WO2014125185A1 - Procede de determination de la pression de gaz d'echappement en amont du turbocompresseur et du debit traversant sa turbine - Google Patents

Procede de determination de la pression de gaz d'echappement en amont du turbocompresseur et du debit traversant sa turbine Download PDF

Info

Publication number
WO2014125185A1
WO2014125185A1 PCT/FR2014/050165 FR2014050165W WO2014125185A1 WO 2014125185 A1 WO2014125185 A1 WO 2014125185A1 FR 2014050165 W FR2014050165 W FR 2014050165W WO 2014125185 A1 WO2014125185 A1 WO 2014125185A1
Authority
WO
WIPO (PCT)
Prior art keywords
exhaust gas
turbine
turbocharger
pressure
exhaust
Prior art date
Application number
PCT/FR2014/050165
Other languages
English (en)
Inventor
Christophe PACILLY
Frédéric TRELLE
Original Assignee
Peugeot Citroen Automobiles Sa
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Peugeot Citroen Automobiles Sa filed Critical Peugeot Citroen Automobiles Sa
Priority to CN201480009382.2A priority Critical patent/CN105074177B/zh
Priority to EP14705847.3A priority patent/EP2956651B1/fr
Publication of WO2014125185A1 publication Critical patent/WO2014125185A1/fr

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0002Controlling intake air
    • F02D41/0007Controlling intake air for control of turbo-charged or super-charged engines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B37/00Engines characterised by provision of pumps driven at least for part of the time by exhaust
    • F02B37/12Control of the pumps
    • F02B37/18Control of the pumps by bypassing exhaust from the inlet to the outlet of turbine or to the atmosphere
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D23/00Controlling engines characterised by their being supercharged
    • F02D23/02Controlling engines characterised by their being supercharged the engines being of fuel-injection type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1444Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases
    • F02D41/1445Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being related to the exhaust flow
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1444Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases
    • F02D41/1446Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being exhaust temperatures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1444Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases
    • F02D41/1448Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being an exhaust gas pressure
    • F02D41/145Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being an exhaust gas pressure with determination means using an estimation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/04Engine intake system parameters
    • F02D2200/0402Engine intake system parameters the parameter being determined by using a model of the engine intake or its components
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/10Parameters related to the engine output, e.g. engine torque or engine speed
    • F02D2200/101Engine speed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/18Circuit arrangements for generating control signals by measuring intake air flow
    • F02D41/182Circuit arrangements for generating control signals by measuring intake air flow for the control of a fuel injection device
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Definitions

  • the present invention relates to the field of supercharged internal combustion engines.
  • the invention relates more particularly to a method for determining the exhaust gas pressure upstream of the turbocharger and the flow rate passing through its turbine.
  • the estimation of the exhaust gas flow through the turbine of the turbocharger makes it possible to operate the engine.
  • the estimation of the fresh air filling is one of the main functions of the engine control, the estimation of the fresh air filling.
  • This estimate is used in particular to determine the quantity of fuel to be injected and the ignition advance to be controlled. Estimating the exhaust flow through the turbine is also necessary to control the boost pressure. Estimating the average exhaust pressure at the manifold is also necessary to control the boost pressure.
  • document FR2947589A1 discloses a software device applied to an engine bench to ensure the development of turbocharged engines and proposing a modeling of the exhaust flow, from quantities measured at admission.
  • this document does not take into account the presence of the case where a valve of discharge (commonly referred to as "wastegate" in the engine environment) is present on the turbocharger and the operation of which changes the actual flow rate in the turbine of the turbocharger.
  • An object of the present invention is to propose a method which makes it possible to improve the accuracy of estimation of the flow rate actually passing in a turbine of such a turbocharger.
  • a method for determining the flow rate of exhaust gas produced by a heat engine passing through the turbine of the expansion portion of a turbocharger and of determining the exhaust gas pressure upstream of the expansion portion of the turbocharger, said expansion portion being formed of the turbine and an exhaust gas bypass pipe equipped with a means of controlling the opening of the passage of the exhaust gas in the pipe , wherein
  • the pressure downstream of the expansion portion of the turbocharger is determined,
  • the total exhaust gas flow produced by the heat engine is determined,
  • the opening of the opening control means is determined,
  • the exhaust gas pressure upstream of the expansion portion of the turbocharger is defined by:
  • the coefficient C det is defined by a map establishing the coefficient C of t as a function of the standard flow of exhaust gas passing through the turbine and the engine speed.
  • the flow of exhaust gas passing through the bypass pipe is determined by a first relationship:
  • TM -wastegate BSV is the value of the flow of exhaust gas passing through the bypass line obtained by this first relationship
  • S WG is the cross section of the control means of the opening of the passage of the exhaust gases in the bypass line.
  • is the St Venant Barrier function between the exhaust gas pressure upstream of the turbocharger expansion part and the exhaust gas pressure downstream of the turbocharger expansion part.
  • T 3 is the temperature determined upstream of the expansion part of the turbocharger.
  • the effective section S WG is established by means of a map establishing said effective section as a function of the opening of the control means of the gas passage in the bypass line and the speed of the engine.
  • the flow rate of Exhaust gas passing through the bypass line is also determined by a second relationship:
  • TM -wastegate MF is the value of the exhaust gas flow through the bypass line obtained by this second relationship
  • Exhaust is the total exhaust gas flow produced by the combustion engine passing through the turbocharger expansion section
  • R MF is the fraction of the total exhaust flow passing through the bypass valve, established from a map establishing the exhaust gas fraction as a function of the opening of the control medium of the gas passage in the bypass line and the speed of the engine.
  • the determined threshold is between 2500 Pa and 5000 Pa.
  • the flow of exhaust gas passing through the bypass line retained corresponds to:
  • Maximum () corresponds to the function retaining the maximum value of the two flow rates of exhaust gas passing through the bypass line obtained by the first and the second relationship.
  • the means for controlling the opening of the exhaust gas passage in the bypass line comprises a bypass valve.
  • FIG. 1 is a schematic representation of an internal combustion engine adapted to implement the method of the invention.
  • FIG. 2 is a schematic representation of the expansion portion of a turbocharger comprising a turbine and a branch line.
  • FIG. 1 schematically shows a vehicle 1 equipped with a heat engine.
  • the vehicle 1 is a motor vehicle such as a car.
  • the engine of the vehicle 1 is equipped with several cylinders. However, to simplify the illustration, only a cylinder 2 of this combustion engine is shown in FIG. Inside the cylinder 2, a piston 3 is mounted movable in translation between a top dead center (TDC) and a bottom dead center (TDC). This piston 3 rotates a crank 4 of a crankshaft 5 by means of a connecting rod 6. The crankshaft 5 drives in rotation, through a mechanism (not shown), the drive wheels of the vehicle 2 such that the wheel 7.
  • the cylinder 2 defines a combustion chamber 8 delimited by the upper part of the piston 3 and a cylinder head not shown.
  • a duct 9 fresh air intake opens into the chamber 8 via an inlet opening.
  • An intake valve is movable between a closed position in which it closes the intake opening in a fresh airtight manner, and an open position in which fresh air can be admitted into the interior of the chamber. room 8 through the intake opening.
  • the valve 10 is moved between its open position and its closed position by an actuator 1 1 intake valves.
  • the engine is indirect fuel injection, that is to say a fuel injector 12 is provided in the conduit 9 to inject the fuel into the fresh air admitted inside the chamber 8.
  • a fuel injector 12 is provided in the conduit 9 to inject the fuel into the fresh air admitted inside the chamber 8.
  • the mixture Fresh air / fuel starts to occur inside the intake air duct.
  • the engine can, however, be gasoline direct injection, that is to say with the fuel injector implanted so as to directly inject the fuel into the combustion chamber.
  • the conduit 9 is fluidly connected to a compressor 13 of a turbocharger 14 capable of compressing the fresh air admitted inside the chamber 8.
  • the fresh air thus compressed is called fresh air supercharged.
  • a spark plug 15 for igniting the fresh air / fuel mixture opens into the chamber 8. This spark plug is controlled by an ignition device 16.
  • An exhaust duct 17 also opens into the chamber 8 via an exhaust opening.
  • This exhaust opening is closable by an exhaust valve 18 movable between a closed position, and an open position in which the burnt gases contained inside the chamber 8 can escape via the conduit 17.
  • This valve 18 is moved between these open and closed positions by a valve actuator 19.
  • the valve actuators 1 1 and 19 may be mechanical valve actuators.
  • the end of the conduit 17 opposite its opening which opens into the chamber 18 is fluidly connected to a turbine 20 of the turbocharger 13.
  • This turbine 20 allows in particular to relax the exhaust gases before sending them into an exhaust line 21 .
  • the turbocharger is equipped with a pipe 22 for bypassing the exhaust gases of the turbine 20.
  • This bypass pipe 22 itself is equipped with a means 23 for controlling the opening of the passage exhaust gas in the branch pipe 22.
  • the control means 23 may be for example a bypass valve (also referred to as "wastegate").
  • the turbine 20, the bypass pipe 22 and its means 23 for controlling the opening of the passage of the exhaust gases in the pipe 22 form an assembly that we will designate as the so-called expansion portion of the turbocharger 14.
  • the various equipment of the engine that can be controlled such as the actuators 1 1, 19, the ignition device 16 or the fuel injector 12 are connected to a control unit 24 of the engine or computer. To simplify FIG. 1, the connections between this unit 24 and the various equipment items ordered have not been represented.
  • the computer 24 is also connected to numerous sensors such as, for example, a sensor 25 of the angular position DV of the crankshaft 5 and a sensor 26 of the engine speed N.
  • the engine speed N is defined as being, for example, the number of revolutions per hour. minute done by the motor drive shaft.
  • the computer 24 comprises the acquisition and processing means required to implement the method of the invention.
  • the computer 24 includes in particular the maps mentioned later in this memo.
  • the present invention relates to a method for determining the flow rate of exhaust gases produced by the heat engine passing through the turbine 20 and for determining the pressure upstream of the expansion portion of the turbocompressor 14. The process of the invention is now exposed
  • rh Turbine is the flow of exhaust gas passing through the turbine
  • m Exhaust is the total exhaust gas flow produced by the combustion engine passing through the turbocharger expansion section
  • mwastegate> is e exhaust gas flow through conduit 22 bypass.
  • the pressure of the exhaust gases upstream of the expansion portion of the turbocharger 14 is expressed as follows:
  • P 3 is the average pressure of the exhaust gas entering the expansion portion of the turbocharger 14. In practice this pressure is that seen in the exhaust manifold,
  • P 4 is the average pressure of the exhaust gas leaving the expansion portion of the turbocharger 14. In practice this pressure P 4 can be measured or estimated,
  • Cdet is a coefficient which is a function of the turbine flow, rh Turbine , and the engine speed, N.
  • the flow RII wastegate exhaust gas passing through conduit 22 bypass can be written with a first relationship based on Barre St Venant equation:
  • S WG is the cross section of the bypass valve 23.
  • S W G is in the form of a map establishing the effective section, S WG , as a function of the opening Op of the bypass valve, which can be measured or estimated, and the engine speed N.
  • is the function of Barrier St Venant between the pressure P 3 of the exhaust gas upstream of the turbocharger 14 and the average pressure P 4 of the exhaust gas downstream of the turbocharger 14.
  • T 3 is the average temperature upstream of the expansion portion of the turbocharger 14. In practice, this temperature T 3 can be measured or estimated.
  • is the ratio of the heat capacity at constant pressure to the heat capacity at constant volume.
  • is the ratio of the heat capacity at constant pressure to the heat capacity at constant volume.
  • R MF is the fraction of the total exhaust flow through the bypass valve 23.
  • this fraction R MF is established from a cartography function of the opening Op, which can be measured or estimated, of the bypass valve 23 and the engine speed N.
  • this second relationship is retained to also determine the flow of exhaust gas passing through the bypass line 22 when the difference between the pressure P 3 of exhaust gas upstream of the expansion portion of the turbocharger 14 and the pressure P 4 of exhaust gas upstream of the expansion portion of the turbocharger 14 is below a determined ⁇ threshold.
  • this threshold ⁇ is between 2500 Pa and 5000 Pa.
  • T 3 is the average temperature upstream of the expansion portion of the turbocharger 14. In practice, this temperature is that seen in the exhaust manifold.
  • T 0 is the reference temperature (273.15K)
  • the resolution of this system is done by iteration and converges to a single solution.
  • the flow of exhaust gas, m Turbine is first calculated, passing through the turbine 20 from a first imposed value of P 3 .
  • the resolution of this system finally makes it possible to determine the value of the average pressure P 3 upstream of the expansion portion of the turbocharger 14 and the value of the exhaust gas flow rate, m Turbine , passing through the turbine 20.
  • the engine may or may not include a camshaft dephaser at the intake,
  • the engine may or may not include an exhaust camshaft dephaser.
  • a phase shifter is understood to mean a device that allows an angular offset in the motor cycle of the law of emergence which remains invariable.
  • the engine can be direct or indirect injection of fuel
  • the heat engine may include a flue gas recirculation circuit from the exhaust to the inlet, commonly referred to as the EGR circuit,
  • the invention has the advantage of being able to accurately estimate the flow of exhaust gas actually by the turbine and the evolution of the pressure of the gases. exhaust in the exhaust manifold and therefore to have reliable data for the operation of the engine control.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Supercharger (AREA)

Abstract

Procédé de détermination de la pression (P3) amont d'un turbocompresseur (14) et du débit (mTurbine) de gaz traversant sa turbine (20), le turbocompresseur (14) comprenant une conduite (22) de dérivation comportant un moyen (23) de contrôle du passage des gaz, dans lequel : • On détermine la pression (P4) aval, le débit (m Echappement) total de gaz, l'ouverture du moyen (23), le débit (m Turbine) traversant la turbine (20) et la pression (P3) amont par résolution d'un système d'équations où : • - la pression (P3) amont est fonction de la pression (P4) aval et du débit (m Turbine) de gaz traversant la turbine (20), • - le débit ( m Turbine) de gaz traversant la turbine (20) est fonction de la différence du débit (m Echappement) total et d'un débit (m Wastegate ) de gaz traversant la conduite (22) fonction de l'ouverture, de la pression (P4) aval et de la pression (P3) amont.

Description

PROCEDE DE DETERMINATION DE LA PRESSION DE GAZ D'ECHAPPEMENT EN AMONT DU TURBOCOMPRESSEUR ET DU DEBIT TRAVERSANT SA TURBINE.
Domaine technique de l'invention
La présente invention se rapporte au domaine des moteurs à combustion interne suralimentés. L'invention concerne plus particulièrement un procédé de détermination de la pression de gaz d'échappement en amont du turbocompresseur et du débit traversant sa turbine.
Arrière-plan technologique
Les contraintes dues aux normes, par exemple les normes européennes dites Euro VI, relatives aux niveaux d'émissions polluantes générées par le fonctionnement des moteurs à combustion interne, deviennent de plus en plus en plus sévères.
Les niveaux de performance requis pour les fonctions de contrôle moteur étant par conséquent de plus en plus exigent, il est intéressant de bien connaître l'état du système à contrôler. Cette connaissance passe actuellement par l'implantation de capteur complétée par une modélisation des phénomènes physiques présents. Une grandeur spécifique du système peut alors être estimée via la mesure du capteur et par le résultat de la modélisation.
En particulier dans le cas d'un moteur à combustion interne à allumage commandé équipé d'un système de suralimentation tel qu'un turbocompresseur, l'estimation du débit de gaz d'échappement passant par la turbine du turbocompresseur permet de faire fonctionner l'une des fonctions principales du contrôle moteur, l'estimation du remplissage en air frais.
Cette estimation est notamment utilisée afin de déterminer la quantité d'essence à injecter ainsi que l'avance à l'allumage à commander. L'estimation du débit échappement passant par la turbine est également nécessaire au pilotage de la pression de suralimentation. L'estimation de la pression échappement moyenne au niveau du collecteur est elle aussi nécessaire au pilotage de la pression de suralimentation.
On connaît par exemple du document FR2947589A1 un dispositif logiciel appliqué à un banc moteur afin d'assurer la mise point de moteurs turbocompressés et proposant une modélisation du débit échappement, à partir de grandeurs relevées à l'admission. Cependant ce document ne tient pas compte de la présence du cas où une vanne de décharge (communément désigné par le terme anglais « wastegate » dans le milieu motoriste) est présente sur le turbocompresseur et dont le fonctionnement modifie le débit passant réellement dans la turbine du turbocompresseur.
Il existe donc un besoin pour estimer avec précision le débit passant réellement dans une turbine de turbocompresseur quand celui-ci est équipé d'une conduite de dérivation des gaz d'échappement contrôlée par une vanne de décharge,
Un but de la présente invention est de proposer un procédé qui permet d'améliorer la précision d'estimation du débit passant réellement dans une turbine d'un tel turbocompresseur.
Pour atteindre cet objectif, il est prévu selon l'invention un procédé de détermination du débit de gaz d'échappement produits par un moteur thermique traversant la turbine de la partie détente d'un turbocompresseur et de détermination de la pression de gaz d'échappement en amont de la partie détente du turbocompresseur, ladite partie détente étant formée de la turbine et d'une conduite de dérivation de gaz d'échappement équipée d'un moyen de contrôle de l'ouverture du passage des gaz d'échappement dans la conduite, procédé dans lequel :
On détermine la pression en aval de la partie détente du turbocompresseur,
On détermine le débit de gaz d'échappement total produit par le moteur thermique,
On détermine l'ouverture du moyen de contrôle de l'ouverture,
caractérisé en ce que le procédé comprend une étape de détermination du débit de gaz d'échappement traversant la turbine et de la pression de gaz d'échappement en amont de la partie détente du turbocompresseur par résolution d'un système d'équations comprenant :
-une première expression dans laquelle la pression de gaz d'échappement en amont de la partie détente du turbocompresseur est exprimée à partir de la pression en aval de la partie détente du turbocompresseur et du débit de gaz d'échappement traversant la turbine,
-une seconde expression dans laquelle le débit de gaz d'échappement traversant la turbine est exprimée à partir de la différence du débit de gaz d'échappement total produit par le moteur thermique et d'un débit de gaz d'échappement traversant la conduite de dérivation défini en fonction de l'ouverture du moyen de contrôle, de la pression en aval de la partie détente du turbocompresseur et de la pression de gaz d'échappement en amont de la partie détente du turbocompresseur. De préférence, la pression de gaz d'échappement en amont de la partie détente du turbocompresseur est défini par :
p3 = p4 x cdet
Où P3 est la pression en amont de la partie détente du turbocompresseur, P4 est pression en aval de la partie détente du turbocompresseur, Cdet correspond à un coefficient fonction du débit ( rhTurbine) de gaz d'échappement traversant la turbine et du régime du moteur thermique.
De préférence encore, le coefficient Cdet est défini par une cartographie établissant le coefficient Cdet en fonction du débit normalisé de gaz d'échappement passant par la turbine et du régime moteur.
Dans une variante, le débit de gaz d'échappement traversant la conduite de dérivation est déterminé par une première relation :
Figure imgf000005_0001
Où :
• ™-wastegate BSV est la valeur du débit de gaz d'échappement traversant la conduite de dérivation obtenue par cette première relation,
• SWG est la section efficace du moyen de contrôle de l'ouverture du passage des gaz d'échappement dans la conduite de dérivation.
• ψ est la fonction de Barré de St Venant entre la pression des gaz d'échappement en amont de la partie détente du turbocompresseur et la pression des gaz d'échappement en aval de la partie détente du turbocompresseur.
• T3 est la température déterminée en amont de la partie détente du turbocompresseur.
De préférence, la section efficace SWG est établie au moyen d'une cartographie établissant ladite section efficace en fonction de l'ouverture du moyen contrôle du passage de gaz dans la conduite de dérivation et du régime du moteur thermique.
De préférence encore, lorsque l'écart entre la pression de gaz d'échappement en amont de la partie détente du turbocompresseur et la pression de gaz d'échappement en amont de la partie détente du turbocompresseur est inférieur à un seuil déterminé, le débit de gaz d'échappement traversant la conduite de dérivation est aussi déterminé par une seconde relation :
m .WastegateMF="LEchappement x RMF(Op, N) Où :
• ™-wastegateMF est la valeur du débit de gaz d'échappement traversant la conduite de dérivation obtenue par cette seconde relation,
• ^Echappement est le débit de gaz échappement total produit par le moteur thermique traversant la partie détente du turbocompresseur,
• RMF est la fraction du débit de gaz d'échappement total passant par la soupape de dérivation, établie à partir d'une cartographie établissant ladite fraction de gaz d'échappement en fonction de l'ouverture du moyen contrôle du passage de gaz dans la conduite de dérivation et du régime du moteur thermique.
De préférence, le seuil déterminé est compris entre 2500 Pa et 5000 Pa.
Dans une variante, le débit de gaz d'échappement traversant la conduite de dérivation retenu correspond à :
W-Wastegate =
Figure imgf000006_0001
Où : Maximum () correspond à la fonction retenant la valeur maximale des deux débits de gaz d'échappement traversant la conduite de dérivation obtenus par la première et par la seconde relation.
Dans une autre variante, le moyen de contrôle de l'ouverture du passage des gaz d'échappement dans la conduite de dérivation comprend une soupape de dérivation.
Brève description des dessins
D'autres particularités et avantages apparaîtront à la lecture de la description ci-après d'un mode particulier de réalisation, non limitatif de l'invention, faite en référence aux figures dans lesquelles :
- La figure 1 est une représentation schématique d'un moteur à combustion interne apte à mettre en œuvre le procédé de l'invention.
- La figure 2 est une représentation schématique de la partie détente d'un turbocompresseur comprenant une turbine et une conduite de dérivation.
Description détaillée La figure 1 représente schématiquement un véhicule 1 équipé d'un moteur thermique. Par exemple, le véhicule 1 est un véhicule automobile tel qu'une voiture.
Le moteur du véhicule 1 est équipé de plusieurs cylindres. Toutefois, pour simplifier l'illustration, seul un cylindre 2 de ce moteur à combustion est représenté sur la figure 1 . A l'intérieur du cylindre 2, un piston 3 est monté déplaçable en translation entre un point mort haut (PMH) et un point mort bas (PMB). Ce piston 3 entraîne en rotation une manivelle 4 d'un vilebrequin 5 par l'intermédiaire d'une bielle 6. Le vilebrequin 5 entraîne en rotation, par l'intermédiaire d'un mécanisme non représenté, les roues motrices du véhicule 2 telles que la roue 7.
Le cylindre 2 définit une chambre de combustion 8 délimitée par la partie supérieure du piston 3 et une culasse non représentée. Un conduit 9 d'admission d'air frais débouche dans la chambre 8 par l'intermédiaire d'une ouverture d'admission. Une soupape 10 d'admission est déplaçable entre une position fermée dans laquelle elle ferme de façon étanche à l'air frais l'ouverture d'admission, et une position ouverte dans laquelle l'air frais peut être admis à l'intérieur de la chambre 8 par l'intermédiaire de l'ouverture d'admission. La soupape 10 est déplacée entre sa position ouverte et sa position fermée par un actionneur 1 1 de soupapes d'admission.
Dans le représenté ici, le moteur est à injection indirecte de carburant, autrement dit un injecteur 12 de carburant est prévu dans le conduit 9 pour injecter le carburant dans l'air frais admis à l'intérieur de la chambre 8. Ainsi, le mélange air frais/carburant commence à se produire à l'intérieur du conduit d'air d'admission. Le moteur thermique peut cependant être à injection directe essence, c'est-à-dire avec l'injecteur de carburant implanté de sorte à injecter directement le carburant dans la chambre de combustion.
Le conduit 9 est fluidiquement raccordé à un compresseur 13 d'un turbocompresseur 14 propre à comprimer l'air frais admis à l'intérieur de la chambre 8. L'air frais ainsi comprimé est appelé air frais suralimenté.
Une bougie 15 propre à allumer le mélange air frais/carburant débouche dans la chambre 8. Cette bougie est commandée par un dispositif d'allumage 16.
Un conduit 17 d'échappement débouche également à l'intérieur de la chambre 8 par l'intermédiaire d'une ouverture d'échappement. Cette ouverture d'échappement est obturable par une soupape 18 d'échappement déplaçable entre une position fermée, et une position ouverte dans laquelle les gaz brûlés contenus à l'intérieur de la chambre 8 peuvent s'échapper par l'intermédiaire du conduit 17. Cette soupape 18 est déplacée entre ces positions ouverte et fermée par un actionneur de soupapes 19.
Les actionneurs de soupapes 1 1 et 19 peuvent être des actionneurs de soupapes mécaniques.
L'extrémité du conduit 17 opposée à son ouverture qui débouche dans la chambre 18 est fluidiquement raccordée à une turbine 20 du turbocompresseur 13. Cette turbine 20 permet notamment de détendre les gaz d'échappement avant de les envoyer dans une ligne d'échappement 21 . Afin de limiter la pression, le turbocompresseur est équipé d'une conduite 22 de dérivation des gaz d'échappement de la turbine 20. Cette conduite 22 de dérivation est elle-même équipée d'un moyen 23 de contrôle de l'ouverture du passage des gaz d'échappement dans la conduite 22 de dérivation. Le moyen de contrôle 23 peut être par exemple une soupape de dérivation (encore désignée par le terme anglais « wastegate »). La turbine 20, la conduite 22 de dérivation et son moyen 23 de contrôle de l'ouverture du passage des gaz d'échappement dans la conduite 22 forment un ensemble que nous désignerons comme la partie dite détente du turbocompresseur 14.
Les différents équipements du moteur susceptibles d'être commandés tels que les actionneurs 1 1 , 19, le dispositif d'allumage 16 ou encore l'injecteur 12 de carburant sont raccordés à une unité 24 de commande du moteur ou calculateur. Pour simplifier la figure 1 , les connexions entre cette unité 24 et les différents équipements commandés n'ont pas été représentées.
Le calculateur 24 est également raccordé à de nombreux capteurs tels que par exemple un capteur 25 de la position angulaire DV du vilebrequin 5 et un capteur 26 du régime moteur N. On définit ici le régime moteur N comme étant par exemple le nombre de tours par minute effectués par l'arbre d'entraînement du moteur. Le calculateur 24 comprend les moyens d'acquisition et de traitement requis pour mettre en œuvre le procédé de l'invention. Le calculateur 24 comprend notamment les cartographies évoquées dans la suite de ce mémoire.
La présente invention concerne un procédé de détermination du débit de gaz d'échappement produits par le moteur thermique traversant la turbine 20 et de détermination de la pression en amont de la partie détente du turbocompresseur 14. Le procédé de l'invention est maintenant exposé
En relation avec la figure 2 présentant la répartition des débits de gaz d'échappement entre la turbine 20 la conduite de dérivation 22, le débit de gaz d'échappement, rhTurbine , passant par la turbine 20, que l'on cherche à estimer, s'exprime de la façon suivante :
^Turbine ^Echappement ^ Wastegate
ou :
rhTurbine , est le débit de gaz échappement passant par la turbine,
m Echappement , est le débit de gaz échappement total produit par le moteur thermique traversant la partie détente du turbocompresseur,
mwastegate > est 'e débit de gaz échappement passant par la conduite 22 de dérivation.
La pression des gaz échappement en amont de la partie détente du turbocompresseur 14 s'exprime de la façon suivante :
P3 = P4 x Cdet
Où :
P3 est la pression moyenne des gaz d'échappement en entrée de la partie détente du turbocompresseur 14. En pratique cette pression est celle vue dans le collecteur d'échappement,
P4 est la pression moyenne des gaz d'échappement en sortie de la partie détente du turbocompresseur 14. En pratique cette pression P4 peut être mesurée ou estimée,
Cdet est un coefficient qui est fonction du débit turbine, rhTurbine , et du régime moteur, N.
Le débit rïiWastegate de gaz échappement passant par la conduite 22 de dérivation peut s'écrire avec une première relation basée sur une équation de Barré de St Venant :
™-Wastegate_BSV ~ $WG x Ψ X '
Figure imgf000009_0001
Où :
•SWG est la section efficace de la soupape 23 de dérivation. De préférence, SWG se présente sous la forme d'une cartographie établissant la section efficace, SWG, en fonction de l'ouverture Op de la soupape de dérivation, qui peut être mesurée ou estimée, et du régime moteur N. • φ est la fonction de Barré de St Venant entre la pression P3 des gaz d'échappement en amont du turbocompresseur 14 et la pression P4 moyenne des gaz d'échappement en aval du turbocompresseur 14.
• T3 est la température moyenne en amont de la partie détente du turbocompresseur 14. En pratique, cette température T3 peut être mesurée ou estimée.
On rappelle ici comment est définie la fonction de Barre Saint Venant entre deux
Figure imgf000010_0001
pressions quelconque Pi et P2:
Figure imgf000010_0002
Où γ est le rapport de la capacité calorifique à pression constante sur la capacité calorifique à volume constant. Classiquement, on considère γ constant et égal à 1 ,44.
Cependant, pour des points de fonctionnement où les pressions P3 et P4 ont des valeurs trop proches pour utiliser la fonction de Barre Saint Venant, on utilisera avantageusement cette seconde relation : r^iWastegateMF=r'lEchappement x RMF (OP, N)
Où :
RMF est la fraction du débit de gaz d'échappement total passant par la soupape 23 de dérivation. De préférence, cette fraction RMF est établie à partir d'une cartographie fonction de l'ouverture Op, qui peut être mesurée ou estimée, de la soupape 23 de dérivation et du régime moteur N.
De préférence, cette seconde relation est retenue pour aussi déterminer le débit de gaz échappement passant par la conduite 22 de dérivation lorsque l'écart entre la pression P3 de gaz d'échappement en amont de la partie détente du turbocompresseur 14 et la pression P4 de gaz d'échappement en amont de la partie détente du turbocompresseur 14 est inférieur à un seuil ΔΡ déterminé. En pratique, ce seuil ΔΡ est compris entre 2500 Pa et 5000 Pa.
Le débit rïiWastegate de gaz d'échappement dans le conduit 22 de dérivation retenu est alors le maximum des deux débits obtenus, soit :
^Wastegate ~ Maximum(jhWastegateBSV ; l LwastegateMF)
Les deux équations sont donc alors calculées en permanence. L'utilisation de la fonction Maximum() permet d'éviter une discontinuité dans le calcul du débit rhWast ate .
On fera le paramétrage des cartographies SWG et RMF afin de s'assurer que l'équation de Barré de St Venant ne soit pas utilisée à forte ouverture de la soupape 23 de dérivation et faible régime moteur, car dans cette situation on a : P3 = P4.
Afin de déterminer la pression moyenne, P3, des gaz d'échappement en entrée du turbocompresseur 14, il est nécessaire d'effectuer une normalisation du débit de gaz d'échappement passant par la turbine 20 selon les conditions de pression et de température extérieures au turbocompresseur 14. Le débit normalisé, mTurbineN0RM , de gaz d'échappement passant par la turbine 20 s'écrit :
— - j3
mTurbineN0RM ~ mTurbine x , x \ Tf
"Atmo Λ Ό
Où :
• PRef est la pression atmosphérique de référence (généralement 1013hPa)
• ΡΜΏΙΟ est la pression atmosphérique courante, qui peut être mesurée ou estimée,
• T3 est la température moyenne en amont de la partie détente du turbocompresseur 14. En pratique, cette température est celle vue dans le collecteur d'échappement.
• T0 est la température de référence (273.15K)
A partir de ce débit normalisé, mTurbineN0RM , on peut écrire la pression moyenne, P3, en amont de la partie détente du turbocompresseur 14 :
P3 = P4 x Rp(mTurbineN0RM , N) Soit Cdet = Rp( hTurbineN0RM , Ν) et où Rp est une cartographie fonction du débit normalisé ™-TurbineN0RM de gaz d'échappement passant par la turbine 20 et du régime moteur N.
On aboutit alors à un système à deux équations et deux inconnus, P3, et rhTurbine :
Echappement X RMF(Op, N)
Figure imgf000012_0001
La résolution de ce système s'effectue par itération et converge vers une solution unique. Avantageusement, on commence par calculer le débit de gaz d'échappement, mTurbine, passant par la turbine 20 à partir d'une première valeur imposée de P3.
La résolution de ce système permet finalement de déterminer la valeur de la pression P3 moyenne en amont de la partie détente du turbocompresseur 14 et la valeur du débit de gaz d'échappement, mTurbine , passant par la turbine 20.
Le procédé de l'invention convient encore pour un moteur thermique pouvant comprendre les caractéristiques suivantes :
Le moteur thermique peut comprendre ou non un déphaseur d'arbre à cames à l'admission,
Le moteur thermique peut comprendre ou non un déphaseur d'arbre à cames à l'échappement. On entend par déphaseur un dispositif qui permet un décalage angulaire dans le cycle moteur de la loi de levée qui elle reste invariable.
Le moteur thermique peut être à injection directe ou indirecte de carburant,
Le moteur thermique peut comprendre un circuit de recirculation des gaz brûlés de l'échappement vers l'admission, communément désigné circuit EGR,
L'invention a pour avantage de pouvoir estimer avec précision le débit de gaz d'échappement réellement par la turbine et l'évolution de la pression des gaz d'échappement dans le collecteur échappement et donc d'avoir des données fiables pour le fonctionnement du contrôle moteur.

Claims

Revendications
1 . Procédé de détermination du débit ( rhTurbine ) de gaz d'échappement produits par un moteur thermique traversant la turbine (20) de la partie détente d'un turbocompresseur (14) et de détermination de la pression (P3) de gaz d'échappement en amont de la partie détente du turbocompresseur (14), ladite partie détente étant formée de la turbine (20) et d'une conduite (22) de dérivation de gaz d'échappement équipée d'un moyen (23) de contrôle de l'ouverture du passage des gaz d'échappement dans la conduite (22), procédé dans lequel :
On détermine la pression (P4) en aval de la partie détente du turbocompresseur,
On détermine le débit ( rhEchapp8ment ) de gaz d'échappement total produit par le moteur thermique,
On détermine l'ouverture (Op) du moyen (23) de contrôle de l'ouverture,
caractérisé en ce que le procédé comprend une étape de détermination du débit ( rhTurbine) de gaz d'échappement traversant la turbine (20) et de la pression (P3) de gaz d'échappement en amont de la partie détente du turbocompresseur par résolution d'un système d'équations comprenant :
-une première expression dans laquelle la pression (P3) de gaz d'échappement en amont de la partie détente du turbocompresseur est exprimée à partir de la pression (P4) en aval de la partie détente du turbocompresseur et du débit ( ri"iTurbine ) de gaz d'échappement traversant la turbine (20),
-une seconde expression dans laquelle le débit ( rhTurbine ) de gaz d'échappement traversant la turbine (20) est exprimée à partir de la différence du débit ( rhEchapp8ment ) de gaz d'échappement total produit par le moteur thermique et d'un débit ( r Wast8gat8 ) de gaz d'échappement traversant la conduite (22) de dérivation défini en fonction de l'ouverture (Op) du moyen de contrôle, de la pression (P4) en aval de la partie détente du turbocompresseur (14) et de la pression (P3) de gaz d'échappement en amont de la partie détente du turbocompresseur.
2. Procédé selon la revendication 1 , caractérisé en ce que la pression (P3) de gaz d'échappement en amont de la partie détente du turbocompresseur (14) est défini par :
p3 = p4 x cdet
Où Cdet correspond à un coefficient fonction du débit ( ri"iTurbine ) de gaz d'échappement traversant la turbine (20) et du régime du moteur thermique.
3. Procédé selon la revendication 2, caractérisé en ce que le coefficient Cdet est défini une cartographie établissant le coefficient Cdet en fonction du débit normalisé
Figure imgf000015_0001
) de gaz d'échappement passant par la turbine (20) et du régime moteur.
4. Procédé selon l'une quelconque des revendications précédentes, caractérisé en ce que le débit de gaz d'échappement traversant la conduite (22) de dérivation est déterminé par une première relation :
Figure imgf000015_0002
Où :
• ™-wastegate BSV est la valeur du débit de gaz d'échappement traversant la conduite (22) de dérivation obtenue par cette première relation,
• SWG est la section efficace du moyen (23) de contrôle de l'ouverture du passage des gaz d'échappement dans la conduite (22) de dérivation.
• ψ est la fonction de Barré de St Venant entre la pression (P3) des gaz d'échappement en amont de la partie détente du turbocompresseur (14) et la pression (P4) des gaz d'échappement en aval de la partie détente du turbocompresseur (14).
• T3 est la température déterminée en amont de la partie détente du turbocompresseur (14)
5. Procédé selon la revendication 4 caractérisé en ce que la section efficace SWG est établie au moyen d'une cartographie établissant ladite section efficace en fonction de l'ouverture (Op) du moyen (23) contrôle du passage de gaz dans la conduite (22) de dérivation et du régime du moteur thermique.
6. Procédé selon la revendication 5, caractérisé en ce que lorsque l'écart entre la pression (P3) de gaz d'échappement en amont de la partie détente du turbocompresseur (14) et la pression (P4) de gaz d'échappement en amont de la partie détente du turbocompresseur (14) est inférieur à un seuil (ΔΡ) déterminé, le débit de gaz d'échappement traversant la conduite (22) de dérivation est aussi déterminé par une seconde relation :
m, WastegateMF= '"-Echappement x RMF(Op, N)
OÙ :
• ™-wastegateMF est la valeur du débit de gaz d'échappement traversant la conduite (22) de dérivation obtenue par cette seconde relation, • RMF est la fraction du débit de gaz d'échappement total passant par la soupape de dérivation, établie à partir d'une cartographie établissant ladite fraction de gaz d'échappement en fonction de l'ouverture (Op) du moyen (23) contrôle du passage de gaz dans la conduite (22) de dérivation et du régime du moteur thermique.
7. Procédé selon la revendication 6, caractérisé en ce que le seuil (ΔΡ) déterminé est compris entre 2500 Pa et 5000 Pa.
8. Procédé selon la revendication 6 ou la revendication 7, caractérisé en ce que le débit de gaz d'échappement traversant la conduite (22) de dérivation retenu correspond à :
W-Wastegate =
Figure imgf000016_0001
Où : Maximum () correspond à la fonction retenant la valeur maximale des deux débits de gaz d'échappement traversant la conduite (22) de dérivation obtenus par la première et par la seconde relation.
9. Procédé selon l'une quelconque des revendications précédentes dans lequel le moyen (23) de contrôle de l'ouverture du passage des gaz d'échappement dans la conduite (22) de dérivation comprend une soupape de dérivation.
PCT/FR2014/050165 2013-02-18 2014-01-30 Procede de determination de la pression de gaz d'echappement en amont du turbocompresseur et du debit traversant sa turbine WO2014125185A1 (fr)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201480009382.2A CN105074177B (zh) 2013-02-18 2014-01-30 确定涡轮增压器的废气上游压力和流经所述涡轮增压器中涡轮机的流量的方法
EP14705847.3A EP2956651B1 (fr) 2013-02-18 2014-01-30 Procede de determination de la pression de gaz d'echappement en amont du turbocompresseur et du debit traversant sa turbine

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1351374A FR3002283B1 (fr) 2013-02-18 2013-02-18 Procede de determination de la pression de gaz d'echappement en amont du turbocompresseur et du debit traversant sa turbine
FR1351374 2013-02-18

Publications (1)

Publication Number Publication Date
WO2014125185A1 true WO2014125185A1 (fr) 2014-08-21

Family

ID=48225023

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2014/050165 WO2014125185A1 (fr) 2013-02-18 2014-01-30 Procede de determination de la pression de gaz d'echappement en amont du turbocompresseur et du debit traversant sa turbine

Country Status (4)

Country Link
EP (1) EP2956651B1 (fr)
CN (1) CN105074177B (fr)
FR (1) FR3002283B1 (fr)
WO (1) WO2014125185A1 (fr)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019025231A1 (fr) * 2017-08-03 2019-02-07 Volkswagen Aktiengesellschaft Procédé servant à définir une pression de suralimentation de base d'un système d'acheminement de gaz d'un moteur à combustion interne et commande de moteur servant à mettre en œuvre un procédé de ce type
FR3111946A1 (fr) * 2020-06-29 2021-12-31 Psa Automobiles Sa Procede de pilotage d’un moteur de vehicule equipe d’un turbocompresseur
CN114263536A (zh) * 2022-03-03 2022-04-01 潍柴动力股份有限公司 一种放气阀中放气量的确定方法及装置

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3050483B1 (fr) * 2016-04-26 2020-02-07 Save Innovations Turbine pour conduite avec limitation de vitesse
DE102017204185A1 (de) * 2017-03-07 2018-09-13 Robert Bosch Gmbh Verfahren zum Betreiben eines Abgasturboladers
CN114320578B (zh) * 2022-03-14 2022-07-15 潍柴动力股份有限公司 分体式旁通系统及其控制方法、涡轮增压器、发动机

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10328056A1 (de) * 2003-03-20 2004-09-30 Robert Bosch Gmbh Verfahren und Vorrichtung zum Betrieb einer Brennkraftmaschine mit einem Abgasturbolader
FR2853693A1 (fr) * 2003-04-09 2004-10-15 Renault Sa Procede d'estimation de la pression des gaz en amont d'une turbine de moteur a combustion interne suralimente et dispositif de commande d'un tel moteur
DE102004051837A1 (de) * 2004-10-25 2006-05-04 Siemens Ag Verfahren und Vorrichtung zum Steuern und zum Diagnostizieren eines Abgasturboladers
FR2921114A1 (fr) * 2007-09-13 2009-03-20 Peugeot Citroen Automobiles Sa Methode de determination d'une pression en entree d'une turbine de turbocompresseur equipant un moteur thermique
US20090094009A1 (en) * 2007-10-04 2009-04-09 Martin Muller System and method for modeling of turbo-charged engines and indirect measurement of turbine and waste-gate flow and turbine efficiency

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102008017164B3 (de) * 2008-04-03 2009-08-06 Continental Automotive Gmbh Vorrichtung zum Steuern einer Abgasturboaufladung eines Verbrennungsmotors und Verbrennungsmotor
FR2943727A1 (fr) * 2009-03-30 2010-10-01 Renault Sas Procede, pour un turbocompresseur de suralimemntation, de determination d'une consigne de position d'un actionneur de by-pass.

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10328056A1 (de) * 2003-03-20 2004-09-30 Robert Bosch Gmbh Verfahren und Vorrichtung zum Betrieb einer Brennkraftmaschine mit einem Abgasturbolader
FR2853693A1 (fr) * 2003-04-09 2004-10-15 Renault Sa Procede d'estimation de la pression des gaz en amont d'une turbine de moteur a combustion interne suralimente et dispositif de commande d'un tel moteur
DE102004051837A1 (de) * 2004-10-25 2006-05-04 Siemens Ag Verfahren und Vorrichtung zum Steuern und zum Diagnostizieren eines Abgasturboladers
FR2921114A1 (fr) * 2007-09-13 2009-03-20 Peugeot Citroen Automobiles Sa Methode de determination d'une pression en entree d'une turbine de turbocompresseur equipant un moteur thermique
US20090094009A1 (en) * 2007-10-04 2009-04-09 Martin Muller System and method for modeling of turbo-charged engines and indirect measurement of turbine and waste-gate flow and turbine efficiency

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019025231A1 (fr) * 2017-08-03 2019-02-07 Volkswagen Aktiengesellschaft Procédé servant à définir une pression de suralimentation de base d'un système d'acheminement de gaz d'un moteur à combustion interne et commande de moteur servant à mettre en œuvre un procédé de ce type
KR20200020929A (ko) * 2017-08-03 2020-02-26 폭스바겐 악티엔 게젤샤프트 내연 기관의 가스 안내 시스템의 기본 부스트 압력을 결정하기 위한 방법 및 이와 같은 방법을 실행하기 위한 엔진 제어부
KR102223103B1 (ko) 2017-08-03 2021-03-05 폭스바겐 악티엔 게젤샤프트 내연 기관의 가스 안내 시스템의 기본 부스트 압력을 결정하기 위한 방법 및 이와 같은 방법을 실행하기 위한 엔진 제어부
US11098640B2 (en) 2017-08-03 2021-08-24 Volkswagen Aktiengesellschaft Method for determining a basic boost pressure of a gas conducting system of an internal combustion engine, and engine controller for carrying out a method of this type
FR3111946A1 (fr) * 2020-06-29 2021-12-31 Psa Automobiles Sa Procede de pilotage d’un moteur de vehicule equipe d’un turbocompresseur
CN114263536A (zh) * 2022-03-03 2022-04-01 潍柴动力股份有限公司 一种放气阀中放气量的确定方法及装置
CN114263536B (zh) * 2022-03-03 2022-07-19 潍柴动力股份有限公司 一种放气阀中放气量的确定方法及装置

Also Published As

Publication number Publication date
EP2956651A1 (fr) 2015-12-23
CN105074177A (zh) 2015-11-18
CN105074177B (zh) 2019-05-07
FR3002283B1 (fr) 2015-02-27
EP2956651B1 (fr) 2022-11-16
FR3002283A1 (fr) 2014-08-22

Similar Documents

Publication Publication Date Title
EP2956651B1 (fr) Procede de determination de la pression de gaz d'echappement en amont du turbocompresseur et du debit traversant sa turbine
EP2925987A1 (fr) Procédé de commande d'un moteur thermique équipé d'une double suralimentation
FR2886345A1 (fr) Methode d'estimation par un filtre non-lineaire adaptatif de la richesse dans un cylindre d'un moteur a combustion
EP1632668A2 (fr) Procédé de controle d'un moteur à combustion interne à injection directe de carburant et moteur utilisant un tel procédé
EP2399015B1 (fr) Procede d'estimation de remplissage total d'une chambre de combustion d'un moteur
EP2361349A1 (fr) Procede d'estimation dynamique du debit d'air frais alimentant un moteur avec circuits egr haute et basse pression
FR2930597A1 (fr) Procede de commande d'un moteur
EP1920144A2 (fr) Dispositif pour la detection en temps reel du commencement de la phase de combustion et procede correspondant
WO2007060349A1 (fr) Procede d'estimation de la masse des gaz enfermee pendant chaque cycle de fonctionnement dans la chambre de combustion d'un cylindre d'un moteur a combustion interne
FR2835281A1 (fr) Procede d'estimation de la masse d'air admise dans une chambre de combustion d'un moteur, et vehicule de mise en oeuvre
EP2430298A1 (fr) Estimation de la concentration en oxydes d ' azote d ' un moteur a combustion interne
FR2903147A1 (fr) Procede de regulation de la pression de suralimentation dans un moteur de vehicule
WO2008084169A2 (fr) Procede d'estimation de la pression des gaz d'echappement en amont d'une turbine de turbocompresseur
FR2837923A1 (fr) Procede et calculateur pour determiner un reglage de bon fonctionnement d'un moteur a combustion interne
EP2655838B1 (fr) Systeme et procede de commande d'un moteur a combustion interne pour vehicule automobile en fonctionnement transitoire
FR2923538A3 (fr) Systeme et procede d'estimation de la pression en amont d'une turbine de turbocompresseur et moteur thermique associ associe
WO2014095052A1 (fr) Procédé de détermination du débit d'air recycle et de la quantité d'oxygène disponible a l'entrée d'un cylindre d'un moteur a combustion interne
FR3082887A1 (fr) Procede de determination d’une consigne de puissance d’un compresseur de moteur a combustion interne
EP2751416A1 (fr) Système et procédé de commande d'un moteur a combustion interne d'un véhicule automobile avec des circuits de recirculation de gaz d'échappement haute et basse pression en fonctionnement transitoire
EP4222363A1 (fr) Procede de determination de la masse de gaz aspire dans un cylindre avec prise en compte des conditions reelles d'utilisation
WO2023083681A1 (fr) Procédé d'estimation à basse fréquence d'un débit de gaz d'échappement recyclés à l'admission d'un moteur à combustion interne
FR3101672A1 (fr) Système et procédé de détermination d’un modèle de remplissage d’air dans un cylindre d’un moteur à combustion interne d’un véhicule automobile
EP4015808A1 (fr) Système et procédé de commande d'un moteur à combustion interne basée sur le rendement de remplissage
FR3111946A1 (fr) Procede de pilotage d’un moteur de vehicule equipe d’un turbocompresseur
FR2931892A1 (fr) Procede d'estimation du debit de recirculation des gaz d'echappement sur un moteur bi-plenum avec volet de turbulence

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480009382.2

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14705847

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2014705847

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE