WO2014123136A1 - Imaging optical system, imaging optical device, and digital instrument - Google Patents

Imaging optical system, imaging optical device, and digital instrument Download PDF

Info

Publication number
WO2014123136A1
WO2014123136A1 PCT/JP2014/052627 JP2014052627W WO2014123136A1 WO 2014123136 A1 WO2014123136 A1 WO 2014123136A1 JP 2014052627 W JP2014052627 W JP 2014052627W WO 2014123136 A1 WO2014123136 A1 WO 2014123136A1
Authority
WO
WIPO (PCT)
Prior art keywords
lens
optical system
image
photographing optical
object side
Prior art date
Application number
PCT/JP2014/052627
Other languages
French (fr)
Japanese (ja)
Inventor
誠 神
Original Assignee
コニカミノルタ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタ株式会社 filed Critical コニカミノルタ株式会社
Priority to JP2014560777A priority Critical patent/JP6191628B2/en
Priority to CN201480007976.XA priority patent/CN105008977B/en
Publication of WO2014123136A1 publication Critical patent/WO2014123136A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/001Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras
    • G02B13/0015Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design
    • G02B13/002Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface
    • G02B13/004Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface having four lenses
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/06Panoramic objectives; So-called "sky lenses" including panoramic objectives having reflecting surfaces
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/18Optical objectives specially designed for the purposes specified below with lenses having one or more non-spherical faces, e.g. for reducing geometrical aberration
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B9/00Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or -
    • G02B9/34Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or - having four components only

Definitions

  • the present invention relates to an imaging optical system, an imaging optical device, and a digital device.
  • an imaging optical system compatible with an ultra-wide angle of 160 ° or more
  • an imaging optical device that captures an image obtained by the imaging optical system with an imaging device, an in-vehicle camera, a surveillance camera, and the like equipped with the imaging optical device
  • the present invention relates to a digital device with an image input function.
  • the imaging lens described in Patent Document 1 includes a lens surface having the same curvature on the object side surface and the image side surface of the first lens, and the first lens is a spherical lens having a positive power. Therefore, there is no effect of bending a light beam incident at a wide angle at the peripheral portion. As a result, since the light beam incident on the optical system is bent only by the second lens, it is difficult to achieve a super wide angle exceeding 160 degrees of view.
  • the present invention has been made in view of such a situation, and an object of the present invention is to provide a photographing optical system that is compact and capable of widening an angle of view of 160 ° or more while correcting various aberrations satisfactorily. It is an object to provide an imaging optical device and a digital device provided.
  • a photographic optical system includes, in order from the object side to the image plane side, a first lens having a meniscus shape convex to the object side and having a positive power;
  • the first lens is a double-sided aspheric lens, the object side surface of the first lens is an aspheric surface whose positive power decreases as it goes to the periphery, and the image side surface of the first lens becomes negative as it goes to the periphery.
  • the aspherical surface has a shape that increases the power of the lens, and satisfies the following conditional expression (1). 20 ⁇ f1 / f ⁇ 700 (1) However, f1: focal length of the first lens, f: focal length of the entire system, It is.
  • the photographing optical system of the second invention is characterized in that, in the first invention, the following conditional expressions (2) to (4) are satisfied. -1.5 ⁇ f2 / f ⁇ -0.9 (2) 1 ⁇ f3 / f ⁇ 2.5 (3) 1 ⁇ f4 / f ⁇ 1.9 (4) However, f2: focal length of the second lens, f3: focal length of the third lens, f4: focal length of the fourth lens, f: focal length of the entire system, It is.
  • a photographic optical system is characterized in that, in the first or second aspect of the invention, the following conditional expression (5) is satisfied. 0.9 ⁇ BF / f ⁇ 1.6 (5) However, BF: Back focus (air equivalent length), f: focal length of the entire system, It is.
  • the second lens, the third lens, and the fourth lens are all double-sided aspheric lenses. .
  • the first lens, the second lens, the third lens, and the fourth lens are all plastic lenses.
  • the photographic optical system of a sixth invention is characterized in that, in any one of the first to fifth inventions, the second lens has a meniscus shape convex toward the object side.
  • a photographing optical system according to a seventh invention is characterized in that, in any one of the first to sixth inventions, the third lens has a biconvex shape.
  • the photographic optical system according to an eighth invention is characterized in that, in any one of the first to seventh inventions, a hard coat is formed on an object side surface of the first lens.
  • a photographic optical system is characterized in that, in any one of the first to eighth inventions, the following conditional expressions (6) to (8) are satisfied.
  • 18 ⁇ vd3 ⁇ 33 (6) 40 ⁇ vd2 ⁇ 65 (7) 40 ⁇ vd4 ⁇ 65 (8)
  • vd3 Abbe number of the third lens
  • vd2 Abbe number of the second lens
  • vd4 Abbe number of the fourth lens
  • a photographing optical system is characterized in that, in any one of the first to ninth aspects, the following conditional expression (9) is satisfied.
  • nd1 ⁇ 1.65 (9)
  • nd1 refractive index at the d-line of the first lens, It is.
  • An imaging optical system according to an eleventh invention is characterized in that, in any one of the first to tenth inventions, the fourth lens has a biconvex shape.
  • An imaging optical device is an imaging optical system according to any one of the first to eleventh aspects of the invention, an imaging element that converts an optical image formed on the imaging surface into an electrical signal,
  • the imaging optical system is provided so that an optical image of a subject is formed on the imaging surface of the imaging device.
  • the digital device according to a thirteenth aspect is characterized in that at least one of a still image photographing and a moving image photographing function of a subject is added by including the imaging optical device according to the twelfth aspect.
  • the digital device is characterized in that, in the thirteenth aspect of the invention, it is an in-vehicle camera or a surveillance camera.
  • the configuration of the present invention it is possible to realize a compact imaging optical system capable of widening an angle of view of 160 ° or more and an imaging optical apparatus including the imaging optical system while various aberrations are corrected well. it can. Then, by using the photographing optical system or the imaging optical device according to the present invention for a digital device such as an in-vehicle camera or a surveillance camera, a high-performance and ultra-wide-angle image input function can be added to the digital device in a compact and low-cost manner. Is possible.
  • FIG. 6 is an aberration diagram of Example 1.
  • FIG. 6 is an aberration diagram of Example 2.
  • FIG. 6 is an aberration diagram of Example 3.
  • FIG. 6 is an aberration diagram of Example 4.
  • FIG. 6 is an aberration diagram of Example 5.
  • FIG. 10 is an aberration diagram of Example 6.
  • FIG. 10 is an aberration diagram of Example 7.
  • FIG. 3 is a schematic diagram illustrating a schematic configuration example of a digital device equipped with a photographing optical system.
  • a photographing optical system according to the present invention includes, in order from the object side to the image plane side, a first lens having a meniscus shape convex toward the object side and having a positive power, and a second lens having a negative power.
  • the first lens is a double-sided aspherical lens
  • the object side surface of the first lens is an aspherical surface whose positive power decreases as it goes to the periphery
  • the image side surface of the first lens goes to the periphery.
  • the aspherical surface has a shape in which the negative power increases in accordance with the above, and satisfies the following conditional expression (1). 20 ⁇ f1 / f ⁇ 700 (1)
  • f1 focal length of the first lens
  • f focal length of the entire system, It is.
  • Aspherical surfaces are arranged on both sides of the first lens, the aspherical shape of the object side surface of the first lens is set so that the positive power becomes weaker toward the periphery, and the aspherical shape of the image side surface is set to the periphery.
  • the negative power becomes stronger as it goes, it is possible to create a strong negative power in the peripheral portion even if the power on the axis of the first lens is positive. Therefore, by having a strong negative power in the periphery, it is possible to guide the light incident from an angle exceeding 160 degrees to the entrance pupil, and an ultra wide angle with a small number of 4 sheets and a total field angle exceeding 160 degrees A lens can be achieved.
  • Conditional expression (1) represents the focal length ratio of the first lens to the entire system. If the lower limit of conditional expression (1) is exceeded, the positive power of the first lens will increase, so that it will not be possible to capture light with an angle of view of 160 ° or more, and it will be difficult to achieve super wide angle. If the upper limit of conditional expression (1) is exceeded, the chromatic aberration correction effect on the first lens, particularly on the axis, will be weak, and the aberration burden on the second and subsequent lenses will increase, making it difficult to correct aberrations satisfactorily. Therefore, by satisfying conditional expression (1), it is possible to achieve both a super wide angle of view angle of 160 ° or more and good correction of various aberrations.
  • a compact imaging optical system capable of widening an angle of view of 160 ° or more and an imaging optical device including the same are corrected while various aberrations (particularly longitudinal chromatic aberration) are corrected satisfactorily.
  • various aberrations particularly longitudinal chromatic aberration
  • conditional expression (1a) defines a more preferable condition range based on the above viewpoints, etc., among the condition ranges defined by the conditional expression (1). Therefore, the above effect can be further enhanced preferably by satisfying conditional expression (1a).
  • Conditional expression (2) defines a preferable condition range regarding the focal length ratio between the second lens and the entire system.
  • the lower limit of conditional expression (2) is exceeded, the relative power of the second lens becomes small, and the force for bending the light beam becomes small.
  • measures such as increasing the distance between the second lens and the third lens are required, which may increase the total length. Alternatively, it becomes difficult to configure the super wide angle itself. If the upper limit of conditional expression (2) is exceeded, the astigmatism and the field curvature difference will increase, making it difficult to correct with other lenses.
  • Conditional expression (3) defines a preferable condition range regarding the focal length ratio between the third lens and the entire system.
  • the upper limit of conditional expression (3) is exceeded, the relative power of the third lens becomes small, and the axial chromatic aberration generated in the second lens having negative power cannot be sufficiently corrected, and the good aberration. Correction becomes difficult. If the lower limit of conditional expression (3) is exceeded, axial chromatic aberration will be excessively corrected, and this will also make it difficult to correct aberrations satisfactorily.
  • Conditional expression (4) defines a preferable condition range regarding the focal length ratio between the fourth lens and the entire system.
  • the upper limit of conditional expression (4) is exceeded, the relative power of the fourth lens decreases, and the distance from the object side surface to the image side surface of the fourth lens increases. If the lower limit of conditional expression (4) is exceeded, axial chromatic aberration, astigmatism, etc. will increase, making it difficult to correct with other lenses.
  • Conditional expression (5) prescribes an appropriate back focus (the distance from the lens final surface to the paraxial image plane is the length in terms of air). If the lower limit of conditional expression (5) is exceeded, it will be difficult to dispose a sensor cover glass, filter, or the like between the photographing optical system and the image plane. If the upper limit of conditional expression (5) is exceeded, the back focus becomes too long relative to the focal length. In that case, it is necessary to secure the back focus by adjusting the power arrangement of the first to fourth lenses. Therefore, the power arrangement is different from that suitable for aberration correction, and it becomes difficult to perform good aberration correction.
  • the second lens, the third lens, and the fourth lens are double-sided aspheric lenses.
  • aspheric surfaces By arranging aspheric surfaces on both surfaces of the second lens, the third lens, and the fourth lens, it is possible to effectively correct astigmatism, distortion, coma, and the like.
  • the first lens, the second lens, the third lens, and the fourth lens are all preferably plastic lenses.
  • plastic resin
  • the second lens has a meniscus shape convex toward the object side.
  • the space between the first lens and the second lens can be narrowed.
  • the light passing position of the first lens can be lowered, and the effect of reducing the diameter of the first lens can be obtained.
  • the lens diameter increases, and as a result, the amount of off-axis aberrations such as distortion and lateral chromatic aberration increases. That is, by using the second lens as a meniscus lens convex toward the object side, it is possible to suppress the occurrence of off-axis aberrations such as distortion and lateral chromatic aberration.
  • the third lens has a biconvex shape.
  • correction of various aberrations for example, spherical aberration
  • the error sensitivity and aberration tend to increase due to the lens surface shape for obtaining strong power.
  • the biconvex shape is used, an increase in error sensitivity and aberration can be effectively suppressed.
  • a hard coat be formed on the object side surface of the first lens.
  • disposing a hard coat on the object side surface of the first lens is effective in improving reliability such as scratch resistance.
  • Conditional expression (6) defines a preferable condition range regarding the Abbe number of the third lens.
  • the lateral chromatic aberration generated in the first and second lenses can be corrected mainly by the third lens. If the lower limit of conditional expression (6) is exceeded, the lateral chromatic aberration generated in the first and second lenses becomes excessively corrected, and if the upper limit of conditional expression (6) is exceeded, the lateral chromatic aberration generated in the first and second lenses is Incorrect correction. Therefore, in any case, it is difficult to correct the lateral chromatic aberration.
  • Conditional expressions (7) and (8) also define a condition range for satisfactorily correcting the lateral chromatic aberration, similarly to conditional expression (6). If the upper limit of the conditional expression (7) is exceeded, the lateral chromatic aberration will be overcorrected, and if the lower limit of the conditional expression (7) is exceeded, the lateral chromatic aberration will be undercorrected, making it difficult to correct the lateral chromatic aberration in any case. If the upper limit of the conditional expression (8) is exceeded, the lateral chromatic aberration will be overcorrected, and if the lower limit of the conditional expression (8) is exceeded, the lateral chromatic aberration will be undercorrected, making it difficult to correct the lateral chromatic aberration in any case.
  • nd1 refractive index at the d-line of the first lens, It is.
  • Conditional expression (9) defines a preferable condition range regarding the refractive index of the first lens, thereby defining the reliability of the resin material. If a resin material having a refractive index exceeding the upper limit of conditional expression (9) is left in the sun for a long time, the transmittance on the single wavelength side is lowered and the image becomes yellow.
  • the fourth lens has a biconvex shape.
  • correction of various aberrations for example, spherical aberration
  • the error sensitivity and aberration tend to increase due to the lens surface shape for obtaining strong power.
  • the biconvex shape is used, an increase in error sensitivity and aberration can be effectively suppressed.
  • the photographing optical system according to the present invention is suitable for use as a photographing optical system for a digital device with an ultra-wide-angle image input function (for example, an in-vehicle camera, a surveillance camera, and a portable terminal).
  • a digital device with an ultra-wide-angle image input function for example, an in-vehicle camera, a surveillance camera, and a portable terminal.
  • the photographic optical system according to the present invention is suitable for an application in which an optical image of an object (that is, a subject image) is formed at an ultra-wide angle on an imaging surface (for example, a photoelectric conversion unit of a solid-state imaging device) of an imaging device (sensor). Is.
  • the imaging optical device is an optical device that is a main component of a camera used for still image shooting and moving image shooting of a subject.
  • an imaging optical system that forms an optical image of an object in order from the object (that is, subject) side.
  • an image sensor that converts an optical image formed by the photographing optical system into an electrical signal.
  • the photographic optical system having the above-described characteristic configuration is arranged so that the optical image of the subject is formed on the light receiving surface (that is, the imaging surface) of the imaging device, so that high performance can be achieved with a small size and low cost. It is possible to realize an imaging optical device having the above and a digital device including the same.
  • Examples of digital devices with an image input function include cameras such as surveillance cameras, security cameras, vehicle-mounted cameras (for example, back view cameras), aircraft cameras, digital cameras, video cameras, videophone cameras, and personal computers. , Mobile terminals (for example, mobile phones, smart phones (high-function mobile phones), small and portable information device terminals such as mobile computers), peripheral devices (scanners, printers, etc.), other digital devices (drive recorders, A camera built in or externally attached to a defense device or the like).
  • a digital device with an image input function such as a mobile phone with a camera can be configured.
  • FIG. 15 shows a schematic configuration example of a digital device DU in a schematic cross section.
  • the imaging optical device LU mounted on the digital device DU shown in FIG. 15 includes an imaging optical system LN (AX: optical axis) that forms an optical image (image plane) IM of an object in order from the object (namely, subject) side.
  • a parallel plate PT cover glass of the image sensor SR; corresponding to an optical low-pass filter, an optical filter such as an infrared cut filter, etc. disposed as necessary
  • a light receiving surface imaging surface
  • the imaging optical device LU When a digital device DU with an image input function is constituted by this imaging optical device LU, the imaging optical device LU is usually arranged inside the body, but when necessary to realize the camera function, a form as necessary is adopted. Is possible.
  • the unitized imaging optical device LU can be configured to be detachable or rotatable with respect to the main body of the digital device DU.
  • the photographing optical system LN is a four-lens single-focus lens composed of first to fourth positive and negative lenses in order from the object side, and forms an optical image IM on the light receiving surface SS of the image sensor SR.
  • the image sensor SR for example, a solid-state image sensor such as a CCD (Charge-Coupled Device) -type image sensor having a plurality of pixels, a CMOS (Complementary Metal-Oxide-Semiconductor) -type image sensor, or the like is used.
  • the photographic optical system LN is provided so that the optical image IM of the subject is formed on the light receiving surface SS which is a photoelectric conversion unit of the image sensor SR, the optical image IM formed by the photographic optical system LN is It is converted into an electrical signal by the image sensor SR.
  • the image sensor SR such as a CCD image sensor or a CMOS image sensor is used
  • a cover glass is formed as a parallel plate PT between the photographing optical system LN and the image plane IM.
  • a cover glass may not be arranged.
  • the digital device DU includes a signal processing unit 1, a control unit 2, a memory 3, an operation unit 4, a display unit 5 and the like in addition to the imaging optical device LU.
  • the signal generated by the image sensor SR is subjected to predetermined digital image processing, image compression processing, and the like in the signal processing unit 1 as necessary, and recorded as a digital video signal in the memory 3 (semiconductor memory, optical disc, etc.) In some cases, it is transmitted to other devices via a cable or converted into an infrared signal or the like (for example, a communication function of a mobile phone).
  • the control unit 2 is composed of a microcomputer, and controls functions such as a shooting function (still image shooting function, moving image shooting function, etc.), an image reproduction function, etc .; a lens moving mechanism for focusing, etc.
  • the control unit 2 controls the imaging optical device LU so as to perform at least one of still image shooting and moving image shooting of a subject.
  • the display unit 5 includes a display such as a liquid crystal monitor, and performs image display using an image signal converted by the image sensor SR or image information recorded in the memory 3.
  • the operation unit 4 is a part including operation members such as an operation button (for example, a release button) and an operation dial (for example, a shooting mode dial), and transmits information input by the operator to the control unit 2.
  • FIGS. 1, 3, 5, 7, 9, 11, and 13 show first to seventh embodiments of the photographing optical system LN in an infinitely focused state in optical sections.
  • a first lens L1 having a positive power in order from the object side, a first lens L1 having a positive power, a second lens L2 having a negative power, and a third lens having a positive power.
  • the lens L3, the stop ST, and a fourth lens L4 having a positive power are configured.
  • the first lens L1 and the second lens L2 have a convex meniscus shape on the object side
  • the third lens L3 has a convex meniscus shape or biconvex shape on the object side
  • all the lens surfaces constituting the photographing optical system LN are aspheric surfaces, and all the lenses constituting the photographing optical system LN are assumed to be plastic materials as optical materials.
  • the first lens L1 is a plastic lens
  • a cover member may be disposed on the object side of the photographing optical system LN.
  • Examples 1 to 7 (EX1 to EX7) listed here are numerical examples corresponding to the first to seventh embodiments, respectively, and are lens configuration diagrams showing the first to seventh embodiments. (FIGS. 1, 3, 5, 7, 9, 11, and 13) show the lens cross-sectional shapes and the like of the corresponding Examples 1 to 7, respectively.
  • the back focus BF represents the distance from the lens final surface to the paraxial image surface by an air conversion length
  • the lens total length TL is obtained by adding the back focus BF to the distance from the lens front surface to the lens final surface.
  • Examples 1 to 7 are aberration diagrams of Examples 1 to 7 (EX 1 to 7), where (A) is spherical aberration (mm), (B ) Shows astigmatism (mm), and (C) shows distortion (%).
  • the solid line indicates the amount of spherical aberration with respect to the d-line (wavelength 587.56 nm)
  • the two-dot chain line indicates the amount of spherical aberration with respect to the g-line (wavelength 435.84 nm)
  • the dotted line indicates the C-line (wavelength 656.28 nm).
  • the amount of spherical aberration with respect to is expressed by the amount of deviation in the optical axis AX direction from the paraxial image plane, and the vertical axis represents the F number.
  • the dotted line T represents the tangential image plane with respect to the d line
  • the solid line S represents the sagittal image plane with respect to the d line, respectively, by the amount of deviation in the optical axis AX direction from the paraxial image plane.
  • the vertical axis represents the image height Y ′ (mm).
  • the horizontal axis represents the distortion with respect to the d-line
  • the vertical axis represents the image height Y ′ (mm).
  • the aspherical surface disposed on the object side of the first lens L1 has an aspherical shape in which the positive power becomes weaker toward the periphery, and the aspherical surface disposed on the image side surface of the first lens L1 is a peripheral surface.
  • the aspherical shape is such that the negative power increases as it goes to.
  • a positive first lens L1 having a meniscus shape having a convex surface facing the object side, and a meniscus shape having a convex surface facing the object side.
  • a negative power second lens L2 a positive power third lens L3 having a meniscus shape with a convex surface facing the object side, an aperture stop ST, and a positive power fourth lens L4 having a biconvex shape.
  • All the lenses L1 to L4 are made of plastic, and all the surfaces are aspherical.
  • the aspherical surface disposed on the object side of the first lens L1 has an aspherical shape in which the positive power becomes weaker toward the periphery, and the aspherical surface disposed on the image side surface of the first lens L1 is a peripheral surface.
  • the aspherical shape is such that the negative power increases as it goes to.
  • the scratch resistance and weather resistance can be improved.
  • a water repellent coat or a hydrophilic coat may be added on the hard coat.
  • the first lens 11 made of plastic is made of a material.
  • a UV-cutting agent may be added to.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Lenses (AREA)

Abstract

This imaging optical system is a fish-eye lens that has an angle of view of 160° or greater, and that is constituted by including, in order from the object side to the image surface side: a positive-power first lens having a convex-meniscus shape on the object side; a negative-power second lens; a positive-power third lens; a lens stop; and a positive-power fourth lens. The first lens is a double-aspheric lens, wherein the object-side surface of the first lens has an aspheric shape in which the positive power is decreased toward the periphery, and the image-side surface of the first lens has an aspheric shape in which the negative power is increased toward the periphery. The imaging optical system satisfies the following conditional expression: 20<f1/f<700 (wherein f1 is the focal distance of the first lens, and f is the focal distance of the entire system).

Description

撮影光学系,撮像光学装置及びデジタル機器Imaging optical system, imaging optical device and digital equipment
 本発明は、撮影光学系,撮像光学装置及びデジタル機器に関するものである。例えば、画角160°以上の超広角に対応した撮影光学系と、その撮影光学系で得た映像を撮像素子で取り込む撮像光学装置と、その撮像光学装置を搭載した車載カメラ,監視カメラ等の画像入力機能付きデジタル機器と、に関するものである。 The present invention relates to an imaging optical system, an imaging optical device, and a digital device. For example, an imaging optical system compatible with an ultra-wide angle of 160 ° or more, an imaging optical device that captures an image obtained by the imaging optical system with an imaging device, an in-vehicle camera, a surveillance camera, and the like equipped with the imaging optical device The present invention relates to a digital device with an image input function.
 従来から、負のパワーを持つ第1レンズと、負のパワーを持つ第2レンズと、正のパワーを持つ第3レンズと、正のパワーを持つ第4レンズと、で構成された広角レンズが多数提案されている。超広角を達成するためには、最も物体側のレンズとその像面側に隣り合って配置されたレンズに強い負のパワーを持たせる必要があるが、特許文献1で提案されているように最も物体側のレンズに正のパワーを持たせれば、諸収差をより一層良好に補正することが可能である。 Conventionally, there has been a wide-angle lens composed of a first lens having negative power, a second lens having negative power, a third lens having positive power, and a fourth lens having positive power. Many have been proposed. In order to achieve an ultra-wide angle, it is necessary to give a strong negative power to the lens closest to the object side and the lens disposed adjacent to the image plane side, but as proposed in Patent Document 1 If positive power is given to the lens closest to the object side, various aberrations can be corrected more satisfactorily.
特開2010-237343号公報JP 2010-237343 A
 しかし、特許文献1に記載の撮像レンズは、第1レンズの物体側面と像側面とが同じ曲率を持つレンズ面で構成されており、第1レンズが正のパワーを持つ球面レンズとなっているため、周辺部で広角に入射してくる光線を曲げる効果が無い。結果として、第2レンズのみで光学系に入射する光線を曲げることになるため、画角160度を超える超広角を達成することは困難である。 However, the imaging lens described in Patent Document 1 includes a lens surface having the same curvature on the object side surface and the image side surface of the first lens, and the first lens is a spherical lens having a positive power. Therefore, there is no effect of bending a light beam incident at a wide angle at the peripheral portion. As a result, since the light beam incident on the optical system is bent only by the second lens, it is difficult to achieve a super wide angle exceeding 160 degrees of view.
 本発明はこのような状況に鑑みてなされたものであって、その目的は、諸収差が良好に補正されながら、コンパクトで画角160°以上の超広角化が可能な撮影光学系、それを備えた撮像光学装置及びデジタル機器を提供することにある。 The present invention has been made in view of such a situation, and an object of the present invention is to provide a photographing optical system that is compact and capable of widening an angle of view of 160 ° or more while correcting various aberrations satisfactorily. It is an object to provide an imaging optical device and a digital device provided.
 上記目的を達成するために、第1の発明の撮影光学系は、物体側から像面側へ順に、物体側に凸のメニスカス形状を有し、かつ、正のパワーを有する第1レンズと、負のパワーを有する第2レンズと、正のパワーを有する第3レンズと、絞りと、正のパワーを有する第4レンズと、から構成された、画角160°以上の魚眼レンズであって、
 前記第1レンズが両面非球面レンズであり、前記第1レンズの物体側面は周辺に行くに従い正のパワーが弱くなる形状の非球面であり、前記第1レンズの像側面は周辺に行くに従い負のパワーが強くなる形状の非球面であり、以下の条件式(1)を満足することを特徴とする。
20<f1/f<700 …(1)
 ただし、
f1:第1レンズの焦点距離、
f:全系の焦点距離、
である。
In order to achieve the above object, a photographic optical system according to a first aspect of the present invention includes, in order from the object side to the image plane side, a first lens having a meniscus shape convex to the object side and having a positive power; A fisheye lens having a field angle of 160 ° or more, comprising a second lens having a negative power, a third lens having a positive power, a diaphragm, and a fourth lens having a positive power,
The first lens is a double-sided aspheric lens, the object side surface of the first lens is an aspheric surface whose positive power decreases as it goes to the periphery, and the image side surface of the first lens becomes negative as it goes to the periphery. The aspherical surface has a shape that increases the power of the lens, and satisfies the following conditional expression (1).
20 <f1 / f <700 (1)
However,
f1: focal length of the first lens,
f: focal length of the entire system,
It is.
 第2の発明の撮影光学系は、上記第1の発明において、以下の条件式(2)~(4)を満足することを特徴とする。
-1.5<f2/f<-0.9 …(2)
1<f3/f<2.5 …(3)
1<f4/f<1.9 …(4)
 ただし、
f2:第2レンズの焦点距離、
f3:第3レンズの焦点距離、
f4:第4レンズの焦点距離、
f:全系の焦点距離、
である。
The photographing optical system of the second invention is characterized in that, in the first invention, the following conditional expressions (2) to (4) are satisfied.
-1.5 <f2 / f <-0.9 (2)
1 <f3 / f <2.5 (3)
1 <f4 / f <1.9 (4)
However,
f2: focal length of the second lens,
f3: focal length of the third lens,
f4: focal length of the fourth lens,
f: focal length of the entire system,
It is.
 第3の発明の撮影光学系は、上記第1又は第2の発明において、以下の条件式(5)を満足することを特徴とする。
0.9<BF/f<1.6 …(5)
 ただし、
BF:バックフォーカス(空気換算長)、
f:全系の焦点距離、
である。
A photographic optical system according to a third aspect of the invention is characterized in that, in the first or second aspect of the invention, the following conditional expression (5) is satisfied.
0.9 <BF / f <1.6 (5)
However,
BF: Back focus (air equivalent length),
f: focal length of the entire system,
It is.
 第4の発明の撮影光学系は、上記第1~第3のいずれか1つの発明において、前記第2レンズ,第3レンズ及び第4レンズがいずれも両面非球面レンズであることを特徴とする。 According to a fourth aspect of the present invention, in any one of the first to third inventions, the second lens, the third lens, and the fourth lens are all double-sided aspheric lenses. .
 第5の発明の撮影光学系は、上記第1~第4のいずれか1つの発明において、前記第1レンズ,第2レンズ,第3レンズ及び第4レンズがいずれもプラスチックレンズであることを特徴とする。 According to a fifth aspect of the present invention, in any one of the first to fourth inventions, the first lens, the second lens, the third lens, and the fourth lens are all plastic lenses. And
 第6の発明の撮影光学系は、上記第1~第5のいずれか1つの発明において、前記第2レンズが物体側に凸のメニスカス形状を有することを特徴とする。 The photographic optical system of a sixth invention is characterized in that, in any one of the first to fifth inventions, the second lens has a meniscus shape convex toward the object side.
 第7の発明の撮影光学系は、上記第1~第6のいずれか1つの発明において、前記第3レンズが両凸形状を有することを特徴とする。 A photographing optical system according to a seventh invention is characterized in that, in any one of the first to sixth inventions, the third lens has a biconvex shape.
 第8の発明の撮影光学系は、上記第1~第7のいずれか1つの発明において、前記第1レンズの物体側面にハードコートが形成されていることを特徴とする。 The photographic optical system according to an eighth invention is characterized in that, in any one of the first to seventh inventions, a hard coat is formed on an object side surface of the first lens.
 第9の発明の撮影光学系は、上記第1~第8のいずれか1つの発明において、以下の条件式(6)~(8)を満足することを特徴とする。
18<vd3<33 …(6)
40<vd2<65 …(7)
40<vd4<65 …(8)
 ただし、
vd3:第3レンズのアッベ数、
vd2:第2レンズのアッベ数、
vd4:第4レンズのアッベ数、
である。
A photographic optical system according to a ninth invention is characterized in that, in any one of the first to eighth inventions, the following conditional expressions (6) to (8) are satisfied.
18 <vd3 <33 (6)
40 <vd2 <65 (7)
40 <vd4 <65 (8)
However,
vd3: Abbe number of the third lens,
vd2: Abbe number of the second lens,
vd4: Abbe number of the fourth lens,
It is.
 第10の発明の撮影光学系は、上記第1~第9のいずれか1つの発明において、以下の条件式(9)を満足することを特徴とする。
nd1≦1.65 …(9)
 ただし、
nd1:第1レンズのd線における屈折率、
である。
A photographing optical system according to a tenth aspect of the present invention is characterized in that, in any one of the first to ninth aspects, the following conditional expression (9) is satisfied.
nd1 ≦ 1.65 (9)
However,
nd1: refractive index at the d-line of the first lens,
It is.
 第11の発明の撮影光学系は、上記第1~第10のいずれか1つの発明において、前記第4レンズが両凸形状を有することを特徴とする。 An imaging optical system according to an eleventh invention is characterized in that, in any one of the first to tenth inventions, the fourth lens has a biconvex shape.
 第12の発明の撮像光学装置は、上記第1~第11のいずれか1つの発明に係る撮影光学系と、撮像面上に形成された光学像を電気的な信号に変換する撮像素子と、を備え、前記撮像素子の撮像面上に被写体の光学像が形成されるように前記撮影光学系が設けられていることを特徴とする。 An imaging optical device according to a twelfth aspect of the invention is an imaging optical system according to any one of the first to eleventh aspects of the invention, an imaging element that converts an optical image formed on the imaging surface into an electrical signal, The imaging optical system is provided so that an optical image of a subject is formed on the imaging surface of the imaging device.
 第13の発明のデジタル機器は、上記第12の発明に係る撮像光学装置を備えることにより、被写体の静止画撮影,動画撮影のうちの少なくとも一方の機能が付加されたことを特徴とする。 The digital device according to a thirteenth aspect is characterized in that at least one of a still image photographing and a moving image photographing function of a subject is added by including the imaging optical device according to the twelfth aspect.
 第14の発明のデジタル機器は、上記第13の発明において、車載カメラ又は監視カメラであることを特徴とする。 The digital device according to a fourteenth aspect of the invention is characterized in that, in the thirteenth aspect of the invention, it is an in-vehicle camera or a surveillance camera.
 本発明の構成を採用することにより、諸収差が良好に補正されながら、コンパクトで画角160°以上の超広角化が可能な撮影光学系と、それを備えた撮像光学装置を実現することができる。そして、本発明に係る撮影光学系又は撮像光学装置を車載カメラ,監視カメラ等のデジタル機器に用いることによって、デジタル機器に対し高性能・超広角の画像入力機能をコンパクトかつ低コストで付加することが可能となる。 By adopting the configuration of the present invention, it is possible to realize a compact imaging optical system capable of widening an angle of view of 160 ° or more and an imaging optical apparatus including the imaging optical system while various aberrations are corrected well. it can. Then, by using the photographing optical system or the imaging optical device according to the present invention for a digital device such as an in-vehicle camera or a surveillance camera, a high-performance and ultra-wide-angle image input function can be added to the digital device in a compact and low-cost manner. Is possible.
第1の実施の形態(実施例1)のレンズ構成図。The lens block diagram of 1st Embodiment (Example 1). 実施例1の収差図。FIG. 6 is an aberration diagram of Example 1. 第2の実施の形態(実施例2)のレンズ構成図。The lens block diagram of 2nd Embodiment (Example 2). 実施例2の収差図。FIG. 6 is an aberration diagram of Example 2. 第3の実施の形態(実施例3)のレンズ構成図。The lens block diagram of 3rd Embodiment (Example 3). 実施例3の収差図。FIG. 6 is an aberration diagram of Example 3. 第4の実施の形態(実施例4)のレンズ構成図。The lens block diagram of 4th Embodiment (Example 4). 実施例4の収差図。FIG. 6 is an aberration diagram of Example 4. 第5の実施の形態(実施例5)のレンズ構成図。The lens block diagram of 5th Embodiment (Example 5). 実施例5の収差図。FIG. 6 is an aberration diagram of Example 5. 第6の実施の形態(実施例6)のレンズ構成図。The lens block diagram of 6th Embodiment (Example 6). 実施例6の収差図。FIG. 10 is an aberration diagram of Example 6. 第7の実施の形態(実施例7)のレンズ構成図。The lens block diagram of 7th Embodiment (Example 7). 実施例7の収差図。FIG. 10 is an aberration diagram of Example 7. 撮影光学系を搭載したデジタル機器の概略構成例を示す模式図。FIG. 3 is a schematic diagram illustrating a schematic configuration example of a digital device equipped with a photographing optical system.
 以下、本発明に係る撮影光学系等を説明する。本発明に係る撮影光学系は、物体側から像面側へ順に、物体側に凸のメニスカス形状を有し、かつ、正のパワーを有する第1レンズと、負のパワーを有する第2レンズと、正のパワーを有する第3レンズと、絞りと、正のパワーを有する第4レンズと、から構成された、画角160°以上の魚眼レンズである(パワー:焦点距離の逆数で定義される量)。そして、前記第1レンズが両面非球面レンズであり、前記第1レンズの物体側面は周辺に行くに従い正のパワーが弱くなる形状の非球面であり、前記第1レンズの像側面は周辺に行くに従い負のパワーが強くなる形状の非球面であり、以下の条件式(1)を満足することを特徴としている。
20<f1/f<700 …(1)
 ただし、
f1:第1レンズの焦点距離、
f:全系の焦点距離、
である。
Hereinafter, the photographing optical system according to the present invention will be described. A photographing optical system according to the present invention includes, in order from the object side to the image plane side, a first lens having a meniscus shape convex toward the object side and having a positive power, and a second lens having a negative power. , A fish-eye lens having a field angle of 160 ° or more, composed of a third lens having a positive power, a stop, and a fourth lens having a positive power (power: an amount defined by the reciprocal of the focal length) ). The first lens is a double-sided aspherical lens, the object side surface of the first lens is an aspherical surface whose positive power decreases as it goes to the periphery, and the image side surface of the first lens goes to the periphery. The aspherical surface has a shape in which the negative power increases in accordance with the above, and satisfies the following conditional expression (1).
20 <f1 / f <700 (1)
However,
f1: focal length of the first lens,
f: focal length of the entire system,
It is.
 第1レンズの両面に非球面を配置して、第1レンズの物体側面の非球面形状を周辺に行くに従い正のパワーが弱くなるように設定し、かつ、像側面の非球面形状を周辺に行くに従い負のパワーが強くなるように設定することで、第1レンズの軸上のパワーが正であっても周辺部で強い負のパワーを作り出すことが可能となる。そのため、周辺で強い負のパワーを持つことで160度を超える角度から入射した光を入射瞳に導くことが可能となり、4枚という少ない枚数で、全画角が160度を超えるような超広角レンズを達成することができる。 Aspherical surfaces are arranged on both sides of the first lens, the aspherical shape of the object side surface of the first lens is set so that the positive power becomes weaker toward the periphery, and the aspherical shape of the image side surface is set to the periphery. By setting so that the negative power becomes stronger as it goes, it is possible to create a strong negative power in the peripheral portion even if the power on the axis of the first lens is positive. Therefore, by having a strong negative power in the periphery, it is possible to guide the light incident from an angle exceeding 160 degrees to the entrance pupil, and an ultra wide angle with a small number of 4 sheets and a total field angle exceeding 160 degrees A lens can be achieved.
 通常、4枚構成の超広角レンズでは、第1レンズと第2レンズに強い負のパワーを持たせることで軸外の光線を強烈に曲げている。その場合、負の第1レンズと負の第2レンズで発生する軸上色収差を第3レンズ以降で補正する必要がある。本発明のように第1レンズに正のパワーを持たせれば、軸上色収差の発生量が減り、更に第3レンズ以降の収差補正負担を軽減する効果も得られる。また、歪曲収差と非点収差を画角毎にコントロールすることは、球面レンズでは難しいが、両面非球面を使用することによって容易に可能となる。 Usually, in a super wide-angle lens having a four-lens configuration, off-axis rays are bent strongly by giving strong negative power to the first lens and the second lens. In that case, it is necessary to correct axial chromatic aberration generated in the negative first lens and the negative second lens in the third and subsequent lenses. If the first lens is given positive power as in the present invention, the amount of axial chromatic aberration generated is reduced, and the effect of reducing the aberration correction burden after the third lens is also obtained. Also, it is difficult to control distortion and astigmatism for each angle of view with a spherical lens, but it is easily possible by using a double-sided aspheric surface.
 条件式(1)は、第1レンズの全系に対する焦点距離比を表したものである。条件式(1)の下限を越えると、第1レンズの正のパワーが大きくなるため、画角160°以上の光線を取り込むことができず超広角化を達成することが困難になる。条件式(1)の上限を越えると、第1レンズにおける特に軸上での色収差補正効果が弱くなり、第2レンズ以降での収差負担が増えて良好に収差を補正することが困難になる。したがって、条件式(1)を満たすことにより、画角160°以上の超広角化と諸収差の良好な補正とを両立させることが可能となる。 Conditional expression (1) represents the focal length ratio of the first lens to the entire system. If the lower limit of conditional expression (1) is exceeded, the positive power of the first lens will increase, so that it will not be possible to capture light with an angle of view of 160 ° or more, and it will be difficult to achieve super wide angle. If the upper limit of conditional expression (1) is exceeded, the chromatic aberration correction effect on the first lens, particularly on the axis, will be weak, and the aberration burden on the second and subsequent lenses will increase, making it difficult to correct aberrations satisfactorily. Therefore, by satisfying conditional expression (1), it is possible to achieve both a super wide angle of view angle of 160 ° or more and good correction of various aberrations.
 上記特徴的構成によると、諸収差(特に軸上色収差)が良好に補正されながら、コンパクトで画角160°以上の超広角化が可能な撮影光学系、及びそれを備えた撮像光学装置を実現することが可能である。そして、その撮影光学系又は撮像光学装置を車載カメラ,監視カメラ等のデジタル機器に用いることによって、デジタル機器に対し高性能・超広角の画像入力機能をコンパクトかつ低コストで付加することが可能となり、そのコンパクト化,高性能化,高機能化等に寄与することができる。こういった効果をバランス良く得るとともに、更に高い光学性能,小型化等を達成するための条件等を以下に説明する。 According to the above characteristic configuration, a compact imaging optical system capable of widening an angle of view of 160 ° or more and an imaging optical device including the same are corrected while various aberrations (particularly longitudinal chromatic aberration) are corrected satisfactorily. Is possible. By using the imaging optical system or imaging optical device for digital devices such as in-vehicle cameras and surveillance cameras, it is possible to add a high-performance, ultra-wide-angle image input function to digital devices in a compact and low-cost manner. It can contribute to the downsizing, higher performance, higher functionality, etc. The conditions for achieving such effects in a well-balanced manner and achieving higher optical performance, downsizing, etc. will be described below.
 以下の条件式(1a)を満足することが更に望ましい。
20<f1/f<200 …(1a)
 この条件式(1a)は、前記条件式(1)が規定している条件範囲のなかでも、前記観点等に基づいた更に好ましい条件範囲を規定している。したがって、好ましくは条件式(1a)を満たすことにより、上記効果をより一層大きくすることができる。
It is more desirable to satisfy the following conditional expression (1a).
20 <f1 / f <200 (1a)
The conditional expression (1a) defines a more preferable condition range based on the above viewpoints, etc., among the condition ranges defined by the conditional expression (1). Therefore, the above effect can be further enhanced preferably by satisfying conditional expression (1a).
 以下の条件式(2)~(4)を満足することが望ましい。
-1.5<f2/f<-0.9 …(2)
1<f3/f<2.5 …(3)
1<f4/f<1.9 …(4)
 ただし、
f2:第2レンズの焦点距離、
f3:第3レンズの焦点距離、
f4:第4レンズの焦点距離、
f:全系の焦点距離、
である。
It is desirable that the following conditional expressions (2) to (4) are satisfied.
-1.5 <f2 / f <-0.9 (2)
1 <f3 / f <2.5 (3)
1 <f4 / f <1.9 (4)
However,
f2: focal length of the second lens,
f3: focal length of the third lens,
f4: focal length of the fourth lens,
f: focal length of the entire system,
It is.
 条件式(2)は、第2レンズと全系との焦点距離比に関する好ましい条件範囲を規定している。条件式(2)の下限を越えると、第2レンズの相対的なパワーが小さくなり、光線を曲げる力が小さくなる。第3レンズを経て絞りに光線を入射させるためには、第2レンズと第3レンズとの間隔を広げる等の対策が必要となり、全長の増大を招くおそれがある。あるいは、超広角自体を構成することが難しくなる。条件式(2)の上限を越えると、非点収差と像面湾曲差が増加し、他のレンズで補正することが困難になる。 Conditional expression (2) defines a preferable condition range regarding the focal length ratio between the second lens and the entire system. When the lower limit of conditional expression (2) is exceeded, the relative power of the second lens becomes small, and the force for bending the light beam becomes small. In order to make a light beam enter the diaphragm through the third lens, measures such as increasing the distance between the second lens and the third lens are required, which may increase the total length. Alternatively, it becomes difficult to configure the super wide angle itself. If the upper limit of conditional expression (2) is exceeded, the astigmatism and the field curvature difference will increase, making it difficult to correct with other lenses.
 条件式(3)は、第3レンズと全系との焦点距離比に関する好ましい条件範囲を規定している。条件式(3)の上限を越えると、第3レンズの相対的なパワーが小さくなり、負のパワーを持つ第2レンズで発生した軸上色収差を十分に補正することができず、良好な収差補正が困難となる。条件式(3)の下限を越えると、軸上色収差の補正が過多となりこれも良好な収差補正が困難となる。 Conditional expression (3) defines a preferable condition range regarding the focal length ratio between the third lens and the entire system. When the upper limit of conditional expression (3) is exceeded, the relative power of the third lens becomes small, and the axial chromatic aberration generated in the second lens having negative power cannot be sufficiently corrected, and the good aberration. Correction becomes difficult. If the lower limit of conditional expression (3) is exceeded, axial chromatic aberration will be excessively corrected, and this will also make it difficult to correct aberrations satisfactorily.
 条件式(4)は、第4レンズと全系との焦点距離比に関する好ましい条件範囲を規定している。条件式(4)の上限を越えると、第4レンズの相対的なパワーが小さくなり、第4レンズの物体側面から像側面までの距離が増大する。条件式(4)の下限を越えると、軸上色収差,非点収差等が増加して他のレンズで補正することが困難になる。 Conditional expression (4) defines a preferable condition range regarding the focal length ratio between the fourth lens and the entire system. When the upper limit of conditional expression (4) is exceeded, the relative power of the fourth lens decreases, and the distance from the object side surface to the image side surface of the fourth lens increases. If the lower limit of conditional expression (4) is exceeded, axial chromatic aberration, astigmatism, etc. will increase, making it difficult to correct with other lenses.
 以下の条件式(5)を満足することが望ましい。
0.9<BF/f<1.6 …(5)
 ただし、
BF:バックフォーカス(空気換算長)、
f:全系の焦点距離、
である。
It is desirable to satisfy the following conditional expression (5).
0.9 <BF / f <1.6 (5)
However,
BF: Back focus (air equivalent length),
f: focal length of the entire system,
It is.
 条件式(5)は、適切なバックフォーカス(レンズ最終面から近軸像面までの距離を空気換算した長さである。)を規定するものである。条件式(5)の下限を越えると、撮影光学系と像面との間にセンサーのカバーガラス,フィルター等を配置することが困難になる。条件式(5)の上限を越えると、焦点距離に対して相対的にバックフォーカスが長くなりすぎてしまう。その場合、第1~第4レンズのパワー配置を調整することによってバックフォーカスを確保する必要がある。そのため、パワー配置が収差補正に適したものとは異なってしまい、良好な収差補正が困難になってしまう。 Conditional expression (5) prescribes an appropriate back focus (the distance from the lens final surface to the paraxial image plane is the length in terms of air). If the lower limit of conditional expression (5) is exceeded, it will be difficult to dispose a sensor cover glass, filter, or the like between the photographing optical system and the image plane. If the upper limit of conditional expression (5) is exceeded, the back focus becomes too long relative to the focal length. In that case, it is necessary to secure the back focus by adjusting the power arrangement of the first to fourth lenses. Therefore, the power arrangement is different from that suitable for aberration correction, and it becomes difficult to perform good aberration correction.
 前記第2レンズ,第3レンズ及び第4レンズがいずれも両面非球面レンズであることが望ましい。第2レンズ,第3レンズ及び第4レンズの両面に非球面を配置することにより、非点収差,歪曲収差,コマ収差等を効果的に補正することが可能になる。 It is desirable that all of the second lens, the third lens, and the fourth lens are double-sided aspheric lenses. By arranging aspheric surfaces on both surfaces of the second lens, the third lens, and the fourth lens, it is possible to effectively correct astigmatism, distortion, coma, and the like.
 前記第1レンズ,第2レンズ,第3レンズ及び第4レンズがいずれもプラスチックレンズであることが望ましい。第1レンズ,第2レンズ,第3レンズ及び第4レンズをいずれもプラスチック(樹脂)で構成することにより、レンズ面への非球面の付加を容易に行うことが可能となる。また、大量生産が可能となるため、コスト削減にも効果がある。 The first lens, the second lens, the third lens, and the fourth lens are all preferably plastic lenses. By configuring all of the first lens, the second lens, the third lens, and the fourth lens from plastic (resin), it is possible to easily add an aspherical surface to the lens surface. Moreover, since mass production is possible, it is also effective in cost reduction.
 前記第2レンズが物体側に凸のメニスカス形状を有することが望ましい。第2レンズを物体側に凸のメニスカスレンズとすることにより、第1レンズと第2レンズとの間を狭くすることができる。その結果、第1レンズの光線通過位置を低くすることができ、第1レンズの径を小さくする効果が得られる。もし光線通過位置が高くなるとレンズ径が増大し、その結果、歪曲収差,倍率色収差等の軸外収差の発生量が増大することになる。つまり、第2レンズを物体側に凸のメニスカスレンズとすることにより、歪曲収差,倍率色収差等の軸外収差の発生を抑えることができる。 It is desirable that the second lens has a meniscus shape convex toward the object side. By making the second lens a meniscus lens convex toward the object side, the space between the first lens and the second lens can be narrowed. As a result, the light passing position of the first lens can be lowered, and the effect of reducing the diameter of the first lens can be obtained. If the light beam passing position becomes high, the lens diameter increases, and as a result, the amount of off-axis aberrations such as distortion and lateral chromatic aberration increases. That is, by using the second lens as a meniscus lens convex toward the object side, it is possible to suppress the occurrence of off-axis aberrations such as distortion and lateral chromatic aberration.
 前記第3レンズが両凸形状を有することが望ましい。第3レンズを物体側及び像面側に凸面を向けた両凸レンズとすることにより、物体側面と像側面とで諸収差(例えば球面収差)の補正を分担することができる。例えばメニスカス形状にすると、強いパワーを得るためのレンズ面形状により誤差感度や収差が増大する傾向となるが、両凸形状にすれば、誤差感度や収差の増大を効果的に抑えることができる。 It is desirable that the third lens has a biconvex shape. By making the third lens a biconvex lens having convex surfaces facing the object side and the image surface side, correction of various aberrations (for example, spherical aberration) can be shared between the object side surface and the image side surface. For example, if the meniscus shape is used, the error sensitivity and aberration tend to increase due to the lens surface shape for obtaining strong power. However, if the biconvex shape is used, an increase in error sensitivity and aberration can be effectively suppressed.
 前記第1レンズの物体側面にハードコートが形成されていることが望ましい。第1レンズが樹脂で構成されている場合、第1レンズの物体側面にハードコートを配置することは、耐傷性等の信頼性の向上に効果がある。 It is desirable that a hard coat be formed on the object side surface of the first lens. When the first lens is made of resin, disposing a hard coat on the object side surface of the first lens is effective in improving reliability such as scratch resistance.
 以下の条件式(6)~(8)を満足することが望ましい。
18<vd3<33 …(6)
40<vd2<65 …(7)
40<vd4<65 …(8)
 ただし、
vd3:第3レンズのアッベ数、
vd2:第2レンズのアッベ数、
vd4:第4レンズのアッベ数、
である。
It is desirable that the following conditional expressions (6) to (8) are satisfied.
18 <vd3 <33 (6)
40 <vd2 <65 (7)
40 <vd4 <65 (8)
However,
vd3: Abbe number of the third lens,
vd2: Abbe number of the second lens,
vd4: Abbe number of the fourth lens,
It is.
 条件式(6)は、第3レンズのアッベ数に関する好ましい条件範囲を規定している。この条件式(6)を満たすことにより、第1,第2レンズで発生した倍率色収差を主に第3レンズで補正することができる。条件式(6)の下限を越えると、第1,第2レンズで発生した倍率色収差が補正過多となり、条件式(6)の上限を越えると、第1,第2レンズで発生した倍率色収差が補正不足となる。したがって、いずれの場合も良好な倍率色収差補正が困難となる。 Conditional expression (6) defines a preferable condition range regarding the Abbe number of the third lens. By satisfying the conditional expression (6), the lateral chromatic aberration generated in the first and second lenses can be corrected mainly by the third lens. If the lower limit of conditional expression (6) is exceeded, the lateral chromatic aberration generated in the first and second lenses becomes excessively corrected, and if the upper limit of conditional expression (6) is exceeded, the lateral chromatic aberration generated in the first and second lenses is Incorrect correction. Therefore, in any case, it is difficult to correct the lateral chromatic aberration.
 条件式(7),(8)も、条件式(6)と同様、倍率色収差を良好に補正するための条件範囲を規定している。条件式(7)の上限を越えると倍率色収差が補正過多となり、条件式(7)の下限を越えると倍率色収差が補正不足となり、いずれの場合も良好な倍率色収差補正が困難となる。また、条件式(8)の上限を越えると倍率色収差が補正過多となり、条件式(8)の下限を越えると倍率色収差が補正不足となり、いずれの場合も良好な倍率色収差補正が困難となる。 Conditional expressions (7) and (8) also define a condition range for satisfactorily correcting the lateral chromatic aberration, similarly to conditional expression (6). If the upper limit of the conditional expression (7) is exceeded, the lateral chromatic aberration will be overcorrected, and if the lower limit of the conditional expression (7) is exceeded, the lateral chromatic aberration will be undercorrected, making it difficult to correct the lateral chromatic aberration in any case. If the upper limit of the conditional expression (8) is exceeded, the lateral chromatic aberration will be overcorrected, and if the lower limit of the conditional expression (8) is exceeded, the lateral chromatic aberration will be undercorrected, making it difficult to correct the lateral chromatic aberration in any case.
 以下の条件式(9)を満足することが望ましい。
nd1≦1.65 …(9)
 ただし、
nd1:第1レンズのd線における屈折率、
である。
It is desirable to satisfy the following conditional expression (9).
nd1 ≦ 1.65 (9)
However,
nd1: refractive index at the d-line of the first lens,
It is.
 条件式(9)は、第1レンズの屈折率に関する好ましい条件範囲を規定しており、それにより樹脂材料の信頼性を規定している。条件式(9)の上限を越えるような屈折率を有する樹脂材料を長時間太陽下で放置すると、単波長側の透過率が低下して画像が黄色くなる。 Conditional expression (9) defines a preferable condition range regarding the refractive index of the first lens, thereby defining the reliability of the resin material. If a resin material having a refractive index exceeding the upper limit of conditional expression (9) is left in the sun for a long time, the transmittance on the single wavelength side is lowered and the image becomes yellow.
 前記第4レンズが両凸形状を有することが望ましい。第4レンズを物体側及び像面側に凸面を向けた両凸レンズとすることにより、物体側面と像側面とで諸収差(例えば球面収差)の補正を分担することができる。例えばメニスカス形状にすると、強いパワーを得るためのレンズ面形状により誤差感度や収差が増大する傾向となるが、両凸形状にすれば、誤差感度や収差の増大を効果的に抑えることができる。 It is desirable that the fourth lens has a biconvex shape. By making the fourth lens a biconvex lens having convex surfaces facing the object side and the image surface side, correction of various aberrations (for example, spherical aberration) can be shared between the object side surface and the image side surface. For example, if the meniscus shape is used, the error sensitivity and aberration tend to increase due to the lens surface shape for obtaining strong power. However, if the biconvex shape is used, an increase in error sensitivity and aberration can be effectively suppressed.
 以上の説明から分かるように、本発明に係る撮影光学系は、超広角の画像入力機能付きデジタル機器(例えば、車載カメラ,監視カメラ,携帯端末)用の撮影光学系としての使用に適している。つまり、本発明に係る撮影光学系は、撮像素子(センサー)の撮像面(例えば、固体撮像素子の光電変換部)に物体の光学像(つまり被写体像)を超広角で形成する用途に適したものである。そして、本発明に係る撮影光学系を撮像素子等と組み合わせることにより、被写体の映像を光学的に取り込んで電気的な信号として出力する撮像光学装置を構成することができる。撮像光学装置は、被写体の静止画撮影や動画撮影に用いられるカメラの主たる構成要素を成す光学装置であり、例えば、物体(すなわち被写体)側から順に、物体の光学像を形成する撮影光学系と、その撮影光学系により形成された光学像を電気的な信号に変換する撮像素子と、を備えることにより構成される。そして、撮像素子の受光面(すなわち撮像面)上に被写体の光学像が形成されるように、前述した特徴的構成を有する撮影光学系が配置されることにより、小型・低コストで高い性能を有する撮像光学装置やそれを備えたデジタル機器を実現することができる。 As can be seen from the above description, the photographing optical system according to the present invention is suitable for use as a photographing optical system for a digital device with an ultra-wide-angle image input function (for example, an in-vehicle camera, a surveillance camera, and a portable terminal). . That is, the photographic optical system according to the present invention is suitable for an application in which an optical image of an object (that is, a subject image) is formed at an ultra-wide angle on an imaging surface (for example, a photoelectric conversion unit of a solid-state imaging device) of an imaging device (sensor). Is. By combining the imaging optical system according to the present invention with an imaging device or the like, it is possible to configure an imaging optical apparatus that optically captures a subject image and outputs it as an electrical signal. The imaging optical device is an optical device that is a main component of a camera used for still image shooting and moving image shooting of a subject. For example, an imaging optical system that forms an optical image of an object in order from the object (that is, subject) side. And an image sensor that converts an optical image formed by the photographing optical system into an electrical signal. Then, the photographic optical system having the above-described characteristic configuration is arranged so that the optical image of the subject is formed on the light receiving surface (that is, the imaging surface) of the imaging device, so that high performance can be achieved with a small size and low cost. It is possible to realize an imaging optical device having the above and a digital device including the same.
 画像入力機能付きデジタル機器の例としては、監視カメラ,防犯カメラ,車載カメラ(例えばバックビューカメラ),航空機カメラ,デジタルカメラ,ビデオカメラ,テレビ電話用カメラ等のカメラが挙げられ、また、パーソナルコンピュータ,携帯端末(例えば、携帯電話,スマートフォン(高機能携帯電話),モバイルコンピュータ等の小型で携帯可能な情報機器端末),これらの周辺機器(スキャナー,プリンター等),その他のデジタル機器(ドライブレコーダ,防衛機器等)等に内蔵又は外付けされるカメラが挙げられる。これらの例から分かるように、撮像光学装置を用いることによりカメラを構成することができるだけでなく、各種機器に撮像光学装置を搭載することによりカメラ機能を付加することが可能である。例えば、カメラ付き携帯電話等の画像入力機能付きデジタル機器を構成することが可能である。 Examples of digital devices with an image input function include cameras such as surveillance cameras, security cameras, vehicle-mounted cameras (for example, back view cameras), aircraft cameras, digital cameras, video cameras, videophone cameras, and personal computers. , Mobile terminals (for example, mobile phones, smart phones (high-function mobile phones), small and portable information device terminals such as mobile computers), peripheral devices (scanners, printers, etc.), other digital devices (drive recorders, A camera built in or externally attached to a defense device or the like). As can be seen from these examples, it is possible not only to configure a camera by using an imaging optical device, but also to add a camera function by mounting the imaging optical device on various devices. For example, a digital device with an image input function such as a mobile phone with a camera can be configured.
 画像入力機能付きデジタル機器の一例として、図15にデジタル機器DUの概略構成例を模式的断面で示す。図15に示すデジタル機器DUに搭載されている撮像光学装置LUは、物体(すなわち被写体)側から順に、物体の光学像(像面)IMを形成する撮影光学系LN(AX:光軸)と、平行平板PT(撮像素子SRのカバーガラス;必要に応じて配置される光学的ローパスフィルター,赤外カットフィルター等の光学フィルター等に相当する。)と、撮影光学系LNにより受光面(撮像面)SS上に形成された光学像IMを電気的な信号に変換する撮像素子SRと、を備えている。この撮像光学装置LUで画像入力機能付きデジタル機器DUを構成する場合、通常そのボディ内部に撮像光学装置LUを配置することになるが、カメラ機能を実現する際には必要に応じた形態を採用することが可能である。例えば、ユニット化した撮像光学装置LUをデジタル機器DUの本体に対して着脱可能又は回動可能に構成することが可能である。 As an example of a digital device with an image input function, FIG. 15 shows a schematic configuration example of a digital device DU in a schematic cross section. The imaging optical device LU mounted on the digital device DU shown in FIG. 15 includes an imaging optical system LN (AX: optical axis) that forms an optical image (image plane) IM of an object in order from the object (namely, subject) side. , A parallel plate PT (cover glass of the image sensor SR; corresponding to an optical low-pass filter, an optical filter such as an infrared cut filter, etc. disposed as necessary) and a light receiving surface (imaging surface) by the photographing optical system LN. And an image sensor SR that converts the optical image IM formed on the SS into an electrical signal. When a digital device DU with an image input function is constituted by this imaging optical device LU, the imaging optical device LU is usually arranged inside the body, but when necessary to realize the camera function, a form as necessary is adopted. Is possible. For example, the unitized imaging optical device LU can be configured to be detachable or rotatable with respect to the main body of the digital device DU.
 撮影光学系LNは、物体側より順に正負正正の第1~第4レンズからなる4枚構成の単焦点レンズであり、撮像素子SRの受光面SS上に光学像IMを形成する構成になっている。撮像素子SRとしては、例えば複数の画素を有するCCD(Charge Coupled Device)型イメージセンサー,CMOS(Complementary Metal-Oxide Semiconductor)型イメージセンサー等の固体撮像素子が用いられる。撮影光学系LNは、撮像素子SRの光電変換部である受光面SS上に被写体の光学像IMが形成されるように設けられているので、撮影光学系LNによって形成された光学像IMは、撮像素子SRによって電気的な信号に変換される。なお、上記のように、CCD型イメージセンサー,CMOS型イメージセンサー等の撮像素子SRの使用を想定しているため、撮影光学系LNと像面IMとの間にはカバーガラスが平行平板PTとして配置されるが、もちろんセンサーの種類によってはカバーガラスを配置しない場合も考えられる。 The photographing optical system LN is a four-lens single-focus lens composed of first to fourth positive and negative lenses in order from the object side, and forms an optical image IM on the light receiving surface SS of the image sensor SR. ing. As the image sensor SR, for example, a solid-state image sensor such as a CCD (Charge-Coupled Device) -type image sensor having a plurality of pixels, a CMOS (Complementary Metal-Oxide-Semiconductor) -type image sensor, or the like is used. Since the photographic optical system LN is provided so that the optical image IM of the subject is formed on the light receiving surface SS which is a photoelectric conversion unit of the image sensor SR, the optical image IM formed by the photographic optical system LN is It is converted into an electrical signal by the image sensor SR. As described above, since it is assumed that the image sensor SR such as a CCD image sensor or a CMOS image sensor is used, a cover glass is formed as a parallel plate PT between the photographing optical system LN and the image plane IM. Of course, depending on the type of sensor, a cover glass may not be arranged.
 デジタル機器DUは、撮像光学装置LUの他に、信号処理部1,制御部2,メモリー3,操作部4,表示部5等を備えている。撮像素子SRで生成した信号は、信号処理部1で所定のデジタル画像処理や画像圧縮処理等が必要に応じて施され、デジタル映像信号としてメモリー3(半導体メモリー,光ディスク等)に記録されたり、場合によってはケーブルを介したり赤外線信号等に変換されたりして他の機器に伝送される(例えば携帯電話の通信機能)。制御部2はマイクロコンピュータからなっており、撮影機能(静止画撮影機能,動画撮影機能等),画像再生機能等の機能の制御;フォーカシングのためのレンズ移動機構の制御等を集中的に行う。例えば、被写体の静止画撮影,動画撮影のうちの少なくとも一方を行うように、制御部2により撮像光学装置LUに対する制御が行われる。表示部5は液晶モニター等のディスプレイを含む部分であり、撮像素子SRによって変換された画像信号あるいはメモリー3に記録されている画像情報を用いて画像表示を行う。操作部4は、操作ボタン(例えばレリーズボタン),操作ダイヤル(例えば撮影モードダイヤル)等の操作部材を含む部分であり、操作者が操作入力した情報を制御部2に伝達する。 The digital device DU includes a signal processing unit 1, a control unit 2, a memory 3, an operation unit 4, a display unit 5 and the like in addition to the imaging optical device LU. The signal generated by the image sensor SR is subjected to predetermined digital image processing, image compression processing, and the like in the signal processing unit 1 as necessary, and recorded as a digital video signal in the memory 3 (semiconductor memory, optical disc, etc.) In some cases, it is transmitted to other devices via a cable or converted into an infrared signal or the like (for example, a communication function of a mobile phone). The control unit 2 is composed of a microcomputer, and controls functions such as a shooting function (still image shooting function, moving image shooting function, etc.), an image reproduction function, etc .; a lens moving mechanism for focusing, etc. For example, the control unit 2 controls the imaging optical device LU so as to perform at least one of still image shooting and moving image shooting of a subject. The display unit 5 includes a display such as a liquid crystal monitor, and performs image display using an image signal converted by the image sensor SR or image information recorded in the memory 3. The operation unit 4 is a part including operation members such as an operation button (for example, a release button) and an operation dial (for example, a shooting mode dial), and transmits information input by the operator to the control unit 2.
 図1,図3,図5,図7,図9,図11,図13に、無限遠合焦状態にある撮影光学系LNの第1~第7の実施の形態を、光学断面でそれぞれ示す。第jレンズLj(j=1,2,3,4)は物体側からj番目に位置するレンズであり、撮影光学系LNの像側に配置されている平行平板PTは、撮像素子SRのカバーガラス等を想定したものである。 FIGS. 1, 3, 5, 7, 9, 11, and 13 show first to seventh embodiments of the photographing optical system LN in an infinitely focused state in optical sections. . The j-th lens Lj (j = 1, 2, 3, 4) is a lens located at the jth position from the object side, and the parallel plate PT disposed on the image side of the photographing optical system LN is a cover of the image sensor SR. This assumes glass.
 第1~第7の実施の形態の撮影光学系LNでは、物体側から順に、正のパワーを有する第1レンズL1と、負のパワーを有する第2レンズL2と、正のパワーを有する第3レンズL3と、絞りSTと、正のパワーを有する第4レンズL4と、から構成されている。第1レンズL1と第2レンズL2は物体側に凸のメニスカス形状を有しており、第3レンズL3は物体側に凸のメニスカス形状又は両凸形状を有しており、第4レンズL4は両凸形状を有している。 In the imaging optical systems LN of the first to seventh embodiments, in order from the object side, a first lens L1 having a positive power, a second lens L2 having a negative power, and a third lens having a positive power. The lens L3, the stop ST, and a fourth lens L4 having a positive power are configured. The first lens L1 and the second lens L2 have a convex meniscus shape on the object side, the third lens L3 has a convex meniscus shape or biconvex shape on the object side, and the fourth lens L4 It has a biconvex shape.
 また、撮影光学系LNを構成している全てのレンズ面は非球面であり、撮影光学系LNを構成している全てのレンズはプラスチック材料を光学材料として想定している。第1レンズL1がプラスチックレンズであるため、撮影光学系LNの物体側にカバー部材を配置してもよい。ただし、超広角レンズでは第1レンズL1の物体側にカバー部材を設置することが困難であるため、カバー部材を設ける代わりにハードコートを第1レンズL1の物体側面に形成することが好ましい。 Further, all the lens surfaces constituting the photographing optical system LN are aspheric surfaces, and all the lenses constituting the photographing optical system LN are assumed to be plastic materials as optical materials. Since the first lens L1 is a plastic lens, a cover member may be disposed on the object side of the photographing optical system LN. However, since it is difficult to install a cover member on the object side of the first lens L1 with an ultra-wide-angle lens, it is preferable to form a hard coat on the object side surface of the first lens L1 instead of providing a cover member.
 以下、本発明を実施した撮影光学系の構成等を、実施例のコンストラクションデータ等を挙げて更に具体的に説明する。ここで挙げる実施例1~7(EX1~7)は、前述した第1~第7の実施の形態にそれぞれ対応する数値実施例であり、第1~第7の実施の形態を表すレンズ構成図(図1,図3,図5,図7,図9,図11,図13)は、対応する実施例1~7のレンズ断面形状等をそれぞれ示している。 Hereinafter, the configuration and the like of the photographing optical system embodying the present invention will be described more specifically with reference to the construction data of the examples. Examples 1 to 7 (EX1 to EX7) listed here are numerical examples corresponding to the first to seventh embodiments, respectively, and are lens configuration diagrams showing the first to seventh embodiments. (FIGS. 1, 3, 5, 7, 9, 11, and 13) show the lens cross-sectional shapes and the like of the corresponding Examples 1 to 7, respectively.
 各実施例のコンストラクションデータでは、面データとして、左側の欄から順に、面番号,曲率半径r(mm),軸上面間隔d(mm),d線(波長587.56nm)に関する屈折率nd,d線に関するアッベ数vdを示す。面番号に*が付された面は非球面であり、その面形状は面頂点を原点とするローカルな直交座標系(x,y,z)を用いた以下の式(AS)で定義される。非球面データとして、非球面係数等を示す。なお、各実施例の非球面データにおいて表記の無い項の係数は0であり、すべてのデータに関してE-n=×10-nである。
z=(C・h2)/[1+√{1-(1+k)C2・h2}]+A4・h4+A6・h6+A8・h8+A10・h10+A12・h12 …(AS)
 ただし、
h:z軸(光軸AX)に対して垂直な方向の高さ(h2=x2+y2)、
z:高さhの位置での光軸AX方向の変位量(面頂点基準)、
C:面頂点での近軸曲率(曲率半径rの逆数)、
k:円錐係数、
A4,A6,A8,A10,A12:それぞれ4次,6次,8次,10次,12次の非球面係数、
である。
In the construction data of each embodiment, as surface data, in order from the left column, the surface number, the radius of curvature r (mm), the axial upper surface distance d (mm), and the refractive indexes nd and d regarding the d-line (wavelength 587.56 nm). The Abbe number vd for the line is shown. A surface with * in the surface number is an aspheric surface, and the surface shape is defined by the following expression (AS) using a local orthogonal coordinate system (x, y, z) with the surface vertex as the origin. . As aspheric data, an aspheric coefficient or the like is shown. It should be noted that the coefficient of the term not described in the aspherical data of each embodiment is 0, and En = × 10 −n for all data.
z = (C · h 2 ) / [1 + √ {1− (1 + k) C 2 · h 2 }] + A4 · h 4 + A6 · h 6 + A8 · h 8 + A10 · h 10 + A12 · h 12 (AS)
However,
h: height in the direction perpendicular to the z axis (optical axis AX) (h 2 = x 2 + y 2 ),
z: displacement in the direction of the optical axis AX at the position of the height h (based on the surface vertex),
C: Paraxial curvature at the surface vertex (the reciprocal of the radius of curvature r),
k: cone coefficient,
A4, A6, A8, A10, A12: 4th order, 6th order, 8th order, 10th order, and 12th order aspheric coefficients,
It is.
 表1に各実施例の条件式対応値を示し、表2に各レンズ(Lj,j=1,2,3,4)の面形状(近軸曲率に基づいた表記である。)とパワー(正又は負で表記する。)を示す。また表3に、各種データ(d線に関する値)として、全系の焦点距離(f,mm),各レンズ(Lj,j=1,2,3,4)の焦点距離(f1,f2,f3,f4;mm),レンズ全長(TL,mm),Fナンバー(FNO),バックフォーカス(BF,mm),全画角(2ω,°),最大像高(Y’,mm;撮像素子SRの撮像面SSの対角線長の半分に相当する。)を示す。なお、バックフォーカスBFは、レンズ最終面から近軸像面までの距離を空気換算長により表記しており、レンズ全長TLは、レンズ最前面からレンズ最終面までの距離にバックフォーカスBFを加えたものである。 Table 1 shows values corresponding to the conditional expressions of each example, and Table 2 shows the surface shape (notation based on paraxial curvature) and power (Lj, j = 1, 2, 3, 4) of each lens. Expressed as positive or negative.) Table 3 shows various data (values relating to the d-line) as the focal length (f, mm) of the entire system and the focal lengths (f1, f2, f3) of the lenses (Lj, j = 1, 2, 3, 4). , F4; mm), total lens length (TL, mm), F number (FNO), back focus (BF, mm), full angle of view (2ω, °), maximum image height (Y ′, mm) of the image sensor SR This corresponds to half the diagonal length of the imaging surface SS.). Note that the back focus BF represents the distance from the lens final surface to the paraxial image surface by an air conversion length, and the lens total length TL is obtained by adding the back focus BF to the distance from the lens front surface to the lens final surface. Is.
 図2,図4,図6,図8,図10,図12,図14は、実施例1~7(EX1~7)の収差図であり、(A)は球面収差(mm)、(B)は非点収差(mm)、(C)は歪曲収差(%)を示している。球面収差図(A)において、実線はd線(波長587.56nm)に対する球面収差量、二点鎖線はg線(波長435.84nm)に対する球面収差量、点線はC線(波長656.28nm)に対する球面収差量を、それぞれ近軸像面からの光軸AX方向のズレ量で表しており、縦軸はFナンバーを表している。非点収差図(B)において、点線Tはd線に対するタンジェンシャル像面、実線Sはd線に対するサジタル像面を、それぞれ近軸像面からの光軸AX方向のズレ量で表しており、縦軸は像高Y’(mm)を表している。歪曲収差図(C)において、横軸はd線に対する歪曲を表しており、縦軸は像高Y’(mm)を表している。この歪曲収差は、Y’=2f・tan(ω/2)の射影方式を基準とした場合の値とする。通常のレンズではY’=f・tanωの関係式を基準としているが、半画角ωが90度を超えるような超広角レンズでは、この式を適用することができない。 2, 4, 6, 8, 10, 12, and 14 are aberration diagrams of Examples 1 to 7 (EX 1 to 7), where (A) is spherical aberration (mm), (B ) Shows astigmatism (mm), and (C) shows distortion (%). In the spherical aberration diagram (A), the solid line indicates the amount of spherical aberration with respect to the d-line (wavelength 587.56 nm), the two-dot chain line indicates the amount of spherical aberration with respect to the g-line (wavelength 435.84 nm), and the dotted line indicates the C-line (wavelength 656.28 nm). The amount of spherical aberration with respect to is expressed by the amount of deviation in the optical axis AX direction from the paraxial image plane, and the vertical axis represents the F number. In the astigmatism diagram (B), the dotted line T represents the tangential image plane with respect to the d line, and the solid line S represents the sagittal image plane with respect to the d line, respectively, by the amount of deviation in the optical axis AX direction from the paraxial image plane. The vertical axis represents the image height Y ′ (mm). In the distortion diagram (C), the horizontal axis represents the distortion with respect to the d-line, and the vertical axis represents the image height Y ′ (mm). This distortion is a value based on the projection method of Y ′ = 2f · tan (ω / 2). A normal lens uses a relational expression of Y ′ = f · tan ω as a reference, but this formula cannot be applied to an ultra-wide angle lens in which the half angle of view ω exceeds 90 degrees.
 ここで、各実施例の概略構成(表2)を説明する。ただし、パワーについてはすべて近軸での値に基づくものとする。実施例1,2,4,5,7(図1,図3,図7,図9,図13)では、物体側より順に、物体側に凸面を向けたメニスカス形状を有する正パワーの第1レンズL1と、物体側に凸面を向けたメニスカス形状を有する負パワーの第2レンズL2と、両凸形状を有する正パワーの第3レンズL3と、開口絞りSTと、両凸形状を有する正パワーの第4レンズL4と、からなっている。すべてのレンズL1~L4がプラスチックで構成されており、また、すべての面が非球面からなっている。さらに、第1レンズL1の物体側に配置された非球面は周辺に行くに従い正パワーが弱くなるような非球面形状となっており、第1レンズL1の像側面に配置された非球面は周辺に行くに従い負パワーが強くなるような非球面形状となっている。 Here, the schematic configuration (Table 2) of each example will be described. However, all power is based on paraxial values. In Examples 1, 2, 4, 5, and 7 (FIGS. 1, 3, 7, 9, and 13), the first positive power having a meniscus shape with a convex surface facing the object side in order from the object side. Lens L1, negative power second lens L2 having a meniscus shape with a convex surface facing the object side, positive power third lens L3 having a biconvex shape, aperture stop ST, and positive power having a biconvex shape The fourth lens L4. All the lenses L1 to L4 are made of plastic, and all the surfaces are aspherical. Furthermore, the aspherical surface disposed on the object side of the first lens L1 has an aspherical shape in which the positive power becomes weaker toward the periphery, and the aspherical surface disposed on the image side surface of the first lens L1 is a peripheral surface. The aspherical shape is such that the negative power increases as it goes to.
 実施例3,6(図5,図11)では、物体側より順に、物体側に凸面を向けたメニスカス形状を有する正パワーの第1レンズL1と、物体側に凸面を向けたメニスカス形状を有する負パワーの第2レンズL2と、物体側に凸面を向けたメニスカス形状を有する正パワーの第3レンズL3と、開口絞りSTと、両凸形状を有する正パワーの第4レンズL4と、からなっている。すべてのレンズL1~L4がプラスチックで構成されており、また、すべての面が非球面からなっている。さらに、第1レンズL1の物体側に配置された非球面は周辺に行くに従い正パワーが弱くなるような非球面形状となっており、第1レンズL1の像側面に配置された非球面は周辺に行くに従い負パワーが強くなるような非球面形状となっている。 In Examples 3 and 6 (FIGS. 5 and 11), in order from the object side, a positive first lens L1 having a meniscus shape having a convex surface facing the object side, and a meniscus shape having a convex surface facing the object side. A negative power second lens L2, a positive power third lens L3 having a meniscus shape with a convex surface facing the object side, an aperture stop ST, and a positive power fourth lens L4 having a biconvex shape. ing. All the lenses L1 to L4 are made of plastic, and all the surfaces are aspherical. Furthermore, the aspherical surface disposed on the object side of the first lens L1 has an aspherical shape in which the positive power becomes weaker toward the periphery, and the aspherical surface disposed on the image side surface of the first lens L1 is a peripheral surface. The aspherical shape is such that the negative power increases as it goes to.
 プラスチックでレンズを構成した場合、硬度が低く耐擦傷性や耐候性に劣るという欠点がある。この問題を解決するための有効な方法として、現在ではプラスチック部材表面に硬化皮膜(ハードコート膜)を形成することで、プラスチックの軽量性、加工性を損なうことなく表面の硬度を高めることができる。超広角レンズでは第1レンズL1の物体側にカバー部材を設置することが困難であるため、例えば車載カメラや監視カメラに使用する場合、第1レンズL1の物体側面が外部に露出することも十分考えられる。このため、実施例1~7のいずれにおいても、第1レンズL1の物体側面にはハードコートが形成されている。第1レンズの物体側面に厚み2~15μm程度の透明なハードコート膜をディップコート、スプレーコート、スピンコートなどの手法により形成することで、耐擦傷性や耐候性を向上させることができる。なお、雨等で付着する水滴を防ぐために、撥水コート又は親水コートをハードコート上に付加してもよく、耐光性を更に向上させるために、プラスチックで構成された第1レンズl1の材質中にUVカット剤を入れてもよい。 When the lens is made of plastic, there is a drawback that the hardness is low and the scratch resistance and weather resistance are poor. As an effective method for solving this problem, it is now possible to increase the hardness of the surface without impairing the lightness and workability of the plastic by forming a cured film (hard coat film) on the surface of the plastic member. . Since it is difficult to install a cover member on the object side of the first lens L1 with an ultra-wide-angle lens, for example, when used for an in-vehicle camera or a surveillance camera, it is sufficient that the object side surface of the first lens L1 is exposed to the outside. Conceivable. For this reason, in any of Examples 1 to 7, a hard coat is formed on the object side surface of the first lens L1. By forming a transparent hard coat film having a thickness of about 2 to 15 μm on the object side surface of the first lens by a technique such as dip coating, spray coating, or spin coating, the scratch resistance and weather resistance can be improved. In order to prevent water droplets attached due to rain or the like, a water repellent coat or a hydrophilic coat may be added on the hard coat. In order to further improve the light resistance, the first lens 11 made of plastic is made of a material. A UV-cutting agent may be added to.
 実施例1~7では、CCD型イメージセンサー,CMOS型イメージセンサー等の撮像素子SRへの使用を想定しているため、第4レンズL4と結像面IMとの間にはカバーガラス(平行平板PT)が配置されているが、もちろんセンサーの種類によってはカバーガラスを配置しない場合も考えられる。 In Examples 1 to 7, since it is assumed that the image sensor SR such as a CCD image sensor or a CMOS image sensor is used, a cover glass (parallel plate) is provided between the fourth lens L4 and the imaging plane IM. PT) is arranged, but of course, there is a case where a cover glass is not arranged depending on the type of sensor.
Figure JPOXMLDOC01-appb-I000001
Figure JPOXMLDOC01-appb-I000001
Figure JPOXMLDOC01-appb-I000002
Figure JPOXMLDOC01-appb-I000002
Figure JPOXMLDOC01-appb-I000003
Figure JPOXMLDOC01-appb-I000003
Figure JPOXMLDOC01-appb-I000004
Figure JPOXMLDOC01-appb-I000004
Figure JPOXMLDOC01-appb-I000005
Figure JPOXMLDOC01-appb-I000005
Figure JPOXMLDOC01-appb-I000006
Figure JPOXMLDOC01-appb-I000006
Figure JPOXMLDOC01-appb-I000007
Figure JPOXMLDOC01-appb-I000007
Figure JPOXMLDOC01-appb-I000008
Figure JPOXMLDOC01-appb-I000008
Figure JPOXMLDOC01-appb-I000009
Figure JPOXMLDOC01-appb-I000009
Figure JPOXMLDOC01-appb-I000010
Figure JPOXMLDOC01-appb-I000010
Figure JPOXMLDOC01-appb-I000011
Figure JPOXMLDOC01-appb-I000011
Figure JPOXMLDOC01-appb-I000012
Figure JPOXMLDOC01-appb-I000012
Figure JPOXMLDOC01-appb-I000013
Figure JPOXMLDOC01-appb-I000013
Figure JPOXMLDOC01-appb-I000014
Figure JPOXMLDOC01-appb-I000014
Figure JPOXMLDOC01-appb-I000015
Figure JPOXMLDOC01-appb-I000015
Figure JPOXMLDOC01-appb-I000016
Figure JPOXMLDOC01-appb-I000016
Figure JPOXMLDOC01-appb-I000017
Figure JPOXMLDOC01-appb-I000017
Figure JPOXMLDOC01-appb-I000018
Figure JPOXMLDOC01-appb-I000018
Figure JPOXMLDOC01-appb-I000019
Figure JPOXMLDOC01-appb-I000019
Figure JPOXMLDOC01-appb-I000020
Figure JPOXMLDOC01-appb-I000020
Figure JPOXMLDOC01-appb-I000021
Figure JPOXMLDOC01-appb-I000021
Figure JPOXMLDOC01-appb-T000022
Figure JPOXMLDOC01-appb-T000022
Figure JPOXMLDOC01-appb-T000023
Figure JPOXMLDOC01-appb-T000023
Figure JPOXMLDOC01-appb-T000024
Figure JPOXMLDOC01-appb-T000024
 DU  デジタル機器
 LU  撮像光学装置
 LN  撮影光学系
 L1~L4  第1~第4レンズ
 ST  開口絞り(絞り)
 SR  撮像素子
 SS  受光面(撮像面)
 IM  像面(光学像)
 AX  光軸
 1  信号処理部
 2  制御部
 3  メモリー
 4  操作部
 5  表示部
DU Digital equipment LU Imaging optical device LN Imaging optical system L1 to L4 First to fourth lenses ST Aperture stop (aperture)
SR Image sensor SS Light-receiving surface (imaging surface)
IM image plane (optical image)
AX Optical axis 1 Signal processing unit 2 Control unit 3 Memory 4 Operation unit 5 Display unit

Claims (14)

  1.  物体側から像面側へ順に、物体側に凸のメニスカス形状を有し、かつ、正のパワーを有する第1レンズと、負のパワーを有する第2レンズと、正のパワーを有する第3レンズと、絞りと、正のパワーを有する第4レンズと、から構成された、画角160°以上の魚眼レンズであって、
     前記第1レンズが両面非球面レンズであり、前記第1レンズの物体側面は周辺に行くに従い正のパワーが弱くなる形状の非球面であり、前記第1レンズの像側面は周辺に行くに従い負のパワーが強くなる形状の非球面であり、以下の条件式(1)を満足することを特徴とする撮影光学系;
    20<f1/f<700 …(1)
     ただし、
    f1:第1レンズの焦点距離、
    f:全系の焦点距離、
    である。
    A first lens having a meniscus shape convex to the object side and having positive power, a second lens having negative power, and a third lens having positive power in order from the object side to the image plane side A fisheye lens having an angle of view of 160 ° or more, comprising a diaphragm and a fourth lens having a positive power,
    The first lens is a double-sided aspheric lens, the object side surface of the first lens is an aspheric surface whose positive power decreases as it goes to the periphery, and the image side surface of the first lens becomes negative as it goes to the periphery. A photographic optical system characterized in that the aspherical surface is shaped to increase the power of the lens and satisfies the following conditional expression (1):
    20 <f1 / f <700 (1)
    However,
    f1: focal length of the first lens,
    f: focal length of the entire system,
    It is.
  2.  以下の条件式(2)~(4)を満足することを特徴とする請求項1記載の撮影光学系;
    -1.5<f2/f<-0.9 …(2)
    1<f3/f<2.5 …(3)
    1<f4/f<1.9 …(4)
     ただし、
    f2:第2レンズの焦点距離、
    f3:第3レンズの焦点距離、
    f4:第4レンズの焦点距離、
    f:全系の焦点距離、
    である。
    The photographing optical system according to claim 1, wherein the following conditional expressions (2) to (4) are satisfied:
    -1.5 <f2 / f <-0.9 (2)
    1 <f3 / f <2.5 (3)
    1 <f4 / f <1.9 (4)
    However,
    f2: focal length of the second lens,
    f3: focal length of the third lens,
    f4: focal length of the fourth lens,
    f: focal length of the entire system,
    It is.
  3.  以下の条件式(5)を満足することを特徴とする請求項1又は2記載の撮影光学系;
    0.9<BF/f<1.6 …(5)
     ただし、
    BF:バックフォーカス(空気換算長)、
    f:全系の焦点距離、
    である。
    The photographing optical system according to claim 1, wherein the following conditional expression (5) is satisfied:
    0.9 <BF / f <1.6 (5)
    However,
    BF: Back focus (air equivalent length),
    f: focal length of the entire system,
    It is.
  4.  前記第2レンズ,第3レンズ及び第4レンズがいずれも両面非球面レンズであることを特徴とする請求項1~3のいずれか1項に記載の撮影光学系。 The photographing optical system according to any one of claims 1 to 3, wherein each of the second lens, the third lens, and the fourth lens is a double-sided aspheric lens.
  5.  前記第1レンズ,第2レンズ,第3レンズ及び第4レンズがいずれもプラスチックレンズであることを特徴とする請求項1~4のいずれか1項に記載の撮影光学系。 The photographing optical system according to any one of claims 1 to 4, wherein each of the first lens, the second lens, the third lens, and the fourth lens is a plastic lens.
  6.  前記第2レンズが物体側に凸のメニスカス形状を有することを特徴とする請求項1~5のいずれか1項に記載の撮影光学系。 The photographing optical system according to any one of claims 1 to 5, wherein the second lens has a meniscus shape convex toward the object side.
  7.  前記第3レンズが両凸形状を有することを特徴とする請求項1~6のいずれか1項に記載の撮影光学系。 The photographing optical system according to any one of claims 1 to 6, wherein the third lens has a biconvex shape.
  8.  前記第1レンズの物体側面にハードコートが形成されていることを特徴とする請求項1~7のいずれか1項に記載の撮影光学系。 The photographing optical system according to any one of claims 1 to 7, wherein a hard coat is formed on an object side surface of the first lens.
  9.  以下の条件式(6)~(8)を満足することを特徴とする請求項1~8のいずれか1項に記載の撮影光学系;
    18<vd3<33 …(6)
    40<vd2<65 …(7)
    40<vd4<65 …(8)
     ただし、
    vd3:第3レンズのアッベ数、
    vd2:第2レンズのアッベ数、
    vd4:第4レンズのアッベ数、
    である。
    9. The photographing optical system according to claim 1, wherein the following conditional expressions (6) to (8) are satisfied:
    18 <vd3 <33 (6)
    40 <vd2 <65 (7)
    40 <vd4 <65 (8)
    However,
    vd3: Abbe number of the third lens,
    vd2: Abbe number of the second lens,
    vd4: Abbe number of the fourth lens,
    It is.
  10.  以下の条件式(9)を満足することを特徴とする請求項1~9のいずれか1項に記載の撮影光学系;
    nd1≦1.65 …(9)
     ただし、
    nd1:第1レンズのd線における屈折率、
    である。
    The photographing optical system according to any one of claims 1 to 9, wherein the following conditional expression (9) is satisfied:
    nd1 ≦ 1.65 (9)
    However,
    nd1: refractive index at the d-line of the first lens,
    It is.
  11.  前記第4レンズが両凸形状を有することを特徴とする請求項1~10のいずれか1項に記載の撮影光学系。 The photographing optical system according to any one of claims 1 to 10, wherein the fourth lens has a biconvex shape.
  12.  請求項1~11のいずれか1項に記載の撮影光学系と、撮像面上に形成された光学像を電気的な信号に変換する撮像素子と、を備え、前記撮像素子の撮像面上に被写体の光学像が形成されるように前記撮影光学系が設けられていることを特徴とする撮像光学装置。 A photographing optical system according to any one of claims 1 to 11 and an image pickup device that converts an optical image formed on the image pickup surface into an electrical signal, the image pickup surface of the image pickup device being provided on the image pickup surface. An imaging optical apparatus, wherein the imaging optical system is provided so that an optical image of a subject is formed.
  13.  請求項13記載の撮像光学装置を備えることにより、被写体の静止画撮影,動画撮影のうちの少なくとも一方の機能が付加されたことを特徴とするデジタル機器。 14. A digital apparatus comprising the imaging optical device according to claim 13 to which at least one function of still image shooting and moving image shooting of a subject is added.
  14.  車載カメラ又は監視カメラであることを特徴とする請求項13記載のデジタル機器。 The digital device according to claim 13, wherein the digital device is a vehicle-mounted camera or a surveillance camera.
PCT/JP2014/052627 2013-02-08 2014-02-05 Imaging optical system, imaging optical device, and digital instrument WO2014123136A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2014560777A JP6191628B2 (en) 2013-02-08 2014-02-05 Imaging optical system, imaging optical device and digital equipment
CN201480007976.XA CN105008977B (en) 2013-02-08 2014-02-05 Imaging optical system, imaging optical device, and digital instrument

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013023233 2013-02-08
JP2013-023233 2013-02-08

Publications (1)

Publication Number Publication Date
WO2014123136A1 true WO2014123136A1 (en) 2014-08-14

Family

ID=51299728

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/052627 WO2014123136A1 (en) 2013-02-08 2014-02-05 Imaging optical system, imaging optical device, and digital instrument

Country Status (3)

Country Link
JP (1) JP6191628B2 (en)
CN (1) CN105008977B (en)
WO (1) WO2014123136A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017134358A (en) * 2016-01-29 2017-08-03 日立マクセル株式会社 Imaging lens system and imaging apparatus
JP2017134359A (en) * 2016-01-29 2017-08-03 日立マクセル株式会社 Imaging lens system and imaging apparatus
TWI603112B (en) * 2015-12-21 2017-10-21 新鉅科技股份有限公司 Optical lens system with a wide field of view
US10241299B2 (en) 2015-10-08 2019-03-26 Ability Opto-Electronics Technology Co. Ltd. Optical image capturing system
JP2020030443A (en) * 2019-11-28 2020-02-27 マクセル株式会社 Image capturing lens system and image capturing device
JP2020170205A (en) * 2020-07-22 2020-10-15 マクセル株式会社 Image capturing lens system and image capturing device

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107121762B (en) * 2017-06-30 2023-09-08 中山市众盈光学有限公司 Vehicle-mounted lens optical system
CN114911028A (en) * 2021-02-09 2022-08-16 三营超精密光电(晋城)有限公司 Optical imaging system, image capturing module and electronic device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008276185A (en) * 2007-03-30 2008-11-13 Ricoh Opt Ind Co Ltd Wide-angle lens and image capturing apparatus
JP2010107611A (en) * 2008-10-29 2010-05-13 Olympus Imaging Corp Imaging optical system and imaging apparatus using the same
JP2010237343A (en) * 2009-03-31 2010-10-21 Fujifilm Corp Imaging lens and image capturing apparatus
JP2011103009A (en) * 2005-02-21 2011-05-26 Fujifilm Corp Wide angle imaging lens and optical device

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4847150B2 (en) * 2005-02-21 2011-12-28 富士フイルム株式会社 Wide-angle imaging lens
WO2009066532A1 (en) * 2007-11-22 2009-05-28 Konica Minolta Opto, Inc. Wide angle optical system, imaging lens device, monitor camera, and digital apparatus
CN102789045B (en) * 2011-05-18 2015-04-01 亚洲光学股份有限公司 Zoom projection lens

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011103009A (en) * 2005-02-21 2011-05-26 Fujifilm Corp Wide angle imaging lens and optical device
JP2008276185A (en) * 2007-03-30 2008-11-13 Ricoh Opt Ind Co Ltd Wide-angle lens and image capturing apparatus
JP2010107611A (en) * 2008-10-29 2010-05-13 Olympus Imaging Corp Imaging optical system and imaging apparatus using the same
JP2010237343A (en) * 2009-03-31 2010-10-21 Fujifilm Corp Imaging lens and image capturing apparatus

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10241299B2 (en) 2015-10-08 2019-03-26 Ability Opto-Electronics Technology Co. Ltd. Optical image capturing system
TWI603112B (en) * 2015-12-21 2017-10-21 新鉅科技股份有限公司 Optical lens system with a wide field of view
JP2017134358A (en) * 2016-01-29 2017-08-03 日立マクセル株式会社 Imaging lens system and imaging apparatus
JP2017134359A (en) * 2016-01-29 2017-08-03 日立マクセル株式会社 Imaging lens system and imaging apparatus
JP2020030443A (en) * 2019-11-28 2020-02-27 マクセル株式会社 Image capturing lens system and image capturing device
JP2020170205A (en) * 2020-07-22 2020-10-15 マクセル株式会社 Image capturing lens system and image capturing device
JP6997265B2 (en) 2020-07-22 2022-02-04 マクセル株式会社 Imaging lens system and imaging device

Also Published As

Publication number Publication date
JP6191628B2 (en) 2017-09-06
JPWO2014123136A1 (en) 2017-02-02
CN105008977B (en) 2017-05-24
CN105008977A (en) 2015-10-28

Similar Documents

Publication Publication Date Title
JP5735712B2 (en) Imaging lens and imaging device provided with imaging lens
JP5585663B2 (en) Wide-angle lens, imaging optical device and digital equipment
JP5687390B2 (en) Imaging lens and imaging device provided with imaging lens
JP6191628B2 (en) Imaging optical system, imaging optical device and digital equipment
US9235029B2 (en) Imaging lens and imaging apparatus including the imaging lens
US20160004034A1 (en) Imaging lens and imaging apparatus provided with the same
JP5785324B2 (en) Imaging lens and imaging device provided with imaging lens
WO2014155467A1 (en) Imaging lens and imaging device provided with imaging lens
WO2013145547A1 (en) Imaging lens and imaging device provided with imaging lens
US9599791B2 (en) Imaging lens and imaging device provided with the same
US9335515B2 (en) Imaging lens and imaging device provided with the same
JP5644947B2 (en) Wide-angle lens, imaging optical device and digital equipment
US9335516B2 (en) Imaging lens and imaging device provided with the same
US9625681B2 (en) Imaging lens and imaging apparatus provided with the same
JP6001430B2 (en) Imaging lens
JP5727679B2 (en) Imaging lens and imaging device provided with imaging lens
US9256053B2 (en) Imaging lens and imaging apparatus including the imaging lens
JP5722507B2 (en) Imaging lens and imaging device provided with imaging lens
WO2014034027A1 (en) Imaging lens and imaging device provided with imaging lens
JP5946790B2 (en) Imaging lens and imaging device provided with imaging lens
WO2014103199A1 (en) Imaging lens and imaging device provided with imaging lens
JP6222116B2 (en) Imaging optical system, imaging optical device and digital equipment
JP2005316010A (en) Imaging lens
US20140293443A1 (en) Imaging lens and imaging apparatus including the imaging lens
US9207432B2 (en) Imaging lens and imaging device provided with the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14749651

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014560777

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14749651

Country of ref document: EP

Kind code of ref document: A1