前記加熱部を制御することにより、前記原料収容部内をZnが気化する第1温度にするとともに、前記設置台を前記第1温度以上の第2温度にする、成膜工程と、
    を備えることを特徴とするZnO含有膜の製造方法。
    An installation table on which a substrate on which a ZnO-containing film is to be formed is disposed;
    A reaction vessel containing the installation table;
    A raw material container that communicates with the inside of the reaction vessel and contains a solid raw material containing Zn; and
    A heating unit for heating the installation table and the raw material storage unit;
    A carrier gas supply source for supplying a carrier gas not containing chlorine and hydrogen into the raw material container so that the inside of the raw material container has a normal pressure;
    A reaction gas supply source for supplying a reaction gas containing nitric oxide into the reaction vessel so that the inside of the reaction vessel has a normal pressure;
    A method for producing a ZnO-containing film using a production apparatus comprising a control device,
    An installation step of installing the substrate on the installation table;
    The control device controls the carrier gas supply source and the reaction gas supply source, thereby supplying the carrier gas into the raw material storage unit, supplying the reaction gas into the reaction container, and A film forming step of controlling the heating unit to bring the inside of the raw material container into a first temperature at which Zn is vaporized and bringing the installation base into a second temperature equal to or higher than the first temperature;
    A method for producing a ZnO-containing film, comprising:
  6.  前記基板がZnO基板であり、
     前記設置工程において、前記基板の+C面上に前記ZnO含有膜が成長するように、前記基板を設置する、ことを特徴とする請求項5に記載のZnO含有膜の製造方法。
    The substrate is a ZnO substrate;
    The method for producing a ZnO-containing film according to claim 5, wherein, in the installation step, the substrate is installed so that the ZnO-containing film grows on the + C plane of the substrate.
  7.  常圧下において製造されたZnO含有膜を含む発光素子であって、
     前記ZnO含有膜は、窒素のドーピング濃度が1×1020atm/cm以上である、ことを特徴とするZnO含有膜を含む発光素子。
    A light-emitting device including a ZnO-containing film manufactured under normal pressure,
    The light-emitting element including a ZnO-containing film, wherein the ZnO-containing film has a nitrogen doping concentration of 1 × 10 20 atm / cm 3 or more.
PCT/JP2014/053486 2013-02-14 2014-02-14 FEEDSTOCK SUPPLY SOURCE FOR GROWING ZnO-CONTAINING FILM, ZnO-CONTAINING-FILM MANUFACTURING DEVICE AND MANUFACTURING METHOD, AND LIGHT-EMITTING ELEMENT CONTAINING ZnO-CONTAINING FILM WO2014126203A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013026815A JP5988041B2 (en) 2013-02-14 2013-02-14 Raw material supply source for growth of ZnO-containing film, ZnO-containing film manufacturing apparatus, manufacturing method, and light-emitting element including ZnO-containing film
JP2013-026815 2013-02-14

Publications (1)

Publication Number Publication Date
WO2014126203A1 true WO2014126203A1 (en) 2014-08-21

Family

ID=51354202

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/053486 WO2014126203A1 (en) 2013-02-14 2014-02-14 FEEDSTOCK SUPPLY SOURCE FOR GROWING ZnO-CONTAINING FILM, ZnO-CONTAINING-FILM MANUFACTURING DEVICE AND MANUFACTURING METHOD, AND LIGHT-EMITTING ELEMENT CONTAINING ZnO-CONTAINING FILM

Country Status (2)

Country Link
JP (1) JP5988041B2 (en)
WO (1) WO2014126203A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001270799A (en) * 2000-03-27 2001-10-02 Toyo Ink Mfg Co Ltd Zinc oxide thin film and method for producing the same
JP2010157574A (en) * 2008-12-26 2010-07-15 Tokyo Univ Of Agriculture & Technology Zinc oxide-based semiconductor, and method and device for manufacturing same
JP2011501877A (en) * 2007-09-26 2011-01-13 イーストマン コダック カンパニー Method for forming doped zinc oxide
JP2011096884A (en) * 2009-10-30 2011-05-12 Stanley Electric Co Ltd METHOD OF MANUFACTURING ZnO-BASED COMPOUND SEMICONDUCTOR, AND SEMICONDUCTOR LIGHT-EMITTING ELEMENT

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001270799A (en) * 2000-03-27 2001-10-02 Toyo Ink Mfg Co Ltd Zinc oxide thin film and method for producing the same
JP2011501877A (en) * 2007-09-26 2011-01-13 イーストマン コダック カンパニー Method for forming doped zinc oxide
JP2010157574A (en) * 2008-12-26 2010-07-15 Tokyo Univ Of Agriculture & Technology Zinc oxide-based semiconductor, and method and device for manufacturing same
JP2011096884A (en) * 2009-10-30 2011-05-12 Stanley Electric Co Ltd METHOD OF MANUFACTURING ZnO-BASED COMPOUND SEMICONDUCTOR, AND SEMICONDUCTOR LIGHT-EMITTING ELEMENT

Also Published As

Publication number Publication date
JP5988041B2 (en) 2016-09-07
JP2014157870A (en) 2014-08-28

Similar Documents

Publication Publication Date Title
JP6608438B2 (en) Method for depositing crystalline layer, in particular group IV semiconductor layer, and optoelectronic component at low temperature
US9657410B2 (en) Method for producing Ga2O3 based crystal film
JP2014063973A (en) Process of manufacturing zinc oxide crystal layer, zinc oxide crystal layer, and mist chemical vapor deposition device
TW200915393A (en) Compound thin film and method of forming the same, and electronic device using the thin film
KR101591833B1 (en) Method for manufacturing doped metal chalcogenide film and the film manufactured by the same
JP2007320790A (en) Method for producing silicon carbide single crystal, silicon carbide single crystal ingot, and silicon carbide single crystal substrate
JP5866727B2 (en) Method for producing β-Ga2O3 single crystal film and crystal laminated structure
JP5031651B2 (en) Method for producing silicon carbide single crystal ingot
JP2006335607A (en) Manufacturing method of aluminum-based group iii nitride crystal and crystal laminated substrate
US7255744B2 (en) Low-resistivity n-type semiconductor diamond and method of its manufacture
KR20200127989A (en) Method for manufacturing a light emitting device coated with graphene using MOCVD
CN100390316C (en) Method for preparing n type CVD co-doped diamond film
CN110714190B (en) Group III nitride substrate and method for producing group III nitride crystal
JP5988041B2 (en) Raw material supply source for growth of ZnO-containing film, ZnO-containing film manufacturing apparatus, manufacturing method, and light-emitting element including ZnO-containing film
JPS62171993A (en) Production of diamond semiconductor
JP4699420B2 (en) Method for manufacturing nitride film
WO2010082120A1 (en) Amorphous carbon, method of manufacturing the same, and solar cell including the same
KR100803950B1 (en) Preparation of p-zno film by plasma enhanced metal-organic chemical vapor deposition
JP2015154005A (en) Iron silicide semiconductor, method for manufacturing iron silicide semiconductor thin film, light-emitting element, and light-receiving element
US11869767B2 (en) Gallium nitride vapor phase epitaxy apparatus used in vapor phase epitaxy not using organic metal as a gallium raw material and manufacturing method therefor
CN110578170B (en) ScAlMgO4Single crystal and device
JP4341457B2 (en) Microwave plasma CVD apparatus and method for growing diamond film
JP4345437B2 (en) Method for producing n-type semiconductor diamond and n-type semiconductor diamond
JP2008243979A (en) Method of forming oxide thin film
JP5943345B2 (en) ZnO film manufacturing apparatus and method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14751610

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14751610

Country of ref document: EP

Kind code of ref document: A1