WO2014125867A1 - Control device, computer program, mobile-body system, and control method - Google Patents

Control device, computer program, mobile-body system, and control method Download PDF

Info

Publication number
WO2014125867A1
WO2014125867A1 PCT/JP2014/050743 JP2014050743W WO2014125867A1 WO 2014125867 A1 WO2014125867 A1 WO 2014125867A1 JP 2014050743 W JP2014050743 W JP 2014050743W WO 2014125867 A1 WO2014125867 A1 WO 2014125867A1
Authority
WO
WIPO (PCT)
Prior art keywords
coordinate value
unit
movement
point
contact
Prior art date
Application number
PCT/JP2014/050743
Other languages
French (fr)
Japanese (ja)
Inventor
幸平 國松
Original Assignee
株式会社椿本チエイン
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社椿本チエイン filed Critical 株式会社椿本チエイン
Publication of WO2014125867A1 publication Critical patent/WO2014125867A1/en

Links

Images

Classifications

    • GPHYSICS
    • G08SIGNALLING
    • G08CTRANSMISSION SYSTEMS FOR MEASURED VALUES, CONTROL OR SIMILAR SIGNALS
    • G08C21/00Systems for transmitting the position of an object with respect to a predetermined reference system, e.g. tele-autographic system
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course or altitude of land, water, air, or space vehicles, e.g. automatic pilot
    • G05D1/0011Control of position, course or altitude of land, water, air, or space vehicles, e.g. automatic pilot associated with a remote control arrangement
    • G05D1/0016Control of position, course or altitude of land, water, air, or space vehicles, e.g. automatic pilot associated with a remote control arrangement characterised by the operator's input device
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course or altitude of land, water, air, or space vehicles, e.g. automatic pilot
    • G05D1/0011Control of position, course or altitude of land, water, air, or space vehicles, e.g. automatic pilot associated with a remote control arrangement
    • G05D1/0038Control of position, course or altitude of land, water, air, or space vehicles, e.g. automatic pilot associated with a remote control arrangement by providing the operator with simple or augmented images from one or more cameras located onboard the vehicle, e.g. tele-operation
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/048Interaction techniques based on graphical user interfaces [GUI]
    • G06F3/0487Interaction techniques based on graphical user interfaces [GUI] using specific features provided by the input device, e.g. functions controlled by the rotation of a mouse with dual sensing arrangements, or of the nature of the input device, e.g. tap gestures based on pressure sensed by a digitiser
    • G06F3/0488Interaction techniques based on graphical user interfaces [GUI] using specific features provided by the input device, e.g. functions controlled by the rotation of a mouse with dual sensing arrangements, or of the nature of the input device, e.g. tap gestures based on pressure sensed by a digitiser using a touch-screen or digitiser, e.g. input of commands through traced gestures

Definitions

  • the present invention relates to a pointing device, a computer program, a moving body system, and a pointing method for instructing a moving body that can move in all directions.
  • Patent Documents 1 and 2 Conventionally, moving bodies that can move in all directions have been proposed.
  • a cross key is known as an operation device for instructing the moving direction of such a movable body that can move in all directions.
  • a moving body that can move in all directions is controlled using the cross key, the direction of straight direction is intuitive and easy to understand, but the direction of rotation is not intuitive.
  • a moving body is operated remotely, it is necessary to check an image acquired by a camera, an image sensor, a thermography, or the like mounted on the moving body.
  • the present invention has been made in view of the above-described circumstances, and an object thereof is to provide an instruction device and the like that can be instructed in a rotational direction intuitively and can be easily operated while confirming a camera image.
  • the pointing device detects a contact location on a plane defined by two intersecting coordinate axes, and outputs a coordinate value corresponding to the detected contact location, and corresponds to the first contact location
  • a first reception unit that receives a first coordinate value from the contact detection unit, and a second coordinate corresponding to a second contact location after the first reception unit receives the first coordinate value from the contact detection unit.
  • the image acquisition unit is provided to instruct the movement of the movable body that can move while rotating, and the second coordinate value received by the second receiving unit and
  • the movement reception unit receives An instruction information calculation unit that calculates instruction information for instructing the rotational angular velocity of the mobile body based on a plurality of trajectory coordinate values; a transmission unit that transmits the instruction information calculated by the instruction information calculation unit to the mobile body; And a display unit for displaying an image transmitted from the mobile body.
  • the instruction information for instructing the rotational angular velocity of the moving body is calculated, Since the image transmitted from the moving body is displayed, the rotation angular velocity can be instructed intuitively, and the operation can be easily performed while checking the image transmitted from the moving body.
  • the pointing device includes a determination unit that periodically determines whether or not the contact location has moved, and the movement receiving unit has moved by the time when it is determined that the determination unit has not moved. A trajectory coordinate value corresponding to the contact location indicating the movement trajectory of the second contact location is received.
  • the movement accepting unit accepts the coordinate value corresponding to the contact location indicating the movement trajectory to which the second contact location has moved until it is determined that the contact location has not moved. It is possible to instruct the user intuitively.
  • the pointing device is configured to determine an end point coordinate value corresponding to the end point of the movement of the second contact location from the trajectory coordinate value received by the movement receiving unit based on the determination result of the determining unit.
  • the instruction information calculation unit calculates a moving direction of the moving body based on a direction from a specific coordinate value to the first coordinate value, and a distance between the specific coordinate value and the first coordinate value.
  • the moving speed of the moving body is calculated based on the angle, and the rotational angular speed of the moving body is calculated based on an angle formed by two line segments passing through the first coordinate value, the end point coordinate value, and the second coordinate value. Is calculated.
  • the rotational angular velocity of the moving body is calculated based on an angle formed by two line segments passing through the first coordinate value, the end point coordinate value, and the second coordinate value. It is possible to instruct the rotational angular velocity instructed to the moving body by an intuitive operation.
  • the movement receiving unit includes a plurality of second trajectory coordinates corresponding to a plurality of contact locations indicating a movement trajectory of the first contact location moved from the first contact location. And a third plurality of trajectory coordinate values corresponding to a plurality of contact locations indicating a movement trajectory of the second contact location that has further moved from the end point as a start point, and the determination unit determines the determination unit Based on the result, a third coordinate value corresponding to an end point of the movement of the first contact location is determined from the second plurality of locus coordinate values received by the movement receiving unit, and the third plurality of locus coordinates.
  • a fourth coordinate value corresponding to an end point of movement of the second contact location from the value, and indicating a moving direction of the moving body based on a direction from the specific coordinate value to the third coordinate value; Based on the distance between the specific coordinate value and the third coordinate value.
  • a second instruction information calculation unit for calculating a second instruction information for instructing a rotational angular velocity based on a direction of a line segment connecting the third coordinate value and the fourth coordinate value.
  • the transmission unit transmits the second instruction information calculated by the second instruction information calculation unit to the mobile body.
  • the moving speed of the moving body is instructed based on the distance between the specific coordinate value and the third coordinate value, the user can easily change the moving speed. .
  • the contact detection unit is provided so as to cover a display surface of the display unit, and displays a mark on the display surface of the display unit corresponding to the first coordinate value and the second coordinate value.
  • a gauge display unit is provided.
  • the mark is displayed at the position corresponding to the first coordinate value and the second coordinate value, the user can visually confirm the operation instruction content by referring to the mark. It becomes possible.
  • the pointing device is characterized in that the display surface of the display unit includes a display region for displaying the image and an operation region for performing a display relating to an operation on the contact detection unit.
  • the display area and the instruction area are overlapped, it is possible to secure a wider operation area as compared with the case where the display area and the instruction area are not overlapped.
  • the pointing device according to the present invention is characterized in that the display area and the operation area overlap.
  • the display area for displaying the image acquired by the image acquisition unit of the moving object is not overlapped with the operation area used for the movement instruction operation, the movement instruction operation can be surely performed. It becomes.
  • the pointing device includes a display processing unit that displays the instruction information transmitted to the moving body in the display area by a figure or a character.
  • the instructed content is displayed in the display area with graphics and characters, it is possible to confirm the instructed content while confirming the image acquired by the image acquiring unit.
  • the computer program according to the present invention includes a first coordinate value corresponding to a first contact location with respect to a plane defined by two intersecting coordinate axes, a second coordinate value corresponding to a second contact location, and the second Based on a plurality of locus coordinate values corresponding to a plurality of contact locations indicating a movement locus of the second contact location moved from the contact location of
  • a computer program for causing a computer to execute a process of displaying an image transmitted from a moving body on a display unit, and instructing a moving direction of the moving body based on a direction from a specific coordinate value to the first coordinate value.
  • the instruction information for instructing the rotational angular velocity of the moving body is calculated, and the image transmitted from the moving body is displayed.
  • the rotation angular velocity can be instructed intuitively, and can be easily operated while confirming the image transmitted from the moving body.
  • a moving body system includes a moving body that can move while rotating, a display unit that displays an image transmitted from the moving body, and a contact detection unit that outputs coordinates corresponding to a detected contact location.
  • the moving body includes a first acquisition unit that receives from the contact detection unit a first coordinate value corresponding to a first contact location by the contact detection unit, and the first acquisition unit receives the first coordinate value.
  • the second acquisition unit that receives a second coordinate value corresponding to the second contact location by the contact detection unit from the contact detection unit, and the second moved from the second contact location as a starting point
  • a movement receiving unit that receives a plurality of locus coordinate values corresponding to a plurality of contact points indicating a movement locus of the contact point, a movement instruction based on the first coordinate value received by the first receiving unit, and the second reception Department accepts
  • An instruction information calculation unit for calculating instruction information for instructing a rotational angular velocity
  • an image acquisition unit for acquiring an image based on the second coordinate value and a plurality of locus coordinate values received by the movement reception unit.
  • an instruction information calculation unit that calculates instruction information for instructing the rotational angular velocity
  • the instruction method receives a first coordinate value corresponding to a first contact point with respect to a plane defined by two intersecting coordinate axes, and moves while rotating based on the received first coordinate value.
  • the second coordinate value corresponding to the second contact location with respect to the plane and the second contact moved starting from the second contact location
  • Receiving a plurality of trajectory coordinate values corresponding to a plurality of contact locations indicating a movement trajectory of the location instructing a moving direction of the moving body based on a direction from a specific coordinate value to the first coordinate value, and
  • the moving speed of the moving body is instructed based on the distance between the coordinate value and the first coordinate value, and the end point coordinate value corresponding to the end point of the movement of the second contact point is determined from the plurality of locus coordinate values.
  • the rotational angular velocity of the moving body is instructed based on an angle formed by two line segments passing through the first coordinate value, the end point coordinate value, and the second coordinate value, and the movement Since the image transmitted from the body is displayed on the display unit, the rotation angular velocity can be instructed intuitively, and the operation can be easily performed while confirming the image transmitted from the moving body.
  • FIG. 1 is a diagram illustrating a configuration example of a mobile system according to Embodiment 1.
  • FIG. 2 is a perspective view of an omnidirectional mobile trolley according to Embodiment 1.
  • FIG. It is a top view of the omnidirectional mobile trolley except a some roller.
  • FIG. 12 is an explanatory diagram illustrating an example of a layout of a display unit in an operation unit of an operation device according to Embodiment 2.
  • FIG. 10 is an explanatory diagram illustrating an example of an operation displayed on an operation device and a display unit according to a third embodiment.
  • FIG. 10 is an explanatory diagram illustrating an example of an operation displayed on an operation device and a display unit according to a third embodiment.
  • FIG. 10 is an explanatory diagram illustrating an example of an operation displayed on an operation device and a display unit according to a third embodiment.
  • FIG. 10 is a diagram illustrating a configuration example of a mobile system according to a fourth embodiment. It is explanatory drawing which shows an example of the movement form of an omnidirectional mobile trolley.
  • FIG. 10 is a block diagram illustrating an operating device according to a fifth embodiment.
  • FIG. 1 is a diagram illustrating a configuration example of a mobile system according to the first embodiment.
  • the moving body system includes an operating device 1 (indicating device) and an omnidirectional moving carriage 2 (moving body).
  • the operating device 1 is separated from the omnidirectional mobile trolley 2 on the assumption that the operator operates the omnidirectional mobile trolley 2 from a remote location.
  • the controller device 1 may be detachable from the omnidirectional mobile trolley 2.
  • the operating device 1 includes a CPU (Central Processing Unit) 10, a ROM (Read Only Memory) 11, a RAM (Random Access Memory) 12, a coordinate value storage unit 13, an operation unit 14, and a communication unit 15.
  • the CPU 10 controls each part of the controller device 1 by appropriately loading a control program stored in the ROM 11 into the RAM 12 and executing it.
  • ROM 11 is a nonvolatile memory such as an EEPROM (Electrically-Erasable-and Programmable-ROM) or flash memory.
  • the ROM 11 stores a control program to be executed by the CPU 10 and various data in advance.
  • the RAM 12 is SRAM (Static RAM), DRAM (Dynamic RAM), flash memory, or the like.
  • the RAM 12 temporarily stores various data generated when the CPU 10 executes various programs.
  • the coordinate value storage unit 13 is configured using a hard disk or a flash disk.
  • the coordinate value storage unit 13 stores various data necessary for controlling the omnidirectional mobile carriage 2.
  • the program stored in the ROM 11 may be stored in the coordinate value storage unit 13.
  • the communication unit 15 communicates with the omnidirectional mobile trolley 2.
  • the operation unit 14 includes a display unit 141 and a contact detection unit 142.
  • the contact detection unit 142 is, for example, a touch panel, detects that a user touches a predetermined position on the operation surface with a finger, and outputs a coordinate value of the detected location (detected location).
  • the contact detection unit 142 is provided so as to cover the display surface of the display unit 141. That is, the touch detection unit 142 and the display unit 141 constitute a so-called touch panel display. Since the contact detection unit 142 is configured to transmit light, the user can visually recognize the display on the display unit 141 through the contact detection unit 142.
  • the contact detection unit 142 receives a movement instruction input of the omnidirectional mobile trolley 2.
  • the omnidirectional mobile carriage 2 includes a moving body control unit 20, a drive motor 21, a moving chain 22, an image acquisition unit 23, and a communication unit 24.
  • the moving body control unit 20 includes a CPU, a ROM, a RAM, a motor driver, and the like.
  • the CPU of the mobile control unit 20 controls each part of the omnidirectional mobile carriage 2 by appropriately loading a control program stored in the ROM into the RAM 12 and executing it.
  • the drive motor 21 drives the moving chain 22 to run the omnidirectional mobile carriage 2.
  • the communication unit 24 communicates with the controller device 1. Communication between the controller device 1 and the omnidirectional mobile trolley 2 may be wired or wireless.
  • the communication line may be a public line or a dedicated line.
  • the Internet, a packet communication network, or the like may be used as a communication line.
  • the image acquisition unit 23 includes a camera 231 and a fisheye lens 232.
  • the camera 231 captures the situation around the omnidirectional mobile trolley 2.
  • the camera 231 is a CCD camera, a CMOS camera, or the like.
  • the image to be taken may be a moving image or a still image.
  • the captured image is sent to the controller device 1 via the communication unit 24.
  • the controller device 1 displays the received image on the display unit 141.
  • the fisheye lens 232 is a lens having a horizontal angle of view of 360 degrees. Therefore, it is possible to accurately grasp the situation around the omnidirectional mobile trolley 2. Other lenses may be used as long as the horizontal field angle is 360 degrees. In addition, a lens having an angle of view smaller than 360 degrees may be used depending on the application.
  • the image acquisition unit 23 includes the camera 231, an image acquisition device other than the camera, a thermography, a laser scanner, a radio wave radar, or the like may be used.
  • Thermography measures the ambient temperature by measuring infrared rays, and outputs the temperature status as an image.
  • the laser scanner measures the distance with a laser, and outputs the topography and the shape of the object as image data based on the distance measurement.
  • the radar measures the distance by radio waves and outputs the topography and the shape of the object as image data based on the distance measurement.
  • FIG. 2 is a perspective view of the omnidirectional mobile trolley 2 according to Embodiment 1
  • FIG. 3 is a plan view of the omnidirectional mobile trolley 2 excluding a plurality of rollers.
  • the omnidirectional mobile trolley 2 is a multidirectional moving body module that can move on the traveling surface P in multiple directions.
  • the base 30 is a movable body module main body portion to which the chains 51R, 51L, 56R, 56L and the like are attached. Since the traveling surface P is a surface on which the omnidirectional mobile carriage 2 moves, the traveling surface P may be referred to as a traveling surface P, and the meanings of the traveling surface and the moving surface are the same. In the following description, “traveling surface P” is used.
  • the chains 51R, 51L, 56R, and 56L correspond to the moving chain 22 shown in FIG. 2 and 3, the image acquisition unit 23 is not shown.
  • the base body 30 that moves along the traveling surface P is provided with a pair of chains (band-like drive bodies) 51R and 51L that are driven independently from each other on the front and left and right, and are driven independently from each other on the left and right of the rear.
  • a pair of chains 56R and 56L are provided.
  • the chains 51R, 51L, 56R, and 56L can be driven in both forward and reverse directions along the circulation path.
  • Driving in the positive direction refers to driving the entire chain so as to drive the lower part, which is the traveling surface side part (grounding surface side part) of the chain, backward and to drive the upper part of the chain forward
  • Driving in the reverse direction means driving the entire chain in the reverse direction with respect to the forward direction.
  • Rollers (rotators) 54R, 54L, 59R, and 59L are arranged on the chains 51R, 51L, 56R, and 56L, for example, at equal intervals along the driving direction D1 of the upper or lower chains 51R, 51L, 56R, and 56L. ing.
  • the rollers 54R, 54L, 59R, and 59L are mounted so that the rotation shafts 541R, 541L, 591R, and 591L that are oblique to the drive direction D1 of the chains 51R, 51L, 56R, and 56L are parallel to each other.
  • the outer peripheral surfaces 542R, 542L, 592R, and 592L are brought into contact with the traveling surface P, respectively.
  • the pair of chains 51R, 51L and the rollers 54R, 54L fixedly installed thereon constitute a pair of driving body units 50, and the pair of chains 56R, 56L and the rollers 59R, 59L fixedly installed thereon are a pair of driving bodies.
  • the unit 55 is configured.
  • the driver units 50 and 55 are arranged in the driving direction D1 and further form a pair.
  • the load of the omnidirectional mobile carriage 2 is applied to the rollers 54R, 54L, 59R, 59L. Share and support.
  • Each of the rollers 54R, 54L, 59R, and 59L is generated in order to generate the driving force of the base 30 in the resultant direction of the reaction force against the force acting on the rollers 54R, 54L, 59R, and 59L from the running surface P according to the load of the base 30.
  • the base body 30 can be moved smoothly and freely in multiple directions along the running surface P.
  • the drive shaft 402L of the drive sprocket 502L that is a power transmission rotating body and the driven shaft 404R of the driven sprocket 503R that is a power transmission rotating body are not connected to each other.
  • the driven shaft 404L of the driven sprocket 503L and the driving shaft 402R of the driving sprocket 502R are not connected to each other.
  • the driving sprocket 502L and the driven sprocket 503L are arranged in parallel along the front-rear direction.
  • the drive motor 401L drives the drive sprocket 502L and causes the driven sprocket 503L to follow the drive sprocket 502L.
  • the driving sprocket 502R and the driven sprocket 503R are arranged in parallel along the front-rear direction.
  • the drive motor 401R drives the drive sprocket 502R and causes the driven sprocket 503R to follow the drive sprocket 502R.
  • the drive shaft 407L of the drive sprocket 507L that is a power transmission rotating body and the driven shaft 409R of the driven sprocket 508R that is a power transmission rotating body are not connected to each other.
  • the driven shaft 409L of the driven sprocket 508L and the drive shaft 407R of the drive sprocket 507R are not connected to each other.
  • the drive sprocket 507L and the driven sprocket 508L are arranged in parallel along the front-rear direction.
  • the drive motor 406L drives the drive sprocket 507L and causes the driven sprocket 508L to follow the drive sprocket 507L.
  • the driving sprocket 507R and the driven sprocket 508R are arranged in parallel along the front-rear direction.
  • the drive motor 406R drives the drive sprocket 507R and causes the driven sprocket 508R to follow the drive sprocket 507R.
  • Drive motors 401L, 401R, 406L, and 406R are arranged one by one.
  • the drive motors 401L, 401R, 406L, and 406R correspond to the drive motor 21 shown in FIG.
  • the omnidirectional mobile carriage 2 has a pair of chains 51R, 51L, a pair of chains 56R, and a pair of chains 56R, 56L.
  • the base 30 can be moved smoothly and freely in multiple directions along the running surface P by adjusting the moving speed and the direction of the base 30 by controlling the two parameters of the 56L rotational driving direction and the driving speed V. It has become.
  • FIG. 4A, 4B, and 4C are explanatory views showing a moving form of the omnidirectional mobile carriage 2.
  • FIG. The movement form of the omnidirectional carriage 2 is three patterns of translation (FIG. 4A), rotation (FIG. 4B), and translation + rotation (FIG. 4C).
  • Translational movement indicates that the omnidirectional mobile carriage 2 does not rotate (changes direction) and moves in a certain direction.
  • FIG. 4A shows translational movement in the diagonally left front direction in which the angle formed with the front-rear direction is d1.
  • the rotational movement indicates a movement in which the omnidirectional mobile carriage 2 rotates about a predetermined axis.
  • FIG. 4B shows a movement that rotates counterclockwise at an angular velocity d2.
  • Translational movement + rotational movement is a movement that combines translational movement and rotational movement. This is a movement of rotating in a certain direction while rotating at a predetermined angular velocity around a predetermined axis. An example is shown in FIG. 4C.
  • the angle indicates the direction of movement and the speed of movement, in rotational movement, the direction of rotation and angular speed of rotation, and in translation + rotation, the angle indicates the direction of movement, speed of movement, rotational direction, and angular speed of rotation.
  • FIG. 5 is an explanatory diagram showing an example of the layout of the display unit 141 in the operation unit 14.
  • the display unit 141 includes a movement instruction area 141a (operation area) and a camera image display area 141b (display area).
  • the movement instruction area 141 a is an area for inputting a movement instruction to the omnidirectional moving carriage 2 together with the contact detection unit 142.
  • the camera image display area 141 b is an area for displaying an image from the image acquisition unit 23 mounted on the omnidirectional mobile carriage 2.
  • the camera image display area 141 b is provided in the upper half of the display unit 141 and the movement instruction area 141 a is provided in the lower half.
  • the area of the camera image display area 141b and the movement instruction area 141a is substantially the same, one may be widened and the other may be narrowed.
  • the contact detection unit 142 may be provided not only on the entire display surface of the display unit 141 but only on a portion corresponding to the movement instruction area 141a.
  • FIG. 6 is an explanatory diagram showing an example of the operation surface 142 a of the contact detection unit 142.
  • the operation surface 142a is at a position corresponding to the movement instruction area 141a of the display unit 141.
  • An axis of a horizontal axis 142b and a vertical axis 142c is shown on the operation surface 142a of the contact detection unit 142.
  • the horizontal axis 142b is the X axis and the vertical axis 142c is the Y axis.
  • An intersection point between the X axis and the Y axis is defined as an origin O.
  • 7A and 7B are explanatory diagrams showing an operation method in the case of instructing translational movement.
  • A be the position after the movement.
  • a line segment connecting the origin O and the point A is defined as a line segment OA.
  • L1 be the length of the line segment OA.
  • An angle formed by the Y axis and the line segment OA is defined as d1.
  • m is a coefficient.
  • the value of the coefficient m may be appropriately determined according to the area of the operation surface 142a of the contact detection unit 142 and the specifications of the omnidirectional mobile carriage 2.
  • the finger using the operation may be any finger, but it is preferable to use the index finger. This is because it becomes easier to instruct the following rotational movement.
  • the marker Ma is displayed at the point A where the finger is placed on the display unit 141.
  • a vector S1 from the origin O to the point A (marker) is displayed.
  • FIG. 8A, 8B, 9A, and 9B are explanatory diagrams of the movement instruction method.
  • FIG. 8A, FIG. 8B, FIG. 9A, and FIG. 9B show an instruction method for further performing rotational movement when the omnidirectional mobile carriage 2 is moving in translation.
  • the omnidirectional mobile carriage 2 performs a movement (translation movement + rotation movement) in which the translation movement and the rotation movement are combined.
  • the user touches the other part of the operation surface 142a of the contact detection unit 142 with another finger while holding the finger used to instruct the translation movement. That point is designated as point B (see FIG. 8A).
  • point B the finger placed at the point B with the point A as the rotation axis is moved so as to slide on the operation surface 142a (see FIGS.
  • n is a coefficient.
  • the value of the coefficient n may be appropriately determined according to the area of the operation surface 14a of the operation unit 14 and the specifications of the omnidirectional mobile carriage 2.
  • the rotational direction of the rotational movement is determined by the moving direction when the finger is moved from point B to point C.
  • the rotation direction of the omnidirectional mobile carriage 2 is also counterclockwise.
  • the rotation direction of the omnidirectional mobile carriage 2 is also clockwise.
  • the index finger is used when instructing the translational movement, it is preferable to use the thumb to instruct the rotational movement. Of course, other fingers may be used.
  • the display unit 141 displays the following items in addition to the display shown in FIG. 7B.
  • a marker Mc is displayed at a point C, which is the position of another finger used for the rotation movement instruction.
  • a line segment S3 connecting the points A and C is displayed.
  • the display unit 141 displays a line segment S2 connecting the point A and the point B that is the first position of another finger.
  • a line segment S4 connecting the points B and C is displayed.
  • FIG. 10A and 10B are explanatory diagrams of the movement instruction method.
  • FIG. 10A and FIG. 10B show an operation for changing the translation direction of the omnidirectional mobile carriage 2 that has been translated and rotated by the operation shown in FIGS. 8A, 8B, 9A, and 9B. Yes.
  • the two fingers are slid and moved on the operation surface 142a without changing the positional relationship with each other.
  • Let the positions of the finger after movement be point A 'and point C'.
  • Point A and point C are the positions of the fingers before moving.
  • the direction in which the omnidirectional mobile carriage 2 translates is indicated by the angle formed by the line segment OA and the Y axis as shown in FIG. 7A. As shown in FIG.
  • the translation direction is changed from the angle d1 between the line segment OA and the Y axis to the angle d3 between the line segment OA ′ and the Y axis by moving the finger at the point A to the point A ′.
  • the The translation direction is changed continuously from angles d1 to d3.
  • Point B is the position where the finger moved to point C first touched the operation surface 142a when instructing rotational movement.
  • Point B ′ is a point at a position corresponding to a point B moved in the same direction and distance as point A and point C. That is, the positional relationship between the points A and C and the point B and the positional relationship between the points A ′ and C ′ and the point B ′ are the same. As shown in FIG.
  • FIG. 11 is an explanatory view showing a state in which the translation direction is continuously changed.
  • the direction of the arrow shown in FIG. 11 is the translation direction.
  • the state in which the translation direction is continuously changed from the angle d1 to d3 is shown.
  • Rotation is stopped as follows.
  • the finger at the point C point C ′
  • the rotational movement is stopped.
  • the omnidirectional mobile trolley 2 is performing translation + rotation, only the rotation is stopped and the translation is continued.
  • the finger at the point A point A ′
  • the translational movement and the rotational movement are stopped, and the omnidirectional moving carriage 2 is completely stopped.
  • the instruction operation for the omnidirectional mobile trolley 2 is not limited to the operation described above, and the following instruction operation may be employed.
  • the speed of translation is determined by the length of the line segment OA, the time until the finger moves from the origin O to the point A is measured, and a value proportional to the measured time may be used as the speed.
  • the finger at the point A (point A ′) is released, the translational movement and the rotational movement may not be stopped, but only the translational movement may be stopped and the rotational movement may be continued.
  • the rotational movement may be stopped by releasing the finger at the point C (point C ′).
  • the translation speed may be increased by moving the finger placed at the point A away from the origin O, and the translation speed may be decreased by approaching the origin O.
  • the rotational speed may be decreased by moving the finger placed at the point C in the direction approaching the point B, and the rotational speed may be increased by moving in the direction away from the point B.
  • a command (command) system to be transmitted from the controller device 1 to the omnidirectional mobile trolley 2 is configured according to the movement instruction method described above.
  • FIG. 12 is a list showing an example of a command system of the omnidirectional mobile carriage 2. Shows commands and arguments. There are four types of commands: a translation command, a rotation command, a translation stop command, and a rotation stop command.
  • the translation command takes speed and translation direction as arguments.
  • the speed is the speed of translation (the magnitude of speed).
  • the unit of speed is, for example, m / s.
  • the translation direction designates an angle formed by a vector indicating the translation direction and the Y axis when the longitudinal direction of the omnidirectional mobile carriage 2 is the Y axis.
  • FIG. 13 is an explanatory diagram illustrating an example of an angle indicating a translation direction.
  • the front-rear direction is a Y-axis and the left-right direction X-axis with a predetermined position as the origin.
  • the coordinate system shown here is associated with the coordinate system of the operation surface 142a of the contact detection unit 142 shown in FIG.
  • +45 degrees is specified as an argument for the translation direction.
  • the method of taking the angle is not limited to this.
  • the position where the angle is 0 may be the X-axis direction. It is good also as taking the value of 0 degree to 360 degree
  • Rotational movement command takes angular velocity as an argument.
  • the unit of angular velocity is, for example, rad / s.
  • the direction of rotation is represented by the sign of the value. Positive values are clockwise and negative values are counterclockwise. Not limited to this, the positive and negative meanings may be reversed.
  • two arguments may be used, the first argument may be the angular velocity and the second argument may be the rotation direction.
  • the translation stop command and the rotation stop command are commands for stopping the translation movement and the rotation movement, respectively, and do not take an argument.
  • Commands are not limited to the above four. Other commands may be provided, or the number of commands may be reduced. For example, a command for instructing translation + rotation and a complete stop command for stopping translation and rotation may be added. On the other hand, the translation stop command and the rotation stop command may not be provided. This is because when the speed is 0 in the translation command, translation is stopped. Similarly, if the angular velocity is 0 (angular velocity magnitude 0) in the rotational movement command, the rotation is stopped. Further, the translation stop command and the rotation stop command may be integrated into one command, for example, a movement stop command.
  • the movement stop command takes one argument.
  • the arguments are both translation and rotation. When the argument is translation, only translation is stopped. When the argument is rotation, only rotational movement stops. When the arguments are both, both translational and rotational movements stop.
  • the CPU 10 of the controller device 1 processes an input signal generated when the operator operates the contact detection unit 142 (step S1). A / D conversion and filtering processing.
  • the CPU 10 calculates the number of input points and the coordinate value of each point (step S2).
  • the number of input points is the number of points at which the contact detection unit 142 has detected an input.
  • the CPU 10 performs processing of the input signal and the calculation of the number of input points and the coordinate value of each point.
  • the processing is performed by a signal processing driver IC (Integrated Circuit) or the like.
  • the number of input points and the coordinate value of each point may be received.
  • sliding the operation surface 142a without releasing the finger touching the operation surface 142a of the contact detection unit 142 from the operation surface 142a is expressed as “drag”. “Dragging” means that the user keeps moving the finger.
  • step S3 determines whether the number of input points is 0, that is, whether there is an input by the user (step S3). When the number of input points is 0 (YES in step S3), the CPU 10 determines whether or not the omnidirectional mobile trolley 2 is moving (step S4). Whether or not the omnidirectional mobile trolley 2 is moving may be determined from a history of issuing commands to the omnidirectional mobile trolley 2 and stored. Or you may inquire directly to the omnidirectional mobile trolley 2. If the omnidirectional mobile trolley 2 is moving (YES in step S4), the CPU 10 clears the coordinate values stored in the coordinate value storage unit 13 (step S5). CPU10 resets the display of the display part 141 (step S6). The display reset is to return the display on the display unit 141 to the initial state.
  • step S7 The display of the markers Ma, Mb, Mc and line segments S1, S2, S3, S4 is to be erased from the display unit 141.
  • CPU10 instruction
  • all stop means to stop both translational movement and rotational movement.
  • step S3 the CPU 10 determines whether or not the number of input points is 1 (step S8). If the number of input points is 1 (YES in step S8), the CPU 10 performs a command determination process 1 (step S9). The CPU 10 ends the process.
  • step S10 determines whether or not the number of input points is 2 (step S10). When the number of input points is 2 (YES in step S10), the CPU 10 performs a command determination process 2 (step 11). The CPU 10 ends the process. If the number of input points is not two (NO in step S10), the CPU 10 ends the process. Thereafter, the CPU 10 repeatedly performs the processing shown in the flowcharts of FIGS. Since it is not assumed that the number of input points is 3 or more, if NO is determined in step S10, error processing may be performed. For example, the user may be warned that an unexpected operation has been performed by emitting a beep sound or turning on an error LED (Light Emitting Diode).
  • error processing may be performed. For example, the user may be warned that an unexpected operation has been performed by emitting a beep sound or turning on an error LED (Light Emitting Diode).
  • the command determination process 1 (step S9 in FIG. 14) will be described with reference to FIG.
  • first point first contact location
  • second point second contact location
  • the first point indicates a point when there is an input from a state where nothing is input to the operation unit 14. This corresponds to the point A in FIGS. 7A, 8A, and 9A described above.
  • the point is referred to as a second point. This corresponds to the point B in FIGS. 8A and 9A described above.
  • the command determination process 1 is a process when the number of input points is one.
  • CPU10 (1st reception part) determines whether the coordinate value of the 1st point is memorize
  • step S22 This is a case where the user places a finger at the origin in order to instruct translational movement.
  • an input error may be considered in the determination in step S22. For example, even if the input coordinate value does not coincide with the origin coordinate, if the Euclidean distance between the input point and the origin is equal to or less than a predetermined value, it may be treated as being at the origin. If it is not the origin (NO in step S22), the CPU 10 ends the process.
  • step S21 When the coordinate value of the first point is stored in the coordinate value storage unit 13 (YES in step S21), the CPU 10 matches the input coordinate value with the coordinate value of the first point stored in the coordinate value storage unit 13. It is determined whether to do so (step S25). If the coordinate values do not match (NO in step S25), the CPU 10 determines whether or not the input point is being dragged (step S26). Whether or not the drug is being dragged is performed as follows, for example. When step S26 is first reached, the input coordinate value is temporarily stored in the RAM 12. When step S26 is reached after the next time, the coordinate value stored in the RAM 12 is compared with the input coordinate value, and if they match, the number of matches is incremented.
  • the number of matches is reset to 0, and the coordinate value stored in the RAM 12 is updated to the input coordinate value. It is determined that the user is dragging until the number of matches reaches a predetermined number, and when the number of matches reaches a predetermined number, it is determined that the user is not dragging. This is merely an example, and a conventional technique relating to tracking of input points on a track pad or the like may be applied.
  • step S26 the CPU 10 updates the display on the display unit 141 (step S37). Specifically, the CPU 10 redisplays the marker Ma at the position of the display unit 141 corresponding to the dragged position, and displays a line segment S1 connecting the origin O and the marker Ma on the display unit 141.
  • the CPU 10 ends the process.
  • the CPU 10 determines whether or not the omnidirectional mobile carriage 2 is moving (step S27).
  • the CPU 10 determines whether or not the input point is the origin (step S32).
  • the CPU 10 deletes the line segment S1 (see FIG.
  • step S33 The CPU 10 issues a translation stop command (step S34). That is, the CPU 10 transmits a translation stop command to the omnidirectional mobile carriage 2 via the communication unit 15. The CPU 10 ends the process. If the input point is not the origin (NO in step S32), since the finger at the first point is released and only the second point is input, the CPU 10 resets the display on the display unit 141. (Step S35). CPU10 issues an all stop command with respect to the omnidirectional mobile trolley 2 (step S36).
  • the CPU 10 calculates the length of a line segment connecting the input point and the origin (specific coordinate value) (step S28).
  • the CPU 10 calculates an angle formed by a line segment connecting the input point and the origin and the Y axis (step S29).
  • CPU10 updates the display of the display part 141 (step S30).
  • the CPU 10 redisplays the marker Ma, and redisplays the line segment S1 connecting the input point and the origin.
  • the CPU 10 issues a translation command including the calculated line segment length and angle (step S31). That is, a command for translational movement is transmitted to the omnidirectional mobile carriage 2 via the communication unit 15.
  • the length of the line segment indicates the translational speed (speed), and the angle indicates the translational direction. Instead of including the length of the line segment obtained as speed in the command to be transmitted, it may be a value obtained by multiplying a predetermined coefficient.
  • the translation direction is as described above with reference to FIG. The speed may be determined not by the length of the line segment but by the dragged time.
  • the CPU 10 determines whether or not the coordinate value of the second point is stored in the coordinate value storage unit 13 (step S38). ).
  • the CPU 10 clears the coordinate value of the second point stored in the coordinate value storage unit 13 (step S39).
  • the CPU 10 erases the line segments S2, S3, S4 and the marker Mc (see FIG. 9B) displayed on the display unit 141 (step S40).
  • CPU10 issues a rotational movement stop command (step S41). That is, a command to stop rotational movement is transmitted to the omnidirectional mobile carriage 2 via the communication unit 15. The CPU 10 ends the process. If the coordinate value of the second point is not stored (NO in step S38), the CPU 10 ends the process.
  • the command determination process 2 (step S11 in FIG. 14) will be described with reference to FIGS.
  • the command determination process 2 is a process when the number of input points is two.
  • the CPU 10 determines whether or not the coordinate value of the first point is stored in the coordinate value storage unit 13 (step S51). When the coordinate value of the first point is not stored (NO in step S51), the CPU 10 ends the process. In this case, since the operation is not assumed, error processing may be performed. An example of error processing is as described above.
  • the CPU 10 (second receiving unit) stores the coordinate value of the first point and the coordinate value storage unit 13 among the two input points. It is determined whether or not the coordinate value of the first point matches (step S52).
  • the CPU 10 determines that the coordinate value of the second point (second coordinate) is the coordinate. It is determined whether it is stored in the value storage unit 13 (step S53). When the coordinate value of the second point is not stored in the coordinate value storage unit 13 (NO in step S53), the CPU 10 stores the coordinate value of the second point in the coordinate value storage unit 13 among the two input points. (Step S54). This is a case where the user places a second finger on the operation surface 142a of the contact detection unit 142 in order to instruct a rotational movement.
  • the CPU 10 (mark point display unit) displays the marker Mb at the position of the display unit 141 corresponding to the second point and also displays the line segment S2 connecting the first point and the second point (step S55). The CPU 10 ends the process.
  • the CPU 10 determines whether the second point is being dragged.
  • step S57 It is determined whether or not (step S57). Whether or not the drug is being dragged can be determined by a known technique in addition to the above-described method, and thus the description thereof is omitted. If the second point is being dragged (YES in step S57), the CPU 10 (movement accepting unit) updates the display (step S67). The CPU 10 redisplays the marker Mb at the drag position, and displays an arc-shaped line segment S4 connecting the initial position of the second point and the position of the marker Mb. The CPU 10 ends the process.
  • step S58 determines whether or not the omnidirectional mobile trolley 2 is rotating. This is performed based on a command issuance history or by making an inquiry to the omnidirectional mobile carriage 2.
  • the CPU 10 determines whether or not the omnidirectional mobile trolley 2 is rotating (step S58). This is performed based on a command issuance history or by making an inquiry to the omnidirectional mobile carriage 2.
  • the CPU 10 (determining unit) stores the coordinate value of the second point already stored as the initial position coordinate of the second point and is input.
  • the coordinate value of the second point is stored in the coordinate value storage unit 13 as the coordinate value (end point coordinate) of the current second point (step S59).
  • the CPU 10 (instruction information calculation unit) reads the coordinate value of the first point from the coordinate storage unit 13, and connects the line segment connecting the initial position of the first point and the second point and the line segment connecting the first point and the current second point. Is calculated (step S60).
  • the CPU 10 updates the display (Step S61).
  • the CPU 10 redisplays the marker Mb at the drag position and updates the display of the arc-shaped line segment S4 connecting the initial position of the second point and the position of the marker Mc.
  • the CPU 10 issues a rotational movement command including the calculated angle (step S62). That is, the CPU 10 (transmission unit) transmits a rotational movement command (instruction information) to the omnidirectional mobile carriage 2 via the communication unit 15.
  • the CPU 10 ends the process.
  • the CPU 10 reads the coordinate value of the first point and the coordinate value of the initial position of the second point from the coordinate storage unit 13 and is input. It is determined whether or not the point is on a line segment connecting the initial positions of the first point and the second point (step S63). When the input second point is on a line segment connecting the first point and the initial position of the second point (YES in step S63), the CPU 10 stores the current second point and the first point stored in the coordinate storage unit 13. The coordinate values of the initial positions of the two points are cleared (step S64).
  • CPU10 updates the display of the display part 141 (step S65). The CPU 10 erases the marker Mc from the display unit 141 and displays the marker Mb.
  • the CPU 10 erases the arc-shaped line segment S4 connecting the initial position of the second point and the position of the marker Mc, and the line segment S3 connecting the first point and the position of the marker Mc from the display unit 141.
  • the CPU 10 issues a rotational movement stop command (step S66). That is, the CPU 10 transmits a rotational movement stop command to the omnidirectional mobile carriage 2 via the communication unit 15.
  • the CPU 10 ends the process.
  • the input second point is not on a line segment connecting the first point and the initial position of the second point (NO in step S63)
  • the CPU 10 ends the process. In this case, since the operation is not assumed, error processing as described above may be performed.
  • the number of input points is two, which point is dragged when one point is dragged, or where each point is dragged when both points are dragged What is necessary is just to determine using a well-known technique.
  • Step S68 If the coordinate value of the first point does not match the coordinate value of the first point stored in the coordinate value storage unit 13 (NO in step S52), the CPU 10 determines whether or not the first point is being dragged. (Step S68). If the first point is being dragged (YES in step S68), the CPU 10 updates the display on the display unit 141 (step S73). The CPU 10 redisplays the marker Ma at the position of the display unit 141 corresponding to the drag position. Accordingly, the line segment S1 connecting the marker Ma and the origin is displayed again. The CPU 10 ends the process. If the first point is not being dragged (NO in step S68), the CPU 10 determines whether or not the first point matches the origin (step S69).
  • step S69 the CPU 10 updates the display on the display unit 141 (step S70).
  • the CPU 10 displays the marker Ma at the origin.
  • the CPU 10 erases the line segment S1 connecting the marker Ma and the origin from the display unit 141.
  • the CPU 10 issues a translation stop command (step S71). That is, the CPU 10 transmits a translation stop command to the omnidirectional mobile carriage 2 via the communication unit 15. This stops only the translational movement and continues the rotational movement, so that the omnidirectional mobile carriage 2 rotates on the spot.
  • the command determination process 3 is a process performed when an instruction operation for changing the translation movement direction is performed when the omnidirectional mobile carriage 2 performs translation + rotation movement.
  • the CPU 10 determines whether or not the coordinate value of the second point is stored in the coordinate value storage unit 13 (step S81).
  • the CPU 10 inputs the second point coordinate value stored in the coordinate value storage unit 13 and the second point. It is determined whether or not the coordinate values match (step S82). If the coordinate value of the second point stored in the coordinate value storage unit 13 does not match the coordinate value of the input second point (NO in step S82), the CPU 10 determines whether or not the second point is being dragged. Is determined (step S83).
  • the CPU 10 reads the coordinate value of the first point and the coordinate value of the initial position of the second point stored in the coordinate value storage unit 13 (step S84).
  • the CPU 10 determines whether or not the line segment connecting the coordinate value of the first point and the initial position of the second point is parallel to the line segment connecting the current first point and the current second point (step S85). For example, the slopes of two line segments may be obtained to determine whether the values match. In order to allow a certain amount of error, not only when the values of the slopes match but also when the difference of the slope values is within a predetermined value, it may be determined as parallel.
  • step S86 The coordinate value of the first point (third coordinate) and the current coordinate value of the second point (fourth coordinate) are stored in the coordinate value storage unit 13 (step S86).
  • CPU10 calculates
  • the CPU 10 calculates the coordinate value of the position when the initial position of the second point is translated similarly to the first point and the second point, and the calculated coordinate value is the coordinate value of the initial position of the second point.
  • the coordinate value storage unit 13 is updated (step S88).
  • the CPU 10 updates the display on the display unit 141 (step S89).
  • the CPU 10 redisplays the markers Ma (first point) and Mc (current second point) on the display unit 141.
  • the line segment S1 connecting the position of the marker Ma (first point) and the origin, the line segment S3 connecting the marker Ma and the marker Mc, and the initial positions of the marker Ma and the second point are the same as the first point and the second point.
  • the line portion S2 connecting the position when translated to is displayed again on the display unit 141.
  • the CPU 10 redisplays the arc-shaped line segment S4 connecting the position when the initial position of the second point is translated similarly to the first point and the second point and the position of the marker Mc.
  • step S90 a command for translational movement is transmitted to the omnidirectional mobile carriage 2 via the communication unit 15.
  • the speed since the speed is not changed, it may be set to the same value as that when the translation stop command is first issued. Alternatively, the speed may be an optional parameter, and when only the angle is given, only the translation direction may be changed without changing the speed.
  • the CPU 10 ends the process.
  • step S81 If the coordinate value of the second point is not stored in the coordinate value storage unit 13 (NO in step S81), the CPU 10 ends the process.
  • the CPU 10 updates the display on the display unit 141 (step S91). The CPU 10 redisplays the markers Ma (first point) and Mc (current second point) on the display unit 141.
  • the line segment S1 connecting the position of the marker Ma (first point) and the origin, the line segment S3 connecting the marker Ma and the marker Mc, and the initial positions of the marker Ma and the second point are the same as the first point and the second point.
  • the line portion S2 connecting the position when translated to is displayed again on the display unit 141.
  • the CPU 10 redisplays the arc-shaped line segment S4 connecting the position when the initial position of the second point is translated similarly to the first point and the second point and the position of the marker Mc.
  • the CPU 10 ends the process. If the line connecting the coordinate value of the first point and the initial position of the second point is not parallel to the line connecting the current first point and the current second point (NO in step S85), the CPU 10 ends the process. To do. Since the operation is not assumed in any case except when the second point is being dragged, the error processing as described above may be performed.
  • the operator can instruct the translational movement direction simply by dragging the finger placed at the origin in the contact detection unit 142 in the direction instructing. It is possible to specify the speed by the drag distance. Therefore, it is possible to instruct the omnidirectional mobile trolley 2 to move in translation by an intuitive operation.
  • the operation device 1 according to Embodiment 1 simply drags a finger other than the finger used for the translation movement instruction on the contact detection unit 142 so as to rotate about the finger used for the translation movement instruction.
  • An instruction for rotational movement is possible.
  • the speed (speed) of rotational movement is specified by the rotated angle. Therefore, it is possible to instruct rotational movement to the omnidirectional mobile carriage 2 by an intuitive operation.
  • the operating device 1 stops the translational movement of the omnidirectional mobile carriage 2 by moving (returning) the finger used for the translational movement instruction to the origin position. Therefore, it is possible to instruct the omnidirectional mobile trolley 2 to stop the translational movement with an intuitive operation.
  • the operating device 1 stops the rotational movement of the omnidirectional mobile carriage 2 by returning the finger used for the rotational movement instruction to the position where the finger is first touched.
  • the rotational movement of the omnidirectional mobile trolley 2 is stopped by separating the finger used for the rotational movement instruction from the contact detection unit 142. Therefore, it is possible to instruct the omnidirectional mobile carriage 2 to stop the rotational movement by an intuitive operation.
  • the operating device 1 changes the direction of translation by dragging the finger used for the translation movement instruction and the finger used for the rotation movement instruction. Therefore, it is possible to instruct the omnidirectional mobile trolley 2 to change the direction of translational movement with an intuitive operation.
  • the operating device 1 stops the movement by separating the finger used for the translation movement instruction from the contact detection unit 142. Therefore, it is possible to instruct the omnidirectional mobile carriage 2 to stop by an intuitive operation.
  • the user performs an operation using the display unit 141 and the contact detection unit 142.
  • the display unit 141 displays a marker, a reference line segment, and the like together with the vertical axis and the horizontal axis. Since the user can perform an operation while confirming the marker and the reference line segment, the movement instruction operation can be performed more accurately.
  • the operating device 1 displays the markers Ma, Mb, and Mc at the position corresponding to the finger on the display unit 141.
  • the display unit 141 displays a vector S1 expressing the translation movement instruction content and line segments S2, S3, and S4 expressing the rotation movement instruction content. Thereby, it is possible to visually confirm the contents of the translation movement instruction given to the omnidirectional mobile carriage 2 and the contents of the written instruction.
  • the operating device 1 displays an image from the image acquisition unit 23 mounted on the omnidirectional mobile carriage 2 on the display unit 141.
  • the user remotely controls the omnidirectional mobile trolley 2
  • the user uses the image from the image acquisition unit 23 to check the omnidirectional mobile trolley 2. It is possible to grasp the surrounding situation. Thereby, the user can give an accurate movement instruction to the omnidirectional mobile trolley 2.
  • the user needs to keep the finger touching the contact detection unit 142 in order to continue the movement of the omnidirectional mobile trolley 2.
  • a button for continuing the movement even when the finger is removed from the contact detection unit 142 may be provided.
  • This button may be provided on the contact detection unit 142 or may be a mechanical switch other than the contact detection unit 142. Even if the user operates the button to release the finger from the contact detection unit 142, the omnidirectional mobile trolley 2 continues to move and the marker is continuously displayed on the display unit 141.
  • the button operation is performed after the finger is returned to the original position, and the movement continuation is canceled.
  • the movement may be continued by double-tapping the touching finger.
  • the translation movement + rotation movement is instructed using two fingers, only the movement corresponding to the double-tapped finger may be continued, or both movements may be continued.
  • the finger is placed at the marker display position of the display unit 141 or the finger is placed at the marker display position and then double-tapped, the operation can be performed again.
  • FIG. 18 is an explanatory diagram illustrating an example of the layout of the display unit 141 in the operation unit 14 of the operation device 1 according to the second embodiment.
  • the display unit 141 has the movement instruction area 141a and the camera image display area 141b as the same area. That is, the contact detection unit 142 covers substantially the entire display surface of the display unit 141.
  • the operation surface 142a of the contact detection unit 142 is substantially the same as the display surface of the display unit 141.
  • an image is displayed on the entire display surface of the display unit 141.
  • the other parts are the same as those in the first embodiment, and thus the description thereof is omitted.
  • the operating device 1 according to the second embodiment has the following effects in addition to the effects of the first embodiment.
  • the movement instruction area 141a and the camera image display unit 141b are the same area. Since the image acquired from the image acquisition unit 23 can be displayed on the entire surface of the display unit 141, the user can confirm an image that sufficiently exhibits the performance of the display unit 141. In addition, since the movement instruction area 141a is a sufficiently wide area, the user can give a more precise movement instruction to the omnidirectional mobile carriage 2.
  • FIGS. 19 to 21 are explanatory diagrams illustrating an example of an operation and an image displayed on the display unit 141 in the controller device 1 according to the third embodiment.
  • the display unit 141 includes a movement instruction area 141a and a camera image display area 141b.
  • the operating device 1 according to Embodiment 3 is configured to graphically display the contents of the user's movement instruction in the camera image display area 141b. Since the other configuration is the same as that of the first embodiment, the description thereof is omitted.
  • FIG. 19 shows an example of a display when the omnidirectional mobile carriage 2 is instructed only for translation.
  • an arrow indicating the direction of translation is displayed in a graphic display 141c.
  • the length of the arrow may be changed according to the speed of translation.
  • FIG. 20 shows an example of a display when the omnidirectional mobile carriage 2 is instructed only for rotational movement.
  • An arrow indicating the rotation direction is displayed in the camera image display area 141b as a graphic display 141c. Similar to the translational movement, the length of the arrow may be changed according to the magnitude of the angular velocity of the rotational movement.
  • FIG. 21 shows an example of display in the case of instructing the omnidirectional mobile trolley 2 to translate + rotate.
  • An arrow indicating the translation direction and an arrow indicating the rotational movement are displayed on the graphic 141c.
  • the length of the arrow indicating the translational movement may be changed according to the speed of the translational movement.
  • the length of the arrow indicating the rotational movement may be changed according to the magnitude of the angular speed of the rotational movement.
  • the timings for displaying, redisplaying, and erasing the graphics shown in FIGS. 19 to 21 may be the same as the timings for displaying, redisplaying, and erasing markers, line segments, and the like on the display unit 141. Or it is good also as displaying only for predetermined time, when a user performs an operation instruction. By doing so, it is possible to minimize the difficulty in confirming the camera image due to the graphic display. These settings may be changeable by the user.
  • image data used for the graphic display 141c shown in FIGS. 19 to 21 is stored in advance in a storage device such as the ROM 11.
  • the CPU 10 display processing unit
  • the CPU 10 display processing unit
  • the operating device 1 according to the third embodiment has the following effects in addition to the effects of the first embodiment.
  • the user's movement instruction content is graphically displayed in the camera image display area 141b, so that the user can confirm the image from the image acquisition unit 23 and display the movement instruction content. It becomes possible to grasp.
  • information related to operation instructions may be displayed in characters in the camera image display area 141b.
  • the value of the angle indicating the translation direction when the omnidirectional mobile carriage 2 is moving in translation, the direction of rotation (clockwise and counterclockwise) when rotating, and the value of the rotation angular velocity are displayed in text.
  • the information related to the operation instruction may be only graphic display, character display only, or both graphic and character display.
  • FIG. 22 is a diagram illustrating a configuration example of a mobile system according to the fourth embodiment.
  • the mobile system includes an information processing terminal 3 and an omnidirectional mobile carriage 2.
  • the information processing terminal 3 has a touch panel display and a communication function.
  • the information processing terminal 3 is, for example, a smartphone or a tablet computer.
  • the omnidirectional mobile carriage 2 includes a moving body control unit 20, a drive motor 21, a moving chain 22, an image acquisition unit 23, and a communication unit 24.
  • the moving body control unit 20 includes a CPU 20a, a ROM 20b, a RAM 20c, a coordinate value storage unit 20d, a motor driver (not shown), and the like.
  • the CPU 20a controls each part of the omnidirectional mobile trolley 2 by appropriately loading the control program stored in the ROM 20b into the RAM 20c and executing it.
  • the drive motor 21 drives the moving chain 22 to run the omnidirectional mobile carriage 2.
  • the image acquisition unit 23 includes a camera 231 and a fisheye lens 232.
  • the camera 231 captures the situation around the omnidirectional mobile trolley 2.
  • the captured image is sent to the information processing terminal 3 via the communication unit 24.
  • the information processing terminal 3 displays the received image on the touch panel display.
  • the communication unit 24 communicates with the information processing device 3.
  • Communication between the information processing terminal 3 and the omnidirectional mobile trolley 2 may be wired or wireless.
  • the communication line may be a public line or a dedicated line.
  • the Internet, a packet communication network, or the like may be used as a communication line.
  • short-range wireless communication may be used for communication between the information processing terminal 3 and the omnidirectional mobile trolley 2.
  • the information processing terminal 3 accepts an instruction input to the omnidirectional mobile trolley 2 on the touch panel display, similarly to the operation device 1 of the first to third embodiments.
  • the method of inputting instructions is the same as in the first to third embodiments.
  • the information processing terminal 3 transmits the input of the touch panel display to the omnidirectional mobile carriage 2. What is transmitted is, for example, the number of input points and the coordinate values of the input points on the touch panel display.
  • the omnidirectional mobile trolley 2 operates based on the input information received from the information processing terminal 3.
  • the processing performed by the CPU 20a is similar to the flowcharts shown in FIGS.
  • an information processing terminal with a touch panel display such as a smartphone or a tablet computer can be used as a terminal for performing operation input.
  • a map may be displayed on the display unit 141 to indicate the position of the omnidirectional mobile carriage 2.
  • FIG. 23 is an explanatory diagram showing an example of a moving form of the omnidirectional mobile trolley 2. As shown in FIG. 23, the center of the omnidirectional mobile trolley 2 moves in the designated translational movement direction, while the omnidirectional mobile trolley 2 rotates and moves at the designated angular velocity about the center.
  • FIG. 24 is a block diagram showing the controller device 1 according to the fifth embodiment.
  • a program executed by the CPU 10 is read from a portable recording medium 16a such as a CD-ROM, a DVD disk, or a USB memory by a reading unit 16 such as a disk drive. It is good also as a structure memorize
  • a semiconductor memory such as a flash memory storing the program may be mounted in the CPU 10.
  • the program can be downloaded from another server computer (not shown) connected to the communication unit 15 via a communication network (not shown) such as the Internet.
  • the downloaded program is stored in the ROM 11 or the coordinate value storage unit 13.
  • the CPU 10 executes the program stored in the ROM 11 or the coordinate value storage unit 13 to perform the same process as the CPU 10 of the controller device 1 in the first to third embodiments.
  • Operating device 10 CPU (contact detection unit, first reception unit, second reception unit, movement reception unit, instruction information calculation unit, transmission unit, determination unit, determination unit) DESCRIPTION OF SYMBOLS 13 Coordinate value memory

Abstract

Provided are a control device and the like whereby a rotational direction can be controlled intuitively and an operator can easily operate a mobile body while looking at images transmitted therefrom. This control device (1) is provided with the following: a touch detection unit (142) that outputs coordinates corresponding to detected touch positions; a first reception unit that receives first coordinates corresponding to a first touch position; a second reception unit that receives second coordinates corresponding to a second touch position; a movement reception unit that receives a plurality of path coordinates corresponding to touch positions along the movement path of the second touch position as said second touch position is moved from the aforementioned second touch position; a control-information computation unit that computes control information that controls the movement of a mobile body (2) on the basis of the received first coordinates, said mobile body (2) being provided with an image acquisition unit (23) and being capable of moving while rotating, and controls the angular velocity of the mobile body (2) on the basis of the received second coordinates and the plurality of path coordinates received by the movement reception unit; a transmission unit that transmits the computed control information to the mobile body (2); and a display unit (141) that displays images transmitted from the mobile body (2).

Description

指示装置、コンピュータプログラム、移動体システム及び指示方法Pointing device, computer program, mobile system, and pointing method
 本発明は全方向に移動可能な移動体へ移動方向指示を行う指示装置、コンピュータプログラム、移動体システム及び指示方法に関する。 The present invention relates to a pointing device, a computer program, a moving body system, and a pointing method for instructing a moving body that can move in all directions.
 従来から全方向に移動可能な移動体が提案されている(特許文献1、特許文献2)。 Conventionally, moving bodies that can move in all directions have been proposed (Patent Documents 1 and 2).
特開2004-34435号公報JP 2004-34435 A 国際公開第2008/132778号International Publication No. 2008/132778
 このような全方向に移動可能な移動体の移動方向を指示するための操作装置として、十字キーが知られている。十字キーを用いて全方向に移動可能な移動体を制御する場合、直進方向の指示は直感的でわかりやすいが、回転方向の指示操作は直感的ではなかった。また、移動体を遠隔で操作する場合、移動体に搭載したカメラ、イメージセンサ、サーモグラフィなどにより取得した画像を確認する必要がある。 A cross key is known as an operation device for instructing the moving direction of such a movable body that can move in all directions. When a moving body that can move in all directions is controlled using the cross key, the direction of straight direction is intuitive and easy to understand, but the direction of rotation is not intuitive. Further, when a moving body is operated remotely, it is necessary to check an image acquired by a camera, an image sensor, a thermography, or the like mounted on the moving body.
 本発明は上述の状況に鑑み、回転方向の指示が直感的に行うことが可能でカメラ画像を確認しつつ容易に操作が可能な指示装置等を提供することを目的とする。 The present invention has been made in view of the above-described circumstances, and an object thereof is to provide an instruction device and the like that can be instructed in a rotational direction intuitively and can be easily operated while confirming a camera image.
 本発明に係る指示装置は、交差する2つの座標軸にて規定される平面に対する接触箇所を検知し、検知した接触箇所に対応する座標値を出力する接触検知部と、第1の接触箇所に対応する第1座標値を前記接触検知部から受け付ける第1受付部と、該第1受付部が前記第1座標値を受け付けた後に第2の接触箇所に対応する第2座標を前記接触検知部から受け付ける第2受付部と、前記第2の接触箇所を始点として移動した前記第2の接触箇所の移動軌跡を示す複数の接触箇所に対応する複数の軌跡座標値を前記接触検知部から受け付ける移動受付部と、前記第1受付部が受け付けた第1座標値に基づき、画像取得部を備え回転しながら移動可能な移動体の移動を指示し、前記第2受付部が受け付けた第2座標値及び前記移動受付部が受け付けた複数の軌跡座標値に基づき、前記移動体の回転角速度を指示する指示情報を演算する指示情報演算部と、該指示情報演算部が演算した指示情報を前記移動体に送信する送信部と、前記移動体から送信された画像を表示する表示部とを備えることを特徴とする。 The pointing device according to the present invention detects a contact location on a plane defined by two intersecting coordinate axes, and outputs a coordinate value corresponding to the detected contact location, and corresponds to the first contact location A first reception unit that receives a first coordinate value from the contact detection unit, and a second coordinate corresponding to a second contact location after the first reception unit receives the first coordinate value from the contact detection unit. A second reception unit for receiving, and a movement reception for receiving, from the contact detection unit, a plurality of locus coordinate values corresponding to a plurality of contact points indicating a movement locus of the second contact point moved from the second contact point. And the first coordinate value received by the first receiving unit, the image acquisition unit is provided to instruct the movement of the movable body that can move while rotating, and the second coordinate value received by the second receiving unit and The movement reception unit receives An instruction information calculation unit that calculates instruction information for instructing the rotational angular velocity of the mobile body based on a plurality of trajectory coordinate values; a transmission unit that transmits the instruction information calculated by the instruction information calculation unit to the mobile body; And a display unit for displaying an image transmitted from the mobile body.
 本発明にあっては、前記第2受付部が受け付けた第2座標値及び前記移動受付部が受け付けた複数の軌跡座標値に基づき、前記移動体の回転角速度を指示する指示情報を演算し、前記移動体から送信された画像を表示するので、回転角速度の指示が直感的に行うことが可能で、移動体から送信された画像を確認しつつ容易に操作が可能である。 In the present invention, based on the second coordinate value received by the second reception unit and the plurality of locus coordinate values received by the movement reception unit, the instruction information for instructing the rotational angular velocity of the moving body is calculated, Since the image transmitted from the moving body is displayed, the rotation angular velocity can be instructed intuitively, and the operation can be easily performed while checking the image transmitted from the moving body.
 本発明に係る指示装置は、接触箇所が移動したか否かを周期的に判定する判定部を備え、前記移動受付部は、前記判定部が移動していないと判定したときまでに移動した前記第2の接触箇所の移動軌跡を示す接触箇所に対応する軌跡座標値を受け付けることを特徴とする。 The pointing device according to the present invention includes a determination unit that periodically determines whether or not the contact location has moved, and the movement receiving unit has moved by the time when it is determined that the determination unit has not moved. A trajectory coordinate value corresponding to the contact location indicating the movement trajectory of the second contact location is received.
 本発明にあっては、移動受付部は、接触箇所が移動していないと判定したときまでに第2の接触箇所が移動した移動軌跡を示す接触箇所に対応する座標値を受け付けるので、回転角速度の指示を直感的に行うことが可能となる。 In the present invention, the movement accepting unit accepts the coordinate value corresponding to the contact location indicating the movement trajectory to which the second contact location has moved until it is determined that the contact location has not moved. It is possible to instruct the user intuitively.
 本発明に係る指示装置は、前記判定部の判定結果に基づいて、前記移動受付部が受け付けた軌跡座標値から前記第2の接触箇所の移動の終点に対応する終点座標値を決定する決定部を備え、前記指示情報演算部は、特定の座標値から前記第1座標値への方向に基づいて前記移動体の移動方向を演算し、前記特定の座標値と前記第1座標値との距離に基づいて前記移動体の移動速度を演算し、前記第1座標値と前記終点座標値及び第2座標値の夫々とを通る2本の線分がなす角に基づいて前記移動体の回転角速度を演算するようにしてあることを特徴とする。 The pointing device according to the present invention is configured to determine an end point coordinate value corresponding to the end point of the movement of the second contact location from the trajectory coordinate value received by the movement receiving unit based on the determination result of the determining unit. The instruction information calculation unit calculates a moving direction of the moving body based on a direction from a specific coordinate value to the first coordinate value, and a distance between the specific coordinate value and the first coordinate value. The moving speed of the moving body is calculated based on the angle, and the rotational angular speed of the moving body is calculated based on an angle formed by two line segments passing through the first coordinate value, the end point coordinate value, and the second coordinate value. Is calculated.
 本発明にあっては、前記第1座標値と前記終点座標値及び第2座標値の夫々とを通る2本の線分がなす角に基づいて前記移動体の回転角速度を演算するので、ユーザは直感的な操作で移動体に指示する回転角速度を指示することが可能となる。 In the present invention, the rotational angular velocity of the moving body is calculated based on an angle formed by two line segments passing through the first coordinate value, the end point coordinate value, and the second coordinate value. It is possible to instruct the rotational angular velocity instructed to the moving body by an intuitive operation.
 本発明に係る指示装置は、前記移動受付部は、前記第1の接触箇所を始点として移動した前記第1の接触箇所の移動軌跡を示す複数の接触箇所に対応する第2の複数の軌跡座標値、及び前記終点を始点として更に移動した前記第2の接触箇所の移動軌跡を示す複数の接触箇所に対応する第3の複数の軌跡座標値を受け付け、前記決定部は、前記判定部の判定結果に基づいて、前記移動受付部が受け付けた第2の複数の軌跡座標値から前記第1の接触箇所の移動の終点に対応する第3座標値を決定し、前記第3の複数の軌跡座標値から前記第2の接触箇所の移動の終点に対応する第4座標値を決定し、前記特定の座標値から前記第3座標値への方向に基づいて前記移動体の移動方向を指示し、前記特定の座標値と前記第3座標値との距離に基づいて前記移動体の移動速度を指示し、前記第3座標値と第4座標値とを結ぶ線分の方向に基づいて回転角速度を指示する第2指示情報を演算する第2指示情報演算部とを備え、前記送信部は、前記第2指示情報演算部が演算した第2指示情報を前記移動体に送信するようにしてあることを特徴とする。 In the pointing device according to the present invention, the movement receiving unit includes a plurality of second trajectory coordinates corresponding to a plurality of contact locations indicating a movement trajectory of the first contact location moved from the first contact location. And a third plurality of trajectory coordinate values corresponding to a plurality of contact locations indicating a movement trajectory of the second contact location that has further moved from the end point as a start point, and the determination unit determines the determination unit Based on the result, a third coordinate value corresponding to an end point of the movement of the first contact location is determined from the second plurality of locus coordinate values received by the movement receiving unit, and the third plurality of locus coordinates. Determining a fourth coordinate value corresponding to an end point of movement of the second contact location from the value, and indicating a moving direction of the moving body based on a direction from the specific coordinate value to the third coordinate value; Based on the distance between the specific coordinate value and the third coordinate value. And a second instruction information calculation unit for calculating a second instruction information for instructing a rotational angular velocity based on a direction of a line segment connecting the third coordinate value and the fourth coordinate value. The transmission unit transmits the second instruction information calculated by the second instruction information calculation unit to the mobile body.
 本発明にあっては、前記特定の座標値と前記第3座標値との距離に基づいて前記移動体の移動速度を指示するので、ユーザは移動速度の変更を容易に行うことが可能となる。 In the present invention, since the moving speed of the moving body is instructed based on the distance between the specific coordinate value and the third coordinate value, the user can easily change the moving speed. .
 本発明に係る指示装置は、前記接触検知部は前記表示部の表示面を覆って設けられ、前記第1座標値及び第2座標値に対応する前記表示部の表示面に標点を表示する標点表示部を備えることを特徴とする。 In the pointing device according to the present invention, the contact detection unit is provided so as to cover a display surface of the display unit, and displays a mark on the display surface of the display unit corresponding to the first coordinate value and the second coordinate value. A gauge display unit is provided.
 本発明にあっては、第1座標値及び第2座標値に対応する位置に標点(マーカ)を表示するので、ユーザは標点を参照することにより、操作指示内容を目視確認することが可能となる。 In the present invention, since the mark (marker) is displayed at the position corresponding to the first coordinate value and the second coordinate value, the user can visually confirm the operation instruction content by referring to the mark. It becomes possible.
 本発明に係る指示装置は、前記表示部の表示面は前記画像を表示する表示領域及び前記接触検知部に対する操作に関する表示を行う操作領域を含むことを特徴とする。 The pointing device according to the present invention is characterized in that the display surface of the display unit includes a display region for displaying the image and an operation region for performing a display relating to an operation on the contact detection unit.
  本発明にあっては、表示領域と指示領域を重畳してあるので、重畳しない場合に比べて広い操作領域を確保することが可能となる。 In the present invention, since the display area and the instruction area are overlapped, it is possible to secure a wider operation area as compared with the case where the display area and the instruction area are not overlapped.
 本発明に係る指示装置は、前記表示領域及び前記操作領域は重複していることを特徴とする。 The pointing device according to the present invention is characterized in that the display area and the operation area overlap.
 本発明にあっては、移動体の画像取得部により取得した画像を表示する表示領域と移動指示操作に用いる操作領域とを重畳しないようにしてあるので、確実に移動指示操作を行うことが可能となる。 In the present invention, since the display area for displaying the image acquired by the image acquisition unit of the moving object is not overlapped with the operation area used for the movement instruction operation, the movement instruction operation can be surely performed. It becomes.
 本発明に係る指示装置は、前記移動体に送信した指示情報を図形又は文字により前記表示領域に表示する表示処理部を備えることを特徴とする。 The pointing device according to the present invention includes a display processing unit that displays the instruction information transmitted to the moving body in the display area by a figure or a character.
 本発明にあっては、指示した内容を図形及び文字により表示領域に表示するので、画像取得部が取得した画像を確認しながら、指示内容を確認することが可能となる。 In the present invention, since the instructed content is displayed in the display area with graphics and characters, it is possible to confirm the instructed content while confirming the image acquired by the image acquiring unit.
 本発明に係るコンピュータプログラムは、交差する2つの座標軸にて規定される平面に対する第1の接触箇所に対応する第1座標値、第2の接触箇所に対応する第2座標値、及び前記第2の接触箇所を始点として移動した前記第2の接触箇所の移動軌跡を示す複数の接触箇所に対応する複数の軌跡座標値に基づき、回転しながら移動可能な移動体に指示情報を送信し、前記移動体から送信された画像を表示部に表示させる処理をコンピュータに実行させるコンピュータプログラムであって、特定の座標値から前記第1座標値への方向に基づいて前記移動体の移動方向を指示し、前記特定の座標値と前記第1座標値との距離に基づいて前記移動体の移動速度を指示し、前記複数の軌跡座標値から前記第2の接触箇所の移動の終点に対応する終点座標値を決定し、前記第1座標値と前記終点座標値及び第2座標値の夫々とを通る2本の線分がなす角に基づいて前記移動体の回転角速度を指示する処理を前記コンピュータに実行させることを特徴とする。 The computer program according to the present invention includes a first coordinate value corresponding to a first contact location with respect to a plane defined by two intersecting coordinate axes, a second coordinate value corresponding to a second contact location, and the second Based on a plurality of locus coordinate values corresponding to a plurality of contact locations indicating a movement locus of the second contact location moved from the contact location of A computer program for causing a computer to execute a process of displaying an image transmitted from a moving body on a display unit, and instructing a moving direction of the moving body based on a direction from a specific coordinate value to the first coordinate value. Instructing the moving speed of the moving body based on the distance between the specific coordinate value and the first coordinate value, and ending the movement corresponding to the end point of the movement of the second contact location from the plurality of locus coordinate values. Processing for determining a coordinate value and instructing a rotational angular velocity of the moving body based on an angle formed by two line segments passing through the first coordinate value, the end point coordinate value, and the second coordinate value, respectively; It is made to perform.
 本発明にあっては、第2座標値及び受け付けた複数の軌跡座標値に基づき、前記移動体の回転角速度を指示する指示情報を演算し、前記移動体から送信された画像を表示するので、回転角速度の指示を直感的に行うことが可能で、移動体から送信された画像を確認しつつ容易に操作が可能である。 In the present invention, based on the second coordinate value and the received plurality of trajectory coordinate values, the instruction information for instructing the rotational angular velocity of the moving body is calculated, and the image transmitted from the moving body is displayed. The rotation angular velocity can be instructed intuitively, and can be easily operated while confirming the image transmitted from the moving body.
 本発明に係る移動体システムは、回転しながら移動可能な移動体、該移動体から送信された画像を表示する表示部、及び検知した接触箇所に対応する座標を出力する接触検知部を備える移動体システムにおいて、前記移動体は、前記接触検知部による第1の接触箇所に対応する第1座標値を前記接触検知部から受け付ける第1取得部と、該第1取得部が前記第1座標値を受け付けた後、前記接触検知部による第2の接触箇所に対応する第2座標値を前記接触検知部から受け付ける第2取得部と、前記第2の接触箇所を始点として移動した前記第2の接触箇所の移動軌跡を示す複数の接触箇所に対応する複数の軌跡座標値を受け付ける移動受付部と、前記第1受付部が受け付けた第1座標値に基づき、移動を指示し、前記第2受付部が受け付けた第2座標値及び前記移動受付部が受け付けた複数の軌跡座標値に基づき、回転角速度を指示する指示情報を演算する指示情報演算部と、画像を取得する画像取得部とを有することを特徴とする。 A moving body system according to the present invention includes a moving body that can move while rotating, a display unit that displays an image transmitted from the moving body, and a contact detection unit that outputs coordinates corresponding to a detected contact location. In the body system, the moving body includes a first acquisition unit that receives from the contact detection unit a first coordinate value corresponding to a first contact location by the contact detection unit, and the first acquisition unit receives the first coordinate value. The second acquisition unit that receives a second coordinate value corresponding to the second contact location by the contact detection unit from the contact detection unit, and the second moved from the second contact location as a starting point A movement receiving unit that receives a plurality of locus coordinate values corresponding to a plurality of contact points indicating a movement locus of the contact point, a movement instruction based on the first coordinate value received by the first receiving unit, and the second reception Department accepts An instruction information calculation unit for calculating instruction information for instructing a rotational angular velocity, and an image acquisition unit for acquiring an image based on the second coordinate value and a plurality of locus coordinate values received by the movement reception unit. And
 本発明にあっては、前記第2受付部が受け付けた第2座標値及び前記移動受付部が受け付けた複数の軌跡座標値に基づき、回転角速度を指示する指示情報を演算する指示情報演算部と、画像を取得する画像取得部とを移動体が有するので、回転角速度の指示が直感的に行うことができる接触検知部を汎用的なものを用いて実現可能となる。 In the present invention, based on the second coordinate value received by the second reception unit and the plurality of locus coordinate values received by the movement reception unit, an instruction information calculation unit that calculates instruction information for instructing the rotational angular velocity; Since the moving body has an image acquisition unit that acquires an image, it is possible to use a general-purpose contact detection unit that can instruct the rotation angular velocity intuitively.
 本発明に係る指示方法は、交差する2つの座標軸にて規定される平面に対する第1接触箇所に対応する第1座標値を受け付け、受け付けた第1座標値に基づき、回転しながら移動可能な移動体の移動を指示し、前記第1座標値を受け付けた後に、前記平面に対する第2の接触箇所に対応する第2座標値、及び前記第2の接触箇所を始点として移動した前記第2の接触箇所の移動軌跡を示す複数の接触箇所に対応する複数の軌跡座標値を受け付けて、特定の座標値から前記第1座標値への方向に基づいて前記移動体の移動方向を指示し、前記特定の座標値と前記第1座標値との距離に基づいて前記移動体の移動速度を指示し、前記複数の軌跡座標値から前記第2の接触箇所の移動の終点に対応する終点座標値を決定し、前記第1座標値と前記終点座標値及び第2座標値の夫々とを通る2本の線分がなす角に基づいて前記移動体の回転角速度を指示し、前記移動体から送信された画像を表示部に表示することを特徴とする。 The instruction method according to the present invention receives a first coordinate value corresponding to a first contact point with respect to a plane defined by two intersecting coordinate axes, and moves while rotating based on the received first coordinate value. After instructing the movement of the body and receiving the first coordinate value, the second coordinate value corresponding to the second contact location with respect to the plane and the second contact moved starting from the second contact location Receiving a plurality of trajectory coordinate values corresponding to a plurality of contact locations indicating a movement trajectory of the location, instructing a moving direction of the moving body based on a direction from a specific coordinate value to the first coordinate value, and The moving speed of the moving body is instructed based on the distance between the coordinate value and the first coordinate value, and the end point coordinate value corresponding to the end point of the movement of the second contact point is determined from the plurality of locus coordinate values. And the first coordinate value and the Instructing the rotational angular velocity of the moving body based on the angle formed by two line segments passing through the point coordinate value and the second coordinate value, and displaying the image transmitted from the moving body on the display unit. Features.
 本発明にあっては、前記第1座標値と前記終点座標値及び第2座標値の夫々とを通る2本の線分がなす角に基づいて前記移動体の回転角速度を指示し、前記移動体から送信された画像を表示部に表示するので、回転角速度の指示が直感的に行うことが可能で、移動体から送信された画像を確認しつつ容易に操作が可能である。 In the present invention, the rotational angular velocity of the moving body is instructed based on an angle formed by two line segments passing through the first coordinate value, the end point coordinate value, and the second coordinate value, and the movement Since the image transmitted from the body is displayed on the display unit, the rotation angular velocity can be instructed intuitively, and the operation can be easily performed while confirming the image transmitted from the moving body.
本発明においては、回転角速度の指示が直感的に行うことが可能で、移動体から送信された画像を確認しつつ容易に操作が可能となる。 In the present invention, it is possible to instruct the rotation angular velocity intuitively, and the operation can be easily performed while confirming the image transmitted from the moving body.
実施の形態1に係る移動体システムの構成例を示す図である。1 is a diagram illustrating a configuration example of a mobile system according to Embodiment 1. FIG. 実施の形態1に係る全方向移動台車の斜視図である。2 is a perspective view of an omnidirectional mobile trolley according to Embodiment 1. FIG. 複数のローラを除く全方向移動台車の平面図である。It is a top view of the omnidirectional mobile trolley except a some roller. 全方向移動台車の移動形態を示す説明図である。It is explanatory drawing which shows the movement form of an omnidirectional mobile trolley | bogie. 全方向移動台車の移動形態を示す説明図である。It is explanatory drawing which shows the movement form of an omnidirectional mobile trolley | bogie. 全方向移動台車の移動形態を示す説明図である。It is explanatory drawing which shows the movement form of an omnidirectional mobile trolley | bogie. 操作部における表示部のレイアウトの一例を示す説明図である。It is explanatory drawing which shows an example of the layout of the display part in an operation part. 接触検知部の操作面の一例を示す説明図である。It is explanatory drawing which shows an example of the operation surface of a contact detection part. 並進移動を指示する場合の操作方法を示す説明図である。It is explanatory drawing which shows the operation method in the case of instruct | indicating translation. 並進移動を指示する場合の操作方法を示す説明図である。It is explanatory drawing which shows the operation method in the case of instruct | indicating translation. 移動指示方法についての説明図である。It is explanatory drawing about a movement instruction | indication method. 移動指示方法についての説明図である。It is explanatory drawing about a movement instruction | indication method. 移動指示方法についての説明図である。It is explanatory drawing about a movement instruction | indication method. 移動指示方法についての説明図である。It is explanatory drawing about a movement instruction | indication method. 移動指示方法についての説明図である。It is explanatory drawing about a movement instruction | indication method. 移動指示方法についての説明図である。It is explanatory drawing about a movement instruction | indication method. 並進方向が連続的に変更される様子を示した説明図である。It is explanatory drawing which showed a mode that a translation direction was changed continuously. 全方向移動台車2のコマンド体系の一例を示す一覧表である。It is a list which shows an example of the command system of the omnidirectional mobile trolley. 並進方向を示す角度の例を示す説明図である。It is explanatory drawing which shows the example of the angle which shows a translation direction. 操作装置で実行される移動指示処理の手順を示すフローチャートである。It is a flowchart which shows the procedure of the movement instruction | indication process performed with an operating device. 操作装置で実行される移動指示処理の手順を示すフローチャートである。It is a flowchart which shows the procedure of the movement instruction | indication process performed with an operating device. 操作装置で実行される移動指示処理の手順を示すフローチャートである。It is a flowchart which shows the procedure of the movement instruction | indication process performed with an operating device. 操作装置で実行される移動指示処理の手順を示すフローチャートである。It is a flowchart which shows the procedure of the movement instruction | indication process performed with an operating device. 実施の形態2に係る操作装置の操作部における表示部のレイアウトの一例を示す説明図である。12 is an explanatory diagram illustrating an example of a layout of a display unit in an operation unit of an operation device according to Embodiment 2. FIG. 実施の形態3に係る操作装置における操作と表示部に表示される画像の一例を示す説明図である。FIG. 10 is an explanatory diagram illustrating an example of an operation displayed on an operation device and a display unit according to a third embodiment. 実施の形態3に係る操作装置における操作と表示部に表示される画像の一例を示す説明図である。FIG. 10 is an explanatory diagram illustrating an example of an operation displayed on an operation device and a display unit according to a third embodiment. 実施の形態3に係る操作装置における操作と表示部に表示される画像の一例を示す説明図である。FIG. 10 is an explanatory diagram illustrating an example of an operation displayed on an operation device and a display unit according to a third embodiment. 実施の形態4に係る移動体システムの構成例を示す図である。FIG. 10 is a diagram illustrating a configuration example of a mobile system according to a fourth embodiment. 全方向移動台車の移動形態の一例を示す説明図である。It is explanatory drawing which shows an example of the movement form of an omnidirectional mobile trolley. 実施の形態5に係る操作装置を示すブロック図である。FIG. 10 is a block diagram illustrating an operating device according to a fifth embodiment.
 以下、図面を参照して実施の形態を具体的に説明する。
実施の形態1
 図1は実施の形態1に係る移動体システムの構成例を示す図である。移動体システムは操作装置1(指示装置)、全方向移動台車2(移動体)を含む。操作装置1は操作者が遠隔から全方向移動台車2を操作することを想定して全方向移動台車2と別体とする。しかし、操作者が全方向移動台車2に乗りながら指示することも想定して、全方向移動台車2に備えることとしても良い。また、双方の場合を想定して、操作装置1は全方向移動台車2に着脱可能としても良い。
Hereinafter, embodiments will be specifically described with reference to the drawings.
Embodiment 1
FIG. 1 is a diagram illustrating a configuration example of a mobile system according to the first embodiment. The moving body system includes an operating device 1 (indicating device) and an omnidirectional moving carriage 2 (moving body). The operating device 1 is separated from the omnidirectional mobile trolley 2 on the assumption that the operator operates the omnidirectional mobile trolley 2 from a remote location. However, it is also possible to provide the omnidirectional mobile trolley 2 on the assumption that the operator gives instructions while riding the omnidirectional mobile trolley 2. Further, assuming both cases, the controller device 1 may be detachable from the omnidirectional mobile trolley 2.
 操作装置1はCPU(Central Processing Unit)10、ROM(Read Only Memory)11、RAM(Random Access Memory)12、座標値記憶部13、操作部14、通信部15を含む。CPU10はROM11に記憶されている制御プログラムを適宜RAM12にロードして実行することにより操作装置1の各部を制御する。 The operating device 1 includes a CPU (Central Processing Unit) 10, a ROM (Read Only Memory) 11, a RAM (Random Access Memory) 12, a coordinate value storage unit 13, an operation unit 14, and a communication unit 15. The CPU 10 controls each part of the controller device 1 by appropriately loading a control program stored in the ROM 11 into the RAM 12 and executing it.
 ROM11はEEPROM(Electrically Erasable and Programmable ROM)、フラッシュメモリ等の不揮発性メモリである。ROM11はCPU10が実行すべき制御プログラム及び各種データを予め記憶している。 ROM 11 is a nonvolatile memory such as an EEPROM (Electrically-Erasable-and Programmable-ROM) or flash memory. The ROM 11 stores a control program to be executed by the CPU 10 and various data in advance.
 RAM12はSRAM(Static RAM)、DRAM(Dynamic RAM)、フラッシュメモリ等である。RAM12はCPU10による各種プログラムの実行時に発生する種々のデータを一時的に記憶する。 The RAM 12 is SRAM (Static RAM), DRAM (Dynamic RAM), flash memory, or the like. The RAM 12 temporarily stores various data generated when the CPU 10 executes various programs.
 座標値記憶部13はハードディスク、フラッシュディスクを用いて構成される。座標値記憶部13は全方向移動台車2の制御に必要な各種データを記憶している。なお、ROM11が記憶するプログラムは、座標値記憶部13に記憶されていてもよい。通信部15は全方向移動台車2との通信を行う。 The coordinate value storage unit 13 is configured using a hard disk or a flash disk. The coordinate value storage unit 13 stores various data necessary for controlling the omnidirectional mobile carriage 2. The program stored in the ROM 11 may be stored in the coordinate value storage unit 13. The communication unit 15 communicates with the omnidirectional mobile trolley 2.
 操作部14は表示部141と接触検知部142を含む。接触検知部142は例えば、タッチパネルであり、操作面の所定位置をユーザが指で触れたことを検知し、検知した箇所(検知箇所)の座標値を出力する。接触検知部142は表示部141の表示面を覆うように設けてある。すなわち、接触検知部142及び表示部141により、いわゆるタッチパネルディスプレイが構成される。接触検知部142は光を透過するようにできているので、ユーザは接触検知部142を通して、表示部141の表示を視認することが可能である。接触検知部142は全方向移動台車2の移動指示入力を受け付ける。 The operation unit 14 includes a display unit 141 and a contact detection unit 142. The contact detection unit 142 is, for example, a touch panel, detects that a user touches a predetermined position on the operation surface with a finger, and outputs a coordinate value of the detected location (detected location). The contact detection unit 142 is provided so as to cover the display surface of the display unit 141. That is, the touch detection unit 142 and the display unit 141 constitute a so-called touch panel display. Since the contact detection unit 142 is configured to transmit light, the user can visually recognize the display on the display unit 141 through the contact detection unit 142. The contact detection unit 142 receives a movement instruction input of the omnidirectional mobile trolley 2.
 全方向移動台車2は移動体制御部20、駆動モータ21、移動用チェーン22、画像取得部23、通信部24を含む。移動体制御部20はCPU、ROM、RAM、モータドライバ等を含む。移動体制御部20のCPUはROMに記憶されている制御プログラムを適宜RAM12にロードして実行することにより全方向移動台車2の各部を制御する。 The omnidirectional mobile carriage 2 includes a moving body control unit 20, a drive motor 21, a moving chain 22, an image acquisition unit 23, and a communication unit 24. The moving body control unit 20 includes a CPU, a ROM, a RAM, a motor driver, and the like. The CPU of the mobile control unit 20 controls each part of the omnidirectional mobile carriage 2 by appropriately loading a control program stored in the ROM into the RAM 12 and executing it.
 駆動モータ21は移動用チェーン22を駆動し全方向移動台車2を走行させる。通信部24は操作装置1との通信を行う。操作装置1と全方向移動台車2との通信は有線でも、無線でも良い。通信回線は公衆回線でも専用回線でも良い。インターネット、パケット通信網などを通信回線としても良い。 The drive motor 21 drives the moving chain 22 to run the omnidirectional mobile carriage 2. The communication unit 24 communicates with the controller device 1. Communication between the controller device 1 and the omnidirectional mobile trolley 2 may be wired or wireless. The communication line may be a public line or a dedicated line. The Internet, a packet communication network, or the like may be used as a communication line.
 画像取得部23はカメラ231、魚眼レンズ232を含む。カメラ231は全方向移動台車2の周囲の状況を撮影する。カメラ231はCCDカメラ、CMOSカメラ等である。撮影する画像は動画でも良いし、静止画でも良い。撮影した画像は通信部24を介して操作装置1に送られる。操作装置1は受け取った画像を表示部141に表示する。魚眼レンズ232は水平方向の画角が360度のレンズである。そのため、全方向移動台車2の周囲の状況を的確に把握することが可能となる。水平画角が360度であれば他のレンズでも良い。また、用途により画角360度よりも狭いレンズを用いても良い。
 なお、画像取得部23はカメラ231を含むものとしたが、カメラ以外の画像取得装置、サーモグラフィ、レーザスキャナ、電波レーダ等を用いても良い。サーモグラフィは赤外線を計測して周囲の温度計測し、温度状況を画像で出力する。レーザスキャナはレーザにより測距を行い、それを基に地形や物の形状を画像データとして出力する。レーダは電波により測距を行い、それを基に地形や物の形状を画像データとして出力する。
The image acquisition unit 23 includes a camera 231 and a fisheye lens 232. The camera 231 captures the situation around the omnidirectional mobile trolley 2. The camera 231 is a CCD camera, a CMOS camera, or the like. The image to be taken may be a moving image or a still image. The captured image is sent to the controller device 1 via the communication unit 24. The controller device 1 displays the received image on the display unit 141. The fisheye lens 232 is a lens having a horizontal angle of view of 360 degrees. Therefore, it is possible to accurately grasp the situation around the omnidirectional mobile trolley 2. Other lenses may be used as long as the horizontal field angle is 360 degrees. In addition, a lens having an angle of view smaller than 360 degrees may be used depending on the application.
Although the image acquisition unit 23 includes the camera 231, an image acquisition device other than the camera, a thermography, a laser scanner, a radio wave radar, or the like may be used. Thermography measures the ambient temperature by measuring infrared rays, and outputs the temperature status as an image. The laser scanner measures the distance with a laser, and outputs the topography and the shape of the object as image data based on the distance measurement. The radar measures the distance by radio waves and outputs the topography and the shape of the object as image data based on the distance measurement.
 図2は実施の形態1に係る全方向移動台車2の斜視図、図3は複数のローラを除く全方向移動台車2の平面図である。以下の説明では図において矢印で示す前後、左右、上下を使用する。全方向移動台車2は走行面P上を多方向に移動可能な多方向移動体モジュールである。基体30は、チェーン51R,51L,56R,56L等が取り付けられる移動体モジュール本体部分である。走行面Pは、全方向移動台車2が移動する面であることから移動面Pと表記してもよく、走行面と移動面の意味は同等である。以下の説明では「走行面P」を用いる。チェーン51R,51L,56R,56Lが図1に示した移動用チェーン22に対応している。図2及び図3においては、画像取得部23は記載を省略している。 FIG. 2 is a perspective view of the omnidirectional mobile trolley 2 according to Embodiment 1, and FIG. 3 is a plan view of the omnidirectional mobile trolley 2 excluding a plurality of rollers. In the following description, front and rear, left and right, and top and bottom indicated by arrows in the figure are used. The omnidirectional mobile trolley 2 is a multidirectional moving body module that can move on the traveling surface P in multiple directions. The base 30 is a movable body module main body portion to which the chains 51R, 51L, 56R, 56L and the like are attached. Since the traveling surface P is a surface on which the omnidirectional mobile carriage 2 moves, the traveling surface P may be referred to as a traveling surface P, and the meanings of the traveling surface and the moving surface are the same. In the following description, “traveling surface P” is used. The chains 51R, 51L, 56R, and 56L correspond to the moving chain 22 shown in FIG. 2 and 3, the image acquisition unit 23 is not shown.
 走行面Pに沿って移動する基体30には、前部左右に相互に独立して駆動される一対のチェーン(帯状駆動体)51R、51Lが設けてあり、後部左右に相互に独立して駆動される一対のチェーン56R、56Lが設けてある。チェーン51R,51L,56R,56Lは、循環経路に沿って正逆両方向に駆動可能である。正方向の駆動とは、チェーンの走行面側部分(接地面側部分)である下側部分を後ろ向きに駆動するとともにチェーンの上側部分を前向きに駆動するようにチェーン全体を駆動することをいい、逆方向の駆動とは、正方向に対して逆向きにチェーン全体を駆動することをいう。 The base body 30 that moves along the traveling surface P is provided with a pair of chains (band-like drive bodies) 51R and 51L that are driven independently from each other on the front and left and right, and are driven independently from each other on the left and right of the rear. A pair of chains 56R and 56L are provided. The chains 51R, 51L, 56R, and 56L can be driven in both forward and reverse directions along the circulation path. Driving in the positive direction refers to driving the entire chain so as to drive the lower part, which is the traveling surface side part (grounding surface side part) of the chain, backward and to drive the upper part of the chain forward, Driving in the reverse direction means driving the entire chain in the reverse direction with respect to the forward direction.
 上側又は下側のチェーン51R,51L,56R,56Lの駆動方向D1に沿って、例えば等間隔で、チェーン51R,51L,56R,56Lにローラ(回転体)54R,54L,59R,59Lが配列されている。ローラ54R,54L,59R,59Lは、チェーン51R,51L,56R,56Lの駆動方向D1に対して斜交する回転軸541R,541L,591R,591Lがそれぞれ平行となるように軸着された状態で走行面Pに外周面542R,542L,592R,592Lをそれぞれ接触させる。一対のチェーン51R,51L及びこれらに固定設置されたローラ54R,54Lは一対の駆動体ユニット50を構成し、一対のチェーン56R,56L及びこれらに固定設置されたローラ59R,59Lは一対の駆動体ユニット55を構成する。駆動体ユニット50及び55は、駆動方向D1に配列されており更に一対をなす。 Rollers (rotators) 54R, 54L, 59R, and 59L are arranged on the chains 51R, 51L, 56R, and 56L, for example, at equal intervals along the driving direction D1 of the upper or lower chains 51R, 51L, 56R, and 56L. ing. The rollers 54R, 54L, 59R, and 59L are mounted so that the rotation shafts 541R, 541L, 591R, and 591L that are oblique to the drive direction D1 of the chains 51R, 51L, 56R, and 56L are parallel to each other. The outer peripheral surfaces 542R, 542L, 592R, and 592L are brought into contact with the traveling surface P, respectively. The pair of chains 51R, 51L and the rollers 54R, 54L fixedly installed thereon constitute a pair of driving body units 50, and the pair of chains 56R, 56L and the rollers 59R, 59L fixedly installed thereon are a pair of driving bodies. The unit 55 is configured. The driver units 50 and 55 are arranged in the driving direction D1 and further form a pair.
 複数のローラ54R,54L,59R,59Lのそれぞれの外周面542R,542L,592R,592Lを走行面Pに接触させた状態で全方向移動台車2の荷重を各ローラ54R,54L,59R,59Lで分担して支持する。基体30の荷重に応じて走行面Pから各ローラ54R,54L,59R,59Lに作用する力に対する反作用力の合力方向に基体30の駆動力を発生させるため、各ローラ54R,54L,59R,59Lの表面の摩耗を回避し、走行面Pに沿って多方向に円滑且つ自在に基体30を移動させることができる。 With the respective outer peripheral surfaces 542R, 542L, 592R, 592L of the plurality of rollers 54R, 54L, 59R, 59L being in contact with the running surface P, the load of the omnidirectional mobile carriage 2 is applied to the rollers 54R, 54L, 59R, 59L. Share and support. Each of the rollers 54R, 54L, 59R, and 59L is generated in order to generate the driving force of the base 30 in the resultant direction of the reaction force against the force acting on the rollers 54R, 54L, 59R, and 59L from the running surface P according to the load of the base 30. Thus, the base body 30 can be moved smoothly and freely in multiple directions along the running surface P.
 また、図3に示すように、動力伝達用回転体である駆動スプロケット502Lの駆動軸402Lと動力伝達用回転体である従動スプロケット503Rの従動軸404Rは、相互に繋がっていない。従動スプロケット503Lの従動軸404Lと駆動スプロケット502Rの駆動軸402Rも、相互に繋がっていない。駆動スプロケット502L及び従動スプロケット503Lは前後方向に沿って並列配置されている。駆動モータ401Lは、駆動スプロケット502Lを駆動し、駆動スプロケット502Lに対して従動スプロケット503Lを従動させる。駆動スプロケット502R及び従動スプロケット503Rは前後方向に沿って並列配置されている。駆動モータ401Rは、駆動スプロケット502Rを駆動し、駆動スプロケット502Rに対して従動スプロケット503Rを従動させる。 Further, as shown in FIG. 3, the drive shaft 402L of the drive sprocket 502L that is a power transmission rotating body and the driven shaft 404R of the driven sprocket 503R that is a power transmission rotating body are not connected to each other. The driven shaft 404L of the driven sprocket 503L and the driving shaft 402R of the driving sprocket 502R are not connected to each other. The driving sprocket 502L and the driven sprocket 503L are arranged in parallel along the front-rear direction. The drive motor 401L drives the drive sprocket 502L and causes the driven sprocket 503L to follow the drive sprocket 502L. The driving sprocket 502R and the driven sprocket 503R are arranged in parallel along the front-rear direction. The drive motor 401R drives the drive sprocket 502R and causes the driven sprocket 503R to follow the drive sprocket 502R.
 動力伝達用回転体である駆動スプロケット507Lの駆動軸407Lと動力伝達用回転体である従動スプロケット508Rの従動軸409Rは、相互に繋がっていない。従動スプロケット508Lの従動軸409Lと駆動スプロケット507Rの駆動軸407Rも、相互に繋がっていない。駆動スプロケット507L及び従動スプロケット508Lは前後方向に沿って並列配置されている。駆動モータ406Lは、駆動スプロケット507Lを駆動し、駆動スプロケット507Lに対して従動スプロケット508Lを従動させる。駆動スプロケット507R及び従動スプロケット508Rは前後方向に沿って並列配置されている。駆動モータ406Rは、駆動スプロケット507Rを駆動し、駆動スプロケット507Rに対して従動スプロケット508Rを従動させる。 The drive shaft 407L of the drive sprocket 507L that is a power transmission rotating body and the driven shaft 409R of the driven sprocket 508R that is a power transmission rotating body are not connected to each other. The driven shaft 409L of the driven sprocket 508L and the drive shaft 407R of the drive sprocket 507R are not connected to each other. The drive sprocket 507L and the driven sprocket 508L are arranged in parallel along the front-rear direction. The drive motor 406L drives the drive sprocket 507L and causes the driven sprocket 508L to follow the drive sprocket 507L. The driving sprocket 507R and the driven sprocket 508R are arranged in parallel along the front-rear direction. The drive motor 406R drives the drive sprocket 507R and causes the driven sprocket 508R to follow the drive sprocket 507R.
 すなわち、前後方向に配置されたチェーン51L,51R,56L,56Rは相互に独立して駆動される。また、全方向移動台車2の重量バランスをとることとモータの設置スペースを確保することとの両方を実現するために、図3に示すように、各駆動体ユニット50、55のそれぞれについて前後に一つずつ駆動モータ401L、401R、406L、406Rが配置されている。駆動モータ401L、401R、406L、406Rが図1に示した駆動モータ21に対応している。 That is, the chains 51L, 51R, 56L, 56R arranged in the front-rear direction are driven independently of each other. Further, in order to realize both the weight balance of the omnidirectional mobile carriage 2 and the securing of the installation space of the motor, as shown in FIG. Drive motors 401L, 401R, 406L, and 406R are arranged one by one. The drive motors 401L, 401R, 406L, and 406R correspond to the drive motor 21 shown in FIG.
 また、全方向移動台車2は、一対のチェーン51R,51Lや一対のチェーン56R,56Lのそれぞれの駆動方向D1が、相互に平行であることにより、一対のチェーン51R,51Lや一対のチェーン56R,56Lの回転駆動方向と駆動速度Vとの2つのパラメータを制御して基体30の移動速度及びその方向を調整することにより、基体30を走行面Pに沿って多方向に円滑且つ自在に移動可能となっている。 Further, the omnidirectional mobile carriage 2 has a pair of chains 51R, 51L, a pair of chains 56R, and a pair of chains 56R, 56L. The base 30 can be moved smoothly and freely in multiple directions along the running surface P by adjusting the moving speed and the direction of the base 30 by controlling the two parameters of the 56L rotational driving direction and the driving speed V. It has become.
 次に全方向移動台車2の移動形態について説明する。図4A,図4B及び図4Cは全方向移動台車2の移動形態を示す説明図である。全方向移動台車2の移動形態は並進移動(図4A)、回転移動(図4B)、並進移動+回転移動(図4C)の3パターンである。並進移動は全方向移動台車2が回転をせず(向きを変えず)一定方向に平行移動することを示す。図4Aでは前後方向となす角がd1となる左斜め前方向の並進移動を示している。回転移動とは所定の軸を中心に全方向移動台車2が回転する移動を示す。回転移動のみの場合はその場で回転することとなるので、全方向移動台車2の姿勢は変わるものの位置は変化しない。図4Bに示すのは左回りに角速度d2で回転する移動を示す。並進移動+回転移動は並進移動と回転移動を合成した移動である。所定の軸を中心に所定の角速度で回転しつつ、一定方向に平行移動するという移動である。図4Cに示すのが一例である。 Next, the movement mode of the omnidirectional mobile trolley 2 will be described. 4A, 4B, and 4C are explanatory views showing a moving form of the omnidirectional mobile carriage 2. FIG. The movement form of the omnidirectional carriage 2 is three patterns of translation (FIG. 4A), rotation (FIG. 4B), and translation + rotation (FIG. 4C). Translational movement indicates that the omnidirectional mobile carriage 2 does not rotate (changes direction) and moves in a certain direction. FIG. 4A shows translational movement in the diagonally left front direction in which the angle formed with the front-rear direction is d1. The rotational movement indicates a movement in which the omnidirectional mobile carriage 2 rotates about a predetermined axis. In the case of only rotational movement, since it rotates on the spot, the position of the omnidirectional mobile trolley 2 changes, but the position does not change. FIG. 4B shows a movement that rotates counterclockwise at an angular velocity d2. Translational movement + rotational movement is a movement that combines translational movement and rotational movement. This is a movement of rotating in a certain direction while rotating at a predetermined angular velocity around a predetermined axis. An example is shown in FIG. 4C.
 上記の各移動形態を全方向移動台車2に行わせるには、それぞれ次に示す値を指示する必要がある。並進移動では移動方向を示す角度及び移動の速力、回転移動では回転方向及び回転の角速度、並進移動+回転移動では、移動方向を示す角度、移動の速力、回転方向及び回転の角速度である。 In order to make the omnidirectional mobile trolley 2 perform the above movement modes, it is necessary to indicate the following values. In translational movement, the angle indicates the direction of movement and the speed of movement, in rotational movement, the direction of rotation and angular speed of rotation, and in translation + rotation, the angle indicates the direction of movement, speed of movement, rotational direction, and angular speed of rotation.
 本実施の形態における移動指示方法について説明する。
 図5は操作部14における表示部141のレイアウトの一例を示す説明図である。表示部141は移動指示領域141a(操作領域)とカメラ画像表示領域141b(表示領域)とを含む。移動指示領域141aは接触検知部142と共に全方向移動台車2に対する移動指示入力を行うための領域である。カメラ画像表示領域141bは全方向移動台車2に搭載された画像取得部23からの画像を表示するための領域である。なお、図5に示した例では表示部141の上半分にカメラ画像表示領域141bを設け、下半分に移動指示領域141aを設けているが、逆にしても良い。また、上下ではなく左右としても良い。また、カメラ画像表示領域141bと移動指示領域141aとの面積は略同一としてあるが、一方を広くし、他方を狭くしても良い。接触検知部142は表示部141の表示面全面ではなく、移動指示領域141aに対応する部分にのみ設けられていても良い。
A movement instruction method in the present embodiment will be described.
FIG. 5 is an explanatory diagram showing an example of the layout of the display unit 141 in the operation unit 14. The display unit 141 includes a movement instruction area 141a (operation area) and a camera image display area 141b (display area). The movement instruction area 141 a is an area for inputting a movement instruction to the omnidirectional moving carriage 2 together with the contact detection unit 142. The camera image display area 141 b is an area for displaying an image from the image acquisition unit 23 mounted on the omnidirectional mobile carriage 2. In the example shown in FIG. 5, the camera image display area 141 b is provided in the upper half of the display unit 141 and the movement instruction area 141 a is provided in the lower half. Moreover, it is good also as right and left instead of up and down. Moreover, although the area of the camera image display area 141b and the movement instruction area 141a is substantially the same, one may be widened and the other may be narrowed. The contact detection unit 142 may be provided not only on the entire display surface of the display unit 141 but only on a portion corresponding to the movement instruction area 141a.
 図6は接触検知部142の操作面142aの一例を示す説明図である。操作面142aは表示部141の移動指示領域141aに対応した位置にある。接触検知部142の操作面142aに横軸142b、縦軸142cの軸線が示されている。横軸142bをX軸、縦軸142cをY軸とする。X軸とY軸との交点を原点Oとする。図7A及び図7Bは並進移動を指示する場合の操作方法を示す説明図である。ユーザは操作に用いる指で操作面142aの原点Oを触れる。次にユーザは触れている指を操作面142a上で滑らし、所定の位置に移動する。移動した後の位置をAとする。原点Oと点Aを結ぶ線分を線分OAとする。線分OAの長さをL1とする。Y軸と線分OAとがなす角度をd1とする。この場合、操作装置1は角度d1の方向に速さv1(=m×L1)で移動するよう全方向移動台車2に対して命令を送信する。ここでmは係数である。係数mの値は接触検知部142の操作面142aの面積、全方向移動台車2の仕様に合わせて適宜定めれば良い。操作を用いる指は任意の指で良いが、人差し指を用いるのが好適である。以下に示す回転移動の指示が行い易くなるからである。図7Bに示すように、表示部141には指が置かれている点AにマーカMaが表示される。原点Oから点A(マーカ)に亘るベクトルS1が表示される。 FIG. 6 is an explanatory diagram showing an example of the operation surface 142 a of the contact detection unit 142. The operation surface 142a is at a position corresponding to the movement instruction area 141a of the display unit 141. An axis of a horizontal axis 142b and a vertical axis 142c is shown on the operation surface 142a of the contact detection unit 142. The horizontal axis 142b is the X axis and the vertical axis 142c is the Y axis. An intersection point between the X axis and the Y axis is defined as an origin O. 7A and 7B are explanatory diagrams showing an operation method in the case of instructing translational movement. The user touches the origin O of the operation surface 142a with a finger used for operation. Next, the user slides the touching finger on the operation surface 142a and moves it to a predetermined position. Let A be the position after the movement. A line segment connecting the origin O and the point A is defined as a line segment OA. Let L1 be the length of the line segment OA. An angle formed by the Y axis and the line segment OA is defined as d1. In this case, the controller device 1 transmits a command to the omnidirectional mobile trolley 2 to move in the direction of the angle d1 at the speed v1 (= m × L1). Here, m is a coefficient. The value of the coefficient m may be appropriately determined according to the area of the operation surface 142a of the contact detection unit 142 and the specifications of the omnidirectional mobile carriage 2. The finger using the operation may be any finger, but it is preferable to use the index finger. This is because it becomes easier to instruct the following rotational movement. As shown in FIG. 7B, the marker Ma is displayed at the point A where the finger is placed on the display unit 141. A vector S1 from the origin O to the point A (marker) is displayed.
 図8A,図8B,図9A及び図9Bは移動指示方法についての説明図である。図8A,図8B,図9A及び図9Bは全方向移動台車2が並進移動している場合に、回転移動を更に行わせるための指示方法を示している。すなわち、全方向移動台車2は並進移動と回転移動とが合成された移動(並進移動+回転移動)を行う。
 ユーザは並進移動を指示するのに用いた指を保持しつつ、他の指で接触検知部142の操作面142aの他の部分を触れる。その点をB点とする(図8A参照)。次にA点を回転軸としてB点に置いている指を、操作面142a上を滑らすようにして移動させる(図9A及び図9B参照)。移動した後の点をCとする。この場合、点Aと点Bを結ぶ線分AB及び点A点Cとを結ぶ線分ACがなす角度をd2とする。このとき全方向移動台車2は並進移動をしつつ、回転移動を行う。回転移動の角速度の大きさは角度d2に比例するものとする。角速度v2を、v2(=n×d2)とする。ここでnは係数である。係数nの値は操作部14の操作面14aの面積、全方向移動台車2の仕様に合わせて適宜定めれば良い。回転移動の回転方向は点Bから点Cへ指を動かした際の移動方向により定める。図9A及び図9Bに示した例では反時計回りに指を動かしているので、全方向移動台車2の回転方向も反時計回りとなる。点Bにある指を時計回りに移動すると、全方向移動台車2の回転方向も時計回りとなる。なお、並進移動を指示する際に人差し指を用いた場合、回転移動を指示するのは親指を用いるのが好適である。もちろん、他の指を用いても良い。図9Bに示すように、表示部141には図7Bに示した表示に加え、次に示すものが表示されている。表示部141には回転移動の指示に用いた他の指の位置である点CにマーカMcが表示されている。表示部141には点Aと点Cとを結ぶ線分S3が表示されている。表示部141には点Aと他の指の最初の位置である点Bとを結ぶ線分S2が表示されている。表示部141には点Bと点Cとを結ぶ線分S4が表示されている。
8A, 8B, 9A, and 9B are explanatory diagrams of the movement instruction method. FIG. 8A, FIG. 8B, FIG. 9A, and FIG. 9B show an instruction method for further performing rotational movement when the omnidirectional mobile carriage 2 is moving in translation. In other words, the omnidirectional mobile carriage 2 performs a movement (translation movement + rotation movement) in which the translation movement and the rotation movement are combined.
The user touches the other part of the operation surface 142a of the contact detection unit 142 with another finger while holding the finger used to instruct the translation movement. That point is designated as point B (see FIG. 8A). Next, the finger placed at the point B with the point A as the rotation axis is moved so as to slide on the operation surface 142a (see FIGS. 9A and 9B). Let C be the point after the movement. In this case, an angle formed by a line segment AB connecting the point A and the point B and a line segment AC connecting the point A and the point C is defined as d2. At this time, the omnidirectional mobile trolley 2 performs rotational movement while performing translational movement. The magnitude of the angular velocity of the rotational movement is proportional to the angle d2. The angular velocity v2 is set to v2 (= n × d2). Here, n is a coefficient. The value of the coefficient n may be appropriately determined according to the area of the operation surface 14a of the operation unit 14 and the specifications of the omnidirectional mobile carriage 2. The rotational direction of the rotational movement is determined by the moving direction when the finger is moved from point B to point C. In the example shown in FIGS. 9A and 9B, since the finger is moved counterclockwise, the rotation direction of the omnidirectional mobile carriage 2 is also counterclockwise. When the finger at the point B is moved clockwise, the rotation direction of the omnidirectional mobile carriage 2 is also clockwise. When the index finger is used when instructing the translational movement, it is preferable to use the thumb to instruct the rotational movement. Of course, other fingers may be used. As shown in FIG. 9B, the display unit 141 displays the following items in addition to the display shown in FIG. 7B. On the display unit 141, a marker Mc is displayed at a point C, which is the position of another finger used for the rotation movement instruction. On the display unit 141, a line segment S3 connecting the points A and C is displayed. The display unit 141 displays a line segment S2 connecting the point A and the point B that is the first position of another finger. On the display unit 141, a line segment S4 connecting the points B and C is displayed.
 図10A及び図10Bは移動指示方法についての説明図である。図8A,図8B,図9A及び図9Bで示している操作により並進移動+回転移動している全方向移動台車2の並進する方向を変化させるための操作を、図10A及び図10Bは示している。図9Bの状態から2本の指を互いの位置関係を変えずに、操作面142a上を滑らして移動する。移動後の指の位置を点A’、点C’とする。点A、点Cはそれぞれ移動する前の指の位置である。全方向移動台車2が並進する方向は図7Aに示すように線分OAとY軸とのなす角度で指示している。図10Aで示すように点Aにある指を点A’に移動させたことにより、並進方向は線分OAとY軸となす角度d1から線分OA’とY軸となす角度d3に変更される。並進方向の変更は角度d1からd3に連続的に行われる。点Bは回転移動を指示する際、点Cに移動した指が最初に操作面142aに触れた位置である。点B’は点Bを点A、点Cと同様な方向、距離移動した場合に対応する位置の点である。すなわち、点A及び点Cと点Bとの位置関係並びに点A’及び点C’と点B’との位置関係は同様となっている。図10Bに示すように、表示部141に表示されている要素はマーカMa、Mc、線分S1、S2、S3、S4、角度d3であり、図9Bと同様である。図9Bと大きく違うのは、点A、点B、点Cの位置である。特に点Aの位置の変化により線分S1とY軸とがなす角度がd1からd3になっている。図11は並進方向が連続的に変更される様子を示した説明図である。図11に示す矢印の方向が並進方向である。並進方向が角度d1からd3へ連続的に変更されている様子を示している。 10A and 10B are explanatory diagrams of the movement instruction method. FIG. 10A and FIG. 10B show an operation for changing the translation direction of the omnidirectional mobile carriage 2 that has been translated and rotated by the operation shown in FIGS. 8A, 8B, 9A, and 9B. Yes. From the state of FIG. 9B, the two fingers are slid and moved on the operation surface 142a without changing the positional relationship with each other. Let the positions of the finger after movement be point A 'and point C'. Point A and point C are the positions of the fingers before moving. The direction in which the omnidirectional mobile carriage 2 translates is indicated by the angle formed by the line segment OA and the Y axis as shown in FIG. 7A. As shown in FIG. 10A, the translation direction is changed from the angle d1 between the line segment OA and the Y axis to the angle d3 between the line segment OA ′ and the Y axis by moving the finger at the point A to the point A ′. The The translation direction is changed continuously from angles d1 to d3. Point B is the position where the finger moved to point C first touched the operation surface 142a when instructing rotational movement. Point B ′ is a point at a position corresponding to a point B moved in the same direction and distance as point A and point C. That is, the positional relationship between the points A and C and the point B and the positional relationship between the points A ′ and C ′ and the point B ′ are the same. As shown in FIG. 10B, the elements displayed on the display unit 141 are markers Ma and Mc, line segments S1, S2, S3, S4, and an angle d3, which are the same as in FIG. 9B. The positions of point A, point B, and point C are greatly different from FIG. 9B. In particular, the angle between the line segment S1 and the Y axis is changed from d1 to d3 due to the change in the position of the point A. FIG. 11 is an explanatory view showing a state in which the translation direction is continuously changed. The direction of the arrow shown in FIG. 11 is the translation direction. The state in which the translation direction is continuously changed from the angle d1 to d3 is shown.
 並進移動の停止は次のようにして行う。点Aにある指を原点に戻すと並進移動を停止する。並進移動のみをしていた場合、全方向移動台車2は完全に停止した状態となる。全方向移動台車2が並進移動+回転移動をしている場合、並進移動のみを停止し、回転移動は継続する。全方向移動台車2はその場で回転移動することとなる。 停止 Stop the translation as follows. When the finger at the point A is returned to the origin, the translation is stopped. When only translational movement is performed, the omnidirectional mobile carriage 2 is completely stopped. When the omnidirectional mobile trolley 2 performs translation + rotation, only the translation is stopped and the rotation continues. The omnidirectional mobile trolley 2 rotates and moves on the spot.
 回転移動の停止は次のように行う。点C(点C’)にある指を線分AB(A’B’)上へ移動すると回転移動を停止する。全方向移動台車2が並進移動+回転移動をしている場合、回転移動のみを停止し、並進移動は継続する。点A(点A’)にある指を離すと、並進移動及び回転移動を停止し、全方向移動台車2は完全に停止した状態となる。 Rotation is stopped as follows. When the finger at the point C (point C ′) is moved onto the line segment AB (A′B ′), the rotational movement is stopped. When the omnidirectional mobile trolley 2 is performing translation + rotation, only the rotation is stopped and the translation is continued. When the finger at the point A (point A ′) is released, the translational movement and the rotational movement are stopped, and the omnidirectional moving carriage 2 is completely stopped.
 全方向移動台車2に対する指示操作は上述した操作に限らず、以下の様な指示操作を採用しても良い。並進移動の速力は線分OAの長さで定めたが、指が原点Oから点Aまで動くまでの時間を計測し、計測した時間に比例する値を速力としても良い。点A(点A’)にある指を離した場合に、並進移動及び回転移動を停止するのではなく、並進移動のみを停止し、回転移動は継続することとしても良い。点C(点C’)にある指を離すことで回転移動を停止しても良い。 The instruction operation for the omnidirectional mobile trolley 2 is not limited to the operation described above, and the following instruction operation may be employed. Although the speed of translation is determined by the length of the line segment OA, the time until the finger moves from the origin O to the point A is measured, and a value proportional to the measured time may be used as the speed. When the finger at the point A (point A ′) is released, the translational movement and the rotational movement may not be stopped, but only the translational movement may be stopped and the rotational movement may be continued. The rotational movement may be stopped by releasing the finger at the point C (point C ′).
 並進移動を指示している場合において、点Aに置いている指を原点Oから遠ざけることにより並進移動の速さを増加させ、原点Oに近づけることにより並進移動の速さを減少させても良い。回転移動を指示している場合において、点Cに置いている指を点Bに近づける方向に動かすと回転速度を減少させ、点Bから遠ざける方向に動かすと回転速度を増加させても良い。 When the translation movement is instructed, the translation speed may be increased by moving the finger placed at the point A away from the origin O, and the translation speed may be decreased by approaching the origin O. . In the case where the rotational movement is instructed, the rotational speed may be decreased by moving the finger placed at the point C in the direction approaching the point B, and the rotational speed may be increased by moving in the direction away from the point B.
 上述した移動指示方法に応じて操作装置1から全方向移動台車2へ送信するコマンド(命令)体系を構成する。図12は全方向移動台車2のコマンド体系の一例を示す一覧表である。コマンドと引数を示している。コマンドは並進移動コマンド、回転移動コマンド、並進停止コマンド、回転停止コマンドの4種類である。並進移動コマンドは引数として速力と並進方向を取る。速力は並進する速力(速度の大きさ)である。速力の単位は例えばm/sである。並進方向は全方向移動台車2の前後方向をY軸とした時に並進方向を示すベクトルとY軸とがなす角度を指定する。角度の値に正負を設け、右前方、右後方に進む場合を正の値、左前方、左後方に進む場合は負の値とする。図13は並進方向を示す角度の例を示す説明図である。全方向移動台車2において所定位置を原点として前後方向をY軸、左右方向X軸としている。ここに示す座標系が図6に示す接触検知部142の操作面142aの座標系と対応付けられている。図13に示すように、全方向移動台車2を右前方45度の方向に並進移動させる場合は、並進方向の引数として+45度を指定する。全方向移動台車2を左後方30度の方向に並進移動させる場合は、並進方向の引数として-120度を指定する。角度の取り方はこれに限られない。角度0とする位置をX軸方向としても良い。角度の値として負の値を設けず、0度から360度の値を取ることとしても良い。 A command (command) system to be transmitted from the controller device 1 to the omnidirectional mobile trolley 2 is configured according to the movement instruction method described above. FIG. 12 is a list showing an example of a command system of the omnidirectional mobile carriage 2. Shows commands and arguments. There are four types of commands: a translation command, a rotation command, a translation stop command, and a rotation stop command. The translation command takes speed and translation direction as arguments. The speed is the speed of translation (the magnitude of speed). The unit of speed is, for example, m / s. The translation direction designates an angle formed by a vector indicating the translation direction and the Y axis when the longitudinal direction of the omnidirectional mobile carriage 2 is the Y axis. A positive or negative value is provided for the angle value, and a positive value is used when the vehicle proceeds to the right front and the right rear, and a negative value is used when the vehicle proceeds to the left front and the left rear. FIG. 13 is an explanatory diagram illustrating an example of an angle indicating a translation direction. In the omnidirectional mobile trolley 2, the front-rear direction is a Y-axis and the left-right direction X-axis with a predetermined position as the origin. The coordinate system shown here is associated with the coordinate system of the operation surface 142a of the contact detection unit 142 shown in FIG. As shown in FIG. 13, when the omnidirectional mobile trolley 2 is translated in the direction of 45 degrees to the right, +45 degrees is specified as an argument for the translation direction. When the omnidirectional carriage 2 is translated in the direction of 30 degrees to the left rear, −120 degrees is specified as an argument for the translation direction. The method of taking the angle is not limited to this. The position where the angle is 0 may be the X-axis direction. It is good also as taking the value of 0 degree to 360 degree | times, without providing a negative value as an angle value.
 回転移動コマンドは引数として角速度を取る。角速度の単位は例えばrad/sである。回転方向は値の正負で表す。正の値は時計回り、負の値は反時計回りとする。これに限らず、正負の意味を逆にしても良い。また、引数を2つにして、第一引数を角速度の大きさ、第二引数を回転方向としても良い。並進停止コマンド、回転停止コマンドはそれぞれ並進移動、回転移動を停止するコマンドであり、引数は取らない。 Rotational movement command takes angular velocity as an argument. The unit of angular velocity is, for example, rad / s. The direction of rotation is represented by the sign of the value. Positive values are clockwise and negative values are counterclockwise. Not limited to this, the positive and negative meanings may be reversed. Alternatively, two arguments may be used, the first argument may be the angular velocity and the second argument may be the rotation direction. The translation stop command and the rotation stop command are commands for stopping the translation movement and the rotation movement, respectively, and do not take an argument.
 コマンドは上述の4つに限られるものではない。他のコマンドを設けても良いし、コマンドを減らしても良い。例えば、並進移動+回転移動を指示するコマンド、並進移動及び回転停止をする完全停止コマンドを追加しても良い。一方、並進停止コマンド、回転停止コマンドは設けなくても良い。並進移動コマンドにおいて速力0とすると、並進停止となるからである。同様に回転移動コマンドにおいて角速度0(角速度の大きさ0)とすると回転停止となるからである。また、並進停止コマンドと回転停止コマンドとを統合して1つのコマンド、例えば移動停止コマンドとしても良い。移動停止コマンドは引数を1つ取る。引数は並進、回転、両方である。引数が並進のときは並進移動のみが停止する。引数が回転のときは回転移動のみが停止する。引数が両方のときは、並進移動及び回転移動の両方の移動が停止する。 * Commands are not limited to the above four. Other commands may be provided, or the number of commands may be reduced. For example, a command for instructing translation + rotation and a complete stop command for stopping translation and rotation may be added. On the other hand, the translation stop command and the rotation stop command may not be provided. This is because when the speed is 0 in the translation command, translation is stopped. Similarly, if the angular velocity is 0 (angular velocity magnitude 0) in the rotational movement command, the rotation is stopped. Further, the translation stop command and the rotation stop command may be integrated into one command, for example, a movement stop command. The movement stop command takes one argument. The arguments are both translation and rotation. When the argument is translation, only translation is stopped. When the argument is rotation, only rotational movement stops. When the arguments are both, both translational and rotational movements stop.
 次に操作装置1における情報処理について説明する。図14から図17は操作装置1で実行される移動指示処理の手順を示すフローチャートである。操作装置1のCPU10は、操作者が接触検知部142を操作することにより発生する入力信号の処理を行う(ステップS1)。A/D変換やフィルタリング処理などである。CPU10は入力点数及び各点の座標値を算出する(ステップS2)。入力点数とは接触検知部142が入力を検知した点の数である。なお、ここでは入力信号の処理並びに入力点数及び各点の座標値の算出をCPU10が行うものとしたが、信号処理用のドライバIC(Integrated Circuit)等により処理を行わせ、CPU10はドライバICから入力点数及び各点の座標値を受け取ることとしても良い。なお、以下の説明において、ユーザが接触検知部142の操作面142aに触れている指を操作面142aから離すことなく、操作面142aを滑らすことを「ドラッグ」と表現する。「ドラッグ中」とはユーザが指を動かし続けているという意味である。 Next, information processing in the controller device 1 will be described. 14 to 17 are flowcharts showing the procedure of the movement instruction process executed by the controller device 1. The CPU 10 of the controller device 1 processes an input signal generated when the operator operates the contact detection unit 142 (step S1). A / D conversion and filtering processing. The CPU 10 calculates the number of input points and the coordinate value of each point (step S2). The number of input points is the number of points at which the contact detection unit 142 has detected an input. Here, the CPU 10 performs processing of the input signal and the calculation of the number of input points and the coordinate value of each point. However, the processing is performed by a signal processing driver IC (Integrated Circuit) or the like. The number of input points and the coordinate value of each point may be received. In the following description, sliding the operation surface 142a without releasing the finger touching the operation surface 142a of the contact detection unit 142 from the operation surface 142a is expressed as “drag”. “Dragging” means that the user keeps moving the finger.
 CPU10は入力点数が0であるか、すなわち、ユーザによる入力があるか否かを判定する(ステップS3)。入力点数が0の場合(ステップS3でYES)、CPU10は全方向移動台車2が移動中であるか否かを判定する(ステップS4)。全方向移動台車2が移動中であるか否かの判定は、全方向移動台車2への命令の発行履歴を記憶しておき、履歴より判定すれば良い。または全方向移動台車2へ直接問い合わせても良い。全方向移動台車2が移動中である場合(ステップS4でYES)、CPU10は座標値記憶部13に記憶している座標値をクリアする(ステップS5)。CPU10は表示部141の表示をリセットする(ステップS6)。表示リセットとは表示部141の表示を初期状態に戻すことである。マーカMa、Mb、Mc、線分S1、S2、S3、S4の表示を表示部141から消すことである。CPU10(指示部)は全停止命令を全方向移動台車2に対して発行する(ステップS7)。ここで「全停止」とは並進移動及び回転移動を共に停止することを意味している。全方向移動台車2が移動中でない場合(ステップS4でNO)、CPU10は処理を終了する。 CPU 10 determines whether the number of input points is 0, that is, whether there is an input by the user (step S3). When the number of input points is 0 (YES in step S3), the CPU 10 determines whether or not the omnidirectional mobile trolley 2 is moving (step S4). Whether or not the omnidirectional mobile trolley 2 is moving may be determined from a history of issuing commands to the omnidirectional mobile trolley 2 and stored. Or you may inquire directly to the omnidirectional mobile trolley 2. If the omnidirectional mobile trolley 2 is moving (YES in step S4), the CPU 10 clears the coordinate values stored in the coordinate value storage unit 13 (step S5). CPU10 resets the display of the display part 141 (step S6). The display reset is to return the display on the display unit 141 to the initial state. The display of the markers Ma, Mb, Mc and line segments S1, S2, S3, S4 is to be erased from the display unit 141. CPU10 (instruction | indication part) issues an all stop command with respect to the omnidirectional mobile trolley 2 (step S7). Here, “all stop” means to stop both translational movement and rotational movement. When the omnidirectional mobile trolley 2 is not moving (NO in step S4), the CPU 10 ends the process.
 入力点数が0でない場合(ステップS3でNO)、CPU10は入力点数が1点であるか否か判定する(ステップS8)。入力点数が1点の場合(ステップS8でYES)、CPU10はコマンド判定処理1を行う(ステップS9)。CPU10は処理を終了する。 If the number of input points is not 0 (NO in step S3), the CPU 10 determines whether or not the number of input points is 1 (step S8). If the number of input points is 1 (YES in step S8), the CPU 10 performs a command determination process 1 (step S9). The CPU 10 ends the process.
 入力点数が1点ではない場合(ステップS8でNO)、CPU10は入力点数が2点であるか否か判定する(ステップS10)。入力点数が2点である場合(ステップS10でYES)、CPU10はコマンド判定処理2を行う(ステップ11)。CPU10は処理を終了する。入力点数が2点ではない場合(ステップS10でNO)、CPU10は処理を終了する。以後、CPU10は図14から図17のフローチャートに示した処理を繰り返し行う。なお、入力点数が3点以上は想定していないため、ステップS10でNOと判定された場合は、エラー処理を行なっても良い。例えば、ビープ音を発したり、エラー用のLED(Light Emitting Diode)を点灯したりするなどにより、想定しない操作がされたことをユーザに警告しても良い。 If the number of input points is not 1 (NO in step S8), the CPU 10 determines whether or not the number of input points is 2 (step S10). When the number of input points is 2 (YES in step S10), the CPU 10 performs a command determination process 2 (step 11). The CPU 10 ends the process. If the number of input points is not two (NO in step S10), the CPU 10 ends the process. Thereafter, the CPU 10 repeatedly performs the processing shown in the flowcharts of FIGS. Since it is not assumed that the number of input points is 3 or more, if NO is determined in step S10, error processing may be performed. For example, the user may be warned that an unexpected operation has been performed by emitting a beep sound or turning on an error LED (Light Emitting Diode).
 図15を参照しつつ、コマンド判定処理1(図14のステップS9)について説明する。以下の記載では第一点(第1の接触箇所)、第二点(第2の接触箇所)という語を用いるので、語の示す意味を説明する。第一点とは操作部14に何も入力されていない状態から一点の入力があった場合、その点のことを示す。上述した図7A,図8A及び図9Aにおける点Aに相当する。第一点が入力されている状態で新たな点が入力された場合、その点を第二点と言う。上述した図8A及び図9Aにおける点Bに相当する。 The command determination process 1 (step S9 in FIG. 14) will be described with reference to FIG. In the following description, since the terms first point (first contact location) and second point (second contact location) are used, the meanings of the terms will be described. The first point indicates a point when there is an input from a state where nothing is input to the operation unit 14. This corresponds to the point A in FIGS. 7A, 8A, and 9A described above. When a new point is input while the first point is input, the point is referred to as a second point. This corresponds to the point B in FIGS. 8A and 9A described above.
 コマンド判定処理1は入力点数が1つの場合の処理である。CPU10(第1受付部)は第一点の座標値が座標値記憶部13に記憶されているか否か判定する(ステップS21)。第一点が記憶されていない場合(ステップS21でNO)、CPU10は入力された点の座標値(以下、「入力座標値」と記す。)が原点であるか判定する(ステップS22)。原点である場合(ステップS22でYES)、CPU10は入力座標値を第一点の座標値(第1座標)として座標値記憶部13に記憶する(ステップS23)。CPU10(標点表示部)は第一点に対応する表示部141の位置にマーカMaを表示させる(ステップS24)。CPU10は処理を終了する。これは、並進移動を指示するためにユーザが原点に指を置いた場合である。なお、ステップS22での判定では入力誤差を考慮しても良い。例えば、入力座標値が原点座標に一致しなくても、入力された点と原点とのユークリッド距離が所定の値以下の場合は、原点にあるものとして扱っても良い。原点でない場合(ステップS22でNO)、CPU10は処理を終了する。 The command determination process 1 is a process when the number of input points is one. CPU10 (1st reception part) determines whether the coordinate value of the 1st point is memorize | stored in the coordinate value memory | storage part 13 (step S21). When the first point is not stored (NO in step S21), the CPU 10 determines whether the coordinate value of the input point (hereinafter referred to as “input coordinate value”) is the origin (step S22). If it is the origin (YES in step S22), the CPU 10 stores the input coordinate value in the coordinate value storage unit 13 as the coordinate value (first coordinate) of the first point (step S23). The CPU 10 (mark point display unit) displays the marker Ma at the position of the display unit 141 corresponding to the first point (step S24). The CPU 10 ends the process. This is a case where the user places a finger at the origin in order to instruct translational movement. Note that an input error may be considered in the determination in step S22. For example, even if the input coordinate value does not coincide with the origin coordinate, if the Euclidean distance between the input point and the origin is equal to or less than a predetermined value, it may be treated as being at the origin. If it is not the origin (NO in step S22), the CPU 10 ends the process.
 第一点の座標値が座標値記憶部13に記憶してある場合(ステップS21でYES)、CPU10は入力座標値と座標値記憶部13に記憶されている第一点の座標値とが一致するかを判定する(ステップS25)。座標値が一致していない場合(ステップS25でNO)、CPU10は入力された点がドラッグ中であるか否かを判定する(ステップS26)。ドラッグ中であるか否かは例えば次のように行う。最初にステップS26に達した時に入力座標値をRAM12に一時的に記憶しておく。次回以降ステップS26に達したときは、RAM12に記憶した座標値と入力座標値を比較し、一致していれば一致回数をインクリメントする。一致してなければ一致回数を0にリセットし、RAM12に記憶する座標値を入力座標値に更新する。一致回数が所定の回数に達するまではドラッグ中と判定し、一致回数が所定の回数に達したら、ドラッグ中でないと判定する。これはあくまでも一例であり、トラックパッド等における入力点の追跡に関する従来技術を適用しても良い。 When the coordinate value of the first point is stored in the coordinate value storage unit 13 (YES in step S21), the CPU 10 matches the input coordinate value with the coordinate value of the first point stored in the coordinate value storage unit 13. It is determined whether to do so (step S25). If the coordinate values do not match (NO in step S25), the CPU 10 determines whether or not the input point is being dragged (step S26). Whether or not the drug is being dragged is performed as follows, for example. When step S26 is first reached, the input coordinate value is temporarily stored in the RAM 12. When step S26 is reached after the next time, the coordinate value stored in the RAM 12 is compared with the input coordinate value, and if they match, the number of matches is incremented. If they do not match, the number of matches is reset to 0, and the coordinate value stored in the RAM 12 is updated to the input coordinate value. It is determined that the user is dragging until the number of matches reaches a predetermined number, and when the number of matches reaches a predetermined number, it is determined that the user is not dragging. This is merely an example, and a conventional technique relating to tracking of input points on a track pad or the like may be applied.
 ドラッグ中である場合(ステップS26でYES)、CPU10は表示部141の表示更新する(ステップS37)。具体的には、CPU10はマーカMaをドラッグされた位置に対応する表示部141の位置に再表示し、原点OとマーカMaとを結ぶ線分S1を表示部141に表示する。CPU10は処理を終了する。ドラッグ中でない場合(ステップS26でNO)、CPU10は全方向移動台車2が移動中であるか否かを判定する(ステップS27)。全方向移動台車2が移動中である場合(ステップS27でYES)、CPU10は入力された点が原点であるか否かを判定する(ステップS32)。入力された点が原点である場合(ステップS32でYES)、CPU10は表示部141に表示している線分S1(図7B等参照)を消去する(ステップS33)。CPU10は並進移動停止命令を発行する(ステップS34)。すなわち、CPU10は並進移動停止のコマンドを、通信部15を介して全方向移動台車2に対して送信する。CPU10は処理を終了する。入力された点が原点ではない場合(ステップS32でNO)、第一点においていた指が離され、第二点のみが入力されている場合であるので、CPU10は表示部141の表示をリセットする(ステップS35)。CPU10は全停止命令を全方向移動台車2に対して発行する(ステップS36)。 If it is being dragged (YES in step S26), the CPU 10 updates the display on the display unit 141 (step S37). Specifically, the CPU 10 redisplays the marker Ma at the position of the display unit 141 corresponding to the dragged position, and displays a line segment S1 connecting the origin O and the marker Ma on the display unit 141. The CPU 10 ends the process. When not dragging (NO in step S26), the CPU 10 determines whether or not the omnidirectional mobile carriage 2 is moving (step S27). When the omnidirectional mobile trolley 2 is moving (YES in step S27), the CPU 10 determines whether or not the input point is the origin (step S32). When the input point is the origin (YES in step S32), the CPU 10 deletes the line segment S1 (see FIG. 7B, etc.) displayed on the display unit 141 (step S33). The CPU 10 issues a translation stop command (step S34). That is, the CPU 10 transmits a translation stop command to the omnidirectional mobile carriage 2 via the communication unit 15. The CPU 10 ends the process. If the input point is not the origin (NO in step S32), since the finger at the first point is released and only the second point is input, the CPU 10 resets the display on the display unit 141. (Step S35). CPU10 issues an all stop command with respect to the omnidirectional mobile trolley 2 (step S36).
 全方向移動台車2が移動中でない場合(ステップS27でNO)、CPU10は入力された点と原点(特定の座標値)とを結ぶ線分の長さを算出する(ステップS28)。CPU10は入力された点と原点とを結ぶ線分とY軸とがなす角度を算出する(ステップS29)。CPU10は表示部141の表示を更新する(ステップS30)。CPU10はマーカMaの再表示を行い、入力された点と原点とを結ぶ線分S1を再表示する。CPU10は算出した線分の長さ、角度を含む並進移動命令を発行する(ステップS31)。すなわち、並進移動のコマンドを、通信部15を介して全方向移動台車2に対して送信する。線分の長さは並進移動の速力(速さ)を、角度は並進方向を示す。送信するコマンドに速力として求めた線分の長さをそのまま含めるのではなく、所定の係数を乗じた値としても良い。並進方向は図13を用いて上述したとおりである。なお、速力を線分の長さではなく、ドラッグした時間により定めることとしても良い。 If the omnidirectional mobile trolley 2 is not moving (NO in step S27), the CPU 10 calculates the length of a line segment connecting the input point and the origin (specific coordinate value) (step S28). The CPU 10 calculates an angle formed by a line segment connecting the input point and the origin and the Y axis (step S29). CPU10 updates the display of the display part 141 (step S30). The CPU 10 redisplays the marker Ma, and redisplays the line segment S1 connecting the input point and the origin. The CPU 10 issues a translation command including the calculated line segment length and angle (step S31). That is, a command for translational movement is transmitted to the omnidirectional mobile carriage 2 via the communication unit 15. The length of the line segment indicates the translational speed (speed), and the angle indicates the translational direction. Instead of including the length of the line segment obtained as speed in the command to be transmitted, it may be a value obtained by multiplying a predetermined coefficient. The translation direction is as described above with reference to FIG. The speed may be determined not by the length of the line segment but by the dragged time.
 入力座標値と第一点の座標値とが一致する場合(ステップS25でYES)、CPU10は第二点の座標値が座標値記憶部13に記憶してあるか否かを判定する(ステップS38)。第二点の座標値が記憶されている場合(ステップS38でYES)、CPU10は座標値記憶部13に記憶してある第二点の座標値をクリアする(ステップS39)。CPU10は表示部141に表示している線分S2、S3、S4、マーカMc(図9B参照)を消去する(ステップS40)。CPU10は回転移動停止命令を発行する(ステップS41)。すなわち、回転移動停止のコマンドを、通信部15を介して全方向移動台車2に対して送信する。CPU10は処理を終了する。第二点の座標値が記憶されていない場合(ステップS38でNO)、CPU10は処理を終了する。 When the input coordinate value matches the coordinate value of the first point (YES in step S25), the CPU 10 determines whether or not the coordinate value of the second point is stored in the coordinate value storage unit 13 (step S38). ). When the coordinate value of the second point is stored (YES in step S38), the CPU 10 clears the coordinate value of the second point stored in the coordinate value storage unit 13 (step S39). The CPU 10 erases the line segments S2, S3, S4 and the marker Mc (see FIG. 9B) displayed on the display unit 141 (step S40). CPU10 issues a rotational movement stop command (step S41). That is, a command to stop rotational movement is transmitted to the omnidirectional mobile carriage 2 via the communication unit 15. The CPU 10 ends the process. If the coordinate value of the second point is not stored (NO in step S38), the CPU 10 ends the process.
 図16及び図17を参照しつつ、コマンド判定処理2(図14のステップS11)について説明する。コマンド判定処理2は入力点数が2つの場合の処理である。CPU10は第一点の座標値が座標値記憶部13に記憶されているか否かを判定する(ステップS51)。第一点の座標値が記憶されてない場合(ステップS51でNO)、CPU10は処理を終了する。この場合は想定しない操作であるため、エラー処理を行なっても良い。エラー処理の例は上述したとおりである。第一点の座標が記憶されている場合(ステップS51でYES)、CPU10(第2受付部)は入力されている2点のうち、第一点の座標値と座標値記憶部13に記憶されている第一点の座標値とが一致するか否かを判定する(ステップS52)。第一点の座標値と座標値記憶部13に記憶されている第一点の座標値とが一致する場合(ステップS52でYES)、CPU10は第二点(第2座標)の座標値が座標値記憶部13に記憶されているか否かを判定する(ステップS53)。第二点の座標値が座標値記憶部13に記憶されていない場合(ステップS53でNO)、CPU10は入力されている2点のうち、第二点の座標値を座標値記憶部13に記憶する(ステップS54)。これは、回転移動を指示するためにユーザが二本目の指を接触検知部142の操作面142aに置いた場合である。CPU10(標点表示部)は第二点に対応する表示部141の位置にマーカMbを表示すると共に第一点と第二点とを結ぶ線分S2を表示する(ステップS55)。CPU10は処理を終了する。 The command determination process 2 (step S11 in FIG. 14) will be described with reference to FIGS. The command determination process 2 is a process when the number of input points is two. The CPU 10 determines whether or not the coordinate value of the first point is stored in the coordinate value storage unit 13 (step S51). When the coordinate value of the first point is not stored (NO in step S51), the CPU 10 ends the process. In this case, since the operation is not assumed, error processing may be performed. An example of error processing is as described above. When the coordinates of the first point are stored (YES in step S51), the CPU 10 (second receiving unit) stores the coordinate value of the first point and the coordinate value storage unit 13 among the two input points. It is determined whether or not the coordinate value of the first point matches (step S52). When the coordinate value of the first point matches the coordinate value of the first point stored in the coordinate value storage unit 13 (YES in step S52), the CPU 10 determines that the coordinate value of the second point (second coordinate) is the coordinate. It is determined whether it is stored in the value storage unit 13 (step S53). When the coordinate value of the second point is not stored in the coordinate value storage unit 13 (NO in step S53), the CPU 10 stores the coordinate value of the second point in the coordinate value storage unit 13 among the two input points. (Step S54). This is a case where the user places a second finger on the operation surface 142a of the contact detection unit 142 in order to instruct a rotational movement. The CPU 10 (mark point display unit) displays the marker Mb at the position of the display unit 141 corresponding to the second point and also displays the line segment S2 connecting the first point and the second point (step S55). The CPU 10 ends the process.
 第二点の座標値が座標値記憶部13に記憶されている場合(ステップS53でYES)、CPU10(判定部)は入力されている第二点の座標値と座標値記憶部13に記憶されている第二点の座標値とが一致するか否かを判定する(ステップS56)。入力されている第二点の座標値と座標値記憶部13に記憶されている第二点の座標値とが一致している場合(ステップS56でYES)、CPU10は処理を終了する。これは、まだ回転移動の指示をしておらず、ユーザは二本目の指を初期位置に置いたままの状態である。入力されている第二点の座標値と座標値記憶部13に記憶されている第二点の座標値とが一致しない場合(ステップS56でNO)、CPU10は第二点がドラッグ中であるか否かを判定する(ステップS57)。ドラッグ中であるか否かは上述した方法のほか、公知の技術で可能であるので、説明を省略する。第二点がドラッグ中である場合(ステップS57でYES)、CPU10(移動受付部)は表示を更新する(ステップS67)。CPU10はドラッグ位置にマーカMbを再表示すると共に、第二点の初期位置とマーカMbの位置を結ぶ弧状の線分S4を表示する。CPU10は処理を終了する。 When the coordinate value of the second point is stored in the coordinate value storage unit 13 (YES in step S53), the CPU 10 (determination unit) stores the input coordinate value of the second point and the coordinate value storage unit 13. It is determined whether or not the coordinate value of the second point is coincident (step S56). When the input coordinate value of the second point matches the coordinate value of the second point stored in the coordinate value storage unit 13 (YES in step S56), the CPU 10 ends the process. This is a state where the user has not yet instructed the rotational movement and the user has left the second finger at the initial position. If the input coordinate value of the second point and the coordinate value of the second point stored in the coordinate value storage unit 13 do not match (NO in step S56), the CPU 10 determines whether the second point is being dragged. It is determined whether or not (step S57). Whether or not the drug is being dragged can be determined by a known technique in addition to the above-described method, and thus the description thereof is omitted. If the second point is being dragged (YES in step S57), the CPU 10 (movement accepting unit) updates the display (step S67). The CPU 10 redisplays the marker Mb at the drag position, and displays an arc-shaped line segment S4 connecting the initial position of the second point and the position of the marker Mb. The CPU 10 ends the process.
 第二点がドラッグ中でない場合(ステップS57でNO)、CPU10は全方向移動台車2が回転移動中であるか否かを判定する(ステップS58)。これはコマンドの発行履歴により行うか、全方向移動台車2に問い合わせを行うなどをして行う。全方向移動台車2が回転移動中でない場合(ステップS58でNO)、CPU10(決定部)はすでに記憶されている第二点の座標値を第二点の初期位置座標として記憶し、入力された第二点の座標値を現在の第二点の座標値(終点座標)として座標値記憶部13に記憶する(ステップS59)。CPU10(指示情報演算部)は第一点の座標値を座標記憶部13から読み出し、第一点及び第二点の初期位置を結ぶ線分並びに第一点及び現在の第二点を結ぶ線分がなす角度を算出する(ステップS60)。CPU10は表示を更新する(ステップS61)。CPU10はドラッグ位置にマーカMbを再表示すると共に、第二点の初期位置とマーカMcの位置を結ぶ弧状の線分S4の表示を更新する。CPU10は算出した角度を含む回転移動命令を発行する(ステップS62)。すなわち、CPU10(送信部)は回転移動のコマンド(指示情報)を、通信部15を介して全方向移動台車2に対して送信する。CPU10は処理を終了する。 If the second point is not being dragged (NO in step S57), the CPU 10 determines whether or not the omnidirectional mobile trolley 2 is rotating (step S58). This is performed based on a command issuance history or by making an inquiry to the omnidirectional mobile carriage 2. When the omnidirectional mobile trolley 2 is not rotationally moved (NO in step S58), the CPU 10 (determining unit) stores the coordinate value of the second point already stored as the initial position coordinate of the second point and is input. The coordinate value of the second point is stored in the coordinate value storage unit 13 as the coordinate value (end point coordinate) of the current second point (step S59). The CPU 10 (instruction information calculation unit) reads the coordinate value of the first point from the coordinate storage unit 13, and connects the line segment connecting the initial position of the first point and the second point and the line segment connecting the first point and the current second point. Is calculated (step S60). The CPU 10 updates the display (Step S61). The CPU 10 redisplays the marker Mb at the drag position and updates the display of the arc-shaped line segment S4 connecting the initial position of the second point and the position of the marker Mc. The CPU 10 issues a rotational movement command including the calculated angle (step S62). That is, the CPU 10 (transmission unit) transmits a rotational movement command (instruction information) to the omnidirectional mobile carriage 2 via the communication unit 15. The CPU 10 ends the process.
 全方向移動台車2が回転移動中である場合(ステップS58でYES)、CPU10は第一点の座標値及び第二点の初期位置の座標値を座標記憶部13から読み出し、入力された第二点が第一点及び第二点の初期位置を結ぶ線分上にあるか否かを判定する(ステップS63)。入力された第二点が第一点及び第二点の初期位置を結ぶ線分上にある場合(ステップS63でYES)、CPU10は座標記憶部13に記憶されている現在の第二点及び第二点の初期位置の座標値をクリアする(ステップS64)。CPU10は表示部141の表示を更新する(ステップS65)。CPU10は表示部141よりマーカMcを消去し、マーカMbを表示する。CPU10は第二点の初期位置とマーカMcの位置を結ぶ弧状の線分S4、第一点とマーカMcの位置を結ぶ線分S3を表示部141から消去する。CPU10は回転移動停止命令を発行する(ステップS66)。すなわち、CPU10は回転移動停止のコマンドを、通信部15を介して全方向移動台車2に対して送信する。CPU10は処理を終了する。入力された第二点が第一点及び第二点の初期位置を結ぶ線分上にない場合(ステップS63でNO)、CPU10は処理を終了する。この場合は、想定しない操作であるため、上述したようなエラー処理を行なっても良い。
 なお、入力点数が2点である場合において、一方の点がドラッグされた場合にどちらの点がドラッグされているのか、両方の点がドラッグされた場合に各点がどのような位置にドラッグされたかについては、公知の技術を用いて判定すれば良い。
When the omnidirectional mobile trolley 2 is rotationally moving (YES in step S58), the CPU 10 reads the coordinate value of the first point and the coordinate value of the initial position of the second point from the coordinate storage unit 13 and is input. It is determined whether or not the point is on a line segment connecting the initial positions of the first point and the second point (step S63). When the input second point is on a line segment connecting the first point and the initial position of the second point (YES in step S63), the CPU 10 stores the current second point and the first point stored in the coordinate storage unit 13. The coordinate values of the initial positions of the two points are cleared (step S64). CPU10 updates the display of the display part 141 (step S65). The CPU 10 erases the marker Mc from the display unit 141 and displays the marker Mb. The CPU 10 erases the arc-shaped line segment S4 connecting the initial position of the second point and the position of the marker Mc, and the line segment S3 connecting the first point and the position of the marker Mc from the display unit 141. The CPU 10 issues a rotational movement stop command (step S66). That is, the CPU 10 transmits a rotational movement stop command to the omnidirectional mobile carriage 2 via the communication unit 15. The CPU 10 ends the process. When the input second point is not on a line segment connecting the first point and the initial position of the second point (NO in step S63), the CPU 10 ends the process. In this case, since the operation is not assumed, error processing as described above may be performed.
When the number of input points is two, which point is dragged when one point is dragged, or where each point is dragged when both points are dragged What is necessary is just to determine using a well-known technique.
 第一点の座標値と座標値記憶部13に記憶されている第一点の座標値とが一致しない場合(ステップS52でNO)、CPU10は第一点がドラッグ中であるか否かを判定する(ステップS68)。第一点がドラッグ中である場合(ステップS68でYES)、CPU10は表示部141の表示を更新する(ステップS73)。CPU10はマーカMaをドラッグ位置に対応した表示部141の位置に再表示する。それに伴いマーカMaと原点とを結ぶ線分S1を再表示する。CPU10は処理を終了する。第一点がドラッグ中でない場合(ステップS68でNO)、CPU10は第一点が原点と一致するか否かを判定する(ステップS69)。第一点が原点と一致する場合(ステップS69でYES)、CPU10は表示部141の表示を更新する(ステップS70)。CPU10はマーカMaを原点に表示する。CPU10はマーカMaと原点とを結ぶ線分S1を表示部141から消去する。CPU10は並進移動停止命令を発行する(ステップS71)。すなわち、CPU10は並進移動停止のコマンドを、通信部15を介して全方向移動台車2に対して送信する。これは、並進移動のみを停止し回転移動は継続するので、全方向移動台車2はその場で回転することとなる。 If the coordinate value of the first point does not match the coordinate value of the first point stored in the coordinate value storage unit 13 (NO in step S52), the CPU 10 determines whether or not the first point is being dragged. (Step S68). If the first point is being dragged (YES in step S68), the CPU 10 updates the display on the display unit 141 (step S73). The CPU 10 redisplays the marker Ma at the position of the display unit 141 corresponding to the drag position. Accordingly, the line segment S1 connecting the marker Ma and the origin is displayed again. The CPU 10 ends the process. If the first point is not being dragged (NO in step S68), the CPU 10 determines whether or not the first point matches the origin (step S69). When the first point coincides with the origin (YES in step S69), the CPU 10 updates the display on the display unit 141 (step S70). The CPU 10 displays the marker Ma at the origin. The CPU 10 erases the line segment S1 connecting the marker Ma and the origin from the display unit 141. The CPU 10 issues a translation stop command (step S71). That is, the CPU 10 transmits a translation stop command to the omnidirectional mobile carriage 2 via the communication unit 15. This stops only the translational movement and continues the rotational movement, so that the omnidirectional mobile carriage 2 rotates on the spot.
 第一点が原点と一致しない場合(ステップS69でNO)、CPU10はコマンド判定処理3を行う(ステップS72)。図17を参照しつつ、コマンド判定処理3について説明する。コマンド判定処理3は、全方向移動台車2が並進移動+回転移動をしている場合に、並進移動方向を変える指示操作をしたときの処理である。 If the first point does not coincide with the origin (NO in step S69), the CPU 10 performs a command determination process 3 (step S72). The command determination process 3 will be described with reference to FIG. The command determination process 3 is a process performed when an instruction operation for changing the translation movement direction is performed when the omnidirectional mobile carriage 2 performs translation + rotation movement.
 CPU10は座標値記憶部13に第二点の座標値が記憶されているか否かを判定する(ステップS81)。第二点の座標値が座標値記憶部13に記憶されている場合(ステップS81でYES)、CPU10は座標値記憶部13に記憶されている第二点の座標値と入力された第二点の座標値が一致するか否かを判定する(ステップS82)。座標値記憶部13に記憶されている第二点の座標値と入力された第二点の座標値が一致しない場合(ステップS82でNO)、CPU10は第二点がドラッグ中であるか否かを判定する(ステップS83)。第二点がドラッグ中でない場合(ステップS83でNO)、CPU10は座標値記憶部13に記憶してある第一点の座標値、第二点の初期位置の座標値を読み出す(ステップS84)。CPU10は第一点の座標値及び第二点の初期位置を結ぶ線分と現在の第一点及び現在の第二点を結ぶ線分とが平行であるかを判定する(ステップS85)。例えば、2つの線分の傾きを求めて値が一致するか否かを判定すれば良い。ある程度の誤差を許容するために、傾きの値が一致する場合のみならず、傾きの値の差分が所定値以内である場合も平行と判定することとしても良い。 The CPU 10 determines whether or not the coordinate value of the second point is stored in the coordinate value storage unit 13 (step S81). When the coordinate value of the second point is stored in the coordinate value storage unit 13 (YES in step S81), the CPU 10 inputs the second point coordinate value stored in the coordinate value storage unit 13 and the second point. It is determined whether or not the coordinate values match (step S82). If the coordinate value of the second point stored in the coordinate value storage unit 13 does not match the coordinate value of the input second point (NO in step S82), the CPU 10 determines whether or not the second point is being dragged. Is determined (step S83). If the second point is not being dragged (NO in step S83), the CPU 10 reads the coordinate value of the first point and the coordinate value of the initial position of the second point stored in the coordinate value storage unit 13 (step S84). The CPU 10 determines whether or not the line segment connecting the coordinate value of the first point and the initial position of the second point is parallel to the line segment connecting the current first point and the current second point (step S85). For example, the slopes of two line segments may be obtained to determine whether the values match. In order to allow a certain amount of error, not only when the values of the slopes match but also when the difference of the slope values is within a predetermined value, it may be determined as parallel.
 第一点の座標値及び第二点の初期位置を結ぶ線分と現在の第一点及び現在の第二点を結ぶ線分とが平行である場合(ステップS85でYES)、CPU10は現在の第一点の座標値(第3座標)、現在の第二点の座標値(第4座標)を座標値記憶部13に記憶する(ステップS86)。CPU10は現在の第一点と原点とを結ぶ線分がY軸となす角度を求める(ステップS87)。第二点の初期位置が第一点及び第二点と同様に平行移動した場合の位置の座標値を、CPU10は算出し、算出した座標値を第二点の初期位置の座標値であるとして、座標値記憶部13を更新する(ステップS88)。CPU10は表示部141の表示を更新する(ステップS89)。CPU10はマーカMa(第一点)、Mc(現在の第二点)を表示部141に再表示する。マーカMa(第一点)の位置と原点を結ぶ線分S1、マーカMaとマーカMcとを結ぶ線分S3、マーカMaの位置と第二点の初期位置が第一点及び第二点と同様に平行移動した場合の位置とを結ぶ線部S2を表示部141に再表示する。第二点の初期位置が第一点及び第二点と同様に平行移動した場合の位置とマーカMcの位置を結ぶ弧状の線分S4をCPU10は再表示する。CPU10(第2指示情報演算部)は算出した角度を含む並進移動命令(第2指示情報)を発行する(ステップS90)。すなわち、並進移動のコマンドを、通信部15を介して全方向移動台車2に対して送信する。この場合、速力は変化させないので、最初に並進移動停命令を発行した時の値と同一の値とすれば良い。または速力はオプショナルパラメータとし、角度のみを与えた場合は、速力を変化させずに並進方向のみを変化させることとしても良い。CPU10は処理を終了する。 If the line connecting the coordinate value of the first point and the initial position of the second point is parallel to the line connecting the current first point and the current second point (YES in step S85), the CPU 10 The coordinate value of the first point (third coordinate) and the current coordinate value of the second point (fourth coordinate) are stored in the coordinate value storage unit 13 (step S86). CPU10 calculates | requires the angle which the line segment which connects the present 1st point and an origin and a Y-axis (step S87). The CPU 10 calculates the coordinate value of the position when the initial position of the second point is translated similarly to the first point and the second point, and the calculated coordinate value is the coordinate value of the initial position of the second point. The coordinate value storage unit 13 is updated (step S88). The CPU 10 updates the display on the display unit 141 (step S89). The CPU 10 redisplays the markers Ma (first point) and Mc (current second point) on the display unit 141. The line segment S1 connecting the position of the marker Ma (first point) and the origin, the line segment S3 connecting the marker Ma and the marker Mc, and the initial positions of the marker Ma and the second point are the same as the first point and the second point. The line portion S2 connecting the position when translated to is displayed again on the display unit 141. The CPU 10 redisplays the arc-shaped line segment S4 connecting the position when the initial position of the second point is translated similarly to the first point and the second point and the position of the marker Mc. CPU10 (2nd instruction information calculating part) issues the translation movement command (2nd instruction information) containing the calculated angle (step S90). That is, a command for translational movement is transmitted to the omnidirectional mobile carriage 2 via the communication unit 15. In this case, since the speed is not changed, it may be set to the same value as that when the translation stop command is first issued. Alternatively, the speed may be an optional parameter, and when only the angle is given, only the translation direction may be changed without changing the speed. The CPU 10 ends the process.
 第二点の座標値が座標値記憶部13に記憶されていない場合(ステップS81でNO)、CPU10は処理を終了する。座標値記憶部13に記憶されている第二点の座標値と入力された第二点の座標値が一致する場合(ステップS82でYES)、CPU10は処理を終了する。第二点がドラッグ中である場合(ステップS83でYES)、CPU10は表示部141の表示を更新する(ステップS91)。CPU10はマーカMa(第一点)、Mc(現在の第二点)を表示部141に再表示する。マーカMa(第一点)の位置と原点を結ぶ線分S1、マーカMaとマーカMcとを結ぶ線分S3、マーカMaの位置と第二点の初期位置が第一点及び第二点と同様に平行移動した場合の位置とを結ぶ線部S2を表示部141に再表示する。第二点の初期位置が第一点及び第二点と同様に平行移動した場合の位置とマーカMcの位置を結ぶ弧状の線分S4をCPU10は再表示する。CPU10は処理を終了する。第一点の座標値及び第二点の初期位置を結ぶ線分と現在の第一点及び現在の第二点を結ぶ線分とが平行でない場合(ステップS85でNO)、CPU10は処理を終了する。なお、第二点がドラッグ中である場合を除く、いずれの場合も想定しない操作であるため、上述したようなエラー処理を行なっても良い。 If the coordinate value of the second point is not stored in the coordinate value storage unit 13 (NO in step S81), the CPU 10 ends the process. When the coordinate value of the 2nd point memorize | stored in the coordinate value memory | storage part 13 and the coordinate value of the input 2nd point correspond (it is YES at step S82), CPU10 complete | finishes a process. When the second point is being dragged (YES in step S83), the CPU 10 updates the display on the display unit 141 (step S91). The CPU 10 redisplays the markers Ma (first point) and Mc (current second point) on the display unit 141. The line segment S1 connecting the position of the marker Ma (first point) and the origin, the line segment S3 connecting the marker Ma and the marker Mc, and the initial positions of the marker Ma and the second point are the same as the first point and the second point. The line portion S2 connecting the position when translated to is displayed again on the display unit 141. The CPU 10 redisplays the arc-shaped line segment S4 connecting the position when the initial position of the second point is translated similarly to the first point and the second point and the position of the marker Mc. The CPU 10 ends the process. If the line connecting the coordinate value of the first point and the initial position of the second point is not parallel to the line connecting the current first point and the current second point (NO in step S85), the CPU 10 ends the process. To do. Since the operation is not assumed in any case except when the second point is being dragged, the error processing as described above may be performed.
 実施の形態1に係る操作装置1では、操作者が接触検知部142における原点に置いた指を指示する方向にドラッグするだけで並進移動方向を指示することが可能である。ドラッグした距離により速力を指定することが可能である。よって、直感的な操作で全方向移動台車2に対して、並進移動を指示することが可能である。 In the controller device 1 according to the first embodiment, the operator can instruct the translational movement direction simply by dragging the finger placed at the origin in the contact detection unit 142 in the direction instructing. It is possible to specify the speed by the drag distance. Therefore, it is possible to instruct the omnidirectional mobile trolley 2 to move in translation by an intuitive operation.
 実施の形態1に係る操作装置1は、並進移動の指示に用いた指以外の指を接触検知部142上で、並進移動の指示に用いた指を軸として回転させるようにドラッグするだけで、回転移動の指示が可能である。回転した角度により回転移動の速力(速さ)を指定する。よって、直感的な操作で全方向移動台車2に対して、回転移動を指示することが可能である。 The operation device 1 according to Embodiment 1 simply drags a finger other than the finger used for the translation movement instruction on the contact detection unit 142 so as to rotate about the finger used for the translation movement instruction. An instruction for rotational movement is possible. The speed (speed) of rotational movement is specified by the rotated angle. Therefore, it is possible to instruct rotational movement to the omnidirectional mobile carriage 2 by an intuitive operation.
 実施の形態1に係る操作装置1は、並進移動の指示に用いた指を原点位置に移動させる(戻す)ことにより、全方向移動台車2の並進移動を停止させる。よって、直感的な操作で全方向移動台車2に対して、並進移動の停止を指示することが可能である。 The operating device 1 according to the first embodiment stops the translational movement of the omnidirectional mobile carriage 2 by moving (returning) the finger used for the translational movement instruction to the origin position. Therefore, it is possible to instruct the omnidirectional mobile trolley 2 to stop the translational movement with an intuitive operation.
 実施の形態1に係る操作装置1は、回転移動の指示に用いた指を最初に触れた位置に戻すことで、全方向移動台車2の回転移動を停止させる。または、回転移動の指示に用いた指を接触検知部142より離すことで、全方向移動台車2の回転移動を停止させる。よって、直感的な操作で全方向移動台車2に対して、回転移動の停止を指示することが可能である。 The operating device 1 according to the first embodiment stops the rotational movement of the omnidirectional mobile carriage 2 by returning the finger used for the rotational movement instruction to the position where the finger is first touched. Alternatively, the rotational movement of the omnidirectional mobile trolley 2 is stopped by separating the finger used for the rotational movement instruction from the contact detection unit 142. Therefore, it is possible to instruct the omnidirectional mobile carriage 2 to stop the rotational movement by an intuitive operation.
 実施の形態1に係る操作装置1は、並進移動の指示に用いた指、回転移動の指示に用いた指をドラッグすることにより、並進移動の方向を変える。よって、直感的な操作で全方向移動台車2に対して、並進移動の方向変更を指示することが可能である。 The operating device 1 according to the first embodiment changes the direction of translation by dragging the finger used for the translation movement instruction and the finger used for the rotation movement instruction. Therefore, it is possible to instruct the omnidirectional mobile trolley 2 to change the direction of translational movement with an intuitive operation.
 実施の形態1に係る操作装置1は、並進移動の指示に用いた指を接触検知部142より離すことにより、移動を停止させる。よって、直感的な操作で全方向移動台車2に対して、停止を指示することが可能である。 The operating device 1 according to the first embodiment stops the movement by separating the finger used for the translation movement instruction from the contact detection unit 142. Therefore, it is possible to instruct the omnidirectional mobile carriage 2 to stop by an intuitive operation.
 実施の形態1に係る操作装置1は、ユーザは表示部141と接触検知部142を用いて操作を行う。表示部141には縦軸、横軸と併せて、マーカ、基準となる線分などが表示される。ユーザはマーカや基準となる線分を確認しながら、操作を行えるので、より正確に移動指示操作を行うことが可能となる。 In the operation device 1 according to the first embodiment, the user performs an operation using the display unit 141 and the contact detection unit 142. The display unit 141 displays a marker, a reference line segment, and the like together with the vertical axis and the horizontal axis. Since the user can perform an operation while confirming the marker and the reference line segment, the movement instruction operation can be performed more accurately.
 実施の形態1に係る操作装置1は、表示部141に指に対応する位置にマーカMa、Mb、Mcを表示する。表示部141に並進移動指示内容を表現するベクトルS1、回転移動指示内容を表現する線分S2、S3、S4を表示する。それにより、全方向移動台車2に対して行った並進移動指示の内容、書いてある指示の内容を目視により確認することが可能である。 The operating device 1 according to Embodiment 1 displays the markers Ma, Mb, and Mc at the position corresponding to the finger on the display unit 141. The display unit 141 displays a vector S1 expressing the translation movement instruction content and line segments S2, S3, and S4 expressing the rotation movement instruction content. Thereby, it is possible to visually confirm the contents of the translation movement instruction given to the omnidirectional mobile carriage 2 and the contents of the written instruction.
 実施の形態1に係る操作装置1は、表示部141に全方向移動台車2に搭載された画像取得部23からの画像を表示する。ユーザが全方向移動台車2を遠隔操作する場合において、全方向移動台車2がユーザから目視できない位置にある場合であっても、ユーザは画像取得部23からの画像により、全方向移動台車2の周囲状況を把握することが可能である。それにより、ユーザは全方向移動台車2に的確な移動指示を行うことが可能となる。 The operating device 1 according to Embodiment 1 displays an image from the image acquisition unit 23 mounted on the omnidirectional mobile carriage 2 on the display unit 141. When the user remotely controls the omnidirectional mobile trolley 2, even if the omnidirectional mobile trolley 2 is in a position where it cannot be seen by the user, the user uses the image from the image acquisition unit 23 to check the omnidirectional mobile trolley 2. It is possible to grasp the surrounding situation. Thereby, the user can give an accurate movement instruction to the omnidirectional mobile trolley 2.
 実施の形態1に係る操作装置1において、全方向移動台車2の移動を継続させるためにユーザは指を接触検知部142に触れたままにする必要がある。全方向移動台車2の移動を長時間行わせる場合、ユーザに負担を強いることとなる。そこで、接触検知部142から指を離しても移動継続するためのボタンを設けても良い。このボタンは接触検知部142に設けても良いし、接触検知部142以外の機械式スイッチにしても良い。ユーザはボタンを操作することにより、接触検知部142から指を離しても、全方向移動台車2は移動を継続し、表示部141にマーカを継続して表示するものとする。再度、操作指示を行う場合には、指を元の位置に戻してからボタン操作を行い、移動継続を解除することとする。 In the operating device 1 according to the first embodiment, the user needs to keep the finger touching the contact detection unit 142 in order to continue the movement of the omnidirectional mobile trolley 2. When the omnidirectional mobile trolley 2 is moved for a long time, a burden is imposed on the user. Therefore, a button for continuing the movement even when the finger is removed from the contact detection unit 142 may be provided. This button may be provided on the contact detection unit 142 or may be a mechanical switch other than the contact detection unit 142. Even if the user operates the button to release the finger from the contact detection unit 142, the omnidirectional mobile trolley 2 continues to move and the marker is continuously displayed on the display unit 141. When the operation instruction is performed again, the button operation is performed after the finger is returned to the original position, and the movement continuation is canceled.
 また、移動継続するためのボタンを設けるのではなく、接触している指をダブルタップすることにより、移動継続するようにしても良い。指2本を用いて並進移動+回転移動を指示している場合、ダブルタップした指に対応した移動のみを継続しても良いし、両方の移動を継続としても良い。表示部141のマーカ表示位置に指を置くか、マーカ表示位置に指を置いた後にダブルタップすると、再度操作が行えるようにする。 Further, instead of providing a button for continuing the movement, the movement may be continued by double-tapping the touching finger. When the translation movement + rotation movement is instructed using two fingers, only the movement corresponding to the double-tapped finger may be continued, or both movements may be continued. When the finger is placed at the marker display position of the display unit 141 or the finger is placed at the marker display position and then double-tapped, the operation can be performed again.
 実施の形態2
 図18は実施の形態2に係る操作装置1の操作部14における表示部141のレイアウトの一例を示す説明図である。実施の形態2に係る操作装置1において、表示部141は移動指示領域141aとカメラ画像表示領域141bが同一の領域としてある。すなわち、接触検知部142は表示部141の表示面の略全面を覆っている。接触検知部142の操作面142aは表示部141の表示面と略同一となっている。また、表示部141の表示面全面に画像を表示する。その他の部分については、実施の形態1と同様であるので、説明を省略する。
Embodiment 2
FIG. 18 is an explanatory diagram illustrating an example of the layout of the display unit 141 in the operation unit 14 of the operation device 1 according to the second embodiment. In the controller device 1 according to the second embodiment, the display unit 141 has the movement instruction area 141a and the camera image display area 141b as the same area. That is, the contact detection unit 142 covers substantially the entire display surface of the display unit 141. The operation surface 142a of the contact detection unit 142 is substantially the same as the display surface of the display unit 141. In addition, an image is displayed on the entire display surface of the display unit 141. The other parts are the same as those in the first embodiment, and thus the description thereof is omitted.
 実施の形態2に係る操作装置1は実施の形態1が奏する効果に加えて、次のような効果を奏する。実施の形態2に係る操作装置1においては、移動指示領域141aとカメラ画像表示部141bとが同一の領域としてある。画像取得部23から取得した画像を表示部141の全面に表示することが可能となるので、表示部141の性能を十分発揮した画像をユーザは確認することが可能となる。また、移動指示領域141aが十分広い領域となるので、ユーザはより精緻な移動指示を全方向移動台車2に行うことが可能となる。 The operating device 1 according to the second embodiment has the following effects in addition to the effects of the first embodiment. In the controller device 1 according to the second embodiment, the movement instruction area 141a and the camera image display unit 141b are the same area. Since the image acquired from the image acquisition unit 23 can be displayed on the entire surface of the display unit 141, the user can confirm an image that sufficiently exhibits the performance of the display unit 141. In addition, since the movement instruction area 141a is a sufficiently wide area, the user can give a more precise movement instruction to the omnidirectional mobile carriage 2.
 実施の形態3
 図19から図21は実施の形態3に係る操作装置1における操作と表示部141に表示される画像の一例を示す説明図である。実施の形態3に係る操作装置1において、表示部141には移動指示領域141aとカメラ画像表示領域141bを含む。実施の形態3に係る操作装置1はカメラ画像表示領域141bに、ユーザの移動指示内容をグラフィック表示するようにしてある。それ以外の構成については実施の形態1と同様であるので、説明を省略する。
Embodiment 3
FIGS. 19 to 21 are explanatory diagrams illustrating an example of an operation and an image displayed on the display unit 141 in the controller device 1 according to the third embodiment. In the controller device 1 according to the third embodiment, the display unit 141 includes a movement instruction area 141a and a camera image display area 141b. The operating device 1 according to Embodiment 3 is configured to graphically display the contents of the user's movement instruction in the camera image display area 141b. Since the other configuration is the same as that of the first embodiment, the description thereof is omitted.
 図19に示すのは全方向移動台車2に対して、並進移動のみを指示する場合の表示の一例である。カメラ画像表示領域141bには並進移動の方向示す矢印がグラフィック表示141cされている。矢印の長さを並進移動の速力に応じて変えることとしても良い。 FIG. 19 shows an example of a display when the omnidirectional mobile carriage 2 is instructed only for translation. In the camera image display area 141b, an arrow indicating the direction of translation is displayed in a graphic display 141c. The length of the arrow may be changed according to the speed of translation.
 図20に示すのは全方向移動台車2に対して、回転移動のみを指示する場合の表示の一例である。カメラ画像表示領域141bには回転方向を示す矢印がグラフィック表示141cされている。並進移動の場合と同様に、矢印の長さを回転移動の角速度の大きさに応じて変えることとしても良い。 FIG. 20 shows an example of a display when the omnidirectional mobile carriage 2 is instructed only for rotational movement. An arrow indicating the rotation direction is displayed in the camera image display area 141b as a graphic display 141c. Similar to the translational movement, the length of the arrow may be changed according to the magnitude of the angular velocity of the rotational movement.
 図21に示すのは全方向移動台車2に対して、並進移動+回転移動を指示する場合の表示の一例である。並進方向を示す矢印と回転移動を示す矢印がグラフィック表示141cされている。図19と同様に、並進移動を示す矢印の長さを並進移動の速力に応じて変えることとしても良い。図20と同様に、回転移動を示す矢印の長さを回転移動の角速度の大きさに応じて変えることとしても良い。 FIG. 21 shows an example of display in the case of instructing the omnidirectional mobile trolley 2 to translate + rotate. An arrow indicating the translation direction and an arrow indicating the rotational movement are displayed on the graphic 141c. Similarly to FIG. 19, the length of the arrow indicating the translational movement may be changed according to the speed of the translational movement. Similarly to FIG. 20, the length of the arrow indicating the rotational movement may be changed according to the magnitude of the angular speed of the rotational movement.
 図19から図21に示したグラフィックの表示、再表示、消去のタイミングは、表示部141におけるマーカ、線分等の表示、再表示、消去のタイミングと同様とすれば良い。または、ユーザが操作指示を行った際に所定時間のみ表示することとしても良い。そうすることにより、グラフィック表示によりカメラ画像が確認しづらくなることを最小限に留めることが可能となる。これらの設定はユーザが変更可能としても良い。なお、図19から図21に示したグラフィック表示141cに用いる画像データは、予めROM11などの記憶装置に記憶しておくものとする。CPU10(表示処理部)は記憶されている画像データを読み出し、表示部141にグラフィック表示を行う。 The timings for displaying, redisplaying, and erasing the graphics shown in FIGS. 19 to 21 may be the same as the timings for displaying, redisplaying, and erasing markers, line segments, and the like on the display unit 141. Or it is good also as displaying only for predetermined time, when a user performs an operation instruction. By doing so, it is possible to minimize the difficulty in confirming the camera image due to the graphic display. These settings may be changeable by the user. Note that image data used for the graphic display 141c shown in FIGS. 19 to 21 is stored in advance in a storage device such as the ROM 11. The CPU 10 (display processing unit) reads the stored image data and performs graphic display on the display unit 141.
 実施の形態3に係る操作装置1は実施の形態1が奏する効果に加えて、次のような効果を奏する。実施の形態3に係る操作装置1においては、ユーザの移動指示内容をカメラ画像表示領域141bにグラフィック表示するようにしたので、ユーザは画像取得部23からの画像を確認しつつ、移動指示内容を把握することが可能となる。 The operating device 1 according to the third embodiment has the following effects in addition to the effects of the first embodiment. In the operation device 1 according to the third embodiment, the user's movement instruction content is graphically displayed in the camera image display area 141b, so that the user can confirm the image from the image acquisition unit 23 and display the movement instruction content. It becomes possible to grasp.
 なお、実施の形態3において、カメラ画像表示領域141bに操作指示に関する情報を文字で表示しても良い。全方向移動台車2が並進移動している場合の並進方向を示す角度の値、回転移動をしている場合の回転方向(右回り、左回り)、回転角速度の値などを文字表示する。また、操作指示に関する情報は、グラフィック表示のみでも良いし、文字表示のみでも良いし、グラフィック及び文字の両方を表示しても良い。 In the third embodiment, information related to operation instructions may be displayed in characters in the camera image display area 141b. The value of the angle indicating the translation direction when the omnidirectional mobile carriage 2 is moving in translation, the direction of rotation (clockwise and counterclockwise) when rotating, and the value of the rotation angular velocity are displayed in text. Further, the information related to the operation instruction may be only graphic display, character display only, or both graphic and character display.
 実施の形態4
 図22は実施の形態4に係る移動体システムの構成例を示す図である。移動体システムは情報処理端末3、全方向移動台車2を含む。情報処理端末3はタッチパネルディスプレイ及び通信機能を備えている。情報処理端末3は、例えば、スマートフォン、タブレットコンピュータである。
Embodiment 4
FIG. 22 is a diagram illustrating a configuration example of a mobile system according to the fourth embodiment. The mobile system includes an information processing terminal 3 and an omnidirectional mobile carriage 2. The information processing terminal 3 has a touch panel display and a communication function. The information processing terminal 3 is, for example, a smartphone or a tablet computer.
 全方向移動台車2は移動体制御部20、駆動モータ21、移動用チェーン22、画像取得部23、通信部24を含む。移動体制御部20はCPU20a、ROM20b、RAM20c、座標値記憶部20d、モータドライバ(図示せず)等を含む。CPU20aはROM20bに記憶されている制御プログラムを適宜RAM20cにロードして実行することにより全方向移動台車2の各部を制御する。 The omnidirectional mobile carriage 2 includes a moving body control unit 20, a drive motor 21, a moving chain 22, an image acquisition unit 23, and a communication unit 24. The moving body control unit 20 includes a CPU 20a, a ROM 20b, a RAM 20c, a coordinate value storage unit 20d, a motor driver (not shown), and the like. The CPU 20a controls each part of the omnidirectional mobile trolley 2 by appropriately loading the control program stored in the ROM 20b into the RAM 20c and executing it.
 駆動モータ21は移動用チェーン22を駆動し全方向移動台車2を走行させる。画像取得部23はカメラ231、魚眼レンズ232を含む。カメラ231は全方向移動台車2の周囲の状況を撮影する。撮影した画像は通信部24を介して情報処理端末3に送られる。情報処理端末3は受け取った画像をタッチパネルディスプレイに表示する。通信部24は情報処理装置3との通信を行う。情報処理端末3と全方向移動台車2との通信は有線でも、無線でも良い。通信回線は公衆回線でも専用回線でも良い。インターネット、パケット通信網などを通信回線としても良い。また、ユーザが全方向移動台車2に乗った状態で又は近くで操作指示を行う場合は、情報処理端末3と全方向移動台車2との通信に近距離無線通信を用いても良い。 The drive motor 21 drives the moving chain 22 to run the omnidirectional mobile carriage 2. The image acquisition unit 23 includes a camera 231 and a fisheye lens 232. The camera 231 captures the situation around the omnidirectional mobile trolley 2. The captured image is sent to the information processing terminal 3 via the communication unit 24. The information processing terminal 3 displays the received image on the touch panel display. The communication unit 24 communicates with the information processing device 3. Communication between the information processing terminal 3 and the omnidirectional mobile trolley 2 may be wired or wireless. The communication line may be a public line or a dedicated line. The Internet, a packet communication network, or the like may be used as a communication line. In addition, when the user gives an operation instruction in a state where the user is on the omnidirectional mobile trolley 2 or nearby, short-range wireless communication may be used for communication between the information processing terminal 3 and the omnidirectional mobile trolley 2.
 実施の形態4において、情報処理端末3は実施の形態1から3の操作装置1と同様に、タッチパネルディスプレイにて、全方向移動台車2への指示入力を受け付ける。指示入力の方法は実施の形態1から3と同様である。情報処理端末3はタッチパネルディスプレイの入力を全方向移動台車2へ送信する。送信されるのは、例えば、入力点数、タッチパネルディスプレイ上での入力点の座標値である。全方向移動台車2は情報処理端末3より受け取った入力情報に基づき、動作を行う。CPU20aが行う処理は上述した図14から図17に示すフローチャート同様であるから、説明を省略する。 In the fourth embodiment, the information processing terminal 3 accepts an instruction input to the omnidirectional mobile trolley 2 on the touch panel display, similarly to the operation device 1 of the first to third embodiments. The method of inputting instructions is the same as in the first to third embodiments. The information processing terminal 3 transmits the input of the touch panel display to the omnidirectional mobile carriage 2. What is transmitted is, for example, the number of input points and the coordinate values of the input points on the touch panel display. The omnidirectional mobile trolley 2 operates based on the input information received from the information processing terminal 3. The processing performed by the CPU 20a is similar to the flowcharts shown in FIGS.
 実施の形態4においては、操作入力を行う端末としてスマートフォン、タブレットコンピュータといったタッチパネルディスプレイ付きの情報処理端末を用いることが可能となる。 In Embodiment 4, an information processing terminal with a touch panel display such as a smartphone or a tablet computer can be used as a terminal for performing operation input.
 なお、実施の形態1から実施の形態4に係る操作装置1において、表示部141に地図を表示し、全方向移動台車2の位置を示すようにしても良い。 In the operating device 1 according to the first to fourth embodiments, a map may be displayed on the display unit 141 to indicate the position of the omnidirectional mobile carriage 2.
 上述したように実施の形態1から実施の形態4において、全方向移動台車2の並進移動+回転移動の移動形態は図4Cに示したとおりであるが、以下の様な移動形態としても良い。図23は全方向移動台車2の移動形態の一例を示す説明図である。図23に示すように全方向移動台車2の中心は指示した並進移動方向に移動をしつつ、全方向移動台車2は中心を軸に指示された角速度で回転移動をするというものである。 As described above, in Embodiments 1 to 4, the movement form of the translation movement + rotation movement of the omnidirectional movement carriage 2 is as shown in FIG. 4C, but the following movement form may be adopted. FIG. 23 is an explanatory diagram showing an example of a moving form of the omnidirectional mobile trolley 2. As shown in FIG. 23, the center of the omnidirectional mobile trolley 2 moves in the designated translational movement direction, while the omnidirectional mobile trolley 2 rotates and moves at the designated angular velocity about the center.
 実施の形態5
 図24は実施の形態5に係る操作装置1を示すブロック図である。本実施の形態5の操作装置1において、CPU10にて実行されるプログラムは、ディスクドライブ等の読取部16にて、CD-ROM、DVDディスクまたはUSBメモリ等の可搬型記録媒体16aから読み取られてROM11又は座標値記憶部13に記憶される構成としてもよい。また、当該プログラムを記憶したフラッシュメモリ等の半導体メモリをCPU10内に実装してもよい。
Embodiment 5
FIG. 24 is a block diagram showing the controller device 1 according to the fifth embodiment. In the controller device 1 according to the fifth embodiment, a program executed by the CPU 10 is read from a portable recording medium 16a such as a CD-ROM, a DVD disk, or a USB memory by a reading unit 16 such as a disk drive. It is good also as a structure memorize | stored in ROM11 or the coordinate value memory | storage part 13. FIG. Further, a semiconductor memory such as a flash memory storing the program may be mounted in the CPU 10.
 さらに当該プログラムは、インターネット等の通信網(図示せず)を介して通信部15と接続される図示しない他のサーバコンピュータからダウンロードすることも可能である。ダウンロードされたプログラムはROM11又は座標値記憶部13に記憶される。
 CPU10は、上述したようにROM11又は座標値記憶部13に記憶されたプログラムを実行することにより、上述した実施の形態1~3における操作装置1のCPU10と同様の処理を行う。
Further, the program can be downloaded from another server computer (not shown) connected to the communication unit 15 via a communication network (not shown) such as the Internet. The downloaded program is stored in the ROM 11 or the coordinate value storage unit 13.
As described above, the CPU 10 executes the program stored in the ROM 11 or the coordinate value storage unit 13 to perform the same process as the CPU 10 of the controller device 1 in the first to third embodiments.
 各実施例で記載されている技術的特徴(構成要件)はお互いに組合せ可能であり、組み合わせすることにより、新しい技術的特徴を形成することができる。
 今回開示された実施の形態はすべての点で例示であって、制限的なものでは無いと考えられるべきである。本発明の範囲は、上記した意味では無く、請求の範囲によって示され、請求の範囲と均等の意味及び範囲内でのすべての変更が含まれることが意図される。
The technical features (components) described in each embodiment can be combined with each other, and new technical features can be formed by combining them.
The embodiments disclosed herein are illustrative in all respects and should not be considered as restrictive. The scope of the present invention is defined not by the above-described meaning but by the scope of claims, and is intended to include all modifications within the meaning and scope equivalent to the scope of claims.
 1 操作装置(指示装置)
 10 CPU(接触検知部、第1受付部、第2受付部、移動受付部、指示情報演算部、送信部、判定部、決定部)
 13 座標値記憶部
 14 操作部
 141 表示部
 141a 移動指示領域
 141b カメラ画像表示領域
 142 接触検知部
 142a 操作面
 2 全方向移動台車(移動体)
 20a CPU(第1取得部、第2取得部、移動受付部、指示情報演算部)
 23 画像取得部
 231 カメラ
 232 魚眼レンズ
 3 情報処理端末
1 Operating device (indicating device)
10 CPU (contact detection unit, first reception unit, second reception unit, movement reception unit, instruction information calculation unit, transmission unit, determination unit, determination unit)
DESCRIPTION OF SYMBOLS 13 Coordinate value memory | storage part 14 Operation part 141 Display part 141a Movement instruction | indication area 141b Camera image display area 142 Contact detection part 142a Operation surface 2 Omnidirectional movement cart (moving body)
20a CPU (first acquisition unit, second acquisition unit, movement reception unit, instruction information calculation unit)
23 Image Acquisition Unit 231 Camera 232 Fisheye Lens 3 Information Processing Terminal

Claims (11)

  1.  交差する2つの座標軸にて規定される平面に対する接触箇所を検知し、検知した接触箇所に対応する座標値を出力する接触検知部と、
     第1の接触箇所に対応する第1座標値を前記接触検知部から受け付ける第1受付部と、
     該第1受付部が前記第1座標値を受け付けた後に第2の接触箇所に対応する第2座標値を前記接触検知部から受け付ける第2受付部と、
     前記第2の接触箇所を始点として移動した前記第2の接触箇所の移動軌跡を示す複数の接触箇所に対応する複数の軌跡座標値を前記接触検知部から受け付ける移動受付部と、
     前記第1受付部が受け付けた第1座標値に基づき、画像取得部を備え回転しながら移動可能な移動体の移動を指示し、前記第2受付部が受け付けた第2座標値及び前記移動受付部が受け付けた複数の軌跡座標値に基づき、前記移動体の回転角速度を指示する指示情報を演算する指示情報演算部と、
     該指示情報演算部が演算した指示情報を前記移動体に送信する送信部と、
     前記移動体から送信された画像を表示する表示部とを備える
     ことを特徴とする指示装置。
    A contact detection unit that detects a contact point with respect to a plane defined by two intersecting coordinate axes and outputs a coordinate value corresponding to the detected contact point;
    A first receiving unit that receives a first coordinate value corresponding to a first contact location from the contact detection unit;
    A second receiving unit that receives a second coordinate value corresponding to a second contact location from the contact detection unit after the first receiving unit receives the first coordinate value;
    A movement receiving unit that receives a plurality of locus coordinate values corresponding to a plurality of contact points indicating a movement locus of the second contact point moved from the second contact point as a starting point;
    Based on the first coordinate value received by the first reception unit, the image acquisition unit is provided to instruct the movement of the movable body that can be moved while rotating, and the second coordinate value received by the second reception unit and the movement reception An instruction information calculation unit for calculating instruction information for instructing the rotational angular velocity of the moving body based on a plurality of trajectory coordinate values received by the unit;
    A transmission unit that transmits the instruction information calculated by the instruction information calculation unit to the mobile body;
    A display unit configured to display an image transmitted from the mobile body.
  2.  接触箇所が移動したか否かを周期的に判定する判定部を備え、
     前記移動受付部は、前記判定部が移動していないと判定したときまでに移動した前記第2の接触箇所の移動軌跡を示す接触箇所に対応する軌跡座標値を受け付ける
     ことを特徴とする請求項1に記載の指示装置。
    A determination unit that periodically determines whether or not the contact location has moved,
    The said movement reception part receives the locus | trajectory coordinate value corresponding to the contact location which shows the movement locus | trajectory of the said 2nd contact location moved by when it determines with the said determination part not moving. The indicating device according to 1.
  3.  前記判定部の判定結果に基づいて、前記移動受付部が受け付けた軌跡座標値から前記第2の接触箇所の移動の終点に対応する終点座標値を決定する決定部を備え、
     前記指示情報演算部は、特定の座標値から前記第1座標値への方向に基づいて前記移動体の移動方向を演算し、前記特定の座標値と前記第1座標値との距離に基づいて前記移動体の移動速度を演算し、前記第1座標値と前記終点座標値及び第2座標値の夫々とを通る2本の線分がなす角に基づいて前記移動体の回転角速度を演算するようにしてある
     ことを特徴とする請求項2に記載の指示装置。
    A determination unit configured to determine an end point coordinate value corresponding to an end point of movement of the second contact location from a trajectory coordinate value received by the movement reception unit based on a determination result of the determination unit;
    The instruction information calculation unit calculates a moving direction of the moving body based on a direction from a specific coordinate value to the first coordinate value, and based on a distance between the specific coordinate value and the first coordinate value. A moving speed of the moving body is calculated, and a rotational angular speed of the moving body is calculated based on an angle formed by two line segments passing through the first coordinate value, the end point coordinate value, and the second coordinate value. The pointing device according to claim 2, wherein the pointing device is configured as described above.
  4.  前記移動受付部は、前記第1の接触箇所を始点として移動した前記第1の接触箇所の移動軌跡を示す複数の接触箇所に対応する第2の複数の軌跡座標値、及び前記終点を始点として更に移動した前記第2の接触箇所の移動軌跡を示す複数の接触箇所に対応する第3の複数の軌跡座標値を受け付け、
     前記決定部は、前記判定部の判定結果に基づいて、前記移動受付部が受け付けた第2の複数の軌跡座標値から前記第1の接触箇所の移動の終点に対応する第3座標値を決定し、前記第3の複数の軌跡座標値から前記第2の接触箇所の移動の終点に対応する第4座標値を決定し、
     前記特定の座標値から前記第3座標値への方向に基づいて前記移動体の移動方向を指示し、前記特定の座標値と前記第3座標値との距離に基づいて前記移動体の移動速度を指示し、前記第3座標値と第4座標値とを結ぶ線分の方向に基づいて回転角速度を指示する第2指示情報を演算する第2指示情報演算部とを備え、
     前記送信部は、前記第2指示情報演算部が演算した第2指示情報を前記移動体に送信するようにしてある
     ことを特徴とする請求項3に記載の指示装置。
    The movement accepting unit starts from the second plurality of trajectory coordinate values corresponding to a plurality of contact locations indicating the movement trajectory of the first contact location moved from the first contact location, and the end point. Further, a third plurality of locus coordinate values corresponding to a plurality of contact locations indicating the movement locus of the second contact location that has moved are received,
    The determination unit determines a third coordinate value corresponding to the end point of the movement of the first contact location from the second plurality of trajectory coordinate values received by the movement reception unit based on the determination result of the determination unit. And determining a fourth coordinate value corresponding to an end point of the movement of the second contact location from the third plurality of locus coordinate values,
    The moving direction of the moving body is instructed based on the direction from the specific coordinate value to the third coordinate value, and the moving speed of the moving body is determined based on the distance between the specific coordinate value and the third coordinate value. A second instruction information calculation unit for calculating second instruction information for instructing a rotational angular velocity based on a direction of a line segment connecting the third coordinate value and the fourth coordinate value,
    The instruction device according to claim 3, wherein the transmission unit transmits the second instruction information calculated by the second instruction information calculation unit to the moving body.
  5.  前記接触検知部は前記表示部の表示面を覆って設けられ、
     前記第1座標値及び第2座標値に対応する前記表示部の表示面に標点を表示する標点表示部を備える
     ことを特徴とする請求項1から請求項4のいずれか一項に記載の指示装置。
    The contact detection unit is provided to cover the display surface of the display unit,
    The point display part which displays a point on the display surface of the said display part corresponding to a said 1st coordinate value and a 2nd coordinate value is provided. The Claim 1 characterized by the above-mentioned. Pointing device.
  6.  前記表示部の表示面は前記画像を表示する表示領域及び前記接触検知部に対する操作に関する表示を行う操作領域を含む
     ことを特徴とする請求項1から請求項5のいずれか一項に記載の指示装置。
    6. The instruction according to claim 1, wherein a display surface of the display unit includes a display region for displaying the image and an operation region for performing display related to an operation on the contact detection unit. apparatus.
  7.  前記表示領域及び前記操作領域は重複している
     ことを特徴とする請求項1から請求項6のいずれか一項に記載の指示装置。
    The pointing device according to any one of claims 1 to 6, wherein the display area and the operation area overlap.
  8.  前記移動体に送信した指示情報を図形又は文字により前記表示領域に表示する表示処理部を備える
     ことを特徴とする請求項1から請求項7のいずれか一項に記載の指示装置。
    The indication device according to any one of claims 1 to 7, further comprising: a display processing unit that displays the indication information transmitted to the mobile body in the display area with a graphic or a character.
  9.  交差する2つの座標軸にて規定される平面に対する第1の接触箇所に対応する第1座標値、第2の接触箇所に対応する第2座標値、及び前記第2の接触箇所を始点として移動した前記第2の接触箇所の移動軌跡を示す複数の接触箇所に対応する複数の軌跡座標値に基づき、回転しながら移動可能な移動体に指示情報を送信し、前記移動体から送信された画像を表示部に表示させる処理をコンピュータに実行させるコンピュータプログラムであって、
     特定の座標値から前記第1座標値への方向に基づいて前記移動体の移動方向を指示し、
     前記特定の座標値と前記第1座標値との距離に基づいて前記移動体の移動速度を指示し、
     前記複数の軌跡座標値から前記第2の接触箇所の移動の終点に対応する終点座標値を決定し、
     前記第1座標値と前記終点座標値及び第2座標値の夫々とを通る2本の線分がなす角に基づいて前記移動体の回転角速度を指示する
     処理を前記コンピュータに実行させることを特徴とするコンピュータプログラム。
    The first coordinate value corresponding to the first contact location with respect to the plane defined by the two intersecting coordinate axes, the second coordinate value corresponding to the second contact location, and the second contact location were moved as the starting point. Based on a plurality of locus coordinate values corresponding to a plurality of contact locations indicating a movement locus of the second contact location, instruction information is transmitted to a movable body that is movable while rotating, and an image transmitted from the movable body is displayed. A computer program for causing a computer to execute processing to be displayed on a display unit,
    Instructing the moving direction of the moving body based on the direction from a specific coordinate value to the first coordinate value,
    Instructing the moving speed of the moving body based on the distance between the specific coordinate value and the first coordinate value,
    Determining an end point coordinate value corresponding to an end point of movement of the second contact location from the plurality of trajectory coordinate values;
    Causing the computer to execute a process of instructing a rotational angular velocity of the moving body based on an angle formed by two line segments passing through the first coordinate value, the end point coordinate value, and the second coordinate value. A computer program.
  10.  回転しながら移動可能な移動体、
     該移動体から送信された画像を表示する表示部、及び
     検知した接触箇所に対応する座標値を出力する接触検知部を備える移動体システムにおいて、
     前記移動体は、
     前記接触検知部による第1の接触箇所に対応する第1座標値を前記接触検知部から受け付ける第1取得部と、
     該第1取得部が前記第1座標値を受け付けた後、前記接触検知部による第2の接触箇所に対応する第2座標値を前記接触検知部から受け付ける第2取得部と、
     前記第2の接触箇所を始点として移動した前記第2の接触箇所の移動軌跡を示す複数の接触箇所に対応する複数の軌跡座標値を受け付ける移動受付部と、
     前記第1受付部が受け付けた第1座標値に基づき、移動を指示し、前記第2受付部が受け付けた第2座標値及び前記移動受付部が受け付けた複数の軌跡座標値に基づき、回転角速度を指示する指示情報を演算する指示情報演算部と、
     画像を取得する画像取得部とを有する
     ことを特徴とする移動体システム。
    A movable body that can move while rotating,
    In a mobile system including a display unit that displays an image transmitted from the mobile unit, and a contact detection unit that outputs a coordinate value corresponding to the detected contact location,
    The moving body is
    A first acquisition unit that receives from the contact detection unit a first coordinate value corresponding to a first contact location by the contact detection unit;
    A second acquisition unit that receives, from the contact detection unit, a second coordinate value corresponding to a second contact location by the contact detection unit after the first acquisition unit receives the first coordinate value;
    A movement receiving unit that receives a plurality of locus coordinate values corresponding to a plurality of contact points indicating a movement locus of the second contact point moved from the second contact point as a starting point;
    Based on the first coordinate value received by the first reception unit, the movement is instructed, and based on the second coordinate value received by the second reception unit and the plurality of locus coordinate values received by the movement reception unit, the rotational angular velocity An instruction information calculation unit for calculating instruction information for indicating
    A moving body system comprising: an image acquisition unit that acquires an image.
  11.  交差する2つの座標軸にて規定される平面に対する第1の接触箇所に対応する第1座標値を受け付け、受け付けた第1座標値に基づき、回転しながら移動可能な移動体の移動を指示し、
     前記第1座標値を受け付けた後に、前記平面に対する第2の接触箇所に対応する第2座標値、及び前記第2の接触箇所を始点として移動した前記第2の接触箇所の移動軌跡を示す複数の接触箇所に対応する複数の軌跡座標値を受け付けて、
     特定の座標値から前記第1座標値への方向に基づいて前記移動体の移動方向を指示し、
     前記特定の座標値と前記第1座標値との距離に基づいて前記移動体の移動速度を指示し、
     前記複数の軌跡座標値から前記第2の接触箇所の移動の終点に対応する終点座標値を決定し、
     前記第1座標値と前記終点座標値及び第2座標値の夫々とを通る2本の線分がなす角に基づいて前記移動体の回転角速度を指示し、
     前記移動体から送信された画像を表示部に表示する
     ことを特徴とする指示方法。
    Accepting a first coordinate value corresponding to a first contact location with respect to a plane defined by two intersecting coordinate axes, and instructing the movement of a movable body that is movable while rotating based on the accepted first coordinate value;
    After receiving the first coordinate value, a plurality of coordinates indicating the second coordinate value corresponding to the second contact location with respect to the plane and the movement locus of the second contact location moved starting from the second contact location. Accept multiple trajectory coordinate values corresponding to
    Instructing the moving direction of the moving body based on the direction from a specific coordinate value to the first coordinate value,
    Instructing the moving speed of the moving body based on the distance between the specific coordinate value and the first coordinate value,
    Determining an end point coordinate value corresponding to an end point of movement of the second contact location from the plurality of trajectory coordinate values;
    Instructing the rotational angular velocity of the moving body based on an angle formed by two line segments passing through the first coordinate value, the end point coordinate value, and the second coordinate value,
    An instruction method, comprising: displaying an image transmitted from the moving body on a display unit.
PCT/JP2014/050743 2013-02-12 2014-01-17 Control device, computer program, mobile-body system, and control method WO2014125867A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013025012A JP2014155129A (en) 2013-02-12 2013-02-12 Instruction device, computer program, traveling object system and instruction method
JP2013-025012 2013-02-12

Publications (1)

Publication Number Publication Date
WO2014125867A1 true WO2014125867A1 (en) 2014-08-21

Family

ID=51353877

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/050743 WO2014125867A1 (en) 2013-02-12 2014-01-17 Control device, computer program, mobile-body system, and control method

Country Status (2)

Country Link
JP (1) JP2014155129A (en)
WO (1) WO2014125867A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116452967A (en) * 2023-06-16 2023-07-18 青岛励图高科信息技术有限公司 Fish swimming speed identification method based on machine vision

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104598108B (en) * 2015-01-02 2020-12-22 北京时代沃林科技发展有限公司 Method for proportionally remotely controlling remotely controlled equipment in intelligent terminal touch mode
JP7274157B1 (en) 2022-08-01 2023-05-16 株式会社アルヴィオン Program for operating the target device

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001071927A (en) * 1999-09-02 2001-03-21 Fuji Electric Co Ltd Omni-direction moving vehicle and drive control method thereof, and angle measuring method
JP2004344435A (en) * 2003-05-22 2004-12-09 Japan Science & Technology Agency Power assist type moving carrier
JP2006113858A (en) * 2004-10-15 2006-04-27 Mitsubishi Heavy Ind Ltd Method and system for supporting remote operation for mobile object
JP2007116336A (en) * 2005-10-19 2007-05-10 Nec Corp Remote controller, remote control system, and remote control method
JP2008090827A (en) * 2006-09-29 2008-04-17 Samsung Electronics Co Ltd Method, apparatus and medium for controlling mobile device based on image of real space
WO2008132778A1 (en) * 2007-04-20 2008-11-06 Honda Motor Co., Ltd. Omnidirectional driver and omnidirectional vehicle employing it

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001071927A (en) * 1999-09-02 2001-03-21 Fuji Electric Co Ltd Omni-direction moving vehicle and drive control method thereof, and angle measuring method
JP2004344435A (en) * 2003-05-22 2004-12-09 Japan Science & Technology Agency Power assist type moving carrier
JP2006113858A (en) * 2004-10-15 2006-04-27 Mitsubishi Heavy Ind Ltd Method and system for supporting remote operation for mobile object
JP2007116336A (en) * 2005-10-19 2007-05-10 Nec Corp Remote controller, remote control system, and remote control method
JP2008090827A (en) * 2006-09-29 2008-04-17 Samsung Electronics Co Ltd Method, apparatus and medium for controlling mobile device based on image of real space
WO2008132778A1 (en) * 2007-04-20 2008-11-06 Honda Motor Co., Ltd. Omnidirectional driver and omnidirectional vehicle employing it

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116452967A (en) * 2023-06-16 2023-07-18 青岛励图高科信息技术有限公司 Fish swimming speed identification method based on machine vision
CN116452967B (en) * 2023-06-16 2023-08-22 青岛励图高科信息技术有限公司 Fish swimming speed identification method based on machine vision

Also Published As

Publication number Publication date
JP2014155129A (en) 2014-08-25

Similar Documents

Publication Publication Date Title
US9933515B2 (en) Sensor calibration for autonomous vehicles
JP6986518B2 (en) Terminals and terminal control methods
JP6769659B2 (en) Mobile management systems, methods, and computer programs
US20150031268A1 (en) Toy vehicle with telemetrics and track system and method
KR20200084934A (en) Apparatus for controlling driving of vehicle and method for performing calibration thereof
JP7345042B2 (en) Mobile robot navigation
US20120294696A1 (en) Haptic device for manipulator and vehicle control
JP4988625B2 (en) Mobile robot and control method thereof
CN103492972B (en) 3 dimensions can move and rotate the universal motion controller of input
JP6910023B2 (en) How to control unmanned moving objects
WO2014125866A1 (en) Control device, program, control method, and mobile-body system
KR20170083069A (en) Operation terminal
KR20180097917A (en) Electronic apparatus and method for controlling thereof
WO2014125867A1 (en) Control device, computer program, mobile-body system, and control method
JP6025814B2 (en) Operating device and autonomous mobile system
JP2019036227A (en) Mobile body, mobile body management system, and computer program
WO2014125865A1 (en) Movement instruction device, computer program, movement instruction method, and mobile body system
US9086757B1 (en) Methods and systems for providing functionality of an interface to control directional orientations of a device
KR102637701B1 (en) Method and apparatus for route guidance using augmented reality view
WO2012096282A1 (en) Controller, model device and control method
KR101736134B1 (en) System and method for driving robot using action block
CN110871440B (en) Method and device for controlling robot running
JP2018039310A (en) Passenger boarding bridge
KR101769867B1 (en) System and method for driving robot using user terminal
JP2016078142A (en) Method for control of robot device, and robot device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14751864

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14751864

Country of ref document: EP

Kind code of ref document: A1