WO2014125731A1 - Wireless power transfer system - Google Patents

Wireless power transfer system Download PDF

Info

Publication number
WO2014125731A1
WO2014125731A1 PCT/JP2013/084007 JP2013084007W WO2014125731A1 WO 2014125731 A1 WO2014125731 A1 WO 2014125731A1 JP 2013084007 W JP2013084007 W JP 2013084007W WO 2014125731 A1 WO2014125731 A1 WO 2014125731A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
plate electrode
power transmission
power
active
Prior art date
Application number
PCT/JP2013/084007
Other languages
French (fr)
Japanese (ja)
Inventor
末定剛
高橋博宣
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Priority to JP2015500115A priority Critical patent/JP5907307B2/en
Priority to CN201390001032.2U priority patent/CN204809991U/en
Publication of WO2014125731A1 publication Critical patent/WO2014125731A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/05Circuit arrangements or systems for wireless supply or distribution of electric power using capacitive coupling
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/005Mechanical details of housing or structure aiming to accommodate the power transfer means, e.g. mechanical integration of coils, antennas or transducers into emitting or receiving devices
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/70Circuit arrangements or systems for wireless supply or distribution of electric power involving the reduction of electric, magnetic or electromagnetic leakage fields

Definitions

  • the present invention relates to a wireless power transmission system that transmits power from a power transmission device to a power reception device by an electric field coupling method.
  • Patent Document 1 As a wireless power transmission system, for example, an electric field coupling type wireless power transmission system disclosed in Patent Document 1 is known.
  • the active electrode and the passive electrode of the power transmission device and the active electrode and the passive electrode of the power reception device come close to each other through a gap, so that the two electrodes are capacitively coupled to each other, and the power transmission device to the power reception device. Power is transmitted.
  • the active electrode in each of the power transmission device and the power reception device, the active electrode is surrounded by the passive electrode, and the coupling capacitance between the passive electrodes is increased. Thereby, the spread of an unnecessary electric field is suppressed.
  • An object of the present invention is to provide a wireless power transmission system that can prevent unnecessary coupling between electrodes and increase power transmission efficiency.
  • the present invention relates to a wireless power transmission system that performs power transmission by a capacitive coupling method from the power transmission device to the power reception device in a state where the power reception device is mounted on the power transmission device.
  • a power transmission side circuit for applying an AC voltage to the first flat plate electrode and the second flat plate electrode, and the power receiving device includes a gap in the first flat plate electrode.
  • the third flat plate electrode interposed between the first flat plate electrode of the power transmitting device and the fourth flat plate electrode of the power receiving device has a larger area than the first flat plate electrode.
  • the fourth plate electrode can be reduced in stray capacitance. Thereby, unnecessary coupling between the electrodes can be suppressed, and the power transmission efficiency can be increased.
  • the distance between the second plate electrode and the third plate electrode is larger than the distance between the first plate electrode and the fourth plate electrode.
  • the present invention relates to a wireless power transmission system that performs power transmission by a capacitive coupling method from the power transmission device to the power reception device in a state where the power reception device is mounted on the power transmission device.
  • a second flat plate electrode provided on substantially the same plane as the first flat plate electrode, and a power transmission side circuit for applying an AC voltage to the first flat plate electrode and the second flat plate electrode
  • the power receiving device includes a third flat plate electrode facing the first flat plate electrode with a gap, and a second flat plate electrode facing the second flat plate electrode with a gap, and substantially the same as the third flat plate electrode.
  • a fourth flat plate electrode provided on a plane; and a power receiving side circuit connected to the third electrode and the fourth electrode, wherein the third flat plate electrode is the first flat plate electrode. Larger in area than the first plate electrode and the second Distance between the flat plate electrodes, and wherein the wider interval between the third flat plate electrode and the fourth plate electrodes.
  • the distance between the first flat plate electrode of the power transmitting device and the fourth flat plate electrode of the power receiving device is widened, and the stray capacitance generated between the electrodes can be reduced. Thereby, unnecessary coupling between the electrodes can be suppressed, and the power transmission efficiency can be improved.
  • the power transmission device includes a first shield electrode connected to a reference potential of the power transmission device
  • the power reception device includes a second shield electrode connected to a reference potential of the power reception device
  • the first The shield electrode and the second shield electrode are opposed to each other with the first plate electrode, the second plate electrode, the third plate electrode, and the fourth plate electrode interposed therebetween. preferable.
  • the first shield electrode and the second shield electrode can suppress noise radiation generated by electric field coupling between the first plate electrode and the third plate electrode. Further, since the third plate electrode is larger than the first plate electrode, stray capacitance generated between the first plate electrode and the second shield electrode can be suppressed, and unnecessary coupling can be avoided.
  • a distance between the first shield electrode and the third plate electrode is larger than a distance between the first plate electrode and the second shield electrode.
  • the first shield electrode may be electrically connected to the second electrode, and the second shield electrode may be electrically connected to the fourth electrode.
  • the shield electrode and the flat plate electrode can be formed from one member. Further, the first plate electrode and the third plate electrode can be surrounded by the plate electrode and the shield electrode, respectively, and noise radiation can be suppressed.
  • stray capacitance formed between the electrodes can be prevented and reduced, and unnecessary coupling between the electrodes can be prevented, so that the efficiency of power transmission from the power transmitting apparatus to the power receiving apparatus can be increased.
  • Circuit diagram of wireless power transmission system Sectional view in a state where the power receiving device is mounted on the power transmitting device Figure showing only the active and passive electrodes shown in FIG.
  • the figure which shows a part of circuit when stray capacitance arises between the active electrode of a power transmission apparatus, and the passive electrode of a power receiving apparatus Sectional view in a state where the power receiving device is mounted on the power transmitting device Plan view of active electrode and passive electrode of power transmission device and power reception device, respectively
  • FIG. 1 is a circuit diagram of a wireless power transmission system according to the present embodiment.
  • the wireless power transmission system 301 includes a power transmission device 101 and a power reception device 201.
  • the power receiving apparatus 201 includes a load RL.
  • the load RL is a battery module including a secondary battery and a charging circuit.
  • the power receiving apparatus 201 is a portable electronic device provided with the battery module, for example. Examples of portable electronic devices include mobile phones, PDAs, portable music players, notebook PCs, digital cameras, and the like.
  • the power receiving device 201 is placed on the power transmitting device 101, and the power transmitting device 101 charges the secondary battery of the power receiving device 201.
  • the power transmission device 101 includes a high-frequency oscillator OSC, a step-up transformer TG, and an inductor LG.
  • the high frequency voltage generation circuit OSC generates a high frequency voltage of, for example, 100 kHz to several tens of MHz.
  • the step-up circuit using the step-up transformer TG and the inductor LG steps up the voltage generated by the high-frequency voltage generation circuit OSC and applies it between the active electrode 11 and the passive electrode 12.
  • a capacitor indicated by a broken line in the drawing is a stray capacitance formed between the active electrode 11 and the passive electrode 12 or an actual component.
  • the active electrode 11 corresponds to the first plate electrode according to the present invention
  • the passive electrode 12 corresponds to the second plate electrode according to the present invention.
  • the power receiving device 201 is connected to the active electrode 21 and the passive electrode 22 and includes a step-down circuit using an inductor LL and a step-down transformer TL, a rectifier circuit 27 that converts the stepped-down AC voltage into a DC voltage, and a load RL.
  • a DC-DC converter 28 that outputs a DC voltage and a load RL are provided.
  • a capacitor indicated by a broken line in the drawing is a stray capacitance formed between the active electrode 21 and the passive electrode 22 or an actual component.
  • the active electrode 21 corresponds to the third plate electrode according to the present invention
  • the passive electrode 22 corresponds to the fourth plate electrode according to the present invention.
  • the power receiving device 201 is placed on the power transmitting device 101, and a voltage is applied between the active electrode 11 and the passive electrode 12 of the power transmitting device 101, so that the active electrodes 11, 21 and the passive electrodes 12 and 22 are capacitively coupled to generate an electric field. Then, power is transmitted from the power transmitting apparatus 101 to the power receiving apparatus 201 via this electric field. In the power receiving device 201, the AC voltage induced by power transmission is stepped down, then rectified and smoothed, and applied to the load RL.
  • the high-frequency oscillator OSC, the step-up transformer TG, the inductor LG, and the like are collectively referred to as the power transmission side circuit 10, and the inductor LL, the step-down transformer TL, the rectifier circuit 27, and the load RL are collectively referred to as the power reception side circuit 20.
  • FIG. 2 is a cross-sectional view of the power transmission apparatus 101 with the power reception apparatus 201 mounted thereon.
  • FIG. 2 also shows a plan view of the active electrodes 11 and 21 and the passive electrode 22 in a state where the power receiving device 201 is placed on the power transmitting device 101.
  • the power transmission device 101 has a resin casing, and a substantially rectangular active electrode 11 is provided in the resin layer 15 serving as a placement surface of the power transmission device 101 on which the power reception device 201 is placed.
  • the active electrode 11 may be attached to the back side (inside side) of the mounting surface.
  • a substantially rectangular passive electrode 12 is provided on the bottom surface of the power transmission device 101 on the side opposite to the mounting surface, and faces the active electrode 11.
  • the passive electrode 12 has a larger area than the active electrode 11, and the passive electrode 12 includes the active electrode 11 when viewed in plan.
  • the active electrode 11 is provided along the mounting surface of the power transmission device 101 and the passive electrode 12 is provided along the bottom surface of the power transmission device 101, the active electrode 11 and the passive electrode 12 are separated by the thickness of the power transmission device 101. ing. The active electrode 11 and the passive electrode 12 are electrically connected to the power transmission side circuit 10 described in FIG.
  • the power receiving device 201 has a resin casing, and when mounted, the power receiving device 201 has a substantially rectangular shape in the resin layer 25 that is a surface (hereinafter referred to as a back surface) of the power receiving device 201 that comes into contact with the mounting surface of the power transmitting device 101.
  • An active electrode 21 is provided.
  • the active electrode 21 has a larger area than the opposing active electrode 11, and the active electrode 21 includes the active electrode 11 when viewed in plan.
  • a substantially rectangular passive electrode 22 is provided on the surface of the power receiving device 201 opposite to the contact surface (hereinafter referred to as the front surface) and faces the active electrode 21.
  • the passive electrode 22 has substantially the same area as the passive electrode 12.
  • the passive electrode 22 has a larger area than the active electrode 21, and the passive electrode 22 has a shape including the active electrode 21 when viewed in plan.
  • the active electrode 21 and the passive electrode 22 are electrically connected to the power receiving side circuit 20 described in FIG.
  • FIG. 3 shows only the active electrodes 11 and 21 and the passive electrodes 12 and 22 shown in FIG.
  • Cs1 is a stray capacitance generated between the active electrode 11 and the passive electrode 22
  • Cs2 is a stray capacitance generated between the active electrode 21 and the passive electrode 12.
  • the interval between the active electrode 21 of the power receiving apparatus 201 and the passive electrode 12 of the power transmitting apparatus 101 is represented by T1
  • the interval between the active electrode 11 of the power transmitting apparatus 101 and the passive electrode 22 of the power receiving apparatus 201 is represented by T2.
  • the active electrodes 11 and 21 and the passive electrodes 12 and 22 are provided in the power transmitting apparatus 101 and the power receiving apparatus 201 so that the relationship of T2 ⁇ T1 is established.
  • the power receiving apparatus 201 is a portable electronic device and is required to be thin.
  • the power transmission device 101 is a charging device for portable electronic devices, and is not required to be as thin as the power reception device 201. Accordingly, the interval T1 can be increased, but the interval T2 is decreased. (At least T1> T2 tends to be satisfied.) By increasing the interval T1, the stray capacitance Cs2 can be reduced. Specifically, if one side of the active electrode 11 of the power transmission apparatus 101 is 50 to 80 mm and the active electrode 21 of the power reception apparatus 201 is about 100 mm (the active electrode 11 on the power transmission apparatus 101 side is the active electrode 21 on the power reception apparatus 201 side).
  • the stray capacitance CS2 When the distance between the active electrode 11 and the active electrode 12 is about 1 mm, the stray capacitance CS2 is almost zero. However, if the active electrode 21 has the same area as the active electrode 11 or a smaller area than the active electrode 11, a large stray capacitance Cs1 occurs when the interval T2 is narrowed. As an example of specific values of T1 and T2, T1 is 3.2 to 6.0 mm, and T2 is 1.2 to 2.5 mm.
  • FIG. 4 is a diagram illustrating a part of a circuit in the case where stray capacitance Cs1 is generated between the active electrode 11 of the power transmission device 101 and the passive electrode 22 of the power reception device 201.
  • the stray capacitance Cs1 is formed between the active electrode 11 and the passive electrode 22, a part of the power to be transmitted via the active electrodes 11 and 21 is also transmitted to the passive electrode 22 via the stray capacitance Cs1.
  • the power transmission via the stray capacitance Cs1 not only contributes to the power transmission from the power transmission apparatus 101 to the power reception apparatus 201, but also leads to an increase in loss, so that the power transmission efficiency from the power transmission apparatus 101 to the power reception apparatus 201 decreases. To do.
  • the active electrode 21 in order to suppress the generation of the stray capacitance Cs1, the active electrode 21 has a larger area than the active electrode 11, as shown in FIG.
  • the active electrode 21 serves as a barrier, and the stray capacitance Cs1 generated between the active electrode 11 and the passive electrode 22 is sufficiently suppressed.
  • the area of the active electrode 21 is made larger than the area of the active electrode 11, and the stray capacitance Cs1 is reduced by making the active electrode 21 include the active electrode 11 when viewed in plan. Indicated.
  • the present invention is not limited to this, and the area of the active electrode 21 is larger than the area of the active electrode 11, and at least the active electrode 21 has a sufficient parasitic capacitance Cs1 generated between the active electrode 11 and the passive electrode 22 when viewed in plan. Therefore, the active electrode 21 does not need to completely include the active electrode 11.
  • FIG. 5 is a cross-sectional view of the power transmitting apparatus 101 with the power receiving apparatus 201 mounted thereon.
  • FIG. 6 is a plan view of the active electrodes 11 and 21 and the passive electrodes 12 and 22 of the power transmitting apparatus 101 and the power receiving apparatus 201, respectively.
  • a rectangular active electrode 11 and a passive electrode 12 are provided on the same plane.
  • the external shape of the passive electrode 12 is larger than that of the active electrode 11, and a rectangular notch 12 ⁇ / b> A is formed at the center of the passive electrode 12.
  • the active electrode 11 is located in the notch 12A.
  • a shield electrode 13 connected to the reference potential of the power transmission device 101 is provided on the bottom surface of the power transmission device 101.
  • the shield electrode 13 has substantially the same size as the passive electrode 12 and faces the active electrode 11 and the passive electrode 12.
  • the shield electrode 13 shields noise radiation generated from the coupling portion such as the active electrode 11.
  • a substantially rectangular active electrode 21 and passive electrode 22 are provided on the same plane.
  • the passive electrode 22 has substantially the same size as the passive electrode 12, and a rectangular notch 22 ⁇ / b> A is formed at the center of the passive electrode 22.
  • the active electrode 21 is located in the notch 22A.
  • the active electrode 21 has a larger area than the opposing active electrode 11.
  • the interval between the active electrode 11 and the passive electrode 12 is represented by T3
  • the interval between the active electrode 21 and the passive electrode 22 is represented by T4.
  • the active electrodes 11 and 21 and the passive electrodes 12 and 22 are formed so that the relationship of T4 ⁇ T3 is established.
  • a shield electrode 23 connected to the ground potential (reference potential) of the power receiving device 201 is provided on the front surface of the power receiving device 201.
  • the shield electrode 23 has substantially the same size as the passive electrode 22 and faces the active electrode 21 and the passive electrode 22.
  • the shield electrode 23 shields noise radiation generated from the coupling portion such as the active electrode 21.
  • FIG. 7 shows only the active electrodes 11 and 21, the passive electrodes 12 and 22, and the shield electrodes 13 and 23 shown in FIG. 5.
  • Cs3 is a stray capacitance generated between the active electrode 11 and the shield electrode 23
  • Cs4 is a stray capacitance generated between the active electrode 21 and the shield electrode 13.
  • the device in the power transmission device 101 that is less demanded to be thin, the device can be thickened. Therefore, the interval between the active electrode 21 of the power reception device 201 and the shield electrode 13 of the power transmission device 101 can be widened. As a result, the stray capacitance Cs4 can be reduced.
  • the active electrode 21 has the same area as the active electrode 11 or a smaller area than the active electrode 11, it is necessary to reduce the thickness of the power receiving device 201. The distance between the shield electrode 23 and the shield electrode 23 is reduced, and a large stray capacitance Cs3 is generated. When the large stray capacitance Cs3 occurs, the active electrode 11 and the passive electrode 22 are capacitively coupled via the shield electrode 23 because the passive electrode 22 and the shield electrode 23 are connected to the reference potential.
  • the active electrode 21 is larger than the active electrode 11 and has a relationship of T4 ⁇ T3, so that the active electrode 21 becomes a barrier, and the active electrode 11 and the shield electrode 23
  • the stray capacitance Cs3 generated therebetween can be sufficiently suppressed.
  • the shield electrode 23 is connected to the reference potential of the power receiving device 201, and thus the reference of the power receiving device 201 via the shield electrode 23. Noise may be superimposed on the potential. In this case, a problem of causing a malfunction of the function of the power receiving apparatus 201 occurs. However, in this embodiment, since the stray capacitance Cs3 is suppressed, problems such as malfunctions can be avoided.
  • the active electrode 11 and the passive electrode 12 are formed on the same plane, and the active electrode 21 and the passive electrode 22 are formed on the same plane. Even if these electrodes are not on the same plane and are arranged so as to be back and forth with each other when viewed in a plan view, the same effect can be obtained as long as they have the aforementioned area relationship. it can.
  • stray capacitance (not shown) is also generated between the active electrode 11 and the passive electrode 22, the surfaces of the active electrode 11 and the passive electrode 22 are not opposed to each other, and the side surfaces of the electrodes are opposed to each other. Since the interval is wide, the stray capacitance is small and can be almost ignored.
  • FIG. 8 is a cross-sectional view of a power transmission device 101 and a power reception device 201 according to a modification of the second embodiment.
  • the power transmission device 101 may have a configuration in which the passive electrode 12 and the shield electrode 13 are connected by the connection electrode 14.
  • the active electrode 21 and the shield electrode 23 may be connected by the connection electrode 24.
  • the passive electrode 12, the shield electrode 13, and the connection electrode 14 may be formed of a single member, or the passive electrode 12, the shield electrode 13, and the connection electrode 14 may be separate members.
  • the passive electrode 22, the shield electrode 23, and the connection electrode 24 may be formed by one member, and the active electrode 21, the shield electrode 23, and the connection electrode 24 may be separate members.
  • the shield electrodes 13 and 23 may use the metal casings.
  • the active electrodes 11 and 21 and the passive electrodes 12 and 22 may be circular, for example.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Power Engineering (AREA)
  • Near-Field Transmission Systems (AREA)
  • Current-Collector Devices For Electrically Propelled Vehicles (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

A wireless power transfer system uses a capacitively-coupled method to transfer power from a power transmitting device (101) to a power receiving device (201), wherein the power transmitting device (101) and the power receiving device (201) have an active electrode (11) and an active electrode (21), respectively, facing each other and a passive electrode (12) and a passive electrode (22), respectively, facing each other. In the wireless power transfer system, the area of the active electrode (21) is larger than that of the active electrode (11). The passive electrode (12) and the passive electrode (22) face each other with the active electrodes (11, 21) interposed therebetween. This provides a wireless power transfer system capable of preventing unnecessary coupling between the electrodes and increasing the power transfer efficiency.

Description

ワイヤレス電力伝送システムWireless power transmission system
 本発明は、電界結合方式により送電装置から受電装置へ電力を伝送するワイヤレス電力伝送システムに関する。 The present invention relates to a wireless power transmission system that transmits power from a power transmission device to a power reception device by an electric field coupling method.
 ワイヤレス電力伝送システムとして、例えば、特許文献1に示す電界結合方式のワイヤレス電力伝送システムが知られている。このシステムでは、送電装置のアクティブ電極およびパッシブ電極と、受電装置のアクティブ電極およびパッシブ電極とが間隙を介して近接することにより、この二つの電極同士が容量性結合し、送電装置から受電装置へ電力が伝送される。特許文献1では、送電装置および受電装置それぞれにおいて、アクティブ電極をパッシブ電極で取り囲み、パッシブ電極間の結合容量を大きくする構成としている。これにより、不要な電場の広がりを抑制している。 As a wireless power transmission system, for example, an electric field coupling type wireless power transmission system disclosed in Patent Document 1 is known. In this system, the active electrode and the passive electrode of the power transmission device and the active electrode and the passive electrode of the power reception device come close to each other through a gap, so that the two electrodes are capacitively coupled to each other, and the power transmission device to the power reception device. Power is transmitted. In Patent Document 1, in each of the power transmission device and the power reception device, the active electrode is surrounded by the passive electrode, and the coupling capacitance between the passive electrodes is increased. Thereby, the spread of an unnecessary electric field is suppressed.
特開2012-210146号公報JP 2012-210146 A
 しかしながら、特許文献1に記載のように、アクティブ電極をパッシブ電極で覆う構成とした場合、送電装置(または受電装置)のアクティブ電極と、受電装置(または送電装置)のパッシブ電極とが近接し、不要な結合容量が大きくなる場合がある。そして、この不要な結合容量によって、電力伝送効率が低下するといった問題が生じる。特に、薄型化が要求される携帯電話機などの受電装置においては、その薄型化に伴い、電極間の距離がより近接するため、電極間の不要な結合が発生する
 そこで、本発明の目的は、電極間の不要な結合を防止して、電力伝送効率を高めることができるワイヤレス電力伝送システムを提供することにある。
However, as described in Patent Document 1, when the active electrode is covered with a passive electrode, the active electrode of the power transmission device (or power reception device) and the passive electrode of the power reception device (or power transmission device) are close to each other, Unnecessary coupling capacity may increase. And the problem that electric power transmission efficiency falls by this unnecessary coupling capacity arises. In particular, in a power receiving device such as a mobile phone that is required to be thin, the distance between the electrodes becomes closer as the thickness is reduced, and therefore unnecessary coupling between the electrodes occurs. An object of the present invention is to provide a wireless power transmission system that can prevent unnecessary coupling between electrodes and increase power transmission efficiency.
 本発明は、送電装置に受電装置を載置した状態で、前記送電装置から前記受電装置へ、容量結合方式による電力伝送を行うワイヤレス電力伝送システムにおいて、前記送電装置は、第1の平板電極と、第2の平板電極と、前記第1の平板電極および前記第2の平板電極に交流電圧を印加する送電側回路と、を備え、前記受電装置は、前記第1の平板電極に間隙をおいて対向する第3の平板電極と、前記受電装置の基準電位に接続され、前記第2の平板電極に間隙をおいて対向する第4の平板電極と、前記第3の電極および前記第4の電極に接続された受電側回路と、を備え、前記第3の平板電極は、前記第1の平板電極よりも面積が大きく、前記第2の平板電極と前記第4の平板電極とは、間に前記第1の平板電極および前記第3の平板電極を介在させて対向していることを特徴とする。 The present invention relates to a wireless power transmission system that performs power transmission by a capacitive coupling method from the power transmission device to the power reception device in a state where the power reception device is mounted on the power transmission device. A power transmission side circuit for applying an AC voltage to the first flat plate electrode and the second flat plate electrode, and the power receiving device includes a gap in the first flat plate electrode. And a third plate electrode facing each other, a fourth plate electrode connected to a reference potential of the power receiving device and facing the second plate electrode with a gap, the third electrode, and the fourth electrode A power receiving side circuit connected to the electrode, wherein the third plate electrode has a larger area than the first plate electrode, and the second plate electrode and the fourth plate electrode are The first plate electrode and the third plate electrode Wherein the facing with intervening.
 この構成では、送電装置の第1の平板電極と受電装置の第4の平板電極の間に介在する第3の平板電極が第1の平板電極よりも面積が大きいことにより、第1の平板電極と第4の平板電極との間に形成される浮遊容量を低減ことができる。これにより、電極間の不要な結合を抑制することができ、電力伝送効率を高めることができる。 In this configuration, the third flat plate electrode interposed between the first flat plate electrode of the power transmitting device and the fourth flat plate electrode of the power receiving device has a larger area than the first flat plate electrode. And the fourth plate electrode can be reduced in stray capacitance. Thereby, unnecessary coupling between the electrodes can be suppressed, and the power transmission efficiency can be increased.
 前記第2の平板電極と前記第3の平板電極との間の距離は、前記第1の平板電極と前記第4の平板電極との間の距離より大きいことが好ましい。 It is preferable that the distance between the second plate electrode and the third plate electrode is larger than the distance between the first plate electrode and the fourth plate electrode.
 この構成では、第2の平板電極と第3の平板電極の間に生じる浮遊容量を抑えることができる。 In this configuration, stray capacitance generated between the second plate electrode and the third plate electrode can be suppressed.
 本発明は、送電装置に受電装置を載置した状態で、前記送電装置から前記受電装置へ、容量結合方式による電力伝送を行うワイヤレス電力伝送システムにおいて、前記送電装置は、第1の平板電極と、前記第1の平板電極と略同一平面上に設けられた第2の平板電極と、前記第1の平板電極および前記第2の平板電極に交流電圧を印加する送電側回路と、を備え、前記受電装置は、前記第1の平板電極に間隙をおいて対向する第3の平板電極と、前記第2の平板電極に間隙をおいて対向し、かつ、前記第3の平板電極と略同一平面上に設けられた第4の平板電極と、前記第3の電極および前記第4の電極に接続された受電側回路と、を備え、前記第3の平板電極は、前記第1の平板電極よりも面積が大きく、前記第1の平板電極と前記第2の平板電極との間隔は、前記第3の平板電極と前記第4の平板電極との間隔より広いことを特徴とする。 The present invention relates to a wireless power transmission system that performs power transmission by a capacitive coupling method from the power transmission device to the power reception device in a state where the power reception device is mounted on the power transmission device. A second flat plate electrode provided on substantially the same plane as the first flat plate electrode, and a power transmission side circuit for applying an AC voltage to the first flat plate electrode and the second flat plate electrode, The power receiving device includes a third flat plate electrode facing the first flat plate electrode with a gap, and a second flat plate electrode facing the second flat plate electrode with a gap, and substantially the same as the third flat plate electrode. A fourth flat plate electrode provided on a plane; and a power receiving side circuit connected to the third electrode and the fourth electrode, wherein the third flat plate electrode is the first flat plate electrode. Larger in area than the first plate electrode and the second Distance between the flat plate electrodes, and wherein the wider interval between the third flat plate electrode and the fourth plate electrodes.
 この構成では、送電装置の第1の平板電極と受電装置の第4の平板電極との間隔が広くなり、電極間に生じる浮遊容量を小さくできる。これにより、電極間の不要な結合を抑制でき、電力伝送効率が高められる。 In this configuration, the distance between the first flat plate electrode of the power transmitting device and the fourth flat plate electrode of the power receiving device is widened, and the stray capacitance generated between the electrodes can be reduced. Thereby, unnecessary coupling between the electrodes can be suppressed, and the power transmission efficiency can be improved.
 前記送電装置は、前記送電装置の基準電位に接続された第1のシールド電極を備え、前記受電装置は、前記受電装置の基準電位に接続された第2のシールド電極を備え、前記第1のシールド電極および前記第2のシールド電極は、間に前記第1の平板電極、前記第2の平板電極、前記第3の平板電極および前記第4の平板電極を介在させて対向している構成が好ましい。 The power transmission device includes a first shield electrode connected to a reference potential of the power transmission device, the power reception device includes a second shield electrode connected to a reference potential of the power reception device, and the first The shield electrode and the second shield electrode are opposed to each other with the first plate electrode, the second plate electrode, the third plate electrode, and the fourth plate electrode interposed therebetween. preferable.
 この構成では、第1のシールド電極および第2のシールド電極により、第1の平板電極および第3の平板電極間の電界結合により発生するノイズの輻射を抑制することができる。また、第3の平板電極が第1の平板電極より大きいため、第1の平板電極と第2のシールド電極との間に生じる浮遊容量が抑制でき、不要な結合を回避できる。 In this configuration, the first shield electrode and the second shield electrode can suppress noise radiation generated by electric field coupling between the first plate electrode and the third plate electrode. Further, since the third plate electrode is larger than the first plate electrode, stray capacitance generated between the first plate electrode and the second shield electrode can be suppressed, and unnecessary coupling can be avoided.
 前記第1のシールド電極と前記第3の平板電極との間の距離は、前記第1の平板電極と前記第2のシールド電極の間の距離より大きいことが好ましい。 It is preferable that a distance between the first shield electrode and the third plate electrode is larger than a distance between the first plate electrode and the second shield electrode.
 この構成では、第1のシールド電極と第3の平板電極との間に生じる浮遊容量を抑えることができる。 In this configuration, stray capacitance generated between the first shield electrode and the third flat plate electrode can be suppressed.
 前記第1のシールド電極は前記第2の電極と電気的に接続され、前記第2のシールド電極は前記第4の電極と電気的に接続されている構成でもよい。 The first shield electrode may be electrically connected to the second electrode, and the second shield electrode may be electrically connected to the fourth electrode.
 この構成では、シールド電極と平板電極とを一の部材により形成することができる。また、第1の平板電極および第3の平板電極をそれぞれ平板電極とシールド電極とにより囲うことができ、ノイズ輻射を抑制できる。 In this configuration, the shield electrode and the flat plate electrode can be formed from one member. Further, the first plate electrode and the third plate electrode can be surrounded by the plate electrode and the shield electrode, respectively, and noise radiation can be suppressed.
 本発明によれば、電極間に形成される浮遊容量を防ぐ減らすことができ、電極間の不要な結合を防止することで、送電装置から受電装置への電力伝送の効率を高めることができる。 According to the present invention, stray capacitance formed between the electrodes can be prevented and reduced, and unnecessary coupling between the electrodes can be prevented, so that the efficiency of power transmission from the power transmitting apparatus to the power receiving apparatus can be increased.
本実施形態に係るワイヤレス電力伝送システムの回路図Circuit diagram of wireless power transmission system according to this embodiment 送電装置に受電装置を載置した状態における断面図Sectional view in a state where the power receiving device is mounted on the power transmitting device 図2に示すアクティブ電極およびパッシブ電極のみを表した図Figure showing only the active and passive electrodes shown in FIG. 送電装置のアクティブ電極と受電装置のパッシブ電極との間に浮遊容量が生じた場合の回路の一部を示す図The figure which shows a part of circuit when stray capacitance arises between the active electrode of a power transmission apparatus, and the passive electrode of a power receiving apparatus 送電装置に受電装置を載置した状態における断面図Sectional view in a state where the power receiving device is mounted on the power transmitting device 送電装置および受電装置それぞれのアクティブ電極およびパッシブ電極の平面視図Plan view of active electrode and passive electrode of power transmission device and power reception device, respectively 図5に示すアクティブ電極、パッシブ電極およびシールド電極のみを表した図The figure showing only the active electrode, passive electrode and shield electrode shown in FIG. 実施形態2の変形例に係る送電装置および受電装置の断面図Sectional drawing of the power transmission apparatus and power receiving apparatus which concern on the modification of Embodiment 2.
(実施形態1)
 図1は、本実施形態に係るワイヤレス電力伝送システムの回路図である。ワイヤレス電力伝送システム301は送電装置101と受電装置201とを備えている。受電装置201は負荷RLを備えている。この負荷RLは二次電池と充電回路等を含めたバッテリモジュールである。そして、受電装置201は、そのバッテリモジュールを備えた、例えば携帯電子機器である。携帯電子機器としては携帯電話機、PDA、携帯音楽プレーヤ、ノート型PC、デジタルカメラなどが挙げられる。受電装置201は送電装置101に載置され、送電装置101は受電装置201の二次電池を充電する。
(Embodiment 1)
FIG. 1 is a circuit diagram of a wireless power transmission system according to the present embodiment. The wireless power transmission system 301 includes a power transmission device 101 and a power reception device 201. The power receiving apparatus 201 includes a load RL. The load RL is a battery module including a secondary battery and a charging circuit. And the power receiving apparatus 201 is a portable electronic device provided with the battery module, for example. Examples of portable electronic devices include mobile phones, PDAs, portable music players, notebook PCs, digital cameras, and the like. The power receiving device 201 is placed on the power transmitting device 101, and the power transmitting device 101 charges the secondary battery of the power receiving device 201.
 送電装置101は、高周波発振器OSC、昇圧トランスTGおよびインダクタLGを備えている。高周波電圧発生回路OSCは例えば100kHz~数10MHzの高周波電圧を発生する。昇圧トランスTGおよびインダクタLGによる昇圧回路は、高周波電圧発生回路OSCの発生する電圧を昇圧してアクティブ電極11とパッシブ電極12との間に印加する。図中の破線で示すキャパシタは、アクティブ電極11およびパッシブ電極12の間に形成される浮遊容量、または実部品である。なお、アクティブ電極11は本発明に係る第1の平板電極、パッシブ電極12は本発明に係る第2の平板電極に相当する。 The power transmission device 101 includes a high-frequency oscillator OSC, a step-up transformer TG, and an inductor LG. The high frequency voltage generation circuit OSC generates a high frequency voltage of, for example, 100 kHz to several tens of MHz. The step-up circuit using the step-up transformer TG and the inductor LG steps up the voltage generated by the high-frequency voltage generation circuit OSC and applies it between the active electrode 11 and the passive electrode 12. A capacitor indicated by a broken line in the drawing is a stray capacitance formed between the active electrode 11 and the passive electrode 12 or an actual component. The active electrode 11 corresponds to the first plate electrode according to the present invention, and the passive electrode 12 corresponds to the second plate electrode according to the present invention.
 受電装置201は、アクティブ電極21およびパッシブ電極22に接続された、インダクタLLおよび降圧トランスTLによる降圧回路と、降圧した交流電圧を直流電圧に変換する整流回路27と、負荷RLに対して規定の直流電圧を出力するDC-DCコンバータ28と、負荷RLとを備えている。図中の破線で示すキャパシタは、アクティブ電極21およびパッシブ電極22の間に形成される浮遊容量、または実部品である。なお、アクティブ電極21は本発明に係る第3の平板電極、パッシブ電極22は本発明に係る第4の平板電極に相当する。 The power receiving device 201 is connected to the active electrode 21 and the passive electrode 22 and includes a step-down circuit using an inductor LL and a step-down transformer TL, a rectifier circuit 27 that converts the stepped-down AC voltage into a DC voltage, and a load RL. A DC-DC converter 28 that outputs a DC voltage and a load RL are provided. A capacitor indicated by a broken line in the drawing is a stray capacitance formed between the active electrode 21 and the passive electrode 22 or an actual component. The active electrode 21 corresponds to the third plate electrode according to the present invention, and the passive electrode 22 corresponds to the fourth plate electrode according to the present invention.
 このワイヤレス電力伝送システム301において、受電装置201が送電装置101に載置され、送電装置101のアクティブ電極11およびパッシブ電極12間に電圧が印加されることで、対向配置となったアクティブ電極11,21同士、および、パッシブ電極12,22同士がそれぞれ容量結合して電界が生じる。そして、この電界を介して電力が送電装置101から受電装置201へ伝送される。受電装置201では、電力伝送により誘起される交流電圧が降圧された後、整流および平滑され、負荷RLに印加される。 In this wireless power transmission system 301, the power receiving device 201 is placed on the power transmitting device 101, and a voltage is applied between the active electrode 11 and the passive electrode 12 of the power transmitting device 101, so that the active electrodes 11, 21 and the passive electrodes 12 and 22 are capacitively coupled to generate an electric field. Then, power is transmitted from the power transmitting apparatus 101 to the power receiving apparatus 201 via this electric field. In the power receiving device 201, the AC voltage induced by power transmission is stepped down, then rectified and smoothed, and applied to the load RL.
 以下の説明では、高周波発振器OSC、昇圧トランスTGおよびインダクタLGなどを纏めて送電側回路10とし、インダクタLL、降圧トランスTL、整流回路27および負荷RLを纏めて受電側回路20とする。 In the following description, the high-frequency oscillator OSC, the step-up transformer TG, the inductor LG, and the like are collectively referred to as the power transmission side circuit 10, and the inductor LL, the step-down transformer TL, the rectifier circuit 27, and the load RL are collectively referred to as the power reception side circuit 20.
 図2は、送電装置101に受電装置201を載置した状態における断面図である。また、図2では、受電装置201を送電装置101に載置した状態での、アクティブ電極11,21およびパッシブ電極22の平面視図も示している。 FIG. 2 is a cross-sectional view of the power transmission apparatus 101 with the power reception apparatus 201 mounted thereon. FIG. 2 also shows a plan view of the active electrodes 11 and 21 and the passive electrode 22 in a state where the power receiving device 201 is placed on the power transmitting device 101.
 送電装置101は樹脂筐体を有し、受電装置201が載置される送電装置101の載置面となる樹脂層15内には略矩形状のアクティブ電極11が設けられている。アクティブ電極11は載置面の裏側(内部側)に貼り付けられていてもよい。また、載置面と反対側の送電装置101の底面には、略矩形状のパッシブ電極12が設けられており、アクティブ電極11と対向している。パッシブ電極12は、アクティブ電極11よりも面積が大きく、平面視した際に、パッシブ電極12がアクティブ電極11を包含する形状を成している。アクティブ電極11は送電装置101の載置面、パッシブ電極12は送電装置101の底面に沿って設けられているため、アクティブ電極11とパッシブ電極12とは、略送電装置101の厚さ分だけ離れている。これらアクティブ電極11およびパッシブ電極12には、図1で説明した送電側回路10が電気的に接続されている。 The power transmission device 101 has a resin casing, and a substantially rectangular active electrode 11 is provided in the resin layer 15 serving as a placement surface of the power transmission device 101 on which the power reception device 201 is placed. The active electrode 11 may be attached to the back side (inside side) of the mounting surface. Further, a substantially rectangular passive electrode 12 is provided on the bottom surface of the power transmission device 101 on the side opposite to the mounting surface, and faces the active electrode 11. The passive electrode 12 has a larger area than the active electrode 11, and the passive electrode 12 includes the active electrode 11 when viewed in plan. Since the active electrode 11 is provided along the mounting surface of the power transmission device 101 and the passive electrode 12 is provided along the bottom surface of the power transmission device 101, the active electrode 11 and the passive electrode 12 are separated by the thickness of the power transmission device 101. ing. The active electrode 11 and the passive electrode 12 are electrically connected to the power transmission side circuit 10 described in FIG.
 受電装置201は樹脂筐体を有し、載置した際に送電装置101の載置面と接触する受電装置201の面(以下、背面という。)となる樹脂層25内には略矩形状のアクティブ電極21が設けられている。アクティブ電極21は、対向するアクティブ電極11よりも面積が大きく、平面視した際にアクティブ電極21がアクティブ電極11を包含する形状を成している。接触面と反対側の受電装置201の面(以下、正面という。)には、略矩形状のパッシブ電極22が設けられ、アクティブ電極21と対向している。パッシブ電極22は、パッシブ電極12の面積と略同じである。また、パッシブ電極22は、アクティブ電極21よりも面積が大きく、平面視した際にパッシブ電極22がアクティブ電極21を包含する形状を成している。アクティブ電極21およびパッシブ電極22には、図1で説明した受電側回路20が電気的に接続されている。 The power receiving device 201 has a resin casing, and when mounted, the power receiving device 201 has a substantially rectangular shape in the resin layer 25 that is a surface (hereinafter referred to as a back surface) of the power receiving device 201 that comes into contact with the mounting surface of the power transmitting device 101. An active electrode 21 is provided. The active electrode 21 has a larger area than the opposing active electrode 11, and the active electrode 21 includes the active electrode 11 when viewed in plan. A substantially rectangular passive electrode 22 is provided on the surface of the power receiving device 201 opposite to the contact surface (hereinafter referred to as the front surface) and faces the active electrode 21. The passive electrode 22 has substantially the same area as the passive electrode 12. The passive electrode 22 has a larger area than the active electrode 21, and the passive electrode 22 has a shape including the active electrode 21 when viewed in plan. The active electrode 21 and the passive electrode 22 are electrically connected to the power receiving side circuit 20 described in FIG.
 以下に、アクティブ電極11,21およびパッシブ電極12,22間に形成される浮遊容量について説明する。図3は、図2に示すアクティブ電極11,21およびパッシブ電極12,22のみを表した図である。図中のCs1は、アクティブ電極11およびパッシブ電極22の間に生じる浮遊容量、Cs2は、アクティブ電極21およびパッシブ電極12の間に生じる浮遊容量である。 Hereinafter, the stray capacitance formed between the active electrodes 11 and 21 and the passive electrodes 12 and 22 will be described. FIG. 3 shows only the active electrodes 11 and 21 and the passive electrodes 12 and 22 shown in FIG. In the figure, Cs1 is a stray capacitance generated between the active electrode 11 and the passive electrode 22, and Cs2 is a stray capacitance generated between the active electrode 21 and the passive electrode 12.
 受電装置201のアクティブ電極21と送電装置101のパッシブ電極12との間隔をT1、送電装置101のアクティブ電極11と受電装置201のパッシブ電極22との間隔をT2で表す。この場合、アクティブ電極11,21およびパッシブ電極12,22は、T2<T1の関係が成り立つように送電装置101および受電装置201にそれぞれ設けられている。 The interval between the active electrode 21 of the power receiving apparatus 201 and the passive electrode 12 of the power transmitting apparatus 101 is represented by T1, and the interval between the active electrode 11 of the power transmitting apparatus 101 and the passive electrode 22 of the power receiving apparatus 201 is represented by T2. In this case, the active electrodes 11 and 21 and the passive electrodes 12 and 22 are provided in the power transmitting apparatus 101 and the power receiving apparatus 201 so that the relationship of T2 <T1 is established.
 上述のように受電装置201は携帯電子機器であり、薄型化が要求されている。一方で、送電装置101は、携帯電子機器の充電装置であり、受電装置201ほどの薄型化の要求はない。したがって、間隔T1を広くすることはできるが、間隔T2は狭くなる。(少なくともT1>T2となる傾向にある。)間隔T1を広くすることで浮遊容量Cs2は小さくできる。具体的には、送電装置101のアクティブ電極11の一辺が50~80mmm、受電装置201のアクティブ電極21が100mm程度であれば(送電装置101側のアクティブ電極11が受電装置201側のアクティブ電極21と比較して、一辺が80%程度以下であれば)、アクティブ電極11とアクティブ電極12との間の距離が1mm程度のとき、浮遊容量CS2はほぼ0となる。しかしながら、仮にアクティブ電極21がアクティブ電極11と面積が同じ、またはアクティブ電極11より面積が小さい場合、間隔T2が狭くなると大きな浮遊容量Cs1が生じる。なお、T1,T2の具体的数値の一例として、T1は3.2~6.0mmであり、T2は1.2~2.5mmである。 As described above, the power receiving apparatus 201 is a portable electronic device and is required to be thin. On the other hand, the power transmission device 101 is a charging device for portable electronic devices, and is not required to be as thin as the power reception device 201. Accordingly, the interval T1 can be increased, but the interval T2 is decreased. (At least T1> T2 tends to be satisfied.) By increasing the interval T1, the stray capacitance Cs2 can be reduced. Specifically, if one side of the active electrode 11 of the power transmission apparatus 101 is 50 to 80 mm and the active electrode 21 of the power reception apparatus 201 is about 100 mm (the active electrode 11 on the power transmission apparatus 101 side is the active electrode 21 on the power reception apparatus 201 side). When the distance between the active electrode 11 and the active electrode 12 is about 1 mm, the stray capacitance CS2 is almost zero. However, if the active electrode 21 has the same area as the active electrode 11 or a smaller area than the active electrode 11, a large stray capacitance Cs1 occurs when the interval T2 is narrowed. As an example of specific values of T1 and T2, T1 is 3.2 to 6.0 mm, and T2 is 1.2 to 2.5 mm.
 図4は、送電装置101のアクティブ電極11と受電装置201のパッシブ電極22との間に浮遊容量Cs1が生じた場合の回路の一部を示す図である。アクティブ電極11とパッシブ電極22との間に浮遊容量Cs1が形成されると、アクティブ電極11,21を介して伝送されるべき電力の一部が浮遊容量Cs1を介してパッシブ電極22にも伝送される。この浮遊容量Cs1を介した電力伝送は、送電装置101から受電装置201への電力伝送に寄与しないばかりか、損失の増大にもつながるので、送電装置101から受電装置201への電力伝送効率が低下する。 FIG. 4 is a diagram illustrating a part of a circuit in the case where stray capacitance Cs1 is generated between the active electrode 11 of the power transmission device 101 and the passive electrode 22 of the power reception device 201. When the stray capacitance Cs1 is formed between the active electrode 11 and the passive electrode 22, a part of the power to be transmitted via the active electrodes 11 and 21 is also transmitted to the passive electrode 22 via the stray capacitance Cs1. The The power transmission via the stray capacitance Cs1 not only contributes to the power transmission from the power transmission apparatus 101 to the power reception apparatus 201, but also leads to an increase in loss, so that the power transmission efficiency from the power transmission apparatus 101 to the power reception apparatus 201 decreases. To do.
 そこで、本実施形態では、浮遊容量Cs1の発生を抑制するため、図3に示すように、アクティブ電極21はアクティブ電極11より面積を大きくしている。このアクティブ電極21が障壁となり、アクティブ電極11とパッシブ電極22との間に生じる浮遊容量Cs1は十分に抑制される。これにより、図4に示す浮遊容量Cs1が十分に小さくなる結果、送電装置101から受電装置201への電力伝送効率の低下を防止できる。 Therefore, in this embodiment, in order to suppress the generation of the stray capacitance Cs1, the active electrode 21 has a larger area than the active electrode 11, as shown in FIG. The active electrode 21 serves as a barrier, and the stray capacitance Cs1 generated between the active electrode 11 and the passive electrode 22 is sufficiently suppressed. As a result, the stray capacitance Cs1 shown in FIG.
 なお、図2では、アクティブ電極21の面積をアクティブ電極11の面積より大きくし、平面視した際に、アクティブ電極21がアクティブ電極11を包含する形状とすることで浮遊容量Cs1を低減した例を示した。しかしながら、これに限るものではなく、アクティブ電極21の面積がアクティブ電極11の面積より大きく、平面視した際に少なくともアクティブ電極21がアクティブ電極11とパッシブ電極22との間に生じる寄生容量Cs1を十分に抑制する効果を奏すればよいため、アクティブ電極21がアクティブ電極11を完全に包含している必要はない。 In FIG. 2, the area of the active electrode 21 is made larger than the area of the active electrode 11, and the stray capacitance Cs1 is reduced by making the active electrode 21 include the active electrode 11 when viewed in plan. Indicated. However, the present invention is not limited to this, and the area of the active electrode 21 is larger than the area of the active electrode 11, and at least the active electrode 21 has a sufficient parasitic capacitance Cs1 generated between the active electrode 11 and the passive electrode 22 when viewed in plan. Therefore, the active electrode 21 does not need to completely include the active electrode 11.
(実施形態2)
 以下に、実施形態2に係るワイヤレス電力伝送システムについて説明する。実施形態2に係るワイヤレス電力伝送システムの回路構成は、図1で説明した実施形態1と同様であるため、説明は省略する。
(Embodiment 2)
The wireless power transmission system according to the second embodiment will be described below. The circuit configuration of the wireless power transmission system according to the second embodiment is the same as that of the first embodiment described with reference to FIG.
 図5は、送電装置101に受電装置201を載置した状態における断面図である。図6は、送電装置101および受電装置201それぞれのアクティブ電極11,21およびパッシブ電極12,22の平面視図である。 FIG. 5 is a cross-sectional view of the power transmitting apparatus 101 with the power receiving apparatus 201 mounted thereon. FIG. 6 is a plan view of the active electrodes 11 and 21 and the passive electrodes 12 and 22 of the power transmitting apparatus 101 and the power receiving apparatus 201, respectively.
 送電装置101の樹脂層15内には、矩形状のアクティブ電極11およびパッシブ電極12が同一平面上に設けられている。パッシブ電極12の外形はアクティブ電極11よりも大きく、パッシブ電極12の中央部には、矩形状の切欠き部12Aが形成されている。アクティブ電極11は切欠き部12A内に位置している。また、送電装置101の底面には、送電装置101の基準電位に接続されたシールド電極13が設けられている。シールド電極13は、パッシブ電極12と略同じ大きさを有し、アクティブ電極11およびパッシブ電極12と対向している。シールド電極13は、アクティブ電極11などの結合部から生じるノイズ輻射を遮蔽している。 In the resin layer 15 of the power transmission apparatus 101, a rectangular active electrode 11 and a passive electrode 12 are provided on the same plane. The external shape of the passive electrode 12 is larger than that of the active electrode 11, and a rectangular notch 12 </ b> A is formed at the center of the passive electrode 12. The active electrode 11 is located in the notch 12A. Further, a shield electrode 13 connected to the reference potential of the power transmission device 101 is provided on the bottom surface of the power transmission device 101. The shield electrode 13 has substantially the same size as the passive electrode 12 and faces the active electrode 11 and the passive electrode 12. The shield electrode 13 shields noise radiation generated from the coupling portion such as the active electrode 11.
 受電装置201の樹脂層25内には、略矩形状のアクティブ電極21およびパッシブ電極22が同一平面上に設けられている。パッシブ電極22は、パッシブ電極12と略同じ大きさを有し、パッシブ電極22の中央部には、矩形状の切欠き部22Aが形成されている。アクティブ電極21は、この切欠き部22A内に位置している。アクティブ電極21は、対向するアクティブ電極11よりも大きい面積を有している。 In the resin layer 25 of the power receiving device 201, a substantially rectangular active electrode 21 and passive electrode 22 are provided on the same plane. The passive electrode 22 has substantially the same size as the passive electrode 12, and a rectangular notch 22 </ b> A is formed at the center of the passive electrode 22. The active electrode 21 is located in the notch 22A. The active electrode 21 has a larger area than the opposing active electrode 11.
 ここで、アクティブ電極11とパッシブ電極12との間隔をT3で表し、アクティブ電極21とパッシブ電極22との間隔をT4で表す。この場合、アクティブ電極11,21およびパッシブ電極12,22は、T4<T3の関係が成り立つようにそれぞれ形成されている。 Here, the interval between the active electrode 11 and the passive electrode 12 is represented by T3, and the interval between the active electrode 21 and the passive electrode 22 is represented by T4. In this case, the active electrodes 11 and 21 and the passive electrodes 12 and 22 are formed so that the relationship of T4 <T3 is established.
 また、受電装置201の正面には、受電装置201のグランド電位(基準電位)に接続されたシールド電極23が設けられている。シールド電極23は、パッシブ電極22と略同じ大きさを有し、アクティブ電極21およびパッシブ電極22と対向している。シールド電極23は、アクティブ電極21などの結合部から生じるノイズ輻射を遮蔽している。 Further, a shield electrode 23 connected to the ground potential (reference potential) of the power receiving device 201 is provided on the front surface of the power receiving device 201. The shield electrode 23 has substantially the same size as the passive electrode 22 and faces the active electrode 21 and the passive electrode 22. The shield electrode 23 shields noise radiation generated from the coupling portion such as the active electrode 21.
 以下に、アクティブ電極11,21およびパッシブ電極12,22間に形成される浮遊容量について説明する。図7は、図5に示すアクティブ電極11,21、パッシブ電極12,22およびシールド電極13,23のみを表した図である。図中のCs3は、アクティブ電極11およびシールド電極23の間に生じる浮遊容量、Cs4は、アクティブ電極21およびシールド電極13の間に生じる浮遊容量である。 Hereinafter, the stray capacitance formed between the active electrodes 11 and 21 and the passive electrodes 12 and 22 will be described. FIG. 7 shows only the active electrodes 11 and 21, the passive electrodes 12 and 22, and the shield electrodes 13 and 23 shown in FIG. 5. In the figure, Cs3 is a stray capacitance generated between the active electrode 11 and the shield electrode 23, and Cs4 is a stray capacitance generated between the active electrode 21 and the shield electrode 13.
 実施形態1と同様に、薄型化の要求が少ない送電装置101では、装置を厚くすることができるため、受電装置201のアクティブ電極21と送電装置101のシールド電極13との間隔を広くすることができ、その結果、浮遊容量Cs4を小さくできる。一方で、仮にアクティブ電極21がアクティブ電極11の面積と同じ、またはアクティブ電極11より面積が小さい場合、受電装置201の厚みを薄くする必要があることから、送電装置101のアクティブ電極11と受電装置201のシールド電極23との間隔が狭くなり、大きな浮遊容量Cs3が生じる。大きな浮遊容量Cs3が生じると、パッシブ電極22とシールド電極23とは基準電位に接続されているため、アクティブ電極11とパッシブ電極22とは、シールド電極23を介して容量結合する。 As in the first embodiment, in the power transmission device 101 that is less demanded to be thin, the device can be thickened. Therefore, the interval between the active electrode 21 of the power reception device 201 and the shield electrode 13 of the power transmission device 101 can be widened. As a result, the stray capacitance Cs4 can be reduced. On the other hand, if the active electrode 21 has the same area as the active electrode 11 or a smaller area than the active electrode 11, it is necessary to reduce the thickness of the power receiving device 201. The distance between the shield electrode 23 and the shield electrode 23 is reduced, and a large stray capacitance Cs3 is generated. When the large stray capacitance Cs3 occurs, the active electrode 11 and the passive electrode 22 are capacitively coupled via the shield electrode 23 because the passive electrode 22 and the shield electrode 23 are connected to the reference potential.
 そこで、本実施形態では、上述のように、アクティブ電極21はアクティブ電極11より大きく、かつ、T4<T3の関係とすることで、アクティブ電極21が障壁となり、アクティブ電極11とシールド電極23との間に生じる浮遊容量Cs3を十分に抑制できる。浮遊容量Cs3を抑制した結果、図4で説明したように、送電装置101から受電装置201への電力伝送効率の低下を防止できる。 Therefore, in the present embodiment, as described above, the active electrode 21 is larger than the active electrode 11 and has a relationship of T4 <T3, so that the active electrode 21 becomes a barrier, and the active electrode 11 and the shield electrode 23 The stray capacitance Cs3 generated therebetween can be sufficiently suppressed. As a result of suppressing the stray capacitance Cs3, it is possible to prevent a reduction in power transmission efficiency from the power transmission apparatus 101 to the power reception apparatus 201 as described in FIG.
 また、アクティブ電極11とシールド電極23との間に浮遊容量Cs3が形成されると、シールド電極23は受電装置201の基準電位に接続されているため、シールド電極23を介して受電装置201の基準電位にノイズが重畳する場合がある。この場合、受電装置201の機能の誤作動を引き起こすといった問題が生じる。しかし、本実施形態では、浮遊容量Cs3が抑制されるので、誤作動などの問題も回避できる。 In addition, when the stray capacitance Cs3 is formed between the active electrode 11 and the shield electrode 23, the shield electrode 23 is connected to the reference potential of the power receiving device 201, and thus the reference of the power receiving device 201 via the shield electrode 23. Noise may be superimposed on the potential. In this case, a problem of causing a malfunction of the function of the power receiving apparatus 201 occurs. However, in this embodiment, since the stray capacitance Cs3 is suppressed, problems such as malfunctions can be avoided.
 上記の例において、アクティブ電極11とパッシブ電極12は同一平面上に形成されており、またアクティブ電極21とパッシブ電極22は同一平面状に形成されている例を示したが、これらは必ずしも完全に同一な面上になく、これらの電極を平面視する方向から見て互いに前後するように配置されていても、先に述べた面積の関係を有していれば、同様の効果を得ることができる。 In the above example, the active electrode 11 and the passive electrode 12 are formed on the same plane, and the active electrode 21 and the passive electrode 22 are formed on the same plane. Even if these electrodes are not on the same plane and are arranged so as to be back and forth with each other when viewed in a plan view, the same effect can be obtained as long as they have the aforementioned area relationship. it can.
 なお、アクティブ電極11とパッシブ電極22との間にも浮遊容量(不図示)は生じるが、アクティブ電極11とパッシブ電極22とは面が対向しておらず、電極の側面同士が対向し、かつ、間隔も広いため、浮遊容量は小さく、略無視できる。 Although stray capacitance (not shown) is also generated between the active electrode 11 and the passive electrode 22, the surfaces of the active electrode 11 and the passive electrode 22 are not opposed to each other, and the side surfaces of the electrodes are opposed to each other. Since the interval is wide, the stray capacitance is small and can be almost ignored.
 以下に、実施形態2の変形例について説明する。 Hereinafter, a modification of the second embodiment will be described.
 図8は、実施形態2の変形例に係る送電装置101および受電装置201の断面図である。図8に示すように、送電装置101において、パッシブ電極12とシールド電極13とを接続電極14で接続する構成であってもよい。また、受電装置201において、アクティブ電極21とシールド電極23とを接続電極24で接続する構成であってもよい。この場合、パッシブ電極12、シールド電極13および接続電極14は一の部材で形成されてもよいし、パッシブ電極12、シールド電極13および接続電極14はそれぞれ別個の部材であってもよい。また、パッシブ電極22、シールド電極23および接続電極24は一の部材で形成されてもよいし、アクティブ電極21、シールド電極23および接続電極24はそれぞれ別個の部材であってもよい。 FIG. 8 is a cross-sectional view of a power transmission device 101 and a power reception device 201 according to a modification of the second embodiment. As shown in FIG. 8, the power transmission device 101 may have a configuration in which the passive electrode 12 and the shield electrode 13 are connected by the connection electrode 14. In the power receiving device 201, the active electrode 21 and the shield electrode 23 may be connected by the connection electrode 24. In this case, the passive electrode 12, the shield electrode 13, and the connection electrode 14 may be formed of a single member, or the passive electrode 12, the shield electrode 13, and the connection electrode 14 may be separate members. Moreover, the passive electrode 22, the shield electrode 23, and the connection electrode 24 may be formed by one member, and the active electrode 21, the shield electrode 23, and the connection electrode 24 may be separate members.
 さらに、送電装置101および受電装置201の筐体を金属筐体とした場合に、シールド電極13,23は、その金属筐体を利用したものであってもよい。また、アクティブ電極11,21およびパッシブ電極12,22は、例えば円形状であってもよい。 Furthermore, when the casings of the power transmitting apparatus 101 and the power receiving apparatus 201 are metal casings, the shield electrodes 13 and 23 may use the metal casings. The active electrodes 11 and 21 and the passive electrodes 12 and 22 may be circular, for example.
11-アクティブ電極(第1の平板電極)
12-パッシブ電極(第2の平板電極)
13-シールド電極(第1のシールド電極)
21-アクティブ電極(第3の平板電極)
22-パッシブ電極(第4の平板電極)
23-シールド電極(第2のシールド電極)
101-送電装置
102-受電装置
301-ワイヤレス電力伝送システム
Cs1,Cs2,Cs3,Cs4-浮遊容量
11-active electrode (first plate electrode)
12-passive electrode (second plate electrode)
13-Shield electrode (first shield electrode)
21-active electrode (third plate electrode)
22-Passive electrode (fourth plate electrode)
23-Shield electrode (second shield electrode)
101-Power transmission device 102-Power reception device 301-Wireless power transmission system Cs1, Cs2, Cs3, Cs4-Floating capacitance

Claims (6)

  1.  送電装置に受電装置を載置した状態で、前記送電装置から前記受電装置へ、容量結合方式による電力伝送を行うワイヤレス電力伝送システムにおいて、
     前記送電装置は、
     第1の平板電極と、
     第2の平板電極と、
     前記第1の平板電極および前記第2の平板電極に交流電圧を印加する送電側回路と、
     を備え、
     前記受電装置は、
     前記第1の平板電極に間隙をおいて対向する第3の平板電極と、
     前記受電装置の基準電位に接続され、前記第2の平板電極に間隙をおいて対向する第4の平板電極と、
     前記第3の電極および前記第4の電極に接続された受電側回路と、
     を備え、
     前記第3の平板電極は、前記第1の平板電極よりも面積が大きく、
     前記第2の平板電極と前記第4の平板電極とは、間に前記第1の平板電極および前記第3の平板電極を介在させて対向している、
     ワイヤレス電力伝送システム。
    In a wireless power transmission system that performs power transmission by a capacitive coupling method from the power transmission device to the power reception device in a state where the power reception device is mounted on the power transmission device,
    The power transmission device is:
    A first plate electrode;
    A second plate electrode;
    A power transmission side circuit for applying an AC voltage to the first plate electrode and the second plate electrode;
    With
    The power receiving device is:
    A third plate electrode facing the first plate electrode with a gap;
    A fourth plate electrode connected to a reference potential of the power receiving device and facing the second plate electrode with a gap;
    A power receiving side circuit connected to the third electrode and the fourth electrode;
    With
    The third plate electrode has a larger area than the first plate electrode,
    The second plate electrode and the fourth plate electrode are opposed to each other with the first plate electrode and the third plate electrode interposed therebetween,
    Wireless power transmission system.
  2.  前記第2の平板電極と前記第3の平板電極との間の距離は、前記第1の平板電極と前記第4の平板電極との間の距離より大きい、
     請求項1のワイヤレス電力伝送システム。
    A distance between the second plate electrode and the third plate electrode is greater than a distance between the first plate electrode and the fourth plate electrode;
    The wireless power transmission system of claim 1.
  3.  送電装置に受電装置を載置した状態で、前記送電装置から前記受電装置へ、容量結合方式による電力伝送を行うワイヤレス電力伝送システムにおいて、
     前記送電装置は、
     第1の平板電極と、
     前記第1の平板電極と略同一平面上に設けられた第2の平板電極と、
     前記第1の平板電極および前記第2の平板電極に交流電圧を印加する送電側回路と、
     を備え、
     前記受電装置は、
     前記第1の平板電極に間隙をおいて対向する第3の平板電極と、
     前記第2の平板電極に間隙をおいて対向し、かつ、前記第3の平板電極と略同一平面上に設けられた第4の平板電極と、
     前記第3の電極および前記第4の電極に接続された受電側回路と、
     を備え、
     前記第3の平板電極は、前記第1の平板電極よりも面積が大きく、
     前記第1の平板電極と前記第2の平板電極との間隔は、前記第3の平板電極と前記第4の平板電極との間隔より広い、
     ワイヤレス電力伝送システム。
    In a wireless power transmission system that performs power transmission by a capacitive coupling method from the power transmission device to the power reception device in a state where the power reception device is mounted on the power transmission device,
    The power transmission device is:
    A first plate electrode;
    A second plate electrode provided on substantially the same plane as the first plate electrode;
    A power transmission side circuit for applying an AC voltage to the first plate electrode and the second plate electrode;
    With
    The power receiving device is:
    A third plate electrode facing the first plate electrode with a gap;
    A fourth flat plate electrode opposed to the second flat plate electrode with a gap and provided on substantially the same plane as the third flat plate electrode;
    A power receiving side circuit connected to the third electrode and the fourth electrode;
    With
    The third plate electrode has a larger area than the first plate electrode,
    An interval between the first plate electrode and the second plate electrode is wider than an interval between the third plate electrode and the fourth plate electrode.
    Wireless power transmission system.
  4.  前記送電装置は、前記送電装置の基準電位に接続された第1のシールド電極を備え、
     前記受電装置は、前記受電装置の基準電位に接続された第2のシールド電極を備え、
     前記第1のシールド電極および前記第2のシールド電極は、間に前記第1の平板電極、前記第2の平板電極、前記第3の平板電極および前記第4の平板電極を介在させて対向している、
     請求項3に記載のワイヤレス電力伝送システム。
    The power transmission device includes a first shield electrode connected to a reference potential of the power transmission device,
    The power receiving device includes a second shield electrode connected to a reference potential of the power receiving device,
    The first shield electrode and the second shield electrode are opposed to each other with the first plate electrode, the second plate electrode, the third plate electrode, and the fourth plate electrode interposed therebetween. ing,
    The wireless power transmission system according to claim 3.
  5.  前記第1のシールド電極と前記第3の平板電極との間の距離は、前記第1の平板電極と前記第2のシールド電極の間の距離より大きい、
     請求項3または4のワイヤレス電力伝送システム。
    A distance between the first shield electrode and the third plate electrode is larger than a distance between the first plate electrode and the second shield electrode;
    The wireless power transmission system according to claim 3 or 4.
  6.  前記第1のシールド電極は前記第2の電極と電気的に接続され、
     前記第2のシールド電極は前記第4の電極と電気的に接続されている、
     請求項4または5に記載のワイヤレス電力伝送システム。
    The first shield electrode is electrically connected to the second electrode;
    The second shield electrode is electrically connected to the fourth electrode;
    The wireless power transmission system according to claim 4 or 5.
PCT/JP2013/084007 2013-02-15 2013-12-19 Wireless power transfer system WO2014125731A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2015500115A JP5907307B2 (en) 2013-02-15 2013-12-19 Wireless power transmission system
CN201390001032.2U CN204809991U (en) 2013-02-15 2013-12-19 Wireless electric power transmission system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013027331 2013-02-15
JP2013-027331 2013-02-15

Publications (1)

Publication Number Publication Date
WO2014125731A1 true WO2014125731A1 (en) 2014-08-21

Family

ID=51353750

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/084007 WO2014125731A1 (en) 2013-02-15 2013-12-19 Wireless power transfer system

Country Status (3)

Country Link
JP (1) JP5907307B2 (en)
CN (1) CN204809991U (en)
WO (1) WO2014125731A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108110871A (en) * 2016-11-22 2018-06-01 中兴新能源汽车有限责任公司 wireless charging secondary device and electric vehicle
NL2027140B1 (en) * 2020-12-17 2022-07-11 Herman Johan Mensink Clemens A method of capacitively transferring energy and a semiconductor component and device for use with the method
CN116137464A (en) * 2023-04-20 2023-05-19 中国人民解放军海军工程大学 Electric field type wireless power transmission five-plate coupler and equivalent method thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007124890A (en) * 2005-10-24 2007-05-17 Samsung Electronics Co Ltd Device and method for wirelessly sharing power supply source by induction system
JP2012530481A (en) * 2009-06-25 2012-11-29 株式会社村田製作所 Power transmission system and non-contact charging device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007124890A (en) * 2005-10-24 2007-05-17 Samsung Electronics Co Ltd Device and method for wirelessly sharing power supply source by induction system
JP2012530481A (en) * 2009-06-25 2012-11-29 株式会社村田製作所 Power transmission system and non-contact charging device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108110871A (en) * 2016-11-22 2018-06-01 中兴新能源汽车有限责任公司 wireless charging secondary device and electric vehicle
NL2027140B1 (en) * 2020-12-17 2022-07-11 Herman Johan Mensink Clemens A method of capacitively transferring energy and a semiconductor component and device for use with the method
CN116137464A (en) * 2023-04-20 2023-05-19 中国人民解放军海军工程大学 Electric field type wireless power transmission five-plate coupler and equivalent method thereof

Also Published As

Publication number Publication date
JPWO2014125731A1 (en) 2017-02-02
CN204809991U (en) 2015-11-25
JP5907307B2 (en) 2016-04-26

Similar Documents

Publication Publication Date Title
JP3201863U (en) Thin film coil assembly, flexible wireless charging device and wireless charging system
JP5790897B2 (en) Wireless power transmission system
US9960638B2 (en) Wireless power transmission system
JP5348322B2 (en) Power transmission system
US9461507B2 (en) Wireless power transmission system
CN103283119B (en) Wireless power conveying system, power transmission device and current-collecting device
JP5403073B2 (en) Power receiving device and power transmitting device
JP3203150U (en) Wireless charging device and system with reduced electromagnetic radiation and improved charging efficiency
US9973042B2 (en) Power transmission system
JP5979301B2 (en) Power transmission device and power reception device
US10069335B2 (en) Power transfer system with capacitive coupling
CN104348223B (en) Wireless charging unit is integrated in wireless device
JP5907307B2 (en) Wireless power transmission system
JP6578531B2 (en) Wireless power receiving apparatus and electronic device including the same
JP5874844B2 (en) Wireless power transmission system
TWM508105U (en) Thin-film coil assembly, flexible wireless charging device and wireless charging system
WO2014109093A1 (en) Wireless electric power transmission device, and power transmitting device and power receiving device using same
US20150223351A1 (en) Chassis of electronic device
JP2015005802A (en) Wireless power transmission system

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201390001032.2

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13875191

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015500115

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13875191

Country of ref document: EP

Kind code of ref document: A1