WO2014123072A1 - Muscular motion detector and muscular motion detection method - Google Patents

Muscular motion detector and muscular motion detection method Download PDF

Info

Publication number
WO2014123072A1
WO2014123072A1 PCT/JP2014/052279 JP2014052279W WO2014123072A1 WO 2014123072 A1 WO2014123072 A1 WO 2014123072A1 JP 2014052279 W JP2014052279 W JP 2014052279W WO 2014123072 A1 WO2014123072 A1 WO 2014123072A1
Authority
WO
WIPO (PCT)
Prior art keywords
muscle
sensor
movement
skin surface
electrode
Prior art date
Application number
PCT/JP2014/052279
Other languages
French (fr)
Japanese (ja)
Inventor
基実 松島
幹也 松浦
活栄 高橋
和彦 淺原
友介 坂上
牧川 方昭
志麻 岡田
Original Assignee
株式会社クラレ
学校法人立命館
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社クラレ, 学校法人立命館 filed Critical 株式会社クラレ
Publication of WO2014123072A1 publication Critical patent/WO2014123072A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/45For evaluating or diagnosing the musculoskeletal system or teeth
    • A61B5/4519Muscles
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/103Detecting, measuring or recording devices for testing the shape, pattern, colour, size or movement of the body or parts thereof, for diagnostic purposes
    • A61B5/11Measuring movement of the entire body or parts thereof, e.g. head or hand tremor, mobility of a limb
    • A61B5/1107Measuring contraction of parts of the body, e.g. organ, muscle
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/68Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient
    • A61B5/6801Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient specially adapted to be attached to or worn on the body surface
    • A61B5/6813Specially adapted to be attached to a specific body part
    • A61B5/6814Head
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • A61B5/316Modalities, i.e. specific diagnostic methods
    • A61B5/389Electromyography [EMG]

Definitions

  • the present invention relates to a detector that electrically detects muscle movement and a method for detecting muscle movement using the detector.
  • a method for detecting muscle movement a method of measuring the potential (action potential) of an electric signal generated in the body accompanying muscle movement is known.
  • a muscle activity monitoring system see Patent Document 1 that detects muscular movement associated with mastication and toothbrushing by measuring action potentials and records changes over time
  • a method of detecting and monitoring muscular movement associated with swallowing (patented) Document 2) is known.
  • the action potential is measured by an electrode attached to the skin surface located near the muscle to be measured.
  • the action potential that can be measured with an electrode attached to the skin surface is very weak, and varies depending on the wetness of the skin surface, the thickness of the stratum corneum, the presence or absence of body hair, and so on, so that accurate measurement is difficult. Therefore, in order to reduce the contact resistance between the electrode and the skin surface, it is necessary to perform treatments such as shaving the hair on the skin surface or washing the skin surface with absorbent cotton soaked in alcohol, which is a burden on the subject. Also, workability is low.
  • a method for detecting muscular movement a method is known in which pressure generated with muscular movement is converted into an electrical signal using a piezoelectric film and measured.
  • a method is shown in which a piezo-electric film is attached to the subject's larynx, lower jaw, or the like to detect muscular movement associated with swallowing (see Non-Patent Document 1).
  • a method is known in which a mouthpiece to which a piezoelectric film is attached is attached to the mouth to detect muscle movement associated with a toothpaste (see Non-Patent Document 2).
  • An object of the present invention is to provide a simple muscle motion detector and a muscle motion detection method.
  • the object is to provide at least one outer surface of a plate-shaped sensor in which a polymer electrolyte membrane is sandwiched between a pair of electrode membranes made of a composition containing conductive particles and a resin. This is achieved by providing a muscular motion detector having an adhesive means.
  • the shape of the main surface of the sensor is circular or elliptical;
  • the adhesive means has an in-plane cut;
  • the polymer electrolyte membrane and the resin are composed of a polymer block (S) in which an ion conductive group is introduced into a structural unit derived from an aromatic vinyl compound, and a structural unit derived from an unsaturated aliphatic hydrocarbon compound.
  • the adhesive means is in contact with the skin surface of the animal, and the sensor elastically deforms following the movement of the skin surface to detect the movement and generate an electrical signal;
  • the electrical signal is generated when the sensor detects the movement of the skin surface due to muscle movement associated with mastication, swallowing, or toothbrushing;
  • the present invention also relates to a muscle motion detection method for measuring an electrical signal generated by elastic deformation of a sensor of the muscle motion detection tool by following the movement of the skin surface.
  • the muscle movement detector of the present invention is brought into close contact with the skin surface of an animal (preferably the skin surface of a human body) via an adhesive means, so that it does not depend on the surface state of the skin surface, and the movement of muscle (muscle movement). ) Can be detected accurately. Further, since it does not contain a fluorine-based resin like a conventional piezoelectric film, there is no problem of environmental pollution after use and it can be easily disposed of.
  • the sensor of the muscle motion detector is elastically deformed by following the movement of the skin surface, and an electric signal having a potential corresponding to the elastic deformation is measured.
  • the predetermined muscle movement can be detected.
  • FIG. 6 is a diagram showing a potential waveform obtained in Example 2.
  • FIG. 6 is a diagram for comparing potential waveforms obtained in Example 3-1 and Comparative Example 2-1. It is a figure which compares the potential waveform obtained in Example 3-2 and Comparative Example 2-2. It is a figure which compares the electric potential waveform obtained in Example 3-3 and Comparative Example 2-3. It is a figure which compares the electric potential waveform obtained in Example 3-4 and Comparative Example 2-4.
  • the muscle movement detector of the present invention has an adhesive means attached to at least one outer surface of a plate-like sensor.
  • a polymer electrolyte membrane is sandwiched between a pair of electrode membranes made of a composition containing conductive particles and a resin.
  • the muscle movement detector 10 includes a plate-like sensor 5 that is elastically deformed and converted into an electric signal in accordance with the movement of the skin surface due to muscle movement, and an adhesive means 6 attached to at least one outer surface of the sensor 5. .
  • the muscle motion detector 10 of the present invention is attached to the skin surface of the subject by the adhesive means 6, and the sensor 5 is elastically deformed along with the movement of the skin surface accompanying the muscle motion, and the electric potential of the electric potential according to the deformation amount. Generate a signal. Such an electrical signal is measured by a known measuring instrument.
  • the sensor 5 constituting the muscular motion detector 10 is a sensor that generates an electrical signal in accordance with elastic deformation.
  • the sensor 5 has a plate shape.
  • the plate shape means a suitable shape so as not to hinder the elastic deformation of the sensor and the arrangement of the adhesive means, and the ratio of thickness and (length or width) / thickness is not particularly limited, and is a film shape. Including sheet form.
  • the thickness of the sensor 5 may or may not be constant, but is preferably constant from the viewpoint of productivity, and suppresses damage to the skin due to the use of the muscle motion detector. From the viewpoint of doing so, it is preferable that the peripheral edge is thin.
  • “elastic deformation” includes all deformation due to compression, extension, bending, and the like.
  • the sensor 5 includes an electrode made of a material that can elastically deform a polymer electrolyte membrane made of a material that can be elastically deformed from the viewpoint of detecting minute muscular movements such as mastication, swallowing, and toothbrushing, and energy saving.
  • a sensor sandwiched between membranes is preferred.
  • a sensor 5 shown in FIG. 1 has an element structure in which a polymer electrolyte membrane 1 is sandwiched between a pair of electrode films 2a and 2b. Further, as shown in FIG. 2, the sensor 5 may include a collector electrode 3a and a protective film 4a on the electrode film 2a in layers, and a collector electrode 3b and a protective film 4b on the electrode film 2b. .
  • the polymer electrolyte membrane 1 used for the sensor 5 is a polymer block containing a structural unit derived from an aromatic vinyl compound and containing an ion conductive group from the viewpoint of high signal strength and flexibility.
  • S polymer block
  • T polymer block
  • the polymer block (S) is a polymer block (S 0 ) containing a structural unit derived from an aromatic vinyl compound and having no ion conductive group (hereinafter simply referred to as “polymer block (S 0 )”). ) Is introduced by introducing an ion conductive group into the aromatic ring.
  • the aromatic ring of the aromatic vinyl compound is preferably a carbocyclic aromatic ring, and examples thereof include a benzene ring, a naphthalene ring, an anthracene ring, and a pyrene ring.
  • Examples of the monomer capable of forming the polymer block (S 0 ) include styrene, 2-methylstyrene, 3-methylstyrene, 4-methylstyrene, 4-ethylstyrene, 2,4-dimethylstyrene, 2,5 -Aromatic vinyl compounds such as dimethylstyrene, 3,5-dimethylstyrene, 2-methoxystyrene, 3-methoxystyrene, 4-methoxystyrene, vinylbiphenyl, vinylterphenyl, vinylnaphthalene, vinylanthracene, 4-phenoxystyrene, etc. Can be mentioned.
  • the ⁇ -position carbon ( ⁇ -carbon) of the aromatic ring in the aromatic vinyl compound may be a quaternary carbon.
  • the ⁇ -carbon is a quaternary carbon
  • examples of the substituent bonded to the ⁇ -carbon include a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, an isobutyl group, and a sec-butyl group.
  • alkyl groups having 1 to 4 carbon atoms such as tert-butyl group; halogenated alkyl groups having 1 to 4 carbon atoms such as chloromethyl group, 2-chloroethyl group and 3-chloroethyl group; .
  • the aromatic vinyl compound having these substituents ⁇ -methylstyrene, ⁇ -methyl-4-methylstyrene, ⁇ -methyl-4-ethylstyrene, and 1,1-diphenylethylene are preferable.
  • Styrene, ⁇ -methyl styrene, 4-methyl styrene, 4-ethyl styrene, and vinyl biphenyl are more preferable from the viewpoint of easy introduction of ion conductive groups and high density of sulfonic acid groups.
  • the polymer block (S 0 ) may contain a structural unit derived from one or more other monomers other than the aromatic vinyl compound as long as the effects of the present invention are not impaired.
  • examples of such other monomers include butadiene, 1,3-pentadiene, isoprene, 1,3-hexadiene, 2,4-hexadiene, 2,3-dimethyl-1,3-butadiene, and 2-ethyl-1.
  • C4-C8 conjugated dienes such as 1,3-butadiene, 1,3-heptadiene; ethylene, propylene, 1-butene, 2-butene, isobutene, 1-pentene, 2-pentene, 1-hexene, 2- Alkenes having 2 to 8 carbon atoms such as hexene, 1-heptene, 2-heptene, 1-octene and 2-octene; such as methyl (meth) acrylate, ethyl (meth) acrylate and butyl (meth) acrylate (Meth) acrylic acid esters; vinyl esters such as vinyl acetate, vinyl propionate, vinyl butyrate, vinyl pivalate; methyl vinyl ether, Vinyl ether such as source-butyl vinyl ether.
  • the copolymerization form of the aromatic vinyl compound and the other monomer is desirably random copolymerization.
  • the other monomer is preferably 10% by mass or less, and more preferably 5% by mass or less of the monomer capable of forming the polymer block (S 0 ).
  • Examples of the ion conductive group possessed by the polymer block (S) include a sulfonic acid group, a phosphoric acid group, and a carboxylic acid group, and among these, a sulfonic acid group is preferable.
  • the introduction amount of the ion conductive group is not particularly limited, but from the viewpoint of the handling property of the block copolymer (Z), the solubility in a solvent, the ion conductivity, and the performance of the obtained sensor, the polymer block (S)
  • the ratio of the ion conductive group to the aromatic ring constituting the ring (hereinafter referred to as “ion conductive group introduction rate”) is preferably in the range of 10 to 100 mol%, more preferably in the range of 20 to 80 mol%, and 30 to 60 mol%. The range of is more preferable.
  • the ion conductive group introduction rate is lower than 10 mol%, the ion conductivity becomes insufficient, and the performance of the obtained sensor is lowered, which is not preferable.
  • the polymer block (T) which is a constituent component of the block copolymer (Z) is an amorphous polymer block containing a structural unit derived from an unsaturated hydrocarbon compound.
  • amorphous can be confirmed by measuring the dynamic viscoelasticity of the block copolymer (Z) and confirming that there is no change in the storage elastic modulus derived from the crystalline olefin polymer.
  • the monomer capable of forming the polymer block (T) is not particularly limited as long as it is an unsaturated hydrocarbon compound having a polymerizable carbon-carbon double bond, but is preferably a chain unsaturated hydrocarbon compound, for example, Carbon number such as ethylene, propylene, 1-butene, 2-butene, isobutene, 1-pentene, 2-pentene, 1-hexene, 2-hexene, 1-heptene, 2-heptene, 1-octene, 2-octene 2-8 olefins; butadiene, 1,3-pentadiene, isoprene, 1,3-hexadiene, 2,4-hexadiene, 2,3-dimethyl-1,3-butadiene, 2-ethyl-1,3-butadiene, Examples thereof include conjugated diene compounds having 4 to 8 carbon atoms such as 1,3-heptadiene.
  • the monomer has a plurality of polymerizable carbon-carbon double bonds
  • any of them may be used for polymerization.
  • a conjugated diene compound it may be a 1,2-bond. 1,4-bond may be used, or these may be mixed.
  • the said monomer which can form a polymer block (T) may be used individually by 1 type, and may use 2 or more types together. When using 2 or more types together, it is preferable that the arrangement
  • the polymer block (T) may contain a structural unit derived from another monomer within the range not impairing the effects of the present invention, in addition to the monomer.
  • examples of such other monomers include aromatic vinyl compounds such as styrene and vinyl naphthalene; halogen-containing vinyl compounds such as vinyl chloride; vinyl esters such as vinyl acetate, vinyl propionate, vinyl butyrate, and vinyl pivalate. And vinyl ethers such as methyl vinyl ether and isobutyl vinyl ether.
  • the arrangement of the structural units forming the polymer block (T) is preferably random.
  • the structural unit derived from the other monomer is preferably 5% by mass or less of the polymer block (T).
  • the block copolymer (Z) has at least one polymer block (S) and one polymer block (T).
  • S polymer block
  • T polymer block
  • their structures type of monomer constituting, degree of polymerization, type of ion conductive group, introduction ratio, etc.
  • a polymerization degree, etc. may mutually be the same, and may differ.
  • an ST type diblock copolymer (S and T are polymer blocks ( S) represents a polymer block (T), the same applies hereinafter), a STS type triblock copolymer, a TST type triblock copolymer, a STS type triblock copolymer.
  • examples thereof include a block copolymer or a mixture of a TST type triblock copolymer and a ST type diblock copolymer.
  • these block copolymers may be used alone or in combination of two or more.
  • the mass ratio of the total amount of the polymer block (S) and the total amount of the polymer block (T) is preferably in the range of 15:85 to 85:15, and 20: It is more preferably 80 to 80:20, and further preferably 25:75 to 75:25.
  • the ratio of the polymer block (S) in the block copolymer (Z) is less than 15% by mass, the output of the sensor decreases, which is not preferable.
  • flexibility of a sensor is lost when the ratio of the polymer block (S) in a block copolymer (Z) exceeds 85 mass%, it is unpreferable.
  • the block copolymer (Z) forming the polymer electrolyte membrane 1 configured in the sensor 5 used in the present invention is a block copolymer (Z) composed of a polymer block (S 0 ) and a polymer block (T). 0 ) can be used, and a method of introducing an ion conductive group into the polymer block (S 0 ) can be used.
  • the mass ratio of the total amount of the polymer block (S 0 ) and the polymer block (T) is preferably in the range of 10:90 to 80:20, and 15:85 More preferably, it is ⁇ 75: 25, and further preferably 20:80 to 70:30.
  • the ratio of the polymer block (S 0 ) in the block copolymer (Z 0 ) is less than 10% by mass, the output of the sensor decreases, which is not preferable.
  • the ratio of the polymer block (S 0 ) in the block copolymer (Z 0 ) exceeds 80% by mass, the flexibility of the sensor is lost, which is not preferable.
  • the proportion of such block copolymer (Z 0) in the polymer block (S 0) of the total amount and the weight ratio and the polymer block of the polymer total weight of the block (T) (S 0) is, 1 H -Can be determined by NMR.
  • the production method of the block copolymer (Z 0 ) is appropriately selected from radical polymerization method, anion polymerization method, cationic polymerization method, coordination polymerization method, etc. depending on the kind of monomer constituting, molecular weight, etc.
  • the radical polymerization method, the anionic polymerization method, or the cationic polymerization method is preferably selected from the viewpoint of practical ease.
  • a so-called living polymerization method is preferable from the viewpoint of molecular weight, molecular weight distribution, and the like, and specifically, a living radical polymerization method, a living anion polymerization method, and a living cation polymerization method are preferable.
  • the polymer block (S 0 ) is styrene, ⁇ -methylstyrene, t-
  • a method for producing a block copolymer (Z 0 ) formed from an aromatic vinyl compound such as butylstyrene and having a polymer block (T) formed from a conjugated diene or isobutene will be described.
  • a living anionic polymerization method or a living cationic polymerization method from the viewpoint of industrial ease, molecular weight, molecular weight distribution, polymer block (S 0 ), ease of bonding with the polymer block (T), and the like.
  • the following specific synthesis examples are shown.
  • a coupling agent such as phenyl benzoate after sequential polymerization of an aromatic vinyl compound and a conjugated diene in a nonpolar solvent such as cyclohexane in the presence of an anionic polymerization initiator at a temperature of 20 to 100 ° C. Is added to obtain a S 0 -T—S 0 type block copolymer (Z 0 ).
  • t-butylstyrene, styrene, and conjugated diene are sequentially added one or more times in the desired order in the presence of an anionic polymerization initiator in a nonpolar solvent such as cyclohexane at a temperature of 20 to 100 ° C.
  • a block copolymer (Z 0 ) comprising three or more types of polymer blocks is obtained.
  • the unsaturated bond When an unsaturated hydrocarbon compound having a plurality of carbon-carbon double bonds (unsaturated bonds) is used as the monomer for forming the polymer block (T), the unsaturated bond usually remains after polymerization. ing. In this case, some or all of the remaining unsaturated bonds may be converted to saturated bonds by a known hydrogenation reaction.
  • the hydrogenation rate of the carbon-carbon double bond can be calculated by a commonly used method, for example, 1 H-NMR measurement.
  • the hydrogenation rate of the carbon-carbon double bond is preferably 50 mol% or more, and more preferably 80 mol% or more.
  • the number average molecular weight of the block copolymer (Z) is difficult to measure after the ion conductive group is introduced, the number average molecular weight of the block copolymer (Z 0 ) before the introduction of the sulfonic acid group may be used as an index. .
  • the number average molecular weight of the block copolymer (Z 0 ) is preferably in the range of 3000 to 300000, and more preferably in the range of 10,000 to 200000.
  • the number average molecular weight of the block copolymer (Z 0 ) is smaller than 3000, it is not preferable because the mechanical strength of the polymer electrolyte membrane is inferior. When it is larger than 300000, the solubility in a solvent is lowered. Therefore, it is not preferable.
  • a sulfonic acid group in the block copolymer (Z 0) typically it is reacted with sulfonating agent to be described later with block copolymer (Z 0) in the presence or absence of a solvent. If a solvent is used, usually, after preparing a solution or suspension of the block copolymer (Z 0), added to and mixed with sulfonating agent.
  • sulfuric acid As the sulfonating agent, sulfuric acid; a mixed system of sulfuric acid and an aliphatic acid anhydride; a chlorosulfonic acid; a mixed system of chlorosulfonic acid and trimethylsilyl chloride; a sulfur trioxide; a mixed system of sulfur trioxide and triethyl phosphate;
  • aromatic organic sulfonic acids represented by 2,4,6-trimethylbenzenesulfonic acid.
  • organic solvent to be used include halogenated hydrocarbons such as methylene chloride, linear aliphatic hydrocarbons such as hexane, cyclic aliphatic hydrocarbons such as cyclohexane, and the like. You may select and use suitably.
  • the polymer electrolyte membrane 1 is preferably composed only of the block copolymer (Z). However, as long as the effects of the present invention are not impaired, other resins, softeners, water, organic solvents, and various additives are added as optional components. You may contain.
  • the method for producing the polymer electrolyte membrane 1 There is no particular limitation on the method for producing the polymer electrolyte membrane 1.
  • a solution or suspension of the block copolymer (Z) and, if necessary, the block copolymer (Z) prepared by mixing the above-mentioned optional components with an appropriate solvent is placed on a plate such as glass.
  • the polymer electrolyte membrane 1 can be obtained by removing the solvent after being cast into a film, applied using a coater or applicator, or printed using a screen printer or the like.
  • Solvents include halogenated hydrocarbons such as dichloromethane; aromatic hydrocarbons such as toluene, xylene, benzene, isopropylbenzene, and diisopropylbenzene; aliphatic hydrocarbons such as hexane, heptane, and cyclohexane; ethers such as tetrahydrofuran; methanol, ethanol , Alcohols such as 1-propanol, 2-propanol, 1-butanol, 2-methyl-1-propanol, 1-hexanol; or a mixed solvent thereof, and a mixed solvent of an aromatic hydrocarbon and an alcohol is preferable.
  • halogenated hydrocarbons such as dichloromethane
  • aromatic hydrocarbons such as toluene, xylene, benzene, isopropylbenzene, and diisopropylbenzene
  • aliphatic hydrocarbons such as hexane, hept
  • a block copolymer (Z) it is preferable that it is 20 times or less of a block copolymer (Z).
  • the conditions for removing the solvent are not particularly limited as long as the block copolymer (Z) is not decomposed. For example, a method of drying with hot air in the range of 60 to 140 ° C .; a method of drying under normal pressure in the range of 10 to 30 ° C., and further drying with hot air in the range of 60 to 140 ° C.
  • a method of drying under normal pressure in the range of 10 to 30 ° C. and further drying under normal pressure at 80 to 120 ° C. is preferable.
  • the block copolymer (Z) may be molded by compression molding, roll molding, extrusion molding, injection molding, or the like to form the polymer electrolyte membrane 1.
  • the electrode film 2 a and the electrode film 2 b used for the sensor 5 are insulated by the polymer electrolyte film 1.
  • the electrode film 2a and the electrode film 2b are made of a composition containing conductive particles and a resin, and the composition is preferably formed by dispersing conductive particles in a matrix made of a resin.
  • the electrode film 2a and the electrode film 2b are preferably flexible because they do not hinder elastic deformation of the polymer electrolyte membrane 1. Moreover, it is preferable that the interface of the electrode film 2a and the electrode film 2b, and the polymer electrolyte membrane 1 does not peel with the elastic deformation of the sensor 5.
  • the resin contained in the composition forming the electrode film 2a and the electrode film 2b is made of a block copolymer (Z).
  • the holding time of the electric signal when the elastically deformed state is held for a certain period varies depending on the size of the sensor 5, and the larger the area of the sensor 5, the more the electric signal can be generated.
  • the area of the sensor 5 needs to be an appropriate size that can bend as a whole with respect to the movement of the skin surface associated with muscle exercise, and is appropriately selected depending on the detection target.
  • the block copolymer (Z) that can be used for the polymer electrolyte membrane 1 and the electrode membranes 2a and 2b is composed of repeating units, ratio of polymer blocks, arrangement of polymer blocks, number average molecular weight, ion conduction.
  • the kind of the functional group, the ion conductive group introduction rate, and the like may be the same or different.
  • Examples of the conductive particles used for the electrode film 2a and the electrode film 2b include metals such as gold, silver, copper, platinum, aluminum, and nickel; ruthenium oxide (RuO 2 ), titanium oxide (TiO 2 ), and tin oxide (SnO 2 ).
  • Metal oxides such as iridium dioxide (IrO 2 ), tantalum oxide (Ta 2 O 5 ) and indium-tin composite oxide (ITO); metal sulfides such as zinc sulfide (ZnS); carbon black (eg, Ketjen black) (Registered trademark), etc.), conductive carbon such as carbon nanotubes; particles made of conductive polymer such as polyacetylene, polypyrrole, polythiophene, and the like. From the viewpoint of easy handling, conductive carbon is preferable. These may be used individually by 1 type, or may use multiple types together.
  • the ratio of the resin to the conductive particles in the composition forming the electrode film 2a and the electrode film 2b is preferably 1: 1 to 10: 1, more preferably 2: 1 to 7: 1.
  • the amount of the conductive particles added to the resin is too small, the signal strength decreases because the electric double layer is not sufficiently formed.
  • the amount of the conductive particles added to the resin is too large, the conductivity of the electrode film 2a and the electrode film 2b is improved and the formation of the electric double layer is inhibited, so that the signal intensity is lowered.
  • the molding method for forming the electrode film 2a and the electrode film 2b is the same as the method for preparing the polymer electrolyte membrane 1 except that the conductive particles are dispersed.
  • a method of forming the electrode film 2a and the electrode film 2b on both surfaces of the polymer electrolyte membrane for example, a method of bonding by vacuum deposition method of metals, sputtering method, electroplating, chemical plating method, etc.
  • bonding and welding the electrode produced separately, etc. are mentioned, Especially the method of apply
  • the two joined bodies are bonded to each other by polymer electrolyte membranes, thereby forming a polymer electrolyte membrane having two layers.
  • Two electrode films 2a and 2b may be bonded to both sides of one.
  • the material and thickness of the two-layer polymer electrolyte membrane 1 may be the same or different.
  • the method of bonding the two bonded bodies is preferably thermocompression bonding.
  • the electrode film 2a and the electrode film 2b may be formed on one surface of the protective film 4a and the protective film 4b described later, and the polymer electrolyte membrane 1 may be formed on the electrode film.
  • a collector electrode 3a is formed on the surface of the upper electrode film 2a and a collector electrode 3b is formed on the surface of the lower electrode film 2b as shown in FIG. preferable.
  • the collector electrode 3a and the collector electrode 3b include metal foils and metal thin films such as gold, silver, copper, platinum, and aluminum; metal powders such as gold, silver, and nickel; carbon powders, carbon nanotubes, and carbon fibers. Examples thereof include a molded body composed of carbon fine powder and a binder resin. Among these, from the viewpoint of flexibility, a film-like molded body made of a metal powder and a binder resin is preferable.
  • the electrical signal can be easily taken out by providing the collector electrode 3a and the collector electrode 3b having higher conductivity than the electrode film on the surfaces of the electrode film 2a and the electrode film 2b.
  • the thickness of the collector electrode 3a and the collector electrode 3b is preferably in the range of 0.01 to 200 ⁇ m, more preferably in the range of 0.05 to 100 ⁇ m, and still more preferably in the range of 0.1 to 20 ⁇ m.
  • the thickness of the collecting electrode 3a and the collecting electrode 3b is less than 0.01 nm, film formation becomes difficult, and when the thickness exceeds 200 ⁇ m, the flexibility of the collecting electrode 3a and the collecting electrode 3b decreases.
  • Examples of a method for forming the collecting electrode 3a and the collecting electrode 3b on the electrode film 2a and the electrode film 2b include a method of bonding by a vacuum deposition method of metal, sputtering method, electroplating, chemical plating method, etc.
  • bonding and welding the electrode produced separately, etc. are mentioned,
  • coating the ink containing an electrode material is especially preferable from a viewpoint of workability and versatility.
  • two joined bodies in which the collector electrode 3a and the collector electrode 3b, the electrode film 2a and the electrode film 2b, and the polymer electrolyte membrane 1 are sequentially formed on one surface of the protective film 4a and the protective film 4b described later are manufactured.
  • the polymer electrolyte membranes of the joined body may be bonded together by thermocompression bonding or the like.
  • the protective membrane 4a and the protective membrane 4b covering the polymer electrolyte membrane 1, the electrode membrane 2a and the electrode membrane 2b Is preferably provided.
  • the protective film 4 a and the protective film 4 b also function as a support for the sensor 5.
  • Examples of the protective film 4a and protective film 4b include polyethylene terephthalate film, polyethylene naphthalate film, polyolefin film, polyurethane film, polyvinyl chloride film, polymer film such as elastomer film; aramid fiber, cellulose fiber, nylon fiber, vinylon fiber, A cloth (woven cloth or non-woven cloth) made of fibers such as polyester fiber, polyolefin fiber, rayon fiber, or the like can be used as appropriate.
  • the thickness of the protective film 4a and the protective film 4b is preferably in the range of 5 to 350 ⁇ m, more preferably 7.5 to 300 ⁇ m, and most preferably 10 to 200 ⁇ m. If the protective film 4a and the protective film 4b are too thin, the thickness tends to be non-uniform, and if it is too thick, the flexibility of the sensor 5 tends to be impaired.
  • the protective film 4a and the protective film 4b are formed by, for example, further sandwiching a joined body in which the polymer electrolyte membrane 1 is sandwiched between the pair of electrode films 2a and 2b with the protective film 4a and the protective film 4b. It can be formed by bonding. Further, two joined bodies in which the electrode film 2a, the electrode film 2b, and the polymer electrolyte membrane 1 are sequentially laminated on one side of the protective film 4a and the protective film 4b are manufactured, and the polymer electrolyte membranes of the two joined bodies are formed. You may stick together by thermocompression bonding.
  • the adhesive means 6 is a means for fixing the sensor 5 to the subject's skin surface.
  • the adhesive means 6 is disposed on one of the plate-like outer surfaces of the sensor 5.
  • Examples of the adhesive means 6 include an adhesive, or an adhesive tape having an adhesive layer made of an adhesive and a base material layer.
  • the pressure-sensitive adhesive known pressure-sensitive adhesives such as rubber-based pressure-sensitive adhesives, acrylic pressure-sensitive adhesives, silicone-based pressure-sensitive adhesives, urethane-based pressure-sensitive adhesives and the like can be used.
  • an adhesive tape having an adhesive layer made of a medical adhesive and a base material layer is preferred.
  • a double-sided adhesive tape for skin application manufactured by Sumitomo 3M Limited specifically, product numbers 1524, 1504XL, 1510, 1522, 1509, and the like can be used.
  • the thickness of the adhesive layer made of an adhesive in the adhesive tape is preferably in the range of 5 to 500 ⁇ m, more preferably 15 to 250 ⁇ m, and most preferably 30 to 100 ⁇ m.
  • the thickness of the adhesive layer is 5 ⁇ m or less, the adhesion force between the skin surface and the muscle motion detector 10 is reduced, and the muscle motion detector 10 is easily peeled off from the skin surface. The follow-up performance of the muscle movement detector 10 with respect to the above is reduced.
  • the adhesive means 6 preferably increases the contact area with the skin surface from the viewpoint of attaching the entire outer surface of the sensor 5 to the skin surface.
  • the contact area between the adhesive means 6 and the skin surface is smaller than the area of the outer surface of the sensor 5, the followability of the sensor 5 with respect to the movement of the skin surface decreases, and furthermore, the skin surface and the muscle motion detector 10 are in close contact with each other. The force is reduced, and the muscle motion detector 10 is easily peeled off from the skin surface.
  • the adhesive means 6 is disposed on the outer surface of the sensor 5 in order to fix the sensor 5 to the skin surface.
  • An adhesive may be applied as the adhesive means 6 on the sensor 5, or a double-sided tape may be attached.
  • the sensor 5 is attached to the skin surface such that the adhesive means 6 is positioned between the sensor 5 and the skin surface.
  • an adhesive tape larger than the sensor 5 may be used as the adhesive means 6 so as to cover the outer surface of the sensor 5.
  • the sensor 5 is attached to the skin surface so that the sensor 5 is positioned between the adhesive means 6 and the skin surface.
  • the shape of the main surface of the muscle motion detector 10 of the present invention is preferably a shape having a curve from the viewpoint of suppressing damage to the skin due to contact with the end of the muscle motion detector 10, for example, circular; oval; Examples include a shape in which each vertex of a polygon such as a quadrangle, hexagon, or octagon is curved, and a shape including only a curve such as a circle or an ellipse is more preferable. Further, from the viewpoint of suppressing the maceration of the skin due to sweating or insensitive vaporization on the skin surface at the affixed site, a ventilation hole may be provided in the muscle movement detector 10 to improve the moisture permeability of the affixed site.
  • vent holes As the size of the vent hole increases and the number increases, the effective area resulting from the signal generation of the muscle movement detector 10 decreases, and the resistance of the electrode films 2a and 2b and the collector electrodes 3a and 3b also increases.
  • the shape, size, and quantity of the vent holes need to be appropriately selected according to the detection target.
  • a plurality of adhesive means 6 are attached to the outer surface of the sensor 5 from the viewpoint of suppressing the sense of tension associated with the movement of the skin surface and enhancing the sensor's followability and increasing the sensitivity of the sensor.
  • 3 and 4 are schematic views showing an example in which a plurality of adhesive means 6 are attached to the outer surface of the sensor 5.
  • 5 and 6 are schematic views showing an example in which an adhesive means 6 having a cut 7 in the surface is attached to the outer surface of the sensor 5.
  • the muscle movement detector 10 is affixed to the skin surface of the subject via the adhesive means, and the sensor 5 is elastically deformed in accordance with the movement of the skin surface accompanying the muscle movement, so that A predetermined muscular motion is detected by measuring an electrical signal having a potential corresponding to the amount of deformation generated in the measuring instrument.
  • the muscle movement detector 10 is attached to the skin surface, it is not necessary to perform pretreatment such as hair removal and washing on the skin surface.
  • the sensor 5 included in the muscle motion detector 10 of the present invention shows an example of muscle motion detection in which an electrical signal generated by elastic deformation by following the movement of the skin surface is shown.
  • the detection of muscle movement by measuring the potential (action potential) of an electric signal generated in FIG.
  • the number average molecular weight of the poly ⁇ -methylstyrene after polymerization for 5 hours was measured by GPC and found to be 6400 in terms of polystyrene.
  • 27 g of butadiene was added, and after stirring for 30 minutes, 1703 g of cyclohexane was added.
  • the number average molecular weight (GPC measurement, polystyrene conversion) of the polybutadiene block (b1) was 3640.
  • 303 g of butadiene was added, and polymerization was performed for 2 hours while raising the temperature to 60 ° C.
  • the number average molecular weight (GPC measurement, polystyrene conversion) of the obtained triblock copolymer was 74000, the 1,2-bond amount determined from 1 H-NMR measurement was 43.9%, and the number of ⁇ -methylstyrene units was. The content was 28% by mass. In addition, it was found by composition analysis by 1 H-NMR spectrum measurement that ⁇ -methylstyrene was not substantially copolymerized in the polybutadiene block.
  • a cyclohexane solution of such a triblock copolymer was prepared and charged into a pressure-resistant vessel that had been sufficiently substituted with nitrogen, and then at 80 ° C. in a hydrogen atmosphere using a Ni / Al Ziegler-type hydrogenation catalyst.
  • a hydrogenation reaction was conducted for 5 hours to obtain a poly ⁇ -methylstyrene-b-hydrogenated polybutadiene-b-poly ⁇ -methylstyrene type triblock copolymer (hereinafter referred to as a block copolymer (Z 0 -1)). Obtained.
  • the hydrogenation rate of the obtained block copolymer (Z 0 -1) was calculated by 1 H-NMR spectrum measurement and found to be 99.6%.
  • block copolymer (Z- 1) The sulfonation rate of the benzene ring of the ⁇ -methylstyrene unit in the obtained block copolymer (Z-1) was 50 mol% from 1 H-NMR analysis.
  • the storage elastic modulus of the obtained block copolymer (Z-1) was measured. Based on the fact that there was no change in the storage elastic modulus at 80 to 100 ° C. derived from the crystallized olefin polymer, the polymer block (T) was judged to be amorphous.
  • the two bonded bodies obtained by the operation of (3) above are superposed so that the polymer electrolyte membranes are in contact with each other, and pressure-bonded at 100 ° C. and 0.5 MPa for 5 minutes to thereby produce a block copolymer (Z—
  • a sensor 5 having 1) as a polymer electrolyte membrane 1 was obtained.
  • the sensor 5 includes a sensor (referred to as sensor X) whose main surface has a rectangular shape (20 mm long ⁇ 2 mm wide) and a rectangular shape (two parallel lines with 18 mm and two halves with a radius of 1 mm).
  • a sensor (referred to as sensor Y) that is a circle) was produced.
  • a double-sided medical tape (manufactured by Sumitomo 3M Limited: MSD-S-1524, thickness 0.06 mm) is formed as the adhesive means 6 on one surface of the sensor X obtained by the operation of (4).
  • a muscle motion detector 10 (referred to as muscle motion detector X) was obtained (FIG. 2).
  • a medical double-sided tape (manufactured by Sumitomo 3M Co., Ltd .: MSD-S-1524, thickness 0.06 mm) is formed as the adhesive means 6 on one surface of the sensor Y obtained by the operation (4).
  • a muscle motion detector 10 (referred to as muscle motion detector Y) was obtained.
  • adhesive means 6 double-sided tape (manufactured by Sumitomo 3M Limited: MSD-) provided with notches 7 at intervals of 5 mm as shown in the schematic plan view of FIG. 7 and the schematic side view of FIG. S-1524 (thickness 0.06 mm) was formed to obtain a muscle motion detector 10 (referred to as muscle motion detector Z).
  • Example 1 Using the muscle motion detector X produced in Reference Example 3, muscle motion associated with mastication was detected. As a detection method, as shown in FIG. 9, the muscle motion detector 10 is attached to the skin surface of the lower jaw of the subject 30, and the muscle motion that occurs when the subject 30 bites the gum is output from the muscle motion detector 10. Detected as the electric signal potential.
  • the potential of the electrical signal output from the muscle movement detector 10 is detected by the lead wires 21a and 21b connected to the collecting electrode 3a and the collecting electrode 3b, and the measuring instrument 22 (Keyence Corporation data logger: NR600), AD After the conversion, measurement was performed with a personal computer (PC) 20 connected via the USB cable 23.
  • the pass frequency band was 0 to 10 Hz, and the sampling frequency was 1 kHz.
  • Example 1 In parallel with Example 1, the action potential generated along with muscle exercise was measured.
  • the action potential was measured from a plate electrode (manufactured by Nihon Kohden Co., Ltd .: silver-silver chloride electrode) with a ground electrode attached to the earlobe and attached to the skin surface near the masseter of the masseter muscle.
  • the plate electrode In attaching the plate electrode, the skin surface was washed with absorbent cotton soaked in alcohol, and then the electrolyte paste was packed evenly on the plate electrode and applied to the skin surface and fixed. Furthermore, the measurement was started after being left for about 10 minutes until the skin surface and the electrode became compatible.
  • the generated action potential is detected by a measuring instrument (Keyence Co., Ltd.
  • the pass frequency band was 10 to 500 Hz, and the sampling frequency was 1 kHz.
  • FIG. 10 shows a comparison of potential waveforms obtained in Example 1 and Comparative Example 1. From the potential waveform diagram obtained in Comparative Example 1 (described as “electromyogram” in the figure), the generation and stop of an electrical signal are repeated at regular intervals. It is thought that it was detected. On the other hand, the potential waveform diagram obtained in Example 1 (described as “muscle movement detector (mandibular affixation)” in the figure) fluctuates at the same cycle as the potential waveform diagram of Comparative Example 1, and thus the present invention. It was shown that it is possible to detect the muscular movement associated with the masticatory movement using the muscular movement detector.
  • Example 2 Using the muscle motion detector X produced in Reference Example 3, muscle motion associated with swallowing was detected.
  • muscle movement detector X is attached to the subject's laryngeal protuberance (throat buddha) and mandibular skin surface, and the muscle movement associated with swallowing is detected using the protocol (5 seconds rest ⁇ 1 swallowing) x 5 sets of protocol. did.
  • the electric signal potential output from the muscle movement detector X is amplified and filtered by a measurement circuit including a differential amplifier, a non-inverting amplifier, and a low-pass filter, and a measuring instrument (AD board manufactured by Contec: AIO-).
  • the signal amplification factor was 60 dB
  • the pass frequency band was 0 to 10 Hz
  • the sampling frequency was 1 kHz.
  • FIG. 11 shows the potential waveform obtained in Example 2.
  • Potential waveform diagrams obtained from the muscle movement detector X placed on the laryngeal protuberance and mandibular skin surface in the figure, “muscle movement detector (laryngeal protuberance sticking)", “muscle movement detector (mandibular sticking), respectively.
  • the peak observed from the above is consistent with the timing and frequency of swallowing by the subject's self-report, so that the muscle movement accompanying swallowing movement can be detected using the muscle movement detector of the present invention. It was shown that.
  • Example 3 Using the muscle motion detector X produced in Reference Example 3, muscle motion associated with toothbrushing was detected.
  • three types of toothbrushing are known: clenching (operation for tightening teeth), tapping (operation for dynamically engaging teeth), and gliding (operation for engaging upper and lower teeth).
  • the muscle movement detector X was attached to the skin surface on the laryngeal protuberance and the lower jaw of the subject, and the muscle movement accompanying the toothpaste was detected in the following experimental protocol examples 3-1 to 3-3.
  • the measurement method of the potential output from the muscle motion detector X in Examples 3-1 to 3-4 is the same as that in Example 2.
  • Example 3-1 A muscle movement was detected in which a series of actions such as “keeping a rest for 5 seconds and then continuing the clenching action for 5 seconds” was repeated three times.
  • Example 3-2 A muscle motion was detected in which a series of actions such as “keeping a tapping action for 5 seconds after keeping calm for 5 seconds” was repeated three times.
  • Example 3-3 A muscle motion was detected in which a series of actions such as “keeping rest for 5 seconds and then continue the gliding action for 5 seconds” was repeated three times.
  • Example 3-4 A muscle motion was detected in which a series of operations such as “keeping a rest for 10 seconds and then performing a clenching operation continuously for 10 seconds” was repeated twice.
  • Comparative Example 2 For comparison with Example 3, the following Comparative Examples 2-1 to 2-4 were performed.
  • Example 2-1 As a comparison with Example 3-1, in parallel with Example 3-1, the action potential generated along with muscle exercise was measured.
  • the action potential was measured from a plate electrode (manufactured by Nihon Kohden Co., Ltd .: silver-silver chloride electrode) with a ground electrode attached to the earlobe and attached to the skin surface near the masseter of the masseter muscle.
  • the skin surface to be measured was washed with absorbent cotton soaked in alcohol, and then the electrolyte paste was packed uniformly on the plate electrode and applied to the skin surface and fixed. Furthermore, the measurement was started after being left for about 10 minutes until the skin surface and the electrode became compatible.
  • the action potential of the generated electric signal is amplified and filtered by a measuring circuit composed of a differential amplifier, a non-inverting amplifier, and a low-pass filter, and detected by a measuring instrument (AD board manufactured by Contec: AIO-160802AY-USB). After AD conversion, measurement was performed using a PC connected to a measuring instrument via a USB cable.
  • the signal amplification factor was 60 dB
  • the pass frequency band was 10 to 500 Hz
  • the sampling frequency was 1 kHz.
  • Example 2-2 As a comparison with Example 3-2, the action potential generated with muscle exercise was measured in parallel with Example 3-2. The action potential is measured in the same manner as in Comparative Example 2-1.
  • Example 2-3 As a comparison with Example 3-3, the action potential generated with muscle exercise was measured in parallel with Example 3-2. The action potential is measured in the same manner as in Comparative Example 2-1.
  • FIG. 12 shows potential waveform diagrams obtained from Example 3-1 and Comparative Example 2-1.
  • a potential waveform diagram obtained from the muscle motion detector X placed on the skin surface of the laryngeal protuberance in the figure, “muscle motion detector (laryngeal protuberance affixed)
  • muscle motion detector laryngeal protuberance affixed
  • FIG. 13 A graph showing the potential waveforms obtained in Example 3-2 and Comparative Example 2-2 is shown in FIG. From FIG. 13, potential waveform diagrams obtained from the muscle motion detector X placed on the laryngeal protuberance and mandibular skin surface in Example 3-2 (in the figure, “muscle motion detector (laryngeal protuberance sticking)”, “Muscle movement detector (mandibular portion affixed)” is described in the same period as the potential waveform diagram (described as "electromyogram” in the figure) obtained from Comparative Example 2-2, It has been shown that it is possible to detect muscle movement accompanying tapping exercise using the muscle movement detector of the present invention.
  • FIG. 14 shows potential waveform diagrams obtained from Example 3-3 and Comparative Example 2-3.
  • FIG. 14 shows potential waveforms obtained from the laryngeal protuberance and the muscle movement detector X placed on the skin surface of the lower jaw (in the figure, “muscle movement detector (laryngeal protuberance sticking)”, “muscle movement detector ( Since the potential waveform diagram obtained from Comparative Example 2-3 (described as “electromyogram” in the figure) fluctuates in the same cycle, the detection of muscle movement of the present invention It was shown that the muscle movement accompanying gliding movement can be detected using the tool.
  • Example 2-4 As a comparison with Example 3-4, in parallel with Example 3-4, the pressure generated with the muscle exercise was measured using a piezoelectric element.
  • a piezoelectric element manufactured by Tokyo Sensor Co., Ltd .: DTI-028K / L
  • a polyvinylidene fluoride film (length 16 mm x width 4 mm, thickness 28 mm) is attached to the skin surface of the subject's lower jaw, and the potential output from the piezoelectric element is It was measured.
  • the method for measuring the potential is the same as the method for measuring the potential output from the muscle exercise detector in the second and third embodiments described above except that the output potential is not amplified.
  • FIG. 15 shows potential waveform diagrams obtained in Example 3-4 and Comparative Example 2-4.
  • the potential waveform diagram obtained from Comparative Example 2-4 (in the drawing, described as “piezoelectric element (mandible portion))” shows the instantaneous potential at the start P of the clenching operation and the release Q of the clenching operation. It was confirmed that the muscle movement during the clenching operation cannot be detected continuously because the potential is quickly reduced.
  • the potential waveform diagram obtained from Example 3-4 in the figure, described as “muscle movement detector (mandible part attachment)” shows the muscles from the start P of the clenching operation to the release Q of the clenching operation. It was confirmed that motion can be detected continuously.
  • Example 4 (Observation of effects on skin by long-term test) After attaching the muscle movement detector X to the skin surface of the laryngeal protuberance of five subjects and conducting normal life for 24 hours, the surface of the skin that the muscle movement detector X was in contact with was observed. At the portion where the end of the motion detector X was in contact, a sticking mark that was flushed by three people was observed.
  • Example 5 (Observation of effects on skin by long-term test)
  • the muscle motion detector Y was attached to the skin surface of the laryngeal protuberance of the same five subjects as in Example 4, and after performing normal life for 24 hours, the surface of the skin that the muscle motion detector Y was in contact with was observed. As a result of observation, no sticking marks were observed in all five people.
  • Example 6 Evaluation of wearing feeling of muscle movement detector by long-term test
  • the muscle movement detector Z was affixed to the skin surface of the laryngeal protuberance of the same five subjects as in Example 4, and after conducting a normal life for 24 hours, an interview regarding the feeling of wearing the muscle movement detectors X and Z was conducted. It was. As a result, all the five people felt that the muscle movement detector X felt skin tension in the state of being affixed to the skin, but when the muscle movement detector Z was affixed, four out of five people It was evaluated that the feeling of wearing was good without feeling the tension described above.
  • the muscle movement detection device of the present invention is an instrument that elastically deforms in response to the movement of the skin surface and transmits an electrical signal to detect muscle movement, and can be used for measurement and monitoring of oral functions such as mastication, swallowing, and toothpaste. .
  • 1 is a polymer electrolyte membrane
  • 2a and 2b are electrode membranes
  • 3a and 3b are collecting electrodes
  • 4a and 4b are protective films
  • 5 is a sensor
  • 6 is an adhesive means
  • 7 is a notch
  • 10 is a muscle motion detector
  • 20 PC 21a, 21b are lead wires
  • 22 is a measuring instrument
  • 23 is a USB cable
  • 30 is a subject.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Physics & Mathematics (AREA)
  • Veterinary Medicine (AREA)
  • Biophysics (AREA)
  • Pathology (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Public Health (AREA)
  • General Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Dentistry (AREA)
  • Physiology (AREA)
  • Orthopedic Medicine & Surgery (AREA)
  • Rheumatology (AREA)
  • Measurement And Recording Of Electrical Phenomena And Electrical Characteristics Of The Living Body (AREA)

Abstract

Provided is a muscular motion detector that imposes little burden on the test subject during monitoring of muscular motion, that has exceptional ease of operation and accuracy of detection, and that may be disposed of by a simple process subsequent to use. The muscular motion detector (10) has a sensor (5) of panel form, produced by sandwiching a polymer electrolyte membrane (1) between a pair of electrode films (2a) and (2b) comprising a composition containing conductive particles and a resin, to one outside surface of which a contact adhesion means (6) is applied.

Description

筋肉運動検知具および筋肉運動検知方法Muscle motion detector and muscle motion detection method
 本発明は、筋肉運動を電気的に検知する検知具、およびその検知具を使用した筋肉運動の検知方法に関するものである。 The present invention relates to a detector that electrically detects muscle movement and a method for detecting muscle movement using the detector.
 健康管理等の目的で、咀嚼、嚥下、歯軋り等に伴う筋肉運動を検知し、モニタリングすることが検討されている。 For the purpose of health management, etc., it has been studied to detect and monitor muscle movements associated with chewing, swallowing, and toothpaste.
 筋肉運動の検知方法としては、筋肉運動に伴って体内で発生する電気信号の電位(活動電位)を測定する方法が知られている。例えば、活動電位の測定によって、咀嚼や歯軋りに伴う筋肉運動を検知し、経時変化を記録する筋活動監視システム(特許文献1参照)や、嚥下に伴う筋肉運動を検知し、モニタリングする方法(特許文献2参照)が知られている。これらの方法では測定対象となる筋肉の付近に位置する皮膚面に貼付した電極によって活動電位を測定する。 As a method for detecting muscle movement, a method of measuring the potential (action potential) of an electric signal generated in the body accompanying muscle movement is known. For example, a muscle activity monitoring system (see Patent Document 1) that detects muscular movement associated with mastication and toothbrushing by measuring action potentials and records changes over time, and a method of detecting and monitoring muscular movement associated with swallowing (patented) Document 2) is known. In these methods, the action potential is measured by an electrode attached to the skin surface located near the muscle to be measured.
 しかしながら、皮膚面に貼付した電極によって測定できる活動電位は非常に微弱である上、皮膚面の湿潤度合や角質層の厚さ、体毛の有無等によって変動するため、正確な測定が困難である。そこで、電極と皮膚面との接触抵抗を減少させるため、皮膚面の体毛を剃ったり、アルコールに浸した脱脂綿等で皮膚面を洗浄したりする処置を行う必要があり、被験者の負担になる上、作業性も低い。 However, the action potential that can be measured with an electrode attached to the skin surface is very weak, and varies depending on the wetness of the skin surface, the thickness of the stratum corneum, the presence or absence of body hair, and so on, so that accurate measurement is difficult. Therefore, in order to reduce the contact resistance between the electrode and the skin surface, it is necessary to perform treatments such as shaving the hair on the skin surface or washing the skin surface with absorbent cotton soaked in alcohol, which is a burden on the subject. Also, workability is low.
 一方、別の筋肉運動の検知方法として、筋肉運動に伴って発生する圧力を、圧電フィルムを用いて電気信号に変換して測定する方法が知られている。例えば、圧電フィルムを被験者の喉頭部や下顎部等に貼付して、嚥下に伴う筋肉運動を検知する方法が示されている(非特許文献1参照)。また、圧電フィルムを貼付したマウスピースを口に装着し、歯軋りに伴う筋肉運動を検知する方法が知られている(非特許文献2参照)。しかしながら、実用化されている圧電フィルムの材料としては、フッ素系樹脂(ポリフッ化ビニリデン)が知られているのみであり、環境汚染や廃棄設備への負荷の観点から、使用後に環境汚染の問題がなく簡便に廃棄できる材料を用いて筋肉運動を検知する方法が求められている。 On the other hand, as another method for detecting muscular movement, a method is known in which pressure generated with muscular movement is converted into an electrical signal using a piezoelectric film and measured. For example, a method is shown in which a piezo-electric film is attached to the subject's larynx, lower jaw, or the like to detect muscular movement associated with swallowing (see Non-Patent Document 1). Also, a method is known in which a mouthpiece to which a piezoelectric film is attached is attached to the mouth to detect muscle movement associated with a toothpaste (see Non-Patent Document 2). However, only a fluororesin (polyvinylidene fluoride) is known as a material for piezoelectric films in practical use, and there is a problem of environmental pollution after use from the viewpoint of environmental pollution and load on disposal facilities. There is a need for a method for detecting muscle movement using a material that can be easily discarded.
特開2010-137015号公報JP 2010-137015 A 特開2005-304890号公報JP 2005-304890 A
 本発明は前記の課題を解決するためになされたもので、筋肉運動のモニタリングを行う場合に、被験者の負担が少なく、作業性に優れ、かつ正確に検知することができ、使用後の廃棄処理が簡便な筋肉運動検知具および筋肉運動検知方法を提供することを目的とする。 The present invention has been made in order to solve the above-described problems. When monitoring muscle exercise, the burden on the subject is small, the workability is excellent, and the detection can be accurately performed, and the disposal process after use. An object of the present invention is to provide a simple muscle motion detector and a muscle motion detection method.
 本発明によれば、前記の目的は、導電性粒子および樹脂を含有する組成物からなる一対の電極膜の間に高分子電解質膜が挟まれてなる板状のセンサの、少なくとも一方の外面に粘着手段が付されていることを特徴とする筋肉運動検知具を提供することにより達成される。 According to the present invention, the object is to provide at least one outer surface of a plate-shaped sensor in which a polymer electrolyte membrane is sandwiched between a pair of electrode membranes made of a composition containing conductive particles and a resin. This is achieved by providing a muscular motion detector having an adhesive means.
 本発明の筋肉運動検知具の好適な実施形態としては、
前記センサの主面の形状が、円形または楕円形である;
前記粘着手段が面内に切り込みを有する;
前記高分子電解質膜および前記樹脂が、芳香族ビニル化合物に由来する構造単位にイオン伝導性基を導入した重合体ブロック(S)と、不飽和脂肪族炭化水素化合物に由来する構造単位からなる非晶性の重合体ブロック(T)とを有するブロック共重合体(Z)を含有する;
前記粘着手段が動物の皮膚面に接触させるものであり、かつ前記センサが皮膚面の動きに追従して弾性変形して該動きを検知し、電気信号を発生する;
前記電気信号が、咀嚼、嚥下または歯軋りに伴う筋肉運動による皮膚面の動きを前記センサが検知して生ずる;ものが挙げられる。
As a preferred embodiment of the muscle movement detector of the present invention,
The shape of the main surface of the sensor is circular or elliptical;
The adhesive means has an in-plane cut;
The polymer electrolyte membrane and the resin are composed of a polymer block (S) in which an ion conductive group is introduced into a structural unit derived from an aromatic vinyl compound, and a structural unit derived from an unsaturated aliphatic hydrocarbon compound. Containing a block copolymer (Z) having a crystalline polymer block (T);
The adhesive means is in contact with the skin surface of the animal, and the sensor elastically deforms following the movement of the skin surface to detect the movement and generate an electrical signal;
The electrical signal is generated when the sensor detects the movement of the skin surface due to muscle movement associated with mastication, swallowing, or toothbrushing;
 本発明はまた、前記筋肉運動検知具の有するセンサが、皮膚面の動きに追従することで弾性変形して発生する電気信号を測定する筋肉運動検知方法に関する。 The present invention also relates to a muscle motion detection method for measuring an electrical signal generated by elastic deformation of a sensor of the muscle motion detection tool by following the movement of the skin surface.
 本発明の筋肉運動検知具は、動物の皮膚面(好適には人体の皮膚面)に、粘着手段を介して密着させることで、皮膚面の表面状態に依存せず、筋肉の動き(筋肉運動)を正確に検知することができる。また、従来の圧電フィルムのようなフッ素系樹脂を含まないため、使用後に環境汚染の問題がなく簡便に廃棄できる。 The muscle movement detector of the present invention is brought into close contact with the skin surface of an animal (preferably the skin surface of a human body) via an adhesive means, so that it does not depend on the surface state of the skin surface, and the movement of muscle (muscle movement). ) Can be detected accurately. Further, since it does not contain a fluorine-based resin like a conventional piezoelectric film, there is no problem of environmental pollution after use and it can be easily disposed of.
 本発明の筋肉運動検知方法によれば、筋肉運動検知具が有するセンサが、皮膚面の動きに追従することで弾性変形して、この弾性変形に応じた電位の電気信号が測定されることで、所定の筋肉運動を検知することができる。 According to the muscle motion detection method of the present invention, the sensor of the muscle motion detector is elastically deformed by following the movement of the skin surface, and an electric signal having a potential corresponding to the elastic deformation is measured. The predetermined muscle movement can be detected.
本発明の筋肉運動検知具の一実施形態を示す模式断面図である。It is a schematic cross section which shows one Embodiment of the muscle exercise | movement detector of this invention. 本発明の筋肉運動検知具の別な実施形態を示す模式断面図である。It is a schematic cross section which shows another embodiment of the muscle exercise | movement detector of this invention. 複数の粘着手段を付した本発明の筋肉運動検知具を示す模式図である。It is a schematic diagram which shows the muscular motion detector of this invention which attached | subjected the some adhesion means. 複数の粘着手段を付した本発明の筋肉運動検知具を示す模式図である。It is a schematic diagram which shows the muscular motion detector of this invention which attached | subjected the some adhesion means. 面内に切り込みを有する粘着手段を付した本発明の筋肉運動検知具を示す模式図である。It is a schematic diagram which shows the muscular movement detection tool of this invention which attached | subjected the adhesion means which has an incision in a surface. 面内に切り込みを有する粘着手段を付した本発明の筋肉運動検知具を示す模式図である。It is a schematic diagram which shows the muscular movement detection tool of this invention which attached | subjected the adhesion means which has an incision in a surface. 参考例3で作製した筋肉運動検知具Zの粘着手段の形状を示す模式平面図である。It is a schematic plan view which shows the shape of the adhesion means of the muscle exercise | movement detector Z produced in the reference example 3. FIG. 参考例3で作製した筋肉運動検知具Zの粘着手段の形状を示す模式側面図である。It is a model side view which shows the shape of the adhesion | attachment means of the muscle exercise | movement detector Z produced in the reference example 3. FIG. 本発明の筋肉運動検知具の使用形態を示す図である。It is a figure which shows the usage pattern of the muscle movement detector of this invention. 実施例1および比較例1で得られた電位波形を比較する図である。It is a figure which compares the electric potential waveform obtained in Example 1 and Comparative Example 1. FIG. 実施例2で得られた電位波形を示す図である。6 is a diagram showing a potential waveform obtained in Example 2. FIG. 実施例3-1および比較例2-1で得られた電位波形を比較する図である。FIG. 6 is a diagram for comparing potential waveforms obtained in Example 3-1 and Comparative Example 2-1. 実施例3-2および比較例2-2で得られた電位波形を比較する図である。It is a figure which compares the potential waveform obtained in Example 3-2 and Comparative Example 2-2. 実施例3-3および比較例2-3で得られた電位波形を比較する図である。It is a figure which compares the electric potential waveform obtained in Example 3-3 and Comparative Example 2-3. 実施例3-4および比較例2-4で得られた電位波形を比較する図である。It is a figure which compares the electric potential waveform obtained in Example 3-4 and Comparative Example 2-4.
 以下、本発明の筋肉運動検知具の実施形態について詳細に説明する。なお、以下に説明する実施形態によって、本発明は限定されない。 Hereinafter, embodiments of the muscle motion detector of the present invention will be described in detail. In addition, this invention is not limited by embodiment described below.
 本発明の筋肉運動検知具は、板状のセンサの少なくとも一方の外面に、粘着手段が付されている。この板状のセンサは、導電性粒子および樹脂を含有する組成物からなる一対の電極膜の間に高分子電解質膜が挟まれてなる。筋肉運動検知具の一実施形態として図1を参照に詳細に説明する。 The muscle movement detector of the present invention has an adhesive means attached to at least one outer surface of a plate-like sensor. In this plate-shaped sensor, a polymer electrolyte membrane is sandwiched between a pair of electrode membranes made of a composition containing conductive particles and a resin. An embodiment of the muscle movement detector will be described in detail with reference to FIG.
 筋肉運動検知具10は、筋肉運動による皮膚面の動きに伴って弾性変形し電気信号に変換する板状のセンサ5と、そのセンサ5の少なくとも一方の外面に付された粘着手段6とを備える。本発明の筋肉運動検知具10は、粘着手段6によって被験者の皮膚面に貼付けられ、筋肉運動に伴う皮膚面の動きに伴ってセンサ5が弾性変形して、その変形量に応じた電位の電気信号を発生する。かかる電気信号は公知の計測器によって測定される。 The muscle movement detector 10 includes a plate-like sensor 5 that is elastically deformed and converted into an electric signal in accordance with the movement of the skin surface due to muscle movement, and an adhesive means 6 attached to at least one outer surface of the sensor 5. . The muscle motion detector 10 of the present invention is attached to the skin surface of the subject by the adhesive means 6, and the sensor 5 is elastically deformed along with the movement of the skin surface accompanying the muscle motion, and the electric potential of the electric potential according to the deformation amount. Generate a signal. Such an electrical signal is measured by a known measuring instrument.
 筋肉運動検知具10を構成するセンサ5は、弾性変形に伴い電気信号を発生するセンサである。このセンサ5の形状は板状である。ここで板状とは、センサの弾性変形と粘着手段の配置を妨げないために好適な形状を意味し、厚さ、(長さまたは幅)/厚さの比率は特に限定されず、フィルム状、シート状等を含む。また、センサ5の厚さは一定であってもよく、一定でなくてもよいが、生産性の観点からは一定であることが好ましく、筋肉運動検知具の使用に伴う皮膚へのダメージを抑制する観点からは周縁部が薄いことが好ましい。本明細書において「弾性変形」には、圧縮、伸長、曲げ等による変形がすべて含まれる。 The sensor 5 constituting the muscular motion detector 10 is a sensor that generates an electrical signal in accordance with elastic deformation. The sensor 5 has a plate shape. Here, the plate shape means a suitable shape so as not to hinder the elastic deformation of the sensor and the arrangement of the adhesive means, and the ratio of thickness and (length or width) / thickness is not particularly limited, and is a film shape. Including sheet form. In addition, the thickness of the sensor 5 may or may not be constant, but is preferably constant from the viewpoint of productivity, and suppresses damage to the skin due to the use of the muscle motion detector. From the viewpoint of doing so, it is preferable that the peripheral edge is thin. In this specification, “elastic deformation” includes all deformation due to compression, extension, bending, and the like.
 かかるセンサ5としては、咀嚼や嚥下や歯軋り等の微小な筋肉運動を検知する観点、また省エネルギーの観点から、弾性変形し得る材料からなる高分子電解質膜を一対の弾性変形し得る材料からなる電極膜で挟持したセンサが好ましい。 The sensor 5 includes an electrode made of a material that can elastically deform a polymer electrolyte membrane made of a material that can be elastically deformed from the viewpoint of detecting minute muscular movements such as mastication, swallowing, and toothbrushing, and energy saving. A sensor sandwiched between membranes is preferred.
 図1に示すセンサ5は、高分子電解質膜1を、一対の電極膜2aおよび電極膜2bで挟持した素子構造からなる。また、図2に示すようにセンサ5が、電極膜2a上に集電極3a、保護膜4aを層状に備え、また電極膜2b上に集電極3b、保護膜4bを層状に備えていてもよい。 A sensor 5 shown in FIG. 1 has an element structure in which a polymer electrolyte membrane 1 is sandwiched between a pair of electrode films 2a and 2b. Further, as shown in FIG. 2, the sensor 5 may include a collector electrode 3a and a protective film 4a on the electrode film 2a in layers, and a collector electrode 3b and a protective film 4b on the electrode film 2b. .
 以下、図1および図2に示す、高分子電解質膜1を一対の電極膜2aおよび電極膜2bで挟持しているセンサ5について説明する。 Hereinafter, the sensor 5 shown in FIGS. 1 and 2 in which the polymer electrolyte membrane 1 is sandwiched between the pair of electrode films 2a and 2b will be described.
 センサ5に用いられる高分子電解質膜1は、得られる信号強度の高さ、柔軟性の観点から、芳香族ビニル化合物に由来する構造単位を含有し、かつイオン伝導性基を含有する重合体ブロック(S)(以下、単に「重合体ブロック(S)」と称する)と、不飽和炭化水素化合物に由来する構造単位を含有する非晶性重合体からなる重合体ブロック(T)(以下、単に「重合体ブロック(T)」と称する)とを、構成成分とするブロック共重合体(Z)からなることが好ましい。 The polymer electrolyte membrane 1 used for the sensor 5 is a polymer block containing a structural unit derived from an aromatic vinyl compound and containing an ion conductive group from the viewpoint of high signal strength and flexibility. (S) (hereinafter simply referred to as “polymer block (S)”) and a polymer block (T) (hereinafter simply referred to as an amorphous polymer containing a structural unit derived from an unsaturated hydrocarbon compound). It is preferable to consist of a block copolymer (Z) having “polymer block (T)” as a constituent component.
 重合体ブロック(S)は、芳香族ビニル化合物に由来する構造単位を含みイオン伝導性基を有していない重合体ブロック(S)(以下、単に「重合体ブロック(S)」と称する)の芳香環にイオン伝導性基を導入することで得られる。かかる芳香族ビニル化合物が有する芳香環は炭素環式芳香環であるのが好ましく、ベンゼン環、ナフタレン環、アントラセン環、ピレン環等が挙げられる。 The polymer block (S) is a polymer block (S 0 ) containing a structural unit derived from an aromatic vinyl compound and having no ion conductive group (hereinafter simply referred to as “polymer block (S 0 )”). ) Is introduced by introducing an ion conductive group into the aromatic ring. The aromatic ring of the aromatic vinyl compound is preferably a carbocyclic aromatic ring, and examples thereof include a benzene ring, a naphthalene ring, an anthracene ring, and a pyrene ring.
 前記重合体ブロック(S)を形成できる単量体としては、例えばスチレン、2-メチルスチレン、3-メチルスチレン、4-メチルスチレン、4-エチルスチレン、2,4-ジメチルスチレン、2,5-ジメチルスチレン、3,5-ジメチルスチレン、2-メトキシスチレン、3-メトキシスチレン、4-メトキシスチレン、ビニルビフェニル、ビニルターフェニル、ビニルナフタレン、ビニルアントラセン、4-フェノキシスチレン等の芳香族ビニル化合物が挙げられる。 Examples of the monomer capable of forming the polymer block (S 0 ) include styrene, 2-methylstyrene, 3-methylstyrene, 4-methylstyrene, 4-ethylstyrene, 2,4-dimethylstyrene, 2,5 -Aromatic vinyl compounds such as dimethylstyrene, 3,5-dimethylstyrene, 2-methoxystyrene, 3-methoxystyrene, 4-methoxystyrene, vinylbiphenyl, vinylterphenyl, vinylnaphthalene, vinylanthracene, 4-phenoxystyrene, etc. Can be mentioned.
 また、前記の芳香族ビニル化合物における芳香環のα位の炭素(α-炭素)は、4級炭素であってもよい。α-炭素が4級炭素である場合に、α-炭素に結合している置換基としては、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、sec-ブチル基、tert-ブチル基等の炭素数1~4のアルキル基;クロロメチル基、2-クロロエチル基、3-クロロエチル基等の炭素数1~4のハロゲン化アルキル基;フェニル基を挙げることができる。これらの置換基を有する芳香族ビニル化合物としては、α-メチルスチレン、α-メチル-4-メチルスチレン、α-メチル-4-エチルスチレン、1,1-ジフェニルエチレンが好ましい。 Further, the α-position carbon (α-carbon) of the aromatic ring in the aromatic vinyl compound may be a quaternary carbon. When the α-carbon is a quaternary carbon, examples of the substituent bonded to the α-carbon include a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, an isobutyl group, and a sec-butyl group. And alkyl groups having 1 to 4 carbon atoms such as tert-butyl group; halogenated alkyl groups having 1 to 4 carbon atoms such as chloromethyl group, 2-chloroethyl group and 3-chloroethyl group; . As the aromatic vinyl compound having these substituents, α-methylstyrene, α-methyl-4-methylstyrene, α-methyl-4-ethylstyrene, and 1,1-diphenylethylene are preferable.
 重合体ブロック(S)の芳香環にイオン伝導性基を導入する観点から、前記の芳香族ビニル化合物の芳香環上にはイオン伝導性基を導入する反応を阻害する官能基がないことが望ましい。例えば、スチレンの芳香環上の水素(特に4位の水素)がアルキル基(特に炭素数3以上のアルキル基)等で置換されているとイオン伝導性基の導入が困難な場合があるため、芳香環は、他の官能基で置換されていないか、アリール基のようにそれ自体がイオン伝導性基を導入可能な置換基で置換されていることが好ましい。イオン伝導性基の導入容易性、スルホン酸基の高密度化等の観点から、スチレン、α-メチルスチレン、4-メチルスチレン、4-エチルスチレン、ビニルビフェニルがより好ましい。 From the viewpoint of introducing an ion conductive group into the aromatic ring of the polymer block (S 0 ), there is no functional group on the aromatic ring of the aromatic vinyl compound that inhibits the reaction for introducing the ion conductive group. desirable. For example, if hydrogen on the aromatic ring of styrene (particularly hydrogen at the 4-position) is substituted with an alkyl group (particularly an alkyl group having 3 or more carbon atoms) or the like, it may be difficult to introduce an ion conductive group. It is preferable that the aromatic ring is not substituted with another functional group, or is substituted with a substituent capable of introducing an ion conductive group itself, such as an aryl group. Styrene, α-methyl styrene, 4-methyl styrene, 4-ethyl styrene, and vinyl biphenyl are more preferable from the viewpoint of easy introduction of ion conductive groups and high density of sulfonic acid groups.
 重合体ブロック(S)は、本発明の効果を損なわない範囲内で芳香族ビニル化合物以外の1種以上の他の単量体由来の構造単位を含んでいてもよい。かかる他の単量体としては、例えば、ブタジエン、1,3-ペンタジエン、イソプレン、1,3-ヘキサジエン、2,4-ヘキサジエン、2,3-ジメチル-1,3-ブタジエン、2-エチル-1,3-ブタジエン、1,3-ヘプタジエンのような炭素数4~8の共役ジエン;エチレン、プロピレン、1-ブテン、2-ブテン、イソブテン、1-ペンテン、2-ペンテン、1-ヘキセン、2-ヘキセン、1-ヘプテン、2-ヘプテン、1-オクテン、2-オクテンのような炭素数2~8のアルケン;(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸ブチルのような(メタ)アクリル酸エステル;酢酸ビニル、プロピオン酸ビニル、酪酸ビニル、ピバリン酸ビニルのようなビニルエステル;メチルビニルエーテル、イソブチルビニルエーテルのようなビニルエーテル等が挙げられる。芳香族ビニル化合物と、前記他の単量体との共重合形態はランダム共重合であることが望ましい。前記他の単量体は、重合体ブロック(S)を形成できる単量体の10質量%以下であることが好ましく、5質量%以下であることがより好ましい。 The polymer block (S 0 ) may contain a structural unit derived from one or more other monomers other than the aromatic vinyl compound as long as the effects of the present invention are not impaired. Examples of such other monomers include butadiene, 1,3-pentadiene, isoprene, 1,3-hexadiene, 2,4-hexadiene, 2,3-dimethyl-1,3-butadiene, and 2-ethyl-1. C4-C8 conjugated dienes such as 1,3-butadiene, 1,3-heptadiene; ethylene, propylene, 1-butene, 2-butene, isobutene, 1-pentene, 2-pentene, 1-hexene, 2- Alkenes having 2 to 8 carbon atoms such as hexene, 1-heptene, 2-heptene, 1-octene and 2-octene; such as methyl (meth) acrylate, ethyl (meth) acrylate and butyl (meth) acrylate (Meth) acrylic acid esters; vinyl esters such as vinyl acetate, vinyl propionate, vinyl butyrate, vinyl pivalate; methyl vinyl ether, Vinyl ether such as source-butyl vinyl ether. The copolymerization form of the aromatic vinyl compound and the other monomer is desirably random copolymerization. The other monomer is preferably 10% by mass or less, and more preferably 5% by mass or less of the monomer capable of forming the polymer block (S 0 ).
 重合体ブロック(S)が有するイオン伝導性基としては、スルホン酸基、リン酸基、カルボン酸基等が挙げられ、このうち、スルホン酸基が好ましい。 Examples of the ion conductive group possessed by the polymer block (S) include a sulfonic acid group, a phosphoric acid group, and a carboxylic acid group, and among these, a sulfonic acid group is preferable.
 イオン伝導性基の導入量は、特に制限されないが、ブロック共重合体(Z)のハンドリング性や溶媒への溶解性、イオン伝導性、得られるセンサの性能の観点から、重合体ブロック(S)を構成する芳香環に対するイオン伝導性基の割合(以下、「イオン伝導性基導入率」と称する)は10~100mol%の範囲が好ましく、20~80mol%の範囲がより好ましく、30~60mol%の範囲がさらに好ましい。イオン伝導性基導入率が10mol%よりも低いと、イオン伝導性が不十分となり、得られるセンサの性能が低下するので好ましくない。 The introduction amount of the ion conductive group is not particularly limited, but from the viewpoint of the handling property of the block copolymer (Z), the solubility in a solvent, the ion conductivity, and the performance of the obtained sensor, the polymer block (S) The ratio of the ion conductive group to the aromatic ring constituting the ring (hereinafter referred to as “ion conductive group introduction rate”) is preferably in the range of 10 to 100 mol%, more preferably in the range of 20 to 80 mol%, and 30 to 60 mol%. The range of is more preferable. When the ion conductive group introduction rate is lower than 10 mol%, the ion conductivity becomes insufficient, and the performance of the obtained sensor is lowered, which is not preferable.
 ブロック共重合体(Z)の構成成分である重合体ブロック(T)は、不飽和炭化水素化合物に由来する構造単位を含有する非晶性の重合体ブロックである。ここで「非晶性」とは、ブロック共重合体(Z)の動的粘弾性を測定して、結晶性オレフィン重合体由来の貯蔵弾性率の変化がないことによって確認できる。 The polymer block (T) which is a constituent component of the block copolymer (Z) is an amorphous polymer block containing a structural unit derived from an unsaturated hydrocarbon compound. Here, “amorphous” can be confirmed by measuring the dynamic viscoelasticity of the block copolymer (Z) and confirming that there is no change in the storage elastic modulus derived from the crystalline olefin polymer.
 重合体ブロック(T)を形成できる単量体は、重合性の炭素-炭素二重結合を有する不飽和炭化水素化合物であれば特に限定されないが、鎖式不飽和炭化水素化合物が好ましく、例えば、エチレン、プロピレン、1-ブテン、2-ブテン、イソブテン、1-ペンテン、2-ペンテン、1-ヘキセン、2-ヘキセン、1-ヘプテン、2-ヘプテン、1-オクテン、2-オクテンのような炭素数2~8のオレフィン;ブタジエン、1,3-ペンタジエン、イソプレン、1,3-ヘキサジエン、2,4-ヘキサジエン、2,3-ジメチル-1,3-ブタジエン、2-エチル-1,3-ブタジエン、1,3-ヘプタジエンのような炭素数4~8の共役ジエン化合物等が挙げられる。前記単量体が重合性の炭素-炭素二重結合を複数有する場合にはそのいずれが重合に用いられてもよく、例えば、共役ジエン化合物の場合には1,2-結合であってもよく、1,4-結合であってもよく、これらが混ざっていてもよい。 The monomer capable of forming the polymer block (T) is not particularly limited as long as it is an unsaturated hydrocarbon compound having a polymerizable carbon-carbon double bond, but is preferably a chain unsaturated hydrocarbon compound, for example, Carbon number such as ethylene, propylene, 1-butene, 2-butene, isobutene, 1-pentene, 2-pentene, 1-hexene, 2-hexene, 1-heptene, 2-heptene, 1-octene, 2-octene 2-8 olefins; butadiene, 1,3-pentadiene, isoprene, 1,3-hexadiene, 2,4-hexadiene, 2,3-dimethyl-1,3-butadiene, 2-ethyl-1,3-butadiene, Examples thereof include conjugated diene compounds having 4 to 8 carbon atoms such as 1,3-heptadiene. When the monomer has a plurality of polymerizable carbon-carbon double bonds, any of them may be used for polymerization. For example, in the case of a conjugated diene compound, it may be a 1,2-bond. 1,4-bond may be used, or these may be mixed.
 重合体ブロック(T)を形成できる前記単量体は1種を単独で用いてもよく、2種以上を併用してもよい。2種以上を併用する場合は、重合体ブロック(T)を構成する構造単位の配列はランダムであることが好ましい。 The said monomer which can form a polymer block (T) may be used individually by 1 type, and may use 2 or more types together. When using 2 or more types together, it is preferable that the arrangement | sequence of the structural unit which comprises a polymer block (T) is random.
 また、重合体ブロック(T)は、前記単量体以外に、本発明の効果を損なわない範囲内で他の単量体由来の構造単位を含有してもよい。かかる他の単量体としては、例えばスチレン、ビニルナフタレンのような芳香族ビニル化合物;塩化ビニルのようなハロゲン含有ビニル化合物;酢酸ビニル、プロピオン酸ビニル、酪酸ビニル、ピバリン酸ビニルのようなビニルエステル;メチルビニルエーテル、イソブチルビニルエーテルのようなビニルエーテル等が挙げられる。この場合、重合体ブロック(T)を形成する構造単位の配列はランダムであることが好ましい。前記他の単量体由来の構造単位は、重合体ブロック(T)の5質量%以下であることが好ましい。 The polymer block (T) may contain a structural unit derived from another monomer within the range not impairing the effects of the present invention, in addition to the monomer. Examples of such other monomers include aromatic vinyl compounds such as styrene and vinyl naphthalene; halogen-containing vinyl compounds such as vinyl chloride; vinyl esters such as vinyl acetate, vinyl propionate, vinyl butyrate, and vinyl pivalate. And vinyl ethers such as methyl vinyl ether and isobutyl vinyl ether. In this case, the arrangement of the structural units forming the polymer block (T) is preferably random. The structural unit derived from the other monomer is preferably 5% by mass or less of the polymer block (T).
 ブロック共重合体(Z)は、重合体ブロック(S)と重合体ブロック(T)とを、それぞれ1個以上有している。重合体ブロック(S)を複数個有する場合、それらの構造(構成する単量体の種類、重合度、イオン伝導性基の種類や導入割合等)は、互いに同じであってもよく、異なっていてもよい。また、重合体ブロック(T)を複数個有する場合、それらの構造(構成する単量体の種類、重合度等)は、互いに同じであってもよく、異なっていてもよい。 The block copolymer (Z) has at least one polymer block (S) and one polymer block (T). In the case of having a plurality of polymer blocks (S), their structures (type of monomer constituting, degree of polymerization, type of ion conductive group, introduction ratio, etc.) may be the same or different. May be. Moreover, when it has two or more polymer blocks (T), those structures (a kind of monomer to comprise, a polymerization degree, etc.) may mutually be the same, and may differ.
 当該ブロック共重合体(Z)における、重合体ブロック(S)と重合体ブロック(T)との配列の例として、S-T型ジブロック共重合体(S、Tはそれぞれ、重合体ブロック(S)、重合体ブロック(T)を表す。以下、同様である)、S-T-S型トリブロック共重合体、T-S-T型トリブロック共重合体、S-T-S型トリブロック共重合体またはT-S-T型トリブロック共重合体とS-T型ジブロック共重合体との混合物等が挙げられる。本発明に用いるセンサ5に構成される高分子電解質膜1において、これらのブロック共重合体は、それぞれ単独で用いても2種以上組み合わせて用いてもよい。 As an example of the arrangement of the polymer block (S) and the polymer block (T) in the block copolymer (Z), an ST type diblock copolymer (S and T are polymer blocks ( S) represents a polymer block (T), the same applies hereinafter), a STS type triblock copolymer, a TST type triblock copolymer, a STS type triblock copolymer. Examples thereof include a block copolymer or a mixture of a TST type triblock copolymer and a ST type diblock copolymer. In the polymer electrolyte membrane 1 configured in the sensor 5 used in the present invention, these block copolymers may be used alone or in combination of two or more.
 前記ブロック共重合体(Z)においては、重合体ブロック(S)の合計量と重合体ブロック(T)との合計量の質量比は、15:85~85:15の範囲が好ましく、20:80~80:20であるのがより好ましく、25:75~75:25であるのがさらに好ましい。ブロック共重合体(Z)における重合体ブロック(S)の割合が15質量%を下回る場合は、センサの出力が低下するため好ましくない。また、ブロック共重合体(Z)における重合体ブロック(S)の割合が85質量%を上回る場合は、センサの柔軟性を喪失するため好ましくない。 In the block copolymer (Z), the mass ratio of the total amount of the polymer block (S) and the total amount of the polymer block (T) is preferably in the range of 15:85 to 85:15, and 20: It is more preferably 80 to 80:20, and further preferably 25:75 to 75:25. When the ratio of the polymer block (S) in the block copolymer (Z) is less than 15% by mass, the output of the sensor decreases, which is not preferable. Moreover, since the softness | flexibility of a sensor is lost when the ratio of the polymer block (S) in a block copolymer (Z) exceeds 85 mass%, it is unpreferable.
 本発明に用いるセンサ5に構成される高分子電解質膜1を形成するブロック共重合体(Z)は、重合体ブロック(S)と重合体ブロック(T)とからなるブロック共重合体(Z)を製造した後、重合体ブロック(S)にイオン伝導性基を導入する方法を用いることができる。 The block copolymer (Z) forming the polymer electrolyte membrane 1 configured in the sensor 5 used in the present invention is a block copolymer (Z) composed of a polymer block (S 0 ) and a polymer block (T). 0 ) can be used, and a method of introducing an ion conductive group into the polymer block (S 0 ) can be used.
 前記ブロック共重合体(Z)においては、重合体ブロック(S)の合計量と重合体ブロック(T)との質量比は、10:90~80:20の範囲が好ましく、15:85~75:25であるのがより好ましく、20:80~70:30であるのがさらに好ましい。ブロック共重合体(Z)における重合体ブロック(S)の割合が10質量%を下回る場合は、センサの出力が低下するため好ましくない。また、ブロック共重合体(Z)における重合体ブロック(S)の割合が80質量%を上回る場合は、センサの柔軟性を喪失するため好ましくない。なお、かかるブロック共重合体(Z)における重合体ブロック(S)の合計量と重合体ブロック(T)の合計量との質量比および重合体ブロック(S)の割合は、H-NMRによって決定できる。 In the block copolymer (Z 0 ), the mass ratio of the total amount of the polymer block (S 0 ) and the polymer block (T) is preferably in the range of 10:90 to 80:20, and 15:85 More preferably, it is ˜75: 25, and further preferably 20:80 to 70:30. When the ratio of the polymer block (S 0 ) in the block copolymer (Z 0 ) is less than 10% by mass, the output of the sensor decreases, which is not preferable. Moreover, when the ratio of the polymer block (S 0 ) in the block copolymer (Z 0 ) exceeds 80% by mass, the flexibility of the sensor is lost, which is not preferable. The proportion of such block copolymer (Z 0) in the polymer block (S 0) of the total amount and the weight ratio and the polymer block of the polymer total weight of the block (T) (S 0) is, 1 H -Can be determined by NMR.
 ブロック共重合体(Z)の製造方法は、構成する単量体の種類、分子量等によって、ラジカル重合法、アニオン重合法、カチオン重合法、配位重合法等から適宜選択されるが、工業的な容易さから、ラジカル重合法、アニオン重合法あるいはカチオン重合法が好ましく選択される。特に、分子量、分子量分布等の観点からいわゆるリビング重合法が好ましく、具体的にはリビングラジカル重合法、リビングアニオン重合法、およびリビングカチオン重合法が好ましい。 The production method of the block copolymer (Z 0 ) is appropriately selected from radical polymerization method, anion polymerization method, cationic polymerization method, coordination polymerization method, etc. depending on the kind of monomer constituting, molecular weight, etc. The radical polymerization method, the anionic polymerization method, or the cationic polymerization method is preferably selected from the viewpoint of practical ease. In particular, a so-called living polymerization method is preferable from the viewpoint of molecular weight, molecular weight distribution, and the like, and specifically, a living radical polymerization method, a living anion polymerization method, and a living cation polymerization method are preferable.
 重合体ブロック(S)と重合体ブロック(T)とからなるブロック共重合体(Z)の製造方法の具体例として、重合体ブロック(S)がスチレン、α-メチルスチレン、t-ブチルスチレン等の芳香族ビニル化合物から形成され、重合体ブロック(T)が共役ジエンまたはイソブテンから形成されてなるブロック共重合体(Z)の製造方法について述べる。この場合、工業的容易さ、分子量、分子量分布、重合体ブロック(S)、重合体ブロック(T)との結合の容易さ等からリビングアニオン重合法またはリビングカチオン重合法で製造するのが好ましく、次のような具体的な合成例が示される。 As a specific example of the method for producing a block copolymer (Z 0 ) comprising a polymer block (S 0 ) and a polymer block (T), the polymer block (S 0 ) is styrene, α-methylstyrene, t- A method for producing a block copolymer (Z 0 ) formed from an aromatic vinyl compound such as butylstyrene and having a polymer block (T) formed from a conjugated diene or isobutene will be described. In this case, it is preferable to produce by a living anionic polymerization method or a living cationic polymerization method from the viewpoint of industrial ease, molecular weight, molecular weight distribution, polymer block (S 0 ), ease of bonding with the polymer block (T), and the like. The following specific synthesis examples are shown.
 ブロック共重合体(Z)をリビングアニオン重合によって製造する方法としては、以下の(1)~(4)の方法が採用される。 As a method for producing the block copolymer (Z 0 ) by living anionic polymerization, the following methods (1) to (4) are employed.
 (1)シクロヘキサン等の非極性溶媒中でアニオン重合開始剤の存在下、20~100℃の温度条件下で、芳香族ビニル化合物、共役ジエン、芳香族ビニル化合物を逐次重合させS-T-S型ブロック共重合体(Z)を得る。 (1) the presence of an anionic polymerization initiator in a nonpolar solvent such as cyclohexane, at a temperature of 20 ~ 100 ° C., an aromatic vinyl compound, a conjugated diene, by sequential polymerization of an aromatic vinyl compound S 0 -T- An S 0 type block copolymer (Z 0 ) is obtained.
 (2)シクロヘキサン等の非極性溶媒中でアニオン重合開始剤の存在下、20~100℃の温度条件下で芳香族ビニル化合物、共役ジエンを逐次重合させた後、安息香酸フェニル等のカップリング剤を添加してS-T-S型ブロック共重合体(Z)を得る。 (2) A coupling agent such as phenyl benzoate after sequential polymerization of an aromatic vinyl compound and a conjugated diene in a nonpolar solvent such as cyclohexane in the presence of an anionic polymerization initiator at a temperature of 20 to 100 ° C. Is added to obtain a S 0 -T—S 0 type block copolymer (Z 0 ).
 (3)シクロヘキサン等の非極性溶媒中でアニオン重合開始剤として有機リチウム化合物の存在下、0.1~10質量%濃度の極性化合物の存在下、-30~30℃の温度にて、5~50質量%濃度の芳香族ビニル化合物を重合させ、得られるリビングポリマーに共役ジエンを重合させた後、安息香酸フェニル等のカップリング剤を添加して、S-T-S型ブロック共重合体(Z)を得る。 (3) In the presence of an organolithium compound as an anionic polymerization initiator in a nonpolar solvent such as cyclohexane, in the presence of a polar compound having a concentration of 0.1 to 10% by mass, at a temperature of −30 to 30 ° C., 5 to After polymerizing an aromatic vinyl compound having a concentration of 50% by mass and polymerizing a conjugated diene to the resulting living polymer, a coupling agent such as phenyl benzoate is added to form a S 0 -TS 0 type block copolymer. The coalescence (Z 0 ) is obtained.
 (4)シクロヘキサン等の非極性溶媒中でアニオン重合開始剤の存在下、20~100℃の温度条件下で、t-ブチルスチレン、スチレン、共役ジエンを所望の順番で各1回以上逐次添加し、3種類以上の重合体ブロックからなるブロック共重合体(Z)を得る。 (4) t-butylstyrene, styrene, and conjugated diene are sequentially added one or more times in the desired order in the presence of an anionic polymerization initiator in a nonpolar solvent such as cyclohexane at a temperature of 20 to 100 ° C. A block copolymer (Z 0 ) comprising three or more types of polymer blocks is obtained.
 ブロック共重合体(Z)をリビングカチオン重合によって製造する方法としては、(5)ハロゲン化炭化水素および炭化水素の混合溶媒中、-78℃で、2官能性カチオン重合開始剤を用いて、ルイス酸存在下、イソブテンをカチオン重合させた後、スチレン等の芳香族ビニル化合物を重合させて、S-T-S型ブロック共重合体(Z)を得る方法(Macromol.Chem.,Macromol.Symp.32,119(1990).)等が採用される。 As a method for producing the block copolymer (Z 0 ) by living cationic polymerization, (5) using a bifunctional cationic polymerization initiator at −78 ° C. in a mixed solvent of halogenated hydrocarbon and hydrocarbon, A method in which isobutene is cationically polymerized in the presence of a Lewis acid and then an aromatic vinyl compound such as styrene is polymerized to obtain a S 0 -TS 0 type block copolymer (Z 0 ) (Macromol. Chem., Macromol. Symp. 32, 119 (1990).
 重合体ブロック(T)を形成する単量体として、炭素-炭素二重結合(不飽和結合)を複数有する不飽和炭化水素化合物を用いる場合、通常、重合したのちに、不飽和結合が残存している。この場合、残存する不飽和結合の一部または全部を、公知の水素添加反応によって飽和結合に変換してもよい。炭素-炭素二重結合の水素添加率は、一般に用いられている方法、例えば、1H-NMR測定によって算出することができる。炭素-炭素二重結合の水素添加率は、50モル%以上が好ましく、80モル%以上がより好ましい。 When an unsaturated hydrocarbon compound having a plurality of carbon-carbon double bonds (unsaturated bonds) is used as the monomer for forming the polymer block (T), the unsaturated bond usually remains after polymerization. ing. In this case, some or all of the remaining unsaturated bonds may be converted to saturated bonds by a known hydrogenation reaction. The hydrogenation rate of the carbon-carbon double bond can be calculated by a commonly used method, for example, 1 H-NMR measurement. The hydrogenation rate of the carbon-carbon double bond is preferably 50 mol% or more, and more preferably 80 mol% or more.
 ブロック共重合体(Z)の数平均分子量は、イオン伝導性基を導入した後には測定が難しいため、スルホン酸基導入前のブロック共重合体(Z)の数平均分子量を指標としてもよい。その場合において、ブロック共重合体(Z)の数平均分子量は、3000~300000の範囲が好ましく、10000~200000の範囲がより好ましい。ブロック共重合体(Z)の数平均分子量が3000よりも小さい場合には、高分子電解質膜の機械的強度が劣るため好ましくなく、300000よりも大きい場合には、溶媒への溶解性が低下するため好ましくない。 Since the number average molecular weight of the block copolymer (Z) is difficult to measure after the ion conductive group is introduced, the number average molecular weight of the block copolymer (Z 0 ) before the introduction of the sulfonic acid group may be used as an index. . In that case, the number average molecular weight of the block copolymer (Z 0 ) is preferably in the range of 3000 to 300000, and more preferably in the range of 10,000 to 200000. When the number average molecular weight of the block copolymer (Z 0 ) is smaller than 3000, it is not preferable because the mechanical strength of the polymer electrolyte membrane is inferior. When it is larger than 300000, the solubility in a solvent is lowered. Therefore, it is not preferable.
 次に、ブロック共重合体(Z)にスルホン酸基を導入してブロック共重合体(Z)を製造する方法について述べる。イオン伝導性基の導入は、公知の方法を用いることができる。 Next, a method for producing a block copolymer (Z) by introducing a sulfonic acid group into the block copolymer (Z 0 ) will be described. A known method can be used to introduce the ion conductive group.
 以下、イオン伝導性基として、スルホン酸基を導入する場合について説明する。 Hereinafter, a case where a sulfonic acid group is introduced as an ion conductive group will be described.
 ブロック共重合体(Z)にスルホン酸基を導入する場合、通常、ブロック共重合体(Z)と後述するスルホン化剤とを溶媒の存在下または不存在下で反応させる。溶媒を用いる場合、通常、ブロック共重合体(Z)の溶液または懸濁液を調製したのち、スルホン化剤を添加して混合する。 When introducing a sulfonic acid group in the block copolymer (Z 0), typically it is reacted with sulfonating agent to be described later with block copolymer (Z 0) in the presence or absence of a solvent. If a solvent is used, usually, after preparing a solution or suspension of the block copolymer (Z 0), added to and mixed with sulfonating agent.
 スルホン化剤としては、硫酸;硫酸と脂肪族酸無水物との混合物系;クロロスルホン酸;クロロスルホン酸と塩化トリメチルシリルとの混合物系;三酸化硫黄;三酸化硫黄とトリエチルホスフェートとの混合物系;2,4,6-トリメチルベンゼンスルホン酸に代表される芳香族有機スルホン酸等が例示される。また、使用する有機溶媒としては、塩化メチレン等のハロゲン化炭化水素、ヘキサン等の直鎖脂肪族炭化水素、シクロヘキサン等の環状脂肪族炭化水素等が例示でき、必要に応じて複数の組み合わせから、適宜選択して使用してもよい。 As the sulfonating agent, sulfuric acid; a mixed system of sulfuric acid and an aliphatic acid anhydride; a chlorosulfonic acid; a mixed system of chlorosulfonic acid and trimethylsilyl chloride; a sulfur trioxide; a mixed system of sulfur trioxide and triethyl phosphate; Examples thereof include aromatic organic sulfonic acids represented by 2,4,6-trimethylbenzenesulfonic acid. Examples of the organic solvent to be used include halogenated hydrocarbons such as methylene chloride, linear aliphatic hydrocarbons such as hexane, cyclic aliphatic hydrocarbons such as cyclohexane, and the like. You may select and use suitably.
 高分子電解質膜1は、ブロック共重合体(Z)のみからなることが好ましいが、本発明の効果を損なわない限り、任意成分として他の樹脂、軟化剤、水、有機溶媒、各種添加剤を含有してもよい。 The polymer electrolyte membrane 1 is preferably composed only of the block copolymer (Z). However, as long as the effects of the present invention are not impaired, other resins, softeners, water, organic solvents, and various additives are added as optional components. You may contain.
 高分子電解質膜1の作製方法に特に限定はない。例えば、ブロック共重合体(Z)および必要に応じて前記の任意成分を適当な溶媒と混合して調製したブロック共重合体(Z)の溶液または懸濁液をガラス等の板状体の上に注型したり、コーターやアプリケーター等を用いて塗布したりスクリーン印刷機等を用いて印刷したりしたのち、溶媒を除去することで高分子電解質膜1を得ることができる。 There is no particular limitation on the method for producing the polymer electrolyte membrane 1. For example, a solution or suspension of the block copolymer (Z) and, if necessary, the block copolymer (Z) prepared by mixing the above-mentioned optional components with an appropriate solvent is placed on a plate such as glass. The polymer electrolyte membrane 1 can be obtained by removing the solvent after being cast into a film, applied using a coater or applicator, or printed using a screen printer or the like.
 溶媒としては、ジクロロメタン等のハロゲン化炭化水素;トルエン、キシレン、ベンゼン、イソプロピルベンゼン、ジイソプロピルベンゼン等の芳香族炭化水素;ヘキサン、ヘプタン、シクロヘキサン等の脂肪族炭化水素;テトラヒドロフラン等のエーテル;メタノール、エタノール、1-プロパノール、2-プロパノール、1-ブタノール、2-メチル-1-プロパノール、1-ヘキサノール等のアルコール;あるいはこれらの混合溶媒が挙げられ、芳香族炭化水素とアルコールとの混合溶媒が好ましい。 Solvents include halogenated hydrocarbons such as dichloromethane; aromatic hydrocarbons such as toluene, xylene, benzene, isopropylbenzene, and diisopropylbenzene; aliphatic hydrocarbons such as hexane, heptane, and cyclohexane; ethers such as tetrahydrofuran; methanol, ethanol , Alcohols such as 1-propanol, 2-propanol, 1-butanol, 2-methyl-1-propanol, 1-hexanol; or a mixed solvent thereof, and a mixed solvent of an aromatic hydrocarbon and an alcohol is preferable.
 溶媒の使用量に特に制限はないが、ブロック共重合体(Z)の20倍以下であることが好ましい。溶媒を除去する条件は、ブロック共重合体(Z)が分解しない条件であれば特に制限はない。例えば、60~140℃の範囲で熱風乾燥する方法;10~30℃の範囲で常圧下にて乾燥した後、さらに60~140℃(特に80~120℃)の範囲で熱風乾燥する方法;10~30℃の範囲で常圧下にて乾燥した後、さらに25~40℃の範囲で減圧下にて乾燥する方法;10~30℃の範囲で常圧下にて乾燥した後、さらに60~140℃(特に80~120℃)の範囲で常圧下にて乾燥する方法等が挙げられる。 Although there is no restriction | limiting in particular in the usage-amount of a solvent, It is preferable that it is 20 times or less of a block copolymer (Z). The conditions for removing the solvent are not particularly limited as long as the block copolymer (Z) is not decomposed. For example, a method of drying with hot air in the range of 60 to 140 ° C .; a method of drying under normal pressure in the range of 10 to 30 ° C., and further drying with hot air in the range of 60 to 140 ° C. (especially 80 to 120 ° C.); 10 A method of drying under normal pressure in the range of -30 ° C and further drying under reduced pressure in the range of 25-40 ° C; after drying under normal pressure in the range of 10-30 ° C, further 60-140 ° C Examples thereof include a method of drying under normal pressure in the range of (especially 80 to 120 ° C.).
 製膜性の観点から、10~30℃の範囲で常圧下にて乾燥させた後、さらに80~120℃で常圧下にて乾燥する方法が好ましい。 From the viewpoint of film forming properties, a method of drying under normal pressure in the range of 10 to 30 ° C. and further drying under normal pressure at 80 to 120 ° C. is preferable.
 また、ブロック共重合体(Z)を圧縮成形、ロール成形、押出成形、射出成形等によって成形し、高分子電解質膜1としてもよい。 Alternatively, the block copolymer (Z) may be molded by compression molding, roll molding, extrusion molding, injection molding, or the like to form the polymer electrolyte membrane 1.
 センサ5に用いられる電極膜2aおよび電極膜2bは、高分子電解質膜1によって絶縁されている。電極膜2aおよび電極膜2bは、導電性粒子および樹脂を含有する組成物からなり、該組成物は、樹脂からなるマトリックス中に導電性粒子が分散してなることが好ましい。また、電極膜2aおよび電極膜2bは、高分子電解質膜1の弾性変形を妨げないため、柔軟であることが好ましい。また、センサ5の弾性変形に伴い、電極膜2aおよび電極膜2bと高分子電解質膜1との界面が剥離しないことが好ましい。さらに、例えば歯軋り等に伴う筋肉運動を検知する場合は、弾性変形した瞬間だけでなく、弾性変形状態が続く間、連続的に電気信号が発信されることが好ましい。以上の観点から、電極膜2aおよび電極膜2bを形成する組成物が含有する前記樹脂は、ブロック共重合体(Z)からなることが好ましい。 The electrode film 2 a and the electrode film 2 b used for the sensor 5 are insulated by the polymer electrolyte film 1. The electrode film 2a and the electrode film 2b are made of a composition containing conductive particles and a resin, and the composition is preferably formed by dispersing conductive particles in a matrix made of a resin. The electrode film 2a and the electrode film 2b are preferably flexible because they do not hinder elastic deformation of the polymer electrolyte membrane 1. Moreover, it is preferable that the interface of the electrode film 2a and the electrode film 2b, and the polymer electrolyte membrane 1 does not peel with the elastic deformation of the sensor 5. Furthermore, for example, when detecting a muscular movement associated with a toothpaste or the like, it is preferable that an electrical signal is continuously transmitted not only at the moment of elastic deformation but also during the elastic deformation state. From the above viewpoint, it is preferable that the resin contained in the composition forming the electrode film 2a and the electrode film 2b is made of a block copolymer (Z).
 一定期間、弾性変形状態を保持した場合における電気信号の保持時間は、センサ5の大きさにより異なるものであり、センサ5の面積が大きいほど、電気信号をより継続して発生することができる。センサ5の面積としては、筋肉運動に伴う皮膚面の動きに対して全体が曲がる適度の大きさであることが必要であり、検知対象により適宜選択される。 The holding time of the electric signal when the elastically deformed state is held for a certain period varies depending on the size of the sensor 5, and the larger the area of the sensor 5, the more the electric signal can be generated. The area of the sensor 5 needs to be an appropriate size that can bend as a whole with respect to the movement of the skin surface associated with muscle exercise, and is appropriately selected depending on the detection target.
 高分子電解質膜1並びに電極膜2aおよび電極膜2bに用いることができるブロック共重合体(Z)は、構成する繰り返し単位、重合体ブロックの比率、重合体ブロックの配列、数平均分子量、イオン伝導性基の種類、イオン伝導性基導入率等が、同じであってもよく、異なっていてもよい。 The block copolymer (Z) that can be used for the polymer electrolyte membrane 1 and the electrode membranes 2a and 2b is composed of repeating units, ratio of polymer blocks, arrangement of polymer blocks, number average molecular weight, ion conduction. The kind of the functional group, the ion conductive group introduction rate, and the like may be the same or different.
 電極膜2aおよび電極膜2bに用いる導電性粒子としては、金、銀、銅、白金、アルミニウム、ニッケル等の金属;酸化ルテニウム(RuO)、酸化チタン(TiO)、酸化スズ(SnO)、二酸化イリジウム(IrO)、酸化タンタル(Ta)、インジウム-スズ複合酸化物(ITO)等の金属酸化物;硫化亜鉛(ZnS)等の金属硫化物;カーボンブラック(例えばケッチェンブラック(登録商標)等)、カーボンナノチューブ等の導電性カーボン;ポリアセチレン、ポリピロール、ポリチオフェン等の導電性高分子からなる粒子が挙げられ、取扱いの容易性の観点からは導電性カーボンが好ましい。これらは1種を単独で用いても、複数種を併用してもよい。 Examples of the conductive particles used for the electrode film 2a and the electrode film 2b include metals such as gold, silver, copper, platinum, aluminum, and nickel; ruthenium oxide (RuO 2 ), titanium oxide (TiO 2 ), and tin oxide (SnO 2 ). Metal oxides such as iridium dioxide (IrO 2 ), tantalum oxide (Ta 2 O 5 ) and indium-tin composite oxide (ITO); metal sulfides such as zinc sulfide (ZnS); carbon black (eg, Ketjen black) (Registered trademark), etc.), conductive carbon such as carbon nanotubes; particles made of conductive polymer such as polyacetylene, polypyrrole, polythiophene, and the like. From the viewpoint of easy handling, conductive carbon is preferable. These may be used individually by 1 type, or may use multiple types together.
 電極膜2aおよび電極膜2bを形成する組成物が含有する樹脂と導電性粒子との界面において電気二重層が形成され、センサ5の発する電気信号の強さと安定性を高める。したがって、該樹脂と導電性粒子との界面が多いと、センサ5の作用部に変形を与えた際に信号強度が向上すると共に、信号強度の値が安定する。かかる観点から電極膜2aおよび電極膜2bを形成する組成物における樹脂と導電性粒子との比率は、質量比で1:1~10:1が好ましく、2:1~7:1がより好ましい。樹脂に対する導電性粒子の添加量が少なすぎる場合は、電気二重層の形成が不十分であるため信号強度が低下する。一方、樹脂に対する導電性粒子の添加量が多すぎる場合は、電極膜2aおよび電極膜2bの導電性が向上し、電気二重層の形成が阻害されるため信号強度が低下する。 An electric double layer is formed at the interface between the resin and the conductive particles contained in the composition forming the electrode film 2a and the electrode film 2b, and the strength and stability of the electric signal emitted from the sensor 5 is increased. Therefore, if there are many interfaces between the resin and the conductive particles, the signal strength is improved and the value of the signal strength is stabilized when the action portion of the sensor 5 is deformed. From this viewpoint, the ratio of the resin to the conductive particles in the composition forming the electrode film 2a and the electrode film 2b is preferably 1: 1 to 10: 1, more preferably 2: 1 to 7: 1. When the amount of the conductive particles added to the resin is too small, the signal strength decreases because the electric double layer is not sufficiently formed. On the other hand, when the amount of the conductive particles added to the resin is too large, the conductivity of the electrode film 2a and the electrode film 2b is improved and the formation of the electric double layer is inhibited, so that the signal intensity is lowered.
 前記電極膜2aおよび電極膜2bとなる成形体の成形方法は、導電性粒子を分散させる点を除けば、高分子電解質膜1の調製方法と同様である。 The molding method for forming the electrode film 2a and the electrode film 2b is the same as the method for preparing the polymer electrolyte membrane 1 except that the conductive particles are dispersed.
 高分子電解質膜1の両面に電極膜2aおよび電極膜2bを形成する方法としては、例えば、金属類の真空蒸着法、スパッタリング法や電気メッキ、化学メッキ法等で接合する方法や、電極材料を含むインキを塗布する方法、別途作製した電極を圧着、溶着する方法等が挙げられ、中でも加工性および汎用性の観点から、電極材料を含むインキを塗布する方法が好ましい。 As a method of forming the electrode film 2a and the electrode film 2b on both surfaces of the polymer electrolyte membrane 1, for example, a method of bonding by vacuum deposition method of metals, sputtering method, electroplating, chemical plating method, etc. The method of apply | coating the ink containing, the method of crimping | bonding and welding the electrode produced separately, etc. are mentioned, Especially the method of apply | coating the ink containing an electrode material from a viewpoint of workability and versatility is preferable.
 また、高分子電解質膜1の片面に電極膜2aまたは2bを形成して接合体としたのち、かかる接合体2枚を高分子電解質膜同士で貼り合わせることにより、2層からなる高分子電解質膜1の両面に2つの電極膜2aおよび電極膜2bをそれぞれ接合してもよい。かかる2層の高分子電解質膜1の材料および厚さは同じであっても異なっていてもよい。2枚の接合体を貼り合わせる方法は熱圧着が好ましい。また、後に述べる保護膜4aおよび保護膜4bの片面に電極膜2aおよび電極膜2bを形成し、その電極膜上に高分子電解質膜1を形成してもよい。 Further, after forming the electrode film 2a or 2b on one surface of the polymer electrolyte membrane 1 to form a joined body, the two joined bodies are bonded to each other by polymer electrolyte membranes, thereby forming a polymer electrolyte membrane having two layers. Two electrode films 2a and 2b may be bonded to both sides of one. The material and thickness of the two-layer polymer electrolyte membrane 1 may be the same or different. The method of bonding the two bonded bodies is preferably thermocompression bonding. Alternatively, the electrode film 2a and the electrode film 2b may be formed on one surface of the protective film 4a and the protective film 4b described later, and the polymer electrolyte membrane 1 may be formed on the electrode film.
 前記電極膜2aおよび電極膜2bの面抵抗を低減するため、図2に示すように上部の電極膜2aの表面に集電極3a、下部の電極膜2bの表面に集電極3bを形成することが好ましい。かかる集電極3aおよび集電極3bとしては、例えば、金、銀、銅、白金、アルミニウム等の金属箔や金属薄膜;金、銀、ニッケル等の金属粉またはカーボンパウダー、カーボンナノチューブ、炭素繊維等の炭素微粉とバインダー樹脂からなる成形体等を挙げることができる。なかでも可撓性の観点からは金属粉とバインダー樹脂とからなる膜状成形体であることが好ましい。 In order to reduce the surface resistance of the electrode film 2a and the electrode film 2b, a collector electrode 3a is formed on the surface of the upper electrode film 2a and a collector electrode 3b is formed on the surface of the lower electrode film 2b as shown in FIG. preferable. Examples of the collector electrode 3a and the collector electrode 3b include metal foils and metal thin films such as gold, silver, copper, platinum, and aluminum; metal powders such as gold, silver, and nickel; carbon powders, carbon nanotubes, and carbon fibers. Examples thereof include a molded body composed of carbon fine powder and a binder resin. Among these, from the viewpoint of flexibility, a film-like molded body made of a metal powder and a binder resin is preferable.
 かかる電極膜2aおよび電極膜2bを用いた場合、電極膜よりも導電性の高い集電極3aおよび集電極3bを電極膜2aおよび電極膜2bの表面に設けることで、電気信号の取り出しが良好になるので好ましい。集電極3aおよび集電極3bの厚さは、0.01~200μmの範囲が好ましく、0.05~100μmの範囲がより好ましく、0.1~20μmの範囲がさらに好ましい。集電極3aおよび集電極3bの厚さが0.01nm未満になると成膜が困難となり、200μmを超えると、集電極3aおよび集電極3bの可撓性が低下する。 When the electrode film 2a and the electrode film 2b are used, the electrical signal can be easily taken out by providing the collector electrode 3a and the collector electrode 3b having higher conductivity than the electrode film on the surfaces of the electrode film 2a and the electrode film 2b. This is preferable. The thickness of the collector electrode 3a and the collector electrode 3b is preferably in the range of 0.01 to 200 μm, more preferably in the range of 0.05 to 100 μm, and still more preferably in the range of 0.1 to 20 μm. When the thickness of the collecting electrode 3a and the collecting electrode 3b is less than 0.01 nm, film formation becomes difficult, and when the thickness exceeds 200 μm, the flexibility of the collecting electrode 3a and the collecting electrode 3b decreases.
 前記電極膜2aおよび電極膜2bに集電極3aおよび集電極3bを形成する方法としては、例えば、金属類の真空蒸着法、スパッタリング法や電気メッキ、化学メッキ法等で接合する方法や、電極材料を含むインキを塗布する方法、別途作製した電極を圧着、溶着する方法等が挙げられ、中でも加工性および汎用性の観点から、電極材料を含むインキを塗布する方法が好ましい。また、後に述べる保護膜4aおよび保護膜4bの片面に集電極3aおよび集電極3b、電極膜2aおよび電極膜2b、高分子電解質膜1を順次形成した接合体を2枚作製し、2枚の接合体の高分子電解質膜同士を熱圧着等により貼り合わせてもよい。 Examples of a method for forming the collecting electrode 3a and the collecting electrode 3b on the electrode film 2a and the electrode film 2b include a method of bonding by a vacuum deposition method of metal, sputtering method, electroplating, chemical plating method, etc. The method of apply | coating the ink containing this, the method of crimping | bonding and welding the electrode produced separately, etc. are mentioned, The method of apply | coating the ink containing an electrode material is especially preferable from a viewpoint of workability and versatility. In addition, two joined bodies in which the collector electrode 3a and the collector electrode 3b, the electrode film 2a and the electrode film 2b, and the polymer electrolyte membrane 1 are sequentially formed on one surface of the protective film 4a and the protective film 4b described later are manufactured. The polymer electrolyte membranes of the joined body may be bonded together by thermocompression bonding or the like.
 前記高分子電解質膜1並びに電極膜2aおよび電極膜2bを物理的に保護するため、図2に示すように高分子電解質膜1並びに電極膜2aおよび電極膜2bを覆う保護膜4aおよび保護膜4bを設けることが好ましい。保護膜4aおよび保護膜4bは、センサ5の支持体としても作用する。かかる保護膜4aおよび保護膜4bとしては、ポリエチレンテレフタレートフィルム、ポリエチレンナフタレートフィルム、ポリオレフィンフィルム、ポリウレタンフィルム、ポリ塩化ビニルフィルム、エラストマーフィルム等のポリマーフィルム;アラミド繊維、セルロース繊維、ナイロン繊維、ビニロン繊維、ポリエステル繊維、ポリオレフィン繊維、レーヨン繊維等の繊維からなる布帛(織布または不織布)を適宜用いることができる。 In order to physically protect the polymer electrolyte membrane 1, and the electrode membrane 2a and the electrode membrane 2b, as shown in FIG. 2, the protective membrane 4a and the protective membrane 4b covering the polymer electrolyte membrane 1, the electrode membrane 2a and the electrode membrane 2b Is preferably provided. The protective film 4 a and the protective film 4 b also function as a support for the sensor 5. Examples of the protective film 4a and protective film 4b include polyethylene terephthalate film, polyethylene naphthalate film, polyolefin film, polyurethane film, polyvinyl chloride film, polymer film such as elastomer film; aramid fiber, cellulose fiber, nylon fiber, vinylon fiber, A cloth (woven cloth or non-woven cloth) made of fibers such as polyester fiber, polyolefin fiber, rayon fiber, or the like can be used as appropriate.
 保護膜4aおよび保護膜4bの厚さは、5~350μmの範囲が好ましく、7.5~300μmがより好ましく、10~200μmが最も好ましい。保護膜4aおよび保護膜4bが薄すぎると厚さが不均一となり易く、厚すぎるとセンサ5の柔軟性が損なわれる傾向がある。 The thickness of the protective film 4a and the protective film 4b is preferably in the range of 5 to 350 μm, more preferably 7.5 to 300 μm, and most preferably 10 to 200 μm. If the protective film 4a and the protective film 4b are too thin, the thickness tends to be non-uniform, and if it is too thick, the flexibility of the sensor 5 tends to be impaired.
 保護膜4aおよび保護膜4bは、例えば、前記高分子電解質膜1を一対の電極膜2aおよび電極膜2bで挟持した接合体を、保護膜4aおよび保護膜4bでさらに挟持し、熱圧着等で貼り合わせることにより形成することができる。また、保護膜4aおよび保護膜4bの片面に電極膜2aおよび電極膜2b、高分子電解質膜1を順次積層形成した接合体を2枚作製し、2枚の接合体の高分子電解質膜同士を熱圧着等により貼り合わせてもよい。 The protective film 4a and the protective film 4b are formed by, for example, further sandwiching a joined body in which the polymer electrolyte membrane 1 is sandwiched between the pair of electrode films 2a and 2b with the protective film 4a and the protective film 4b. It can be formed by bonding. Further, two joined bodies in which the electrode film 2a, the electrode film 2b, and the polymer electrolyte membrane 1 are sequentially laminated on one side of the protective film 4a and the protective film 4b are manufactured, and the polymer electrolyte membranes of the two joined bodies are formed. You may stick together by thermocompression bonding.
 粘着手段6は、センサ5を、被験者の皮膚面に固定する手段である。粘着手段6はセンサ5の板状の外面の一方に配置する。粘着手段6としては、粘着剤、または粘着剤からなる粘着層と基材層とを有する粘着テープ等が挙げられる。粘着剤としては、公知の粘着剤、例えばゴム系粘着剤、アクリル系粘着剤、シリコーン系粘着剤、ウレタン系粘着剤等を用いることができる。粘着性の高さ、透湿性の高さ、および皮膚刺激性の低さの観点から、医療用の粘着剤からなる粘着層と基材層とを有する粘着テープが好ましい。例えば、住友スリーエム株式会社製の皮膚貼付用両面粘着テープ、具体的に製品番号1524、1504XL、1510、1522、1509等を用いることができる。 The adhesive means 6 is a means for fixing the sensor 5 to the subject's skin surface. The adhesive means 6 is disposed on one of the plate-like outer surfaces of the sensor 5. Examples of the adhesive means 6 include an adhesive, or an adhesive tape having an adhesive layer made of an adhesive and a base material layer. As the pressure-sensitive adhesive, known pressure-sensitive adhesives such as rubber-based pressure-sensitive adhesives, acrylic pressure-sensitive adhesives, silicone-based pressure-sensitive adhesives, urethane-based pressure-sensitive adhesives and the like can be used. From the viewpoint of high adhesiveness, high moisture permeability, and low skin irritation, an adhesive tape having an adhesive layer made of a medical adhesive and a base material layer is preferred. For example, a double-sided adhesive tape for skin application manufactured by Sumitomo 3M Limited, specifically, product numbers 1524, 1504XL, 1510, 1522, 1509, and the like can be used.
 粘着テープにおける粘着剤からなる粘着層の厚さは、5~500μmの範囲が好ましく、15~250μmがより好ましく、30~100μmが最も好ましい。粘着層の厚さが5μm以下になると、皮膚面と筋肉運動検知具10との密着力が低下して、筋肉運動検知具10が皮膚面から剥がれ易くなり、500μm以上になると、皮膚面の動きに対する筋肉運動検知具10の追従性が低下する。 The thickness of the adhesive layer made of an adhesive in the adhesive tape is preferably in the range of 5 to 500 μm, more preferably 15 to 250 μm, and most preferably 30 to 100 μm. When the thickness of the adhesive layer is 5 μm or less, the adhesion force between the skin surface and the muscle motion detector 10 is reduced, and the muscle motion detector 10 is easily peeled off from the skin surface. The follow-up performance of the muscle movement detector 10 with respect to the above is reduced.
 粘着手段6は、センサ5の外面の全体を皮膚面に貼り付ける観点から、皮膚面との接触面積を大きくすることが好ましい。粘着手段6と皮膚面との接触面積が前記センサ5の外面の面積より小さくなると、皮膚面の動きに対するセンサ5の追従性が低下し、さらには、皮膚面と筋肉運動検知具10との密着力が低下して、筋肉運動検知具10が皮膚面から剥がれ易くなる。 The adhesive means 6 preferably increases the contact area with the skin surface from the viewpoint of attaching the entire outer surface of the sensor 5 to the skin surface. When the contact area between the adhesive means 6 and the skin surface is smaller than the area of the outer surface of the sensor 5, the followability of the sensor 5 with respect to the movement of the skin surface decreases, and furthermore, the skin surface and the muscle motion detector 10 are in close contact with each other. The force is reduced, and the muscle motion detector 10 is easily peeled off from the skin surface.
 粘着手段6はセンサ5を皮膚面に固定するためにセンサ5の外面に配置される。センサ5上に粘着手段6として粘着剤を塗布してもよく、または両面テープを貼付けてもよい。この場合、粘着手段6がセンサ5と皮膚面の間に位置するようにしてセンサ5を皮膚面に貼り付ける。また、センサ5よりも大きな粘着テープを粘着手段6としてセンサ5の外面を覆うように配置してもよい。この場合、センサ5が粘着手段6と皮膚面の間に位置するようにしてセンサ5を皮膚面に貼り付ける。 The adhesive means 6 is disposed on the outer surface of the sensor 5 in order to fix the sensor 5 to the skin surface. An adhesive may be applied as the adhesive means 6 on the sensor 5, or a double-sided tape may be attached. In this case, the sensor 5 is attached to the skin surface such that the adhesive means 6 is positioned between the sensor 5 and the skin surface. Alternatively, an adhesive tape larger than the sensor 5 may be used as the adhesive means 6 so as to cover the outer surface of the sensor 5. In this case, the sensor 5 is attached to the skin surface so that the sensor 5 is positioned between the adhesive means 6 and the skin surface.
 本発明の筋肉運動検知具10の主面の形状は、筋肉運動検知具10の端部との接触に伴う皮膚へのダメージを抑制する観点から曲線を有する形状が好ましく、例えば円形;楕円形;四角形、六角形、八角形などの多角形の各頂点を曲線にした形状などが挙げられ、円形、楕円形などの曲線のみからなる形状がより好ましい。また貼り付け部位における、皮膚表面の発汗や不感蒸泄等による皮膚の浸軟を抑制する観点から、筋肉運動検知具10に通気孔を設け、貼り付け部位の透湿度を向上させてもよい。ただし、通気孔のサイズが大きくなり、数が増えるほど、筋肉運動検知具10の信号発生に起因する有効面積は小さくなり、電極膜2a,2bおよび集電極3a,3bの抵抗も増加することから、通気孔の形状、サイズ、数量は、検知対象に応じて適宜選定する必要がある。 The shape of the main surface of the muscle motion detector 10 of the present invention is preferably a shape having a curve from the viewpoint of suppressing damage to the skin due to contact with the end of the muscle motion detector 10, for example, circular; oval; Examples include a shape in which each vertex of a polygon such as a quadrangle, hexagon, or octagon is curved, and a shape including only a curve such as a circle or an ellipse is more preferable. Further, from the viewpoint of suppressing the maceration of the skin due to sweating or insensitive vaporization on the skin surface at the affixed site, a ventilation hole may be provided in the muscle movement detector 10 to improve the moisture permeability of the affixed site. However, as the size of the vent hole increases and the number increases, the effective area resulting from the signal generation of the muscle movement detector 10 decreases, and the resistance of the electrode films 2a and 2b and the collector electrodes 3a and 3b also increases. The shape, size, and quantity of the vent holes need to be appropriately selected according to the detection target.
 本発明の筋肉運動検知具10においては、皮膚面の動きに伴う突っ張り感を抑制するとともに、センサの追従性を高めセンサの感度を高める観点から、センサ5の外面に粘着手段6を複数付すことが好ましい。図3および図4はセンサ5の外面に複数の粘着手段6を付した例を示す模式図である。また同様の目的で、センサ5の外面に、面内に切り込み7を有する粘着手段6を付すことも好ましい。図5および図6はセンサ5の外面に、面内に切り込み7を有する粘着手段6を付した例を示す模式図である。 In the muscle movement detector 10 of the present invention, a plurality of adhesive means 6 are attached to the outer surface of the sensor 5 from the viewpoint of suppressing the sense of tension associated with the movement of the skin surface and enhancing the sensor's followability and increasing the sensitivity of the sensor. Is preferred. 3 and 4 are schematic views showing an example in which a plurality of adhesive means 6 are attached to the outer surface of the sensor 5. For the same purpose, it is also preferable to attach an adhesive means 6 having a cut 7 in the surface to the outer surface of the sensor 5. 5 and 6 are schematic views showing an example in which an adhesive means 6 having a cut 7 in the surface is attached to the outer surface of the sensor 5.
 筋肉運動検知具10は弾性変形させると、その曲げ変形の曲率に応じた電気信号が連続的に発生する。ここで、筋肉運動検知具10を一方向に曲げた場合の電位が正の値である場合、その反対方向に曲げた場合の電位は負の値となる。 When the muscle movement detector 10 is elastically deformed, an electric signal corresponding to the curvature of the bending deformation is continuously generated. Here, when the potential when the muscle motion detector 10 is bent in one direction is a positive value, the potential when bent in the opposite direction is a negative value.
 本発明の筋肉運動の検知方法は、筋肉運動検知具10を、接着手段を介して被験者の皮膚面に貼付け、筋肉運動に伴う皮膚面の動きに伴い、センサ5が弾性変形して、連続的に発生する変形量に応じた電位の電気信号を計測器で測定することにより、所定の筋肉運動を検知するものである。筋肉運動検知具10を皮膚面に貼付けるにあたっては、該皮膚面に脱毛、洗浄等の前処理を行う必要がない。 In the muscle movement detection method of the present invention, the muscle movement detector 10 is affixed to the skin surface of the subject via the adhesive means, and the sensor 5 is elastically deformed in accordance with the movement of the skin surface accompanying the muscle movement, so that A predetermined muscular motion is detected by measuring an electrical signal having a potential corresponding to the amount of deformation generated in the measuring instrument. When the muscle movement detector 10 is attached to the skin surface, it is not necessary to perform pretreatment such as hair removal and washing on the skin surface.
 以下、本発明を実施例によって詳細に説明するが、本発明の範囲はこれらの実施例に限定されるものではない。 Hereinafter, the present invention will be described in detail with reference to examples, but the scope of the present invention is not limited to these examples.
 本発明の筋肉運動検知具10の有するセンサ5が、皮膚面の動きに追従することで弾性変形して発生する電気信号を測定する筋肉運動の検知を実施例として示し、筋肉運動に伴って体内で発生する電気信号の電位(活動電位)の測定による筋肉運動の検知を比較例として示す。 The sensor 5 included in the muscle motion detector 10 of the present invention shows an example of muscle motion detection in which an electrical signal generated by elastic deformation by following the movement of the skin surface is shown. As a comparative example, the detection of muscle movement by measuring the potential (action potential) of an electric signal generated in FIG.
 以下に参考例で用いた各種分析の測定方法および測定条件について示す。 The measurement methods and measurement conditions for various analyzes used in the reference examples are shown below.
(1)ブロック共重合体(Z)のα-メチルスチレン含有率(質量%)、重合体ブロック(T)の水添率およびブロック共重合体(Z)中のα-メチルスチレンに由来する構造単位に対するスルホン酸基の含有率(mol%)を算出した。日本電子社製核磁気共鳴装置(JNM-LA400)を用いて、重クロロホルム単独、または重テトラヒドロフランと重メタノールとの混合物(質量比80:20)を溶媒として測定したH-NMRスペクトルから算出した。 (1) Derived from the α-methylstyrene content (% by mass) of the block copolymer (Z 0 ), the hydrogenation rate of the polymer block (T), and the α-methylstyrene in the block copolymer (Z) The content (mol%) of the sulfonic acid group with respect to the structural unit was calculated. Using a nuclear magnetic resonance apparatus (JNM-LA400) manufactured by JEOL Ltd., it was calculated from 1 H-NMR spectrum measured using deuterated chloroform alone or a mixture of deuterated tetrahydrofuran and deuterated methanol (mass ratio 80:20) as a solvent. .
(2)数平均分子量の測定
 下記の条件でゲルパーミエーションクロマトグラフィー(GPC)を測定し、標準ポリスチレン換算して求めた。
 機器:東ソー社製ゲルパーミエーションクロマトグラフ(HLC-8020)
 カラム:東ソー社製TSK-GEL SuperMultiporeHZ-M 4.6mm(ID)×15.0cm(L)を直列に連結
 ガードカラム:TSKguardcolumn SuperMP(HZ)-M 4.6mm(ID)×2.0cm(L)
 溶離液:テトラヒドロフラン、流量1.0ml/分
 検量線:標準ポリスチレンを用いて作成
 検出方法:示差屈折率(RI)
(2) Measurement of number average molecular weight Gel permeation chromatography (GPC) was measured under the following conditions, and calculated in terms of standard polystyrene.
Instrument: Gel permeation chromatograph (HLC-8020) manufactured by Tosoh Corporation
Column: Tosoh TSK-GEL SuperMultipore HZ-M 4.6 mm (ID) × 15.0 cm (L) connected in series Guard column: TSK guard column SuperMP (HZ) -M 4.6 mm (ID) × 2.0 cm (L) )
Eluent: Tetrahydrofuran, flow rate 1.0 ml / min Calibration curve: prepared using standard polystyrene Detection method: differential refractive index (RI)
(3)貯蔵弾性率の測定
 広域動的粘弾性測定装置(レオロジ社製「DVE-V4FTレオスペクトラー」)を使用して、引張りモード(周波数:11Hz)で、昇温速度を3℃/分、-80℃から250℃まで昇温して、貯蔵弾性率(E’)、損失弾性率(E’’)および損失正接(tanδ)を測定した。
(3) Measurement of storage elastic modulus Using a wide-range dynamic viscoelasticity measuring device (“DVE-V4FT Rheospectr” manufactured by Rheology), in a tensile mode (frequency: 11 Hz), the rate of temperature increase was 3 ° C./min. The temperature was raised from −80 ° C. to 250 ° C., and the storage elastic modulus (E ′), loss elastic modulus (E ″) and loss tangent (tan δ) were measured.
(参考例1:ポリα-メチルスチレンと水添ポリブタジエンとからなるブロック共重合体(Z-1)の合成)
 撹拌装置付き耐圧容器を十分に窒素置換を行った後、充分に脱水したα-メチルスチレン、シクロヘキサン、n-ヘキサンおよびテトラヒドロフランを、各々172g、258.1g、28.8gおよび5.9g投入した。続いてsec-ブチルリチウム(1.3M、シクロヘキサン溶液)17.5mlを添加し、-10℃で5時間重合した。5時間重合後のポリα-メチルスチレンの数平均分子量を、GPCにより測定したところ、ポリスチレン換算で6400であった。次いで、ブタジエン27gを添加し、30分間撹拌後、シクロヘキサン1703gを加えた。ポリブタジエンブロック(b1)の数平均分子量(GPC測定、ポリスチレン換算)は3640であった。次にブタジエンを303g加え、温度を60℃まで上昇させながら2時間重合をした。さらに、耐圧容器中の重合溶液に、α,α’-ジクロロ-p-キシレン(0.3M、トルエン溶液)27.0mlを加え、60℃で1時間撹拌して、カップリング反応を行い、ポリ(α-メチルスチレン)-ポリブタジエン-ポリ(α-メチルスチレン)型のトリブロック共重合体を合成した。
(Reference Example 1: Synthesis of block copolymer (Z 0 -1) comprising poly α-methylstyrene and hydrogenated polybutadiene)
After sufficiently replacing the pressure vessel equipped with a stirrer with nitrogen, 172 g, 258.1 g, 28.8 g and 5.9 g of α-methylstyrene, cyclohexane, n-hexane and tetrahydrofuran, which had been sufficiently dehydrated, were added. Subsequently, 17.5 ml of sec-butyl lithium (1.3 M, cyclohexane solution) was added, and polymerization was performed at −10 ° C. for 5 hours. The number average molecular weight of the poly α-methylstyrene after polymerization for 5 hours was measured by GPC and found to be 6400 in terms of polystyrene. Next, 27 g of butadiene was added, and after stirring for 30 minutes, 1703 g of cyclohexane was added. The number average molecular weight (GPC measurement, polystyrene conversion) of the polybutadiene block (b1) was 3640. Next, 303 g of butadiene was added, and polymerization was performed for 2 hours while raising the temperature to 60 ° C. Further, 27.0 ml of α, α′-dichloro-p-xylene (0.3 M, toluene solution) was added to the polymerization solution in the pressure vessel, and the mixture was stirred at 60 ° C. for 1 hour to conduct a coupling reaction. A triblock copolymer of (α-methylstyrene) -polybutadiene-poly (α-methylstyrene) type was synthesized.
 得られたトリブロック共重合体の数平均分子量(GPC測定、ポリスチレン換算)は74000であり、H-NMR測定から求めた1,2-結合量は43.9%、α-メチルスチレン単位の含有量は28質量%であった。また、ポリブタジエンブロック中には、α-メチルスチレンが実質的に共重合されていないことが、H-NMRスペクトル測定による組成分析により判明した。 The number average molecular weight (GPC measurement, polystyrene conversion) of the obtained triblock copolymer was 74000, the 1,2-bond amount determined from 1 H-NMR measurement was 43.9%, and the number of α-methylstyrene units was. The content was 28% by mass. In addition, it was found by composition analysis by 1 H-NMR spectrum measurement that α-methylstyrene was not substantially copolymerized in the polybutadiene block.
 次いで、かかるトリブロック共重合体のシクロヘキサン溶液を調整し、十分に窒素置換を行った耐圧容器に仕込んだ後、Ni/Al系のチーグラー系水素添加触媒を用いて、水素雰囲気下において80℃で5時間水素添加反応を行い、ポリα-メチルスチレン-b-水添ポリブタジエン-b-ポリα-メチルスチレン型トリブロック共重合体(以下、ブロック共重合体(Z-1)と称する)を得た。得られたブロック共重合体(Z-1)の水素添加率をH-NMRスペクトル測定により算出したところ、99.6%であった。 Next, a cyclohexane solution of such a triblock copolymer was prepared and charged into a pressure-resistant vessel that had been sufficiently substituted with nitrogen, and then at 80 ° C. in a hydrogen atmosphere using a Ni / Al Ziegler-type hydrogenation catalyst. A hydrogenation reaction was conducted for 5 hours to obtain a poly α-methylstyrene-b-hydrogenated polybutadiene-b-polyα-methylstyrene type triblock copolymer (hereinafter referred to as a block copolymer (Z 0 -1)). Obtained. The hydrogenation rate of the obtained block copolymer (Z 0 -1) was calculated by 1 H-NMR spectrum measurement and found to be 99.6%.
(参考例2:ブロック共重合体(Z-1)の合成)
 参考例1で得られたブロック共重合体(Z-1)100gを、攪拌機付きのガラス製反応容器中にて1時間真空乾燥し、ついで窒素置換した後、塩化メチレン1000mlを加え、35℃にて2時間攪拌して溶解させた。溶解後、塩化メチレン41.8ml中、0℃にて無水酢酸21.0mlと硫酸9.34mlとを反応させて得られた硫酸化試薬を、20分かけて徐々に滴下した。25℃にて7時間攪拌後、2Lの蒸留水の中に攪拌しながら重合体溶液を注ぎ、重合体を凝固析出させた。析出した固形分を90℃の蒸留水で30分間洗浄し、ついでろ過した。この洗浄およびろ過の操作を洗浄水のpHに変化がなくなるまで繰り返し、最後にろ取した重合体を真空乾燥してブロック共重合体(Z)を得た(以下、ブロック共重合体(Z-1)と称する)。得られたブロック共重合体(Z-1)のα-メチルスチレン単位のベンゼン環のスルホン化率はH-NMR分析から50mol%であった。
(Reference Example 2: Synthesis of block copolymer (Z-1))
100 g of the block copolymer (Z 0 -1) obtained in Reference Example 1 was vacuum-dried in a glass reaction vessel equipped with a stirrer for 1 hour and then purged with nitrogen. And stirred for 2 hours to dissolve. After dissolution, a sulfating reagent obtained by reacting 21.0 ml of acetic anhydride and 9.34 ml of sulfuric acid at 0 ° C. in 41.8 ml of methylene chloride was gradually added dropwise over 20 minutes. After stirring at 25 ° C. for 7 hours, the polymer solution was poured into 2 L of distilled water while stirring to coagulate and precipitate the polymer. The precipitated solid was washed with distilled water at 90 ° C. for 30 minutes and then filtered. This washing and filtration operation was repeated until there was no change in the pH of the washing water, and the polymer collected by filtration at the end was vacuum dried to obtain a block copolymer (Z) (hereinafter referred to as block copolymer (Z- 1)). The sulfonation rate of the benzene ring of the α-methylstyrene unit in the obtained block copolymer (Z-1) was 50 mol% from 1 H-NMR analysis.
 得られたブロック共重合体(Z-1)の貯蔵弾性率の測定を行った。結晶化オレフィン重合体に由来する、80~100℃における貯蔵弾性率の変化がないことに基づき、重合体ブロック(T)が非晶性であると判断した。 The storage elastic modulus of the obtained block copolymer (Z-1) was measured. Based on the fact that there was no change in the storage elastic modulus at 80 to 100 ° C. derived from the crystallized olefin polymer, the polymer block (T) was judged to be amorphous.
(参考例3:筋肉運動検知具の作製)
 (1)参考例2で得られたブロック共重合体(Z-1)50gを、ジイソプロピルベンゼン/1-ヘキサノール混合溶媒(質量比8/2)200gに溶解させて、電解質溶液を調製した。一方、同様にして調製した電解質溶液250gにさらにケッチェンブラック4.4gを加えて、ホモジナイザーを用いて混合し、電極分散液を得た。
(Reference Example 3: Production of muscle movement detector)
(1) An electrolyte solution was prepared by dissolving 50 g of the block copolymer (Z-1) obtained in Reference Example 2 in 200 g of a diisopropylbenzene / 1-hexanol mixed solvent (mass ratio 8/2). On the other hand, 4.4 g of ketjen black was further added to 250 g of the electrolyte solution prepared in the same manner, and mixed using a homogenizer to obtain an electrode dispersion.
 (2)市販の銀ペーストで集電極3a,3b(厚さ10μm)を設けたエラストマーフィルム(厚さ200μm)の前記集電極3a,3b上に、スクリーン印刷機を用いて前記電極分散液を印刷し、その後80℃で乾燥する工程を繰り返し、膜厚100μmの層状の電極膜2a,2bを形成した。 (2) Printing the electrode dispersion using a screen printer on the collector electrodes 3a and 3b of an elastomer film (thickness 200 μm) provided with collector electrodes 3a and 3b (thickness 10 μm) with a commercially available silver paste Then, the step of drying at 80 ° C. was repeated to form layered electrode films 2 a and 2 b having a film thickness of 100 μm.
 (3)前記(2)の操作で形成した電極膜2a,2b上に、スクリーン印刷機を用いて前記電解質溶液を印刷した後、100℃で乾燥する工程を繰り返し、膜厚15μmの高分子電解質膜1からなる層を形成し、集電極/電極膜/高分子電解質膜をこの順に接合した接合体を得た。 (3) After the electrolyte solution is printed on the electrode films 2a and 2b formed by the operation of (2) using a screen printing machine, the step of drying at 100 ° C. is repeated to obtain a polymer electrolyte having a film thickness of 15 μm. A layer composed of the membrane 1 was formed, and a joined body in which the collector electrode / electrode membrane / polymer electrolyte membrane were joined in this order was obtained.
 (4)前記(3)の操作で得た接合体2枚を、高分子電解質膜同士が接するように重ね合わせ、100℃、0.5MPaで5分間圧着することでブロック共重合体(Z-1)を高分子電解質膜1として備えるセンサ5を得た。センサ5は、主面の形状が長方形(縦20mm×横2mm)であるセンサ(センサXと称する)および主面の形状が角丸長方形(18mmの2本の平行線と半径1mmの2つの半円からなる)であるセンサ(センサYと称する)を作製した。 (4) The two bonded bodies obtained by the operation of (3) above are superposed so that the polymer electrolyte membranes are in contact with each other, and pressure-bonded at 100 ° C. and 0.5 MPa for 5 minutes to thereby produce a block copolymer (Z— A sensor 5 having 1) as a polymer electrolyte membrane 1 was obtained. The sensor 5 includes a sensor (referred to as sensor X) whose main surface has a rectangular shape (20 mm long × 2 mm wide) and a rectangular shape (two parallel lines with 18 mm and two halves with a radius of 1 mm). A sensor (referred to as sensor Y) that is a circle) was produced.
 (5)前記(4)の操作で得たセンサXの一方の表面に、粘着手段6として医療用の両面テープ(住友スリーエム株式会社製:MSD-S-1524 厚さ0.06mm)を形成することにより、筋肉運動検知具10(筋肉運動検知具Xと称する)を得た(図2)。 (5) A double-sided medical tape (manufactured by Sumitomo 3M Limited: MSD-S-1524, thickness 0.06 mm) is formed as the adhesive means 6 on one surface of the sensor X obtained by the operation of (4). As a result, a muscle motion detector 10 (referred to as muscle motion detector X) was obtained (FIG. 2).
 同様に、前記(4)の操作で得たセンサYの一方の表面に、粘着手段6として医療用の両面テープ(住友スリーエム株式会社製:MSD-S-1524 厚さ0.06mm)を形成することにより、筋肉運動検知具10(筋肉運動検知具Yと称する)を得た。また同様に、センサXの表面に、図7の模式平面図および図8の模式側面図に示すように5mm間隔で切り込み7を設けた粘着手段6(両面テープ(住友スリーエム株式会社製:MSD-S-1524 厚さ0.06mm))を形成することにより、筋肉運動検知具10(筋肉運動検知具Zと称する)を得た。 Similarly, a medical double-sided tape (manufactured by Sumitomo 3M Co., Ltd .: MSD-S-1524, thickness 0.06 mm) is formed as the adhesive means 6 on one surface of the sensor Y obtained by the operation (4). As a result, a muscle motion detector 10 (referred to as muscle motion detector Y) was obtained. Similarly, adhesive means 6 (double-sided tape (manufactured by Sumitomo 3M Limited: MSD-) provided with notches 7 at intervals of 5 mm as shown in the schematic plan view of FIG. 7 and the schematic side view of FIG. S-1524 (thickness 0.06 mm)) was formed to obtain a muscle motion detector 10 (referred to as muscle motion detector Z).
(実施例1)
 参考例3にて作製した筋肉運動検知具Xを用いて、咀嚼に伴う筋肉運動を検知した。検知方法としては、図9に示すように、筋肉運動検知具10を被験者30の下顎の皮膚面に貼り付け、被験者30がガムを噛んだときに生じる筋肉運動を、筋肉運動検知具10から出力される電気信号の電位として検知した。
(Example 1)
Using the muscle motion detector X produced in Reference Example 3, muscle motion associated with mastication was detected. As a detection method, as shown in FIG. 9, the muscle motion detector 10 is attached to the skin surface of the lower jaw of the subject 30, and the muscle motion that occurs when the subject 30 bites the gum is output from the muscle motion detector 10. Detected as the electric signal potential.
 筋肉運動検知具10から出力される電気信号の電位は、集電極3aおよび集電極3bに接続されたリード線21a,21b、計測器22(株式会社キーエンス製データロガー:NR600)にて検出、AD変換した後、USBケーブル23を介して接続されたパーソナルコンピュータ(PC)20にて測定した。なお、通過周波数帯域は0~10Hz、サンプリング周波数は1kHzとした。 The potential of the electrical signal output from the muscle movement detector 10 is detected by the lead wires 21a and 21b connected to the collecting electrode 3a and the collecting electrode 3b, and the measuring instrument 22 (Keyence Corporation data logger: NR600), AD After the conversion, measurement was performed with a personal computer (PC) 20 connected via the USB cable 23. The pass frequency band was 0 to 10 Hz, and the sampling frequency was 1 kHz.
(比較例1)
 実施例1と併行して、筋肉運動に伴って発生する活動電位の測定を行った。活動電位は、耳たぶにアース電極を取り付け、咬筋の筋腹付近の皮膚面に取り付けた皿電極(日本光電株式会社製:銀-塩化銀電極)から測定した。皿電極の取り付けにあたっては、アルコールに浸した脱脂綿で皮膚面を洗浄後、皿電極に電解質ペーストをムラ無くつめ、該皮膚面に貼付け、固定した。さらに、皮膚面と電極がなじむまで10分程度放置してから測定を開始した。発生した活動電位はローパスフィルタを経由して計測器(株式会社キーエンス製データロガー:NR600)にて検出、AD変換した後、USBケーブルを介して計測器に接続されたパーソナルコンピュータ(PC)にて測定した。なお、通過周波数帯域は10~500Hz、サンプリング周波数は1kHzとした。
(Comparative Example 1)
In parallel with Example 1, the action potential generated along with muscle exercise was measured. The action potential was measured from a plate electrode (manufactured by Nihon Kohden Co., Ltd .: silver-silver chloride electrode) with a ground electrode attached to the earlobe and attached to the skin surface near the masseter of the masseter muscle. In attaching the plate electrode, the skin surface was washed with absorbent cotton soaked in alcohol, and then the electrolyte paste was packed evenly on the plate electrode and applied to the skin surface and fixed. Furthermore, the measurement was started after being left for about 10 minutes until the skin surface and the electrode became compatible. The generated action potential is detected by a measuring instrument (Keyence Co., Ltd. data logger: NR600) via a low-pass filter, AD converted, and then by a personal computer (PC) connected to the measuring instrument via a USB cable. It was measured. The pass frequency band was 10 to 500 Hz, and the sampling frequency was 1 kHz.
 実施例1および比較例1で得られた電位波形の比較を図10に示す。比較例1で得られた電位波形図(図中「筋電図」と記載)から、一定周期で電気信号の発生と停止とを繰り返しており、咀嚼に伴う筋肉運動のタイミングと活動量とが検知されていると考えられる。一方、実施例1で得られた電位波形図(図中「筋肉運動検知具(下顎貼付)」と記載)は、比較例1の電位波形図と同じ周期で変動していることから、本発明の筋肉運動検知具を用いて、咀嚼運動に伴う筋肉運動の検知が可能であることが示された。 FIG. 10 shows a comparison of potential waveforms obtained in Example 1 and Comparative Example 1. From the potential waveform diagram obtained in Comparative Example 1 (described as “electromyogram” in the figure), the generation and stop of an electrical signal are repeated at regular intervals. It is thought that it was detected. On the other hand, the potential waveform diagram obtained in Example 1 (described as “muscle movement detector (mandibular affixation)” in the figure) fluctuates at the same cycle as the potential waveform diagram of Comparative Example 1, and thus the present invention. It was shown that it is possible to detect the muscular movement associated with the masticatory movement using the muscular movement detector.
(実施例2)
 参考例3にて作製した筋肉運動検知具Xを用いて、嚥下に伴う筋肉運動を検知した。検知方法としては、筋肉運動検知具Xを被験者の喉頭隆起(のど仏)および下顎の皮膚面に貼付け、(安静5秒→嚥下1回)×5セットのプロトコルにて嚥下に伴う筋肉運動を検知した。筋肉運動検知具Xから出力される電気信号の電位は、差動増幅器、非反転増幅器、ローパスフィルタで構成される測定回路によって増幅、フィルタ処理され、計測器(株式会社コンテック製ADボード:AIO-160802AY-USB)にて検出、AD変換した後、USBケーブルを介して計測器に接続されたPCを使って測定した。なお、信号増幅率は60dB、通過周波数帯域は0~10Hz、サンプリング周波数は1kHzとした。
(Example 2)
Using the muscle motion detector X produced in Reference Example 3, muscle motion associated with swallowing was detected. As a detection method, muscle movement detector X is attached to the subject's laryngeal protuberance (throat buddha) and mandibular skin surface, and the muscle movement associated with swallowing is detected using the protocol (5 seconds rest → 1 swallowing) x 5 sets of protocol. did. The electric signal potential output from the muscle movement detector X is amplified and filtered by a measurement circuit including a differential amplifier, a non-inverting amplifier, and a low-pass filter, and a measuring instrument (AD board manufactured by Contec: AIO-). 160802AY-USB), and AD conversion was performed, and measurement was performed using a PC connected to a measuring instrument via a USB cable. The signal amplification factor was 60 dB, the pass frequency band was 0 to 10 Hz, and the sampling frequency was 1 kHz.
 実施例2で得られた電位波形図を図11に示す。喉頭隆起および下顎の皮膚面に設置した筋肉運動検知具Xから得られた電位波形図(図中、それぞれ「筋肉運動検知具(喉頭隆起部貼付)」、「筋肉運動検知具(下顎部貼付)」と記載)から観測されるピークは、いずれも被験者の自己申告による嚥下のタイミングおよび回数と一致したことから、本発明の筋肉運動検知具を用いて、嚥下運動に伴う筋肉運動の検知が可能であることが示された。 FIG. 11 shows the potential waveform obtained in Example 2. Potential waveform diagrams obtained from the muscle movement detector X placed on the laryngeal protuberance and mandibular skin surface (in the figure, "muscle movement detector (laryngeal protuberance sticking)", "muscle movement detector (mandibular sticking), respectively) The peak observed from the above is consistent with the timing and frequency of swallowing by the subject's self-report, so that the muscle movement accompanying swallowing movement can be detected using the muscle movement detector of the present invention. It was shown that.
(実施例3)
 参考例3にて作製した筋肉運動検知具Xを用いて、歯軋りに伴う筋肉運動を検知した。歯軋りの種類としては、一般的にクレンチング(歯を噛み締める動作)、タッピング(歯を動的にかみ合わせる動作)、グライディング(上下の歯をすり合わせる動作)の3種類が知られている。検知方法としては、筋肉運動検知具Xを被験者の喉頭隆起上および下顎上の皮膚面に貼付け、以下の実験プロトコル実施例3-1~3-3にて歯軋りに伴う筋肉運動を検知した。実施例3-1~3-4にて筋肉運動検知具Xから出力される電位の測定手法は、実施例2と同様である。
(Example 3)
Using the muscle motion detector X produced in Reference Example 3, muscle motion associated with toothbrushing was detected. Generally, three types of toothbrushing are known: clenching (operation for tightening teeth), tapping (operation for dynamically engaging teeth), and gliding (operation for engaging upper and lower teeth). As a detection method, the muscle movement detector X was attached to the skin surface on the laryngeal protuberance and the lower jaw of the subject, and the muscle movement accompanying the toothpaste was detected in the following experimental protocol examples 3-1 to 3-3. The measurement method of the potential output from the muscle motion detector X in Examples 3-1 to 3-4 is the same as that in Example 2.
(実施例3-1)
 「5秒間安静を保った後、クレンチング動作を5秒間継続して行う」といった一連の動作を3回繰り返す筋肉運動を検知した。
Example 3-1
A muscle movement was detected in which a series of actions such as “keeping a rest for 5 seconds and then continuing the clenching action for 5 seconds” was repeated three times.
(実施例3-2)
 「5秒間安静を保った後、タッピング動作を5秒間継続して行う」といった一連の動作を3回繰り返す筋肉運動を検知した。
(Example 3-2)
A muscle motion was detected in which a series of actions such as “keeping a tapping action for 5 seconds after keeping calm for 5 seconds” was repeated three times.
(実施例3-3)
 「5秒間安静を保った後、グライディング動作を5秒間継続して行う」といった一連の動作を3回繰り返す筋肉運動を検知した。
(Example 3-3)
A muscle motion was detected in which a series of actions such as “keeping rest for 5 seconds and then continue the gliding action for 5 seconds” was repeated three times.
(実施例3-4)
 「10秒間安静を保った後、クレンチング動作を10秒間継続して行う」といった一連の動作を2回繰り返す筋肉運動を検知した。
(Example 3-4)
A muscle motion was detected in which a series of operations such as “keeping a rest for 10 seconds and then performing a clenching operation continuously for 10 seconds” was repeated twice.
(比較例2)
 実施例3と比較するため、以下の比較例2-1~2-4を行った。
(Comparative Example 2)
For comparison with Example 3, the following Comparative Examples 2-1 to 2-4 were performed.
(比較例2-1)
 実施例3-1との比較として、実施例3-1と併行して、筋肉運動に伴って発生する活動電位の測定を行った。活動電位は、耳たぶにアース電極を取り付け、咬筋の筋腹付近の皮膚面に取り付けた皿電極(日本光電株式会社製:銀-塩化銀電極)から測定した。皿電極の取り付けにあたっては、アルコールに浸した脱脂綿で測定する皮膚面を洗浄後、皿電極に電解質ペーストをムラ無くつめ、該皮膚面に貼付け、固定した。さらに、皮膚面と電極がなじむまで10分程度放置してから測定を開始した。発生した電気信号の活動電位は、差動増幅器、非反転増幅器、ローパスフィルタで構成される測定回路によって増幅、フィルタ処理され、計測器(株式会社コンテック製ADボード:AIO-160802AY-USB)で検出、AD変換した後、USBケーブルを介して計測器に接続されたPCを使って測定した。なお、信号増幅率は60dB、通過周波数帯域は10~500Hz、サンプリング周波数は1kHzとした。
(Comparative Example 2-1)
As a comparison with Example 3-1, in parallel with Example 3-1, the action potential generated along with muscle exercise was measured. The action potential was measured from a plate electrode (manufactured by Nihon Kohden Co., Ltd .: silver-silver chloride electrode) with a ground electrode attached to the earlobe and attached to the skin surface near the masseter of the masseter muscle. In attaching the plate electrode, the skin surface to be measured was washed with absorbent cotton soaked in alcohol, and then the electrolyte paste was packed uniformly on the plate electrode and applied to the skin surface and fixed. Furthermore, the measurement was started after being left for about 10 minutes until the skin surface and the electrode became compatible. The action potential of the generated electric signal is amplified and filtered by a measuring circuit composed of a differential amplifier, a non-inverting amplifier, and a low-pass filter, and detected by a measuring instrument (AD board manufactured by Contec: AIO-160802AY-USB). After AD conversion, measurement was performed using a PC connected to a measuring instrument via a USB cable. The signal amplification factor was 60 dB, the pass frequency band was 10 to 500 Hz, and the sampling frequency was 1 kHz.
(比較例2-2)
 実施例3-2との比較として、実施例3-2と併行して、筋肉運動に伴って発生する活動電位の測定を行った。活動電位の測定手法は比較例2-1と同様である。
(Comparative Example 2-2)
As a comparison with Example 3-2, the action potential generated with muscle exercise was measured in parallel with Example 3-2. The action potential is measured in the same manner as in Comparative Example 2-1.
(比較例2-3)
 実施例3-3との比較として、実施例3-2と併行して、筋肉運動に伴って発生する活動電位の測定を行った。活動電位の測定手法は比較例2-1と同様である。
(Comparative Example 2-3)
As a comparison with Example 3-3, the action potential generated with muscle exercise was measured in parallel with Example 3-2. The action potential is measured in the same manner as in Comparative Example 2-1.
 実施例3-1および比較例2-1より得られた電位波形図を図12に示す。実施例3-1より得られた電位波形図のうち、喉頭隆起の皮膚面に設置した筋肉運動検知具Xより得られた電位波形図(図中、「筋肉運動検知具(喉頭隆起部貼付)」と記載)では、クレンチング動作に伴う明瞭な電位波形は確認されなかったが、下顎上の皮膚面に設置した筋肉運動検知具Xから得られた電位波形図(図中、「筋肉運動検知具(下顎部貼付)」と記載)は、比較例2-1より得られた電位波形図(図中、「筋電図」と記載)と同じ周期で変動しており、クレンチング期間中も電位を維持していることから、本発明の筋肉運動検知具を用いて、クレンチング運動に伴う筋肉運動の検知が可能であることが示された。 FIG. 12 shows potential waveform diagrams obtained from Example 3-1 and Comparative Example 2-1. Among the potential waveform diagrams obtained from Example 3-1, a potential waveform diagram obtained from the muscle motion detector X placed on the skin surface of the laryngeal protuberance (in the figure, “muscle motion detector (laryngeal protuberance affixed)) ”), A clear potential waveform associated with the clenching motion was not confirmed, but a potential waveform diagram obtained from the muscle motion detector X placed on the skin surface on the lower jaw (“ muscle motion detector ”in the figure) (Described as “mandibular part affixed”) varies in the same cycle as the potential waveform obtained from Comparative Example 2-1 (indicated as “electromyogram” in the figure), and the potential is maintained during the clenching period. From this fact, it was shown that the muscle movement associated with the clenching exercise can be detected using the muscle movement detector of the present invention.
 実施例3-2および比較例2-2より得られた電位波形を示すグラフを図13に示す。図13より、実施例3-2における喉頭隆起および下顎の皮膚面に設置した筋肉運動検知具Xより得られた電位波形図(図中、それぞれ「筋肉運動検知具(喉頭隆起部貼付)」、「筋肉運動検知具(下顎部貼付)」と記載)は、比較例2-2より得られた電位波形図(図中「筋電図」と記載)と同じ周期で変動していることから、本発明の筋肉運動検知具を用いて、タッピング運動に伴う筋肉運動の検知が可能であることが示された。 A graph showing the potential waveforms obtained in Example 3-2 and Comparative Example 2-2 is shown in FIG. From FIG. 13, potential waveform diagrams obtained from the muscle motion detector X placed on the laryngeal protuberance and mandibular skin surface in Example 3-2 (in the figure, “muscle motion detector (laryngeal protuberance sticking)”, "Muscle movement detector (mandibular portion affixed)" is described in the same period as the potential waveform diagram (described as "electromyogram" in the figure) obtained from Comparative Example 2-2, It has been shown that it is possible to detect muscle movement accompanying tapping exercise using the muscle movement detector of the present invention.
 実施例3-3および比較例2-3より得られた電位波形図を図14に示す。図14より、喉頭隆起および下顎の皮膚面に設置した筋肉運動検知具Xより得られた電位波形図(図中、それぞれ「筋肉運動検知具(喉頭隆起部貼付)」、「筋肉運動検知具(下顎部貼付)」と記載)は、比較例2-3より得られた電位波形図(図中「筋電図」と記載)と同じ周期で変動していることから、本発明の筋肉運動検知具を用いて、グライディング運動に伴う筋肉運動の検知が可能であることが示された。 FIG. 14 shows potential waveform diagrams obtained from Example 3-3 and Comparative Example 2-3. FIG. 14 shows potential waveforms obtained from the laryngeal protuberance and the muscle movement detector X placed on the skin surface of the lower jaw (in the figure, “muscle movement detector (laryngeal protuberance sticking)”, “muscle movement detector ( Since the potential waveform diagram obtained from Comparative Example 2-3 (described as “electromyogram” in the figure) fluctuates in the same cycle, the detection of muscle movement of the present invention It was shown that the muscle movement accompanying gliding movement can be detected using the tool.
(比較例2-4)
 実施例3-4との比較として、実施例3-4と併行して、筋肉運動に伴って発生する圧力の測定を圧電素子を用いて行った。ポリフッ化ビニリデンフィルム(縦16mm×横4mm、厚さ28mm)を備える圧電素子(東京センサ社製:DTI-028K/L)を被験者の下顎の皮膚面に貼付け、該圧電素子から出力された電位を測定した。ここで、電位の測定手法は、出力された電位を増幅しなかったことを除けば、前述した実施例2および実施例3における筋肉運動検知具から出力された電位の測定手法と同様である。
(Comparative Example 2-4)
As a comparison with Example 3-4, in parallel with Example 3-4, the pressure generated with the muscle exercise was measured using a piezoelectric element. A piezoelectric element (manufactured by Tokyo Sensor Co., Ltd .: DTI-028K / L) having a polyvinylidene fluoride film (length 16 mm x width 4 mm, thickness 28 mm) is attached to the skin surface of the subject's lower jaw, and the potential output from the piezoelectric element is It was measured. Here, the method for measuring the potential is the same as the method for measuring the potential output from the muscle exercise detector in the second and third embodiments described above except that the output potential is not amplified.
 実施例3-4および比較例2-4より得られた電位波形図を図15に示す。図15より、比較例2-4より得られた電位波形図(図中、「圧電素子(下顎部貼付)」と記載)は、クレンチング動作の開始Pおよびクレンチング動作の解除Qにおいて瞬間的に電位が出力され、速やかに電位が低下するため、クレンチング動作途中の筋肉運動を継続的に検知することはできないことが確認された。一方、実施例3-4より得られた電位波形図(図中、「筋肉運動検知具(下顎部貼付)」と記載)は、クレンチング動作の開始Pからクレンチング動作の解除Qまでの間の筋肉運動を、継続的に検知することができることが確認された。 FIG. 15 shows potential waveform diagrams obtained in Example 3-4 and Comparative Example 2-4. From FIG. 15, the potential waveform diagram obtained from Comparative Example 2-4 (in the drawing, described as “piezoelectric element (mandible portion))” shows the instantaneous potential at the start P of the clenching operation and the release Q of the clenching operation. It was confirmed that the muscle movement during the clenching operation cannot be detected continuously because the potential is quickly reduced. On the other hand, the potential waveform diagram obtained from Example 3-4 (in the figure, described as “muscle movement detector (mandible part attachment))” shows the muscles from the start P of the clenching operation to the release Q of the clenching operation. It was confirmed that motion can be detected continuously.
(実施例4)
(長期試験による皮膚への影響の観察)
 筋肉運動検知具Xを5人の被験者の喉頭隆起の皮膚面に貼り付けて、通常の生活を24時間行った後に、筋肉運動検知具Xが接触していた皮膚の表面を観察したところ、筋肉運動検知具Xの端部が接していた部分において、3人に潮紅した貼り付け痕が観察された。
Example 4
(Observation of effects on skin by long-term test)
After attaching the muscle movement detector X to the skin surface of the laryngeal protuberance of five subjects and conducting normal life for 24 hours, the surface of the skin that the muscle movement detector X was in contact with was observed. At the portion where the end of the motion detector X was in contact, a sticking mark that was flushed by three people was observed.
(実施例5)
(長期試験による皮膚への影響の観察)
 筋肉運動検知具Yを実施例4と同じ5人の被験者の喉頭隆起の皮膚面に貼り付けて、通常の生活を24時間行った後に、筋肉運動検知具Yが接触していた皮膚の表面を観察したところ、5人とも貼り付け痕は観察されなかった。
(Example 5)
(Observation of effects on skin by long-term test)
The muscle motion detector Y was attached to the skin surface of the laryngeal protuberance of the same five subjects as in Example 4, and after performing normal life for 24 hours, the surface of the skin that the muscle motion detector Y was in contact with was observed. As a result of observation, no sticking marks were observed in all five people.
(実施例6)
(長期試験による筋肉運動検知具の装着感の評価)
 筋肉運動検知具Zを実施例4と同じ5人の被験者の喉頭隆起の皮膚面に貼り付けて、通常の生活を24時間行った後に、筋肉運動検知具XおよびZの装着感に関するインタビューを行った。その結果5人とも、筋肉運動検知具Xは肌に貼り付けた状態で皮膚の突っ張りを感じたとの感想であったが、筋肉運動検知具Zを貼り付けた場合は、5人中4人は前述する突っ張りを感じることなく、装着感が良好との評価であった。
(Example 6)
(Evaluation of wearing feeling of muscle movement detector by long-term test)
The muscle movement detector Z was affixed to the skin surface of the laryngeal protuberance of the same five subjects as in Example 4, and after conducting a normal life for 24 hours, an interview regarding the feeling of wearing the muscle movement detectors X and Z was conducted. It was. As a result, all the five people felt that the muscle movement detector X felt skin tension in the state of being affixed to the skin, but when the muscle movement detector Z was affixed, four out of five people It was evaluated that the feeling of wearing was good without feeling the tension described above.
 本発明の筋肉運動検知具は、皮膚面の動きに応じて弾性変形し電気信号を発信して筋肉運動を検知する器具であり、咀嚼、嚥下、歯軋り等の口腔機能の測定やモニタリングに利用できる。 The muscle movement detection device of the present invention is an instrument that elastically deforms in response to the movement of the skin surface and transmits an electrical signal to detect muscle movement, and can be used for measurement and monitoring of oral functions such as mastication, swallowing, and toothpaste. .
 1は高分子電解質膜、2a,2bは電極膜、3a,3bは集電極、4a,4bは保護膜、5はセンサ、6は粘着手段、7は切り込み、10は筋肉運動検知具、20はPC、21a,21bはリード線、22は計測器、23はUSBケーブル、30は被験者である。 1 is a polymer electrolyte membrane, 2a and 2b are electrode membranes, 3a and 3b are collecting electrodes, 4a and 4b are protective films, 5 is a sensor, 6 is an adhesive means, 7 is a notch, 10 is a muscle motion detector, and 20 PC, 21a, 21b are lead wires, 22 is a measuring instrument, 23 is a USB cable, and 30 is a subject.

Claims (7)

  1.  導電性粒子および樹脂を含有する組成物からなる一対の電極膜の間に高分子電解質膜が挟まれてなる板状のセンサの、少なくとも一方の外面に粘着手段が付されていることを特徴とする筋肉運動検知具。 An adhesive means is attached to at least one outer surface of a plate-shaped sensor in which a polymer electrolyte membrane is sandwiched between a pair of electrode membranes made of a composition containing conductive particles and a resin. Muscular movement detector.
  2.  前記センサの主面の形状が、円形または楕円形であることを特徴とする、請求項1に記載の筋肉運動検知具。 The muscle motion detector according to claim 1, wherein the shape of the main surface of the sensor is a circle or an ellipse.
  3.  前記粘着手段が面内に切り込みを有することを特徴とする、請求項1に記載の筋肉運動検知具。 The muscle movement detector according to claim 1, wherein the adhesive means has a cut in the surface.
  4.  前記高分子電解質膜および前記樹脂が、芳香族ビニル化合物に由来する構造単位にイオン伝導性基を導入した重合体ブロック(S)と、不飽和脂肪族炭化水素化合物に由来する構造単位からなる非晶性の重合体ブロック(T)とを有するブロック共重合体(Z)を含有することを特徴とする、請求項1に記載の筋肉運動検知具。 The polymer electrolyte membrane and the resin are composed of a polymer block (S) in which an ion conductive group is introduced into a structural unit derived from an aromatic vinyl compound, and a structural unit derived from an unsaturated aliphatic hydrocarbon compound. The muscle movement detector according to claim 1, comprising a block copolymer (Z) having a crystalline polymer block (T).
  5.  前記粘着手段が動物の皮膚面に接触させるものであり、かつ前記センサが皮膚面の動きに追従して弾性変形して該動きを検知し、電気信号を発生することを特徴とする、請求項1に記載の筋肉運動検知具。 The adhesive means is for contacting the skin surface of an animal, and the sensor elastically deforms following the movement of the skin surface to detect the movement and generate an electrical signal. The muscle movement detector according to 1.
  6.  前記電気信号が、咀嚼、嚥下または歯軋りに伴う筋肉運動による皮膚面の動きを前記センサが検知して生ずるものであることを特徴とする、請求項5に記載の筋肉運動検知具。 6. The muscle movement detector according to claim 5, wherein the electrical signal is generated when the sensor detects a movement of the skin surface due to muscle movement associated with mastication, swallowing or tooth-gearing.
  7.  請求項1~6のいずれかに記載の筋肉運動検知具の有するセンサが、皮膚面の動きに追従することで弾性変形して発生する電気信号を測定することを特徴とする筋肉運動検知方法。 A method for detecting muscle movement, wherein the sensor of the muscle movement detector according to any one of claims 1 to 6 measures an electrical signal generated by elastic deformation by following the movement of the skin surface.
PCT/JP2014/052279 2013-02-07 2014-01-31 Muscular motion detector and muscular motion detection method WO2014123072A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-022241 2013-02-07
JP2013022241 2013-02-07

Publications (1)

Publication Number Publication Date
WO2014123072A1 true WO2014123072A1 (en) 2014-08-14

Family

ID=51299668

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/052279 WO2014123072A1 (en) 2013-02-07 2014-01-31 Muscular motion detector and muscular motion detection method

Country Status (1)

Country Link
WO (1) WO2014123072A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018050755A (en) * 2016-09-27 2018-04-05 サッポロホールディングス株式会社 Throat-passing movement measuring apparatus, throat-passing movement measuring system, and throat-passing movement measuring method
CN108697332A (en) * 2016-02-18 2018-10-23 皇家飞利浦有限公司 For detecting and the equipment, system and method for the dysphagia of monitoring object
WO2020014213A1 (en) * 2018-07-09 2020-01-16 Georgia Tech Research Corporation Acousto-optical sensors for mri safety evaluation

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006212271A (en) * 2005-02-04 2006-08-17 Ngk Spark Plug Co Ltd Respiration sensor, using method of respiration sensor and respiration state-monitoring device
JP2007336790A (en) * 2006-06-19 2007-12-27 Kuraray Co Ltd Polymer electrochemical element
WO2009096419A1 (en) * 2008-01-28 2009-08-06 Kuraray Co., Ltd. Flexible deformation sensor
WO2012039425A1 (en) * 2010-09-24 2012-03-29 株式会社クラレ Paste and polymer transducer including coating film formed from same as electrolyte film or electrode films
WO2012066056A1 (en) * 2010-11-17 2012-05-24 Smart Solutions Technologies, S.L. Sensor for acquiring physiological signals

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006212271A (en) * 2005-02-04 2006-08-17 Ngk Spark Plug Co Ltd Respiration sensor, using method of respiration sensor and respiration state-monitoring device
JP2007336790A (en) * 2006-06-19 2007-12-27 Kuraray Co Ltd Polymer electrochemical element
WO2009096419A1 (en) * 2008-01-28 2009-08-06 Kuraray Co., Ltd. Flexible deformation sensor
WO2012039425A1 (en) * 2010-09-24 2012-03-29 株式会社クラレ Paste and polymer transducer including coating film formed from same as electrolyte film or electrode films
WO2012066056A1 (en) * 2010-11-17 2012-05-24 Smart Solutions Technologies, S.L. Sensor for acquiring physiological signals

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
KAZUHIKO ASAHARA: "Development of a flexible bending sensor 'Polymer Sensor", DAI 26 KAI TECHNO FESTA, vol. 30, no. 2, 20 April 2012 (2012-04-20), pages 66 - 68 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108697332A (en) * 2016-02-18 2018-10-23 皇家飞利浦有限公司 For detecting and the equipment, system and method for the dysphagia of monitoring object
JP2018050755A (en) * 2016-09-27 2018-04-05 サッポロホールディングス株式会社 Throat-passing movement measuring apparatus, throat-passing movement measuring system, and throat-passing movement measuring method
WO2020014213A1 (en) * 2018-07-09 2020-01-16 Georgia Tech Research Corporation Acousto-optical sensors for mri safety evaluation

Similar Documents

Publication Publication Date Title
He et al. A Universal high accuracy wearable pulse monitoring system via high sensitivity and large linearity graphene pressure sensor
CN108267078B (en) Flexible wearable resistance-type strain sensor and preparation method thereof
Leleux et al. Ionic liquid gel‐assisted electrodes for long‐term cutaneous recordings
US4554924A (en) Conductive adhesive and biomedical electrode
US7346380B2 (en) Medical electrode
JP2002515082A (en) Conductive adhesives made from zwitterionic materials
Isik et al. Cholinium-based ion gels as solid electrolytes for long-term cutaneous electrophysiology
Cao et al. Stretchable and self-adhesive PEDOT: PSS blend with high sweat tolerance as conformal biopotential dry electrodes
WO2014123072A1 (en) Muscular motion detector and muscular motion detection method
WO2023103255A1 (en) Flexible electromyographic electrode array, and preparation method therefor and application thereof
WO2021076054A1 (en) Polymer composites, methods of fabrication and uses thereof
EP3222212B1 (en) Pad for electrodes
Tang et al. Fabrication of a surface adhesion layer for hydrogel sensors via photografting
WO1997024376A1 (en) Use of pendant photoreactive moieties on polymer precursors to prepare hydrophilic pressure sensitive adhesives
Hu et al. Highly conformal polymers for ambulatory electrophysiological sensing
Zhang et al. Functional microneedles for wearable electronics
Lan et al. Highly Skin-Compliant Polymeric Electrodes with Synergistically Boosted Conductivity toward Wearable Health Monitoring
US20220378375A1 (en) Bioelectrode, production method and installation method for bioelectrode
Zhang et al. Stretchable and durable HD-sEMG electrodes for accurate recognition of swallowing activities on complex epidermal surfaces
Tian et al. Ultrapermeable and wet-adhesive monolayer porous film for stretchable epidermal electrode
WO2014123071A1 (en) Biosignal detector and biosignal detection method
Shi et al. A transparent, anti-fatigue, flexible multifunctional hydrogel with self-adhesion and conductivity for biosensors
CN210408416U (en) Multi-lead medical flexible electrode slice using conductive silver paste as carrier
Wan et al. A reusable, healable, and biocompatible PEDOT: PSS hydrogel-based electrical bioadhesive interface for high-resolution electromyography monitoring and time–frequency analysis
Shi et al. High performance zwitterionic hydrogels for ECG/EMG signals monitoring

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14749163

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14749163

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP