WO2014126161A1 - Antenna control method and antenna control system - Google Patents

Antenna control method and antenna control system Download PDF

Info

Publication number
WO2014126161A1
WO2014126161A1 PCT/JP2014/053356 JP2014053356W WO2014126161A1 WO 2014126161 A1 WO2014126161 A1 WO 2014126161A1 JP 2014053356 W JP2014053356 W JP 2014053356W WO 2014126161 A1 WO2014126161 A1 WO 2014126161A1
Authority
WO
WIPO (PCT)
Prior art keywords
antenna
signal
antenna control
control system
quality parameter
Prior art date
Application number
PCT/JP2014/053356
Other languages
French (fr)
Japanese (ja)
Inventor
明彦 田近
潤一 宮川
良仁 島崎
ヘウン イ
チョルフン イ
Original Assignee
ハイウェーブ, インコ-ポレイティド
ソフトバンクモバイル株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020130148528A external-priority patent/KR101504041B1/en
Application filed by ハイウェーブ, インコ-ポレイティド, ソフトバンクモバイル株式会社 filed Critical ハイウェーブ, インコ-ポレイティド
Priority to JP2015500289A priority Critical patent/JP6490573B2/en
Priority to US14/767,470 priority patent/US9935368B2/en
Priority to KR1020157025041A priority patent/KR101718003B1/en
Publication of WO2014126161A1 publication Critical patent/WO2014126161A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/08Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station
    • H04B7/0837Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station using pre-detection combining
    • H04B7/0842Weighted combining
    • H04B7/0865Independent weighting, i.e. weights based on own antenna reception parameters
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/007Details of, or arrangements associated with, antennas specially adapted for indoor communication
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/125Means for positioning
    • H01Q1/1257Means for positioning using the received signal strength
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/1271Supports; Mounting means for mounting on windscreens
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q3/00Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system
    • H01Q3/26Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture
    • H01Q3/30Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture varying the relative phase between the radiating elements of an array
    • H01Q3/34Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture varying the relative phase between the radiating elements of an array by electrical means
    • H01Q3/36Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture varying the relative phase between the radiating elements of an array by electrical means with variable phase-shifters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/022Site diversity; Macro-diversity
    • H04B7/026Co-operative diversity, e.g. using fixed or mobile stations as relays
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/14Relay systems
    • H04B7/15Active relay systems
    • H04B7/155Ground-based stations
    • H04B7/15528Control of operation parameters of a relay station to exploit the physical medium
    • H04B7/1555Selecting relay station antenna mode, e.g. selecting omnidirectional -, directional beams, selecting polarizations

Definitions

  • the present invention relates to an antenna control method and an antenna control system.
  • a mobile communication repeater is used to allow mobile communication telephones to communicate in rooms where the strength of mobile communication signals is weak.
  • a mobile communication repeater is a device that enables stable wireless communication services by providing a good signal in a place where the radio waves between the base station and the terminal are weak or not reachable.
  • Donner Antenna supplies a signal received from a base station to a mobile communication repeater installed indoors. Amplified and supplied to an indoor antenna (Service Antenna: Service Antenna).
  • the donor antenna needs to face the adjacent base station, it is installed outdoors so that the installation direction is optimally directed to the adjacent base station.
  • a mobile communication repeater configuration in order to couple a donor antenna installed outdoors with an indoor mobile communication repeater, it is necessary to penetrate the antenna cable through the wall surface.
  • the direction of the donor antenna installed indoors must be set to an optimum angle facing the adjacent base station.
  • Patent Document 1 discloses a relay measure in which a donor antenna and a service antenna are housed in a single housing and relay communication between a base station and a mobile station while being installed indoors.
  • the relay device described in Patent Document 1 has an advantage of not using an antenna insertion through-hole on a building wall. However, because it is installed indoors, there may be irregular reflections due to the wall of the building and indoor structures, and it is necessary to change the orientation of the donor antenna. There is a problem that it is difficult to optimize transmission and reception.
  • the present invention has been made to solve such a conventional problem, and in order to minimize the influence of diffuse reflection by the wall surface of the building and the indoor structure, the glass wall is not perforated with the antenna inlet being perforated.
  • a configuration in which a donor antenna is attached to the window is adopted. Then, signal quality parameters of the radio signal received from each beam direction to the donor antenna while attached to the glass window are created, and the orientation direction of the donor antenna is automatically automatically optimized based on the result of analyzing the created parameters. Set. Accordingly, it is possible to reduce the cost for installation and maintenance management, and to provide an antenna control method and a system for executing the antenna control method that can always maintain the optimum pointing points of the donor antenna and the adjacent base station. Objective.
  • An antenna control system for receiving an input signal from a base station includes an antenna module fixedly arranged inside a window glass and configured by an array antenna, a phase shifter including a plurality of transmission lines, and an antenna module
  • a donor antenna including a phase controller that controls a phase shifter to change the pointing direction, a measuring unit that measures a received signal received by the antenna module, and each antenna module with respect to the pointing direction based on the measurement result of the measuring unit
  • a repeater including an analysis unit that analyzes the signal quality parameter, and a generation unit that generates an antenna control signal for controlling the directivity direction of the antenna module based on the analysis result of the analysis unit.
  • the repeater further includes a service antenna that transmits a radio signal based on a received signal received by the antenna module.
  • the antenna control system further includes a feed line for transmitting the antenna control signal to the phase controller.
  • the antenna module includes a plurality of individual antennas, and each individual antenna of the antenna module includes a first patch antenna and a first patch antenna arranged at a predetermined distance from the glass window side. It is preferable that the second patch antenna is arranged at a predetermined distance.
  • the donor antenna further includes a metal reflector disposed on the back surface of the second patch antenna.
  • the donor antenna further includes a plate-shaped metal piece disposed around the first patch antenna.
  • the repeater further includes a signal multiplexing unit that multiplexes an antenna control signal with a DC power signal and provides the multiplexed signal to the donor antenna.
  • the donor antenna further includes a signal demultiplexing unit that demultiplexes the multiplexed signal received from the signal multiplexing unit into the antenna control signal and the DC power signal.
  • the phase controller selects any one of the plurality of transmission lines based on the antenna control signal and changes the directivity direction of the antenna module to the corresponding directivity direction.
  • each of the plurality of transmission lines has a different phase delay value.
  • the signal quality parameter is preferably the strength of the output signal of the repeater or the strength of the input signal of the base station.
  • the antenna control system controls the generation unit to automatically change the directivity direction of the antenna module when the signal quality parameter related to the current directivity direction of the antenna module is lower than a certain threshold.
  • the generation unit preferably performs control so that the directivity direction of the antenna module is fixed to the current directivity direction.
  • the analysis unit compares the signal quality parameter related to the current pointing direction with the signal quality parameter related to the direction close to the current pointing direction. If the signal quality parameter is equal to or higher than the signal quality parameter related to the direction close to the directivity direction, the generator controls the antenna module so that the directivity direction of the antenna module is fixed to the current directivity direction. If the signal quality parameter is lower than the signal quality parameter related to the direction close to the current pointing direction, the generation unit preferably controls to automatically change the pointing direction of the antenna module.
  • the generation unit searches for a direction in which a signal of a predetermined level or higher can be received from the base station in a preset time zone, and the preset time zone uses the radio resources of the base station. It is preferable that the amount of time be less than a predetermined standard.
  • An antenna module that is fixedly arranged inside the window glass and includes an array antenna to receive an input signal from the base station, a phase shifter including a plurality of transmission lines, and a directivity direction of the antenna module are changed.
  • An antenna control method in an antenna control system having a donor antenna including a phase controller for controlling a phase shifter and a repeater including a generation unit that generates an antenna control signal for controlling the directivity direction of the antenna module, Generates an antenna control signal for selecting one of the transmission lines of the phase shifter, transmits the antenna control signal to the phase controller, and automatically changes the directivity direction of the antenna module, Signal quality parameters for And comparing the first signal quality parameter related to the first direction and the second signal quality parameter related to the second direction among the respective directivity directions, and the first signal quality parameter is equal to or higher than the second signal quality parameter, the antenna Controlling the orientation of the module to be fixed in the first direction.
  • the antenna direction can be manually adjusted by optimally automatically setting the antenna direction based on the result of analyzing the signal quality parameters received from various directions. Compared to the above, it is possible to improve the call quality and reduce the installation and maintenance management costs.
  • the antenna control system and method of the present invention by installing the donor antenna attached to the indoor window, it is not necessary to pierce the antenna inlet in order to install the mobile communication repeater. It is possible to always maintain the optimum directivity point between the antenna attached to the base station and the adjacent base station.
  • FIG. 1 is a diagram for explaining an antenna control system according to an embodiment of the present invention. It is a block diagram for demonstrating the internal structure of the mobile communication repeater of FIG. It is a block diagram for demonstrating the internal structure of the donor antenna of FIG. It is a block diagram for demonstrating operation
  • FIG. 4 is a block diagram for explaining the donor antenna of FIG. 3 in detail. It is drawing which shows the signal extracted from each block of FIG. It is a flowchart for demonstrating the process by a mobile communication repeater. It is a flowchart for demonstrating the process by a donor antenna. It is sectional drawing of a donor antenna. It is a disassembled perspective view which illustrates each component of a donor antenna. It is a figure which shows the case of a donor antenna.
  • the “direction for receiving a signal of a predetermined level or higher” means that the direction of the donor antenna is changed according to the directivity angle corresponding to each transmission line.
  • the evaluation result for the signal quality is obtained, it means a direction in which the evaluation result becomes equal to or higher than a specific signal quality threshold.
  • FIG. 1 is a diagram for explaining an antenna control system according to an embodiment of the present invention.
  • the antenna control system includes a donor antenna 100 and a mobile communication repeater 200.
  • the donor antenna 100 and the mobile communication repeater 200 can be connected through the feeder line 300.
  • the feeder 300 is implemented with a coaxial cable.
  • FIG. 1 shows an example in which the donor antenna 100 is separated from the mobile communication repeater 200 and installed outside the mobile communication repeater 200, the donor antenna 100 may be installed inside the mobile communication repeater 200. Good.
  • the donor antenna 100 is installed toward the mobile communication repeater side 200.
  • the donor antenna 100 may be installed in a direction other than the mobile communication repeater side 200.
  • the donor antenna 100 is installed so that the directivity direction of the donor antenna 100 is directed to the base station in order to transmit and receive radio signals to and from the base station.
  • the donor antenna 100 receives a signal from the base station and provides the received signal to the mobile communication repeater 200.
  • the donor antenna 100 receives a radio signal from a base station that has the respective beam directions A1, A2, and A3 and can receive the radio signal most efficiently among the plurality of base stations 400, 401, and 402.
  • the donor antenna 100 selects and selects one of a plurality of transmission lines having a preset directivity angle based on the antenna control radio signal received from the mobile communication repeater 200 through the feeder line.
  • the directivity direction of the donor antenna 100 is changed according to the directivity angle corresponding to the transmission line.
  • the directivity direction can be changed by a beam directivity angle changing method of the donor antenna 100.
  • the beam directing angle changing method of the donor antenna 100 is a method of changing the direction in which the beam of the donor antenna 100 is directed so as to direct a specific direction.
  • the directivity direction of the donor antenna 100 is changed to the corresponding direction.
  • the mobile communication repeater 200 receives a radio signal from the donor antenna 100 and provides it to the terminal 500 in the room.
  • the mobile communication repeater 200 can control the orientation of the donor antenna 100 to be changed to a specific angle by providing an antenna control signal to the donor antenna 100 through a feeder line.
  • the mobile communication repeater 200 determines a specific direction as a direction in which a signal of a predetermined level or higher can be received from the base station using the signal quality parameter from each direction, and notifies the donor antenna 100 of it.
  • FIG. 2 is a block diagram for explaining the internal structure of the mobile communication repeater of FIG.
  • the mobile communication repeater 200 includes a service antenna 210, a received signal measuring unit 220, a received signal analyzing unit 230, an antenna control signal generating unit 240, and a transmitting / receiving unit 250.
  • the signal received from the donor antenna is sent to the mobile communication repeater 200 through the feeder line.
  • the signal sent to the mobile communication repeater 200 is transmitted to the service antenna 210 by the transmission / reception unit 250.
  • the transmission / reception unit 250 includes a signal multiplexing unit 251, a donor-side duplexer 252, a service-side duplexer 253, an upward amplifier 254, and a downward amplifier 255.
  • the signal multiplexing unit 251 multiplexes the antenna control signal and the high-frequency signal, synthesizes the DC power necessary for the operation of the antenna internal circuit, and enables transmission using a single coaxial cable.
  • the high-frequency signal separated from the signal multiplexing unit is input to the duplexer 252 on the donor side, and the duplexer divides the upward and downward directions, and sends the upward signal to the upward amplifier 254 and the downward amplifier 255, respectively. And send a downward signal to amplify each signal.
  • the signals divided into the upward and downward directions for amplification are also integrated into one path through the service-side duplexer 253 and sent to the service antenna 210.
  • the service antenna 210 receives a radio signal from the donor antenna 100 and provides the received radio signal to the received signal measurement unit 220.
  • the received signal measuring unit 220 measures the strength of at least one of the output signal of the mobile communication repeater 200 and the input signal of the base station using the radio signal received from the service antenna 210.
  • the received signal measuring unit 220 measures the signal by amplifying the signal transmitted from the adjacent base station and received by the donor antenna by the downward amplifier 255.
  • the reception signal measuring unit 220 measures the total intensity obtained by integrating all bands related to reception, the signal intensity divided by the bands, and the like.
  • the reception signal measurement unit 220 provides the reception signal analysis unit 230 with the strength of at least one of the measured output signal and the input signal of the base station.
  • the received signal measuring unit 220 receives a radio signal from the service antenna 210 and measures the strength of the input signal of the base station using the received radio signal.
  • the received signal measurement unit 220 receives a radio signal from the service antenna 210 and measures an output signal of the mobile communication repeater 200 when a signal based on the received radio signal is provided to an indoor terminal device.
  • the received signal analysis unit 230 analyzes the signal quality from the corresponding direction using the signal quality parameter for each directivity direction to which the donor antenna 100 is directed.
  • the reception signal analysis unit 230 provides the antenna control signal generation unit 240 with the analysis result of the signal quality from each direction of the donor antenna 100.
  • the received signal analysis unit 230 determines whether the signal quality parameter for the first direction among the signal quality parameters for each direction is equal to or higher than the signal quality parameter for the second direction. When the signal quality parameter for the first direction is greater than or equal to the signal quality parameter for the second direction, the received signal analysis unit 230 determines the first direction as a direction in which a signal having a predetermined level or higher can be received from the base station.
  • the received signal analysis unit 230 determines a corresponding direction from the base station according to whether a signal quality parameter for a specific direction is greater than or equal to a specific signal quality threshold among the directivity directions to which the donor antenna 100 is directed.
  • the direction in which the above signals can be received may be determined.
  • the received signal analysis unit 230 measures the signal quality parameter from the first direction among the respective directivity directions to which the donor antenna 100 is directed, evaluates the signal quality with respect to the first direction, and the evaluation result is a specific signal quality threshold value.
  • a 1st direction is a direction which can receive the signal more than a predetermined level from a base station.
  • the received signal analysis unit 230 measures the signal quality parameter from the first direction among the respective directivity directions to which the donor antenna 100 is directed, and the signal quality with respect to the first direction (for example, signal strength and signal level). If the evaluation result is equal to or less than a specific signal quality threshold, it may be determined that the first direction is not a direction in which a signal of a predetermined level or higher can be received from the base station.
  • the received signal analyzer 230 automatically changes the directivity direction of the donor antenna 100 to the second direction, measures the signal quality parameter for the corresponding direction, and uses the signal quality parameter for the second direction to perform the second direction.
  • Signal quality for example, signal strength and signal level
  • the received signal analysis unit 230 may determine the second direction as a direction in which a signal having a predetermined level or higher can be received from the base station.
  • the received signal analysis unit 230 repeats the above processing until the pointing direction of the donor antenna 100 in which a quality parameter equal to or higher than a specific signal quality threshold is measured is searched. At this time, the received signal analysis unit 230 searches for a direction in which a signal of a predetermined level or higher can be received from the base station in a preset time zone. The received signal analysis unit 230 searches for a direction in which a signal of a predetermined level or higher can be received from the base station in a time zone in which the usage amount of radio resources of the base station is less than a predetermined reference. For example, the received signal analysis unit 230 can search for a direction in which a signal of a predetermined level or higher can be received from the base station during a time period when there is no call by the user.
  • the received signal analysis unit 230 measures the signal quality parameter for each direction, evaluates the signal from the corresponding direction, records the evaluation result, and compares the signal quality in the current pointing direction with the recorded evaluation result.
  • the current pointing direction is determined to be a direction in which a signal of a predetermined level or higher can be received from the base station.
  • the received signal analysis unit 230 compares the evaluation result for the signal quality in the current directional direction and the recorded evaluation result, and compares the evaluation result for the current directional direction with the evaluation result for the adjacent direction.
  • the current pointing direction is a direction in which a signal having a predetermined level or higher can be received from the base station. You may decide that there is.
  • the received signal analysis unit 230 compares the evaluation result for the signal quality in the current directional direction and the recorded evaluation result, and compares the evaluation result for the current directional direction with the evaluation result for the adjacent direction. As a result, if the evaluation result for the signal quality in the current pointing direction is worse than the evaluation result for the direction close to the current pointing direction, the current pointing direction is not a direction in which a signal having a predetermined level or higher can be received from the base station. May be determined.
  • the reception signal analysis unit 230 measures the signal quality parameter for the corresponding direction while automatically changing the directivity direction of the donor antenna 100 to another direction, evaluates the signal quality from the corresponding direction, and the corresponding direction is determined from the base station. It is determined whether or not the direction is such that a signal having a predetermined level or higher can be received. That is, the received signal analyzer 230 repeats the above process until it determines a direction in which a signal having a predetermined level or higher can be received from the base station.
  • the antenna control signal generation unit 240 receives the analysis result of the signal quality parameter for the specific direction from the received signal analysis unit 230, and uses the received analysis result of the signal quality parameter for the specific direction to direct the direction of the donor antenna 100 An antenna control signal for controlling the signal is generated.
  • the antenna control signal generation unit 240 provides the generated antenna control signal to the signal multiplexing unit 251 of the transmission / reception unit 250.
  • the antenna control signal generation unit 240 generates an antenna control signal that directs the donor antenna 100 in a direction different from the past according to a request from the reception signal analysis unit 230. For example, when an antenna control signal that directs in the first direction has been generated in the past, the antenna control signal generator 240 can generate an antenna control signal that directs the donor antenna 100 in the second direction.
  • the antenna control signal generation unit 240 changes the directivity direction of the donor antenna 100 to a specific direction based on the analysis result of the signal quality parameter for each directivity direction directed by the donor antenna 100 received from the reception signal analysis unit 230.
  • An antenna control signal is generated. For example, when the received signal analysis unit 230 analyzes that the fourth direction of the first to seventh directions is a direction in which a signal having a predetermined level or higher can be received from the base station, the antenna control signal generation unit 240 An antenna control signal for changing the directivity direction of the donor antenna 100 in the fourth direction is generated.
  • the signal multiplexing unit 251 of the transmission / reception unit 250 multiplexes the antenna control signal received from the DC power source, the RF signal, and the antenna control signal generation unit 240 to generate a multiplexed signal.
  • the signal multiplexing unit 251 provides the generated multiplexed signal to the donor antenna 100 through the feeder line 300.
  • the signal multiplexer 251 receives the antenna control signal from the antenna control signal generator 240 and multiplexes the antenna control signal with the DC power provided to the donor antenna 100 to generate a multiplexed signal. can do.
  • FIG. 3 is a block diagram for explaining the internal structure of the donor antenna 100 of FIG.
  • the donor antenna 100 includes a signal demultiplexing unit 110, a phase controller 120, a phase shifter 130, and an antenna module 140.
  • the antenna module 140 includes individual antennas 141, 142, and 143.
  • the phase controller 120 controls the phase shifter 130 so as to control any one of a plurality of transmission lines having a preset directivity angle, which is in the phase shifter 130 based on the antenna control signal.
  • the phase shifter 130 includes individual components 131, 132, and 133, and each component is controlled by control signals c 1 , c 2 , and c 3 .
  • the phase shifter 130 changes the directivity direction of the antenna module 140 using the phase delay of any one of the plurality of transmission lines under the control of the phase controller 120.
  • each of the plurality of transmission lines can have a different length depending on the phase delay value.
  • the directivity direction can be changed by the beam directivity angle changing method of the antenna module 140.
  • FIG. 4 is a block diagram for explaining the operation of the phase shifter 130 and the array antenna 140 of FIG.
  • ⁇ Variable directional antennas that can electrically change the main beam direction of an antenna are arranged by arranging two or more antennas, changing the phase of each antenna, and combining the outputs.
  • Each antenna of the antenna module 140 has the same performance, and the phase shifter 130 can adjust the phase delay value according to the angle of the incident wave reaching each antenna.
  • the third phase s 2 of the second antenna from the phase s 3 antennas are delayed to the extent of t 2, the phase s 1 of the second first antenna from the phase s 2 antennas t 1
  • An example of the delay is shown.
  • the output s ⁇ 1 of the first antenna and the output s ⁇ 2 of the second antenna are in phase with the output s ⁇ 3 of the third antenna based on the calculation of the built-in microprocessor. In this manner, the three signals having the same phase are combined by the signal combiner 150 to obtain the maximum output S.
  • FIG. 5 is a drawing for explaining the transmission line of the phase shifter 130 of FIG.
  • the phase shifter 130 has a plurality of transmission lines m 1 , m 2 , and m 3 each having a different length, and the phase controller 120 is most suitable for the condition of the input signal from the repeater by the built-in microprocessor.
  • the transmission line is selected, and the beam direction of the antenna 141 of the antenna module is adjusted by the control signal c 1 .
  • FIG. 6 is a block diagram for explaining in detail the signal demultiplexing unit 110 of the donor antenna 100 of FIG.
  • the signal demultiplexing unit 110 further includes a signal separation module 111, an antenna control signal extraction module 112, and a direct current extraction module 113.
  • the signal demultiplexing unit 110 receives the multiplexed signal from the mobile communication repeater 200 through the feeder line 300, and demultiplexes the received multiplexed signal.
  • the signal demultiplexing unit 110 receives the multiplexed signal 510 from the mobile communication repeater 200, and the high frequency 520 is separated by the signal separation module 111 and the DC blocking capacitor 310.
  • the signal separation module 111 receives the antenna from the received multiplexed signal 510.
  • the control signal 540 and the direct current 530 are separated to provide the antenna control signal 540 and the direct current 530 to the antenna control signal extraction module 112 and the direct current extraction module 113, respectively.
  • the antenna control signal extraction module 112 extracts the antenna control signal 540 from the signal 530 received from the signal separation module 111 and provides it to the microprocessor of the phase controller.
  • the direct current extraction module 113 extracts the direct current 550 from the signal 530 received from the separation module 111 and provides it to the microprocessor of the phase controller.
  • FIG. 7 is a diagram showing signals extracted from each block of FIG.
  • FIG. 7 shows a signal transmitted through a feed line connecting a repeater and a donor antenna, that is, a high frequency signal 520, an antenna control signal 540, a DC power signal 550, and a signal 510 obtained by multiplexing these signals, based on a time axis. ing.
  • Each signal 510 to 550 in FIG. 7 is a signal measured at 510 to 550 for each portion of the donor antenna of FIG.
  • the signal 510 transmitted from the signal multiplexing unit 251 of the mobile communication repeater 200 to the donor antenna includes a donor antenna control signal 540, an electric signal 550, and a high frequency signal 520.
  • the signal 510 is separated into the DC signal 530 including the donor antenna control signal 540 and the electric signal 550 and the high frequency signal 520 by the signal separation module 111 and the DC blocking capacitor.
  • the DC signal 530 is separated into a digital signal 540 for antenna control and an electric signal 550 for power supply by the antenna control signal extraction module 112 and the DC current extraction module 113, and the microprocessor built in the phase controller. Provided as input.
  • FIG. 8 is a flowchart for explaining processing by the mobile communication repeater.
  • the antenna control signal generation unit 240 of the mobile communication repeater 200 generates an antenna control signal for controlling the directivity direction of the donor antenna 100 (Step S610).
  • the received signal measuring unit 220 of the mobile communication repeater 200 measures the signal quality parameter for each direction (for example, seven directions) while providing the antenna control signal to the donor antenna 100 and changing the directivity direction of the donor antenna 100.
  • Step S620 The directivity direction is changed by the beam directivity angle changing method of the donor antenna 100.
  • the received signal analysis unit 230 of the mobile communication repeater 200 compares whether or not the signal quality parameter for the first direction is equal to or higher than the signal quality parameter for the second direction among the signal quality parameters for each direction (step S630). ).
  • the antenna control signal generator 240 of the mobile communication repeater 200 fixes the antenna beam in the first direction (step S640).
  • S650 That is, the mobile communication repeater 200 compares signal quality parameters for each direction to determine a direction in which a signal of a predetermined level or higher can be received from the base station, and fixes the directivity direction of the donor antenna 100 to the corresponding direction.
  • the mobile communication repeater 200 measures a signal quality parameter for a specific direction among the respective directions, evaluates the signal quality (for example, the signal strength and the signal level) from the corresponding direction, and the evaluation result is a specific one. If the signal quality threshold or lower, the pointing direction is changed to another direction, the signal quality parameter for the corresponding direction is measured, and the signal quality from the corresponding direction is evaluated.
  • the signal quality for example, the signal strength and the signal level
  • the mobile communication repeater 200 can search for a direction in which a signal of a predetermined level or higher can be received from the base station in a time zone in which the amount of radio resources used by the base station is less than a predetermined reference. For example, the mobile communication repeater 200 searches for a direction in which a signal of a predetermined level or higher can be received from the base station during a time when there is no call by the user.
  • the received signal measuring unit 220 of the mobile communication repeater 200 measures the evaluation result for the signal quality in each direction, and the received signal analyzing unit 230 evaluates the signal from the corresponding direction.
  • the evaluation result is recorded, and the evaluation result for the signal quality in the current directional direction is compared with the evaluation result for the direction close to the current directional direction among the recorded evaluation results.
  • the antenna control signal generation unit 240 of the mobile communication repeater 200 evaluates the evaluation result for the signal quality in the current directional direction in the direction close to the current directional direction among the recorded evaluation results.
  • the pointing direction is automatically changed to another direction, and the received signal measuring unit 220 further measures the signal quality parameter for the corresponding direction to evaluate the signal quality from the corresponding direction.
  • the antenna control signal generation unit 240 of the mobile communication repeater 200 has an evaluation result for the signal quality in the current directional direction that is close to the current directional direction among the recorded evaluation results. If the evaluation result for the direction is better, the current pointing direction is determined to be a direction in which a signal of a predetermined level or higher can be received from the base station.
  • the mobile communication repeater 200 When the strength of the output signal of the mobile communication repeater 200 is equal to or less than a specific strength, the mobile communication repeater 200 repeatedly executes the process of FIG. And the directivity direction of the donor antenna 100 is fixed in the corresponding direction.
  • the reason why the strength of the output signal of the mobile communication repeater 200 is equal to or less than a specific strength is that the isolation between the donor antenna and the service antenna built in the mobile communication repeater 200 (power transmission amount) This is because the ratio of When the strength of the output signal exceeds a specific strength, the mobile communication repeater 200 repeatedly executes the process of FIG. 8 to determine a direction in which a signal of a predetermined level or higher can be received from the base station, and the corresponding direction The direction of orientation of the donor antenna 100 is fixed.
  • the reason why the strength of the output signal of the mobile communication repeater exceeds a specific strength is that a new base station is newly installed around the mobile communication repeater 200.
  • FIG. 9 is a flowchart for explaining processing by the donor antenna.
  • phase 9 is executed by the microprocessor of the phase controller 120 based on the control program stored in the storage unit of the phase controller 120.
  • the donor antenna 100 receives an antenna control signal from the mobile communication repeater 200 (step S710).
  • the phase controller 120 of the donor antenna 100 selects any one transmission line from among a plurality of transmission lines each having a preset directivity angle based on the antenna control signal (step S720).
  • the phase controller 120 of the donor antenna 100 changes the directivity direction according to the directivity angle corresponding to the selected transmission line among the plurality of transmission lines (step S730).
  • the directivity direction can be changed by a beam directivity angle changing method of the donor antenna 100.
  • the phase controller 120 of the donor antenna 100 fixes the directivity direction of the antenna in a specific direction depending on whether or not the control signal of the mobile communication repeater 200 has been received (step S740) (step S750).
  • FIG. 10 is a drawing for explaining a cross-sectional view of the donor antenna 100 of FIG.
  • the donor antenna 100 includes an antenna front plate 840 attached to the glass window 800, a first patch 810 disposed at a specific distance from the glass window 800 (for example, a parasitic patch), A second patch 820 (eg, a microstrip patch) disposed a predetermined distance away from the first patch and a case 860 that protects the components of the donor antenna are included. That is, the donor antenna 100 has a double patch structure using the first patch 810 and the second patch 820.
  • the first patch 810 is disposed at a distance of 6-9 mm from the glass window 800.
  • the resonant frequency of the donor antenna 100 changes as it approaches a high dielectric constant object, such as the glass window 800.
  • the first patch 810 can be disposed at a distance between the donor antenna 100 and the glass window 800, for example, by 7 mm within a range in which the resonance frequency of the donor antenna 100 can be adjusted.
  • the amount of change in the resonance frequency becomes around 5%.
  • Such a change amount of the resonance frequency can be designed to a bandwidth that covers a change amount of the bandwidth of the operating frequency of the donor antenna 100 itself.
  • the patch antenna can be manufactured in advance by considering the resonance frequency of the donor antenna 100 itself in anticipation of the amount of change in the resonance frequency that occurs when the glass window 800 is attached.
  • phase control unit 850 for attaching components such as the phase shifter 130, the phase controller 120, and the signal demultiplexing unit 110, and the back of the case 862 or the back of the second patch antenna is made of metal.
  • a reflection part can be installed.
  • the metallic reflector is implemented by coating the back surface of the case with a conductive metal such as aluminum.
  • the metal reflector functions as a reflector, and can minimize the influence of irregular reflection and improve the signal quality.
  • FIG. 11 is an exploded perspective view of each component of the donor antenna and the case described in FIG.
  • the first patch antenna 810 disposed on the glass window side includes an antenna board 811 and a metal patch 812.
  • the second patch antenna 820 arranged at a predetermined distance from the first patch antenna 810 includes an antenna board 821 and a metal patch 822.
  • the antenna front plate 840 is a portion that is directly attached to the glass window. When the donor antenna 100 is attached to the window glass, the antenna front plate 840 is attached to the glass window with, for example, a double-sided tape.
  • the phase controller 850 includes a phase shifter 130, a phase controller 120, a signal demultiplexer 110, and the like. Case 860 protects the donor antenna and is coupled with antenna front plate 840 to allow the donor antenna to be secured to the glass window.
  • FIG. 12 is a plan view of the case 860 of the donor antenna as viewed from the indoor side.
  • a plate-shaped metal piece 861 is attached around the first patch antenna so as to protrude from the end of the case.
  • the plate-shaped metal piece 861 is installed in the front part of the case 860 and can contact the end 841 of the antenna front plate 840.
  • This plate-shaped metal piece functions as an additional reflector, and it is possible to improve the signal quality by minimizing the influence of irregular reflection and the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

The purpose of the present invention is to provide an antenna control system and method that enable an optimal orientation point to be maintained between a donor antenna and an adjacent base station at all times. An antenna system for receiving a signal from a base station has: a donor antenna that includes an antenna module that consists of an array antenna and is fixed to the inner side of a windowpane, a phase shifter that includes multiple transmission lines, and a phase controller that controls the phase shifter in order to change the orientation direction of the antenna module; and a repeater that includes a measurement unit that measures a received signal received by the antenna module, an analysis unit that analyzes signal quality parameters in respective orientation directions of the antenna module on the basis of the measurement result of the measurement unit, and a generation unit that generates an antenna control signal for controlling the orientation direction of the antenna module on the basis of the analysis result of the analysis unit.

Description

アンテナ制御方法及びアンテナ制御システムAntenna control method and antenna control system
 本発明は、アンテナ制御方法及びアンテナ制御システムに関する。 The present invention relates to an antenna control method and an antenna control system.
 移動通信信号の強度が微弱な室内で移動通信電話機の通信ができるようにするために移動通信中継器が利用されている。移動通信中継器とは、基地局と端末との間の電波が微弱な場所または届かない場所に設置して、そこに良好な信号を提供することで、安定した無線通信サービスを可能とする装置をいう。 A mobile communication repeater is used to allow mobile communication telephones to communicate in rooms where the strength of mobile communication signals is weak. A mobile communication repeater is a device that enables stable wireless communication services by providing a good signal in a place where the radio waves between the base station and the terminal are weak or not reachable. Say.
 一般に、電界強度の強い屋外に設置されたドナーアンテナ(Donner Antenna)は、基地局から受信した信号を、室内に設置された移動通信中継器へ供給し、移動通信中継器は、信号を適切に増幅して室内のアンテナ(サービスアンテナ:Service Antenna)へ供給する。 In general, a donor antenna installed outdoors with strong electric field strength (Donner Antenna) supplies a signal received from a base station to a mobile communication repeater installed indoors. Amplified and supplied to an indoor antenna (Service Antenna: Service Antenna).
 しかしながら、ドナーアンテナは、隣接した基地局と対向状態になる必要があるため、屋外において、その設置方向が隣接基地局に最適に向かうように設置されている。このような移動通信中継器の構成において、屋外に設置されたドナーアンテナを室内の移動通信中継器と結合させるために、アンテナケーブルを壁面へ貫通して引き入れる必要がある。 However, since the donor antenna needs to face the adjacent base station, it is installed outdoors so that the installation direction is optimally directed to the adjacent base station. In such a mobile communication repeater configuration, in order to couple a donor antenna installed outdoors with an indoor mobile communication repeater, it is necessary to penetrate the antenna cable through the wall surface.
 仮にアンテナケーブルの壁面への貫通を避けるために、ドナーアンテナを室内に設置したとしても、室内に設置されたドナーアンテナの方向を隣接基地局と対向する最適な角度に設定しなければならない。 In order to avoid penetration of the antenna cable into the wall, even if the donor antenna is installed indoors, the direction of the donor antenna installed indoors must be set to an optimum angle facing the adjacent base station.
 この場合、建物の壁面及び室内の構造物による乱反射が生じて、基地局との対向状態が最適なものにならなくなり、この乱反射による反射波が室内に設置された移動通信中継器の他のアンテナ、即ち、サービスアンテナに帰還して発振を引き起こすという問題があった。 In this case, irregular reflection by the wall of the building and the indoor structure occurs, and the facing state with the base station is not optimal, and the reflected wave due to this irregular reflection is another antenna of the mobile communication repeater installed indoors. That is, there has been a problem of causing oscillation by returning to the service antenna.
 このように、室内に設置されて建物の壁面のアンテナ引き入れ貫通口を使用しなかったとしても、窓方向と基地局の方向が一致しない場合、基地局と壁面に取り付けられたアンテナとが対向せず、基地局からの電波は、アンテナの主輻射方向に向かわらず、ドナーアンテナは基地局と最適な電波送受信を行うことができなくなり、信号中継の機能を果たすことができなくなる。特許文献1には、ドナーアンテナとサービスアンテナを一つの筐体に収納して、室内に設置された状態で基地局と移動局との間の通信を中継する中継措置が開示されている。 In this way, even if the antenna entrance through hole on the wall surface of the building is not used, if the window direction does not match the base station direction, the base station and the antenna attached to the wall face each other. First, the radio wave from the base station is not directed to the main radiation direction of the antenna, and the donor antenna cannot perform optimal radio wave transmission / reception with the base station, and cannot perform the signal relay function. Patent Document 1 discloses a relay measure in which a donor antenna and a service antenna are housed in a single housing and relay communication between a base station and a mobile station while being installed indoors.
特開2011-211281号公報JP 2011-211281 A
 特許文献1に記載の中継装置は、建物壁面のアンテナ引き入れ貫通口を使用しない利点を有する。しかしながら、室内に設置されるため、建物の壁面及び室内の構造物による乱反射が生じる可能性があり、ドナーアンテナの指向方向を変更する必要が求められることにより、基地局とドナーアンテナとの電波の送受信を最適化することが難しくなるという問題点があった。 The relay device described in Patent Document 1 has an advantage of not using an antenna insertion through-hole on a building wall. However, because it is installed indoors, there may be irregular reflections due to the wall of the building and indoor structures, and it is necessary to change the orientation of the donor antenna. There is a problem that it is difficult to optimize transmission and reception.
 本発明は、このような従来の課題を解決すべくなされたものであり、建物の壁面及び室内の構造物による乱反射の影響を最小化するため、壁面にアンテナの引き入れ口を穿孔しないまま、ガラス窓にドナーアンテナを取り付ける構成を採用している。そして、ガラス窓に取り付けられた状態でそれぞれのビーム方向からドナーアンテナへ受信される無線信号の信号品質パラメータを作成し、作成したパラメータを分析した結果に基づいてドナーアンテナの指向方向を最適に自動設定する。これにより、設置及び保持管理のための費用を低減するとともに、ドナーアンテナと隣接基地局との最適指向点を常に保持することを可能とするアンテナ制御方法及びこれを実行するシステムを提供することを目的とする。 The present invention has been made to solve such a conventional problem, and in order to minimize the influence of diffuse reflection by the wall surface of the building and the indoor structure, the glass wall is not perforated with the antenna inlet being perforated. A configuration in which a donor antenna is attached to the window is adopted. Then, signal quality parameters of the radio signal received from each beam direction to the donor antenna while attached to the glass window are created, and the orientation direction of the donor antenna is automatically automatically optimized based on the result of analyzing the created parameters. Set. Accordingly, it is possible to reduce the cost for installation and maintenance management, and to provide an antenna control method and a system for executing the antenna control method that can always maintain the optimum pointing points of the donor antenna and the adjacent base station. Objective.
 本発明が解決しようとする課題は、以上に述べた課題に制限されることなく、述べられていない他の課題は下記の記載から当業者に明確に理解されると考える。 The problems to be solved by the present invention are not limited to the problems described above, and other problems not described are clearly understood by those skilled in the art from the following description.
 基地局からの入力信号を受信するためのアンテナ制御システムは、窓ガラスの内側に固定して配置され且つアレーアンテナで構成されるアンテナモジュール、複数の伝送線路を含むフェーズシフター、及び、アンテナモジュールの指向方向を変更するためにフェーズシフターを制御するフェーズコントローラ、を含むドナーアンテナと、アンテナモジュールが受信した受信信号を測定する測定部、測定部の測定結果に基づいてアンテナモジュールの各々を指向方向に対する信号品質パラメータを分析する分析部、及び、分析部の分析結果に基づいてアンテナモジュールの指向方向を制御するためのアンテナ制御信号を生成する生成部、を含む中継器と、を有する。 An antenna control system for receiving an input signal from a base station includes an antenna module fixedly arranged inside a window glass and configured by an array antenna, a phase shifter including a plurality of transmission lines, and an antenna module A donor antenna including a phase controller that controls a phase shifter to change the pointing direction, a measuring unit that measures a received signal received by the antenna module, and each antenna module with respect to the pointing direction based on the measurement result of the measuring unit A repeater including an analysis unit that analyzes the signal quality parameter, and a generation unit that generates an antenna control signal for controlling the directivity direction of the antenna module based on the analysis result of the analysis unit.
 また、アンテナ制御システムは、中継器は、アンテナモジュールが受信した受信信号に基づく無線信号を発信するサービスアンテナを更に含むことが好ましい。 In the antenna control system, it is preferable that the repeater further includes a service antenna that transmits a radio signal based on a received signal received by the antenna module.
 また、アンテナ制御システムは、アンテナ制御信号をフェーズコントローラへ伝送する給電線を更に有することが好ましい。 Further, it is preferable that the antenna control system further includes a feed line for transmitting the antenna control signal to the phase controller.
 また、アンテナ制御システムは、アンテナモジュールは複数の個別アンテナを含み、アンテナモジュールの各々の個別アンテナは、ガラス窓側から所定の距離を離隔して配置される第1パッチアンテナ及び、第1パッチアンテナから所定の距離を離隔して配置される第2パッチアンテナで構成されることが好ましい。 Further, in the antenna control system, the antenna module includes a plurality of individual antennas, and each individual antenna of the antenna module includes a first patch antenna and a first patch antenna arranged at a predetermined distance from the glass window side. It is preferable that the second patch antenna is arranged at a predetermined distance.
 また、アンテナ制御システムは、ドナーアンテナは、第2パッチアンテナの背面に配置された金属製反射部を更に含むことが好ましい。 Also, in the antenna control system, it is preferable that the donor antenna further includes a metal reflector disposed on the back surface of the second patch antenna.
 また、アンテナ制御システムは、ドナーアンテナは、第1パッチアンテナの周囲に配置された板状の金属切片を更に含むことが好ましい。 In the antenna control system, it is preferable that the donor antenna further includes a plate-shaped metal piece disposed around the first patch antenna.
 また、アンテナ制御システムは、中継器は、アンテナ制御信号を直流電力信号と多重化して前記ドナーアンテナへ提供する信号多重化部を更に含むことが好ましい。 In the antenna control system, it is preferable that the repeater further includes a signal multiplexing unit that multiplexes an antenna control signal with a DC power signal and provides the multiplexed signal to the donor antenna.
 また、アンテナ制御システムは、ドナーアンテナは、信号多重化部から受信した多重化信号を、アンテナ制御信号と直流電力信号に逆多重化する信号逆多重化部を更に含むことが好ましい。 In the antenna control system, it is preferable that the donor antenna further includes a signal demultiplexing unit that demultiplexes the multiplexed signal received from the signal multiplexing unit into the antenna control signal and the DC power signal.
 また、アンテナ制御システムは、フェーズコントローラは、アンテナ制御信号に基づいて前記複数の伝送線路のうちいずれか一つを選択し、対応する指向方向へアンテナモジュールの指向方向を変更することが好ましい。 Further, in the antenna control system, it is preferable that the phase controller selects any one of the plurality of transmission lines based on the antenna control signal and changes the directivity direction of the antenna module to the corresponding directivity direction.
 また、アンテナ制御システムは、複数の伝送線路それぞれは、相互に異なった位相遅延値を有することが好ましい。 In the antenna control system, it is preferable that each of the plurality of transmission lines has a different phase delay value.
 また、アンテナ制御システムは、信号品質パラメータは、中継器の出力信号の強さ又は基地局の入力信号の強さであることが好ましい。 In the antenna control system, the signal quality parameter is preferably the strength of the output signal of the repeater or the strength of the input signal of the base station.
 また、アンテナ制御システムは、アンテナモジュールの現在の指向方向に関する信号品質パラメータが一定の閾値より低い場合、生成部は前記アンテナモジュールの指向方向を自動的に変更するように制御し、アンテナモジュールの現在の指向方向に関する信号品質パラメータが一定の閾値以上の場合、生成部は現在の指向方向にアンテナモジュールの指向方向を固定するように制御することが好ましい。 In addition, the antenna control system controls the generation unit to automatically change the directivity direction of the antenna module when the signal quality parameter related to the current directivity direction of the antenna module is lower than a certain threshold. When the signal quality parameter regarding the directivity direction is equal to or greater than a certain threshold value, the generation unit preferably performs control so that the directivity direction of the antenna module is fixed to the current directivity direction.
 また、アンテナ制御システムは、分析部は、現在の指向方向に関する信号品質パラメータと現在の指向方向に近接している方向に関する信号品質パラメータとを比較し、現在の指向方向に関する信号品質パラメータが、現在の指向方向に近接している方向に関する信号品質パラメータ以上である場合、生成部は、現在の指向方向にアンテナモジュールの指向方向を固定するように制御し、現在の指向方向に関する信号品質パラメータが、現在の指向方向に近接している方向に関する信号品質パラメータより低い場合、生成部は、アンテナモジュールの指向方向を自動的に変更するように制御することが好ましい。 In the antenna control system, the analysis unit compares the signal quality parameter related to the current pointing direction with the signal quality parameter related to the direction close to the current pointing direction. If the signal quality parameter is equal to or higher than the signal quality parameter related to the direction close to the directivity direction, the generator controls the antenna module so that the directivity direction of the antenna module is fixed to the current directivity direction. If the signal quality parameter is lower than the signal quality parameter related to the direction close to the current pointing direction, the generation unit preferably controls to automatically change the pointing direction of the antenna module.
 また、アンテナ制御システムは、生成部は、予め設定された時間帯に前記基地局から所定レベル以上の信号が受信できる方向を検索し、予め設定された時間帯は、基地局の無線資源の使用量が所定の基準より少ない時間帯であることが好ましい。 In the antenna control system, the generation unit searches for a direction in which a signal of a predetermined level or higher can be received from the base station in a preset time zone, and the preset time zone uses the radio resources of the base station. It is preferable that the amount of time be less than a predetermined standard.
 基地局からの入力信号を受信するために窓ガラスの内側に固定して配置され且つアレーアンテナで構成されるアンテナモジュール、複数の伝送線路を含むフェーズシフター、及び、アンテナモジュールの指向方向を変更するためにフェーズシフターを制御するフェーズコントローラを含むドナーアンテナと、アンテナモジュールの指向方向を制御するためのアンテナ制御信号を生成する生成部を含む中継器と、を有するアンテナ制御システムにおけるアンテナ制御方法は、フェーズシフターの複数の伝送線路のうちいずれか一つを選択するためのアンテナ制御信号を生成し、アンテナ制御信号をフェーズコントローラに伝送して、アンテナモジュールの指向方向を自動的に変更しながら、それぞれの指向方向に対する信号品質パラメータを作成し、それぞれの指向方向のうち第1方向に関する第1信号品質パラメータと第2方向に関する第2信号品質パラメータとを比較し、第1信号品質パラメータが第2信号品質パラメータ以上である場合、アンテナモジュールの指向方向を第1の方向に固定するように制御する、ことを有する。 An antenna module that is fixedly arranged inside the window glass and includes an array antenna to receive an input signal from the base station, a phase shifter including a plurality of transmission lines, and a directivity direction of the antenna module are changed. An antenna control method in an antenna control system having a donor antenna including a phase controller for controlling a phase shifter and a repeater including a generation unit that generates an antenna control signal for controlling the directivity direction of the antenna module, Generates an antenna control signal for selecting one of the transmission lines of the phase shifter, transmits the antenna control signal to the phase controller, and automatically changes the directivity direction of the antenna module, Signal quality parameters for And comparing the first signal quality parameter related to the first direction and the second signal quality parameter related to the second direction among the respective directivity directions, and the first signal quality parameter is equal to or higher than the second signal quality parameter, the antenna Controlling the orientation of the module to be fixed in the first direction.
 本発明の利点及び/又は特徴、そしてそれらを達成する方法は、添付の図面と共に詳しく後述している実施例を参照すると明確になる。しかしながら、本発明は、以下に開示される実施例に限定されるものではなく、相互に異なる様々な形態に具現され、本実施例は本発明の開示が完全になるようにし、本発明が属する技術分野において通常の知識を有する者に発明の範囲を完全に知らせるために提供されるものであって、本発明は、請求項の範囲によって定義されるのみである。明細書の全体にわたって同じ参照符号は同じ構成要素を指す。 Advantages and / or features of the present invention and methods for achieving them will become apparent with reference to the embodiments described in detail below in conjunction with the accompanying drawings. However, the present invention is not limited to the embodiments disclosed below, and may be embodied in various forms different from each other. The embodiments make the disclosure of the present invention complete, and the present invention belongs to the embodiments. It is provided to provide full knowledge of the scope of the invention to those skilled in the art and the invention is only defined by the scope of the claims. Like reference numerals refer to like elements throughout the specification.
 本発明に係るアンテナ制御システム及び方法によると、種々の方向から受信される信号品質パラメータを分析した結果に基づいてアンテナ方向を最適に自動設定することで、手動でアンテナの指向方向を調整することに比べて通話品質を向上させるとともに、設置及び保持管理費用を低減することが可能となる。 According to the antenna control system and method of the present invention, the antenna direction can be manually adjusted by optimally automatically setting the antenna direction based on the result of analyzing the signal quality parameters received from various directions. Compared to the above, it is possible to improve the call quality and reduce the installation and maintenance management costs.
 また、本発明に係るアンテナ制御システム及び方法によると、ドナーアンテナを室内の窓に取り付けて設置することで、移動通信中継器を設置するために、アンテナの引き入れ口を穿孔する必要がなくなり、窓に取り付けられたアンテナと隣接基地局との最適指向点を常に保持させることが可能となる。 In addition, according to the antenna control system and method of the present invention, by installing the donor antenna attached to the indoor window, it is not necessary to pierce the antenna inlet in order to install the mobile communication repeater. It is possible to always maintain the optimum directivity point between the antenna attached to the base station and the adjacent base station.
本発明の一実施形態によるアンテナ制御システムを説明するための図面である。1 is a diagram for explaining an antenna control system according to an embodiment of the present invention; 図1の移動通信中継器の内部構造を説明するためのブロック図である。It is a block diagram for demonstrating the internal structure of the mobile communication repeater of FIG. 図1のドナーアンテナの内部構造を説明するためのブロック図である。It is a block diagram for demonstrating the internal structure of the donor antenna of FIG. 図3のフェーズシフターとアレーアンテナの動作を説明するためのブロック図である。It is a block diagram for demonstrating operation | movement of the phase shifter and array antenna of FIG. 図3のフェーズシフターの伝送線路を説明するための図面である。It is drawing for demonstrating the transmission line of the phase shifter of FIG. 図3のドナーアンテナを詳しく説明するためのブロック図である。FIG. 4 is a block diagram for explaining the donor antenna of FIG. 3 in detail. 図6の各ブロックから抽出された信号を示す図面である。It is drawing which shows the signal extracted from each block of FIG. 移動通信中継器による処理を説明するためのフロー図である。It is a flowchart for demonstrating the process by a mobile communication repeater. ドナーアンテナによる処理を説明するためのフロー図である。It is a flowchart for demonstrating the process by a donor antenna. ドナーアンテナの断面図である。It is sectional drawing of a donor antenna. ドナーアンテナの各構成要素を図示する分解斜視図である。It is a disassembled perspective view which illustrates each component of a donor antenna. ドナーアンテナのケースを示す図である。It is a figure which shows the case of a donor antenna.
 以下、図面を参照しつつ、本発明の様々な実施形態について説明する。ただし、本発明の技術的範囲はそれらの実施形態に限定されず、特許請求の範囲に記載された発明とその均等物に及ぶ点に留意されたい。 Hereinafter, various embodiments of the present invention will be described with reference to the drawings. However, it should be noted that the technical scope of the present invention is not limited to these embodiments, and extends to the invention described in the claims and equivalents thereof.
 また、当業者は、本発明の精神及び範囲から外れることなく、様々な変更、置換及び修正をこれに加えることが可能であることを理解されたい。 It should also be understood by those skilled in the art that various changes, substitutions and modifications can be made thereto without departing from the spirit and scope of the present invention.
 本明細書において使われた用語のうち、「所定レベル以上の信号を受信するための方向」は、各々の伝送線路に該当する指向角度に従ってドナーアンテナの指向方向を変更しながら、それぞれの方向の信号品質に対する評価結果を得た場合に、評価結果が特定の信号品質の閾値以上になる方向を意味する。 Among the terms used in this specification, the “direction for receiving a signal of a predetermined level or higher” means that the direction of the donor antenna is changed according to the directivity angle corresponding to each transmission line. When the evaluation result for the signal quality is obtained, it means a direction in which the evaluation result becomes equal to or higher than a specific signal quality threshold.
 図1は、本発明の一実施形態に係るアンテナ制御システムを説明するための図面である。 FIG. 1 is a diagram for explaining an antenna control system according to an embodiment of the present invention.
 図1を参照すると、アンテナ制御システムは、ドナーアンテナ100及び移動通信中継器200を含む。ここで、ドナーアンテナ100及び移動通信中継器200は、給電線300を通じて連結することができる。給電線300は同軸ケーブルで具現される。図1に、ドナーアンテナ100が移動通信中継器200と分離されて移動通信中継器200の外部に設置された例を示したが、ドナーアンテナ100は移動通信中継器200の内部に設置されてもよい。ドナーアンテナ100は、移動通信中継器側200に向かって設置される。なお、ドナーアンテナ100は、移動通信中継器側200以外の方向に向かって設置されてもよい。 Referring to FIG. 1, the antenna control system includes a donor antenna 100 and a mobile communication repeater 200. Here, the donor antenna 100 and the mobile communication repeater 200 can be connected through the feeder line 300. The feeder 300 is implemented with a coaxial cable. Although FIG. 1 shows an example in which the donor antenna 100 is separated from the mobile communication repeater 200 and installed outside the mobile communication repeater 200, the donor antenna 100 may be installed inside the mobile communication repeater 200. Good. The donor antenna 100 is installed toward the mobile communication repeater side 200. The donor antenna 100 may be installed in a direction other than the mobile communication repeater side 200.
 ドナーアンテナ100は、基地局と無線信号を送受信するためにドナーアンテナ100の指向方向が基地局に向かうように設置される。ドナーアンテナ100は基地局から信号を受信し、受信した信号を移動通信中継器200へ提供する。ドナーアンテナ100は、それぞれのビーム方向A1、A2、A3を有する、複数の基地局400,401,402のうち無線信号を最も効率的に受信できる基地局から無線信号を受信する。 The donor antenna 100 is installed so that the directivity direction of the donor antenna 100 is directed to the base station in order to transmit and receive radio signals to and from the base station. The donor antenna 100 receives a signal from the base station and provides the received signal to the mobile communication repeater 200. The donor antenna 100 receives a radio signal from a base station that has the respective beam directions A1, A2, and A3 and can receive the radio signal most efficiently among the plurality of base stations 400, 401, and 402.
 ドナーアンテナ100は、給電線を通じて移動通信中継器200から受信したアンテナ制御無線信号に基づいて、予め設定された指向角度を有する複数の伝送線路のうちいずれか一つの伝送線路を選択し、選択した伝送線路に該当する指向角度に従ってドナーアンテナ100の指向方向を変更する。 The donor antenna 100 selects and selects one of a plurality of transmission lines having a preset directivity angle based on the antenna control radio signal received from the mobile communication repeater 200 through the feeder line. The directivity direction of the donor antenna 100 is changed according to the directivity angle corresponding to the transmission line.
 指向方向は、ドナーアンテナ100のビーム指向角変更方法により変更することができる。ドナーアンテナ100のビーム指向角変更方法は、ドナーアンテナ100のビームが指向する方向を変更して特定の方向を指向するようにする方法である。 The directivity direction can be changed by a beam directivity angle changing method of the donor antenna 100. The beam directing angle changing method of the donor antenna 100 is a method of changing the direction in which the beam of the donor antenna 100 is directed so as to direct a specific direction.
 このような過程により、移動通信中継器200によって基地局から所定レベル以上の信号が受信できる方向が決定されると、ドナーアンテナ100の指向方向は該当方向に変更される。 In this process, when the mobile communication repeater 200 determines a direction in which a signal of a predetermined level or higher can be received from the base station, the directivity direction of the donor antenna 100 is changed to the corresponding direction.
 移動通信中継器200は、ドナーアンテナ100から無線信号を受信して室内にある端末機500へ提供する。移動通信中継器200は、給電線を通じてドナーアンテナ100にアンテナ制御信号を提供して特定の角度にドナーアンテナ100の指向方向が変更されるように制御することができる。移動通信中継器200は、それぞれの方向からの信号品質パラメータを利用して特定の方向を基地局から所定レベル以上の信号が受信できる方向と決めてドナーアンテナ100に通知する。 The mobile communication repeater 200 receives a radio signal from the donor antenna 100 and provides it to the terminal 500 in the room. The mobile communication repeater 200 can control the orientation of the donor antenna 100 to be changed to a specific angle by providing an antenna control signal to the donor antenna 100 through a feeder line. The mobile communication repeater 200 determines a specific direction as a direction in which a signal of a predetermined level or higher can be received from the base station using the signal quality parameter from each direction, and notifies the donor antenna 100 of it.
 図2は、図1の移動通信中継器の内部構造を説明するためのブロック図である。 FIG. 2 is a block diagram for explaining the internal structure of the mobile communication repeater of FIG.
 図2を参照すると、移動通信中継器200はサービスアンテナ210、受信信号測定部220、受信信号分析部230、アンテナ制御信号生成部240及び送受信部250を含む。 Referring to FIG. 2, the mobile communication repeater 200 includes a service antenna 210, a received signal measuring unit 220, a received signal analyzing unit 230, an antenna control signal generating unit 240, and a transmitting / receiving unit 250.
 ドナーアンテナから受信した信号は、給電線を通じて移動通信中継器200へ送られる。移動通信中継器200へ送られた信号は、送受信部250によりサービスアンテナ210へ伝達される。送受信部250は、信号多重化部251、ドナー側のデュプレクサ252、サービス側のデュプレクサ253、上向増幅器254、下向増幅器255を含む。信号多重化部251は、アンテナ制御信号と高周波信号を多重化し、これにアンテナ内部回路の動作に必要な直流電力を合成して、一つの同軸ケーブルで伝送できるようにする。信号多重化部から分離された高周波信号はドナー側のデュプレクサ252に入力され、このデュプレクサは上向と下向の方向を区分して、上向増幅器254と下向増幅器255へそれぞれ上向の信号と下向の信号を送り、それぞれの信号を増幅する。増幅のために上向と下向に区分された信号は、またサービス側のデュプレクサ253を通じて一つの経路に統合されてサービスアンテナ210へ送られる。 The signal received from the donor antenna is sent to the mobile communication repeater 200 through the feeder line. The signal sent to the mobile communication repeater 200 is transmitted to the service antenna 210 by the transmission / reception unit 250. The transmission / reception unit 250 includes a signal multiplexing unit 251, a donor-side duplexer 252, a service-side duplexer 253, an upward amplifier 254, and a downward amplifier 255. The signal multiplexing unit 251 multiplexes the antenna control signal and the high-frequency signal, synthesizes the DC power necessary for the operation of the antenna internal circuit, and enables transmission using a single coaxial cable. The high-frequency signal separated from the signal multiplexing unit is input to the duplexer 252 on the donor side, and the duplexer divides the upward and downward directions, and sends the upward signal to the upward amplifier 254 and the downward amplifier 255, respectively. And send a downward signal to amplify each signal. The signals divided into the upward and downward directions for amplification are also integrated into one path through the service-side duplexer 253 and sent to the service antenna 210.
 サービスアンテナ210は、ドナーアンテナ100から無線信号を受信し、受信した無線信号を受信信号測定部220へ提供する。 The service antenna 210 receives a radio signal from the donor antenna 100 and provides the received radio signal to the received signal measurement unit 220.
 受信信号測定部220は、サービスアンテナ210から受信した無線信号を利用して移動通信中継器200の出力信号及び基地局の入力信号のうち少なくとも一つの信号の強さを測定する。受信信号測定部220は、隣接基地局が送信してドナーアンテナが受信した信号を下向増幅器255で増幅して信号を測定する。受信信号測定部220は、受信にかかる全帯域を統合した総合強度、帯域別に区分した信号強度等を測定する。受信信号測定部220は、測定した出力信号及び基地局の入力信号のうち少なくとも一つの信号の強さを受信信号分析部230へ提供する。 The received signal measuring unit 220 measures the strength of at least one of the output signal of the mobile communication repeater 200 and the input signal of the base station using the radio signal received from the service antenna 210. The received signal measuring unit 220 measures the signal by amplifying the signal transmitted from the adjacent base station and received by the donor antenna by the downward amplifier 255. The reception signal measuring unit 220 measures the total intensity obtained by integrating all bands related to reception, the signal intensity divided by the bands, and the like. The reception signal measurement unit 220 provides the reception signal analysis unit 230 with the strength of at least one of the measured output signal and the input signal of the base station.
 なお、受信信号測定部220は、サービスアンテナ210から無線信号を受信し、受信した無線信号を利用して基地局の入力信号の強さを測定する。 The received signal measuring unit 220 receives a radio signal from the service antenna 210 and measures the strength of the input signal of the base station using the received radio signal.
 また、受信信号測定部220は、サービスアンテナ210から無線信号を受信し、受信した無線信号に基づく信号を室内の端末装置に提供したときの移動通信中継器200の出力信号を測定する。 Also, the received signal measurement unit 220 receives a radio signal from the service antenna 210 and measures an output signal of the mobile communication repeater 200 when a signal based on the received radio signal is provided to an indoor terminal device.
 受信信号分析部230は、ドナーアンテナ100が指向するそれぞれの指向方向に対する信号品質パラメータを利用して該当方向からの信号品質を分析する。受信信号分析部230は、ドナーアンテナ100それぞれの方向からの信号品質の分析結果をアンテナ制御信号生成部240へ提供する。 The received signal analysis unit 230 analyzes the signal quality from the corresponding direction using the signal quality parameter for each directivity direction to which the donor antenna 100 is directed. The reception signal analysis unit 230 provides the antenna control signal generation unit 240 with the analysis result of the signal quality from each direction of the donor antenna 100.
 受信信号分析部230は、それぞれの方向に対する信号品質パラメータのうち第1方向に対する信号品質パラメータが第2方向に対する信号品質パラメータ以上であるか否かを判断する。受信信号分析部230は、第1方向に対する信号品質パラメータが第2方向に対する信号品質パラメータ以上である場合、第1方向を基地局から所定レベル以上の信号が受信できる方向と定める。 The received signal analysis unit 230 determines whether the signal quality parameter for the first direction among the signal quality parameters for each direction is equal to or higher than the signal quality parameter for the second direction. When the signal quality parameter for the first direction is greater than or equal to the signal quality parameter for the second direction, the received signal analysis unit 230 determines the first direction as a direction in which a signal having a predetermined level or higher can be received from the base station.
 なお、受信信号分析部230は、ドナーアンテナ100が指向するそれぞれの指向方向のうち、特定の方向に対する信号品質パラメータが特定の信号品質閾値以上であるか否かによって該当方向を基地局から所定レベル以上の信号が受信できる方向と定めてもよい。 The received signal analysis unit 230 determines a corresponding direction from the base station according to whether a signal quality parameter for a specific direction is greater than or equal to a specific signal quality threshold among the directivity directions to which the donor antenna 100 is directed. The direction in which the above signals can be received may be determined.
 また、受信信号分析部230は、ドナーアンテナ100が指向するそれぞれの指向方向のうち第1方向から信号品質パラメータを測定して第1方向に対する信号品質を評価し、評価結果が特定の信号品質閾値以上である場合、第1方向を基地局から所定レベル以上の信号が受信できる方向と定めてもよい。 In addition, the received signal analysis unit 230 measures the signal quality parameter from the first direction among the respective directivity directions to which the donor antenna 100 is directed, evaluates the signal quality with respect to the first direction, and the evaluation result is a specific signal quality threshold value. When it is above, you may define a 1st direction as a direction which can receive the signal more than a predetermined level from a base station.
 また、受信信号分析部230は、ドナーアンテナ100が指向するそれぞれの指向方向のうち第1方向から信号品質パラメータを測定して第1方向に対する信号品質(例えば、信号の強さ及び信号のレベル)を評価し、評価結果が特定の信号品質閾値以下である場合、第1方向が基地局から所定レベル以上の信号が受信できる方向ではないと決定してもよい。 In addition, the received signal analysis unit 230 measures the signal quality parameter from the first direction among the respective directivity directions to which the donor antenna 100 is directed, and the signal quality with respect to the first direction (for example, signal strength and signal level). If the evaluation result is equal to or less than a specific signal quality threshold, it may be determined that the first direction is not a direction in which a signal of a predetermined level or higher can be received from the base station.
 また、受信信号分析部230は、ドナーアンテナ100の指向方向を第2方向に自動的に変更して該当方向に対する信号品質パラメータを測定し、第2方向に対する信号品質パラメータを利用して第2方向に対する信号品質(例えば、信号の強さ及び信号のレベル)を評価して評価結果が特定の信号品質閾値以上であるか否かを分析する。受信信号分析部230は、第2方向に対する信号品質の評価結果が特定の信号品質閾値以上である場合、第2方向を基地局から所定レベル以上の信号が受信できる方向と定めてもよい。 In addition, the received signal analyzer 230 automatically changes the directivity direction of the donor antenna 100 to the second direction, measures the signal quality parameter for the corresponding direction, and uses the signal quality parameter for the second direction to perform the second direction. Signal quality (for example, signal strength and signal level) is evaluated to analyze whether or not the evaluation result is equal to or higher than a specific signal quality threshold. When the signal quality evaluation result in the second direction is equal to or higher than a specific signal quality threshold, the received signal analysis unit 230 may determine the second direction as a direction in which a signal having a predetermined level or higher can be received from the base station.
 即ち、受信信号分析部230は、特定の信号品質閾値以上の品質パラメータが測定されるドナーアンテナ100の指向方向が検索されるまで、上記の処理を繰り返し行う。この際に、受信信号分析部230は、予め設定された時間帯に基地局から所定レベル以上の信号が受信できる方向を検索する。受信信号分析部230は、基地局の無線資源の使用量が所定の基準より少ない時間帯に基地局から所定レベル以上の信号が受信できる方向を検索する。例えば、受信信号分析部230は、使用者によって通話の無い時間帯に基地局から所定レベル以上の信号が受信できる方向を検索することができる。 That is, the received signal analysis unit 230 repeats the above processing until the pointing direction of the donor antenna 100 in which a quality parameter equal to or higher than a specific signal quality threshold is measured is searched. At this time, the received signal analysis unit 230 searches for a direction in which a signal of a predetermined level or higher can be received from the base station in a preset time zone. The received signal analysis unit 230 searches for a direction in which a signal of a predetermined level or higher can be received from the base station in a time zone in which the usage amount of radio resources of the base station is less than a predetermined reference. For example, the received signal analysis unit 230 can search for a direction in which a signal of a predetermined level or higher can be received from the base station during a time period when there is no call by the user.
 受信信号分析部230は、それぞれの方向に対する信号品質パラメータを測定して該当方向からの信号を評価して評価結果を記録し、現在の指向方向の信号品質と記録された評価結果とを比較して現在の指向方向を基地局から所定レベル以上の信号が受信できる方向に決定する。 The received signal analysis unit 230 measures the signal quality parameter for each direction, evaluates the signal from the corresponding direction, records the evaluation result, and compares the signal quality in the current pointing direction with the recorded evaluation result. Thus, the current pointing direction is determined to be a direction in which a signal of a predetermined level or higher can be received from the base station.
 また、受信信号分析部230は、現在の指向方向の信号品質に対する評価結果と記録された評価結果のうち、現在の指向方向に対する評価結果と近接している方向に対する評価結果を比較し、比較した結果、現在の指向方向の信号品質に対する評価結果が、現在の指向方向と近接している方向に対する評価結果より良好な場合、現在の指向方向が基地局から所定レベル以上の信号が受信できる方向であると決定してもよい。 Also, the received signal analysis unit 230 compares the evaluation result for the signal quality in the current directional direction and the recorded evaluation result, and compares the evaluation result for the current directional direction with the evaluation result for the adjacent direction. As a result, when the evaluation result for the signal quality in the current pointing direction is better than the evaluation result for the direction close to the current pointing direction, the current pointing direction is a direction in which a signal having a predetermined level or higher can be received from the base station. You may decide that there is.
 また、受信信号分析部230は、現在の指向方向の信号品質に対する評価結果と記録された評価結果のうち、現在の指向方向に対する評価結果と近接している方向に対する評価結果を比較し、比較した結果、現在の指向方向の信号品質に対する評価結果が、現在の指向方向と近接している方向に対する評価結果より悪い場合、現在の指向方向が基地局から所定レベル以上の信号が受信できる方向ではないと決定してもよい。 Also, the received signal analysis unit 230 compares the evaluation result for the signal quality in the current directional direction and the recorded evaluation result, and compares the evaluation result for the current directional direction with the evaluation result for the adjacent direction. As a result, if the evaluation result for the signal quality in the current pointing direction is worse than the evaluation result for the direction close to the current pointing direction, the current pointing direction is not a direction in which a signal having a predetermined level or higher can be received from the base station. May be determined.
 受信信号分析部230は、ドナーアンテナ100の指向方向を他の方向に自動的に変更しながら該当方向に対する信号品質パラメータを測定して該当方向からの信号品質を評価し、該当方向が基地局から所定レベル以上の信号が受信できる方向であるか否かを決定する。即ち、受信信号分析部230は、基地局から所定レベル以上の信号が受信できる方向を決定するまで上記の過程を繰り返し行う。 The reception signal analysis unit 230 measures the signal quality parameter for the corresponding direction while automatically changing the directivity direction of the donor antenna 100 to another direction, evaluates the signal quality from the corresponding direction, and the corresponding direction is determined from the base station. It is determined whether or not the direction is such that a signal having a predetermined level or higher can be received. That is, the received signal analyzer 230 repeats the above process until it determines a direction in which a signal having a predetermined level or higher can be received from the base station.
 アンテナ制御信号生成部240は、受信信号分析部230から特定の方向に対する信号品質パラメータの分析結果を受信し、受信した特定の方向に対する信号品質パラメータの分析結果を利用してドナーアンテナ100の指向方向を制御するためのアンテナ制御信号を生成する。アンテナ制御信号生成部240は、生成したアンテナ制御信号を送受信部250の信号多重化部251へ提供する。 The antenna control signal generation unit 240 receives the analysis result of the signal quality parameter for the specific direction from the received signal analysis unit 230, and uses the received analysis result of the signal quality parameter for the specific direction to direct the direction of the donor antenna 100 An antenna control signal for controlling the signal is generated. The antenna control signal generation unit 240 provides the generated antenna control signal to the signal multiplexing unit 251 of the transmission / reception unit 250.
 アンテナ制御信号生成部240は、受信信号分析部230からの要求に従ってドナーアンテナ100を過去とは異なる方向に指向させるアンテナ制御信号を生成する。例えば、過去に第1方向に指向させるアンテナ制御信号を生成していた場合、アンテナ制御信号生成部240はドナーアンテナ100を第2方向に指向させるアンテナ制御信号を生成することができる。 The antenna control signal generation unit 240 generates an antenna control signal that directs the donor antenna 100 in a direction different from the past according to a request from the reception signal analysis unit 230. For example, when an antenna control signal that directs in the first direction has been generated in the past, the antenna control signal generator 240 can generate an antenna control signal that directs the donor antenna 100 in the second direction.
 アンテナ制御信号生成部240は、受信信号分析部230から受信したドナーアンテナ100が指向するそれぞれの指向方向に対する信号品質パラメータの分析結果に基づいて、特定の方向にドナーアンテナ100の指向方向を変更させるアンテナ制御信号を生成する。例えば、受信信号分析部230によって第1方向ないし第7方向のうち、第4方向が基地局から所定レベル以上の信号が受信できる方向であると分析された場合、アンテナ制御信号生成部240は、第4方向にドナーアンテナ100の指向方向を変更させるアンテナ制御信号を生成する。 The antenna control signal generation unit 240 changes the directivity direction of the donor antenna 100 to a specific direction based on the analysis result of the signal quality parameter for each directivity direction directed by the donor antenna 100 received from the reception signal analysis unit 230. An antenna control signal is generated. For example, when the received signal analysis unit 230 analyzes that the fourth direction of the first to seventh directions is a direction in which a signal having a predetermined level or higher can be received from the base station, the antenna control signal generation unit 240 An antenna control signal for changing the directivity direction of the donor antenna 100 in the fourth direction is generated.
 送受信部250の信号多重化部251は、直流電源、RF信号及びアンテナ制御信号生成部240から受信したアンテナ制御信号を多重化して多重化信号を生成する。信号多重化部251は、生成した多重化信号を給電線300を通じてドナーアンテナ100へ提供する。 The signal multiplexing unit 251 of the transmission / reception unit 250 multiplexes the antenna control signal received from the DC power source, the RF signal, and the antenna control signal generation unit 240 to generate a multiplexed signal. The signal multiplexing unit 251 provides the generated multiplexed signal to the donor antenna 100 through the feeder line 300.
 本発明の一形態において、信号多重化部251は、アンテナ制御信号生成部240からアンテナ制御信号を受信し、アンテナ制御信号をドナーアンテナ100へ提供される直流電力と多重化して多重化信号を生成することができる。 In one embodiment of the present invention, the signal multiplexer 251 receives the antenna control signal from the antenna control signal generator 240 and multiplexes the antenna control signal with the DC power provided to the donor antenna 100 to generate a multiplexed signal. can do.
 図3は、図1のドナーアンテナ100の内部構造を説明するためのブロック図である。 FIG. 3 is a block diagram for explaining the internal structure of the donor antenna 100 of FIG.
 図3を参照すると、ドナーアンテナ100は、信号逆多重化部110、フェーズコントローラ120、フェーズシフター130及びアンテナモジュール140を含む。アンテナモジュール140は、個別のアンテナ141,142、143を含む。 Referring to FIG. 3, the donor antenna 100 includes a signal demultiplexing unit 110, a phase controller 120, a phase shifter 130, and an antenna module 140. The antenna module 140 includes individual antennas 141, 142, and 143.
 フェーズコントローラ120は、アンテナ制御信号に基づいてフェーズシフター130にある、それぞれ予め設定された指向角度を有する複数の伝送線路のうちいずれか一つの伝送線路をコントロールするようにフェーズシフター130を制御する。フェーズシフター130は、個別の構成要素131,132、133で構成され、それぞれの構成要素は制御信号c1、c2、c3により制御される。 The phase controller 120 controls the phase shifter 130 so as to control any one of a plurality of transmission lines having a preset directivity angle, which is in the phase shifter 130 based on the antenna control signal. The phase shifter 130 includes individual components 131, 132, and 133, and each component is controlled by control signals c 1 , c 2 , and c 3 .
 フェーズシフター130は、フェーズコントローラ120の制御に従って複数の伝送線路のうちいずれか一つの伝送線路が有する位相遅延を利用して、アンテナモジュール140の指向方向を変更する。ここで、複数の伝送線路それぞれは、位相遅延値に応じて相互に異なる長さにすることができる。ここで、指向方向は、アンテナモジュール140のビーム指向角変更方法により変更されることができる。 The phase shifter 130 changes the directivity direction of the antenna module 140 using the phase delay of any one of the plurality of transmission lines under the control of the phase controller 120. Here, each of the plurality of transmission lines can have a different length depending on the phase delay value. Here, the directivity direction can be changed by the beam directivity angle changing method of the antenna module 140.
 図4は、図3のフェーズシフター130とアレーアンテナ140の動作を説明するためのブロック図である。 FIG. 4 is a block diagram for explaining the operation of the phase shifter 130 and the array antenna 140 of FIG.
 アンテナの主ビーム方向を電気的に変更できる可変指向性アンテナは、2以上の複数のアンテナを配列して、各アンテナの位相をそれぞれ変更し、その出力を合成する。アンテナモジュール140の各アンテナは同一の性能を有し、フェーズシフター130は各アンテナに到達する入射波の角度による位相遅延値を調整することができる。 ¡Variable directional antennas that can electrically change the main beam direction of an antenna are arranged by arranging two or more antennas, changing the phase of each antenna, and combining the outputs. Each antenna of the antenna module 140 has the same performance, and the phase shifter 130 can adjust the phase delay value according to the angle of the incident wave reaching each antenna.
 図4は、3番目のアンテナの位相s3より2番目のアンテナの位相s2がt2の程に遅延され、2番目のアンテナの位相s2より1番目のアンテナの位相s1がt1の程に遅延されている例を示す。フェーズシフター130は、内臓されたマイクロプロセッサーの演算に基づいて、1番目のアンテナの出力s` 1と2番目のアンテナの出力s` 2が3番目のアンテナの出力s` 3と同位相になるようにそれぞれ遅延させて、同位相になった3つの信号を信号合成器150で合成して最大の出力Sを得る。 4, the third phase s 2 of the second antenna from the phase s 3 antennas are delayed to the extent of t 2, the phase s 1 of the second first antenna from the phase s 2 antennas t 1 An example of the delay is shown. In the phase shifter 130, the output s`1 of the first antenna and the output s`2 of the second antenna are in phase with the output s`3 of the third antenna based on the calculation of the built-in microprocessor. In this manner, the three signals having the same phase are combined by the signal combiner 150 to obtain the maximum output S.
 図5は、図3のフェーズシフター130の伝送線路を説明するための図面である。 FIG. 5 is a drawing for explaining the transmission line of the phase shifter 130 of FIG.
 フェーズシフター130はそれぞれ異なる長さを有する複数の伝送線路m1、m2、m3を有し、フェーズコントローラ120は、内蔵されたマイクロプロセッサーにより、中継器からの入力信号の条件にもっとも適合する伝送線路を選択し、制御信号c1により、アンテナモジュールのアンテナ141のビーム方向を調整する。 The phase shifter 130 has a plurality of transmission lines m 1 , m 2 , and m 3 each having a different length, and the phase controller 120 is most suitable for the condition of the input signal from the repeater by the built-in microprocessor. The transmission line is selected, and the beam direction of the antenna 141 of the antenna module is adjusted by the control signal c 1 .
 図6は、図3のドナーアンテナ100の信号逆多重化部110を詳細に説明するためのブロック図である。 FIG. 6 is a block diagram for explaining in detail the signal demultiplexing unit 110 of the donor antenna 100 of FIG.
 信号逆多重化部110は、信号分離モジュール111、アンテナ制御信号抽出モジュール112及び直流電流抽出モジュール113を更に含む。 The signal demultiplexing unit 110 further includes a signal separation module 111, an antenna control signal extraction module 112, and a direct current extraction module 113.
 信号逆多重化部110は、給電線300を通じて移動通信中継器200から多重化信号を受信し、受信した多重化信号を逆多重化する。信号逆多重化部110は移動通信中継器200から多重化信号510を受信し、信号分離モジュール111と直流遮断キャパシタ310により高周波520が分離され、信号分離モジュール111は受信した多重化信号510からアンテナ制御信号540及び直流電流530を分離してアンテナ制御信号抽出モジュール112及び直流電流抽出モジュール113にアンテナ制御信号540及び直流電流530をそれぞれ提供する。アンテナ制御信号抽出モジュール112は、信号分離モジュール111から受信した信号530からアンテナ制御信号540を抽出して、フェーズコントローラのマイクロプロセッサーへ提供する。直流電流抽出モジュール113は、分離モジュール111から受信した信号530から直流電流550を抽出してフェーズコントローラのマイクロプロセッサーへ提供する。 The signal demultiplexing unit 110 receives the multiplexed signal from the mobile communication repeater 200 through the feeder line 300, and demultiplexes the received multiplexed signal. The signal demultiplexing unit 110 receives the multiplexed signal 510 from the mobile communication repeater 200, and the high frequency 520 is separated by the signal separation module 111 and the DC blocking capacitor 310. The signal separation module 111 receives the antenna from the received multiplexed signal 510. The control signal 540 and the direct current 530 are separated to provide the antenna control signal 540 and the direct current 530 to the antenna control signal extraction module 112 and the direct current extraction module 113, respectively. The antenna control signal extraction module 112 extracts the antenna control signal 540 from the signal 530 received from the signal separation module 111 and provides it to the microprocessor of the phase controller. The direct current extraction module 113 extracts the direct current 550 from the signal 530 received from the separation module 111 and provides it to the microprocessor of the phase controller.
 図7は、図6の各ブロックから抽出された信号を示す図面である。 FIG. 7 is a diagram showing signals extracted from each block of FIG.
 図7は、中継器とドナーアンテナを連結する給電線路を通じて伝送される信号、即ち、高周波信号520、アンテナ制御信号540、直流電力信号550及びこれらを多重化した信号510を時間軸を基準に示している。図7の各信号510~550は、図6のドナーアンテナを各部分に、510~550で測定した信号である。移動通信中継器200の信号多重化部251からドナーアンテナへ送られてきた信号510には、ドナーアンテナ制御信号540、電気信号550、高周波信号520が含まれている。そして、信号分離モジュール111と直流遮断キャパシタにより、信号510は、ドナーアンテナ制御信号540及び電気信号550を含む直流信号530と高周波信号520とに分離される。直流信号530は、アンテナ制御信号抽出モジュール112と直流電流抽出モジュール113により、アンテナ制御のためのデジタル信号540と電源供給のための電気信号550とに分離され、フェーズコントローラに内蔵されたマイクロプロセッサーの入力として提供される。 FIG. 7 shows a signal transmitted through a feed line connecting a repeater and a donor antenna, that is, a high frequency signal 520, an antenna control signal 540, a DC power signal 550, and a signal 510 obtained by multiplexing these signals, based on a time axis. ing. Each signal 510 to 550 in FIG. 7 is a signal measured at 510 to 550 for each portion of the donor antenna of FIG. The signal 510 transmitted from the signal multiplexing unit 251 of the mobile communication repeater 200 to the donor antenna includes a donor antenna control signal 540, an electric signal 550, and a high frequency signal 520. Then, the signal 510 is separated into the DC signal 530 including the donor antenna control signal 540 and the electric signal 550 and the high frequency signal 520 by the signal separation module 111 and the DC blocking capacitor. The DC signal 530 is separated into a digital signal 540 for antenna control and an electric signal 550 for power supply by the antenna control signal extraction module 112 and the DC current extraction module 113, and the microprocessor built in the phase controller. Provided as input.
 図8は、移動通信中継器による処理を説明するためのフロー図である。 FIG. 8 is a flowchart for explaining processing by the mobile communication repeater.
 図8の各ステップの制御は、アンテナ制御信号生成部240の記憶部に記憶されている制御プログラムに基づいて、アンテナ制御信号生成部240のプロセッサーにより実行される。 8 is executed by the processor of the antenna control signal generation unit 240 based on a control program stored in the storage unit of the antenna control signal generation unit 240.
 図8を参照すると、移動通信中継器200のアンテナ制御信号生成部240は、ドナーアンテナ100の指向方向を制御するためのアンテナ制御信号を生成する(ステップS610)。移動通信中継器200の受信信号測定部220は、アンテナ制御信号をドナーアンテナ100へ提供してドナーアンテナ100の指向方向を変更させながらそれぞれの方向(例えば、7つの方向)に対する信号品質パラメータを測定する(ステップS620)。指向方向は、ドナーアンテナ100のビーム指向角変更方法により変更される。 Referring to FIG. 8, the antenna control signal generation unit 240 of the mobile communication repeater 200 generates an antenna control signal for controlling the directivity direction of the donor antenna 100 (Step S610). The received signal measuring unit 220 of the mobile communication repeater 200 measures the signal quality parameter for each direction (for example, seven directions) while providing the antenna control signal to the donor antenna 100 and changing the directivity direction of the donor antenna 100. (Step S620). The directivity direction is changed by the beam directivity angle changing method of the donor antenna 100.
 移動通信中継器200の受信信号分析部230は、それぞれの方向に対する信号品質パラメータのうち、第1方向に対する信号品質パラメータが第2方向に対する信号品質パラメータ以上であるか否かを比較する(ステップS630)。移動通信中継器200のアンテナ制御信号生成部240は、第1方向に対する信号品質パラメータが第2方向に対する信号品質パラメータ以上である場合(ステップS640)、第1方向にアンテナのビームを固定させる(ステップ S650)。すなわち、移動通信中継器200は、それぞれの方向に対する信号品質パラメータを互いに比較して基地局から所定レベル以上の信号が受信できる方向を決定し、該当方向にドナーアンテナ100の指向方向を固定させる。 The received signal analysis unit 230 of the mobile communication repeater 200 compares whether or not the signal quality parameter for the first direction is equal to or higher than the signal quality parameter for the second direction among the signal quality parameters for each direction (step S630). ). When the signal quality parameter for the first direction is greater than or equal to the signal quality parameter for the second direction (step S640), the antenna control signal generator 240 of the mobile communication repeater 200 fixes the antenna beam in the first direction (step S640). S650). That is, the mobile communication repeater 200 compares signal quality parameters for each direction to determine a direction in which a signal of a predetermined level or higher can be received from the base station, and fixes the directivity direction of the donor antenna 100 to the corresponding direction.
 移動通信中継器200は、それぞれの方向のうち特定の方向に対する信号品質パラメータを測定して該当方向からの信号品質(例えば、信号の強さ及び信号のレベル)を評価し、評価結果が特定の信号品質閾値以下の場合、他の方向に指向方向を変更して該当方向に対する信号品質パラメータを測定して該当方向からの信号品質を評価する。 The mobile communication repeater 200 measures a signal quality parameter for a specific direction among the respective directions, evaluates the signal quality (for example, the signal strength and the signal level) from the corresponding direction, and the evaluation result is a specific one. If the signal quality threshold or lower, the pointing direction is changed to another direction, the signal quality parameter for the corresponding direction is measured, and the signal quality from the corresponding direction is evaluated.
 このとき、移動通信中継器200は、基地局の無線資源の使用量が所定の基準より少ない時間帯に、基地局から所定レベル以上の信号が受信できる方向を検索することができる。例えば、移動通信中継器200は、使用者によって通話の無い時間帯に基地局から所定レベル以上の信号が受信できる方向を検索する。 At this time, the mobile communication repeater 200 can search for a direction in which a signal of a predetermined level or higher can be received from the base station in a time zone in which the amount of radio resources used by the base station is less than a predetermined reference. For example, the mobile communication repeater 200 searches for a direction in which a signal of a predetermined level or higher can be received from the base station during a time when there is no call by the user.
 図8には図示していないが、移動通信中継器200の受信信号測定部220は、それぞれの方向に対する信号品質に対する評価結果を測定し、受信信号分析部230は該当方向からの信号を評価して評価結果を記録し、現在の指向方向の信号品質に対する評価結果と、上記記録された評価結果のうち、現在の指向方向と近接している方向に対する評価結果を比較する。移動通信中継器200のアンテナ制御信号生成部240は、比較した結果、現在の指向方向の信号品質に対する評価結果が、上記記録された評価結果のうち現在の指向方向と近接している方向に対する評価結果より悪い場合、他の方向に指向方向を自動的に変更し、受信信号測定部220は該当方向に対する信号品質パラメータを更に測定して該当方向からの信号品質を評価する。一方、移動通信中継器200のアンテナ制御信号生成部240は、比較した結果、現在の指向方向の信号品質に対する評価結果が、上記記録された評価結果のうち、現在の指向方向と近接している方向に対する評価結果より良好な場合、現在の指向方向を基地局から所定レベル以上の信号が受信できる方向に決定する。 Although not shown in FIG. 8, the received signal measuring unit 220 of the mobile communication repeater 200 measures the evaluation result for the signal quality in each direction, and the received signal analyzing unit 230 evaluates the signal from the corresponding direction. The evaluation result is recorded, and the evaluation result for the signal quality in the current directional direction is compared with the evaluation result for the direction close to the current directional direction among the recorded evaluation results. As a result of the comparison, the antenna control signal generation unit 240 of the mobile communication repeater 200 evaluates the evaluation result for the signal quality in the current directional direction in the direction close to the current directional direction among the recorded evaluation results. If it is worse than the result, the pointing direction is automatically changed to another direction, and the received signal measuring unit 220 further measures the signal quality parameter for the corresponding direction to evaluate the signal quality from the corresponding direction. On the other hand, as a result of the comparison, the antenna control signal generation unit 240 of the mobile communication repeater 200 has an evaluation result for the signal quality in the current directional direction that is close to the current directional direction among the recorded evaluation results. If the evaluation result for the direction is better, the current pointing direction is determined to be a direction in which a signal of a predetermined level or higher can be received from the base station.
 移動通信中継器200は、移動通信中継器200の出力信号の強さが特定の強さ以下になる場合、図8の処理を繰り返して実行し、基地局から所定レベル以上の信号が受信できる方向を決定し、該当方向にドナーアンテナ100の指向方向を固定させる。ここで、移動通信中継器200の出力信号の強さが特定の強さ以下になる理由は、ドナーアンテナと上記移動通信中継器200に内蔵されたサービスアンテナとの間のアイソレーション(電力伝達量の比)が小さくなるためである。移動通信中継器200は、出力信号の強さが特定の強さ以上になる場合、図8の処理を繰り返して実行し、基地局から所定レベル以上の信号が受信できる方向を決定し、該当方向にドナーアンテナ100の指向方向を固定させる。ここで、移動通信中継器の出力信号の強さが特定の強さ以上になる理由は、移動通信中継器200の周りに新たな基地局が新設されるためである。 When the strength of the output signal of the mobile communication repeater 200 is equal to or less than a specific strength, the mobile communication repeater 200 repeatedly executes the process of FIG. And the directivity direction of the donor antenna 100 is fixed in the corresponding direction. Here, the reason why the strength of the output signal of the mobile communication repeater 200 is equal to or less than a specific strength is that the isolation between the donor antenna and the service antenna built in the mobile communication repeater 200 (power transmission amount) This is because the ratio of When the strength of the output signal exceeds a specific strength, the mobile communication repeater 200 repeatedly executes the process of FIG. 8 to determine a direction in which a signal of a predetermined level or higher can be received from the base station, and the corresponding direction The direction of orientation of the donor antenna 100 is fixed. Here, the reason why the strength of the output signal of the mobile communication repeater exceeds a specific strength is that a new base station is newly installed around the mobile communication repeater 200.
 図9は、ドナーアンテナによる処理を説明するためのフロー図である。 FIG. 9 is a flowchart for explaining processing by the donor antenna.
 図9の各ステップの処理は、フェーズコントローラ120の記憶部に記憶されている制御プログラムに基づいて、フェーズコントローラ120のマイクロプロセッサーにより実行される。 9 is executed by the microprocessor of the phase controller 120 based on the control program stored in the storage unit of the phase controller 120.
 図9を参照すると、ドナーアンテナ100は、移動通信中継器200からアンテナ制御信号を受信する(ステップS710)。ドナーアンテナ100のフェーズコントローラ120は、アンテナ制御信号に基づいて、それぞれ予め設定された指向角度を有する複数の伝送線路のうちいずれか一つの伝送線路を選択する(ステップS720)。ドナーアンテナ100のフェーズコントローラ120は、複数の伝送線路のうち選択した伝送線路に該当する指向角度に従って指向方向を変更する(ステップS730)。ここで、指向方向はドナーアンテナ100のビーム指向角変更方法により変更されることができる。ドナーアンテナ100のフェーズコントローラ120は、移動通信中継器200の制御信号を受信したか否かによって(ステップS740)特定の方向にアンテナの指向方向を固定する(ステップS750)。 Referring to FIG. 9, the donor antenna 100 receives an antenna control signal from the mobile communication repeater 200 (step S710). The phase controller 120 of the donor antenna 100 selects any one transmission line from among a plurality of transmission lines each having a preset directivity angle based on the antenna control signal (step S720). The phase controller 120 of the donor antenna 100 changes the directivity direction according to the directivity angle corresponding to the selected transmission line among the plurality of transmission lines (step S730). Here, the directivity direction can be changed by a beam directivity angle changing method of the donor antenna 100. The phase controller 120 of the donor antenna 100 fixes the directivity direction of the antenna in a specific direction depending on whether or not the control signal of the mobile communication repeater 200 has been received (step S740) (step S750).
 図10は、図1のドナーアンテナ100の断面図を説明する図面である。 FIG. 10 is a drawing for explaining a cross-sectional view of the donor antenna 100 of FIG.
 図10を参照すると、ドナーアンテナ100は、ガラス窓800に取り付けられるアンテナ前面板840、ガラス窓800と特定の距離だけ離して配置される第1パッチ810(例えば、無給電(parasitic)パッチ)、第1パッチから所定の距離だけ離して配置される第2パッチ820(例えば、マイクロストリップ(micro strip)パッチ)、及びドナーアンテナの構成要素を保護するケース860を含む。すなわち、ドナーアンテナ100は、第1パッチ810及び第2パッチ820を利用するダブルパッチ構造を有する。 Referring to FIG. 10, the donor antenna 100 includes an antenna front plate 840 attached to the glass window 800, a first patch 810 disposed at a specific distance from the glass window 800 (for example, a parasitic patch), A second patch 820 (eg, a microstrip patch) disposed a predetermined distance away from the first patch and a case 860 that protects the components of the donor antenna are included. That is, the donor antenna 100 has a double patch structure using the first patch 810 and the second patch 820.
 第1パッチ810は、ガラス窓800から6-9mmの間隔で離して配置される。一般的に、ドナーアンテナ100の共振周波数は、高誘電率の物体、例えば、ガラス窓800に近づいていると変わる。これを防ぐために、ドナーアンテナ100の共振周波数を調節可能な範囲内で、ドナーアンテナ100とガラス窓800との間の間隔、例えば7mmだけ離して第1パッチ810を配置することができる。 The first patch 810 is disposed at a distance of 6-9 mm from the glass window 800. In general, the resonant frequency of the donor antenna 100 changes as it approaches a high dielectric constant object, such as the glass window 800. In order to prevent this, the first patch 810 can be disposed at a distance between the donor antenna 100 and the glass window 800, for example, by 7 mm within a range in which the resonance frequency of the donor antenna 100 can be adjusted.
 このように、第1パッチ810がガラス窓から特定の距離だけ離れることにより共振周波数の変化量は5%前後となる。このような共振周波数の変化量は、ドナーアンテナ100自体の動作周波数の帯域幅の変化量をカバーする帯域幅に設計することができる。また、ガラス窓800に取り付けられる場合に発生する共振周波数の変化量を予想してドナーアンテナ100自体の共振周波数を予め考慮してパッチアンテナを作製することができる。 Thus, when the first patch 810 is separated from the glass window by a specific distance, the amount of change in the resonance frequency becomes around 5%. Such a change amount of the resonance frequency can be designed to a bandwidth that covers a change amount of the bandwidth of the operating frequency of the donor antenna 100 itself. In addition, the patch antenna can be manufactured in advance by considering the resonance frequency of the donor antenna 100 itself in anticipation of the amount of change in the resonance frequency that occurs when the glass window 800 is attached.
 第2パッチ820の背面にはフェーズシフター130、フェーズコントローラ120、信号逆多重化部110のような構成要素を取り付けるフェーズ制御部850があり、ケースの背面862又は第2パッチアンテナの背面に金属製反射部を設置することができる。金属製反射部は、例えばアルミニウムのような導電性金属でケースの背面をコーティングすることにより具現する。この金属製反射部は反射板として機能し、乱反射等の影響を最小化して信号の品質を高めることを可能とする。 On the back of the second patch 820 is a phase control unit 850 for attaching components such as the phase shifter 130, the phase controller 120, and the signal demultiplexing unit 110, and the back of the case 862 or the back of the second patch antenna is made of metal. A reflection part can be installed. The metallic reflector is implemented by coating the back surface of the case with a conductive metal such as aluminum. The metal reflector functions as a reflector, and can minimize the influence of irregular reflection and improve the signal quality.
 図11は、図10で説明したドナーアンテナ及びケースの各構成要素についての分解斜視図である。 FIG. 11 is an exploded perspective view of each component of the donor antenna and the case described in FIG.
 ガラス窓側に配置される第1パッチアンテナ810は、アンテナボード811と、金属パッチ812を有する。第1パッチアンテナ810と所定の距離だけ離して配置される第2パッチアンテナ820は、アンテナボード821と、金属パッチ822を有する。アンテナ前面板840は、ガラス窓に直接取り付けられる部分である。ドナーアンテナ100を窓ガラスに取り付けるとき、アンテナ前面板840は、例えば両面テープ等でガラス窓に取り付けられる。フェーズ制御部850は、フェーズシフター130、フェーズコントローラ120、信号逆多重化部110等を有する。ケース860はドナーアンテナを保護し、アンテナ前面板840と結合され、ガラス窓にドナーアンテナを固定することを可能とする。 The first patch antenna 810 disposed on the glass window side includes an antenna board 811 and a metal patch 812. The second patch antenna 820 arranged at a predetermined distance from the first patch antenna 810 includes an antenna board 821 and a metal patch 822. The antenna front plate 840 is a portion that is directly attached to the glass window. When the donor antenna 100 is attached to the window glass, the antenna front plate 840 is attached to the glass window with, for example, a double-sided tape. The phase controller 850 includes a phase shifter 130, a phase controller 120, a signal demultiplexer 110, and the like. Case 860 protects the donor antenna and is coupled with antenna front plate 840 to allow the donor antenna to be secured to the glass window.
 図12は、ドナーアンテナのケース860を室内側から見た平面図である。 FIG. 12 is a plan view of the case 860 of the donor antenna as viewed from the indoor side.
 ケース860には、ケースの端部からはみ出すように、第1パッチアンテナの周囲に板状の金属切片861が取り付けられている。板状の金属切片861は、ケース860の正面部に設置され、アンテナ前面板840の端部841と接することもできる。この板状の金属切片は追加的な反射板として機能し、乱反射等の影響を最小化して信号の品質を高めることを可能とする。 In the case 860, a plate-shaped metal piece 861 is attached around the first patch antenna so as to protrude from the end of the case. The plate-shaped metal piece 861 is installed in the front part of the case 860 and can contact the end 841 of the antenna front plate 840. This plate-shaped metal piece functions as an additional reflector, and it is possible to improve the signal quality by minimizing the influence of irregular reflection and the like.
 100  ドナーアンテナ
 110  信号逆多重化部
 120  フェーズコントローラ
 130  フェーズシフター
 140  アンテナモジュール
 200  移動通信中継器
 210  サービスアンテナ
 220  受信信号測定部
 230  受信信号分析部
 240  アンテナ制御信号生成部
 250  送受信部
 251  信号多重化部
 300  給電線
 310  直流遮断キャパシタ
 400  基地局
 500  端末
 810  第1パッチアンテナ
 820  第2パッチアンテナ
 840  アンテナ前面板
 850  フェーズ制御部
 860  ケース
DESCRIPTION OF SYMBOLS 100 Donor antenna 110 Signal demultiplexing part 120 Phase controller 130 Phase shifter 140 Antenna module 200 Mobile communication repeater 210 Service antenna 220 Reception signal measurement part 230 Reception signal analysis part 240 Antenna control signal generation part 250 Transmission / reception part 251 Signal multiplexing part 300 Feed Line 310 DC Blocking Capacitor 400 Base Station 500 Terminal 810 First Patch Antenna 820 Second Patch Antenna 840 Antenna Front Plate 850 Phase Control Unit 860 Case

Claims (15)

  1.  基地局からの信号を受信するためのアンテナ制御システムであって、
     窓ガラスの内側に固定して配置され且つアレーアンテナで構成されるアンテナモジュール、複数の伝送線路を含むフェーズシフター、及び、前記アンテナモジュールの指向方向を変更するために前記フェーズシフターを制御するフェーズコントローラ、を含むドナーアンテナと、
     前記アンテナモジュールが受信した受信信号を測定する測定部、前記測定部の測定結果に基づいて前記アンテナモジュールの各々を指向方向に対する信号品質パラメータを分析する分析部、及び、前記分析部の分析結果に基づいて前記アンテナモジュールの指向方向を制御するためのアンテナ制御信号を生成する生成部、を含む中継器と、
     を有することを特徴とするアンテナ制御システム。
    An antenna control system for receiving a signal from a base station,
    An antenna module fixedly arranged inside a window glass and configured by an array antenna, a phase shifter including a plurality of transmission lines, and a phase controller for controlling the phase shifter to change the direction of the antenna module A donor antenna including
    A measurement unit that measures a received signal received by the antenna module, an analysis unit that analyzes a signal quality parameter for each of the antenna modules based on a measurement result of the measurement unit, and an analysis result of the analysis unit A generating unit that generates an antenna control signal for controlling a directivity direction of the antenna module based on the relay unit;
    An antenna control system comprising:
  2.  前記中継器は、前記アンテナモジュールが受信した受信信号に基づく無線信号を発信するサービスアンテナを更に含む、請求項1に記載のアンテナ制御システム。 The antenna control system according to claim 1, wherein the repeater further includes a service antenna that transmits a radio signal based on a reception signal received by the antenna module.
  3.  前記アンテナ制御信号を前記フェーズコントローラへ伝送する給電線を更に有する、請求項1又は2に記載のアンテナ制御システム。 The antenna control system according to claim 1 or 2, further comprising a feed line for transmitting the antenna control signal to the phase controller.
  4.  前記アンテナモジュールは複数の個別アンテナを含み、
     前記アンテナモジュールの各々の個別アンテナは、ガラス窓側から所定の距離を離隔して配置される第1パッチアンテナ及び、前記第1パッチアンテナから所定の距離を離隔して配置される第2パッチアンテナで構成される、請求項1~3の何れか一項に記載のアンテナ制御システム。
    The antenna module includes a plurality of individual antennas,
    The individual antennas of the antenna module are a first patch antenna disposed at a predetermined distance from the glass window side and a second patch antenna disposed at a predetermined distance from the first patch antenna. The antenna control system according to any one of claims 1 to 3, wherein the antenna control system is configured.
  5.  前記ドナーアンテナは、前記第2パッチアンテナの背面に配置された金属製反射部を更に含む、請求項4に記載のアンテナ制御システム。 The antenna control system according to claim 4, wherein the donor antenna further includes a metal reflector disposed on a back surface of the second patch antenna.
  6.  前記ドナーアンテナは、前記第1パッチアンテナの周囲に配置された板状の金属切片を更に含む、請求項4又は5に記載のアンテナ制御システム。 The antenna control system according to claim 4 or 5, wherein the donor antenna further includes a plate-shaped metal piece disposed around the first patch antenna.
  7.  前記中継器は、前記アンテナ制御信号を直流電力信号と多重化して前記ドナーアンテナへ提供する信号多重化部を更に含む、請求項1~6の何れか一項に記載のアンテナ制御システム。 The antenna control system according to any one of claims 1 to 6, wherein the repeater further includes a signal multiplexing unit that multiplexes the antenna control signal with a DC power signal and provides the signal to the donor antenna.
  8.  前記ドナーアンテナは、前記信号多重化部から受信した多重化信号を、前記アンテナ制御信号と前記直流電力信号に逆多重化する信号逆多重化部を更に含む、請求項7に記載のアンテナ制御システム。 The antenna control system according to claim 7, wherein the donor antenna further includes a signal demultiplexing unit that demultiplexes the multiplexed signal received from the signal multiplexing unit into the antenna control signal and the DC power signal. .
  9.  前記フェーズコントローラは、前記アンテナ制御信号に基づいて前記複数の伝送線路のうちいずれか一つを選択し、対応する指向方向へ前記アンテナモジュールの指向方向を変更する、請求項1~8の何れか一項に記載のアンテナ制御システム。 9. The phase controller according to claim 1, wherein the phase controller selects any one of the plurality of transmission lines based on the antenna control signal, and changes a directivity direction of the antenna module to a corresponding directivity direction. The antenna control system according to one item.
  10.  前記複数の伝送線路それぞれは、相互に異なった位相遅延値を有する、請求項1~9の何れか一項に記載のアンテナ制御システム。 10. The antenna control system according to claim 1, wherein each of the plurality of transmission lines has a different phase delay value.
  11.  前記信号品質パラメータは、前記中継器の出力信号の強さ又は前記基地局の入力信号の強さである、請求項1~10の何れか一項に記載のアンテナ制御システム。 The antenna control system according to any one of claims 1 to 10, wherein the signal quality parameter is a strength of an output signal of the repeater or a strength of an input signal of the base station.
  12.  前記アンテナモジュールの現在の指向方向に関する信号品質パラメータが一定の閾値より低い場合、前記生成部は前記アンテナモジュールの指向方向を自動的に変更するように制御し、
     前記アンテナモジュールの現在の指向方向に関する信号品質パラメータが一定の閾値以上の場合、前記生成部は現在の指向方向に前記アンテナモジュールの指向方向を固定するように制御する、請求項1~11の何れか一項に記載のアンテナ制御システム。
    When the signal quality parameter related to the current directivity direction of the antenna module is lower than a certain threshold, the generator controls to automatically change the directivity direction of the antenna module;
    12. The generation unit according to claim 1, wherein when the signal quality parameter relating to the current directivity direction of the antenna module is equal to or greater than a certain threshold value, the generation unit controls to fix the directivity direction of the antenna module to the current directivity direction. The antenna control system according to claim 1.
  13.  前記分析部は、現在の指向方向に関する信号品質パラメータと現在の指向方向に近接している方向に関する信号品質パラメータとを比較し、
     現在の指向方向に関する信号品質パラメータが、現在の指向方向に近接している方向に関する信号品質パラメータ以上である場合、前記生成部は、現在の指向方向に前記アンテナモジュールの指向方向を固定するように制御し、
     現在の指向方向に関する信号品質パラメータが、現在の指向方向に近接している方向に関する信号品質パラメータより低い場合、前記生成部は、前記アンテナモジュールの指向方向を自動的に変更するように制御する、請求項1~12の何れか一項に記載のアンテナ制御システム。
    The analysis unit compares the signal quality parameter related to the current pointing direction with the signal quality parameter related to the direction close to the current pointing direction,
    When the signal quality parameter related to the current pointing direction is equal to or higher than the signal quality parameter related to the direction close to the current pointing direction, the generating unit fixes the pointing direction of the antenna module to the current pointing direction. Control
    When the signal quality parameter related to the current pointing direction is lower than the signal quality parameter related to the direction close to the current pointing direction, the generation unit controls to automatically change the pointing direction of the antenna module. The antenna control system according to any one of claims 1 to 12.
  14.  前記生成部は、予め設定された時間帯に前記基地局から所定レベル以上の信号が受信できる方向を検索し、
     前記予め設定された時間帯は、前記基地局の無線資源の使用量が所定の基準より少ない時間帯である、請求項1~13の何れか一項に記載のアンテナ制御システム。
    The generation unit searches for a direction in which a signal of a predetermined level or higher can be received from the base station in a preset time zone,
    The antenna control system according to any one of claims 1 to 13, wherein the preset time zone is a time zone in which a radio resource usage amount of the base station is less than a predetermined reference.
  15.  基地局からの信号を受信するために窓ガラスの内側に固定して配置され且つアレーアンテナで構成されるアンテナモジュール、複数の伝送線路を含むフェーズシフター、及び、前記アンテナモジュールの指向方向を変更するために前記フェーズシフターを制御するフェーズコントローラを含むドナーアンテナと、前記アンテナモジュールの指向方向を制御するためのアンテナ制御信号を生成する生成部を含む中継器と、を有するアンテナ制御システムにおけるアンテナ制御方法であって、
     フェーズシフターの複数の伝送線路のうちいずれか一つを選択するためのアンテナ制御信号を生成し、
     前記アンテナ制御信号を前記フェーズコントローラに伝送して、前記アンテナモジュールの指向方向を自動的に変更しながら、それぞれの指向方向に対する信号品質パラメータを作成し、
     前記それぞれの指向方向のうち第1方向に関する第1信号品質パラメータと第2方向に関する第2信号品質パラメータとを比較し、
     前記第1信号品質パラメータが第2信号品質パラメータ以上である場合、前記アンテナモジュールの指向方向を前記第1の方向に固定するように制御する、
     ことを有するアンテナ制御方法。
    An antenna module which is fixedly arranged inside a window glass and configured by an array antenna to receive a signal from a base station, a phase shifter including a plurality of transmission lines, and a directivity direction of the antenna module are changed. An antenna control method in an antenna control system, comprising: a donor antenna including a phase controller for controlling the phase shifter and a repeater including a generator for generating an antenna control signal for controlling a directivity direction of the antenna module Because
    Generate an antenna control signal for selecting one of the transmission lines of the phase shifter,
    Transmitting the antenna control signal to the phase controller, while automatically changing the directivity direction of the antenna module, creating a signal quality parameter for each directivity direction,
    Comparing the first signal quality parameter for the first direction and the second signal quality parameter for the second direction of the respective directivity directions;
    When the first signal quality parameter is equal to or higher than the second signal quality parameter, the antenna module is controlled so as to fix the directivity direction of the antenna module in the first direction.
    An antenna control method.
PCT/JP2014/053356 2013-02-14 2014-02-13 Antenna control method and antenna control system WO2014126161A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2015500289A JP6490573B2 (en) 2013-02-14 2014-02-13 Antenna control method and antenna control system
US14/767,470 US9935368B2 (en) 2013-02-14 2014-02-13 Antenna control method and antenna control system
KR1020157025041A KR101718003B1 (en) 2013-02-14 2014-02-13 Antenna Control Method and Antenna Control System

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR20130015797 2013-02-14
KR10-2013-0015797 2013-02-14
KR1020130148528A KR101504041B1 (en) 2013-02-14 2013-12-02 Antenna beam directivity control method and system performing the same
KR10-2013-0148528 2013-12-02

Publications (1)

Publication Number Publication Date
WO2014126161A1 true WO2014126161A1 (en) 2014-08-21

Family

ID=51354160

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/053356 WO2014126161A1 (en) 2013-02-14 2014-02-13 Antenna control method and antenna control system

Country Status (1)

Country Link
WO (1) WO2014126161A1 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014165600A (en) * 2013-02-22 2014-09-08 Softbank Mobile Corp Donor antenna and repeater
WO2018073983A1 (en) * 2016-10-20 2018-04-26 ソフトバンク株式会社 Relay device and relay method therefor
WO2018073982A1 (en) * 2016-10-20 2018-04-26 ソフトバンク株式会社 Relay device and relay method therefor
CN109004969A (en) * 2017-06-07 2018-12-14 中国移动通信集团公司 A kind of reception information source selection processing unit
GB2568798A (en) * 2017-10-12 2019-05-29 Airspan Networks Inc An apparatus and method for providing network configurability in a wireless network
US10616824B2 (en) 2017-11-03 2020-04-07 Airspan Networks Inc. Apparatus and method for providing network configurability in a wireless network
US11102785B2 (en) 2017-10-12 2021-08-24 Airspan Ip Holdco Llc Apparatus and method selecting a base station in a network
US11528074B2 (en) * 2018-12-18 2022-12-13 Amotech Co., Ltd. Repeater system for LPWAN and method for controlling same

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002271832A (en) * 2001-03-14 2002-09-20 Canon Inc Wireless mobile station
JP2007524273A (en) * 2003-06-26 2007-08-23 スカイパイロット ネットワークス, インコーポレイテッド Planar antenna for wireless mesh networks
JP2007228414A (en) * 2006-02-24 2007-09-06 Hitachi Kokusai Electric Inc Antenna device
JP2009246809A (en) * 2008-03-31 2009-10-22 Kddi Corp Array antenna apparatus and directional adjustment method
JP2010004457A (en) * 2008-06-23 2010-01-07 Sumitomo Electric Ind Ltd Wireless relay apparatus with integrated antennas
JP2011211281A (en) * 2010-03-29 2011-10-20 Kyocera Corp Repeater and method of manufacturing the same
JP2012015826A (en) * 2010-07-01 2012-01-19 Panasonic Corp Diversity receiving apparatus

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002271832A (en) * 2001-03-14 2002-09-20 Canon Inc Wireless mobile station
JP2007524273A (en) * 2003-06-26 2007-08-23 スカイパイロット ネットワークス, インコーポレイテッド Planar antenna for wireless mesh networks
JP2007228414A (en) * 2006-02-24 2007-09-06 Hitachi Kokusai Electric Inc Antenna device
JP2009246809A (en) * 2008-03-31 2009-10-22 Kddi Corp Array antenna apparatus and directional adjustment method
JP2010004457A (en) * 2008-06-23 2010-01-07 Sumitomo Electric Ind Ltd Wireless relay apparatus with integrated antennas
JP2011211281A (en) * 2010-03-29 2011-10-20 Kyocera Corp Repeater and method of manufacturing the same
JP2012015826A (en) * 2010-07-01 2012-01-19 Panasonic Corp Diversity receiving apparatus

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014165600A (en) * 2013-02-22 2014-09-08 Softbank Mobile Corp Donor antenna and repeater
WO2018073983A1 (en) * 2016-10-20 2018-04-26 ソフトバンク株式会社 Relay device and relay method therefor
WO2018073982A1 (en) * 2016-10-20 2018-04-26 ソフトバンク株式会社 Relay device and relay method therefor
JP2018067852A (en) * 2016-10-20 2018-04-26 ソフトバンク株式会社 Relay device and relay method thereof
CN109004969A (en) * 2017-06-07 2018-12-14 中国移动通信集团公司 A kind of reception information source selection processing unit
GB2568798A (en) * 2017-10-12 2019-05-29 Airspan Networks Inc An apparatus and method for providing network configurability in a wireless network
US10708854B2 (en) 2017-10-12 2020-07-07 Airspan Networks Inc. Apparatus and method for providing network configurability in a wireless network
GB2568798B (en) * 2017-10-12 2020-07-29 Airspan Networks Inc An apparatus and method for providing network configurability in a wireless network
US11102785B2 (en) 2017-10-12 2021-08-24 Airspan Ip Holdco Llc Apparatus and method selecting a base station in a network
US10616824B2 (en) 2017-11-03 2020-04-07 Airspan Networks Inc. Apparatus and method for providing network configurability in a wireless network
US11528074B2 (en) * 2018-12-18 2022-12-13 Amotech Co., Ltd. Repeater system for LPWAN and method for controlling same

Similar Documents

Publication Publication Date Title
JP6490573B2 (en) Antenna control method and antenna control system
WO2014126161A1 (en) Antenna control method and antenna control system
US11750280B2 (en) Millimeter wave repeater systems and methods
US9391688B2 (en) System and method of relay communication with electronic beam adjustment
EP3029849B1 (en) Hierarchical beamforming method and base station and user equipment using the same
US8823593B2 (en) Antenna characteristic measuring system and antenna characteristic measuring method
CN103441338B (en) The phased active integrated antenna of a kind of remote controlled two dimensional surface
US20220247481A1 (en) Radio frequency signal boosters serving as outdoor infrastructure in high frequency cellular networks
WO2014106539A1 (en) Method of adaptive antenna beam forming for wireless base station in-channel self-backhauling
US11349556B2 (en) Radio frequency signal boosters for providing indoor coverage of high frequency cellular networks
TWI574456B (en) Hierarchical beamforming method and base station and user equipment using the same
US11595110B1 (en) Radio frequency signal boosters for providing indoor coverage of high frequency cellular networks
JP2017152830A (en) Wireless communication system, transmitting device, receiving device, and communication method
US20210135502A1 (en) Wireless energy emission device and electronic equipment
KR20160043800A (en) Headend apparatus of distributed antenna system and signal processing method thereof
KR102417238B1 (en) Distributed antenna system and signal processing method thereof
WO2016072159A1 (en) Active antenna system
CN111294121B (en) AiP structure-based beam adjustment method and device, and computer-readable storage medium
Schellmann Capacity Boosting by IRS Deployment for industrial IoT Communication in cm-and mm-Wave Bands
WO2016076049A1 (en) Antenna system
KR102238213B1 (en) Method and Apparatus for Extending Inbuilding Relay Coverage
WO2022249891A1 (en) Distributed antenna wireless system and wireless communication assistance method
JP2019083621A (en) Measurement method, measurement program, and measurement device
US20200344846A1 (en) Radio system for radio communication
Pareek A STUDY OF A MULTI BAND ANTENNA’S PERFORMANCE FOR DIFFERENT FREQUENCIES AND RADIO ACCESS TECHNOLOGIES

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14751633

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015500289

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14767470

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20157025041

Country of ref document: KR

Kind code of ref document: A

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 11.11.15)

122 Ep: pct application non-entry in european phase

Ref document number: 14751633

Country of ref document: EP

Kind code of ref document: A1