WO2014126048A1 - Pneumatic tire - Google Patents

Pneumatic tire Download PDF

Info

Publication number
WO2014126048A1
WO2014126048A1 PCT/JP2014/053054 JP2014053054W WO2014126048A1 WO 2014126048 A1 WO2014126048 A1 WO 2014126048A1 JP 2014053054 W JP2014053054 W JP 2014053054W WO 2014126048 A1 WO2014126048 A1 WO 2014126048A1
Authority
WO
WIPO (PCT)
Prior art keywords
region
tire
center
shoulder
shoulder region
Prior art date
Application number
PCT/JP2014/053054
Other languages
French (fr)
Japanese (ja)
Inventor
広樹 遠藤
Original Assignee
横浜ゴム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 横浜ゴム株式会社 filed Critical 横浜ゴム株式会社
Priority to CN201480003567.2A priority Critical patent/CN105026184A/en
Priority to US14/767,503 priority patent/US20150375572A1/en
Priority to RU2015138975A priority patent/RU2015138975A/en
Priority to EP14751771.8A priority patent/EP2957437A4/en
Publication of WO2014126048A1 publication Critical patent/WO2014126048A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/14Anti-skid inserts, e.g. vulcanised into the tread band
    • B60C11/16Anti-skid inserts, e.g. vulcanised into the tread band of plug form, e.g. made from metal, textile
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/03Tread patterns
    • B60C11/0302Tread patterns directional pattern, i.e. with main rolling direction
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/03Tread patterns
    • B60C11/04Tread patterns in which the raised area of the pattern consists only of continuous circumferential ribs, e.g. zig-zag
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/03Tread patterns
    • B60C11/12Tread patterns characterised by the use of narrow slits or incisions, e.g. sipes
    • B60C11/1236Tread patterns characterised by the use of narrow slits or incisions, e.g. sipes with special arrangements in the tread pattern
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/03Tread patterns
    • B60C11/12Tread patterns characterised by the use of narrow slits or incisions, e.g. sipes
    • B60C11/1259Depth of the sipe
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/14Anti-skid inserts, e.g. vulcanised into the tread band
    • B60C11/16Anti-skid inserts, e.g. vulcanised into the tread band of plug form, e.g. made from metal, textile
    • B60C11/1625Arrangements thereof in the tread patterns, e.g. irregular
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C5/00Inflatable pneumatic tyres or inner tubes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/03Tread patterns
    • B60C2011/0337Tread patterns characterised by particular design features of the pattern
    • B60C2011/0339Grooves
    • B60C2011/0374Slant grooves, i.e. having an angle of about 5 to 35 degrees to the equatorial plane
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/03Tread patterns
    • B60C11/12Tread patterns characterised by the use of narrow slits or incisions, e.g. sipes
    • B60C11/1204Tread patterns characterised by the use of narrow slits or incisions, e.g. sipes with special shape of the sipe
    • B60C2011/1213Tread patterns characterised by the use of narrow slits or incisions, e.g. sipes with special shape of the sipe sinusoidal or zigzag at the tread surface

Definitions

  • the present invention relates to a pneumatic tire in which stud pins are embedded in a tread surface.
  • Patent Document 1 discloses that on-ice braking performance and the like can be improved by controlling the number of stud pin driving holes and hence the number of stud pin driving.
  • the present invention has been made in view of the above circumstances, and an object thereof is to provide a pneumatic tire in which braking performance on ice and anti-pinning performance are improved in a well-balanced manner.
  • a land portion is defined by a plurality of inclined grooves inclined with respect to the tire circumferential direction, and a sipe is provided in at least one of the land portions.
  • the stud pin is embedded in at least one of the land portions.
  • an area of 50% of the tire ground contact width centered on the tire equator plane is set as a center area, and each area up to the ground contact end in the tire width direction on both sides of the center area is set as a shoulder area.
  • the number of stud pins driven in the shoulder region is 1.5 to 2.5 times the number of stud pins driven in the center region.
  • the average protrusion amount of the stud pin in the shoulder region is 1.2 to 2.0 times the average protrusion amount of the stud pin in the center region.
  • the number of stud pins driven in the shoulder region with respect to the center region and the average protrusion amount of the stud pins are within a predetermined range.
  • FIG. 1 is a developed plan view showing an example of a tread portion of a pneumatic tire according to an embodiment of the present invention.
  • FIG. 2 is a cross-sectional view taken along the line AA ′ of FIG. 1, showing an example of a stud pin embedded state in the pneumatic tire according to the embodiment of the present invention.
  • the tire radial direction means a direction orthogonal to the rotational axis of the pneumatic tire
  • the tire radial inner side is the side toward the rotational axis in the tire radial direction
  • the tire radial outer side is in the tire radial direction.
  • the tire circumferential direction refers to a circumferential direction with the rotation axis as a central axis.
  • the tire width direction refers to a direction parallel to the rotation axis
  • the inner side in the tire width direction is the side toward the tire equatorial plane CL in the tire width direction
  • the outer side in the tire width direction is the tire equatorial plane CL in the tire width direction.
  • the tire equatorial plane CL is a plane that is orthogonal to the rotational axis of the pneumatic tire and passes through the center of the tire width of the pneumatic tire.
  • FIG. 1 is a plan development view showing an example of a tread portion of a pneumatic tire according to an embodiment of the present invention.
  • the tread portion shown in the figure is made of a rubber material (tread rubber), and is exposed at the outermost side in the tire radial direction of the pneumatic tire, and the surface thereof is the contour of the pneumatic tire.
  • the surface of the tread portion is formed as a tread surface 10 that is a surface that comes into contact with the road surface when a vehicle (not shown) equipped with a pneumatic tire travels.
  • the tread surface 10 is provided with a plurality of inclined grooves 12 that are inclined with respect to both the tire circumferential direction and the tire width direction.
  • the inclined groove 12 various types can be adopted, and for example, as shown in FIG. 1, the width changes in the extending direction of the groove, and the inclined groove 12 branches in the middle of the extending.
  • the tread surface 10 may optionally include a plurality of circumferential grooves extending in the tire circumferential direction.
  • Various types of circumferential grooves can also be employed, and examples thereof include those in which the width does not change in the extending direction of the grooves.
  • the tread surface 10 can optionally include a plurality of widthwise grooves extending in the tire width direction.
  • Various types can be adopted for the width direction groove, for example, one whose width changes in the extending direction.
  • the plurality of inclined grooves 12 as a whole can be formed in a shape that continues in the tire circumferential direction via a circumferential groove not shown in FIG. 1, and of course, continues in the tire circumferential direction without passing through the circumferential groove. It can also be a zigzag shape. In this way, when the plurality of inclined grooves 12 form a zigzag shape as a whole, and particularly when the angle formed by the tire circumferential direction of each inclined groove 12 is small, the zigzag inclined groove group is a tire. It can be regarded as a circumferential groove continuous in the circumferential direction. Therefore, in the present embodiment, it is not assumed that the circumferential grooves continuous in the tire circumferential direction are positively excluded.
  • the tread surface 10 is provided with sipes 22 in at least one of the land portions, as shown in FIG.
  • the sipe 22 may extend linearly in the tire width direction, or may have a zigzag shape, a sine wave shape, a triangular wave shape, a rectangular wave shape or the like that has an amplitude in the tire circumferential direction and extends in the tire width direction. It may be.
  • the sipe 22 may extend intermittently in the tire width direction within one land portion 20.
  • the tread surface 10 of the pneumatic tire according to the present embodiment has the inclined grooves 12 and can optionally form the circumferential grooves and the width grooves.
  • the predetermined tread pattern is formed in the tread surface 10 by forming the sipe 22 in at least one of the land parts 20 defined by these grooves.
  • the stud pin 24 is embedded in at least one of the land portions 20, for example, the location shown in FIG. 1 on the tread surface 10 having the tread pattern.
  • the stud pins 24 are embedded at a constant pitch in the tire circumferential direction at a predetermined position in the tire width direction.
  • an area of 50% of the tire contact width centered on the tire equatorial plane CL is defined as the center area TC, and the center area TC Regions on both outer sides in the tire width direction up to the contact point E are defined as shoulder regions TS.
  • the number of stud pins 24 driven in the shoulder region TS (the number of shoulders) is 1.5, which is the number of stud pins 24 driven in the center region TC (the number of centers). Double to 2.5 times.
  • the stud pin 24 is more easily removed in the center region TC than in the shoulder region TS. For this reason, as described above, by setting the number of shoulders to be 1.5 times the number of centers or more, the number of stud pins is reduced in the center region TC, which tends to affect the anti-pinning performance, thereby suppressing pin removal. In addition, the anti-pinning performance can be efficiently improved as a whole tire.
  • the average protrusion amount (shoulder average protrusion amount) of the stud pin 24 in the shoulder region TS is equal to the average protrusion amount (center average protrusion amount) of the stud pin 24 in the center region TC. From 1.2 times to 2.0 times.
  • the protruding amount of the stud pin 24 is the maximum dimension in the tire radial direction of the stud pin measured from the tread surface in the state where the hole in which the stud pin 24 is embedded is not formed at the embedded position of the stud pin.
  • the average protrusion amount refers to an average value of the protrusion amount of the stud pin 24 in each region (center region TC and shoulder region TS).
  • FIG. 2 is a cross-sectional view taken along the line AA ′ of FIG. 1, showing an example of a buried stud pin in the pneumatic tire according to the embodiment of the present invention.
  • the ratio of the average protrusion amount of the stud pin 24 formed in the shoulder region TS and the average protrusion amount of the stud pin 24 formed in the center region TC is 1.2 to 2.0.
  • the shoulder region is more than the center region TS.
  • the effect of improving braking performance on ice due to the scratching effect on ice appears remarkably.
  • the greater the average protrusion amount the deeper the stud pin 24 digs into the ice, so the scratching effect is greater.
  • the shoulder average protrusion amount 1.2 times or more of the center average protrusion amount, a sufficient scratching effect on ice is ensured particularly in the shoulder region TS that is likely to affect the braking performance on ice.
  • the braking performance on ice can be efficiently improved as a whole tire.
  • the stud pin 24 is more easily removed in the center region TC than in the shoulder region TS. For this reason, as described above, by setting the shoulder average protrusion amount to 1.2 times or more of the center average protrusion amount, the average protrusion amount of the stud pin is reduced particularly in the center region TC that easily affects the anti-pinning resistance performance. Thus, pin omission can be suppressed, and the anti-pin omission performance can be efficiently improved as a whole tire.
  • the average protrusion amount of the stud pin 24 in the shoulder region TS is excessively increased as compared with the center region TC, the stud pin 24 is easily pulled out in the shoulder region TS, and the anti-pinning resistance performance is improved.
  • the braking performance on ice is not improved due to the reduction of the scratching effect on ice in the shoulder region TS. For this reason, as described above, by setting the shoulder average protrusion amount to be 2.0 times or less of the center average protrusion amount, the anti-pinning resistance performance and the braking performance on ice can be efficiently improved as a whole tire. .
  • the number of stud pins driven and the average protrusion amount are defined in relation to the center region and the shoulder region, respectively.
  • the pneumatic tire of this embodiment shown above has the meridian cross-sectional shape similar to the conventional pneumatic tire.
  • the meridional cross-sectional shape of the pneumatic tire refers to a cross-sectional shape of the pneumatic tire that appears on a plane perpendicular to the tire equatorial plane CL.
  • the pneumatic tire of the present embodiment has a bead portion, a sidewall portion, and a tread portion from the inner side in the tire radial direction toward the outer side in a tire meridional cross-sectional view.
  • the pneumatic tire extends from the tread portion to the bead portions on both sides and wound around the pair of bead cores, and on the outer side in the tire radial direction of the carcass layer.
  • a belt layer and a belt reinforcing layer are sequentially formed.
  • the pneumatic tire of the present embodiment includes normal manufacturing processes, that is, a tire material mixing process, a tire material processing process, a green tire molding process, a vulcanization process, and an inspection process after vulcanization. It is obtained through the process.
  • vulcanization is performed using a mold capable of forming a predetermined tread pattern as shown in FIG. A stud pin is embedded at a predetermined position.
  • the arrangement density of the sipe 22 in the shoulder region TS is 0.4 to 0.8 times the arrangement density (center arrangement density) of the sipe 22 in the center region TC. It is preferred (additional form 1).
  • the arrangement density of the sipes 22 refers to the total length of the sipes 22 per unit area of the land portion 20 in each region (center region TC and shoulder region TS). Note that the sipe length when the sipe is not linear, for example, zigzag, refers to the length measured when the zigzag sipe is stretched to be linear.
  • the sipe arrangement density is surely reduced in the shoulder area TS as compared with the center area TC.
  • the block rigidity can be increased in the shoulder region TS in which more stud pins 24 are disposed with respect to the center region TC, and in particular, the anti-pinning resistance performance in the shoulder region TS can be improved.
  • the sipe arrangement density in the shoulder region TS As a result of excessively reducing the sipe arrangement density in the shoulder region TS as compared with the center region TC, if the sipe arrangement density required in the shoulder region TS is lower, the edge effect due to the sipe in the shoulder region TS is sufficient. It can no longer be obtained. Therefore, by setting the shoulder arrangement density to 0.4 times or more of the center arrangement density, it is possible to secure the edge effect due to sipes and improve the braking performance on ice, particularly in the shoulder region TS.
  • the average depth (shoulder average depth) of the inclined grooves 12 in the shoulder region TS is equal to the average depth (center average) of the inclined grooves 12 in the center region TC. It is preferably 1 mm to 3 mm smaller than (depth) (additional form 2).
  • the depth of the inclined groove 12 refers to the maximum dimension of the inclined groove 12 measured in the tire radial direction from the tread surface 10 when there is no inclined groove 12.
  • the average depth refers to the average value of the depth of the inclined groove 12 in each region (center region TC and shoulder region TS).
  • the block region is increased in the shoulder region TS in which more stud pins 24 are disposed with respect to the center region TC.
  • the removal performance can be improved.
  • the shoulder region TS In the basic form and the form obtained by adding at least one of the additional forms 1 and 2 to the basic form, in the tread development surface in the unloaded state in which the internal pressure of ⁇ 5% to + 5% of the normal internal pressure is applied, the shoulder region TS
  • the groove area (shoulder groove area) is preferably 0.4 to 0.8 times the groove area (center groove area) in the center region TC (additional form 3).
  • the normal internal pressure means “maximum air pressure” defined by JATMA, the maximum value described in “TIRE LOAD LIMITS AT VARIOUS COLD INFLATION PRESSURES” defined by TRA, or “INFLATION PRESSURES” defined by ETRTO.
  • the tread development surface refers to a plane regarding the tread portion as shown in FIG.
  • the groove area refers to the area of the groove partition region expressed on the tread development surface.
  • the shoulder groove area is set to 0.8 times or less of the center groove area, thereby blocking the shoulder region TS in which more stud pins 24 are disposed with respect to the center region TC.
  • the rigidity can be increased, and in particular, the anti-pinning performance in the shoulder region TS can be improved.
  • the pneumatic tires of Examples 1 to 5 belonging to the technical scope of the present invention (the number ratio of driving Sh / Ce and the average protrusion amount ratio Sh / Ce are within a predetermined range) It can be seen that the braking performance on ice and the anti-pinning performance are improved in a well-balanced manner with respect to the conventional pneumatic tire that does not belong to the technical scope of the present invention.
  • the present invention includes the following aspects.
  • a land portion is defined by a plurality of inclined grooves inclined with respect to the tire circumferential direction, a sipe is provided in at least one of the land portions, and a stud pin is embedded in at least one of the land portions.
  • the region of 50% of the tire contact width centered on the tire equatorial plane is defined as the center region, and each region up to the contact end is the region outside the center region in the tire width direction.
  • the number of stud pins driven in the shoulder region is 1.5 to 2.5 times the number of stud pins driven in the center region, and the studs in the shoulder region
  • the average protruding amount of the pin is 1.2 to 2.0 times the average protruding amount of the stud pin in the center region.
  • the pneumatic tire is.
  • the groove area in the shoulder region is 0.4 to 0.8 times the groove area in the center region on the tread development surface in an unloaded state where an internal pressure of ⁇ 5% to + 5% of the normal internal pressure is applied.
  • the pneumatic tire according to any one of (1) to (3) above.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Tires In General (AREA)

Abstract

Provided is a pneumatic tire in which on-ice braking performance and pin dropout prevention performance are improved in a balanced manner. The number of driven-in stud pins (24) in the shoulder region (TS) is 1.5 to 2.5 times the number of driven-in stud pins (24) in the center region (TC), and the protrusion amount of the stud pins (24) in the shoulder region (TS) is 1.2 to 2.0 times the protrusion amount of the stud pins (24) in the center region (TC).

Description

空気入りタイヤPneumatic tire
 本発明は、トレッド表面にスタッドピンが埋設された空気入りタイヤに関する。 The present invention relates to a pneumatic tire in which stud pins are embedded in a tread surface.
 従来、トレッド表面にスタッドピンが埋設された空気入りタイヤが知られている(例えば、特許文献1参照)。特許文献1には、スタッドピンの打ち込み用の穴の数、ひいてはスタッドピンの打ち込み本数を制御することで、氷上制動性能等が改善されることが開示されている。 Conventionally, a pneumatic tire in which stud pins are embedded in a tread surface is known (for example, see Patent Document 1). Patent Document 1 discloses that on-ice braking performance and the like can be improved by controlling the number of stud pin driving holes and hence the number of stud pin driving.
特開2012-183954号公報JP 2012-183554 A
 しかしながら、スタッドピンの打ち込み本数の制御だけで、氷上制動性能と耐ピン抜け性能とがバランス良く改善されるか否かについては不明である。 However, it is unclear whether the braking performance on ice and the anti-pinning performance can be improved in a well-balanced manner only by controlling the number of stud pins driven in.
 本発明は、上記事情に鑑みてなされたものであって、氷上制動性能と耐ピン抜け性能とをバランス良く改善した空気入りタイヤを提供することを目的とする。 The present invention has been made in view of the above circumstances, and an object thereof is to provide a pneumatic tire in which braking performance on ice and anti-pinning performance are improved in a well-balanced manner.
 上記課題を解決するために、本発明に係る空気入りタイヤにおいては、タイヤ周方向に対して傾斜する複数本の傾斜溝によって陸部が区画形成され、上記陸部の少なくともいずれかにサイプが設けられ、上記陸部の少なくともいずれかにスタッドピンが埋設されている。ここで、タイヤ赤道面を中心としたタイヤ接地幅の50%の領域をセンター領域とするとともに、上記センター領域のタイヤ幅方向両外側の領域であって接地端までの各領域をショルダー領域とする。このような前提の下で、上記ショルダー領域における上記スタッドピンの打ち込み本数は、上記センター領域における上記スタッドピンの打ち込み本数の1.5倍から2.5倍である。また、上記ショルダー領域における上記スタッドピンの平均突出量は、上記センター領域における上記スタッドピンの平均突出量の1.2倍から2.0倍である。 In order to solve the above problems, in the pneumatic tire according to the present invention, a land portion is defined by a plurality of inclined grooves inclined with respect to the tire circumferential direction, and a sipe is provided in at least one of the land portions. The stud pin is embedded in at least one of the land portions. Here, an area of 50% of the tire ground contact width centered on the tire equator plane is set as a center area, and each area up to the ground contact end in the tire width direction on both sides of the center area is set as a shoulder area. . Under such a premise, the number of stud pins driven in the shoulder region is 1.5 to 2.5 times the number of stud pins driven in the center region. The average protrusion amount of the stud pin in the shoulder region is 1.2 to 2.0 times the average protrusion amount of the stud pin in the center region.
 本発明に係る空気入りタイヤでは、センター領域に対するショルダー領域での、スタッドピンの打ち込み本数と、スタッドピンの平均突出量とを、所定の範囲としている。その結果、氷上制動性能と耐ピン抜け性能とをバランス良く改善することができる。 In the pneumatic tire according to the present invention, the number of stud pins driven in the shoulder region with respect to the center region and the average protrusion amount of the stud pins are within a predetermined range. As a result, the braking performance on ice and the anti-pinning performance can be improved with a good balance.
図1は、本発明の実施の形態に係る空気入りタイヤのトレッド部の一例を示す平面展開図である。FIG. 1 is a developed plan view showing an example of a tread portion of a pneumatic tire according to an embodiment of the present invention. 図2は、本発明の実施の形態に係る空気入りタイヤにおけるスタッドピンの埋設状態の一例を示す、図1のA-A´線断面図である。FIG. 2 is a cross-sectional view taken along the line AA ′ of FIG. 1, showing an example of a stud pin embedded state in the pneumatic tire according to the embodiment of the present invention.
 以下に、本発明に係る空気入りタイヤの実施の形態(以下に示す、基本形態及び付加的形態1から3)を、図面に基づいて詳細に説明する。なお、これらの実施の形態は、本発明を限定するものではない。また、上記実施の形態の構成要素には、当業者が置換可能かつ容易なもの、或いは実質的に同一のものが含まれる。さらに、上記実施の形態に含まれる各種形態は、当業者が自明の範囲内で任意に組み合わせることができる。 Hereinafter, embodiments of the pneumatic tire according to the present invention (basic modes and additional modes 1 to 3 shown below) will be described in detail with reference to the drawings. Note that these embodiments do not limit the present invention. In addition, the constituent elements of the above embodiment include those that can be easily replaced by those skilled in the art, or those that are substantially the same. Furthermore, various forms included in the above-described embodiment can be arbitrarily combined within a range obvious to those skilled in the art.
[基本形態]
 以下に、本発明に係る空気入りタイヤについて、その基本形態を説明する。以下の説明において、タイヤ径方向とは、空気入りタイヤの回転軸と直交する方向をいい、タイヤ径方向内側とはタイヤ径方向において回転軸に向かう側、タイヤ径方向外側とはタイヤ径方向において回転軸から離れる側をいう。また、タイヤ周方向とは、上記回転軸を中心軸とする周り方向をいう。さらに、タイヤ幅方向とは、上記回転軸と平行な方向をいい、タイヤ幅方向内側とはタイヤ幅方向においてタイヤ赤道面CLに向かう側、タイヤ幅方向外側とはタイヤ幅方向においてタイヤ赤道面CLから離れる側をいう。なお、タイヤ赤道面CLとは、空気入りタイヤの回転軸に直交するとともに、空気入りタイヤのタイヤ幅の中心を通る平面である。
[Basic form]
Below, the basic form is demonstrated about the pneumatic tire which concerns on this invention. In the following description, the tire radial direction means a direction orthogonal to the rotational axis of the pneumatic tire, the tire radial inner side is the side toward the rotational axis in the tire radial direction, and the tire radial outer side is in the tire radial direction. The side away from the rotation axis. The tire circumferential direction refers to a circumferential direction with the rotation axis as a central axis. Further, the tire width direction refers to a direction parallel to the rotation axis, the inner side in the tire width direction is the side toward the tire equatorial plane CL in the tire width direction, and the outer side in the tire width direction is the tire equatorial plane CL in the tire width direction. The side away from. The tire equatorial plane CL is a plane that is orthogonal to the rotational axis of the pneumatic tire and passes through the center of the tire width of the pneumatic tire.
 図1は、本発明の実施の形態に係る空気入りタイヤのトレッド部の一例を示す平面展開図である。同図に示すトレッド部は、ゴム材(トレッドゴム)からなり、空気入りタイヤのタイヤ径方向の最も外側で露出し、その表面が空気入りタイヤの輪郭となる。このトレッド部の表面は、空気入りタイヤを装着する車両(図示せず)が走行した際に路面と接触する面であるトレッド表面10として形成されている。 FIG. 1 is a plan development view showing an example of a tread portion of a pneumatic tire according to an embodiment of the present invention. The tread portion shown in the figure is made of a rubber material (tread rubber), and is exposed at the outermost side in the tire radial direction of the pneumatic tire, and the surface thereof is the contour of the pneumatic tire. The surface of the tread portion is formed as a tread surface 10 that is a surface that comes into contact with the road surface when a vehicle (not shown) equipped with a pneumatic tire travels.
 トレッド表面10には、タイヤ周方向とタイヤ幅方向との双方に対して傾斜する複数本の傾斜溝12が設けられている。傾斜溝12としては、各種タイプを採用することができ、例えば、図1に示すような、溝の延在方向において幅が変化するとともに、延在途中でいくつもに分岐するものが挙げられる。 The tread surface 10 is provided with a plurality of inclined grooves 12 that are inclined with respect to both the tire circumferential direction and the tire width direction. As the inclined groove 12, various types can be adopted, and for example, as shown in FIG. 1, the width changes in the extending direction of the groove, and the inclined groove 12 branches in the middle of the extending.
 また、図1には示さないが、トレッド表面10には、任意選択的に、タイヤ周方向に延在する複数本の周方向溝を含ませることができる。周方向溝についても、各種タイプを採用することができ、例えば、溝の延在方向において幅が変化しないものが挙げられる。 Although not shown in FIG. 1, the tread surface 10 may optionally include a plurality of circumferential grooves extending in the tire circumferential direction. Various types of circumferential grooves can also be employed, and examples thereof include those in which the width does not change in the extending direction of the grooves.
 同様に、図1には示さないが、トレッド表面10には、任意選択的に、タイヤ幅方向に延在する複数本の幅方向溝を含ませることができる。幅方向溝についても、各種タイプを採用することができ、例えば、延在方向において幅が変化するものが挙げられる。 Similarly, although not shown in FIG. 1, the tread surface 10 can optionally include a plurality of widthwise grooves extending in the tire width direction. Various types can be adopted for the width direction groove, for example, one whose width changes in the extending direction.
 なお、複数本の傾斜溝12は、全体として、図1に示さない周方向溝を介してタイヤ周方向に連なる形状とすることができることは勿論、周方向溝を介さずにタイヤ周方向に連なるジグザグ形状とすることもできる。このように複数本の傾斜溝12が全体としてジグザグ形状をなす場合であって、特に、各傾斜溝12のタイヤ周方向とのなす角が小さい場合は、このジグザグ形状の傾斜溝群は、タイヤ周方向に連続する周方向溝とみなすことができる。従って、本実施の形態においては、タイヤ周方向に連続する周方向溝を積極的に除外することは想定されていない。 The plurality of inclined grooves 12 as a whole can be formed in a shape that continues in the tire circumferential direction via a circumferential groove not shown in FIG. 1, and of course, continues in the tire circumferential direction without passing through the circumferential groove. It can also be a zigzag shape. In this way, when the plurality of inclined grooves 12 form a zigzag shape as a whole, and particularly when the angle formed by the tire circumferential direction of each inclined groove 12 is small, the zigzag inclined groove group is a tire. It can be regarded as a circumferential groove continuous in the circumferential direction. Therefore, in the present embodiment, it is not assumed that the circumferential grooves continuous in the tire circumferential direction are positively excluded.
 加えて、トレッド表面10には、陸部の少なくともいずれか、図1に示すところでは、全ての陸部20にサイプ22が設けられている。サイプ22は、タイヤ幅方向に直線状に延在するものであってもよいし、タイヤ周方向に振幅を有してタイヤ幅方向に延在するジグザグ状、正弦波状、三角波状及び矩形波状等であってもよい。また、サイプ22は1つの陸部20内でタイヤ幅方向に断続的に延在するものであってもよい。 In addition, the tread surface 10 is provided with sipes 22 in at least one of the land portions, as shown in FIG. The sipe 22 may extend linearly in the tire width direction, or may have a zigzag shape, a sine wave shape, a triangular wave shape, a rectangular wave shape or the like that has an amplitude in the tire circumferential direction and extends in the tire width direction. It may be. Moreover, the sipe 22 may extend intermittently in the tire width direction within one land portion 20.
 このように、本実施の形態に係る空気入りタイヤのトレッド表面10には、傾斜溝12が形成されているとともに、周方向溝と幅方向溝とを任意選択的に形成することができる。そして、これらの溝によって区画形成された陸部20の少なくともいずれかにサイプ22が形成されることにより、トレッド表面10には、所定のトレッドパターンが形成されている。 Thus, the tread surface 10 of the pneumatic tire according to the present embodiment has the inclined grooves 12 and can optionally form the circumferential grooves and the width grooves. And the predetermined tread pattern is formed in the tread surface 10 by forming the sipe 22 in at least one of the land parts 20 defined by these grooves.
 上記トレッドパターンを有するトレッド表面10には、陸部20の少なくともいずれか、例えば、図1に示す箇所に、スタッドピン24が埋設されている。スタッドピン24は、タイヤ幅方向の所定の位置において、タイヤ周方向に一定のピッチで埋設されている。 The stud pin 24 is embedded in at least one of the land portions 20, for example, the location shown in FIG. 1 on the tread surface 10 having the tread pattern. The stud pins 24 are embedded at a constant pitch in the tire circumferential direction at a predetermined position in the tire width direction.
 以上のような前提の下、本実施の形態においては、図1に示すように、タイヤ赤道面CLを中心としたタイヤ接地幅の50%の領域をセンター領域TCとするとともに、センター領域TCのタイヤ幅方向両外側の領域であって接地端Eまでの各領域をショルダー領域TSとする。 Under the premise as described above, in the present embodiment, as shown in FIG. 1, an area of 50% of the tire contact width centered on the tire equatorial plane CL is defined as the center area TC, and the center area TC Regions on both outer sides in the tire width direction up to the contact point E are defined as shoulder regions TS.
 そして、本実施の形態においては、図1に示すように、ショルダー領域TSにおけるスタッドピン24の打ち込み本数(ショルダー本数)が、センター領域TCにおけるスタッドピン24の打ち込み本数(センター本数)の1.5倍から2.5倍となっている。 In the present embodiment, as shown in FIG. 1, the number of stud pins 24 driven in the shoulder region TS (the number of shoulders) is 1.5, which is the number of stud pins 24 driven in the center region TC (the number of centers). Double to 2.5 times.
 1つのタイヤに一定本数のスタッドピン24を、トレッド表面からの突出量を同一にして埋設する場合には、センター領域TCよりもショルダー領域TSに多く埋設した際に、氷へのひっかき効果に起因する氷上制動性能の改善効果が顕著に現れる。このため、上記のように、ショルダー本数をセンター本数の1.5倍以上とすることで、特に氷上制動性能に影響を及ぼし易いショルダー領域TSにおいて氷へのひっかき効果を十分に確保し、タイヤ全体として、氷上制動性能を効率的に改善することができる。 When a certain number of stud pins 24 are embedded in one tire with the same amount of protrusion from the tread surface, when embedded more in the shoulder region TS than in the center region TC, it is caused by the scratching effect on ice. The effect of improving the braking performance on ice is remarkable. Therefore, as described above, by setting the number of shoulders to be 1.5 times the number of centers or more, a sufficient scratching effect on ice is ensured in the shoulder region TS that is particularly likely to affect braking performance on ice, and the entire tire As a result, the braking performance on ice can be improved efficiently.
 また、タイヤ転動時に、スタッドピン24は、ショルダー領域TSよりもセンター領域TCにおいて抜け易い。このため、上記のように、ショルダー本数をセンター本数の1.5倍以上とすることで、特に耐ピン抜け性能に影響を及ぼし易いセンター領域TCにおいてスタッドピンの本数を低減してピン抜けを抑制し、タイヤ全体として、耐ピン抜け性能を効率的に改善することができる。 In addition, when the tire rolls, the stud pin 24 is more easily removed in the center region TC than in the shoulder region TS. For this reason, as described above, by setting the number of shoulders to be 1.5 times the number of centers or more, the number of stud pins is reduced in the center region TC, which tends to affect the anti-pinning performance, thereby suppressing pin removal. In addition, the anti-pinning performance can be efficiently improved as a whole tire.
 これに対し、1つのタイヤに一定本数のスタッドピン24を、トレッド表面からの突出量を同一にして埋設する場合であって、センター領域TCに対してショルダー領域TSにスタッドピン24を過度に埋設した場合には、センター領域TCにおけるスタッドピン24の本数低減により、氷へのひっかき効果に起因する氷上制動性能が十分に得られない。このため、上記のように、ショルダー本数をセンター本数の2.5倍以下とすることで、ショルダー領域TSで氷へのひっかき効果を得つつ、センター領域TCにおいてもこの効果を十分に得て、タイヤ全体として効率的に氷上制動性能を改善することができる。 On the other hand, when a certain number of stud pins 24 are embedded in one tire with the same amount of protrusion from the tread surface, the stud pins 24 are embedded excessively in the shoulder region TS with respect to the center region TC. In such a case, due to the reduction in the number of stud pins 24 in the center region TC, the braking performance on ice due to the scratching effect on ice cannot be sufficiently obtained. For this reason, as described above, by making the number of shoulders 2.5 times or less the number of centers, while obtaining a scratching effect on ice in the shoulder region TS, this effect can be sufficiently obtained in the center region TC, The braking performance on ice can be improved efficiently as a whole tire.
 次に、本実施の形態のトレッド表面においては、ショルダー領域TSにおけるスタッドピン24の平均突出量(ショルダー平均突出量)が、センター領域TCにおけるスタッドピン24の平均突出量(センター平均突出量)の1.2倍から2.0倍となっている。ここで、スタッドピン24の突出量とは、スタッドピンの埋設位置において、スタッドピン24が埋設される穴が形成されていない状態でのトレッド表面から測定した、スタッドピンのタイヤ径方向最大寸法をいう。また、平均突出量とは、各領域(センター領域TC及びショルダー領域TS)のそれぞれにおける、スタッドピン24の突出量の平均値をいう。 Next, on the tread surface of the present embodiment, the average protrusion amount (shoulder average protrusion amount) of the stud pin 24 in the shoulder region TS is equal to the average protrusion amount (center average protrusion amount) of the stud pin 24 in the center region TC. From 1.2 times to 2.0 times. Here, the protruding amount of the stud pin 24 is the maximum dimension in the tire radial direction of the stud pin measured from the tread surface in the state where the hole in which the stud pin 24 is embedded is not formed at the embedded position of the stud pin. Say. In addition, the average protrusion amount refers to an average value of the protrusion amount of the stud pin 24 in each region (center region TC and shoulder region TS).
 図2は、本発明の実施の形態に係る空気入りタイヤにおけるスタッドピンの埋設状態の一例を示す、図1のA-A´線断面図である。図2に示す例では、ショルダー領域TSに形成されたスタッドピン24の平均突出量と、センター領域TCに形成されたスタッドピン24の平均突出量との比(ショルダー領域TS/センター領域TC)が、1.2から2.0までの範囲となっている。 FIG. 2 is a cross-sectional view taken along the line AA ′ of FIG. 1, showing an example of a buried stud pin in the pneumatic tire according to the embodiment of the present invention. In the example shown in FIG. 2, the ratio of the average protrusion amount of the stud pin 24 formed in the shoulder region TS and the average protrusion amount of the stud pin 24 formed in the center region TC (shoulder region TS / center region TC) is 1.2 to 2.0.
 センター領域TCとショルダー領域TSとの双方に、同じ平均突出量で、かつ、その他の条件(例えば、打ち込み本数)を同じとして、スタッドピン24を埋設した場合には、センター領域TSよりもショルダー領域TSにおいて、氷へのひっかき効果に起因する氷上制動性能の改善効果が顕著に現れる。また、平均突出量が多いほどスタッドピン24が氷に深く食い込むため、上記ひっかき効果は大きい。このため、上記のように、ショルダー平均突出量をセンター平均突出量の1.2倍以上とすることで、特に氷上制動性能に影響を及ぼし易いショルダー領域TSにおいて氷へのひっかき効果を十分に確保し、タイヤ全体として、氷上制動性能を効率的に改善することができる。 When the stud pin 24 is embedded in both the center region TC and the shoulder region TS with the same average protrusion amount and the same other conditions (for example, the number of driving), the shoulder region is more than the center region TS. In TS, the effect of improving braking performance on ice due to the scratching effect on ice appears remarkably. Further, the greater the average protrusion amount, the deeper the stud pin 24 digs into the ice, so the scratching effect is greater. For this reason, as described above, by making the shoulder average protrusion amount 1.2 times or more of the center average protrusion amount, a sufficient scratching effect on ice is ensured particularly in the shoulder region TS that is likely to affect the braking performance on ice. In addition, the braking performance on ice can be efficiently improved as a whole tire.
 また、タイヤ転動時に、スタッドピン24は、ショルダー領域TSよりもセンター領域TCにおいて抜け易い。このため、上記のように、ショルダー平均突出量をセンター平均突出量の1.2倍以上とすることで、特に耐ピン抜け性能に影響を及ぼし易いセンター領域TCにおいてスタッドピンの平均突出量を低減してピン抜けを抑制し、タイヤ全体として、耐ピン抜け性能を効率的に改善することができる。 In addition, when the tire rolls, the stud pin 24 is more easily removed in the center region TC than in the shoulder region TS. For this reason, as described above, by setting the shoulder average protrusion amount to 1.2 times or more of the center average protrusion amount, the average protrusion amount of the stud pin is reduced particularly in the center region TC that easily affects the anti-pinning resistance performance. Thus, pin omission can be suppressed, and the anti-pin omission performance can be efficiently improved as a whole tire.
 これに対し、センター領域TCと比較してショルダー領域TSでのスタッドピン24の平均突出量を過度に大きくした場合には、ショルダー領域TSにおいてスタッドピン24が抜け易くなり、耐ピン抜け性能が改善されない。また、ショルダー領域TSでスタッドピン24が抜けると、ショルダー領域TSでの氷へのひっかき効果低減に起因して氷上制動性能が改善されない。このため、上記のように、ショルダー平均突出量をセンター平均突出量の2.0倍以下とすることで、タイヤ全体として、耐ピン抜け性能と氷上制動性能とを効率的に改善することができる。 On the other hand, when the average protrusion amount of the stud pin 24 in the shoulder region TS is excessively increased as compared with the center region TC, the stud pin 24 is easily pulled out in the shoulder region TS, and the anti-pinning resistance performance is improved. Not. Further, when the stud pin 24 comes off in the shoulder region TS, the braking performance on ice is not improved due to the reduction of the scratching effect on ice in the shoulder region TS. For this reason, as described above, by setting the shoulder average protrusion amount to be 2.0 times or less of the center average protrusion amount, the anti-pinning resistance performance and the braking performance on ice can be efficiently improved as a whole tire. .
 以上のように、本実施の形態に係る空気入りタイヤでは、スタッドピンの打ち込み本数と平均突出量とを、それぞれ、センター領域とショルダー領域との関係において規定している。これにより、氷へのひっかき効果に起因する氷上制動性能と、耐ピン抜け性能とを、タイヤ全体として、効率的にバランス良く改善することができる。 As described above, in the pneumatic tire according to the present embodiment, the number of stud pins driven and the average protrusion amount are defined in relation to the center region and the shoulder region, respectively. As a result, the braking performance on ice resulting from the scratching effect on ice and the anti-pinning performance can be efficiently improved in a well-balanced manner as a whole tire.
 なお、以上に示す本実施形態の空気入りタイヤは、図示しないが、従来の空気入りタイヤと同様の子午断面形状を有する。ここで、空気入りタイヤの子午断面形状とは、タイヤ赤道面CLと垂直な平面上に現れる空気入りタイヤの断面形状をいう。本実施の形態の空気入りタイヤは、タイヤ子午断面視で、タイヤ径方向内側から外側に向かって、ビード部、サイドウォール部及びトレッド部を有する。そして、空気入りタイヤは、例えば、タイヤ子午断面視で、トレッド部から両側のビード部まで延在して一対のビードコアの周りで巻回されたカーカス層と、上記カーカス層のタイヤ径方向外側に順次形成された、ベルト層及びベルト補強層とを備える。 In addition, although not shown in figure, the pneumatic tire of this embodiment shown above has the meridian cross-sectional shape similar to the conventional pneumatic tire. Here, the meridional cross-sectional shape of the pneumatic tire refers to a cross-sectional shape of the pneumatic tire that appears on a plane perpendicular to the tire equatorial plane CL. The pneumatic tire of the present embodiment has a bead portion, a sidewall portion, and a tread portion from the inner side in the tire radial direction toward the outer side in a tire meridional cross-sectional view. And, for example, in the tire meridional section, the pneumatic tire extends from the tread portion to the bead portions on both sides and wound around the pair of bead cores, and on the outer side in the tire radial direction of the carcass layer. A belt layer and a belt reinforcing layer are sequentially formed.
 また、本実施の形態の空気入りタイヤは、通常の各製造工程、即ち、タイヤ材料の混合工程、タイヤ材料の加工工程、グリーンタイヤの成型工程、加硫工程及び加硫後の検査工程等を経て得られるものである。本実施の形態の空気入りタイヤを製造する場合には、特に、図1に示すような所定のトレッドパターンを形成できるような金型を用いて加硫を行うとともに、検査工程後に、陸部の所定位置にスタッドピンを埋設する。 In addition, the pneumatic tire of the present embodiment includes normal manufacturing processes, that is, a tire material mixing process, a tire material processing process, a green tire molding process, a vulcanization process, and an inspection process after vulcanization. It is obtained through the process. When manufacturing the pneumatic tire of the present embodiment, in particular, vulcanization is performed using a mold capable of forming a predetermined tread pattern as shown in FIG. A stud pin is embedded at a predetermined position.
[付加的形態]
 次に、本発明に係る空気入りタイヤの上記基本形態に対して、任意選択的に実施可能な、付加的形態1から3を説明する。
[Additional form]
Next, additional embodiments 1 to 3 that can be optionally implemented with respect to the basic embodiment of the pneumatic tire according to the present invention will be described.
(付加的形態1)
 基本形態においては、ショルダー領域TSにおけるサイプ22の配設密度(ショルダー配設密度)が、センター領域TCにおけるサイプ22の配設密度(センター配設密度)の0.4倍から0.8倍であること(付加的形態1)が好ましい。ここで、サイプ22の配設密度とは、各領域(センター領域TC及びショルダー領域TS)における陸部20の単位面積当たりのサイプ22の合計長さをいう。なお、サイプが直線状でなく、例えば、ジグザグ状である場合におけるサイプの長さは、このジグザグ状のサイプを引き伸ばして直線状とした際に測定される長さをいう。
(Additional form 1)
In the basic form, the arrangement density of the sipe 22 in the shoulder region TS (shoulder arrangement density) is 0.4 to 0.8 times the arrangement density (center arrangement density) of the sipe 22 in the center region TC. It is preferred (additional form 1). Here, the arrangement density of the sipes 22 refers to the total length of the sipes 22 per unit area of the land portion 20 in each region (center region TC and shoulder region TS). Note that the sipe length when the sipe is not linear, for example, zigzag, refers to the length measured when the zigzag sipe is stretched to be linear.
 ショルダー配設密度をセンター配設密度の0.8倍以下とすることで、センター領域TCと比較してショルダー領域TSにおいてサイプ配設密度が確実に低減される。これにより、センター領域TCに対してより多くのスタッドピン24を配設するショルダー領域TSにおいてブロック剛性を高め、特に、ショルダー領域TSにおける耐ピン抜け性能を改善することができる。 By setting the shoulder arrangement density to 0.8 times or less of the center arrangement density, the sipe arrangement density is surely reduced in the shoulder area TS as compared with the center area TC. As a result, the block rigidity can be increased in the shoulder region TS in which more stud pins 24 are disposed with respect to the center region TC, and in particular, the anti-pinning resistance performance in the shoulder region TS can be improved.
 これに対し、センター領域TCと比較してショルダー領域TSにおいてサイプ配設密度を過度に低減した結果、ショルダー領域TSにおいて必要なサイプ配設密度を下回ると、ショルダー領域TSにおけるサイプによるエッジ効果が十分得られなくなる。このため、ショルダー配設密度をセンター配設密度の0.4倍以上とすることで、特に、ショルダー領域TSにおいてサイプによるエッジ効果を確保し、氷上制動性能を改善することができる。 On the other hand, as a result of excessively reducing the sipe arrangement density in the shoulder region TS as compared with the center region TC, if the sipe arrangement density required in the shoulder region TS is lower, the edge effect due to the sipe in the shoulder region TS is sufficient. It can no longer be obtained. Therefore, by setting the shoulder arrangement density to 0.4 times or more of the center arrangement density, it is possible to secure the edge effect due to sipes and improve the braking performance on ice, particularly in the shoulder region TS.
(付加的形態2)
 基本形態及び基本形態に付加的形態1を加えた形態においては、ショルダー領域TSにおける傾斜溝12の平均深さ(ショルダー平均深さ)が、センター領域TCにおける傾斜溝12の平均深さ(センター平均深さ)よりも、1mmから3mm小さいこと(付加的形態2)が好ましい。ここで、傾斜溝12の深さとは、傾斜溝12がないとした場合におけるトレッド表面10からタイヤ径方向に測定した傾斜溝12の最大寸法をいう。また、平均深さとは、各領域(センター領域TC及びショルダー領域TS)のそれぞれにおける、傾斜溝12の深さの平均値をいう。
(Additional form 2)
In the basic form and the form in which the additional form 1 is added to the basic form, the average depth (shoulder average depth) of the inclined grooves 12 in the shoulder region TS is equal to the average depth (center average) of the inclined grooves 12 in the center region TC. It is preferably 1 mm to 3 mm smaller than (depth) (additional form 2). Here, the depth of the inclined groove 12 refers to the maximum dimension of the inclined groove 12 measured in the tire radial direction from the tread surface 10 when there is no inclined groove 12. The average depth refers to the average value of the depth of the inclined groove 12 in each region (center region TC and shoulder region TS).
 ショルダー平均深さをセンター平均深さよりも1mm以上小さくすることで、センター領域TCに対してより多くのスタッドピン24を配設するショルダー領域TSにおいてブロック剛性を高め、特に、ショルダー領域TSにおける耐ピン抜け性能を改善することができる。 By making the shoulder average depth 1 mm or more smaller than the center average depth, the block region is increased in the shoulder region TS in which more stud pins 24 are disposed with respect to the center region TC. The removal performance can be improved.
 これに対し、センター平均深さと比較してショルダー平均深さを過度に小さくすると、ショルダー領域TSにおける排水性能が低下するだけでなく、ショルダー領域TSにおいて、トレッド表面10に設けられた溝が雪を踏み固めてできる雪柱を断ち切ろうとする力(雪柱せん断力)が低下し、雪上での制駆動性能が低下する。このため、ショルダー平均深さとセンター平均深さとの差を3mm以下とすることで、特に、ショルダー領域TSにおける十分な溝深さによって排水性能を確保することができるとともに、雪上せん断力を低下させずに雪上での制駆動性能を確保することができる。 On the other hand, when the shoulder average depth is excessively reduced as compared with the center average depth, not only the drainage performance in the shoulder region TS is lowered, but also the grooves provided in the tread surface 10 in the shoulder region TS are exposed to snow. The force (snow column shearing force) that tries to cut off the snow column that can be stepped down decreases, and the braking / driving performance on the snow decreases. For this reason, by setting the difference between the shoulder average depth and the center average depth to be 3 mm or less, drainage performance can be ensured particularly by a sufficient groove depth in the shoulder region TS, and the shearing force on snow is not reduced. In addition, braking / driving performance on snow can be ensured.
(付加的形態3)
 基本形態及び基本形態に付加的形態1、2の少なくともいずれかを加えた形態においては、正規内圧の-5%から+5%の内圧を付与した無負荷状態におけるトレッド展開面において、ショルダー領域TSにおける溝面積(ショルダー溝面積)が、センター領域TCにおける溝面積(センター溝面積)の0.4倍から0.8倍であること(付加的形態3)が好ましい。ここで、正規内圧とは、JATMAで規定する「最高空気圧」、TRAで規定する「TIRE LOAD LIMITS AT VARIOUS COLD INFLATION PRESSURES」に記載の最大値、又はETRTOで規定する「INFLATION PRESSURES」をいう。また、トレッド展開面とは、図1に示すようなトレッド部についての平面をいう。さらに、溝面積とは、トレッド展開面において表現される溝の区画領域についての面積をいう。
(Additional form 3)
In the basic form and the form obtained by adding at least one of the additional forms 1 and 2 to the basic form, in the tread development surface in the unloaded state in which the internal pressure of −5% to + 5% of the normal internal pressure is applied, the shoulder region TS The groove area (shoulder groove area) is preferably 0.4 to 0.8 times the groove area (center groove area) in the center region TC (additional form 3). Here, the normal internal pressure means “maximum air pressure” defined by JATMA, the maximum value described in “TIRE LOAD LIMITS AT VARIOUS COLD INFLATION PRESSURES” defined by TRA, or “INFLATION PRESSURES” defined by ETRTO. Further, the tread development surface refers to a plane regarding the tread portion as shown in FIG. Furthermore, the groove area refers to the area of the groove partition region expressed on the tread development surface.
 上記所定内圧を付与した無負荷状態において、ショルダー溝面積をセンター溝面積の0.8倍以下とすることで、センター領域TCに対してより多くのスタッドピン24を配設するショルダー領域TSにおいてブロック剛性を高め、特に、ショルダー領域TSにおける耐ピン抜け性能を改善することができる。 In the no-load state where the predetermined internal pressure is applied, the shoulder groove area is set to 0.8 times or less of the center groove area, thereby blocking the shoulder region TS in which more stud pins 24 are disposed with respect to the center region TC. The rigidity can be increased, and in particular, the anti-pinning performance in the shoulder region TS can be improved.
 これに対し、ショルダー溝面積をセンター溝面積に対して過度に小さくすると、ショルダー領域TSにおける排水性能が低下するだけでなく、ショルダー領域TSにおいて、雪柱せん断力が低下し、雪上での制駆動性能が低下する。このため、ショルダー溝面積をセンター溝面積の0.4倍以上とすることで、特に、ショルダー領域TSにおける十分な溝面積によって排水性能を確保することができるとともに、雪上せん断力を低下させずに雪上での制駆動性能を確保することができる。 On the other hand, if the shoulder groove area is excessively small with respect to the center groove area, not only the drainage performance in the shoulder region TS is lowered, but also the snow column shear force is reduced in the shoulder region TS, and braking / driving on snow is performed. Performance decreases. For this reason, by making the shoulder groove area 0.4 times or more of the center groove area, it is possible to ensure drainage performance with a sufficient groove area in the shoulder region TS, and without reducing the shear force on snow. The braking / driving performance on snow can be secured.
 表1に示す諸条件(ショルダー領域TSにおけるスタッドピンの打ち込み本数(ショルダー打ち込み本数)、センター領域TCにおけるスタッドピンの打ち込み本数(センター打ち込み本数)、センター領域TCを基準としたショルダー領域TSにおけるスタッドピンの打ち込み本数(打ち込み本数比Sh/Ce)、センター領域TCを基準としたショルダー領域TSにおけるスタッドピンの平均突出量(平均突出量比Sh/Ce)、センター領域TCを基準としたショルダー領域TSにおけるサイプの配設密度(サイプ配設密度比Sh/Ce)、センター領域TCを基準としたショルダー領域TSにおける傾斜溝の平均深さ(平均深さの差Sh-Ce)及びセンター領域TCを基準としたショルダー領域TSにおける溝面積(溝面積比Sh/Ce))に従い、従来例及び実施例1から実施例5の空気入りタイヤを作製した。 Various conditions shown in Table 1 (the number of stud pins driven in the shoulder region TS (the number of shoulder drives), the number of stud pins driven in the center region TC (the number of center driving), and the stud pins in the shoulder region TS based on the center region TC) In the shoulder region TS based on the center region TC, the average protrusion amount of the stud pin in the shoulder region TS (average protrusion amount ratio Sh / Ce), and in the shoulder region TS based on the center region TC The sipe arrangement density (sipe arrangement density ratio Sh / Ce), the average depth of the inclined grooves in the shoulder region TS with respect to the center region TC (average depth difference Sh-Ce), and the center region TC Groove area in the shoulder region TS (groove area ratio S) / According Ce)), to produce a pneumatic tire of Example 5 from the conventional example and the first embodiment.
 従来例及び実施例1から実施例5のタイヤ(試験タイヤ)について、タイヤサイズは195/65R15とし、これらの全ての試験タイヤについて、氷上制動性及び耐ピン抜け性能を評価した。これらの結果を表1に併記する。 The tire size (195 / 65R15) of the conventional example and the tires (test tires) of Examples 1 to 5 was 195 / 65R15, and the braking performance on ice and the anti-pinning performance were evaluated for all these test tires. These results are also shown in Table 1.
(氷上制動性能)
 各試験タイヤを、15×6Jのリムに空気圧230kPaで組み付けるとともに、排気量2000CCのセダン型車両に装着して、氷盤路において、この車両が時速30kmから静止するまでの距離を測定した。そして、この測定結果に基づいて従来例を基準(100)とした指数評価を行った。この評価は、指数が大きいほど、氷上制動性能が高いことを示す。
(Brake performance on ice)
Each test tire was assembled on a 15 × 6 J rim at an air pressure of 230 kPa and mounted on a sedan type vehicle with a displacement of 2000 CC, and the distance from the vehicle to 30 km / h on a icy road was measured. And based on this measurement result, the index evaluation which made the conventional example the reference | standard (100) was performed. This evaluation shows that the higher the index, the higher the braking performance on ice.
(耐ピン抜け性能)
 各試験タイヤを、15×6Jのリムに空気圧230kPaで組み付けるとともに、排気量2000CCのセダン型車両に装着して、スタッドタイヤに関する規制のないロシア国内の一般道路を10000km走行した後、スタッドピンの抜けた本数を確認した。そして、この確認結果に基づいて従来例を基準(100)とした指数評価を行った。この評価は、指数が大きいほど、耐ピン抜け性能が高いことを示す。
(Pin-proof performance)
Each test tire is mounted on a 15 x 6J rim at an air pressure of 230 kPa and mounted on a sedan type vehicle with a displacement of 2000 CC. After running 10,000 km on a general road in Russia with no restrictions on stud tires, The number was confirmed. And based on this confirmation result, the index evaluation which made the conventional example the standard (100) was performed. This evaluation shows that the higher the index, the higher the anti-pinning performance.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1によれば、本発明の技術的範囲に属する(打ち込み本数比Sh/Ce、平均突出量比Sh/Ceが所定範囲内である)実施例1から実施例5の空気入りタイヤについては、いずれも、本発明の技術的範囲に属しない、従来例の空気入りタイヤに対して、氷上制動性能と耐ピン抜け性能とがバランス良く改善されていることが判る。 According to Table 1, the pneumatic tires of Examples 1 to 5 belonging to the technical scope of the present invention (the number ratio of driving Sh / Ce and the average protrusion amount ratio Sh / Ce are within a predetermined range) It can be seen that the braking performance on ice and the anti-pinning performance are improved in a well-balanced manner with respect to the conventional pneumatic tire that does not belong to the technical scope of the present invention.
 本発明は以下の態様を包含する。 The present invention includes the following aspects.
 (1)タイヤ周方向に対して傾斜する複数本の傾斜溝によって陸部が区画形成され、上記陸部の少なくともいずれかにサイプが設けられ、上記陸部の少なくともいずれかにスタッドピンが埋設されている空気入りタイヤにおいて、タイヤ赤道面を中心としたタイヤ接地幅の50%の領域をセンター領域とするとともに、上記センター領域のタイヤ幅方向両外側の領域であって接地端までの各領域をショルダー領域とした場合に、上記ショルダー領域における上記スタッドピンの打ち込み本数が、上記センター領域における上記スタッドピンの打ち込み本数の1.5倍から2.5倍であり、かつ、上記ショルダー領域における上記スタッドピンの平均突出量が、上記センター領域における上記スタッドピンの平均突出量の1.2倍から2.0倍である空気入りタイヤ。 (1) A land portion is defined by a plurality of inclined grooves inclined with respect to the tire circumferential direction, a sipe is provided in at least one of the land portions, and a stud pin is embedded in at least one of the land portions. In the pneumatic tire, the region of 50% of the tire contact width centered on the tire equatorial plane is defined as the center region, and each region up to the contact end is the region outside the center region in the tire width direction. In the case of the shoulder region, the number of stud pins driven in the shoulder region is 1.5 to 2.5 times the number of stud pins driven in the center region, and the studs in the shoulder region The average protruding amount of the pin is 1.2 to 2.0 times the average protruding amount of the stud pin in the center region. The pneumatic tire is.
 (2)上記ショルダー領域における上記サイプの配設密度が、上記センター領域における上記サイプの配設密度の0.4倍から0.8倍である、上記(1)に記載の空気入りタイヤ。 (2) The pneumatic tire according to (1), wherein the density of the sipes in the shoulder region is 0.4 to 0.8 times that of the sipes in the center region.
 (3)上記ショルダー領域における上記傾斜溝の平均深さが、上記センター領域における上記傾斜溝の平均深さよりも、1mmから3mm小さい、上記(1)又は(2)に記載の空気入りタイヤ。 (3) The pneumatic tire according to (1) or (2), wherein an average depth of the inclined groove in the shoulder region is 1 to 3 mm smaller than an average depth of the inclined groove in the center region.
 (4)正規内圧の-5%から+5%の内圧を付与した無負荷状態におけるトレッド展開面において、上記ショルダー領域における溝面積が、上記センター領域における溝面積の0.4倍から0.8倍である、上記(1)から(3)のいずれか1つに記載の空気入りタイヤ。 (4) The groove area in the shoulder region is 0.4 to 0.8 times the groove area in the center region on the tread development surface in an unloaded state where an internal pressure of −5% to + 5% of the normal internal pressure is applied. The pneumatic tire according to any one of (1) to (3) above.
 10  トレッド表面
 12  傾斜溝
 20  陸部
 22  サイプ
 24  スタッドピン
 CL  タイヤ赤道面
 E  接地端
 TC  センター領域
 TS  ショルダー領域
10 tread surface 12 inclined groove 20 land portion 22 sipe 24 stud pin CL tire equatorial plane E ground contact edge TC center area TS shoulder area

Claims (4)

  1.  タイヤ周方向に対して傾斜する複数本の傾斜溝によって陸部が区画形成され、前記陸部の少なくともいずれかにサイプが設けられ、前記陸部の少なくともいずれかにスタッドピンが埋設されている空気入りタイヤにおいて、
     タイヤ赤道面を中心としたタイヤ接地幅の50%の領域をセンター領域とするとともに、前記センター領域のタイヤ幅方向両外側の領域であって接地端までの各領域をショルダー領域とした場合に、
     前記ショルダー領域における前記スタッドピンの打ち込み本数が、前記センター領域における前記スタッドピンの打ち込み本数の1.5倍から2.5倍であり、かつ、
     前記ショルダー領域における前記スタッドピンの平均突出量が、前記センター領域における前記スタッドピンの平均突出量の1.2倍から2.0倍である
    空気入りタイヤ。
    Air in which a land portion is defined by a plurality of inclined grooves inclined with respect to the tire circumferential direction, a sipe is provided in at least one of the land portions, and a stud pin is embedded in at least one of the land portions In entering tires,
    When the area of 50% of the tire contact width centered on the tire equator plane is the center area, and each area up to the contact end is the area outside the center area in the tire width direction,
    The number of stud pins driven in the shoulder region is 1.5 to 2.5 times the number of stud pins driven in the center region; and
    A pneumatic tire in which an average protrusion amount of the stud pin in the shoulder region is 1.2 to 2.0 times an average protrusion amount of the stud pin in the center region.
  2.  前記ショルダー領域における前記サイプの配設密度が、前記センター領域における前記サイプの配設密度の0.4倍から0.8倍である、請求項1に記載の空気入りタイヤ。 2. The pneumatic tire according to claim 1, wherein an arrangement density of the sipes in the shoulder region is 0.4 to 0.8 times an arrangement density of the sipes in the center region.
  3.  前記ショルダー領域における前記傾斜溝の平均深さが、前記センター領域における前記傾斜溝の平均深さよりも、1mmから3mm小さい、請求項1又は2に記載の空気入りタイヤ。 The pneumatic tire according to claim 1 or 2, wherein an average depth of the inclined groove in the shoulder region is smaller by 1 to 3 mm than an average depth of the inclined groove in the center region.
  4.  正規内圧の-5%から+5%の内圧を付与した無負荷状態におけるトレッド展開面において、前記ショルダー領域における溝面積が、前記センター領域における溝面積の0.4倍から0.8倍である、請求項1から3のいずれか1項に記載の空気入りタイヤ。 In the tread development surface in a no-load state in which an internal pressure of −5% to + 5% of the normal internal pressure is applied, the groove area in the shoulder region is 0.4 to 0.8 times the groove area in the center region. The pneumatic tire according to any one of claims 1 to 3.
PCT/JP2014/053054 2013-02-12 2014-02-10 Pneumatic tire WO2014126048A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201480003567.2A CN105026184A (en) 2013-02-12 2014-02-10 Pneumatic tire
US14/767,503 US20150375572A1 (en) 2013-02-12 2014-02-10 Pneumatic Tire
RU2015138975A RU2015138975A (en) 2013-02-12 2014-02-10 PNEUMATIC TIRE
EP14751771.8A EP2957437A4 (en) 2013-02-12 2014-02-10 Pneumatic tire

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013024379A JP2014151811A (en) 2013-02-12 2013-02-12 Pneumatic tire
JP2013-024379 2013-02-12

Publications (1)

Publication Number Publication Date
WO2014126048A1 true WO2014126048A1 (en) 2014-08-21

Family

ID=51354050

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/053054 WO2014126048A1 (en) 2013-02-12 2014-02-10 Pneumatic tire

Country Status (6)

Country Link
US (1) US20150375572A1 (en)
EP (1) EP2957437A4 (en)
JP (1) JP2014151811A (en)
CN (1) CN105026184A (en)
RU (1) RU2015138975A (en)
WO (1) WO2014126048A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107645993A (en) * 2015-05-27 2018-01-30 倍耐力轮胎股份公司 Tire for wheel of vehicle
CN111511586A (en) * 2018-01-11 2020-08-07 横滨橡胶株式会社 Stubborn tire and pneumatic tire

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016088342A (en) * 2014-11-06 2016-05-23 東洋ゴム工業株式会社 Pneumatic tire
JP6360459B2 (en) * 2015-05-26 2018-07-18 住友ゴム工業株式会社 Winter tires
JP6336409B2 (en) * 2015-05-26 2018-06-06 住友ゴム工業株式会社 Winter tires
CN109501529A (en) * 2018-10-26 2019-03-22 安徽佳通乘用子午线轮胎有限公司 A kind of snow tire with eight diagrams type nail construction
JP7172953B2 (en) * 2019-11-01 2022-11-16 横浜ゴム株式会社 pneumatic tire
JP7172954B2 (en) * 2019-11-01 2022-11-16 横浜ゴム株式会社 pneumatic tire

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007050718A (en) * 2005-08-15 2007-03-01 Yokohama Rubber Co Ltd:The Pneumatic stud tire
JP2009166806A (en) * 2008-01-21 2009-07-30 Toyo Tire & Rubber Co Ltd Pneumatic stud tire and pneumatic tire for stud tire
JP2010149599A (en) * 2008-12-24 2010-07-08 Sumitomo Rubber Ind Ltd Pneumatic tire and spike tire
JP2010167931A (en) * 2009-01-23 2010-08-05 Yokohama Rubber Co Ltd:The Pneumatic tire
JP2012001120A (en) * 2010-06-17 2012-01-05 Sumitomo Rubber Ind Ltd Pneumatic tire
JP2012183954A (en) 2011-03-07 2012-09-27 Bridgestone Corp Pneumatic tire

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62122804A (en) * 1985-11-25 1987-06-04 Yokohama Rubber Co Ltd:The Pneumatic radial tire for passenger's vehicle
JPH02299909A (en) * 1989-05-15 1990-12-12 Toyo Tire & Rubber Co Ltd Pneumatic radial tire for heavy load
JPH03128704A (en) * 1989-10-12 1991-05-31 Ohtsu Tire & Rubber Co Ltd :The Radial tire
DE10007464A1 (en) * 2000-02-18 2001-09-06 Continental Ag Vehicle tires with spikes, method for producing a vehicle tire with spikes
EP2243638B1 (en) * 2009-04-24 2017-11-08 Pirelli Tyre S.p.A. Method for designing a studded tyre and according studded tyre
DE102009044547A1 (en) * 2009-11-16 2011-05-19 Continental Reifen Deutschland Gmbh Tread pattern of a pneumatic vehicle tire

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007050718A (en) * 2005-08-15 2007-03-01 Yokohama Rubber Co Ltd:The Pneumatic stud tire
JP2009166806A (en) * 2008-01-21 2009-07-30 Toyo Tire & Rubber Co Ltd Pneumatic stud tire and pneumatic tire for stud tire
JP2010149599A (en) * 2008-12-24 2010-07-08 Sumitomo Rubber Ind Ltd Pneumatic tire and spike tire
JP2010167931A (en) * 2009-01-23 2010-08-05 Yokohama Rubber Co Ltd:The Pneumatic tire
JP2012001120A (en) * 2010-06-17 2012-01-05 Sumitomo Rubber Ind Ltd Pneumatic tire
JP2012183954A (en) 2011-03-07 2012-09-27 Bridgestone Corp Pneumatic tire

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2957437A4

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107645993A (en) * 2015-05-27 2018-01-30 倍耐力轮胎股份公司 Tire for wheel of vehicle
CN111511586A (en) * 2018-01-11 2020-08-07 横滨橡胶株式会社 Stubborn tire and pneumatic tire

Also Published As

Publication number Publication date
EP2957437A4 (en) 2016-11-02
US20150375572A1 (en) 2015-12-31
EP2957437A1 (en) 2015-12-23
RU2015138975A (en) 2017-03-17
JP2014151811A (en) 2014-08-25
CN105026184A (en) 2015-11-04

Similar Documents

Publication Publication Date Title
US9010391B2 (en) Pneumatic tire
WO2014126048A1 (en) Pneumatic tire
EP3213930B1 (en) Pneumatic tire
US10195907B2 (en) Heavy-duty tire
US10500903B2 (en) Pneumatic tire
US8973631B2 (en) Pneumatic tire
US20170120688A1 (en) Pneumatic Tire
US20190283505A1 (en) Pneumatic Tire
US9802444B2 (en) Pneumatic tire
JP2013252749A (en) Pneumatic tire
US9193218B2 (en) Pneumatic tire
JP6834119B2 (en) Pneumatic tires
WO2016088854A1 (en) Pneumatic tire
RU2671217C1 (en) Pneumatic tyre
WO2016088843A1 (en) Pneumatic tire
US20170305200A1 (en) Pneumatic Tire
JP5987327B2 (en) Pneumatic tire
JP2016037083A (en) Pneumatic tire
JP2013001287A (en) Pneumatic tire
JP2015178337A (en) pneumatic tire
EP3020573B1 (en) Pneumatic tire
JP2016022807A (en) Pneumatic tire
JP2019194038A (en) Pneumatic tire
US10239356B2 (en) Pneumatic tire
JP7293840B2 (en) pneumatic tire

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480003567.2

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14751771

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 14767503

Country of ref document: US

REEP Request for entry into the european phase

Ref document number: 2014751771

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2014751771

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2015138975

Country of ref document: RU

Kind code of ref document: A