WO2014123007A1 - Electric current sensor - Google Patents

Electric current sensor Download PDF

Info

Publication number
WO2014123007A1
WO2014123007A1 PCT/JP2014/051497 JP2014051497W WO2014123007A1 WO 2014123007 A1 WO2014123007 A1 WO 2014123007A1 JP 2014051497 W JP2014051497 W JP 2014051497W WO 2014123007 A1 WO2014123007 A1 WO 2014123007A1
Authority
WO
WIPO (PCT)
Prior art keywords
bus bar
magnetic sensor
bar portion
current
sensor
Prior art date
Application number
PCT/JP2014/051497
Other languages
French (fr)
Japanese (ja)
Inventor
川浪 崇
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Priority to JP2014560716A priority Critical patent/JPWO2014123007A1/en
Publication of WO2014123007A1 publication Critical patent/WO2014123007A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R15/00Details of measuring arrangements of the types provided for in groups G01R17/00 - G01R29/00, G01R33/00 - G01R33/26 or G01R35/00
    • G01R15/14Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks
    • G01R15/20Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks using galvano-magnetic devices, e.g. Hall-effect devices, i.e. measuring a magnetic field via the interaction between a current and a magnetic field, e.g. magneto resistive or Hall effect devices
    • G01R15/207Constructional details independent of the type of device used

Definitions

  • the present invention relates to a current sensor, and more particularly to a current sensor that detects the value of a current to be measured by measuring the strength of a magnetic field generated according to the current to be measured.
  • Patent Document 1 Japanese Unexamined Patent Application Publication No. 2008-151530 is a prior art document that discloses a semiconductor integrated circuit for magnetic field detection that can detect characteristic deterioration of a magnetoelectric conversion element such as a Hall element.
  • a bus bar serving as a current path is formed along the peripheral edge of the Hall element.
  • Patent Document 2 discloses a sensor chip in which an output signal is proportional to a current to be measured and is not easily disturbed by temperature and an external magnetic field and aims to maintain a stable sensitivity.
  • the sensor chip described in Patent Document 2 is provided with a Wheatstone bridge type bridge circuit for measuring the gradient of the magnetic field strength.
  • the sensor chip has first to fourth magnetic sensitive resistors arranged in first and second ranges spaced from the central axis.
  • the first magnetic sensitive resistor and the second magnetic sensitive resistor are connected in series to form a first bridge shunt, and the third magnetic sensitive resistor and the fourth magnetic sensitive resistor are connected in series. Forming a second bridge shunt.
  • the first and fourth magnetic sensitive resistors are arranged in the first range
  • the second and third magnetic sensitive resistors are arranged in the second range
  • the first and fourth magnetic sensitive resistors and the second and third magnetic sensitive resistors arranged in the second range are arranged symmetrically with respect to the central axis.
  • a magnetic field generated according to the current to be measured is detected using one Hall element, and thus may malfunction due to an external magnetic field.
  • the strength of the magnetic field detected by the first to fourth magnetic sensitive resistors is inversely proportional to the square of the distance from the bus bar. Therefore, it is necessary to accurately arrange the first to fourth magnetic sensitive resistors at desired positions with respect to the bus bar, and it is difficult to manufacture the sensor chip.
  • An external magnetic field having a strength inversely proportional to the square of is applied.
  • the external magnetic field in the first and fourth magnetic sensitive resistors arranged in the first range and the second and third magnetic sensitive resistors arranged in the second range Since the distance from the source is different, the external magnetic field generated from the external magnetic field source affects the output signal of the sensor chip.
  • each path is used to accurately detect the value of the current flowing through each path.
  • the influence of the magnetic field generated by the flowing current has been an obstacle.
  • the present invention has been made in view of the above problems, and an object thereof is to provide a current sensor that can reduce the influence of an external magnetic field and can be easily manufactured.
  • the current sensor according to the present invention includes a bus bar through which a current to be measured flows, and a first magnetic sensor and a second magnetic sensor that detect the strength of a magnetic field generated by the current flowing through the bus bar.
  • the bus bars are electrically connected in parallel with each other, and are positioned in parallel between the first bus bar portion and the second bus bar portion and spaced in parallel with each other, and between the first bus bar portion and the second bus bar portion.
  • a first bus bar portion and a third bus bar portion extending in parallel with an interval to each of the first bus bar portion and the second bus bar portion. The direction in which the current flows through the first bus bar portion and the direction in which the current flows through the second bus bar portion are the same.
  • the direction in which the current flows through the first bus bar portion and the direction in which the current flows through the second bus bar portion are opposite to the direction in which the current flows through the third bus bar portion.
  • the first magnetic sensor is located between the first bus bar portion and the third bus bar portion.
  • the second magnetic sensor is located between the second bus bar portion and the third bus bar portion.
  • Each of the first magnetic sensor and the second magnetic sensor has a direction perpendicular to the direction in which the first bus bar portion, the second bus bar portion, and the third bus bar portion are aligned, and the extending direction of the third bus bar portion. And has a detection axis in the orthogonal direction.
  • the first magnetic sensor and the second magnetic sensor detect the strength of the magnetic field generated by the current flowing through the bus bar with an odd function input / output characteristic.
  • the current sensor further includes calculation means for calculating the value of the current by calculating each detection value of the first magnetic sensor and the second magnetic sensor.
  • the width dimension of the first bus bar part, the width dimension of the second bus bar part, and the width dimension of the third bus bar part are respectively adjacent to each other in the direction of the detection axis. It is 1.5 times or more of the dimension of the space
  • the interval between the first bus bar portion and the third bus bar portion and the interval between the second bus bar portion and the third bus bar portion are equal in the direction of the detection axis.
  • the first bus bar portion and the second bus bar portion are located in point symmetry with respect to the center point of the third bus bar portion in the cross section.
  • the first magnetic sensor and the second magnetic sensor are located in point symmetry with respect to the center point of the third bus bar portion in the cross section.
  • the first bus bar portion and the second bus bar portion are positioned symmetrically with respect to each other about the center line of the third bus bar portion in the direction of the detection axis in the cross section.
  • the first magnetic sensor and the second magnetic sensor are located symmetrically with respect to each other about the center line of the third bus bar portion in the direction of the detection axis in the cross section.
  • the first magnetic sensor is located closer to the first bus bar portion than the third bus bar portion.
  • the second magnetic sensor is located closer to the second bus bar portion than the third bus bar portion.
  • the first magnetic sensor is located closer to the third bus bar portion than the first bus bar portion.
  • the second magnetic sensor is located closer to the third bus bar portion than the second bus bar portion.
  • one end of the first bus bar portion, one end of the second bus bar portion, and one end of the third bus bar portion are connected to each other by the first connecting portion.
  • the other end of the first bus bar portion and the other end of the second bus bar portion are connected to each other by the second connecting portion.
  • the bus bar includes a first bus bar member that forms part of the first bus bar part and the third bus bar part, and a second bus bar that forms part of the second bus bar part and the third bus bar part. Member.
  • the first bus bar member and the second bus bar member are in contact with each other in the respective third bus bar portions.
  • the bus bar has an input terminal portion for inputting current to the first bus bar portion and the second bus bar portion, and an output terminal portion for outputting current from the third bus bar portion.
  • the input terminal portion and the output terminal portion are located on the same plane and extend in opposite directions in the direction of the detection axis.
  • the phase of the detection value of the first magnetic sensor and the phase of the detection value of the second magnetic sensor are in opposite phases with respect to the strength of the magnetic field generated by the current flowing through the bus bar.
  • the calculation means is a subtracter.
  • the phase of the detection value of the first magnetic sensor and the phase of the detection value of the second magnetic sensor are in phase with respect to the strength of the magnetic field generated by the current flowing through the bus bar.
  • the calculating means is an adder.
  • a current sensor that can reduce the influence of an external magnetic field can be easily manufactured.
  • FIG. 3 is a diagram schematically showing a generated magnetic field in a cross-sectional view of the current sensor according to the first embodiment of the present invention as viewed from the direction of arrows III-III in FIG. 1. It is sectional drawing which shows the state which has arrange
  • FIG. 8 is a diagram schematically showing a generated magnetic field in a cross-sectional view of the current sensor according to the second embodiment of the present invention as viewed from the direction of arrows VIII-VIII in FIG. 7.
  • FIG. 1 It is a magnetic flux diagram which shows the result of having simulated the magnetic flux density of the magnetic field which generate
  • 11 is a contour diagram showing the result of simulating the magnetic flux density of the magnetic field generated by the current to be measured flowing through the bus bar in the periphery of the bus bar of the current sensor according to the comparative example, as viewed in the direction of the arrow in FIG. is there.
  • 11 is a graph showing the relationship between the distance away from the central portion of the third bus bar portion in the left-right direction in FIG. 10 in the up-down direction in FIG. 10 and the magnetic flux density in the current sensor according to Embodiment 2 of the present invention.
  • FIG. 12 is a diagram schematically showing a generated magnetic field in the cross-sectional view of the current sensor according to the fifth embodiment of the present invention as viewed from the direction of the arrow XVIII-XVIII in FIG. It is a perspective view which shows the structure of the current sensor which concerns on Embodiment 6 of this invention.
  • FIG. 18 is a diagram schematically showing a generated magnetic field in the cross-sectional view of the current sensor according to the fifth embodiment of the present invention as viewed from the direction of the arrow XVIII-XVIII in FIG. It is a perspective view which shows the structure of the current sensor which concerns on Embodiment 6 of this invention.
  • FIG. 20 is a diagram schematically showing a generated magnetic field in the cross-sectional view of the current sensor according to the sixth embodiment of the present invention as viewed from the direction of the arrow XX-XX in FIG. It is a perspective view which shows the structure of the current sensor module which concerns on Embodiment 7 of this invention.
  • FIG. 1 is a perspective view showing a configuration of a current sensor according to Embodiment 1 of the present invention.
  • FIG. 2 is a perspective view showing a state in which the bus bar and the external wiring of the current sensor according to the present embodiment are connected.
  • the current sensor 100 includes a bus bar 110 through which a current to be measured flows.
  • the current sensor 100 also includes a first magnetic sensor 120 and a second magnetic sensor 121 that detect the strength of a magnetic field generated by the current to be measured flowing through the bus bar 110 with an odd function input / output characteristic.
  • the current sensor 100 includes a subtractor 130 that is a calculation unit that calculates the value of the current by subtracting the detection values of the first magnetic sensor 120 and the second magnetic sensor 121.
  • Bus bar 110 includes a first bus bar portion 111 and a second bus bar portion 112 that are electrically connected to each other in parallel and are spaced in parallel with each other.
  • the bus bar 110 extends in parallel to the first bus bar part 111 and the second bus bar part 112 at an interval between the first bus bar part 111 and the second bus bar part 112, and extends in parallel. 113 is further included.
  • the first bus bar portion 111, the second bus bar portion 112, and the third bus bar portion 113 have a rectangular parallelepiped shape and are arranged at equal intervals. One end in the longitudinal direction of the first bus bar portion 111, one end in the longitudinal direction of the second bus bar portion 112, and one end in the longitudinal direction of the third bus bar portion 113 are connected to each other by the first connecting portion 114.
  • the first connecting portion 114 has a rectangular parallelepiped shape, and extends in the direction in which the first bus bar portion 111, the second bus bar portion 112, and the third bus bar portion 113 are arranged. That is, the 1st connection part 114 is orthogonally crossed with the 1st bus-bar part 111, the 2nd bus-bar part 112, and the 3rd bus-bar part 113, respectively.
  • the shape of the 1st bus-bar part 111, the 2nd bus-bar part 112, the 3rd bus-bar part 113, and the 1st connection part 114 is not restricted to a rectangular parallelepiped shape, For example, a cylindrical shape may be sufficient.
  • the bus bar 110 has an E-shape when viewed in plan.
  • the shape of the bus bar 110 is not limited to this, and it is only necessary to include the first bus bar part 111, the second bus bar part 112, and the third bus bar part 113.
  • the bus bar 110 is made of aluminum.
  • the material of the bus bar 110 is not limited to this, and may be a metal such as silver or copper, or an alloy containing these metals.
  • the bus bar 110 may be subjected to a surface treatment.
  • a surface treatment for example, at least one plating layer made of a metal such as nickel, tin, silver, copper, or an alloy containing these metals may be provided on the surface of the bus bar 110.
  • the bus bar 110 is formed by pressing a thin plate.
  • the method of forming the bus bar 110 is not limited to this, and the bus bar 110 may be formed by a method such as cutting or casting.
  • the direction 11 in which the current flows through the first bus bar portion 111 and the direction 12 in which the current flows through the second bus bar portion 112 are the same.
  • the direction 11 in which current flows through the first bus bar portion 111, the direction 12 in which current flows through the second bus bar portion 112, and the direction 13 in which current flows through the third bus bar portion 113 are opposite.
  • the external wiring includes an input wiring 170 branched to two input terminals and an output wiring 171 having an output terminal.
  • the two input terminals of the input wiring 170 and the output terminal of the output wiring 171 each have an annular portion.
  • a first through hole 111 h is provided at the other end in the longitudinal direction of the first bus bar portion 111, and the other end in the longitudinal direction of the second bus bar portion 112.
  • the second through hole 112h is provided in the second bus bar portion 113, and the third through hole 113h is provided at the other end in the longitudinal direction of the third bus bar portion 113.
  • the first bus bar portion 111 is inserted. And the input wiring 170 are connected.
  • the second bus bar portion 112 is inserted. And the input wiring 170 are connected.
  • the bolt 190 is inserted into the annular portion of the output terminal of the output wiring 171 and the third through hole 113h, and the bolt 190 and the nut 180 are fastened, whereby the third bus bar portion 113 and the output wiring 171 are connected. Connected.
  • the current input to the first bus bar portion 111 is output from the third bus bar portion 113 through the first connecting portion 114.
  • the current input to the second bus bar portion 112 is output from the third bus bar portion 113 through the first connecting portion 114.
  • connection method between the bus bar 110 and the external wiring is not limited to the above.
  • the direction in which current flows in the first bus bar portion 111, the direction in which current flows in the second bus bar portion 112, and the direction in which current flows in the third bus bar portion 113. are connected so as to be opposite.
  • the first bus bar portion 111 and the second bus bar portion 112 may be connected to the output wiring, and the third bus bar portion 113 may be connected to the input wiring.
  • the first magnetic sensor 120 is located between the first bus bar portion 111 and the third bus bar portion 113.
  • the second magnetic sensor 121 is located between the second bus bar part 112 and the third bus bar part 113.
  • the first magnetic sensor 120 is orthogonal to the direction in which the first bus bar portion 111, the second bus bar portion 112, and the third bus bar portion 113 are aligned, and is orthogonal to the extending direction of the third bus bar portion 113.
  • the detection axis is in the direction indicated by the arrow 120a in FIG.
  • the second magnetic sensor 121 is orthogonal to the direction in which the first bus bar part 111, the second bus bar part 112, and the third bus bar part 113 are aligned, and is orthogonal to the extending direction of the third bus bar part 113.
  • the detection axis is in the direction indicated by the arrow 121a in FIG.
  • the first magnetic sensor 120 and the second magnetic sensor 121 output a positive value when a magnetic field directed in one direction of the detection axis is detected, and a magnetic field directed in a direction opposite to the one direction of the detection axis. It has an odd function input / output characteristic that outputs a negative value when detected. That is, the phase of the detection value of the first magnetic sensor 120 and the phase of the detection value of the second magnetic sensor 121 are opposite to each other with respect to the strength of the magnetic field generated by the current to be measured flowing through the bus bar 110.
  • Examples of the first magnetic sensor 120 and the second magnetic sensor 121 include AMR (Anisotropic Magneto Resistance), GMR (Giant Magneto Resistance), TMR (Tunnel Magneto Resistance), BMR (Balistic Magneto Resistance), CMR (Colossal Magneto Resistance), and the like.
  • a magnetic sensor having a magnetoresistive element can be used.
  • a magnetic sensor using an AMR element having a barber pole structure having an odd function input / output characteristic and a Wheatstone bridge type bridge circuit or a half bridge circuit which is a half circuit configuration thereof can be used.
  • first magnetic sensor 120 and the second magnetic sensor 121 a magnetic sensor having a Hall element, a magnetic sensor having an MI (Magneto Impedance) element using a magnetic impedance effect, a fluxgate type magnetic sensor, or the like is used. Can do.
  • the method is not limited to the method using the barber pole structure, and an induction magnetic field generated around the coil, a magnetic field of a permanent magnet, or a magnetic field combining these is used. May be biased.
  • the first magnetic sensor 120 is electrically connected to the subtractor 130 by the first connection wiring 141.
  • the second magnetic sensor 121 is electrically connected to the subtractor 130 by the second connection wiring 142.
  • the subtractor 130 subtracts the detection value of the second magnetic sensor 121 from the detection value of the first magnetic sensor 120, thereby calculating the value of the current to be measured flowing through the bus bar 110.
  • the subtractor 130 is used as the calculation means, but the calculation means is not limited to this and may be a differential amplifier or the like.
  • FIG. 3 is a diagram schematically showing a generated magnetic field in a cross-sectional view of the current sensor 100 according to the present embodiment as viewed from the direction of arrows III-III in FIG.
  • a rightward magnetic field in the figure is applied to the first magnetic sensor 120 in the direction of the detection axis indicated by the arrow 120a.
  • a leftward magnetic field in the figure is applied to the second magnetic sensor 121 in the direction of the detection axis indicated by the arrow 121a.
  • the detection value indicating the strength of the magnetic field detected by the first magnetic sensor 120 is a positive value
  • the detection value indicating the strength of the magnetic field detected by the second magnetic sensor 121 is a negative value.
  • the detection value of the first magnetic sensor 120 and the detection value of the second magnetic sensor 121 are transmitted to the subtractor 130.
  • the subtracter 130 subtracts the detection value of the second magnetic sensor 121 from the detection value of the first magnetic sensor 120. As a result, the absolute value of the detection value of the first magnetic sensor 120 and the absolute value of the detection value of the second magnetic sensor 121 are added. From this addition result, the value of the current to be measured flowing through the bus bar 110 is calculated.
  • the external magnetic field source is physically the first magnetic sensor. It cannot be positioned between the sensor 120 and the second magnetic sensor 121.
  • the direction of the magnetic field component in the direction of the detection axis indicated by the arrow 120a and the magnetic field applied from the external magnetic field source to the second magnetic sensor 121 is the same direction. Therefore, if the detection value indicating the strength of the external magnetic field detected by the first magnetic sensor 120 is a positive value, the detection value indicating the strength of the external magnetic field detected by the second magnetic sensor 121 is also a positive value.
  • the subtractor 130 subtracts the detection value of the second magnetic sensor 121 from the detection value of the first magnetic sensor 120, thereby detecting the absolute value of the detection value of the first magnetic sensor 120 and the detection of the second magnetic sensor 121.
  • the absolute value of the value is subtracted. Thereby, the magnetic field from the external magnetic field source is hardly detected. That is, the influence of the external magnetic field is reduced.
  • the detection axis directions in which the detection values are positive may be opposite to each other (opposite 180 °). In this case, if the detection value indicating the strength of the external magnetic field detected by the first magnetic sensor 120 is a positive value, the detection value indicating the strength of the external magnetic field detected by the second magnetic sensor 121 is a negative value. .
  • the phase of the detection value of the first magnetic sensor 120 and the phase of the detection value of the second magnetic sensor 121 are in phase.
  • an adder is used in place of the subtractor 130 as the calculation means.
  • the adder adds the detection value of the first magnetic sensor 120 and the detection value of the second magnetic sensor 121, so that the absolute value of the detection value of the first magnetic sensor 120 and the second magnetic sensor 121 The absolute value of the detected value is subtracted. Thereby, the magnetic field from the external magnetic field source is hardly detected. That is, the influence of the external magnetic field is reduced.
  • the adder adds the detection value of the first magnetic sensor 120 and the detection value of the second magnetic sensor 121, thereby The absolute value of the detection value and the absolute value of the detection value of the second magnetic sensor 121 are added. From this addition result, the value of the current to be measured flowing through the bus bar 110 is calculated.
  • an adder may be used as the calculation unit in place of the subtractor 130 while the input / output characteristics of the first magnetic sensor 120 and the second magnetic sensor 121 have opposite polarities.
  • the first bus bar portion 111 and the second bus bar portion 112 are located in point symmetry with respect to the center point of the third bus bar portion 113 in the cross section.
  • the first bus bar portion 111 and the second bus bar portion 112 are symmetrical with respect to each other about the center line of the third bus bar portion 113 in the direction of the detection axis of the first magnetic sensor 120 and the second magnetic sensor 121 in the cross section. positioned.
  • first magnetic sensor 120 and the second magnetic sensor 121 are located point-symmetrically with respect to the center point of the third bus bar portion 113 in the cross section.
  • the first magnetic sensor 120 and the second magnetic sensor 121 are symmetrical with respect to each other about the center line of the third bus bar portion 113 in the direction of the detection axis of the first magnetic sensor 120 and the second magnetic sensor 121 in the cross section. positioned.
  • FIG. 4 is a cross-sectional view showing a state in which the first bus bar portion and the second bus bar portion are arranged in point symmetry with each other, and the first magnetic sensor and the second magnetic sensor are arranged in point symmetry with respect to each other. 4 shows the same cross-sectional view as FIG.
  • the first bus bar portion 111 and the second bus bar portion 112 are located in point symmetry with respect to the center point 113 c of the third bus bar portion 113 in the cross section. Further, the first magnetic sensor 120y and the second magnetic sensor 121y are located point-symmetrically with respect to the center point 113c of the third bus bar portion 113 in the cross section.
  • the magnetic field 113e generated by the current to be measured flowing through the bus bar 110 and circulating around the third bus bar portion 113 is equivalently applied in the opposite direction to each of the first magnetic sensor 120y and the second magnetic sensor 121y. Is done.
  • the subtractor 130 subtracts the detection value of the second magnetic sensor 121y from the detection value of the first magnetic sensor 120y, thereby doubling the detection value of the magnetic field 113e.
  • the subtractor 130 subtracts the detection value of the second magnetic sensor 121y from the detection value of the first magnetic sensor 120y, so that the detection value of the external magnetic field becomes zero.
  • the first magnetic sensor 120y and the second magnetic sensor 121y arranged in a point-symmetric manner in this way show detection values that equally reflect the magnetic field generated by the current to be measured flowing through the bus bar 110. Therefore, the linearity between the strength of the magnetic field generated by the current to be measured flowing through the bus bar 110 and the value of the current to be measured flowing through the bus bar 110 can be improved.
  • FIG. 5 is a cross-sectional view showing a state in which the first bus bar portion and the second bus bar portion are arranged in line symmetry with each other, and the first magnetic sensor and the second magnetic sensor are arranged in line symmetry with each other.
  • FIG. 5 shows the same cross-sectional view as FIG.
  • the first bus bar portion 111 and the second bus bar portion 112 are cross-sectionally shown with a center line 113x of the third bus bar portion 113 in the direction of the detection axis of the first magnetic sensor 120 and the second magnetic sensor 121. They are located symmetrically with each other as the center.
  • the first magnetic sensor 120z and the second magnetic sensor 121z are symmetrical with respect to each other about the center line 113x of the third bus bar portion 113 in the direction of the detection axis of the first magnetic sensor 120z and the second magnetic sensor 121z in the cross section. Is located.
  • the magnetic field 113e generated by the current to be measured flowing through the bus bar 110 and circulating around the third bus bar portion 113 is equivalently applied in the opposite direction to each of the first magnetic sensor 120z and the second magnetic sensor 121z. Is done.
  • the subtractor 130 subtracts the detection value of the second magnetic sensor 121z from the detection value of the first magnetic sensor 120z, the detection value of the magnetic field 113e is doubled.
  • the subtractor 130 subtracts the detection value of the second magnetic sensor 121z from the detection value of the first magnetic sensor 120z, so that the detection value of the external magnetic field becomes zero.
  • the external magnetic field source 10 when the external magnetic field source 10 is in the vicinity of the first magnetic sensor 120z and the second magnetic sensor 121z, the external magnetic field source 10 and the first magnetic sensor in the direction of the detection axis of the first magnetic sensor 120z indicated by the arrow 120a.
  • the distance L 1 from 120z is equal to the distance L 2 between the external magnetic field source 10 and the second magnetic sensor 121z in the direction of the detection axis of the second magnetic sensor 121z indicated by the arrow 121a.
  • the subtractor 130 subtracts the detection value of the second magnetic sensor 121z from the detection value of the first magnetic sensor 120z, so that the detection value of the external magnetic field becomes zero.
  • the distance L 4 between the external magnetic field source 10 and the second magnetic sensor 121z in the direction orthogonal to the direction of the detection axis is different, the magnetic field component in this direction is detected by the first magnetic sensor 120z and the second magnetic sensor 121z.
  • the first magnetic sensor 120z and the second magnetic sensor 121z arranged in line symmetry in this way indicate detection values that equally reflect the magnetic field generated by the current to be measured flowing through the bus bar 110. Therefore, the linearity between the strength of the magnetic field generated by the current to be measured flowing through the bus bar 110 and the value of the current to be measured flowing through the bus bar 110 can be improved. Furthermore, even when the external magnetic field source 10 is located in the vicinity of the first magnetic sensor 120z and the second magnetic sensor 121z, the influence of the external magnetic field can be reduced.
  • the current sensor 100 Since the current sensor 100 according to the present embodiment satisfies both the point-symmetrical arrangement and the line-symmetrical arrangement, the magnetic field generated by the current to be measured flowing through the bus bar 110 regardless of the position of the external magnetic field source 10. The influence of the external magnetic field can be reduced while increasing the linearity between the strength and the value of the current to be measured flowing through the bus bar 110 calculated from the strength.
  • the magnetic field generated between the first bus bar portion 111 and the third bus bar portion 113 has a relatively small change due to the distance from each bus bar portion. Therefore, high accuracy is not required for the arrangement of the first magnetic sensor 120.
  • the magnetic field generated between the second bus bar portion 112 and the third bus bar portion 113 has a relatively small change depending on the distance from each bus bar portion. Therefore, high accuracy is not required for the arrangement of the second magnetic sensor 121. Therefore, the current sensor 100 can be easily manufactured.
  • FIG. 6 is a perspective view showing the structure of the bus bar of the current sensor according to the modification of the present embodiment.
  • the bus bar 110a of the current sensor according to the modified example has an annular shape when seen in a plan view because both ends of the first bus bar portion 111 and both ends of the second bus bar portion 112 are connected to each other. have.
  • the other end in the longitudinal direction of the first bus bar portion 111 and the other end in the longitudinal direction of the second bus bar portion 112 are connected to each other by the second connecting portion 115.
  • the second connecting portion 115 extends in the direction in which the first bus bar portion 111, the second bus bar portion 112, and the third bus bar portion 113 are arranged. That is, the second connecting part 115 is orthogonal to the first bus bar part 111 and the second bus bar part 112.
  • the second connecting portion 115 has a rectangular parallelepiped shape.
  • the shape of the 2nd connection part 115 is not restricted to a rectangular parallelepiped shape, For example, a cylindrical shape may be sufficient.
  • the first female screw 115h is provided at the center in the extending direction of the second connecting portion 115, and the second female screw is provided at the other end in the longitudinal direction of the third bus bar portion 113. 113h 'is provided.
  • the second connecting portion 115 and the input wiring are connected by inserting a bolt into the input terminal of the input wiring and fastening the bolt with the first female screw 115h.
  • the third bus bar portion 113 and the output wiring are connected by inserting a bolt into the output terminal of the output wiring and fastening the bolt with the second female screw 113h '.
  • the current input to the second connecting portion 115 is output from the third bus bar portion 113 through the first bus bar portion 111, the second bus bar portion 112, and the first connecting portion 114.
  • the second connecting portion 115 a portion where the current flows through the portion located on the first bus bar portion 111 side from the third bus bar portion 113 and a portion located on the second bus bar portion 112 side from the third bus bar portion 113. This is opposite to the direction 17 in which the current flows.
  • connection method between the bus bar 110a and the external wiring is not limited to the above, and the direction in which current flows in the first bus bar portion 111, the direction in which current flows in the second bus bar portion 112, and the direction in which current flows in the third bus bar portion 113. Are connected so as to be opposite.
  • the 2nd connection part 115 may be connected to the output wiring, and the 3rd bus-bar part 113 may be connected to the input wiring.
  • the mechanical strength of the bus bar 110a can be made higher than that of the bus bar 110 according to the first embodiment. Further, by eliminating the need for nuts while reducing the number of connection points with external wiring, it is possible to easily connect with external wiring as compared with the bus bar 110 according to the first embodiment.
  • Embodiment 2 of the present invention will be described with reference to the drawings. Since the current sensor 200 according to the present embodiment is different from the current sensor 100 according to the first embodiment only in that the width of the bus bar is widened, the description of other configurations will not be repeated.
  • FIG. 7 is a perspective view showing a configuration of a current sensor according to Embodiment 2 of the present invention.
  • the current sensor 200 according to the second embodiment of the present invention includes a bus bar 210 through which a current to be measured flows.
  • the current sensor 200 includes a first magnetic sensor 220 and a second magnetic sensor 221 that detect the strength of a magnetic field generated by the current to be measured flowing through the bus bar 210 with an odd function input / output characteristic.
  • the current sensor 200 includes a subtracter 230 that is a calculation unit that calculates the value of the current by subtracting the detection values of the first magnetic sensor 220 and the second magnetic sensor 221.
  • the bus bar 210 includes a first bus bar portion 211 and a second bus bar portion 212 that are electrically connected in parallel to each other and located in parallel with an interval therebetween.
  • the bus bar 210 has a third bus bar portion that extends in parallel to the first bus bar portion 211 and the second bus bar portion 212 at an interval between the first bus bar portion 211 and the second bus bar portion 212. 213 is further included.
  • the gap G 1 between the first bus bar part 211 and the third bus bar part 213 is equal to the gap G 2 between the second bus bar part 212 and the third bus bar part 213.
  • the first bus bar portion 211, the second bus bar portion 212, and the third bus bar portion 213 have a rectangular parallelepiped shape and are arranged at equal intervals. One end in the longitudinal direction of the first bus bar portion 211, one end in the longitudinal direction of the second bus bar portion 212, and one end in the longitudinal direction of the third bus bar portion 213 are connected to each other by the first connecting portion 214.
  • the first connecting portion 214 has a rectangular parallelepiped shape, and extends in the direction in which the first bus bar portion 211, the second bus bar portion 212, and the third bus bar portion 213 are arranged. That is, the 1st connection part 214 is orthogonally crossed with the 1st bus-bar part 211, the 2nd bus-bar part 212, and the 3rd bus-bar part 213, respectively. As described above, the bus bar 210 has an E shape when seen in a plan view.
  • the first magnetic sensor 220 is located between the first bus bar part 211 and the third bus bar part 213.
  • the main surface of the first magnetic sensor 220 faces the first bus bar part 211 and the third bus bar part 213.
  • the second magnetic sensor 221 is located between the second bus bar part 212 and the third bus bar part 213.
  • the main surface of the second magnetic sensor 221 faces the second bus bar part 212 and the third bus bar part 213.
  • the first magnetic sensor 220 is orthogonal to the direction in which the first bus bar portion 211, the second bus bar portion 212, and the third bus bar portion 213 are aligned, and is orthogonal to the extending direction of the third bus bar portion 213.
  • the detection axis is in the direction indicated by the arrow 220a in FIG.
  • the second magnetic sensor 221 is orthogonal to the direction in which the first bus bar portion 211, the second bus bar portion 212, and the third bus bar portion 213 are aligned, and is orthogonal to the extending direction of the third bus bar portion 213.
  • the detection axis is in the direction indicated by the arrow 221a in FIG.
  • the first magnetic sensor 220 and the second magnetic sensor 221 output a positive value when a magnetic field directed in one direction of the detection axis is detected, and a magnetic field directed in a direction opposite to the one direction of the detection axis. It has an odd function input / output characteristic that outputs a negative value when detected.
  • the first magnetic sensor 220 is electrically connected to the subtracter 230 by connection wiring.
  • the second magnetic sensor 221 is electrically connected to the subtracter 230 by connection wiring.
  • the subtracter 230 calculates the value of the current to be measured flowing through the bus bar 210 by subtracting the detection value of the second magnetic sensor 221 from the detection value of the first magnetic sensor 220.
  • the width dimension 211t of the first bus bar portion 211, the width dimension 212t of the second bus bar portion 212, and The width dimension 213t of the third bus bar portion 213 is 1.5 times the distance dimensions G 1 and G 2 between the adjacent bus bar portions.
  • the dimension of the width of the first bus bar portion 211 211t, dimensions 212t of the width of the second bus bar 212, and the dimensions 213t of the width of the third bus bar portions 213 are each 1.5G 1.
  • the size of the width of the first bus bar portion 211 211t, dimensions 212t of the width of the second bus bar 212, and the dimensions 213t of the width of the third bus bar 213 is respectively 1.5G 1 or more It is more preferable that each is 2.0 G 1 or more.
  • the direction 21 in which the current flows through the first bus bar portion 211 and the direction 22 in which the current flows through the second bus bar portion 212 are the same.
  • the direction 21 in which current flows in the first bus bar portion 211, the direction 22 in which current flows in the second bus bar portion 212, and the direction 23 in which current flows in the third bus bar portion 213 are opposite to each other.
  • the bus bar 210 is connected to external wiring including input wiring and output wiring, as in the current sensor 100 according to the first embodiment shown in FIG. For this reason, the current input to the first bus bar portion 211 is output from the third bus bar portion 213 through the first connection portion 214. In addition, the current input to the second bus bar portion 212 is output from the third bus bar portion 213 through the first connecting portion 214.
  • the portion 24 that is located on the first bus bar portion 211 side from the third bus bar portion 213 and the portion 24 that is located on the second bus bar portion 212 side from the third bus bar portion 213 are disposed. This is opposite to the direction 25 in which the current flows.
  • FIG. 8 is a diagram schematically showing a generated magnetic field in a cross-sectional view of the current sensor 200 according to the present embodiment as viewed from the direction of arrows VIII-VIII in FIG.
  • a rightward magnetic field in the drawing is applied to the first magnetic sensor 220 in the direction of the detection axis indicated by the arrow 220a.
  • a leftward magnetic field in the figure is applied to the second magnetic sensor 221 in the direction of the detection axis indicated by the arrow 221a.
  • the detection value indicating the strength of the magnetic field detected by the first magnetic sensor 220 is a positive value
  • the detection value indicating the strength of the magnetic field detected by the second magnetic sensor 221 is a negative value.
  • the detection value of the first magnetic sensor 220 and the detection value of the second magnetic sensor 221 are transmitted to the subtracter 230.
  • the subtracter 230 subtracts the detection value of the second magnetic sensor 221 from the detection value of the first magnetic sensor 220. As a result, the absolute value of the detection value of the first magnetic sensor 220 and the absolute value of the detection value of the second magnetic sensor 221 are added. From this addition result, the value of the current to be measured flowing through the bus bar 210 is calculated.
  • FIG. 9 is a magnetic flux diagram showing the result of simulating the magnetic flux density of the magnetic field generated by the current to be measured flowing through the bus bar 210 around the bus bar 210 of the current sensor 200 according to the present embodiment.
  • FIG. 10 is a contour map showing the result of simulating the magnetic flux density of the magnetic field generated by the current to be measured flowing through the bus bar 210 around the bus bar 210 of the current sensor 200 according to the present embodiment. 9 and 10 show the same cross section as FIG.
  • a current sensor according to a comparative example is prepared.
  • the current sensor according to the comparative example includes a bus bar 910 through which a current to be measured flows.
  • FIG. 11 is a plan view showing the shape of the bus bar 910 included in the current sensor according to the comparative example.
  • FIG. 12 shows the result of simulating the magnetic flux density of the magnetic field generated by the current to be measured flowing through the bus bar 910 in the vicinity of the bus bar 910 of the current sensor according to the comparative example, as viewed from the direction of the arrow XII-XII in FIG. It is the contour map shown in the cross section.
  • the bus bar 910 included in the current sensor according to the comparative example includes a first bus bar portion 911 and a second bus bar portion 912 that are positioned in parallel with a space between each other.
  • the bus bar 910 one end of the first bus bar part 911 and one end of the second bus bar part 912 are connected by a connecting part 913.
  • the bus bar 910 is formed in a thin plate shape. The current flows from the first bus bar part 911 to the second bus bar part 912 through the connecting part 913.
  • FIG. 13 is a graph showing the relationship between the distance away from the central portion of the third bus bar portion 213 in the left-right direction in FIG. 10 in the up-down direction in FIG. 10 and the magnetic flux density in the current sensor 200 according to the present embodiment. It is.
  • the vertical axis represents the magnetic flux density (mT)
  • the horizontal axis represents the distance (mm) from the surface of the third bus bar portion 213.
  • FIG. 14 shows a distance between the center portion of the first bus bar portion 911 or the center portion of the second bus bar portion 912 in the left-right direction in FIG. 12 and the magnetic flux in the up-down direction in FIG. It is a graph which shows the relationship with a density.
  • the vertical axis represents the magnetic flux density (mT)
  • the horizontal axis represents the distance (mm) from the surface of the bus bar 910.
  • each bus bar portion in this embodiment and the comparative example was 2 mm ⁇ 10 mm, and the value of the current to be measured flowing through the bus bar was 100 A.
  • the value of the current to be measured flowing through the third bus bar portion 213 is 100A.
  • a line with a magnetic flux density of 0.6 mT is E 1
  • a line with 1.2 mT is E 2
  • a line with 1.8 mT is E 3
  • a line with 2.4 mT is E 4.
  • a line of 3.0 mT is E 5
  • a line of 3.6 mT is E 6
  • a line of 4.2 mT is E 7
  • a line of 4.8 mT is E 8
  • a line of 5.4 mT is E 9
  • a line that is 6.0 mT is indicated by E 10 .
  • the width dimension 211t of the first bus bar portion 211, the width dimension 212t of the second bus bar portion 212, and the width dimension 213t of the third bus bar portion 213 are adjacent to each other. 1.5 times the dimension G 1, G 2 of the spacing between the bus bar unit to.
  • the magnetic flux lines of the magnetic field to be extended extend substantially linearly along each bus bar portion in the left-right direction in the figure.
  • the horizontal direction in the figure is the direction of the detection axis of the first and second magnetic sensors 220 and 221.
  • the magnetic flux density is higher than 4.8 mT in the vicinity of the third bus bar portion 213 between the first bus bar portion 211 and the third bus bar portion 213. A region is formed.
  • the magnetic flux density is about 4.5 mT and hardly changes at the center portion in the left-right direction in the drawing on the first bus bar portion 211 side. Is formed.
  • a region having a magnetic flux density higher than 4.8 mT is formed in the vicinity of the third bus bar portion 213 between the second bus bar portion 212 and the third bus bar portion 213.
  • the magnetic flux density between the first bus bar portion 911 and the second bus bar portion 912 increases as the distance from the vicinity of the first bus bar portion 911 and the vicinity of the second bus bar portion 912 increases. Is rapidly decreasing, and there is no region where the magnetic flux density hardly changes.
  • the magnetic flux density rapidly decreases as the distance from the central portion of the first bus bar portion 911 or the central portion of the second bus bar portion 912 in the vertical direction in FIG. ing.
  • the first magnetic sensor 220 is disposed closer to the third bus bar portion 213 than the first bus bar portion 211, and the second magnetic sensor 221 is disposed from the second bus bar portion 212 to the third bus bar. Since the first magnetic sensor 220 and the second magnetic sensor 221 can be disposed in a region having a high magnetic flux density by being disposed near the portion 213, the SN ratio (signal-noise ratio) of the current sensor 200 can be increased. . In this case, the sensitivity of the current sensor 200 can be improved.
  • the first magnetic sensor 220 is disposed closer to the first bus bar portion 211 than the third bus bar portion 213, and the second magnetic sensor 221 is disposed from the third bus bar portion 213 to the second bus bar. Since the first magnetic sensor 220 and the second magnetic sensor 221 can be arranged in a region where the magnetic flux density hardly changes by being arranged near the portion 212, the arrangement of the first magnetic sensor 220 and the second magnetic sensor 221 can be reduced. High accuracy is not required. In this case, the current sensor 200 can be easily manufactured.
  • width dimension 211t of the first bus bar portion 211, the width dimension 212t of the second bus bar portion 212, and the width dimension 213t of the third bus bar portion 213 are each 1.5 G 1 or more. It becomes remarkable when it is obtained stably and each is 2.0 G 1 or more.
  • the influence of the external magnetic field can be reduced. Moreover, since high precision is not required for the arrangement of the first magnetic sensor 220 and the second magnetic sensor 121, the current sensor 200 can be easily manufactured.
  • the bus bar 210 according to the present embodiment has an area where the magnetic flux density is lower than 0.6 mT, which is formed near the bus bar, as compared with the bus bar 910 of the comparative example. That is, the leakage magnetic field of the bus bar 210 according to the present embodiment is smaller than the leakage magnetic field of the bus bar 910 of the comparative example.
  • the current flowing through each path is obtained by using the current sensor 200 according to the present embodiment. Can be detected more accurately.
  • FIG. 15 is a perspective view showing a configuration of a current sensor according to Embodiment 3 of the present invention.
  • the current sensor 300 according to the third embodiment of the present invention includes a bus bar 310 through which a current to be measured flows.
  • the current sensor 300 includes a first magnetic sensor 320 and a second magnetic sensor 321 that detect the strength of the magnetic field generated by the current to be measured flowing through the bus bar 310 with an odd function input / output characteristic.
  • the current sensor 300 includes a subtracter (not shown) which is a calculation means for calculating the current value by subtracting the detection values of the first magnetic sensor 320 and the second magnetic sensor 321.
  • the bus bar 310 constitutes a first bus bar member 310a constituting the first bus bar part 311 and a part 313a of the third bus bar part, and a second bus bar part 312 and a part 313b of the third bus bar part. Second bus bar member 310b.
  • first bus bar member 310a and the second bus bar member 310b have the same U-shape when viewed in plan.
  • first bus bar member 310a one end in the longitudinal direction of the first bus bar part 311 and one end in the longitudinal direction of the part 313a of the third bus bar part, which are parallel to each other with a space therebetween, are curved. They are connected to each other by one connecting portion 314a.
  • the first end in the longitudinal direction of the second bus bar portion 312 and the one end in the longitudinal direction of the portion 313b of the third bus bar portion, which are parallel to each other with a space therebetween, are curved. They are connected to each other by one connecting portion 314b.
  • the third bus bar portion 313 includes a third bus bar portion 313a of the first bus bar member 310a and a third bus bar portion 313b of the second bus bar member 310b.
  • the first through-hole 311h at the other end in the longitudinal direction of the first bus bar portion 311, the second through-hole 312h at the other end in the longitudinal direction of the second bus bar portion 312 and the other end in the longitudinal direction of the third bus bar portion 313 A third through hole 313h is provided.
  • the first through hole 311h and the second through hole 312h are provided for connecting the input wiring, and the third through hole 313h is provided for connecting the output wiring.
  • the first through hole 311h and the second through hole 312h may be used for connecting the output wiring, and the third through hole 313h may be used for connecting the input wiring.
  • the first bus bar member 310a and the second bus bar member 310b are joined, and are in contact with each other in a part of each third bus bar portion 313. Specifically, the surface of the third bus bar portion 313a opposite to the first bus bar member 310a side and the surface of the third bus bar portion 313b opposite to the second bus bar member 310b side Are in contact with each other.
  • the first bus bar member 310a and the second bus bar member 310b are joined by welding.
  • the joining method of both members is not limited to welding, and joining is performed by brazing, soldering, fastening using bolts and nuts, fastening using rivets, fitting of both members, or caulking of both members. Also good.
  • the bus bar 310 may be insert-molded using an insulating resin. In this case, only the periphery of the first through hole 311h, the second through hole 312h, and the third through hole 313h is exposed, and the other part of the bus bar 310 is molded with an insulating resin.
  • the bonding strength between the first bus bar member 310a and the second bus bar member 310b can be improved, and the portions other than the connection portion of the bus bar 310 with the external wiring can be insulated and sealed.
  • the third bus bar portion 313 of the bus bar 310 according to the present embodiment includes a third bus bar portion 313a of the first bus bar member 310a and a third bus bar portion 313b of the second bus bar member 310b. Therefore, the dimensions of the first bus bar part 311 and the second bus bar part 312 of the bus bar 310 according to the present embodiment are made equal to the dimensions of the first bus bar part 211 and the second bus bar part 212 of the bus bar 210 according to the second embodiment.
  • the third bus bar portion 313 of the bus bar 310 according to the present embodiment has a cross-sectional area twice that of the third bus bar portion 213 of the bus bar 210 according to the second embodiment. Therefore, the electrical resistance in the third bus bar portion 313 is halved, and the allowable current of the bus bar 310 can be increased.
  • the influence of the external magnetic field can be reduced. Further, since high accuracy is not required for the arrangement of the first magnetic sensor 320 and the second magnetic sensor 321, the current sensor 300 can be easily manufactured.
  • the first bus bar member 310a and the second bus bar member 310b do not necessarily have the same shape, but by using the same shape, the types of members to be prepared can be reduced and the first magnetic sensor 320 can be reduced.
  • the second magnetic sensor 321 can be arranged symmetrically with respect to the bus bar 310 to ensure the detection stability of the current sensor 300.
  • the current sensor 400 according to the present embodiment is different from the current sensor 300 according to the third embodiment only in that the input terminal portion and the output terminal portion are drawn in opposite directions, and therefore, description of other configurations will not be repeated. .
  • FIG. 16 is a perspective view showing a configuration of a current sensor according to Embodiment 4 of the present invention.
  • the current sensor 400 according to the fourth embodiment of the present invention includes a bus bar 410 through which a current to be measured flows.
  • the current sensor 400 also includes a first magnetic sensor 420 and a second magnetic sensor 421 that detect the strength of the magnetic field generated by the current to be measured flowing through the bus bar 410 with an odd function input / output characteristic.
  • the current sensor 400 includes a subtracter (not shown) that is a calculation unit that calculates the value of the current by subtracting the detection values of the first magnetic sensor 420 and the second magnetic sensor 421.
  • the bus bar 410 constitutes a first bus bar member 410a constituting a first bus bar part 411 and a part 413a of a third bus bar part, and a second bus bar part 412 and a part 413b of a third bus bar part. Second bus bar member 410b.
  • the bus bar 410 has an input terminal part 416 for inputting current to the first bus bar part 411 and the second bus bar part 412 and an output terminal part 417 for outputting current from the third bus bar part 413.
  • first bus bar member 410a one end of the first bus bar part 411 and one end of the part 413a of the third bus bar part which are positioned in parallel with a space between each other are mutually connected by the curved first connecting part 414a. It is connected.
  • the third bus bar part 413 of the bus bar 410 is composed of a part 413a of the third bus bar part in the first bus bar member 410a and a part 413b of the third bus bar part in the second bus bar member 410b.
  • the input terminal part 416 of the bus bar 410 includes a part 416a of the input terminal part in the first bus bar member 410a and a part 416b of the input terminal part in the second bus bar member 410b.
  • the output terminal part 417 of the bus bar 410 includes a part 417a of the output terminal part in the first bus bar member 410a and a part 417b of the output terminal part in the second bus bar member 410b.
  • the input terminal portion 416 and the output terminal portion 417 are located on the same plane and extend in opposite directions in the direction of the detection axis of the first magnetic sensor 420 and the second magnetic sensor 421.
  • the left-right direction in FIG. 16 is the direction of the detection axis of the first magnetic sensor 420 and the second magnetic sensor 421.
  • the other end of the first bus bar portion 411 and one end of the input terminal portion 416a are connected to each other by a curved second connecting portion 415a.
  • the part 416a of the input terminal portion extends in the left direction in FIG. 16 from the second connecting portion 415a.
  • a part 417a of the output terminal portion extends in the right direction in FIG. 16 from the other end of the part 413a of the third bus bar portion.
  • the input terminal portion 416a and the output terminal portion 417a are located on the same plane.
  • the other end of the second bus bar portion 412 and one end of the input terminal portion 416b are connected to each other by a curved second connecting portion 415b.
  • the part 416b of the input terminal portion extends in the left direction in FIG. 16 from the second connecting portion 415b.
  • a portion 417b of the output terminal portion extends in the right direction in FIG. 16 from the other end of the portion 413b of the third bus bar portion.
  • the input terminal portion 416b and the output terminal portion 417b are located on the same plane.
  • a first through hole 416h is provided at the other end of the input terminal portion 416, and a second through hole 417h is provided at the other end of the output terminal portion 417.
  • the first through hole 416h is a hole for connecting the input wiring
  • the second through hole 417h is a hole for connecting the output wiring.
  • the first through hole 416h may be used for connecting the output wiring
  • the second through hole 417h may be used for connecting the input wiring.
  • the first bus bar member 410a and the second bus bar member 410b are in contact with each other in each third bus bar portion 413.
  • the first bus bar member 410a and the second bus bar member 410b are in contact with each other at the input terminal portion 416 and the output terminal portion 417 as well.
  • the influence of the external magnetic field can be reduced. Moreover, since high precision is not required for the arrangement of the first magnetic sensor 420 and the second magnetic sensor 421, the current sensor 400 can be easily manufactured.
  • FIG. 17 is a perspective view showing a configuration of a current sensor according to Embodiment 5 of the present invention.
  • the current sensor 200x according to the fifth embodiment of the present invention includes a bus bar 210 through which a current to be measured flows.
  • the current sensor 200x includes a first magnetic sensor 220 and a second magnetic sensor 221 that detect the strength of the magnetic field generated by the current to be measured flowing through the bus bar 210 with an odd function input / output characteristic.
  • the current sensor 200x includes a subtracter 230 that is a calculation means for calculating the value of the current by subtracting the detection values of the first magnetic sensor 220 and the second magnetic sensor 221.
  • the first magnetic sensor 220 is located between the first bus bar part 211 and the third bus bar part 213.
  • the main surface of the first magnetic sensor 220 faces the first connecting portion 214.
  • the second magnetic sensor 221 is located between the second bus bar part 212 and the third bus bar part 213.
  • the main surface of the second magnetic sensor 221 faces the first connecting part 214.
  • the first magnetic sensor 220 is orthogonal to the direction in which the first bus bar portion 211, the second bus bar portion 212, and the third bus bar portion 213 are aligned, and is orthogonal to the extending direction of the third bus bar portion 213.
  • the detection axis is in the direction indicated by the arrow 220a in FIG.
  • the second magnetic sensor 221 is orthogonal to the direction in which the first bus bar portion 211, the second bus bar portion 212, and the third bus bar portion 213 are aligned, and is orthogonal to the extending direction of the third bus bar portion 213.
  • the detection axis is in the direction indicated by the arrow 221a in FIG.
  • FIG. 18 is a diagram schematically showing a generated magnetic field in a cross-sectional view of the current sensor 200x according to the present embodiment as viewed from the direction of the arrow XVIII-XVIII in FIG.
  • a rightward magnetic field in the drawing is applied to the first magnetic sensor 220 in the direction of the detection axis indicated by the arrow 220a.
  • a leftward magnetic field in the figure is applied to the second magnetic sensor 221 in the direction of the detection axis indicated by the arrow 221a.
  • the detection value indicating the strength of the magnetic field detected by the first magnetic sensor 220 is a positive value
  • the detection value indicating the strength of the magnetic field detected by the second magnetic sensor 221 is a negative value.
  • the detection value of the first magnetic sensor 220 and the detection value of the second magnetic sensor 221 are transmitted to the subtracter 230.
  • the subtracter 230 subtracts the detection value of the second magnetic sensor 221 from the detection value of the first magnetic sensor 220. As a result, the absolute value of the detection value of the first magnetic sensor 220 and the absolute value of the detection value of the second magnetic sensor 221 are added. From this addition result, the value of the current to be measured flowing through the bus bar 210 is calculated.
  • Magnetic sensors having magnetoresistive elements such as AMR, GMR, and TMR as the optimum magnetic sensor for detecting a magnetic field applied in a direction parallel to the main surface of the magnetic sensor as in the second and fifth embodiments, There are magnetic sensors having an MI element or flux gate type magnetic sensors.
  • FIG. 19 is a perspective view showing a configuration of a current sensor according to Embodiment 6 of the present invention.
  • a current sensor 200y according to Embodiment 6 of the present invention includes a bus bar 210 through which a current to be measured flows.
  • the current sensor 200y includes a first magnetic sensor 220y and a second magnetic sensor 221y that detect the strength of the magnetic field generated by the current to be measured flowing through the bus bar 210 with an odd function input / output characteristic.
  • the current sensor 200y includes a subtracter 230, which is a calculation means for calculating the current value by subtracting the detection values of the first magnetic sensor 220y and the second magnetic sensor 221y.
  • the first magnetic sensor 220y is located between the first bus bar portion 211 and the third bus bar portion 213.
  • a plane including the main surface of the first magnetic sensor 220y is orthogonal to each of the first bus bar portion 211, the third bus bar portion 213, and the first connecting portion 214.
  • the second magnetic sensor 221y is located between the second bus bar portion 212 and the third bus bar portion 213.
  • a plane including the main surface of the second magnetic sensor 221y is orthogonal to each of the second bus bar portion 212, the third bus bar portion 213, and the first connecting portion 214.
  • the first magnetic sensor 220y is orthogonal to the direction in which the first bus bar portion 211, the second bus bar portion 212, and the third bus bar portion 213 are aligned, and is orthogonal to the extending direction of the third bus bar portion 213.
  • the detection axis is in the direction indicated by the arrow 220ya in FIG.
  • the second magnetic sensor 221y is orthogonal to the direction in which the first bus bar portion 211, the second bus bar portion 212, and the third bus bar portion 213 are aligned, and is orthogonal to the extending direction of the third bus bar portion 213.
  • the detection axis is in the direction indicated by the arrow 221ya in FIG.
  • FIG. 20 is a diagram schematically showing a generated magnetic field in a cross-sectional view of the current sensor 200y according to the present embodiment as viewed from the direction of arrows XX-XX in FIG.
  • a rightward magnetic field in the figure is applied to the first magnetic sensor 220y in the direction of the detection axis indicated by the arrow 220ya.
  • a leftward magnetic field in the figure is applied to the second magnetic sensor 221y in the direction of the detection axis indicated by the arrow 221ya.
  • the detection value indicating the strength of the magnetic field detected by the first magnetic sensor 220y is a positive value
  • the detection value indicating the strength of the magnetic field detected by the second magnetic sensor 221y is a negative value.
  • the detection value of the first magnetic sensor 220y and the detection value of the second magnetic sensor 221y are transmitted to the subtracter 230.
  • the subtracter 230 subtracts the detection value of the second magnetic sensor 221y from the detection value of the first magnetic sensor 220y. As a result, the absolute value of the detection value of the first magnetic sensor 220y and the absolute value of the detection value of the second magnetic sensor 221y are added. From this addition result, the value of the current to be measured flowing through the bus bar 210 is calculated.
  • a magnetic sensor having a Hall element as an optimum magnetic sensor for detecting a magnetic field applied in a direction perpendicular to the main surface of the magnetic sensor.
  • the current sensor module according to Embodiment 7 of the present invention is configured in the same manner as the current sensor according to Embodiment 5 in the arrangement direction of the main surface of the magnetic sensor. Will be described with reference to FIG. In the description of the current sensor module 300x below, the description of the same configuration as the current sensor 300 will not be repeated.
  • FIG. 21 is a perspective view showing a configuration of a current sensor module according to Embodiment 7 of the present invention.
  • the current sensor module 300x according to the seventh embodiment of the present invention includes a current sensor, a mounting board 350, a subtractor 330, and an external connection terminal 360.
  • the current sensor, the subtractor 330, and the external connection terminal 360 are mounted on the mounting board 350.
  • the mounting substrate 350 is provided with a first opening 351, a second opening 352, and a third opening 353.
  • the first bus bar portion 311 is fitted in the first opening portion 351.
  • a third bus bar portion 313 is fitted in the second opening 352.
  • the second bus bar portion 312 is fitted in the third opening 353.
  • the first magnetic sensor 320 and the second magnetic sensor 321 are mounted on the mounting board 350.
  • the main surface of the first magnetic sensor 320 faces the first connecting portion 314a.
  • the main surface of the second magnetic sensor 321 faces the first connecting portion 314b.
  • the first magnetic sensor 320 is orthogonal to the direction in which the first bus bar portion 311, the second bus bar portion 312, and the third bus bar portion 313 are aligned, and orthogonal to the extending direction of the third bus bar portion 313.
  • the detection axis is in the direction indicated by the arrow 320a in FIG.
  • the second magnetic sensor 321 has a direction orthogonal to the direction in which the first bus bar portion 311, the second bus bar portion 312 and the third bus bar portion 313 are aligned, and is orthogonal to the extending direction of the third bus bar portion 313.
  • the detection axis is in the direction indicated by the arrow 321a in FIG.
  • the first magnetic sensor 320 is electrically connected to the subtractor 330 through the first connection wiring 341.
  • the second magnetic sensor 321 is electrically connected to the subtractor 330 through the second connection wiring 342.
  • the subtractor 330 calculates the value of the current to be measured flowing through the bus bar 310 by subtracting the detection value of the second magnetic sensor 321 from the detection value of the first magnetic sensor 320.
  • the calculation result of the subtracter 330 is output from the external connection terminal 360.
  • the current sensor module 300x is modularized by mounting each component on the mounting substrate 350, the current sensor module 300x can be easily manufactured while maintaining high positional accuracy between the components.
  • 10 external magnetic field source 100, 200, 200x, 200y, 300, 300x, 400 current sensor, 110, 110a, 210, 310, 410, 910 bus bar, 111, 211, 311, 411, 911, first bus bar part, 111h, 311h, 416h 1st through hole, 112, 212, 312, 412, 912 2nd bus bar part, 112h, 312h, 417h 2nd through hole, 113, 213, 313, 413 3rd bus bar part, 113c center point, 113h 1st 3 through hole, 113h 'second female thread, 113x center line, 114, 214, 314a, 314b, 414a, 414b first connecting part, 115, 415a, 415b second connecting part, 115h first female thread, 120, 120y, 120z , 220, 220y, 320, 4 0 1st magnetic sensor, 121, 121y, 121z, 221, 221y, 321, 421

Abstract

The present invention is provided with a bus bar (110) through which an electric current to be measured flows, and two magnetic sensors (120, 121) for detecting the strength of a magnetic field generated by the electric current flowing through the bus bar (110). The bus bar (110) includes a first bus bar part (111) and a second bus bar part (112) electrically connected in parallel to each other and positioned parallel to each other an interval apart from each other, and a third bus bar part (113) extending parallel to the first bus bar part (111) and the second bus bar part (112) an interval apart from each thereof midway between the first bus bar part (111) and the second bus bar part (112).

Description

電流センサCurrent sensor
 本発明は、電流センサに関し、特に、測定対象の電流に応じて発生する磁界の強さを測定することで測定対象の電流の値を検出する電流センサに関する。 The present invention relates to a current sensor, and more particularly to a current sensor that detects the value of a current to be measured by measuring the strength of a magnetic field generated according to the current to be measured.
 ホール素子などの磁電変換素子の特性劣化を検出できる磁界検出用半導体集積回路を開示した先行文献として、特開2008-151530号公報(特許文献1)がある。特許文献1に記載された磁界検出用半導体集積回路においては、電流の経路となるバスバーがホール素子の周縁部に沿って形成されている。 Japanese Unexamined Patent Application Publication No. 2008-151530 (Patent Document 1) is a prior art document that discloses a semiconductor integrated circuit for magnetic field detection that can detect characteristic deterioration of a magnetoelectric conversion element such as a Hall element. In the semiconductor integrated circuit for detecting a magnetic field described in Patent Document 1, a bus bar serving as a current path is formed along the peripheral edge of the Hall element.
 出力信号が測定すべき電流に比例し、かつ温度および外部磁界により妨害され難く安定した感度を維持することを図ったセンサチップを開示した先行文献として、特開平6-294854号公報(特許文献2)がある。 Japanese Patent Laid-Open No. 6-294854 (Patent Document 2) discloses a sensor chip in which an output signal is proportional to a current to be measured and is not easily disturbed by temperature and an external magnetic field and aims to maintain a stable sensitivity. )
 特許文献2に記載されたセンサチップには、磁界強度の勾配を測定するためのホイートストンブリッジ型のブリッジ回路が設けられている。センサチップは、中心軸線に対して間隔を置いた第1および第2の範囲に配置された第1~第4磁気感応抵抗を有している。 The sensor chip described in Patent Document 2 is provided with a Wheatstone bridge type bridge circuit for measuring the gradient of the magnetic field strength. The sensor chip has first to fourth magnetic sensitive resistors arranged in first and second ranges spaced from the central axis.
 また、センサチップにおいては、第1磁気感応抵抗と第2磁気感応抵抗とが直列接続されて第1ブリッジ分路を形成するとともに、第3磁気感応抵抗と第4磁気感応抵抗とが直列接続されて第2ブリッジ分路を形成している。 In the sensor chip, the first magnetic sensitive resistor and the second magnetic sensitive resistor are connected in series to form a first bridge shunt, and the third magnetic sensitive resistor and the fourth magnetic sensitive resistor are connected in series. Forming a second bridge shunt.
 さらに、センサチップにおいては、第1の範囲に第1および第4磁気感応抵抗が配置されるとともに、第2の範囲に第2および第3磁気感応抵抗が配置され、第1の範囲に配置された第1および第4磁気感応抵抗と、第2の範囲に配置された第2および第3磁気感応抵抗とが、中心軸線を基準に対称的に配置されている。 Further, in the sensor chip, the first and fourth magnetic sensitive resistors are arranged in the first range, the second and third magnetic sensitive resistors are arranged in the second range, and are arranged in the first range. The first and fourth magnetic sensitive resistors and the second and third magnetic sensitive resistors arranged in the second range are arranged symmetrically with respect to the central axis.
特開2008-151530号公報JP 2008-151530 A 特開平6-294854号公報JP-A-6-294854
 特許文献1に記載された磁界検出用半導体集積回路においては、1つのホール素子を用いて、測定対象の電流に応じて発生する磁界を検出しているため、外部磁界により誤作動することがある。 In the semiconductor integrated circuit for detecting a magnetic field described in Patent Document 1, a magnetic field generated according to the current to be measured is detected using one Hall element, and thus may malfunction due to an external magnetic field. .
 特許文献2に記載されたセンサチップにおいては、第1~第4磁気感応抵抗が検出する磁界の強さは、バスバーからの距離の2乗に反比例する。そのため、バスバーに対して第1~第4磁気感応抵抗を所望の位置に正確に配置する必要があり、センサチップの製造が困難である。 In the sensor chip described in Patent Document 2, the strength of the magnetic field detected by the first to fourth magnetic sensitive resistors is inversely proportional to the square of the distance from the bus bar. Therefore, it is necessary to accurately arrange the first to fourth magnetic sensitive resistors at desired positions with respect to the bus bar, and it is difficult to manufacture the sensor chip.
 また、センサチップにおいては、第1の範囲に配置された第1および第4磁気感応抵抗と、第2の範囲に配置された第2および第3磁気感応抵抗とに、外部磁界源からの距離の2乗に反比例した強度の外部磁界が印加される。 In the sensor chip, the distance from the external magnetic field source to the first and fourth magnetic sensitive resistors arranged in the first range and the second and third magnetic sensitive resistors arranged in the second range. An external magnetic field having a strength inversely proportional to the square of is applied.
 センサチップの近傍に外部磁界源が存在する場合、第1の範囲に配置された第1および第4磁気感応抵抗と第2の範囲に配置された第2および第3磁気感応抵抗とにおいて外部磁界源からの距離が異なるため、外部磁界源から発せられる外部磁界がセンサチップの出力信号に作用を及ぼす。 When an external magnetic field source is present in the vicinity of the sensor chip, the external magnetic field in the first and fourth magnetic sensitive resistors arranged in the first range and the second and third magnetic sensitive resistors arranged in the second range. Since the distance from the source is different, the external magnetic field generated from the external magnetic field source affects the output signal of the sensor chip.
 センサチップと外部磁界源との距離が近くになるに従って、第1~第4磁気感応抵抗に印加される外部磁界の磁界強度が高くなるため、外部磁界によるセンサチップの出力信号への影響が大きくなる。 As the distance between the sensor chip and the external magnetic field source decreases, the magnetic field strength of the external magnetic field applied to the first to fourth magnetic sensitive resistors increases, so the influence of the external magnetic field on the output signal of the sensor chip is large. Become.
 たとえば、3相交流インバータの出力電流の制御などにおいて、大電流が流れる複数の経路が互いに集合して配置される場合に、各経路を流れる電流の値を正確に検出するうえで、各経路を流れる電流によって発生する磁界の影響が障害となっていた。 For example, in the control of the output current of a three-phase AC inverter, etc., when a plurality of paths through which a large current flows are arranged together, each path is used to accurately detect the value of the current flowing through each path. The influence of the magnetic field generated by the flowing current has been an obstacle.
 本発明は上記の問題点に鑑みてなされたものであって、外部磁界による影響を低減でき、容易に製造可能な電流センサを提供することを目的とする。 The present invention has been made in view of the above problems, and an object thereof is to provide a current sensor that can reduce the influence of an external magnetic field and can be easily manufactured.
 本発明に基づく電流センサは、測定対象の電流が流れるバスバーと、バスバーを流れる電流により発生する磁界の強さを検出する第1磁気センサおよび第2磁気センサとを備える。バスバーは、互いに電気的に並列に接続されて互いの間に間隔を置いて平行に位置する第1バスバー部および第2バスバー部と、第1バスバー部および第2バスバー部の間の中間で第1バスバー部および第2バスバー部の各々に対して間隔を置いて平行に延在する第3バスバー部とを含む。第1バスバー部を上記電流が流れる方向と、第2バスバー部を上記電流が流れる方向とは同一である。第1バスバー部を上記電流が流れる方向および第2バスバー部を上記電流が流れる方向と、第3バスバー部を上記電流が流れる方向とは反対である。第1磁気センサは、第1バスバー部および第3バスバー部の間に位置する。第2磁気センサは、第2バスバー部および第3バスバー部の間に位置する。第1磁気センサおよび第2磁気センサの各々は、第1バスバー部と第2バスバー部と第3バスバー部とが並ぶ方向に対して直交する方向、かつ、第3バスバー部の延在方向に対して直交する方向に検出軸を有する。 The current sensor according to the present invention includes a bus bar through which a current to be measured flows, and a first magnetic sensor and a second magnetic sensor that detect the strength of a magnetic field generated by the current flowing through the bus bar. The bus bars are electrically connected in parallel with each other, and are positioned in parallel between the first bus bar portion and the second bus bar portion and spaced in parallel with each other, and between the first bus bar portion and the second bus bar portion. A first bus bar portion and a third bus bar portion extending in parallel with an interval to each of the first bus bar portion and the second bus bar portion. The direction in which the current flows through the first bus bar portion and the direction in which the current flows through the second bus bar portion are the same. The direction in which the current flows through the first bus bar portion and the direction in which the current flows through the second bus bar portion are opposite to the direction in which the current flows through the third bus bar portion. The first magnetic sensor is located between the first bus bar portion and the third bus bar portion. The second magnetic sensor is located between the second bus bar portion and the third bus bar portion. Each of the first magnetic sensor and the second magnetic sensor has a direction perpendicular to the direction in which the first bus bar portion, the second bus bar portion, and the third bus bar portion are aligned, and the extending direction of the third bus bar portion. And has a detection axis in the orthogonal direction.
 本発明の一形態においては、第1磁気センサおよび第2磁気センサは、バスバーを流れる上記電流により発生する磁界の強さを奇関数入出力特性を有して検出する。 In one embodiment of the present invention, the first magnetic sensor and the second magnetic sensor detect the strength of the magnetic field generated by the current flowing through the bus bar with an odd function input / output characteristic.
 本発明の一形態においては、電流センサは、第1磁気センサおよび第2磁気センサの各検出値を演算することにより上記電流の値を算出する算出手段をさらに備える。 In one embodiment of the present invention, the current sensor further includes calculation means for calculating the value of the current by calculating each detection value of the first magnetic sensor and the second magnetic sensor.
 本発明の一形態においては、上記検出軸の方向において、第1バスバー部の幅の寸法、第2バスバー部の幅の寸法および第3バスバー部の幅の寸法は、各々、互いに隣接するバスバー部同士の間の間隔の寸法の1.5倍以上である。 In one embodiment of the present invention, the width dimension of the first bus bar part, the width dimension of the second bus bar part, and the width dimension of the third bus bar part are respectively adjacent to each other in the direction of the detection axis. It is 1.5 times or more of the dimension of the space | interval between each other.
 本発明の一形態においては、上記検出軸の方向において、第1バスバー部と第3バスバー部との間の間隔と、第2バスバー部と第3バスバー部との間の間隔とが等しい。 In one embodiment of the present invention, the interval between the first bus bar portion and the third bus bar portion and the interval between the second bus bar portion and the third bus bar portion are equal in the direction of the detection axis.
 本発明の一形態においては、第1バスバー部および第2バスバー部は横断面において、第3バスバー部の中心点を中心として互いに点対称に位置している。第1磁気センサおよび第2磁気センサは横断面において、第3バスバー部の中心点を中心として互いに点対称に位置している。 In one embodiment of the present invention, the first bus bar portion and the second bus bar portion are located in point symmetry with respect to the center point of the third bus bar portion in the cross section. The first magnetic sensor and the second magnetic sensor are located in point symmetry with respect to the center point of the third bus bar portion in the cross section.
 本発明の一形態においては、第1バスバー部および第2バスバー部は横断面において、上記検出軸の方向における第3バスバー部の中心線を中心として互いに線対称に位置している。第1磁気センサおよび第2磁気センサは横断面において、上記検出軸の方向における第3バスバー部の中心線を中心として互いに線対称に位置している。 In one embodiment of the present invention, the first bus bar portion and the second bus bar portion are positioned symmetrically with respect to each other about the center line of the third bus bar portion in the direction of the detection axis in the cross section. The first magnetic sensor and the second magnetic sensor are located symmetrically with respect to each other about the center line of the third bus bar portion in the direction of the detection axis in the cross section.
 本発明の一形態においては、第1磁気センサは、第3バスバー部より第1バスバー部の近くに位置している。第2磁気センサは、第3バスバー部より第2バスバー部の近くに位置している。 In one embodiment of the present invention, the first magnetic sensor is located closer to the first bus bar portion than the third bus bar portion. The second magnetic sensor is located closer to the second bus bar portion than the third bus bar portion.
 本発明の一形態においては、第1磁気センサは、第1バスバー部より第3バスバー部の近くに位置している。第2磁気センサは、第2バスバー部より第3バスバー部の近くに位置している。 In one embodiment of the present invention, the first magnetic sensor is located closer to the third bus bar portion than the first bus bar portion. The second magnetic sensor is located closer to the third bus bar portion than the second bus bar portion.
 本発明の一形態においては、第1バスバー部の一端と第2バスバー部の一端と第3バスバー部の一端とが、第1連結部によって互いに連結されている。 In one embodiment of the present invention, one end of the first bus bar portion, one end of the second bus bar portion, and one end of the third bus bar portion are connected to each other by the first connecting portion.
 本発明の一形態においては、第1バスバー部の他端と第2バスバー部の他端とが、第2連結部によって互いに連結されている。 In one embodiment of the present invention, the other end of the first bus bar portion and the other end of the second bus bar portion are connected to each other by the second connecting portion.
 本発明の一形態においては、バスバーが、第1バスバー部および第3バスバー部の一部を構成する第1バスバー部材と、第2バスバー部および第3バスバー部の一部を構成する第2バスバー部材とを含む。第1バスバー部材と第2バスバー部材とは、それぞれの第3バスバー部において互いに接触している。 In one form of the present invention, the bus bar includes a first bus bar member that forms part of the first bus bar part and the third bus bar part, and a second bus bar that forms part of the second bus bar part and the third bus bar part. Member. The first bus bar member and the second bus bar member are in contact with each other in the respective third bus bar portions.
 本発明の一形態においては、バスバーは、第1バスバー部および第2バスバー部に電流を入力するための入力端子部と、第3バスバー部から電流を出力するための出力端子部を有する。入力端子部と出力端子部とは、同一平面上に位置し、かつ、上記検出軸の方向において互いに反対向きに延在している。 In one embodiment of the present invention, the bus bar has an input terminal portion for inputting current to the first bus bar portion and the second bus bar portion, and an output terminal portion for outputting current from the third bus bar portion. The input terminal portion and the output terminal portion are located on the same plane and extend in opposite directions in the direction of the detection axis.
 本発明の一形態においては、バスバーを流れる電流により発生する磁界の強さについて、第1磁気センサの検出値の位相と第2磁気センサの検出値の位相とが逆相である。算出手段は減算器である。 In one embodiment of the present invention, the phase of the detection value of the first magnetic sensor and the phase of the detection value of the second magnetic sensor are in opposite phases with respect to the strength of the magnetic field generated by the current flowing through the bus bar. The calculation means is a subtracter.
 本発明の一形態においては、バスバーを流れる電流により発生する磁界の強さについて、第1磁気センサの検出値の位相と第2磁気センサの検出値の位相とが同相である。算出手段は加算器である。 In one embodiment of the present invention, the phase of the detection value of the first magnetic sensor and the phase of the detection value of the second magnetic sensor are in phase with respect to the strength of the magnetic field generated by the current flowing through the bus bar. The calculating means is an adder.
 本発明によれば、外部磁界による影響を低減可能な電流センサを容易に製造できる。 According to the present invention, a current sensor that can reduce the influence of an external magnetic field can be easily manufactured.
本発明の実施形態1に係る電流センサの構成を示す斜視図である。It is a perspective view which shows the structure of the current sensor which concerns on Embodiment 1 of this invention. 本発明の実施形態1に係る電流センサのバスバーと外部配線とを接続する状態を示す斜視図である。It is a perspective view which shows the state which connects the bus-bar and external wiring of the current sensor which concern on Embodiment 1 of this invention. 本発明の実施形態1に係る電流センサを図1のIII-III線矢印方向から見た断面図において、発生する磁界を模式的に示す図である。FIG. 3 is a diagram schematically showing a generated magnetic field in a cross-sectional view of the current sensor according to the first embodiment of the present invention as viewed from the direction of arrows III-III in FIG. 1. 第1バスバー部と第2バスバー部とを互いに点対称に配置し、かつ、第1磁気センサと第2磁気センサとを互いに点対称に配置した状態を示す断面図である。It is sectional drawing which shows the state which has arrange | positioned a 1st bus-bar part and a 2nd bus-bar part symmetrically with respect to each other, and has arrange | positioned the 1st magnetic sensor and the 2nd magnetic sensor symmetrically with respect to each other. 第1バスバー部と第2バスバー部とを互いに線対称に配置し、かつ、第1磁気センサと第2磁気センサとを互いに線対称に配置した状態を示す断面図である。It is sectional drawing which shows the state which has arrange | positioned the 1st bus-bar part and the 2nd bus-bar part symmetrically with respect to each other, and has arrange | positioned the 1st magnetic sensor and the 2nd magnetic sensor symmetrically with respect to each other. 本発明の実施形態1の変形例に係る電流センサのバスバーの構造を示す斜視図である。It is a perspective view which shows the structure of the bus bar of the current sensor which concerns on the modification of Embodiment 1 of this invention. 本発明の実施形態2に係る電流センサの構成を示す斜視図である。It is a perspective view which shows the structure of the current sensor which concerns on Embodiment 2 of this invention. 本発明の実施形態2に係る電流センサを図7のVIII-VIII線矢印方向から見た断面図において、発生する磁界を模式的に示す図である。FIG. 8 is a diagram schematically showing a generated magnetic field in a cross-sectional view of the current sensor according to the second embodiment of the present invention as viewed from the direction of arrows VIII-VIII in FIG. 7. 本発明の実施形態2に係る電流センサのバスバー周辺における、バスバーを流れる測定対象の電流により発生する磁界の磁束密度をシミュレーションした結果を示す磁束線図である。It is a magnetic flux diagram which shows the result of having simulated the magnetic flux density of the magnetic field which generate | occur | produces with the electric current of the measuring object which flows through a bus bar around the bus bar of the current sensor which concerns on Embodiment 2 of this invention. 本発明の実施形態2に係る電流センサのバスバー周辺における、バスバーを流れる測定対象の電流により発生する磁界の磁束密度をシミュレーションした結果を示す等高線図である。It is a contour map which shows the result of having simulated the magnetic flux density of the magnetic field which generate | occur | produces with the electric current of the measuring object which flows through a bus bar around the bus bar of the current sensor which concerns on Embodiment 2 of this invention. 比較例に係る電流センサが備えるバスバーの形状を示す平面図である。It is a top view which shows the shape of the bus bar with which the current sensor which concerns on a comparative example is provided. 比較例に係る電流センサのバスバー周辺における、バスバーを流れる測定対象の電流により発生する磁界の磁束密度をシミュレーションした結果を、図11のXII-XII線矢印方向から見た断面に示した等高線図である。FIG. 11 is a contour diagram showing the result of simulating the magnetic flux density of the magnetic field generated by the current to be measured flowing through the bus bar in the periphery of the bus bar of the current sensor according to the comparative example, as viewed in the direction of the arrow in FIG. is there. 本発明の実施形態2に係る電流センサにおいて、図10中の左右方向における第3バスバー部の中央部から図10中の上下方向に離れた距離と、磁束密度との関係を示すグラフである。11 is a graph showing the relationship between the distance away from the central portion of the third bus bar portion in the left-right direction in FIG. 10 in the up-down direction in FIG. 10 and the magnetic flux density in the current sensor according to Embodiment 2 of the present invention. 比較例に係る電流センサにおいて、図12中の左右方向における第1バスバー部の中央部または第2バスバー部の中央部から図12中の上下方向に離れた距離と、磁束密度との関係を示すグラフである。In the current sensor according to the comparative example, the relationship between the distance away from the central portion of the first bus bar portion or the central portion of the second bus bar portion in the left-right direction in FIG. 12 in the vertical direction in FIG. 12 and the magnetic flux density is shown. It is a graph. 本発明の実施形態3に係る電流センサの構成を示す斜視図である。It is a perspective view which shows the structure of the current sensor which concerns on Embodiment 3 of this invention. 本発明の実施形態4に係る電流センサの構成を示す斜視図である。It is a perspective view which shows the structure of the current sensor which concerns on Embodiment 4 of this invention. 本発明の実施形態5に係る電流センサの構成を示す斜視図である。It is a perspective view which shows the structure of the current sensor which concerns on Embodiment 5 of this invention. 本発明の実施形態5に係る電流センサを図17のXVIII-XVIII線矢印方向から見た断面図において、発生する磁界を模式的に示す図である。FIG. 18 is a diagram schematically showing a generated magnetic field in the cross-sectional view of the current sensor according to the fifth embodiment of the present invention as viewed from the direction of the arrow XVIII-XVIII in FIG. 本発明の実施形態6に係る電流センサの構成を示す斜視図である。It is a perspective view which shows the structure of the current sensor which concerns on Embodiment 6 of this invention. 本発明の実施形態6に係る電流センサを図19のXX-XX線矢印方向から見た断面図において、発生する磁界を模式的に示す図である。FIG. 20 is a diagram schematically showing a generated magnetic field in the cross-sectional view of the current sensor according to the sixth embodiment of the present invention as viewed from the direction of the arrow XX-XX in FIG. 本発明の実施形態7に係る電流センサモジュールの構成を示す斜視図である。It is a perspective view which shows the structure of the current sensor module which concerns on Embodiment 7 of this invention.
 以下、本発明の実施形態1に係る電流センサについて図を参照して説明する。以下の実施形態の説明においては、図中の同一または相当部分には同一符号を付して、その説明は繰り返さない。 Hereinafter, the current sensor according to the first embodiment of the present invention will be described with reference to the drawings. In the following description of the embodiments, the same or corresponding parts in the drawings are denoted by the same reference numerals, and the description thereof will not be repeated.
 (実施形態1)
 図1は、本発明の実施形態1に係る電流センサの構成を示す斜視図である。図2は、本実施形態に係る電流センサのバスバーと外部配線とを接続する状態を示す斜視図である。
(Embodiment 1)
FIG. 1 is a perspective view showing a configuration of a current sensor according to Embodiment 1 of the present invention. FIG. 2 is a perspective view showing a state in which the bus bar and the external wiring of the current sensor according to the present embodiment are connected.
 図1に示すように、本発明の実施形態1に係る電流センサ100は、測定対象の電流が流れるバスバー110を備える。また、電流センサ100は、バスバー110を流れる測定対象の電流により発生する磁界の強さを奇関数入出力特性を有して検出する、第1磁気センサ120および第2磁気センサ121を備える。 As shown in FIG. 1, the current sensor 100 according to the first embodiment of the present invention includes a bus bar 110 through which a current to be measured flows. The current sensor 100 also includes a first magnetic sensor 120 and a second magnetic sensor 121 that detect the strength of a magnetic field generated by the current to be measured flowing through the bus bar 110 with an odd function input / output characteristic.
 さらに、電流センサ100は、第1磁気センサ120および第2磁気センサ121の各検出値を減算することにより上記電流の値を算出する算出手段である、減算器130を備える。 Furthermore, the current sensor 100 includes a subtractor 130 that is a calculation unit that calculates the value of the current by subtracting the detection values of the first magnetic sensor 120 and the second magnetic sensor 121.
 以下、各構成について詳細に説明する。
 バスバー110は、互いに電気的に並列に接続されて互いの間に間隔を置いて平行に位置する、第1バスバー部111および第2バスバー部112を含む。バスバー110は、第1バスバー部111および第2バスバー部112の間の中間で第1バスバー部111および第2バスバー部112の各々に対して間隔を置いて平行に延在する、第3バスバー部113をさらに含む。
Hereinafter, each configuration will be described in detail.
Bus bar 110 includes a first bus bar portion 111 and a second bus bar portion 112 that are electrically connected to each other in parallel and are spaced in parallel with each other. The bus bar 110 extends in parallel to the first bus bar part 111 and the second bus bar part 112 at an interval between the first bus bar part 111 and the second bus bar part 112, and extends in parallel. 113 is further included.
 本実施形態においては、第1バスバー部111と第2バスバー部112と第3バスバー部113とは、直方体状の形状であり、等間隔に配置されている。第1バスバー部111の長手方向の一端と第2バスバー部112の長手方向の一端と第3バスバー部113の長手方向の一端とは、第1連結部114によって互いに連結されている。 In the present embodiment, the first bus bar portion 111, the second bus bar portion 112, and the third bus bar portion 113 have a rectangular parallelepiped shape and are arranged at equal intervals. One end in the longitudinal direction of the first bus bar portion 111, one end in the longitudinal direction of the second bus bar portion 112, and one end in the longitudinal direction of the third bus bar portion 113 are connected to each other by the first connecting portion 114.
 第1連結部114は、直方体状の形状であり、第1バスバー部111と第2バスバー部112と第3バスバー部113とが並ぶ方向に延在している。すなわち、第1連結部114は、第1バスバー部111と第2バスバー部112と第3バスバー部113とそれぞれ直交している。 The first connecting portion 114 has a rectangular parallelepiped shape, and extends in the direction in which the first bus bar portion 111, the second bus bar portion 112, and the third bus bar portion 113 are arranged. That is, the 1st connection part 114 is orthogonally crossed with the 1st bus-bar part 111, the 2nd bus-bar part 112, and the 3rd bus-bar part 113, respectively.
 なお、第1バスバー部111、第2バスバー部112、第3バスバー部113および第1連結部114の形状は直方体状に限られず、たとえば円柱状であってもよい。 In addition, the shape of the 1st bus-bar part 111, the 2nd bus-bar part 112, the 3rd bus-bar part 113, and the 1st connection part 114 is not restricted to a rectangular parallelepiped shape, For example, a cylindrical shape may be sufficient.
 上記のように、バスバー110は、平面的に見てE字状の形状を有している。ただし、バスバー110の形状はこれに限られず、第1バスバー部111と第2バスバー部112と第3バスバー部113とを有していればよい。 As described above, the bus bar 110 has an E-shape when viewed in plan. However, the shape of the bus bar 110 is not limited to this, and it is only necessary to include the first bus bar part 111, the second bus bar part 112, and the third bus bar part 113.
 本実施形態においては、バスバー110は、アルミニウムで構成されている。ただし、バスバー110の材料はこれに限られず、銀、銅などの金属、またはこれらの金属を含む合金でもよい。 In this embodiment, the bus bar 110 is made of aluminum. However, the material of the bus bar 110 is not limited to this, and may be a metal such as silver or copper, or an alloy containing these metals.
 また、バスバー110は、表面処理が施されていてもよい。たとえば、ニッケル、錫、銀、銅などの金属またはこれらの金属を含む合金からなる、少なくとも1層のめっき層が、バスバー110の表面に設けられていてもよい。 In addition, the bus bar 110 may be subjected to a surface treatment. For example, at least one plating layer made of a metal such as nickel, tin, silver, copper, or an alloy containing these metals may be provided on the surface of the bus bar 110.
 本実施形態においては、薄板をプレス加工することによりバスバー110が形成されている。ただし、バスバー110の形成方法はこれに限られず、切削または鋳造などの方法でバスバー110を形成してもよい。 In this embodiment, the bus bar 110 is formed by pressing a thin plate. However, the method of forming the bus bar 110 is not limited to this, and the bus bar 110 may be formed by a method such as cutting or casting.
 第1バスバー部111を電流が流れる方向11と、第2バスバー部112を電流が流れる方向12とは同一である。第1バスバー部111を電流が流れる方向11および第2バスバー部112を電流が流れる方向12と、第3バスバー部113を電流が流れる方向13とは反対である。 The direction 11 in which the current flows through the first bus bar portion 111 and the direction 12 in which the current flows through the second bus bar portion 112 are the same. The direction 11 in which current flows through the first bus bar portion 111, the direction 12 in which current flows through the second bus bar portion 112, and the direction 13 in which current flows through the third bus bar portion 113 are opposite.
 図2に示すようにバスバー110と外部配線とを接続することで、上記の方向に電流が流れる。外部配線は、2つの入力端子に分岐している入力配線170と、出力端子を有する出力配線171とを含む。入力配線170の2つの入力端子と、出力配線171の出力端子とは、それぞれ円環状の部分を有している。 As shown in FIG. 2, by connecting the bus bar 110 and the external wiring, a current flows in the above direction. The external wiring includes an input wiring 170 branched to two input terminals and an output wiring 171 having an output terminal. The two input terminals of the input wiring 170 and the output terminal of the output wiring 171 each have an annular portion.
 図1においては示していないが、図2に示すように、第1バスバー部111の長手方向の他端に第1貫通孔111hが設けられており、第2バスバー部112の長手方向の他端に第2貫通孔112hが設けられており、第3バスバー部113の長手方向の他端に第3貫通孔113hが設けられている。 Although not shown in FIG. 1, as shown in FIG. 2, a first through hole 111 h is provided at the other end in the longitudinal direction of the first bus bar portion 111, and the other end in the longitudinal direction of the second bus bar portion 112. The second through hole 112h is provided in the second bus bar portion 113, and the third through hole 113h is provided at the other end in the longitudinal direction of the third bus bar portion 113.
 入力配線170の2つの入力端子のうちの一方の円環状の部分と第1貫通孔111hとにボルト190を挿通して、当該ボルト190とナット180とを締結することにより、第1バスバー部111と入力配線170とが接続される。 By inserting a bolt 190 into one annular portion of the two input terminals of the input wiring 170 and the first through hole 111h and fastening the bolt 190 and the nut 180, the first bus bar portion 111 is inserted. And the input wiring 170 are connected.
 入力配線170の2つの入力端子のうちの他方の円環状の部分と第2貫通孔112hとにボルト190を挿通して、当該ボルト190とナット180とを締結することにより、第2バスバー部112と入力配線170とが接続される。 By inserting the bolt 190 into the other annular portion of the two input terminals of the input wiring 170 and the second through hole 112h and fastening the bolt 190 and the nut 180, the second bus bar portion 112 is inserted. And the input wiring 170 are connected.
 出力配線171の出力端子の円環状の部分と第3貫通孔113hとにボルト190を挿通して、当該ボルト190とナット180とを締結することにより、第3バスバー部113と出力配線171とが接続される。 The bolt 190 is inserted into the annular portion of the output terminal of the output wiring 171 and the third through hole 113h, and the bolt 190 and the nut 180 are fastened, whereby the third bus bar portion 113 and the output wiring 171 are connected. Connected.
 上記のように接続することにより、第1バスバー部111に入力された電流は、第1連結部114を通じて第3バスバー部113から出力される。また、第2バスバー部112に入力された電流は、第1連結部114を通じて第3バスバー部113から出力される。 By connecting as described above, the current input to the first bus bar portion 111 is output from the third bus bar portion 113 through the first connecting portion 114. In addition, the current input to the second bus bar portion 112 is output from the third bus bar portion 113 through the first connecting portion 114.
 すなわち、第1連結部114において、第3バスバー部113より第1バスバー部111側に位置する部分を電流が流れる方向14と、第3バスバー部113より第2バスバー部112側に位置する部分を電流が流れる方向15とは反対である。 That is, in the first connecting portion 114, the portion 14 located on the first bus bar portion 111 side from the third bus bar portion 113 and the portion 14 located on the second bus bar portion 112 side from the third bus bar portion 113. This is opposite to the direction 15 in which the current flows.
 なお、バスバー110と外部配線との接続方法は上記に限られず、第1バスバー部111を電流が流れる方向および第2バスバー部112を電流が流れる方向と、第3バスバー部113を電流が流れる方向とが、反対となるように接続されていればよい。 The connection method between the bus bar 110 and the external wiring is not limited to the above. The direction in which current flows in the first bus bar portion 111, the direction in which current flows in the second bus bar portion 112, and the direction in which current flows in the third bus bar portion 113. Are connected so as to be opposite.
 よって、第1バスバー部111および第2バスバー部112が出力配線に接続され、第3バスバー部113が入力配線に接続されていてもよい。 Therefore, the first bus bar portion 111 and the second bus bar portion 112 may be connected to the output wiring, and the third bus bar portion 113 may be connected to the input wiring.
 図1に示すように、第1磁気センサ120は、第1バスバー部111および第3バスバー部113の間に位置している。第2磁気センサ121は、第2バスバー部112および第3バスバー部113の間に位置している。 As shown in FIG. 1, the first magnetic sensor 120 is located between the first bus bar portion 111 and the third bus bar portion 113. The second magnetic sensor 121 is located between the second bus bar part 112 and the third bus bar part 113.
 第1磁気センサ120は、第1バスバー部111と第2バスバー部112と第3バスバー部113とが並ぶ方向に対して直交する方向、かつ、第3バスバー部113の延在方向に対して直交する方向である、図1中の矢印120aで示す方向に検出軸を有する。 The first magnetic sensor 120 is orthogonal to the direction in which the first bus bar portion 111, the second bus bar portion 112, and the third bus bar portion 113 are aligned, and is orthogonal to the extending direction of the third bus bar portion 113. The detection axis is in the direction indicated by the arrow 120a in FIG.
 第2磁気センサ121は、第1バスバー部111と第2バスバー部112と第3バスバー部113とが並ぶ方向に対して直交する方向、かつ、第3バスバー部113の延在方向に対して直交する方向である、図1中の矢印121aで示す方向に検出軸を有する。 The second magnetic sensor 121 is orthogonal to the direction in which the first bus bar part 111, the second bus bar part 112, and the third bus bar part 113 are aligned, and is orthogonal to the extending direction of the third bus bar part 113. The detection axis is in the direction indicated by the arrow 121a in FIG.
 第1磁気センサ120および第2磁気センサ121は、検出軸の一方向に向いた磁界を検出した場合に正の値で出力し、かつ、検出軸の一方向とは反対方向に向いた磁界を検出した場合に負の値で出力する、奇関数入出力特性を有している。すなわち、バスバー110を流れる測定対象の電流により発生する磁界の強さについて、第1磁気センサ120の検出値の位相と、第2磁気センサ121の検出値の位相とは、逆相である。 The first magnetic sensor 120 and the second magnetic sensor 121 output a positive value when a magnetic field directed in one direction of the detection axis is detected, and a magnetic field directed in a direction opposite to the one direction of the detection axis. It has an odd function input / output characteristic that outputs a negative value when detected. That is, the phase of the detection value of the first magnetic sensor 120 and the phase of the detection value of the second magnetic sensor 121 are opposite to each other with respect to the strength of the magnetic field generated by the current to be measured flowing through the bus bar 110.
 第1磁気センサ120および第2磁気センサ121としては、AMR(Anisotropic Magneto Resistance)、GMR(Giant Magneto Resistance)、TMR(Tunnel Magneto Resistance)、BMR(Balistic Magneto Resistance)、CMR(Colossal Magneto Resistance)などの磁気抵抗素子を有する磁気センサを用いることができる。特に、奇関数入出力特性を有するバーバーポール構造のAMR素子を用い、ホイートストンブリッジ型のブリッジ回路またはその半分の回路構成であるハーフ・ブリッジ回路を構成した磁気センサを用いることができる。 Examples of the first magnetic sensor 120 and the second magnetic sensor 121 include AMR (Anisotropic Magneto Resistance), GMR (Giant Magneto Resistance), TMR (Tunnel Magneto Resistance), BMR (Balistic Magneto Resistance), CMR (Colossal Magneto Resistance), and the like. A magnetic sensor having a magnetoresistive element can be used. In particular, a magnetic sensor using an AMR element having a barber pole structure having an odd function input / output characteristic and a Wheatstone bridge type bridge circuit or a half bridge circuit which is a half circuit configuration thereof can be used.
 その他にも、第1磁気センサ120および第2磁気センサ121として、ホール素子を有する磁気センサ、磁気インピーダンス効果を利用するMI(Magneto Impedance)素子を有する磁気センサまたはフラックスゲート型磁気センサなどを用いることができる。 In addition, as the first magnetic sensor 120 and the second magnetic sensor 121, a magnetic sensor having a Hall element, a magnetic sensor having an MI (Magneto Impedance) element using a magnetic impedance effect, a fluxgate type magnetic sensor, or the like is used. Can do.
 第1磁気センサ120および第2磁気センサ121にバイアスをかける場合は、バーバーポール構造を用いる方法に限られず、コイルの周囲に発生する誘導磁界、永久磁石の磁界、またはこれらを組み合わせた磁界を用いてバイアスをかけてもよい。 When applying a bias to the first magnetic sensor 120 and the second magnetic sensor 121, the method is not limited to the method using the barber pole structure, and an induction magnetic field generated around the coil, a magnetic field of a permanent magnet, or a magnetic field combining these is used. May be biased.
 第1磁気センサ120は、第1接続配線141によって減算器130と電気的に接続されている。第2磁気センサ121は、第2接続配線142によって減算器130と電気的に接続されている。 The first magnetic sensor 120 is electrically connected to the subtractor 130 by the first connection wiring 141. The second magnetic sensor 121 is electrically connected to the subtractor 130 by the second connection wiring 142.
 減算器130は、第1磁気センサ120の検出値から、第2磁気センサ121の検出値を減算することにより、バスバー110を流れる測定対象の電流の値を算出する。なお、本実施形態においては、算出手段として減算器130を用いているが、算出手段はこれに限られず、差動増幅器などでもよい。 The subtractor 130 subtracts the detection value of the second magnetic sensor 121 from the detection value of the first magnetic sensor 120, thereby calculating the value of the current to be measured flowing through the bus bar 110. In the present embodiment, the subtractor 130 is used as the calculation means, but the calculation means is not limited to this and may be a differential amplifier or the like.
 以下、電流センサ100の動作について説明する。
 図3は、本実施形態に係る電流センサ100を図1のIII-III線矢印方向から見た断面図において、発生する磁界を模式的に示す図である。
Hereinafter, the operation of the current sensor 100 will be described.
FIG. 3 is a diagram schematically showing a generated magnetic field in a cross-sectional view of the current sensor 100 according to the present embodiment as viewed from the direction of arrows III-III in FIG.
 図3に示すように、第1バスバー部111に電流が流れることにより、いわゆる右ねじの法則によって図中の左回りに周回する磁界111eが発生する。同様に、第2バスバー部112に電流が流れることにより、図中の左回りに周回する磁界112eが発生する。第3バスバー部113に電流が流れることにより、図中の右回りに周回する磁界113eが発生する。 As shown in FIG. 3, when a current flows through the first bus bar portion 111, a magnetic field 111e that circulates counterclockwise in the drawing according to the so-called right-handed screw law is generated. Similarly, when a current flows through the second bus bar portion 112, a magnetic field 112e that circulates counterclockwise in the figure is generated. When a current flows through the third bus bar portion 113, a magnetic field 113e that circulates clockwise in the figure is generated.
 その結果、第1磁気センサ120には、矢印120aで示す検出軸の方向において、図中の右向きの磁界が印加される。一方、第2磁気センサ121には、矢印121aで示す検出軸の方向において、図中の左向きの磁界が印加される。 As a result, a rightward magnetic field in the figure is applied to the first magnetic sensor 120 in the direction of the detection axis indicated by the arrow 120a. On the other hand, a leftward magnetic field in the figure is applied to the second magnetic sensor 121 in the direction of the detection axis indicated by the arrow 121a.
 よって、第1磁気センサ120の検出した磁界の強さを示す検出値を正の値とすると、第2磁気センサ121の検出した磁界の強さを示す検出値は負の値となる。第1磁気センサ120の検出値と第2磁気センサ121の検出値とは、減算器130に送信される。 Therefore, if the detection value indicating the strength of the magnetic field detected by the first magnetic sensor 120 is a positive value, the detection value indicating the strength of the magnetic field detected by the second magnetic sensor 121 is a negative value. The detection value of the first magnetic sensor 120 and the detection value of the second magnetic sensor 121 are transmitted to the subtractor 130.
 減算器130は、第1磁気センサ120の検出値から第2磁気センサ121の検出値を減算する。その結果、第1磁気センサ120の検出値の絶対値と、第2磁気センサ121の検出値の絶対値とが加算される。この加算結果から、バスバー110を流れた測定対象の電流の値が算出される。 The subtracter 130 subtracts the detection value of the second magnetic sensor 121 from the detection value of the first magnetic sensor 120. As a result, the absolute value of the detection value of the first magnetic sensor 120 and the absolute value of the detection value of the second magnetic sensor 121 are added. From this addition result, the value of the current to be measured flowing through the bus bar 110 is calculated.
 本実施形態に係る電流センサ100においては、第1磁気センサ120と第2磁気センサ121との間に、第3バスバー部113が位置しているため、外部磁界源は、物理的に第1磁気センサ120と第2磁気センサ121との間に位置することができない。 In the current sensor 100 according to this embodiment, since the third bus bar portion 113 is located between the first magnetic sensor 120 and the second magnetic sensor 121, the external magnetic field source is physically the first magnetic sensor. It cannot be positioned between the sensor 120 and the second magnetic sensor 121.
 そのため、外部磁界源から第1磁気センサ120に印加される磁界のうちの矢印120aで示す検出軸の方向における磁界成分の向きと、外部磁界源から第2磁気センサ121に印加される磁界のうちの矢印121aで示す検出軸の方向における磁界成分の向きとは、同じ向きとなる。よって、第1磁気センサ120の検出した外部磁界の強さを示す検出値を正の値とすると、第2磁気センサ121の検出した外部磁界の強さを示す検出値も正の値となる。 Therefore, of the magnetic field applied from the external magnetic field source to the first magnetic sensor 120, the direction of the magnetic field component in the direction of the detection axis indicated by the arrow 120a and the magnetic field applied from the external magnetic field source to the second magnetic sensor 121 The direction of the magnetic field component in the direction of the detection axis indicated by the arrow 121a is the same direction. Therefore, if the detection value indicating the strength of the external magnetic field detected by the first magnetic sensor 120 is a positive value, the detection value indicating the strength of the external magnetic field detected by the second magnetic sensor 121 is also a positive value.
 その結果、減算器130が第1磁気センサ120の検出値から第2磁気センサ121の検出値を減算することにより、第1磁気センサ120の検出値の絶対値と、第2磁気センサ121の検出値の絶対値とが減算される。これにより、外部磁界源からの磁界は、ほとんど検出されなくなる。すなわち、外部磁界の影響が低減される。 As a result, the subtractor 130 subtracts the detection value of the second magnetic sensor 121 from the detection value of the first magnetic sensor 120, thereby detecting the absolute value of the detection value of the first magnetic sensor 120 and the detection of the second magnetic sensor 121. The absolute value of the value is subtracted. Thereby, the magnetic field from the external magnetic field source is hardly detected. That is, the influence of the external magnetic field is reduced.
 もしくは、第1磁気センサ120および第2磁気センサ121において、検出値が正となる検出軸の方向を互いに反対方向(180°反対)にしてもよい。この場合、第1磁気センサ120の検出した外部磁界の強さを示す検出値を正の値とすると、第2磁気センサ121の検出した外部磁界の強さを示す検出値は負の値となる。 Alternatively, in the first magnetic sensor 120 and the second magnetic sensor 121, the detection axis directions in which the detection values are positive may be opposite to each other (opposite 180 °). In this case, if the detection value indicating the strength of the external magnetic field detected by the first magnetic sensor 120 is a positive value, the detection value indicating the strength of the external magnetic field detected by the second magnetic sensor 121 is a negative value. .
 一方、バスバー110を流れる測定対象の電流により発生する磁界の強さについて、第1磁気センサ120の検出値の位相と、第2磁気センサ121の検出値の位相とは同相となる。 On the other hand, regarding the strength of the magnetic field generated by the current to be measured flowing through the bus bar 110, the phase of the detection value of the first magnetic sensor 120 and the phase of the detection value of the second magnetic sensor 121 are in phase.
 このような構成の場合には、算出手段として減算器130に代えて加算器を用いる。外部磁界については、加算器が第1磁気センサ120の検出値と第2磁気センサ121の検出値とを加算することにより、第1磁気センサ120の検出値の絶対値と第2磁気センサ121の検出値の絶対値とが減算される。これにより、外部磁界源からの磁界は、ほとんど検出されなくなる。すなわち、外部磁界の影響が低減される。 In such a configuration, an adder is used in place of the subtractor 130 as the calculation means. For the external magnetic field, the adder adds the detection value of the first magnetic sensor 120 and the detection value of the second magnetic sensor 121, so that the absolute value of the detection value of the first magnetic sensor 120 and the second magnetic sensor 121 The absolute value of the detected value is subtracted. Thereby, the magnetic field from the external magnetic field source is hardly detected. That is, the influence of the external magnetic field is reduced.
 一方、バスバー110を流れる測定対象の電流により発生する磁界については、加算器が第1磁気センサ120の検出値と第2磁気センサ121の検出値とを加算することにより、第1磁気センサ120の検出値の絶対値と、第2磁気センサ121の検出値の絶対値とが加算される。この加算結果から、バスバー110を流れた測定対象の電流の値が算出される。 On the other hand, for the magnetic field generated by the current to be measured flowing through the bus bar 110, the adder adds the detection value of the first magnetic sensor 120 and the detection value of the second magnetic sensor 121, thereby The absolute value of the detection value and the absolute value of the detection value of the second magnetic sensor 121 are added. From this addition result, the value of the current to be measured flowing through the bus bar 110 is calculated.
 このように、第1磁気センサ120と第2磁気センサ121との入出力特性を互いに逆の極性にしつつ、減算器130に代えて加算器を算出手段として用いてもよい。 As described above, an adder may be used as the calculation unit in place of the subtractor 130 while the input / output characteristics of the first magnetic sensor 120 and the second magnetic sensor 121 have opposite polarities.
 なお、本実施形態における電流センサ100においては、第1バスバー部111および第2バスバー部112は横断面において、第3バスバー部113の中心点を中心として互いに点対称に位置している。かつ、第1バスバー部111および第2バスバー部112は横断面において、第1磁気センサ120および第2磁気センサ121の検出軸の方向における第3バスバー部113の中心線を中心として互いに線対称に位置している。 In the current sensor 100 according to the present embodiment, the first bus bar portion 111 and the second bus bar portion 112 are located in point symmetry with respect to the center point of the third bus bar portion 113 in the cross section. The first bus bar portion 111 and the second bus bar portion 112 are symmetrical with respect to each other about the center line of the third bus bar portion 113 in the direction of the detection axis of the first magnetic sensor 120 and the second magnetic sensor 121 in the cross section. positioned.
 また、第1磁気センサ120および第2磁気センサ121は横断面において、第3バスバー部113の中心点を中心として互いに点対称に位置している。かつ、第1磁気センサ120および第2磁気センサ121は横断面において、第1磁気センサ120および第2磁気センサ121の検出軸の方向における第3バスバー部113の中心線を中心として互いに線対称に位置している。 In addition, the first magnetic sensor 120 and the second magnetic sensor 121 are located point-symmetrically with respect to the center point of the third bus bar portion 113 in the cross section. The first magnetic sensor 120 and the second magnetic sensor 121 are symmetrical with respect to each other about the center line of the third bus bar portion 113 in the direction of the detection axis of the first magnetic sensor 120 and the second magnetic sensor 121 in the cross section. positioned.
 ここで、上記の配置により得られる効果について説明する。
 図4は、第1バスバー部と第2バスバー部とを互いに点対称に配置し、かつ、第1磁気センサと第2磁気センサとを互いに点対称に配置した状態を示す断面図である。図4においては、図3と同一の断面視で示している。
Here, the effect obtained by the above arrangement will be described.
FIG. 4 is a cross-sectional view showing a state in which the first bus bar portion and the second bus bar portion are arranged in point symmetry with each other, and the first magnetic sensor and the second magnetic sensor are arranged in point symmetry with respect to each other. 4 shows the same cross-sectional view as FIG.
 図4に示すように、第1バスバー部111および第2バスバー部112は横断面において、第3バスバー部113の中心点113cを中心として互いに点対称に位置している。また、第1磁気センサ120yおよび第2磁気センサ121yは横断面において、第3バスバー部113の中心点113cを中心として互いに点対称に位置している。 As shown in FIG. 4, the first bus bar portion 111 and the second bus bar portion 112 are located in point symmetry with respect to the center point 113 c of the third bus bar portion 113 in the cross section. Further, the first magnetic sensor 120y and the second magnetic sensor 121y are located point-symmetrically with respect to the center point 113c of the third bus bar portion 113 in the cross section.
 この配置の場合、バスバー110を流れる測定対象の電流により発生し、第3バスバー部113を周回する磁界113eは、第1磁気センサ120yおよび第2磁気センサ121yの各々に、等価で逆方向に印加される。その結果、減算器130が第1磁気センサ120yの検出値から第2磁気センサ121yの検出値を減算することにより、磁界113eの検出値は2倍になる。 In this arrangement, the magnetic field 113e generated by the current to be measured flowing through the bus bar 110 and circulating around the third bus bar portion 113 is equivalently applied in the opposite direction to each of the first magnetic sensor 120y and the second magnetic sensor 121y. Is done. As a result, the subtractor 130 subtracts the detection value of the second magnetic sensor 121y from the detection value of the first magnetic sensor 120y, thereby doubling the detection value of the magnetic field 113e.
 一方、外部磁界源が第1磁気センサ120yおよび第2磁気センサ121yに対して十分遠方にある場合、外部磁界は、第1磁気センサ120yおよび第2磁気センサ121yの各々に、等価で等方向に印加される。その結果、減算器130が第1磁気センサ120yの検出値から第2磁気センサ121yの検出値を減算することにより、外部磁界の検出値は0になる。 On the other hand, when the external magnetic field source is sufficiently far from the first magnetic sensor 120y and the second magnetic sensor 121y, the external magnetic field is equivalent to each of the first magnetic sensor 120y and the second magnetic sensor 121y in the same direction. Applied. As a result, the subtractor 130 subtracts the detection value of the second magnetic sensor 121y from the detection value of the first magnetic sensor 120y, so that the detection value of the external magnetic field becomes zero.
 このように点対称に配置された第1磁気センサ120yおよび第2磁気センサ121yは、バスバー110を流れる測定対象の電流により発生する磁界を等しく反映した検出値を示す。そのため、バスバー110を流れる測定対象の電流により発生する磁界の強さとそれから算出されるバスバー110を流れる測定対象の電流の値との線形性を高めることができる。 The first magnetic sensor 120y and the second magnetic sensor 121y arranged in a point-symmetric manner in this way show detection values that equally reflect the magnetic field generated by the current to be measured flowing through the bus bar 110. Therefore, the linearity between the strength of the magnetic field generated by the current to be measured flowing through the bus bar 110 and the value of the current to be measured flowing through the bus bar 110 can be improved.
 図5は、第1バスバー部と第2バスバー部とを互いに線対称に配置し、かつ、第1磁気センサと第2磁気センサとを互いに線対称に配置した状態を示す断面図である。図5においては、図3と同一の断面視で示している。 FIG. 5 is a cross-sectional view showing a state in which the first bus bar portion and the second bus bar portion are arranged in line symmetry with each other, and the first magnetic sensor and the second magnetic sensor are arranged in line symmetry with each other. FIG. 5 shows the same cross-sectional view as FIG.
 図5に示すように、第1バスバー部111および第2バスバー部112は横断面において、第1磁気センサ120および第2磁気センサ121の検出軸の方向における第3バスバー部113の中心線113xを中心として互いに線対称に位置している。 As shown in FIG. 5, the first bus bar portion 111 and the second bus bar portion 112 are cross-sectionally shown with a center line 113x of the third bus bar portion 113 in the direction of the detection axis of the first magnetic sensor 120 and the second magnetic sensor 121. They are located symmetrically with each other as the center.
 また、第1磁気センサ120zおよび第2磁気センサ121zは横断面において、第1磁気センサ120zおよび第2磁気センサ121zの検出軸の方向における第3バスバー部113の中心線113xを中心として互いに線対称に位置している。 The first magnetic sensor 120z and the second magnetic sensor 121z are symmetrical with respect to each other about the center line 113x of the third bus bar portion 113 in the direction of the detection axis of the first magnetic sensor 120z and the second magnetic sensor 121z in the cross section. Is located.
 この配置の場合、バスバー110を流れる測定対象の電流により発生し、第3バスバー部113を周回する磁界113eは、第1磁気センサ120zおよび第2磁気センサ121zの各々に、等価で逆方向に印加される。その結果、減算器130が第1磁気センサ120zの検出値から第2磁気センサ121zの検出値を減算することにより、磁界113eの検出値は2倍になる。 In this arrangement, the magnetic field 113e generated by the current to be measured flowing through the bus bar 110 and circulating around the third bus bar portion 113 is equivalently applied in the opposite direction to each of the first magnetic sensor 120z and the second magnetic sensor 121z. Is done. As a result, when the subtractor 130 subtracts the detection value of the second magnetic sensor 121z from the detection value of the first magnetic sensor 120z, the detection value of the magnetic field 113e is doubled.
 一方、外部磁界源が第1磁気センサ120zおよび第2磁気センサ121zに対して十分遠方にある場合、外部磁界は、第1磁気センサ120zおよび第2磁気センサ121zの各々に、等価で等方向に印加される。その結果、減算器130が第1磁気センサ120zの検出値から第2磁気センサ121zの検出値を減算することにより、外部磁界の検出値は0になる。 On the other hand, when the external magnetic field source is sufficiently far away from the first magnetic sensor 120z and the second magnetic sensor 121z, the external magnetic field is equivalent to each of the first magnetic sensor 120z and the second magnetic sensor 121z in the same direction. Applied. As a result, the subtractor 130 subtracts the detection value of the second magnetic sensor 121z from the detection value of the first magnetic sensor 120z, so that the detection value of the external magnetic field becomes zero.
 さらに、外部磁界源10が第1磁気センサ120zおよび第2磁気センサ121zに対して近傍にある場合、矢印120aで示す第1磁気センサ120zの検出軸の方向における外部磁界源10と第1磁気センサ120zとの距離L1と、矢印121aで示す第2磁気センサ121zの検出軸の方向における外部磁界源10と第2磁気センサ121zとの距離L2とは等しくなる。 Further, when the external magnetic field source 10 is in the vicinity of the first magnetic sensor 120z and the second magnetic sensor 121z, the external magnetic field source 10 and the first magnetic sensor in the direction of the detection axis of the first magnetic sensor 120z indicated by the arrow 120a. The distance L 1 from 120z is equal to the distance L 2 between the external magnetic field source 10 and the second magnetic sensor 121z in the direction of the detection axis of the second magnetic sensor 121z indicated by the arrow 121a.
 よって、外部磁界源10が近傍にある場合も、外部磁界は、第1磁気センサ120zおよび第2磁気センサ121zの各々に、等価で等方向に印加される。その結果、減算器130が第1磁気センサ120zの検出値から第2磁気センサ121zの検出値を減算することにより、外部磁界の検出値は0になる。 Therefore, even when the external magnetic field source 10 is in the vicinity, the external magnetic field is equivalently applied to each of the first magnetic sensor 120z and the second magnetic sensor 121z in the same direction. As a result, the subtractor 130 subtracts the detection value of the second magnetic sensor 121z from the detection value of the first magnetic sensor 120z, so that the detection value of the external magnetic field becomes zero.
 なお、矢印120aで示す第1磁気センサ120zの検出軸の方向に対して直交する方向における外部磁界源10と第1磁気センサ120zとの距離L3と、矢印121aで示す第2磁気センサ121zの検出軸の方向に対して直交する方向における外部磁界源10と第2磁気センサ121zとの距離L4とは異なるが、この方向の磁界成分は第1磁気センサ120zおよび第2磁気センサ121zにおいて検出されない。 The distance L 3 between the external magnetic field source 10 and the first magnetic sensor 120z in the direction orthogonal to the direction of the detection axis of the first magnetic sensor 120z indicated by the arrow 120a, and the second magnetic sensor 121z indicated by the arrow 121a. Although the distance L 4 between the external magnetic field source 10 and the second magnetic sensor 121z in the direction orthogonal to the direction of the detection axis is different, the magnetic field component in this direction is detected by the first magnetic sensor 120z and the second magnetic sensor 121z. Not.
 このように線対称に配置された第1磁気センサ120zおよび第2磁気センサ121zは、バスバー110を流れる測定対象の電流により発生する磁界を等しく反映した検出値を示す。そのため、バスバー110を流れる測定対象の電流により発生する磁界の強さとそれから算出されるバスバー110を流れる測定対象の電流の値との線形性を高めることができる。さらに、外部磁界源10が第1磁気センサ120zおよび第2磁気センサ121zの近傍に位置する場合にも、外部磁界の影響を低減することができる。 The first magnetic sensor 120z and the second magnetic sensor 121z arranged in line symmetry in this way indicate detection values that equally reflect the magnetic field generated by the current to be measured flowing through the bus bar 110. Therefore, the linearity between the strength of the magnetic field generated by the current to be measured flowing through the bus bar 110 and the value of the current to be measured flowing through the bus bar 110 can be improved. Furthermore, even when the external magnetic field source 10 is located in the vicinity of the first magnetic sensor 120z and the second magnetic sensor 121z, the influence of the external magnetic field can be reduced.
 本実施形態に係る電流センサ100は、上記の点対称配置および線対称配置の両方を満たしているため、外部磁界源10の位置に関わらず、バスバー110を流れる測定対象の電流により発生する磁界の強さとそれから算出されるバスバー110を流れる測定対象の電流の値との線形性を高めつつ、外部磁界の影響を低減することができる。 Since the current sensor 100 according to the present embodiment satisfies both the point-symmetrical arrangement and the line-symmetrical arrangement, the magnetic field generated by the current to be measured flowing through the bus bar 110 regardless of the position of the external magnetic field source 10. The influence of the external magnetic field can be reduced while increasing the linearity between the strength and the value of the current to be measured flowing through the bus bar 110 calculated from the strength.
 また、電流センサ100において、第1バスバー部111と第3バスバー部113との間に発生する磁界は、各バスバー部からの距離による変化が比較的小さい。そのため、第1磁気センサ120の配置に高い精度は要求されない。 Further, in the current sensor 100, the magnetic field generated between the first bus bar portion 111 and the third bus bar portion 113 has a relatively small change due to the distance from each bus bar portion. Therefore, high accuracy is not required for the arrangement of the first magnetic sensor 120.
 同様に、第2バスバー部112と第3バスバー部113との間に発生する磁界は、各バスバー部からの距離による変化が比較的小さい。そのため、第2磁気センサ121の配置に高い精度は要求されない。よって、電流センサ100は容易に製造できる。 Similarly, the magnetic field generated between the second bus bar portion 112 and the third bus bar portion 113 has a relatively small change depending on the distance from each bus bar portion. Therefore, high accuracy is not required for the arrangement of the second magnetic sensor 121. Therefore, the current sensor 100 can be easily manufactured.
 以下、本実施形態の変形例に係る電流センサについて説明する。なお、変形例に係る電流センサは、バスバーの構造のみ実施形態1に係る電流センサ100と異なるため、他の構成については説明を繰り返さない。 Hereinafter, a current sensor according to a modification of the present embodiment will be described. Note that the current sensor according to the modified example is different from the current sensor 100 according to the first embodiment only in the structure of the bus bar, and thus the description of the other configurations will not be repeated.
 図6は、本実施形態の変形例に係る電流センサのバスバーの構造を示す斜視図である。図6に示すように、変形例に係る電流センサのバスバー110aは、第1バスバー部111の両端と第2バスバー部112の両端とが互いに繋がっていることにより、平面的に見て環状の形状を有している。 FIG. 6 is a perspective view showing the structure of the bus bar of the current sensor according to the modification of the present embodiment. As shown in FIG. 6, the bus bar 110a of the current sensor according to the modified example has an annular shape when seen in a plan view because both ends of the first bus bar portion 111 and both ends of the second bus bar portion 112 are connected to each other. have.
 具体的には、第1バスバー部111の長手方向の他端と第2バスバー部112の長手方向の他端とは、第2連結部115によって互いに連結されている。第2連結部115は、第1バスバー部111と第2バスバー部112と第3バスバー部113とが並ぶ方向に延在している。すなわち、第2連結部115は、第1バスバー部111と第2バスバー部112とそれぞれ直交している。 Specifically, the other end in the longitudinal direction of the first bus bar portion 111 and the other end in the longitudinal direction of the second bus bar portion 112 are connected to each other by the second connecting portion 115. The second connecting portion 115 extends in the direction in which the first bus bar portion 111, the second bus bar portion 112, and the third bus bar portion 113 are arranged. That is, the second connecting part 115 is orthogonal to the first bus bar part 111 and the second bus bar part 112.
 第2連結部115は、直方体状の形状を有している。ただし、第2連結部115の形状は直方体状に限られず、たとえば円柱状であってもよい。 The second connecting portion 115 has a rectangular parallelepiped shape. However, the shape of the 2nd connection part 115 is not restricted to a rectangular parallelepiped shape, For example, a cylindrical shape may be sufficient.
 変形例に係る電流センサのバスバー110aにおいては、第2連結部115の延在方向における中央部に第1雌ねじ115hが設けられており、第3バスバー部113の長手方向の他端に第2雌ねじ113h’が設けられている。 In the bus bar 110a of the current sensor according to the modification, the first female screw 115h is provided at the center in the extending direction of the second connecting portion 115, and the second female screw is provided at the other end in the longitudinal direction of the third bus bar portion 113. 113h 'is provided.
 図示されていないが、入力配線の入力端子にボルトを挿通して、そのボルトと第1雌ねじ115hとを締結することにより、第2連結部115と入力配線とが接続される。出力配線の出力端子にボルトを挿通して、そのボルトと第2雌ねじ113h’とを締結することにより、第3バスバー部113と出力配線とが接続される。 Although not shown, the second connecting portion 115 and the input wiring are connected by inserting a bolt into the input terminal of the input wiring and fastening the bolt with the first female screw 115h. The third bus bar portion 113 and the output wiring are connected by inserting a bolt into the output terminal of the output wiring and fastening the bolt with the second female screw 113h '.
 上記のように接続することにより、第2連結部115に入力された電流は、第1バスバー部111、第2バスバー部112および第1連結部114を通じて、第3バスバー部113から出力される。 By connecting as described above, the current input to the second connecting portion 115 is output from the third bus bar portion 113 through the first bus bar portion 111, the second bus bar portion 112, and the first connecting portion 114.
 すなわち、第2連結部115において、第3バスバー部113より第1バスバー部111側に位置する部分を電流が流れる方向16と、第3バスバー部113より第2バスバー部112側に位置する部分を電流が流れる方向17とは反対である。 That is, in the second connecting portion 115, a portion where the current flows through the portion located on the first bus bar portion 111 side from the third bus bar portion 113 and a portion located on the second bus bar portion 112 side from the third bus bar portion 113. This is opposite to the direction 17 in which the current flows.
 なお、バスバー110aと外部配線との接続方法は上記に限られず、第1バスバー部111を電流が流れる方向および第2バスバー部112を電流が流れる方向と、第3バスバー部113を電流が流れる方向とが、反対となるように接続されていればよい。 The connection method between the bus bar 110a and the external wiring is not limited to the above, and the direction in which current flows in the first bus bar portion 111, the direction in which current flows in the second bus bar portion 112, and the direction in which current flows in the third bus bar portion 113. Are connected so as to be opposite.
 よって、第2連結部115が出力配線に接続され、第3バスバー部113が入力配線に接続されていてもよい。 Therefore, the 2nd connection part 115 may be connected to the output wiring, and the 3rd bus-bar part 113 may be connected to the input wiring.
 変形例に係る電流センサにおいては、バスバー110aの機械的強度を実施形態1に係るバスバー110に比較して高くすることができる。また、外部配線との接続箇所を削減しつつナットを不要にすることにより、実施形態1に係るバスバー110に比較して外部配線との接続を容易にできる。 In the current sensor according to the modification, the mechanical strength of the bus bar 110a can be made higher than that of the bus bar 110 according to the first embodiment. Further, by eliminating the need for nuts while reducing the number of connection points with external wiring, it is possible to easily connect with external wiring as compared with the bus bar 110 according to the first embodiment.
 以下、本発明の実施形態2に係る電流センサについて図を参照して説明する。本実施形態に係る電流センサ200は、バスバーの幅を広くしている点のみ実施形態1に係る電流センサ100と異なるため、他の構成については説明を繰り返さない。 Hereinafter, a current sensor according to Embodiment 2 of the present invention will be described with reference to the drawings. Since the current sensor 200 according to the present embodiment is different from the current sensor 100 according to the first embodiment only in that the width of the bus bar is widened, the description of other configurations will not be repeated.
 (実施形態2)
 図7は、本発明の実施形態2に係る電流センサの構成を示す斜視図である。図7に示すように、本発明の実施形態2に係る電流センサ200は、測定対象の電流が流れるバスバー210を備える。また、電流センサ200は、バスバー210を流れる測定対象の電流により発生する磁界の強さを奇関数入出力特性を有して検出する、第1磁気センサ220および第2磁気センサ221を備える。
(Embodiment 2)
FIG. 7 is a perspective view showing a configuration of a current sensor according to Embodiment 2 of the present invention. As shown in FIG. 7, the current sensor 200 according to the second embodiment of the present invention includes a bus bar 210 through which a current to be measured flows. The current sensor 200 includes a first magnetic sensor 220 and a second magnetic sensor 221 that detect the strength of a magnetic field generated by the current to be measured flowing through the bus bar 210 with an odd function input / output characteristic.
 さらに、電流センサ200は、第1磁気センサ220および第2磁気センサ221の各検出値を減算することにより上記電流の値を算出する算出手段である減算器230を備える。 Furthermore, the current sensor 200 includes a subtracter 230 that is a calculation unit that calculates the value of the current by subtracting the detection values of the first magnetic sensor 220 and the second magnetic sensor 221.
 バスバー210は、互いに電気的に並列に接続されて互いの間に間隔を置いて平行に位置する、第1バスバー部211および第2バスバー部212を含む。バスバー210は、第1バスバー部211および第2バスバー部212の間の中間で第1バスバー部211および第2バスバー部212の各々に対して間隔を置いて平行に延在する、第3バスバー部213をさらに含む。ここで、第1バスバー部211と第3バスバー部213との間の間隔G1と、第2バスバー部212と第3バスバー部213との間の間隔G2とは等しい。 The bus bar 210 includes a first bus bar portion 211 and a second bus bar portion 212 that are electrically connected in parallel to each other and located in parallel with an interval therebetween. The bus bar 210 has a third bus bar portion that extends in parallel to the first bus bar portion 211 and the second bus bar portion 212 at an interval between the first bus bar portion 211 and the second bus bar portion 212. 213 is further included. Here, the gap G 1 between the first bus bar part 211 and the third bus bar part 213 is equal to the gap G 2 between the second bus bar part 212 and the third bus bar part 213.
 本実施形態においては、第1バスバー部211と第2バスバー部212と第3バスバー部213とは、直方体状の形状であり、等間隔に配置されている。第1バスバー部211の長手方向の一端と第2バスバー部212の長手方向の一端と第3バスバー部213の長手方向の一端とは、第1連結部214によって互いに連結されている。 In the present embodiment, the first bus bar portion 211, the second bus bar portion 212, and the third bus bar portion 213 have a rectangular parallelepiped shape and are arranged at equal intervals. One end in the longitudinal direction of the first bus bar portion 211, one end in the longitudinal direction of the second bus bar portion 212, and one end in the longitudinal direction of the third bus bar portion 213 are connected to each other by the first connecting portion 214.
 第1連結部214は、直方体状の形状であり、第1バスバー部211と第2バスバー部212と第3バスバー部213とが並ぶ方向に延在している。すなわち、第1連結部214は、第1バスバー部211と第2バスバー部212と第3バスバー部213とそれぞれ直交している。上記のように、バスバー210は、平面的に見てE字状の形状を有している。 The first connecting portion 214 has a rectangular parallelepiped shape, and extends in the direction in which the first bus bar portion 211, the second bus bar portion 212, and the third bus bar portion 213 are arranged. That is, the 1st connection part 214 is orthogonally crossed with the 1st bus-bar part 211, the 2nd bus-bar part 212, and the 3rd bus-bar part 213, respectively. As described above, the bus bar 210 has an E shape when seen in a plan view.
 図7に示すように、第1磁気センサ220は、第1バスバー部211および第3バスバー部213の間に位置している。第1磁気センサ220の主面は、第1バスバー部211および第3バスバー部213に対向している。第2磁気センサ221は、第2バスバー部212および第3バスバー部213の間に位置している。第2磁気センサ221の主面は、第2バスバー部212および第3バスバー部213に対向している。 As shown in FIG. 7, the first magnetic sensor 220 is located between the first bus bar part 211 and the third bus bar part 213. The main surface of the first magnetic sensor 220 faces the first bus bar part 211 and the third bus bar part 213. The second magnetic sensor 221 is located between the second bus bar part 212 and the third bus bar part 213. The main surface of the second magnetic sensor 221 faces the second bus bar part 212 and the third bus bar part 213.
 第1磁気センサ220は、第1バスバー部211と第2バスバー部212と第3バスバー部213とが並ぶ方向に対して直交する方向、かつ、第3バスバー部213の延在方向に対して直交する方向である、図7中の矢印220aで示す方向に検出軸を有する。 The first magnetic sensor 220 is orthogonal to the direction in which the first bus bar portion 211, the second bus bar portion 212, and the third bus bar portion 213 are aligned, and is orthogonal to the extending direction of the third bus bar portion 213. The detection axis is in the direction indicated by the arrow 220a in FIG.
 第2磁気センサ221は、第1バスバー部211と第2バスバー部212と第3バスバー部213とが並ぶ方向に対して直交する方向、かつ、第3バスバー部213の延在方向に対して直交する方向である、図7中の矢印221aで示す方向に検出軸を有する。 The second magnetic sensor 221 is orthogonal to the direction in which the first bus bar portion 211, the second bus bar portion 212, and the third bus bar portion 213 are aligned, and is orthogonal to the extending direction of the third bus bar portion 213. The detection axis is in the direction indicated by the arrow 221a in FIG.
 第1磁気センサ220および第2磁気センサ221は、検出軸の一方向に向いた磁界を検出した場合に正の値で出力し、かつ、検出軸の一方向とは反対方向に向いた磁界を検出した場合に負の値で出力する、奇関数入出力特性を有している。 The first magnetic sensor 220 and the second magnetic sensor 221 output a positive value when a magnetic field directed in one direction of the detection axis is detected, and a magnetic field directed in a direction opposite to the one direction of the detection axis. It has an odd function input / output characteristic that outputs a negative value when detected.
 第1磁気センサ220は、接続配線によって減算器230と電気的に接続されている。第2磁気センサ221は、接続配線によって減算器230と電気的に接続されている。 The first magnetic sensor 220 is electrically connected to the subtracter 230 by connection wiring. The second magnetic sensor 221 is electrically connected to the subtracter 230 by connection wiring.
 減算器230は、第1磁気センサ220の検出値から、第2磁気センサ221の検出値を減算することにより、バスバー210を流れる測定対象の電流の値を算出する。 The subtracter 230 calculates the value of the current to be measured flowing through the bus bar 210 by subtracting the detection value of the second magnetic sensor 221 from the detection value of the first magnetic sensor 220.
 図7中の矢印220a,221aで示す第1および第2磁気センサ220,221の検出軸の方向において、第1バスバー部211の幅の寸法211t、第2バスバー部212の幅の寸法212t、および、第3バスバー部213の幅の寸法213tは、各々、互いに隣接するバスバー部同士の間の間隔の寸法G1,G2の1.5倍である。 In the direction of the detection axis of the first and second magnetic sensors 220 and 221 indicated by arrows 220a and 221a in FIG. 7, the width dimension 211t of the first bus bar portion 211, the width dimension 212t of the second bus bar portion 212, and The width dimension 213t of the third bus bar portion 213 is 1.5 times the distance dimensions G 1 and G 2 between the adjacent bus bar portions.
 よって、第1バスバー部211の幅の寸法211t、第2バスバー部212の幅の寸法212t、および、第3バスバー部213の幅の寸法213tは、各々1.5G1である。後述するように、第1バスバー部211の幅の寸法211t、第2バスバー部212の幅の寸法212t、および、第3バスバー部213の幅の寸法213tは、各々1.5G1以上であることが好ましく、各々2.0G1以上であることがさらに好ましい。 Therefore, the dimension of the width of the first bus bar portion 211 211t, dimensions 212t of the width of the second bus bar 212, and the dimensions 213t of the width of the third bus bar portions 213 are each 1.5G 1. As described below that, the size of the width of the first bus bar portion 211 211t, dimensions 212t of the width of the second bus bar 212, and the dimensions 213t of the width of the third bus bar 213 is respectively 1.5G 1 or more It is more preferable that each is 2.0 G 1 or more.
 第1バスバー部211を電流が流れる方向21と、第2バスバー部212を電流が流れる方向22とは同一である。第1バスバー部211を電流が流れる方向21、および第2バスバー部212を電流が流れる方向22と、第3バスバー部213を電流が流れる方向23とは反対である。 The direction 21 in which the current flows through the first bus bar portion 211 and the direction 22 in which the current flows through the second bus bar portion 212 are the same. The direction 21 in which current flows in the first bus bar portion 211, the direction 22 in which current flows in the second bus bar portion 212, and the direction 23 in which current flows in the third bus bar portion 213 are opposite to each other.
 本実施形態では、図2に示す実施形態1に係る電流センサ100と同様に、バスバー210は、入力配線と出力配線とを含む外部配線に接続されている。このため、第1バスバー部211に入力された電流は、第1連結部214を通じて第3バスバー部213から出力される。また、第2バスバー部212に入力された電流は、第1連結部214を通じて第3バスバー部213から出力される。 In this embodiment, the bus bar 210 is connected to external wiring including input wiring and output wiring, as in the current sensor 100 according to the first embodiment shown in FIG. For this reason, the current input to the first bus bar portion 211 is output from the third bus bar portion 213 through the first connection portion 214. In addition, the current input to the second bus bar portion 212 is output from the third bus bar portion 213 through the first connecting portion 214.
 すなわち、第1連結部214において、第3バスバー部213より第1バスバー部211側に位置する部分を電流が流れる方向24と、第3バスバー部213より第2バスバー部212側に位置する部分を電流が流れる方向25とは反対である。 That is, in the first connecting portion 214, the portion 24 that is located on the first bus bar portion 211 side from the third bus bar portion 213 and the portion 24 that is located on the second bus bar portion 212 side from the third bus bar portion 213 are disposed. This is opposite to the direction 25 in which the current flows.
 図8は、本実施形態に係る電流センサ200を図7のVIII-VIII線矢印方向から見た断面図において、発生する磁界を模式的に示す図である。 FIG. 8 is a diagram schematically showing a generated magnetic field in a cross-sectional view of the current sensor 200 according to the present embodiment as viewed from the direction of arrows VIII-VIII in FIG.
 図8に示すように、第1バスバー部211に電流が流れることにより、図中の左回りに周回する磁界211eが発生する。同様に、第2バスバー部212に電流が流れることにより、図中の左回りに周回する磁界212eが発生する。第3バスバー部213に電流が流れることにより、図中の右回りに周回する磁界213eが発生する。 As shown in FIG. 8, when a current flows through the first bus bar portion 211, a magnetic field 211e that circulates counterclockwise in the figure is generated. Similarly, when a current flows through the second bus bar portion 212, a magnetic field 212e that circulates counterclockwise in the figure is generated. When a current flows through the third bus bar portion 213, a magnetic field 213e that circulates clockwise in the figure is generated.
 その結果、第1磁気センサ220には、矢印220aで示す検出軸の方向において、図中の右向きの磁界が印加される。一方、第2磁気センサ221には、矢印221aで示す検出軸の方向において、図中の左向きの磁界が印加される。 As a result, a rightward magnetic field in the drawing is applied to the first magnetic sensor 220 in the direction of the detection axis indicated by the arrow 220a. On the other hand, a leftward magnetic field in the figure is applied to the second magnetic sensor 221 in the direction of the detection axis indicated by the arrow 221a.
 よって、第1磁気センサ220の検出した磁界の強さを示す検出値を正の値とすると、第2磁気センサ221の検出した磁界の強さを示す検出値は負の値となる。第1磁気センサ220の検出値と第2磁気センサ221の検出値とは、減算器230に送信される。 Therefore, if the detection value indicating the strength of the magnetic field detected by the first magnetic sensor 220 is a positive value, the detection value indicating the strength of the magnetic field detected by the second magnetic sensor 221 is a negative value. The detection value of the first magnetic sensor 220 and the detection value of the second magnetic sensor 221 are transmitted to the subtracter 230.
 減算器230は、第1磁気センサ220の検出値から第2磁気センサ221の検出値を減算する。その結果、第1磁気センサ220の検出値の絶対値と、第2磁気センサ221の検出値の絶対値とが加算される。この加算結果から、バスバー210を流れた測定対象の電流の値が算出される。 The subtracter 230 subtracts the detection value of the second magnetic sensor 221 from the detection value of the first magnetic sensor 220. As a result, the absolute value of the detection value of the first magnetic sensor 220 and the absolute value of the detection value of the second magnetic sensor 221 are added. From this addition result, the value of the current to be measured flowing through the bus bar 210 is calculated.
 図9は、本実施形態に係る電流センサ200のバスバー210の周辺における、バスバー210を流れる測定対象の電流により発生する磁界の磁束密度をシミュレーションした結果を示す磁束線図である。図10は、本実施形態に係る電流センサ200のバスバー210の周辺における、バスバー210を流れる測定対象の電流により発生する磁界の磁束密度をシミュレーションした結果を示す等高線図である。図9,10においては、図8と同一の断面を示している。 FIG. 9 is a magnetic flux diagram showing the result of simulating the magnetic flux density of the magnetic field generated by the current to be measured flowing through the bus bar 210 around the bus bar 210 of the current sensor 200 according to the present embodiment. FIG. 10 is a contour map showing the result of simulating the magnetic flux density of the magnetic field generated by the current to be measured flowing through the bus bar 210 around the bus bar 210 of the current sensor 200 according to the present embodiment. 9 and 10 show the same cross section as FIG.
 ここで、比較例に係る電流センサを用意する。比較例に係る電流センサは、測定対象の電流が流れるバスバー910を備える。図11は、比較例に係る電流センサが備えるバスバー910の形状を示す平面図である。図12は、比較例に係る電流センサのバスバー910の周辺における、バスバー910を流れる測定対象の電流により発生する磁界の磁束密度をシミュレーションした結果を、図11のXII-XII線矢印方向から見た断面に示した等高線図である。 Here, a current sensor according to a comparative example is prepared. The current sensor according to the comparative example includes a bus bar 910 through which a current to be measured flows. FIG. 11 is a plan view showing the shape of the bus bar 910 included in the current sensor according to the comparative example. FIG. 12 shows the result of simulating the magnetic flux density of the magnetic field generated by the current to be measured flowing through the bus bar 910 in the vicinity of the bus bar 910 of the current sensor according to the comparative example, as viewed from the direction of the arrow XII-XII in FIG. It is the contour map shown in the cross section.
 図11に示すように、比較例に係る電流センサが備えるバスバー910は、互いの間に間隔を置いて平行に位置する、第1バスバー部911および第2バスバー部912を含む。バスバー910において、第1バスバー部911の一端と第2バスバー部912の一端とは、連結部913により連結されている。図12に示すように、バスバー910は、薄板状に形成されている。電流は、第1バスバー部911から連結部913を通じて第2バスバー部912へ流れる。 As shown in FIG. 11, the bus bar 910 included in the current sensor according to the comparative example includes a first bus bar portion 911 and a second bus bar portion 912 that are positioned in parallel with a space between each other. In the bus bar 910, one end of the first bus bar part 911 and one end of the second bus bar part 912 are connected by a connecting part 913. As shown in FIG. 12, the bus bar 910 is formed in a thin plate shape. The current flows from the first bus bar part 911 to the second bus bar part 912 through the connecting part 913.
 図13は、本実施形態に係る電流センサ200において、図10中の左右方向における第3バスバー部213の中央部から図10中の上下方向に離れた距離と、磁束密度との関係を示すグラフである。図13においては、縦軸に磁束密度(mT)、横軸に第3バスバー部213の表面からの距離(mm)を示している。 13 is a graph showing the relationship between the distance away from the central portion of the third bus bar portion 213 in the left-right direction in FIG. 10 in the up-down direction in FIG. 10 and the magnetic flux density in the current sensor 200 according to the present embodiment. It is. In FIG. 13, the vertical axis represents the magnetic flux density (mT), and the horizontal axis represents the distance (mm) from the surface of the third bus bar portion 213.
 図14は、比較例に係る電流センサにおいて、図12中の左右方向における第1バスバー部911の中央部または第2バスバー部912の中央部から図12中の上下方向に離れた距離と、磁束密度との関係を示すグラフである。図14においては、縦軸に磁束密度(mT)、横軸にバスバー910の表面からの距離(mm)を示している。 14 shows a distance between the center portion of the first bus bar portion 911 or the center portion of the second bus bar portion 912 in the left-right direction in FIG. 12 and the magnetic flux in the up-down direction in FIG. It is a graph which shows the relationship with a density. In FIG. 14, the vertical axis represents the magnetic flux density (mT), and the horizontal axis represents the distance (mm) from the surface of the bus bar 910.
 シミュレーションにおいては、本実施形態および比較例における各バスバー部の横断面寸法を2mm×10mmとし、バスバーを流れる測定対象の電流の値を100Aとした。本実施形態に係るバスバー210においては、第3バスバー部213を流れる測定対象の電流の値が100Aである。 In the simulation, the cross-sectional dimension of each bus bar portion in this embodiment and the comparative example was 2 mm × 10 mm, and the value of the current to be measured flowing through the bus bar was 100 A. In the bus bar 210 according to the present embodiment, the value of the current to be measured flowing through the third bus bar portion 213 is 100A.
 図10,12においては、磁束密度が、0.6mTである線をE1、1.2mTである線をE2、1.8mTである線をE3、2.4mTである線をE4、3.0mTである線をE5、3.6mTである線をE6、4.2mTである線をE7、4.8mTである線をE8、5.4mTである線をE9、6.0mTである線をE10で示している。 10 and 12, a line with a magnetic flux density of 0.6 mT is E 1 , a line with 1.2 mT is E 2 , a line with 1.8 mT is E 3 , and a line with 2.4 mT is E 4. A line of 3.0 mT is E 5 , a line of 3.6 mT is E 6 , a line of 4.2 mT is E 7 , a line of 4.8 mT is E 8 , and a line of 5.4 mT is E 9 A line that is 6.0 mT is indicated by E 10 .
 上述の通り、本実施形態においては、第1バスバー部211の幅の寸法211t、第2バスバー部212の幅の寸法212t、および、第3バスバー部213の幅の寸法213tは、各々、互いに隣接するバスバー部同士の間の間隔の寸法G1,G2の1.5倍である。 As described above, in the present embodiment, the width dimension 211t of the first bus bar portion 211, the width dimension 212t of the second bus bar portion 212, and the width dimension 213t of the third bus bar portion 213 are adjacent to each other. 1.5 times the dimension G 1, G 2 of the spacing between the bus bar unit to.
 これにより、図9に示すように、第1バスバー部211と第3バスバー部213との間に発生する磁界の磁束線、および、第2バスバー部212と第3バスバー部213との間に発生する磁界の磁束線は、図中の左右方向において各バスバー部に沿って略直線状に延びている。図中の左右方向は、第1および第2磁気センサ220,221の検出軸の方向である。 As a result, as shown in FIG. 9, magnetic flux lines generated between the first bus bar portion 211 and the third bus bar portion 213 and between the second bus bar portion 212 and the third bus bar portion 213. The magnetic flux lines of the magnetic field to be extended extend substantially linearly along each bus bar portion in the left-right direction in the figure. The horizontal direction in the figure is the direction of the detection axis of the first and second magnetic sensors 220 and 221.
 図10,13に示すように、本実施形態に係るバスバー210では、第1バスバー部211と第3バスバー部213との間において、第3バスバー部213の近傍に磁束密度が4.8mTより高い領域が形成されている。 As shown in FIGS. 10 and 13, in the bus bar 210 according to the present embodiment, the magnetic flux density is higher than 4.8 mT in the vicinity of the third bus bar portion 213 between the first bus bar portion 211 and the third bus bar portion 213. A region is formed.
 また、第1バスバー部211と第3バスバー部213との間において、第1バスバー部211側で図中の左右方向の中央部に、磁束密度が4.5mT程度でほとんど変化していない領域が形成されている。 Further, between the first bus bar portion 211 and the third bus bar portion 213, there is a region in which the magnetic flux density is about 4.5 mT and hardly changes at the center portion in the left-right direction in the drawing on the first bus bar portion 211 side. Is formed.
 同様に、第2バスバー部212と第3バスバー部213との間において、第3バスバー部213の近傍に磁束密度が4.8mTより高い領域が形成されている。 Similarly, a region having a magnetic flux density higher than 4.8 mT is formed in the vicinity of the third bus bar portion 213 between the second bus bar portion 212 and the third bus bar portion 213.
 また、第2バスバー部212と第3バスバー部213との間において、第2バスバー部212側で図中の左右方向の中央部に、磁束密度が4.5mT程度でほとんど変化していない領域が形成されている。 In addition, there is a region between the second bus bar portion 212 and the third bus bar portion 213 that has almost no change in magnetic flux density of about 4.5 mT at the center portion in the horizontal direction in the drawing on the second bus bar portion 212 side. Is formed.
 図12に示すように、比較例のバスバー910では、第1バスバー部911と第2バスバー部912との間において、第1バスバー部911の近傍および第2バスバー部912の近傍から離れるに従って磁束密度が急激に低下しており、磁束密度がほとんど変化していない領域が存在しない。 As shown in FIG. 12, in the bus bar 910 of the comparative example, the magnetic flux density between the first bus bar portion 911 and the second bus bar portion 912 increases as the distance from the vicinity of the first bus bar portion 911 and the vicinity of the second bus bar portion 912 increases. Is rapidly decreasing, and there is no region where the magnetic flux density hardly changes.
 また、図14に示すように、比較例のバスバー910では、第1バスバー部911の中央部または第2バスバー部912の中央部から図12中の上下方向に離れるに従って磁束密度は急激に低下している。 Further, as shown in FIG. 14, in the bus bar 910 of the comparative example, the magnetic flux density rapidly decreases as the distance from the central portion of the first bus bar portion 911 or the central portion of the second bus bar portion 912 in the vertical direction in FIG. ing.
 よって、本実施形態に係る電流センサ200において、第1磁気センサ220を第1バスバー部211より第3バスバー部213の近くに配置し、第2磁気センサ221を第2バスバー部212より第3バスバー部213の近くに配置することにより、磁束密度が高い領域に第1磁気センサ220および第2磁気センサ221を配置できるため、電流センサ200のSN比(signal-noise ratio)を高くすることができる。この場合、電流センサ200の感度を向上できる。 Therefore, in the current sensor 200 according to the present embodiment, the first magnetic sensor 220 is disposed closer to the third bus bar portion 213 than the first bus bar portion 211, and the second magnetic sensor 221 is disposed from the second bus bar portion 212 to the third bus bar. Since the first magnetic sensor 220 and the second magnetic sensor 221 can be disposed in a region having a high magnetic flux density by being disposed near the portion 213, the SN ratio (signal-noise ratio) of the current sensor 200 can be increased. . In this case, the sensitivity of the current sensor 200 can be improved.
 または、本実施形態に係る電流センサ200において、第1磁気センサ220を第3バスバー部213より第1バスバー部211の近くに配置し、第2磁気センサ221を第3バスバー部213より第2バスバー部212の近くに配置することにより、磁束密度がほとんど変化していない領域に第1磁気センサ220および第2磁気センサ221を配置できるため、第1磁気センサ220および第2磁気センサ221の配置に高い精度が要求されない。この場合、電流センサ200を容易に製造できる。この効果は、第1バスバー部211の幅の寸法211t、第2バスバー部212の幅の寸法212t、および、第3バスバー部213の幅の寸法213tが、各々1.5G1以上である場合に安定して得られ、各々2.0G1以上である場合に顕著となる。 Alternatively, in the current sensor 200 according to the present embodiment, the first magnetic sensor 220 is disposed closer to the first bus bar portion 211 than the third bus bar portion 213, and the second magnetic sensor 221 is disposed from the third bus bar portion 213 to the second bus bar. Since the first magnetic sensor 220 and the second magnetic sensor 221 can be arranged in a region where the magnetic flux density hardly changes by being arranged near the portion 212, the arrangement of the first magnetic sensor 220 and the second magnetic sensor 221 can be reduced. High accuracy is not required. In this case, the current sensor 200 can be easily manufactured. This effect is obtained when the width dimension 211t of the first bus bar portion 211, the width dimension 212t of the second bus bar portion 212, and the width dimension 213t of the third bus bar portion 213 are each 1.5 G 1 or more. It becomes remarkable when it is obtained stably and each is 2.0 G 1 or more.
 本実施形態に係る電流センサ200においても、外部磁界の影響を低減することができる。また、第1磁気センサ220および第2磁気センサ121の配置に高い精度を要求されないため、電流センサ200は容易に製造可能である。 Also in the current sensor 200 according to the present embodiment, the influence of the external magnetic field can be reduced. Moreover, since high precision is not required for the arrangement of the first magnetic sensor 220 and the second magnetic sensor 121, the current sensor 200 can be easily manufactured.
 さらに、図10,12に示すように、本実施形態に係るバスバー210は、比較例のバスバー910に比較して、磁束密度が0.6mTより低い領域がバスバーの近くに形成されている。すなわち、本実施形態に係るバスバー210の漏れ磁界は、比較例のバスバー910の漏れ磁界より小さい。 Further, as shown in FIGS. 10 and 12, the bus bar 210 according to the present embodiment has an area where the magnetic flux density is lower than 0.6 mT, which is formed near the bus bar, as compared with the bus bar 910 of the comparative example. That is, the leakage magnetic field of the bus bar 210 according to the present embodiment is smaller than the leakage magnetic field of the bus bar 910 of the comparative example.
 バスバーの漏れ磁界を小さくすることにより、電流センサ200自体が、電流センサ200に近接して配置される他の電流センサなどに対して外部磁界源として与える影響を低減できる。 By reducing the leakage magnetic field of the bus bar, it is possible to reduce the influence of the current sensor 200 itself as an external magnetic field source with respect to other current sensors disposed in the vicinity of the current sensor 200.
 よって、3相交流インバータの出力電流の制御などにおいて、大電流が流れる複数の経路が互いに集合して配置される場合に、本実施形態に係る電流センサ200を用いることにより、各経路を流れる電流の値をより正確に検出することができる。 Therefore, in the control of the output current of the three-phase AC inverter and the like, when a plurality of paths through which a large current flows are arranged together, the current flowing through each path is obtained by using the current sensor 200 according to the present embodiment. Can be detected more accurately.
 以下、本発明の実施形態3に係る電流センサについて図を参照して説明する。本実施形態に係る電流センサ300は、2つのバスバー部材からバスバーを構成している点のみ実施形態2に係る電流センサ200と異なるため、他の構成については説明を繰り返さない。 Hereinafter, a current sensor according to Embodiment 3 of the present invention will be described with reference to the drawings. Since the current sensor 300 according to the present embodiment is different from the current sensor 200 according to the second embodiment only in that the bus bar is configured by two bus bar members, description of other configurations will not be repeated.
 (実施形態3)
 図15は、本発明の実施形態3に係る電流センサの構成を示す斜視図である。図15に示すように、本発明の実施形態3に係る電流センサ300は、測定対象の電流が流れるバスバー310を備える。
(Embodiment 3)
FIG. 15 is a perspective view showing a configuration of a current sensor according to Embodiment 3 of the present invention. As shown in FIG. 15, the current sensor 300 according to the third embodiment of the present invention includes a bus bar 310 through which a current to be measured flows.
 また、電流センサ300は、バスバー310を流れる測定対象の電流により発生する磁界の強さを奇関数入出力特性を有して検出する、第1磁気センサ320および第2磁気センサ321を備える。 Further, the current sensor 300 includes a first magnetic sensor 320 and a second magnetic sensor 321 that detect the strength of the magnetic field generated by the current to be measured flowing through the bus bar 310 with an odd function input / output characteristic.
 さらに、電流センサ300は、第1磁気センサ320および第2磁気センサ321の各検出値を減算することにより上記電流の値を算出する算出手段である図示しない減算器を備える。 Furthermore, the current sensor 300 includes a subtracter (not shown) which is a calculation means for calculating the current value by subtracting the detection values of the first magnetic sensor 320 and the second magnetic sensor 321.
 本実施形態においては、バスバー310は、第1バスバー部311および第3バスバー部の一部313aを構成する第1バスバー部材310aと、第2バスバー部312および第3バスバー部の一部313bを構成する第2バスバー部材310bとを含む。 In the present embodiment, the bus bar 310 constitutes a first bus bar member 310a constituting the first bus bar part 311 and a part 313a of the third bus bar part, and a second bus bar part 312 and a part 313b of the third bus bar part. Second bus bar member 310b.
 具体的には、第1バスバー部材310aおよび第2バスバー部材310bは、各々平面的に見てU字状の同一形状を有している。 Specifically, the first bus bar member 310a and the second bus bar member 310b have the same U-shape when viewed in plan.
 第1バスバー部材310aにおいては、互いの間に間隔を置いて平行に位置する第1バスバー部311の長手方向の一端と第3バスバー部の一部313aの長手方向の一端とが、湾曲した第1連結部314aによって互いに連結されている。 In the first bus bar member 310a, one end in the longitudinal direction of the first bus bar part 311 and one end in the longitudinal direction of the part 313a of the third bus bar part, which are parallel to each other with a space therebetween, are curved. They are connected to each other by one connecting portion 314a.
 第2バスバー部材310bにおいては、互いの間に間隔を置いて平行に位置する第2バスバー部312の長手方向の一端と第3バスバー部の一部313bの長手方向の一端とが、湾曲した第1連結部314bによって互いに連結されている。 In the second bus bar member 310b, the first end in the longitudinal direction of the second bus bar portion 312 and the one end in the longitudinal direction of the portion 313b of the third bus bar portion, which are parallel to each other with a space therebetween, are curved. They are connected to each other by one connecting portion 314b.
 第3バスバー部313は、第1バスバー部材310aにおける第3バスバー部の一部313aと、第2バスバー部材310bにおける第3バスバー部の一部313bとからなる。 The third bus bar portion 313 includes a third bus bar portion 313a of the first bus bar member 310a and a third bus bar portion 313b of the second bus bar member 310b.
 第1バスバー部311の長手方向の他端に第1貫通孔311h、第2バスバー部312の長手方向の他端に第2貫通孔312h、および、第3バスバー部313の長手方向の他端に第3貫通孔313hが設けられている。 The first through-hole 311h at the other end in the longitudinal direction of the first bus bar portion 311, the second through-hole 312h at the other end in the longitudinal direction of the second bus bar portion 312 and the other end in the longitudinal direction of the third bus bar portion 313 A third through hole 313h is provided.
 第1貫通孔311hおよび第2貫通孔312hは入力配線を接続するために設けられており、第3貫通孔313hは出力配線を接続するために設けられている。ただし、第1貫通孔311hおよび第2貫通孔312hを出力配線の接続に用い、第3貫通孔313hを入力配線の接続に用いてもよい。 The first through hole 311h and the second through hole 312h are provided for connecting the input wiring, and the third through hole 313h is provided for connecting the output wiring. However, the first through hole 311h and the second through hole 312h may be used for connecting the output wiring, and the third through hole 313h may be used for connecting the input wiring.
 第1バスバー部材310aと第2バスバー部材310bとは接合されており、それぞれの第3バスバー部313の一部において互いに接触している。具体的には、第3バスバー部の一部313aにおける第1バスバー部材310a側とは反対側の面と、第3バスバー部の一部313bにおける第2バスバー部材310b側とは反対側の面とが互いに接触している。 The first bus bar member 310a and the second bus bar member 310b are joined, and are in contact with each other in a part of each third bus bar portion 313. Specifically, the surface of the third bus bar portion 313a opposite to the first bus bar member 310a side and the surface of the third bus bar portion 313b opposite to the second bus bar member 310b side Are in contact with each other.
 本実施形態においては、第1バスバー部材310aと第2バスバー部材310bとが溶接により接合されている。ただし、両部材の接合方法は溶接に限られず、ろう付け、半田付け、ボルトおよびナットを用いた締結、リベットを用いた締結、両部材の嵌め合わせ、または、両部材のかしめなどにより接合してもよい。 In the present embodiment, the first bus bar member 310a and the second bus bar member 310b are joined by welding. However, the joining method of both members is not limited to welding, and joining is performed by brazing, soldering, fastening using bolts and nuts, fastening using rivets, fitting of both members, or caulking of both members. Also good.
 また、絶縁樹脂を用いてバスバー310をインサート成型してもよい。この場合、第1貫通孔311h、第2貫通孔312hおよび第3貫通孔313hの周囲のみを露出させて、バスバー310のその他の部分を絶縁樹脂でモールドする。 Also, the bus bar 310 may be insert-molded using an insulating resin. In this case, only the periphery of the first through hole 311h, the second through hole 312h, and the third through hole 313h is exposed, and the other part of the bus bar 310 is molded with an insulating resin.
 このようにすることにより、第1バスバー部材310aと第2バスバー部材310bとの接合強度を向上できるとともに、バスバー310の外部配線との接続部以外の部分を絶縁封止することができる。 By doing so, the bonding strength between the first bus bar member 310a and the second bus bar member 310b can be improved, and the portions other than the connection portion of the bus bar 310 with the external wiring can be insulated and sealed.
 本実施形態に係るバスバー310の第3バスバー部313は、第1バスバー部材310aにおける第3バスバー部の一部313aと、第2バスバー部材310bにおける第3バスバー部の一部313bとからなる。このため、本実施形態に係るバスバー310の第1バスバー部311および第2バスバー部312の寸法を、実施形態2に係るバスバー210の第1バスバー部211および第2バスバー部212の寸法と等しくした場合、本実施形態に係るバスバー310の第3バスバー部313は、実施形態2に係るバスバー210の第3バスバー部213と比較して、横断面の面積が2倍である。そのため、第3バスバー部313における電気抵抗が半減し、バスバー310の許容電流を高くすることができる。 The third bus bar portion 313 of the bus bar 310 according to the present embodiment includes a third bus bar portion 313a of the first bus bar member 310a and a third bus bar portion 313b of the second bus bar member 310b. Therefore, the dimensions of the first bus bar part 311 and the second bus bar part 312 of the bus bar 310 according to the present embodiment are made equal to the dimensions of the first bus bar part 211 and the second bus bar part 212 of the bus bar 210 according to the second embodiment. In this case, the third bus bar portion 313 of the bus bar 310 according to the present embodiment has a cross-sectional area twice that of the third bus bar portion 213 of the bus bar 210 according to the second embodiment. Therefore, the electrical resistance in the third bus bar portion 313 is halved, and the allowable current of the bus bar 310 can be increased.
 本実施形態に係る電流センサ300においても、外部磁界の影響を低減することができる。また、第1磁気センサ320および第2磁気センサ321の配置に高い精度を要求されないため、電流センサ300は容易に製造可能である。 Also in the current sensor 300 according to the present embodiment, the influence of the external magnetic field can be reduced. Further, since high accuracy is not required for the arrangement of the first magnetic sensor 320 and the second magnetic sensor 321, the current sensor 300 can be easily manufactured.
 なお、第1バスバー部材310aと第2バスバー部材310bとは、必ずしも同一の形状でなくてもよいが、同一の形状とすることにより、準備する部材の種類を低減できるとともに、第1磁気センサ320および第2磁気センサ321をバスバー310に対して対称配置して電流センサ300の検出安定性を確保することができる。 The first bus bar member 310a and the second bus bar member 310b do not necessarily have the same shape, but by using the same shape, the types of members to be prepared can be reduced and the first magnetic sensor 320 can be reduced. The second magnetic sensor 321 can be arranged symmetrically with respect to the bus bar 310 to ensure the detection stability of the current sensor 300.
 以下、本発明の実施形態4に係る電流センサについて図を参照して説明する。本実施形態に係る電流センサ400は、入力端子部と出力端子部とが互いに反対方向に引き出されている点のみ実施形態3に係る電流センサ300と異なるため、他の構成については説明を繰り返さない。 Hereinafter, a current sensor according to Embodiment 4 of the present invention will be described with reference to the drawings. The current sensor 400 according to the present embodiment is different from the current sensor 300 according to the third embodiment only in that the input terminal portion and the output terminal portion are drawn in opposite directions, and therefore, description of other configurations will not be repeated. .
 (実施形態4)
 図16は、本発明の実施形態4に係る電流センサの構成を示す斜視図である。図16に示すように、本発明の実施形態4に係る電流センサ400は、測定対象の電流が流れるバスバー410を備える。
(Embodiment 4)
FIG. 16 is a perspective view showing a configuration of a current sensor according to Embodiment 4 of the present invention. As shown in FIG. 16, the current sensor 400 according to the fourth embodiment of the present invention includes a bus bar 410 through which a current to be measured flows.
 また、電流センサ400は、バスバー410を流れる測定対象の電流により発生する磁界の強さを奇関数入出力特性を有して検出する、第1磁気センサ420および第2磁気センサ421を備える。 The current sensor 400 also includes a first magnetic sensor 420 and a second magnetic sensor 421 that detect the strength of the magnetic field generated by the current to be measured flowing through the bus bar 410 with an odd function input / output characteristic.
 さらに、電流センサ400は、第1磁気センサ420および第2磁気センサ421の各検出値を減算することにより上記電流の値を算出する算出手段である図示しない減算器を備える。 Furthermore, the current sensor 400 includes a subtracter (not shown) that is a calculation unit that calculates the value of the current by subtracting the detection values of the first magnetic sensor 420 and the second magnetic sensor 421.
 本実施形態においては、バスバー410は、第1バスバー部411および第3バスバー部の一部413aを構成する第1バスバー部材410aと、第2バスバー部412および第3バスバー部の一部413bを構成する第2バスバー部材410bとを含む。 In the present embodiment, the bus bar 410 constitutes a first bus bar member 410a constituting a first bus bar part 411 and a part 413a of a third bus bar part, and a second bus bar part 412 and a part 413b of a third bus bar part. Second bus bar member 410b.
 バスバー410は、第1バスバー部411および第2バスバー部412に電流を入力するための入力端子部416と、第3バスバー部413から電流を出力するための出力端子部417を有する。 The bus bar 410 has an input terminal part 416 for inputting current to the first bus bar part 411 and the second bus bar part 412 and an output terminal part 417 for outputting current from the third bus bar part 413.
 第1バスバー部材410aにおいては、互いの間に間隔を置いて平行に位置する第1バスバー部411の一端と第3バスバー部の一部413aの一端とが、湾曲した第1連結部414aによって互いに連結されている。 In the first bus bar member 410a, one end of the first bus bar part 411 and one end of the part 413a of the third bus bar part which are positioned in parallel with a space between each other are mutually connected by the curved first connecting part 414a. It is connected.
 第2バスバー部材410bにおいては、互いの間に間隔を置いて平行に位置する第2バスバー部412の一端と第3バスバー部の一部413bの一端とが、湾曲した第1連結部414bによって互いに連結されている。 In the second bus bar member 410b, one end of the second bus bar part 412 and one end of the part 413b of the third bus bar part which are positioned in parallel with a space between each other are mutually connected by the curved first connecting part 414b. It is connected.
 バスバー410の第3バスバー部413は、第1バスバー部材410aにおける第3バスバー部の一部413aと、第2バスバー部材410bにおける第3バスバー部の一部413bとからなる。 The third bus bar part 413 of the bus bar 410 is composed of a part 413a of the third bus bar part in the first bus bar member 410a and a part 413b of the third bus bar part in the second bus bar member 410b.
 バスバー410の入力端子部416は、第1バスバー部材410aにおける入力端子部の一部416aと、第2バスバー部材410bにおける入力端子部の一部416bとからなる。 The input terminal part 416 of the bus bar 410 includes a part 416a of the input terminal part in the first bus bar member 410a and a part 416b of the input terminal part in the second bus bar member 410b.
 バスバー410の出力端子部417は、第1バスバー部材410aにおける出力端子部の一部417aと、第2バスバー部材410bにおける出力端子部の一部417bとからなる。 The output terminal part 417 of the bus bar 410 includes a part 417a of the output terminal part in the first bus bar member 410a and a part 417b of the output terminal part in the second bus bar member 410b.
 入力端子部416と出力端子部417とは、同一平面上に位置し、かつ、第1磁気センサ420および第2磁気センサ421の検出軸の方向において互いに反対向きに延在している。図16中の左右方向が、第1磁気センサ420および第2磁気センサ421の検出軸の方向である。 The input terminal portion 416 and the output terminal portion 417 are located on the same plane and extend in opposite directions in the direction of the detection axis of the first magnetic sensor 420 and the second magnetic sensor 421. The left-right direction in FIG. 16 is the direction of the detection axis of the first magnetic sensor 420 and the second magnetic sensor 421.
 具体的には、第1バスバー部材410aにおいては、第1バスバー部411の他端と入力端子部の一部416aの一端とが、湾曲した第2連結部415aによって互いに連結されている。 Specifically, in the first bus bar member 410a, the other end of the first bus bar portion 411 and one end of the input terminal portion 416a are connected to each other by a curved second connecting portion 415a.
 入力端子部の一部416aは、第2連結部415aから図16中の左方向に延在している。出力端子部の一部417aは、第3バスバー部の一部413aの他端から図16中の右方向に延在している。入力端子部の一部416aと出力端子部の一部417aとは、同一平面上に位置している。 The part 416a of the input terminal portion extends in the left direction in FIG. 16 from the second connecting portion 415a. A part 417a of the output terminal portion extends in the right direction in FIG. 16 from the other end of the part 413a of the third bus bar portion. The input terminal portion 416a and the output terminal portion 417a are located on the same plane.
 第2バスバー部材410bにおいては、第2バスバー部412の他端と入力端子部の一部416bの一端とが、湾曲した第2連結部415bによって互いに連結されている。 In the second bus bar member 410b, the other end of the second bus bar portion 412 and one end of the input terminal portion 416b are connected to each other by a curved second connecting portion 415b.
 入力端子部の一部416bは、第2連結部415bから図16中の左方向に延在している。出力端子部の一部417bは、第3バスバー部の一部413bの他端から図16中の右方向に延在している。入力端子部の一部416bと出力端子部の一部417bとは、同一平面上に位置している。 The part 416b of the input terminal portion extends in the left direction in FIG. 16 from the second connecting portion 415b. A portion 417b of the output terminal portion extends in the right direction in FIG. 16 from the other end of the portion 413b of the third bus bar portion. The input terminal portion 416b and the output terminal portion 417b are located on the same plane.
 入力端子部416の他端に第1貫通孔416hおよび出力端子部の417の他端に第2貫通孔417hが設けられている。 A first through hole 416h is provided at the other end of the input terminal portion 416, and a second through hole 417h is provided at the other end of the output terminal portion 417.
 第1貫通孔416hは入力配線を接続するための孔であり、第2貫通孔417hは出力配線を接続するための孔である。ただし、第1貫通孔416hを出力配線の接続に用い、第2貫通孔417hを入力配線の接続に用いてもよい。 The first through hole 416h is a hole for connecting the input wiring, and the second through hole 417h is a hole for connecting the output wiring. However, the first through hole 416h may be used for connecting the output wiring, and the second through hole 417h may be used for connecting the input wiring.
 第1バスバー部材410aと第2バスバー部材410bとは、それぞれの第3バスバー部413において互いに接触している。本実施形態においては、第1バスバー部材410aと第2バスバー部材410bとは、それぞれの入力端子部416および出力端子部417においても互いに接触している。 The first bus bar member 410a and the second bus bar member 410b are in contact with each other in each third bus bar portion 413. In the present embodiment, the first bus bar member 410a and the second bus bar member 410b are in contact with each other at the input terminal portion 416 and the output terminal portion 417 as well.
 本実施形態に係る電流センサ400においては、入力端子部416と出力端子部417とが互いに反対方向に引き出されているため、バスバー410に接続する外部配線の短絡を抑制できるとともに、外部配線との接続を容易にできる。 In the current sensor 400 according to the present embodiment, since the input terminal portion 416 and the output terminal portion 417 are drawn in opposite directions, a short circuit of the external wiring connected to the bus bar 410 can be suppressed, and Easy connection.
 本実施形態に係る電流センサ400においても、外部磁界の影響を低減することができる。また、第1磁気センサ420および第2磁気センサ421の配置に高い精度を要求されないため、電流センサ400は容易に製造可能である。 Also in the current sensor 400 according to the present embodiment, the influence of the external magnetic field can be reduced. Moreover, since high precision is not required for the arrangement of the first magnetic sensor 420 and the second magnetic sensor 421, the current sensor 400 can be easily manufactured.
 以下、本発明の実施形態5に係る電流センサについて図を参照して説明する。本実施形態に係る電流センサ200xは、磁気センサの主面の配置方向のみ実施形態2に係る電流センサ200と異なるため、他の構成については説明を繰り返さない。 Hereinafter, a current sensor according to Embodiment 5 of the present invention will be described with reference to the drawings. Since the current sensor 200x according to the present embodiment is different from the current sensor 200 according to the second embodiment only in the arrangement direction of the main surface of the magnetic sensor, the description of other configurations will not be repeated.
 (実施形態5)
 図17は、本発明の実施形態5に係る電流センサの構成を示す斜視図である。図17に示すように、本発明の実施形態5に係る電流センサ200xは、測定対象の電流が流れるバスバー210を備える。また、電流センサ200xは、バスバー210を流れる測定対象の電流により発生する磁界の強さを奇関数入出力特性を有して検出する、第1磁気センサ220および第2磁気センサ221を備える。
(Embodiment 5)
FIG. 17 is a perspective view showing a configuration of a current sensor according to Embodiment 5 of the present invention. As shown in FIG. 17, the current sensor 200x according to the fifth embodiment of the present invention includes a bus bar 210 through which a current to be measured flows. The current sensor 200x includes a first magnetic sensor 220 and a second magnetic sensor 221 that detect the strength of the magnetic field generated by the current to be measured flowing through the bus bar 210 with an odd function input / output characteristic.
 さらに、電流センサ200xは、第1磁気センサ220および第2磁気センサ221の各検出値を減算することにより上記電流の値を算出する算出手段である減算器230を備える。 Furthermore, the current sensor 200x includes a subtracter 230 that is a calculation means for calculating the value of the current by subtracting the detection values of the first magnetic sensor 220 and the second magnetic sensor 221.
 第1磁気センサ220は、第1バスバー部211および第3バスバー部213の間に位置している。第1磁気センサ220の主面は、第1連結部214に対向している。第2磁気センサ221は、第2バスバー部212および第3バスバー部213の間に位置している。第2磁気センサ221の主面は、第1連結部214に対向している。 The first magnetic sensor 220 is located between the first bus bar part 211 and the third bus bar part 213. The main surface of the first magnetic sensor 220 faces the first connecting portion 214. The second magnetic sensor 221 is located between the second bus bar part 212 and the third bus bar part 213. The main surface of the second magnetic sensor 221 faces the first connecting part 214.
 第1磁気センサ220は、第1バスバー部211と第2バスバー部212と第3バスバー部213とが並ぶ方向に対して直交する方向、かつ、第3バスバー部213の延在方向に対して直交する方向である、図17中の矢印220aで示す方向に検出軸を有する。 The first magnetic sensor 220 is orthogonal to the direction in which the first bus bar portion 211, the second bus bar portion 212, and the third bus bar portion 213 are aligned, and is orthogonal to the extending direction of the third bus bar portion 213. The detection axis is in the direction indicated by the arrow 220a in FIG.
 第2磁気センサ221は、第1バスバー部211と第2バスバー部212と第3バスバー部213とが並ぶ方向に対して直交する方向、かつ、第3バスバー部213の延在方向に対して直交する方向である、図17中の矢印221aで示す方向に検出軸を有する。 The second magnetic sensor 221 is orthogonal to the direction in which the first bus bar portion 211, the second bus bar portion 212, and the third bus bar portion 213 are aligned, and is orthogonal to the extending direction of the third bus bar portion 213. The detection axis is in the direction indicated by the arrow 221a in FIG.
 図18は、本実施形態に係る電流センサ200xを図17のXVIII-XVIII線矢印方向から見た断面図において、発生する磁界を模式的に示す図である。 FIG. 18 is a diagram schematically showing a generated magnetic field in a cross-sectional view of the current sensor 200x according to the present embodiment as viewed from the direction of the arrow XVIII-XVIII in FIG.
 図18に示すように、第1バスバー部211に電流が流れることにより、図中の左回りに周回する磁界211eが発生する。同様に、第2バスバー部212に電流が流れることにより、図中の左回りに周回する磁界212eが発生する。第3バスバー部213に電流が流れることにより、図中の右回りに周回する磁界213eが発生する。 As shown in FIG. 18, when a current flows through the first bus bar portion 211, a magnetic field 211e that circulates counterclockwise in the figure is generated. Similarly, when a current flows through the second bus bar portion 212, a magnetic field 212e that circulates counterclockwise in the figure is generated. When a current flows through the third bus bar portion 213, a magnetic field 213e that circulates clockwise in the figure is generated.
 その結果、第1磁気センサ220には、矢印220aで示す検出軸の方向において、図中の右向きの磁界が印加される。一方、第2磁気センサ221には、矢印221aで示す検出軸の方向において、図中の左向きの磁界が印加される。 As a result, a rightward magnetic field in the drawing is applied to the first magnetic sensor 220 in the direction of the detection axis indicated by the arrow 220a. On the other hand, a leftward magnetic field in the figure is applied to the second magnetic sensor 221 in the direction of the detection axis indicated by the arrow 221a.
 よって、第1磁気センサ220の検出した磁界の強さを示す検出値を正の値とすると、第2磁気センサ221の検出した磁界の強さを示す検出値は負の値となる。第1磁気センサ220の検出値と第2磁気センサ221の検出値とは、減算器230に送信される。 Therefore, if the detection value indicating the strength of the magnetic field detected by the first magnetic sensor 220 is a positive value, the detection value indicating the strength of the magnetic field detected by the second magnetic sensor 221 is a negative value. The detection value of the first magnetic sensor 220 and the detection value of the second magnetic sensor 221 are transmitted to the subtracter 230.
 減算器230は、第1磁気センサ220の検出値から第2磁気センサ221の検出値を減算する。その結果、第1磁気センサ220の検出値の絶対値と、第2磁気センサ221の検出値の絶対値とが加算される。この加算結果から、バスバー210を流れた測定対象の電流の値が算出される。 The subtracter 230 subtracts the detection value of the second magnetic sensor 221 from the detection value of the first magnetic sensor 220. As a result, the absolute value of the detection value of the first magnetic sensor 220 and the absolute value of the detection value of the second magnetic sensor 221 are added. From this addition result, the value of the current to be measured flowing through the bus bar 210 is calculated.
 実施形態2,5のように磁気センサの主面に対して平行な向きに印加される磁界を検出するために最適な磁気センサとして、AMR、GMR、TMRなどの磁気抵抗素子を有する磁気センサ、MI素子を有する磁気センサまたはフラックスゲート型磁気センサがある。 Magnetic sensors having magnetoresistive elements such as AMR, GMR, and TMR as the optimum magnetic sensor for detecting a magnetic field applied in a direction parallel to the main surface of the magnetic sensor as in the second and fifth embodiments, There are magnetic sensors having an MI element or flux gate type magnetic sensors.
 以下、本発明の実施形態6に係る電流センサについて図を参照して説明する。本実施形態に係る電流センサ200yは、磁気センサの主面の配置方向のみ実施形態2に係る電流センサ200と異なるため、他の構成については説明を繰り返さない。 Hereinafter, a current sensor according to Embodiment 6 of the present invention will be described with reference to the drawings. Since the current sensor 200y according to the present embodiment is different from the current sensor 200 according to the second embodiment only in the arrangement direction of the main surface of the magnetic sensor, description of other configurations will not be repeated.
 (実施形態6)
 図19は、本発明の実施形態6に係る電流センサの構成を示す斜視図である。図19に示すように、本発明の実施形態6に係る電流センサ200yは、測定対象の電流が流れるバスバー210を備える。また、電流センサ200yは、バスバー210を流れる測定対象の電流により発生する磁界の強さを奇関数入出力特性を有して検出する、第1磁気センサ220yおよび第2磁気センサ221yを備える。
(Embodiment 6)
FIG. 19 is a perspective view showing a configuration of a current sensor according to Embodiment 6 of the present invention. As shown in FIG. 19, a current sensor 200y according to Embodiment 6 of the present invention includes a bus bar 210 through which a current to be measured flows. The current sensor 200y includes a first magnetic sensor 220y and a second magnetic sensor 221y that detect the strength of the magnetic field generated by the current to be measured flowing through the bus bar 210 with an odd function input / output characteristic.
 さらに、電流センサ200yは、第1磁気センサ220yおよび第2磁気センサ221yの各検出値を減算することにより上記電流の値を算出する算出手段である減算器230を備える。 Furthermore, the current sensor 200y includes a subtracter 230, which is a calculation means for calculating the current value by subtracting the detection values of the first magnetic sensor 220y and the second magnetic sensor 221y.
 第1磁気センサ220yは、第1バスバー部211および第3バスバー部213の間に位置している。第1磁気センサ220yの主面を含む平面は、第1バスバー部211、第3バスバー部213および第1連結部214の各々に対して直交している。第2磁気センサ221yは、第2バスバー部212および第3バスバー部213の間に位置している。第2磁気センサ221yの主面を含む平面は、第2バスバー部212、第3バスバー部213および第1連結部214の各々に対して直交している。 The first magnetic sensor 220y is located between the first bus bar portion 211 and the third bus bar portion 213. A plane including the main surface of the first magnetic sensor 220y is orthogonal to each of the first bus bar portion 211, the third bus bar portion 213, and the first connecting portion 214. The second magnetic sensor 221y is located between the second bus bar portion 212 and the third bus bar portion 213. A plane including the main surface of the second magnetic sensor 221y is orthogonal to each of the second bus bar portion 212, the third bus bar portion 213, and the first connecting portion 214.
 第1磁気センサ220yは、第1バスバー部211と第2バスバー部212と第3バスバー部213とが並ぶ方向に対して直交する方向、かつ、第3バスバー部213の延在方向に対して直交する方向である、図19中の矢印220yaで示す方向に検出軸を有する。 The first magnetic sensor 220y is orthogonal to the direction in which the first bus bar portion 211, the second bus bar portion 212, and the third bus bar portion 213 are aligned, and is orthogonal to the extending direction of the third bus bar portion 213. The detection axis is in the direction indicated by the arrow 220ya in FIG.
 第2磁気センサ221yは、第1バスバー部211と第2バスバー部212と第3バスバー部213とが並ぶ方向に対して直交する方向、かつ、第3バスバー部213の延在方向に対して直交する方向である、図19中の矢印221yaで示す方向に検出軸を有する。 The second magnetic sensor 221y is orthogonal to the direction in which the first bus bar portion 211, the second bus bar portion 212, and the third bus bar portion 213 are aligned, and is orthogonal to the extending direction of the third bus bar portion 213. The detection axis is in the direction indicated by the arrow 221ya in FIG.
 図20は、本実施形態に係る電流センサ200yを図19のXX-XX線矢印方向から見た断面図において、発生する磁界を模式的に示す図である。 FIG. 20 is a diagram schematically showing a generated magnetic field in a cross-sectional view of the current sensor 200y according to the present embodiment as viewed from the direction of arrows XX-XX in FIG.
 図20に示すように、第1バスバー部211に電流が流れることにより、図中の左回りに周回する磁界211eが発生する。同様に、第2バスバー部212に電流が流れることにより、図中の左回りに周回する磁界212eが発生する。第3バスバー部213に電流が流れることにより、図中の右回りに周回する磁界213eが発生する。 As shown in FIG. 20, when a current flows through the first bus bar portion 211, a magnetic field 211e that circulates counterclockwise in the figure is generated. Similarly, when a current flows through the second bus bar portion 212, a magnetic field 212e that circulates counterclockwise in the figure is generated. When a current flows through the third bus bar portion 213, a magnetic field 213e that circulates clockwise in the figure is generated.
 その結果、第1磁気センサ220yには、矢印220yaで示す検出軸の方向において、図中の右向きの磁界が印加される。一方、第2磁気センサ221yには、矢印221yaで示す検出軸の方向において、図中の左向きの磁界が印加される。 As a result, a rightward magnetic field in the figure is applied to the first magnetic sensor 220y in the direction of the detection axis indicated by the arrow 220ya. On the other hand, a leftward magnetic field in the figure is applied to the second magnetic sensor 221y in the direction of the detection axis indicated by the arrow 221ya.
 よって、第1磁気センサ220yの検出した磁界の強さを示す検出値を正の値とすると、第2磁気センサ221yの検出した磁界の強さを示す検出値は負の値となる。第1磁気センサ220yの検出値と第2磁気センサ221yの検出値とは、減算器230に送信される。 Therefore, if the detection value indicating the strength of the magnetic field detected by the first magnetic sensor 220y is a positive value, the detection value indicating the strength of the magnetic field detected by the second magnetic sensor 221y is a negative value. The detection value of the first magnetic sensor 220y and the detection value of the second magnetic sensor 221y are transmitted to the subtracter 230.
 減算器230は、第1磁気センサ220yの検出値から第2磁気センサ221yの検出値を減算する。その結果、第1磁気センサ220yの検出値の絶対値と、第2磁気センサ221yの検出値の絶対値とが加算される。この加算結果から、バスバー210を流れた測定対象の電流の値が算出される。 The subtracter 230 subtracts the detection value of the second magnetic sensor 221y from the detection value of the first magnetic sensor 220y. As a result, the absolute value of the detection value of the first magnetic sensor 220y and the absolute value of the detection value of the second magnetic sensor 221y are added. From this addition result, the value of the current to be measured flowing through the bus bar 210 is calculated.
 本実施形態のように磁気センサの主面に対して垂直な向きに印加される磁界を検出するために最適な磁気センサとして、ホール素子を有する磁気センサがある。 As in the present embodiment, there is a magnetic sensor having a Hall element as an optimum magnetic sensor for detecting a magnetic field applied in a direction perpendicular to the main surface of the magnetic sensor.
 以下、本発明の実施形態3に係る電流センサにおいて、磁気センサの主面の配置方向を実施形態5に係る電流センサと同様にして構成した、本発明の実施形態7に係る電流センサモジュールについて図を参照して説明する。下記の電流センサモジュール300xの説明において、電流センサ300と同様の構成については説明を繰り返さない。 Hereinafter, in the current sensor according to Embodiment 3 of the present invention, the current sensor module according to Embodiment 7 of the present invention is configured in the same manner as the current sensor according to Embodiment 5 in the arrangement direction of the main surface of the magnetic sensor. Will be described with reference to FIG. In the description of the current sensor module 300x below, the description of the same configuration as the current sensor 300 will not be repeated.
 (実施形態7)
 図21は、本発明の実施形態7に係る電流センサモジュールの構成を示す斜視図である。図21に示すように、本発明の実施形態7に係る電流センサモジュール300xは、電流センサと、実装基板350と、減算器330と、外部接続端子360とを備える。電流センサ、減算器330および外部接続端子360は、実装基板350に実装されている。
(Embodiment 7)
FIG. 21 is a perspective view showing a configuration of a current sensor module according to Embodiment 7 of the present invention. As shown in FIG. 21, the current sensor module 300x according to the seventh embodiment of the present invention includes a current sensor, a mounting board 350, a subtractor 330, and an external connection terminal 360. The current sensor, the subtractor 330, and the external connection terminal 360 are mounted on the mounting board 350.
 実装基板350には、第1開口部351、第2開口部352および第3開口部353が設けられている。第1開口部351には、第1バスバー部311が嵌め込まれている。第2開口部352には、第3バスバー部313が嵌め込まれている。第3開口部353には、第2バスバー部312が嵌め込まれている。 The mounting substrate 350 is provided with a first opening 351, a second opening 352, and a third opening 353. The first bus bar portion 311 is fitted in the first opening portion 351. A third bus bar portion 313 is fitted in the second opening 352. The second bus bar portion 312 is fitted in the third opening 353.
 第1磁気センサ320および第2磁気センサ321は、実装基板350に実装されている。第1磁気センサ320の主面は、第1連結部314aに対向している。第2磁気センサ321の主面は、第1連結部314bに対向している。 The first magnetic sensor 320 and the second magnetic sensor 321 are mounted on the mounting board 350. The main surface of the first magnetic sensor 320 faces the first connecting portion 314a. The main surface of the second magnetic sensor 321 faces the first connecting portion 314b.
 第1磁気センサ320は、第1バスバー部311と第2バスバー部312と第3バスバー部313とが並ぶ方向に対して直交する方向、かつ、第3バスバー部313の延在方向に対して直交する方向である、図21中の矢印320aで示す方向に検出軸を有する。 The first magnetic sensor 320 is orthogonal to the direction in which the first bus bar portion 311, the second bus bar portion 312, and the third bus bar portion 313 are aligned, and orthogonal to the extending direction of the third bus bar portion 313. The detection axis is in the direction indicated by the arrow 320a in FIG.
 第2磁気センサ321は、第1バスバー部311と第2バスバー部312と第3バスバー部313とが並ぶ方向に対して直交する方向、かつ、第3バスバー部313の延在方向に対して直交する方向である、図21中の矢印321aで示す方向に検出軸を有する。 The second magnetic sensor 321 has a direction orthogonal to the direction in which the first bus bar portion 311, the second bus bar portion 312 and the third bus bar portion 313 are aligned, and is orthogonal to the extending direction of the third bus bar portion 313. The detection axis is in the direction indicated by the arrow 321a in FIG.
 第1磁気センサ320は、第1接続配線341によって減算器330と電気的に接続されている。第2磁気センサ321は、第2接続配線342によって減算器330と電気的に接続されている。減算器330は、第1磁気センサ320の検出値から、第2磁気センサ321の検出値を減算することにより、バスバー310を流れる測定対象の電流の値を算出する。減算器330の算出結果は、外部接続端子360から出力される。 The first magnetic sensor 320 is electrically connected to the subtractor 330 through the first connection wiring 341. The second magnetic sensor 321 is electrically connected to the subtractor 330 through the second connection wiring 342. The subtractor 330 calculates the value of the current to be measured flowing through the bus bar 310 by subtracting the detection value of the second magnetic sensor 321 from the detection value of the first magnetic sensor 320. The calculation result of the subtracter 330 is output from the external connection terminal 360.
 本実施形態に係る電流センサモジュール300xにおいては、実装基板350に各構成が実装されることによりモジュール化されているため、構成部品同士の位置精度を高く維持しつつ容易に製造することができる。 Since the current sensor module 300x according to the present embodiment is modularized by mounting each component on the mounting substrate 350, the current sensor module 300x can be easily manufactured while maintaining high positional accuracy between the components.
 今回開示された実施形態はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなくて請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。 The embodiment disclosed this time should be considered as illustrative in all points and not restrictive. The scope of the present invention is defined by the terms of the claims, rather than the description above, and is intended to include any modifications within the scope and meaning equivalent to the terms of the claims.
 10 外部磁界源、100,200,200x,200y,300,300x,400 電流センサ、110,110a,210,310,410,910 バスバー、111,211,311,411,911 第1バスバー部、111h,311h,416h 第1貫通孔、112,212,312,412,912 第2バスバー部、112h,312h,417h 第2貫通孔、113,213,313,413 第3バスバー部、113c 中心点、113h 第3貫通孔、113h’ 第2雌ねじ、113x 中心線、114,214,314a,314b,414a,414b 第1連結部、115,415a,415b 第2連結部、115h 第1雌ねじ、120,120y,120z,220,220y,320,420 第1磁気センサ、121,121y,121z,221,221y,321,421 第2磁気センサ、130,230,330 減算器、141,341 第1接続配線、142,342 第2接続配線、170 入力配線、171 出力配線、180 ナット、190 ボルト、913 連結部、310a,410a 第1バスバー部材、310b,410b 第2バスバー部材、350 実装基板、351 第1開口部、352 第2開口部、353 第3開口部、360 外部接続端子、416 入力端子部、417 出力端子部。 10 external magnetic field source, 100, 200, 200x, 200y, 300, 300x, 400 current sensor, 110, 110a, 210, 310, 410, 910 bus bar, 111, 211, 311, 411, 911, first bus bar part, 111h, 311h, 416h 1st through hole, 112, 212, 312, 412, 912 2nd bus bar part, 112h, 312h, 417h 2nd through hole, 113, 213, 313, 413 3rd bus bar part, 113c center point, 113h 1st 3 through hole, 113h 'second female thread, 113x center line, 114, 214, 314a, 314b, 414a, 414b first connecting part, 115, 415a, 415b second connecting part, 115h first female thread, 120, 120y, 120z , 220, 220y, 320, 4 0 1st magnetic sensor, 121, 121y, 121z, 221, 221y, 321, 421 2nd magnetic sensor, 130, 230, 330 subtractor, 141, 341 1st connection wiring, 142, 342 2nd connection wiring, 170 inputs Wiring, 171 output wiring, 180 nut, 190 bolt, 913 connecting part, 310a, 410a first bus bar member, 310b, 410b second bus bar member, 350 mounting board, 351 first opening, 352 second opening, 353 second 3 openings, 360 external connection terminals, 416 input terminals, 417 output terminals.

Claims (15)

  1.  測定対象の電流が流れるバスバーと、
     前記バスバーを流れる前記電流により発生する磁界の強さを検出する第1磁気センサおよび第2磁気センサとを備え、
     前記バスバーは、互いに電気的に並列に接続されて互いの間に間隔を置いて平行に位置する第1バスバー部および第2バスバー部と、前記第1バスバー部および前記第2バスバー部の間の中間で前記第1バスバー部および前記第2バスバー部の各々に対して間隔を置いて平行に延在する第3バスバー部とを含み、
     前記第1バスバー部を前記電流が流れる方向と、前記第2バスバー部を前記電流が流れる方向とは同一であり、
     前記第1バスバー部を前記電流が流れる方向および前記第2バスバー部を前記電流が流れる方向と、前記第3バスバー部を前記電流が流れる方向とは反対であり、
     前記第1磁気センサは、前記第1バスバー部および前記第3バスバー部の間に位置し、
     前記第2磁気センサは、前記第2バスバー部および前記第3バスバー部の間に位置し、
     前記第1磁気センサおよび前記第2磁気センサの各々は、前記第1バスバー部と前記第2バスバー部と前記第3バスバー部とが並ぶ方向に対して直交する方向、かつ、前記第3バスバー部の延在方向に対して直交する方向に検出軸を有する、電流センサ。
    A bus bar through which the current to be measured flows,
    A first magnetic sensor and a second magnetic sensor for detecting the strength of a magnetic field generated by the current flowing through the bus bar;
    The bus bars are electrically connected in parallel to each other and are spaced in parallel with each other between the first bus bar part and the second bus bar part, and between the first bus bar part and the second bus bar part. A third bus bar portion extending in parallel with an interval to each of the first bus bar portion and the second bus bar portion,
    The direction in which the current flows through the first bus bar portion and the direction in which the current flows through the second bus bar portion are the same,
    The direction in which the current flows through the first bus bar portion and the direction in which the current flows through the second bus bar portion are opposite to the direction in which the current flows through the third bus bar portion,
    The first magnetic sensor is located between the first bus bar part and the third bus bar part,
    The second magnetic sensor is located between the second bus bar part and the third bus bar part,
    Each of the first magnetic sensor and the second magnetic sensor includes a direction orthogonal to a direction in which the first bus bar portion, the second bus bar portion, and the third bus bar portion are arranged, and the third bus bar portion. A current sensor having a detection axis in a direction orthogonal to the extending direction of.
  2.  前記第1磁気センサおよび前記第2磁気センサは、前記バスバーを流れる前記電流により発生する磁界の強さを奇関数入出力特性を有して検出する、請求項1に記載の電流センサ。 The current sensor according to claim 1, wherein the first magnetic sensor and the second magnetic sensor detect the strength of a magnetic field generated by the current flowing through the bus bar with an odd function input / output characteristic.
  3.  前記第1磁気センサおよび前記第2磁気センサの各検出値を演算することにより前記電流の値を算出する算出手段をさらに備える、請求項1または2に記載の電流センサ。 3. The current sensor according to claim 1, further comprising calculation means for calculating the value of the current by calculating each detection value of the first magnetic sensor and the second magnetic sensor.
  4.  前記検出軸の方向において、前記第1バスバー部の幅の寸法、前記第2バスバー部の幅の寸法および前記第3バスバー部の幅の寸法は、各々、互いに隣接するバスバー部同士の間の間隔の寸法の1.5倍以上である、請求項1から3のいずれか1項に記載の電流センサ。 In the direction of the detection axis, the width dimension of the first bus bar part, the width dimension of the second bus bar part, and the width dimension of the third bus bar part are respectively intervals between adjacent bus bar parts. The current sensor according to any one of claims 1 to 3, wherein the current sensor is 1.5 times or more of the dimension.
  5.  前記検出軸の方向において、前記第1バスバー部と前記第3バスバー部との間の間隔と、前記第2バスバー部と前記第3バスバー部との間の間隔とが等しい、請求項4に記載の電流センサ。 The distance between the first bus bar part and the third bus bar part and the distance between the second bus bar part and the third bus bar part are equal in the direction of the detection axis. Current sensor.
  6.  前記第1バスバー部および前記第2バスバー部は横断面において、前記第3バスバー部の中心点を中心として互いに点対称に位置し、
     前記第1磁気センサおよび前記第2磁気センサは前記横断面において、前記第3バスバー部の中心点を中心として互いに点対称に位置している、請求項1から5のいずれか1項に記載の電流センサ。
    The first bus bar portion and the second bus bar portion are located in point symmetry with respect to a center point of the third bus bar portion in a cross section,
    6. The device according to claim 1, wherein the first magnetic sensor and the second magnetic sensor are positioned symmetrically with respect to each other about the center point of the third bus bar portion in the cross section. Current sensor.
  7.  前記第1バスバー部および前記第2バスバー部は横断面において、前記検出軸の方向における前記第3バスバー部の中心線を中心として互いに線対称に位置し、
     前記第1磁気センサおよび前記第2磁気センサは前記横断面において、前記検出軸の方向における前記第3バスバー部の前記中心線を中心として互いに線対称に位置している、請求項1から6のいずれか1項に記載の電流センサ。
    The first bus bar portion and the second bus bar portion are located in line symmetry with respect to a center line of the third bus bar portion in the direction of the detection axis in a cross section,
    The first magnetic sensor and the second magnetic sensor are positioned symmetrically with respect to each other about the center line of the third bus bar portion in the direction of the detection axis in the cross section. The current sensor according to any one of claims.
  8.  前記第1磁気センサは、前記第3バスバー部より前記第1バスバー部の近くに位置し、
     前記第2磁気センサは、前記第3バスバー部より前記第2バスバー部の近くに位置している、請求項1から7のいずれか1項に記載の電流センサ。
    The first magnetic sensor is located closer to the first bus bar than the third bus bar.
    8. The current sensor according to claim 1, wherein the second magnetic sensor is positioned closer to the second bus bar portion than the third bus bar portion. 9.
  9.  前記第1磁気センサは、前記第1バスバー部より前記第3バスバー部の近くに位置し、
     前記第2磁気センサは、前記第2バスバー部より前記第3バスバー部の近くに位置している、請求項1から7のいずれか1項に記載の電流センサ。
    The first magnetic sensor is located closer to the third bus bar part than the first bus bar part,
    8. The current sensor according to claim 1, wherein the second magnetic sensor is located closer to the third bus bar portion than the second bus bar portion. 9.
  10.  前記第1バスバー部の一端と前記第2バスバー部の一端と前記第3バスバー部の一端とが、第1連結部によって互いに連結されている、請求項1から9のいずれか1項に記載の電流センサ。 10. The device according to claim 1, wherein one end of the first bus bar portion, one end of the second bus bar portion, and one end of the third bus bar portion are connected to each other by a first connecting portion. Current sensor.
  11.  前記第1バスバー部の他端と前記第2バスバー部の他端とが、第2連結部によって互いに連結されている、請求項10に記載の電流センサ。 The current sensor according to claim 10, wherein the other end of the first bus bar portion and the other end of the second bus bar portion are connected to each other by a second connecting portion.
  12.  前記バスバーが、前記第1バスバー部および前記第3バスバー部の一部を構成する第1バスバー部材と、前記第2バスバー部および前記第3バスバー部の一部を構成する第2バスバー部材とを含み、
     前記第1バスバー部材と前記第2バスバー部材とは、それぞれの前記第3バスバー部において互いに接触している、請求項1から11のいずれか1項に記載の電流センサ。
    The bus bar includes a first bus bar member constituting a part of the first bus bar part and the third bus bar part, and a second bus bar member constituting a part of the second bus bar part and the third bus bar part. Including
    The current sensor according to any one of claims 1 to 11, wherein the first bus bar member and the second bus bar member are in contact with each other in each of the third bus bar portions.
  13.  前記バスバーは、前記第1バスバー部および前記第2バスバー部に電流を入力するための入力端子部と、前記第3バスバー部から電流を出力するための出力端子部を有し、
     前記入力端子部と前記出力端子部とは、同一平面上に位置し、かつ、前記検出軸の方向において互いに反対向きに延在している、請求項12に記載の電流センサ。
    The bus bar has an input terminal part for inputting current to the first bus bar part and the second bus bar part, and an output terminal part for outputting current from the third bus bar part,
    The current sensor according to claim 12, wherein the input terminal portion and the output terminal portion are located on the same plane and extend in opposite directions in the direction of the detection axis.
  14.  前記バスバーを流れる前記電流により発生する磁界の強さについて、前記第1磁気センサの検出値の位相と前記第2磁気センサの検出値の位相とが逆相であり、
     前記算出手段が減算器である、請求項3に記載の電流センサ。
    Regarding the strength of the magnetic field generated by the current flowing through the bus bar, the phase of the detection value of the first magnetic sensor and the phase of the detection value of the second magnetic sensor are in reverse phase,
    The current sensor according to claim 3, wherein the calculating means is a subtracter.
  15.  前記バスバーを流れる前記電流により発生する磁界の強さについて、前記第1磁気センサの検出値の位相と前記第2磁気センサの検出値の位相とが同相であり、
     前記算出手段が加算器である、請求項3に記載の電流センサ。
    Regarding the strength of the magnetic field generated by the current flowing through the bus bar, the phase of the detection value of the first magnetic sensor and the phase of the detection value of the second magnetic sensor are in phase,
    The current sensor according to claim 3, wherein the calculating means is an adder.
PCT/JP2014/051497 2013-02-06 2014-01-24 Electric current sensor WO2014123007A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014560716A JPWO2014123007A1 (en) 2013-02-06 2014-01-24 Current sensor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013021514 2013-02-06
JP2013-021514 2013-02-06

Publications (1)

Publication Number Publication Date
WO2014123007A1 true WO2014123007A1 (en) 2014-08-14

Family

ID=51299604

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/051497 WO2014123007A1 (en) 2013-02-06 2014-01-24 Electric current sensor

Country Status (2)

Country Link
JP (1) JPWO2014123007A1 (en)
WO (1) WO2014123007A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016142961A (en) * 2015-02-04 2016-08-08 日本精機株式会社 Head-up display device
JP2017003575A (en) * 2015-06-04 2017-01-05 株式会社村田製作所 Current sensor
US11204374B2 (en) * 2017-09-06 2021-12-21 Murata Manufacturing Co., Ltd. Current sensor, and manufacturing method for current sensor
WO2022030177A1 (en) * 2020-08-06 2022-02-10 株式会社村田製作所 Electric current sensor
WO2022118878A1 (en) * 2020-12-02 2022-06-09 株式会社デンソー Electric current sensor

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63500961A (en) * 1985-09-14 1988-04-07 エルゲーツエット・ランディス・ウント・ギール・ツーク・アクチエンゲゼルシャフト Current transformation device for static integration electric meter
US5541503A (en) * 1994-11-21 1996-07-30 General Electric Company Alternating current sensor based on concentric-pipe geometry and having a transformer for providing separate self-powering
JP2007183221A (en) * 2006-01-10 2007-07-19 Denso Corp Electric current sensor

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0799900B2 (en) * 1988-03-04 1995-10-25 三菱電機株式会社 Busbar equipment
JP2002071728A (en) * 2000-08-28 2002-03-12 Yazaki Corp Apparatus and method for detecting current and power supply system using them
JP4876794B2 (en) * 2006-08-29 2012-02-15 株式会社豊田自動織機 Current measuring device and current measuring method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63500961A (en) * 1985-09-14 1988-04-07 エルゲーツエット・ランディス・ウント・ギール・ツーク・アクチエンゲゼルシャフト Current transformation device for static integration electric meter
US5541503A (en) * 1994-11-21 1996-07-30 General Electric Company Alternating current sensor based on concentric-pipe geometry and having a transformer for providing separate self-powering
JP2007183221A (en) * 2006-01-10 2007-07-19 Denso Corp Electric current sensor

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016142961A (en) * 2015-02-04 2016-08-08 日本精機株式会社 Head-up display device
JP2017003575A (en) * 2015-06-04 2017-01-05 株式会社村田製作所 Current sensor
CN107250813A (en) * 2015-06-04 2017-10-13 株式会社村田制作所 Current sensor
CN107430155A (en) * 2015-06-04 2017-12-01 株式会社村田制作所 Current sensor
US10215780B2 (en) 2015-06-04 2019-02-26 Murata Manufacturing Co., Ltd. Current sensor
US11204374B2 (en) * 2017-09-06 2021-12-21 Murata Manufacturing Co., Ltd. Current sensor, and manufacturing method for current sensor
WO2022030177A1 (en) * 2020-08-06 2022-02-10 株式会社村田製作所 Electric current sensor
WO2022118878A1 (en) * 2020-12-02 2022-06-09 株式会社デンソー Electric current sensor
JP7452398B2 (en) 2020-12-02 2024-03-19 株式会社デンソー current sensor

Also Published As

Publication number Publication date
JPWO2014123007A1 (en) 2017-02-02

Similar Documents

Publication Publication Date Title
US9714959B2 (en) Current sensor and electronic device incorporating the same
JP6414641B2 (en) Current sensor
US7626376B2 (en) Electric current detector having magnetic detector
US8878520B2 (en) Current sensor
WO2014192625A1 (en) Current sensor
US10605835B2 (en) Current sensor
WO2016194633A1 (en) Electric current sensor
WO2014123007A1 (en) Electric current sensor
TWI745735B (en) Current sensing module
US10274523B2 (en) Current sensor including a first current sensor and a second current sensor unit
JP6504260B2 (en) Current sensor and power converter including the same
JP6384677B2 (en) Current sensor
JP6311790B2 (en) Current sensor
JP6098729B2 (en) Current sensor
JP2019060646A (en) Current sensor
WO2017010210A1 (en) Electric current sensor
JP2013142604A (en) Current sensor
JP6304380B2 (en) Current sensor
WO2022030177A1 (en) Electric current sensor
JP2015031647A (en) Current sensor and manufacturing method therefor
JP2020067326A (en) Current sensor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14748515

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014560716

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14748515

Country of ref document: EP

Kind code of ref document: A1