WO2014122701A1 - Cooling/heating module and air conditioning device - Google Patents

Cooling/heating module and air conditioning device Download PDF

Info

Publication number
WO2014122701A1
WO2014122701A1 PCT/JP2013/005310 JP2013005310W WO2014122701A1 WO 2014122701 A1 WO2014122701 A1 WO 2014122701A1 JP 2013005310 W JP2013005310 W JP 2013005310W WO 2014122701 A1 WO2014122701 A1 WO 2014122701A1
Authority
WO
WIPO (PCT)
Prior art keywords
cooling
air
humidity control
heating
heating module
Prior art date
Application number
PCT/JP2013/005310
Other languages
French (fr)
Japanese (ja)
Inventor
池上 周司
至洋 牧野
安尾 晃一
鉉永 金
小島 誠
衛 奥本
朴 春成
嵐 江
Original Assignee
ダイキン工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2013021469A external-priority patent/JP5510567B2/en
Priority claimed from JP2013021478A external-priority patent/JP5510569B2/en
Application filed by ダイキン工業株式会社 filed Critical ダイキン工業株式会社
Priority to US14/765,214 priority Critical patent/US10107529B2/en
Publication of WO2014122701A1 publication Critical patent/WO2014122701A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F3/00Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems
    • F24F3/12Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling
    • F24F3/14Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification
    • F24F3/1411Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification by absorbing or adsorbing water, e.g. using an hygroscopic desiccant
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2203/00Devices or apparatus used for air treatment
    • F24F2203/10Rotary wheel
    • F24F2203/1004Bearings or driving means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2203/00Devices or apparatus used for air treatment
    • F24F2203/10Rotary wheel
    • F24F2203/1044Rotary wheel performing other movements, e.g. sliding
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2203/00Devices or apparatus used for air treatment
    • F24F2203/12Dehumidifying or humidifying belt type

Definitions

  • the present invention relates to a cooling and heating module that cools and heats an air, a cooling and heating unit that includes the cooling and heating module and a switching control unit, and an air conditioner that adjusts the indoor temperature using the cooling and heating module. Is.
  • heat pump devices are known that utilize the property of generating heat when an elastic body such as rubber is adiabatically stretched and absorbing heat when adiabatic contraction is performed (for example, see Patent Documents 1 and 2).
  • this heat pump device is applied to an air conditioner, heating operation can be performed when the heated air is supplied to the room when the elastic body is thermally expanded, and cooling is performed when the cooled air is supplied to the room when the elastic body is thermally contracted. You can drive.
  • the present invention has been made in view of such problems, and its purpose is to increase the size of the apparatus and the complexity of the structure when configuring an air conditioner with a heat pump apparatus that does not use an elastic body such as rubber. It is to be able to prevent conversion.
  • the first invention is directed to a cooling and heating module that cools and heats air, and includes first and second cooling and heating units (20a and 20b) each having a thermal strain material (21), and the thermal strain material ( 21) and an actuator (22) that applies tension to the actuator, and the actuator (22) applies tension to the thermostrictive material (21) of the first cooling and heating unit (20a), and the second cooling and heating unit.
  • the operation of releasing the tension of the thermal strain material (21) of (20b) and the tension of the thermal strain material (21) of the second cooling and heating unit (20b) are applied to the first cooling and heating unit (20a). It is configured to alternately perform the operation of releasing the tension.
  • thermostrictive material (21 ) when tension is applied to the thermostrictive material (21), the entropy decreases, and the thermostrictive material (21) generates heat correspondingly. Further, when the application of tension to the thermostrictive material (21) is canceled, the martensite phase changes to the parent phase (austenite phase), and when the thermostrictive material (21) is thermally insulated, the thermostrictive material (21 ) Temperature decreases.
  • the actuator (22) When tension is applied to the thermostrictive material (21) of the first cooling and heating section (20a) and the tension of the thermostrictive material (21) of the second cooling and heating section (20b) is released, the first cooling and heating section ( The air is heated by the heat strain material (21) of 20a), and the air is cooled by the heat strain material (21) of the second cooling heating section (20b).
  • the cooling and heating module air is heated by the first cooling and heating unit (20a), and at the same time, the air is cooled by the second cooling and heating unit (20b).
  • thermostrictive material (21) of the second cooling and heating unit (20b) when tension is applied to the thermostrictive material (21) of the second cooling and heating unit (20b) and the tension of the thermostrained material (21) of the first cooling and heating unit (20a) is released, the first cooling and heating is performed.
  • the air is cooled by the heat strain material (21) of the part (20a), and the air is heated by the heat strain material (21) of the second cooling and heating part (20b).
  • the cooling and heating module (20) the air is cooled by the first cooling and heating unit (20a), and at the same time, the air is heated by the second cooling and heating unit (20b).
  • the actuator (22) is fixed to one end of the thermostrictive material (21), and to the other end of the thermostrictive material (21).
  • the heat strain material (21) is fixed between the fixed part (40) and the movable part (41a, 41b).
  • the displacement mechanism (46, 47, 51, 52) reciprocates the movable part (41a, 41b) so that the distance between the movable part (41a, 41b) and the fixed part (40) changes.
  • a tension acts on the thermostrain material (21), and the thermostrain material (21) generates heat.
  • air is heated by the thermostrictive material (21).
  • thermostrain material (21) When the distance between the movable parts (41a, 41b) and the fixed part (40) is reduced, the tension of the thermostrain material (21) is released and the thermostrain material (21) absorbs heat. As a result, the air is cooled by the heat strain material (21).
  • the actuator (22) has a rotational shaft (39) that is rotationally driven, and the displacement mechanism (46, 47, 51, 52) is composed of the rotational shaft (39).
  • the rotary motion of 39) is converted into the reciprocating motion of the movable parts (41a, 41b).
  • the actuator (22) of the third invention when the rotary shaft (39) is driven to rotate, the rotary motion of the rotary shaft (39) is moved by the displacement mechanism (46, 47, 51, 52) (41a, 41b). Along with this, a tension acts on or is released from the thermostrictive material (21), and air is heated or cooled by the thermostrictive material ().
  • the actuator (22) is fixed to one end of the thermal strain material (21) of the first and second cooling and heating sections (20a, 20b).
  • a movable part (41a, 41b) fixed to the other end of the thermostrictive material (21) of the first and second cooling / heating parts (20a, 20b), and each movable part (41a, 41b).
  • the fixed part (40), the movable part (41a) corresponding to the first cooling / heating part (20a) and the movable part (41b) corresponding to the second cooling / heating part (20b) are changed.
  • Displacement mechanisms (46, 47, 51, 52) that reciprocate in opposite directions are provided.
  • the movable part (41a) corresponding to the first cooling / heating part (20a) and the movable part (41b) corresponding to the second cooling / heating part (20b) reciprocate in opposite directions.
  • the movable part (41b) corresponding to the first cooling / heating part (20a) is separated from the fixed part (40), and tension is applied to the thermostrictive material (21) of the first cooling / heating part (20a).
  • the movable part (41b) and the fixed part (40) corresponding to the second cooling / heating part (20b) approach each other, and the tension of the thermostrictive material (21) of the second cooling / heating part (20b) is released. .
  • the air is heated by the first cooling and heating unit (20a), and at the same time, the air is cooled by the second cooling and heating unit (20b).
  • the movable part (41a) and the fixed part (40) corresponding to the first cooling / heating part (20a) approach each other, and the tension of the thermostrictive material (21) of the first cooling / heating part (20a) is released.
  • the movable part (41b) corresponding to the second cooling / heating part (20b) is separated from the fixed part (40), and tension is applied to the thermostrictive material (21) of the second cooling / heating part (20b).
  • the air is cooled by the first cooling / heating unit (20a), and at the same time, the air is heated by the second cooling / heating unit (20b).
  • the actuator (22) includes a rotary shaft (108) to which one end of the thermostrictive material (21) is fixed and rotationally driven, and the thermostrictive material (21). And a weight portion (107) fixed to the other end portion.
  • the heat strain material (21) is provided between the rotating shaft (108) and the weight portion (107).
  • the thermostrictive material (21) also rotates about the rotating shaft (108).
  • centrifugal force acts on the other end portion of the thermostrictive material (21) by the weight portion (107), and tension is applied to the thermostrictive material (21).
  • the thermostrain material (21) also does not rotate, and no centrifugal force acts on the thermostrain material (21).
  • the tension of the thermostrictive material (21) is released.
  • a sixth invention is directed to an air conditioner that supplies air heated or cooled by a cooling and heating module to a room, and the cooling and heating module is a cooling and heating module (20) according to any one of claims 1 to 5. It is characterized by being configured.
  • the cooling and heating module (20) of any one of the first to fifth inventions is applied as the cooling and heating module of the air conditioner.
  • thermostrictive material (21) when a tension is applied to the thermostrictive material (21), the entropy is reduced, and the thermostrained material (21) generates heat by that amount. Heating operation can be performed. Further, when the application of tension to the thermostrictive material (21) is canceled, the martensite phase changes to the parent phase (austenite phase), and when the thermostrictive material (21) is thermally insulated, the thermostrictive material (21 ), The ambient air is also cooled. Therefore, the cooling operation can be performed by supplying the cooled air into the room.
  • tension applied to the thermostrictive material (21) of the second cooling and heating section (20b), and the tension of the thermostrictive material (21) of the first cooling and heating section (20a) is released.
  • the movable portion (41a, 41b) is reciprocated by the displacement mechanism (46, 47, 51, 52), and the distance between the movable portion (41a, 41b) and the fixed portion (40) is increased.
  • the displacement mechanism (46, 47, 51, 52) By changing, it is possible to alternately apply and release the tension to the thermostrictive material (21) with a simple configuration.
  • the rotational movement of the rotating shaft (39) is converted into the reciprocating movement of the movable parts (41a, 41b), so that the tension of the thermostrictive material (21) is increased using a motor or the like as a driving source. Giving and releasing can be performed alternately.
  • the movable part (41a) corresponding to the first cooling / heating part (20a) and the movable part (41b) corresponding to the second cooling / heating part (20b) are reciprocated in directions opposite to each other. Therefore, with a simple configuration, tension is applied to the heat-strained material (21) of one cooling / heating unit (20a, 20b), and the tension of the thermo-strained material (21) of the other cooling / heating unit (20b, 20a). Can be canceled.
  • thermostrictive material (21) it is possible to continuously switch between applying and releasing the tension to the thermostrictive material (21) using the centrifugal force of the weight portion (107).
  • the cooling and heating module according to any one of the first to fifth aspects of the invention can be applied to an air conditioner, whereby the air conditioner can be reduced in size and simplified.
  • FIG. 1 is a schematic diagram illustrating a state in which the air-conditioning apparatus according to Embodiments 1 and 4 of the present invention is installed in a room.
  • FIG. 1 (A) illustrates an operating state of a cooling operation
  • FIG. Shows the operating state of the heating operation.
  • 2A is a schematic configuration diagram of a cooling and heating module used in the air conditioning apparatus of FIG. 1
  • FIG. 2B is a schematic configuration diagram of a humidity control module.
  • FIG. 3A is a diagram showing the state of the heating operation in the schematic configuration diagram of the cooling heating module
  • FIG. 3B is a diagram showing the state of the cooling operation in the schematic configuration diagram of the cooling heating module.
  • FIG. 4 is a schematic diagram illustrating a state in which the air conditioner according to the first modification of the first embodiment and the first modification of the fourth embodiment is installed in a room, and FIG. 4 (A) is a first operation state, FIG. 4 (B) shows the second operating state.
  • FIG. 5 is a schematic diagram illustrating a state in which the air conditioner according to the second modification of the first embodiment and the second modification of the fourth embodiment is installed in a room, and FIG. 5A is a first operation state, FIG. 5 (B) shows the second operating state.
  • FIG. 6 is a schematic diagram illustrating a state in which an air conditioner according to Modification 3 of Embodiment 1 and Modification 3 of Embodiment 4 is installed.
  • FIG. 7 is a diagram illustrating a first operation operation of the air conditioner of FIG. 6, FIG. 7A is a plan structural diagram, FIG. 7B is a left side structural diagram, and FIG. 7C is a right side diagram.
  • FIG. 10 is a schematic diagram illustrating a state in which the air-conditioning apparatus according to Embodiments 2 and 4 is installed in a room.
  • FIG. 10 is a schematic diagram illustrating a state in which the air-conditioning apparatus according to Embodiments 2 and 4 is installed in a room.
  • FIG. 10 (A) illustrates the operating state of the heating operation
  • FIG. 10 (B) illustrates cooling.
  • the operation state of operation is shown.
  • FIG. 11 is a schematic diagram illustrating a state in which the air conditioner according to Modification 1 of Embodiment 2 and Modification 1 of Embodiment 4 is installed in a room
  • FIG. 11A illustrates a first operation state
  • FIG. 11 (B) shows the second operating state.
  • FIG. 12 is a schematic diagram illustrating a state in which the air conditioner according to the second modification of the second embodiment and the second modification of the fourth embodiment is installed indoors
  • FIG. 12 (A) is a first operation state
  • FIG. 12 (B) shows the second operating state.
  • FIG. 13 is a schematic diagram illustrating a state in which an air conditioner according to Modification 3 of Embodiment 2 and Modification 3 of Embodiment 4 is installed.
  • FIG. 14 is a diagram showing a first operation of the air conditioner of FIG. 13, where FIG. 14 (A) is a plan structure diagram, FIG. 14 (B) is a left side structure diagram, and FIG. 14 (C) is a right side diagram.
  • FIG. FIG. 15 is a diagram illustrating a second operation operation of the air conditioner of FIG. 13, in which FIG. 15 (A) is a plan structural diagram, FIG. 15 (B) is a left side structural diagram, and FIG. 15 (C) is a right side diagram.
  • FIG. 16 is a schematic diagram illustrating a state in which an air conditioner according to Modification 4 of Embodiment 2 and Modification 4 of Embodiment 4 is installed indoors.
  • FIG. 17 is a schematic diagram illustrating a state in which the air-conditioning apparatus according to Modification 3 of Embodiment 3 and Embodiment 4 is installed in a room.
  • FIG. 17A illustrates a first operating state, and FIG. Indicates the second operating state.
  • FIG. 18 is a schematic diagram illustrating a state in which an air conditioner according to Modification 1 of Embodiment 3 and Modification 6 of Embodiment 4 is installed indoors.
  • FIG. 19 is a schematic diagram illustrating a state in which the air-conditioning apparatus according to Modification 2 of Embodiment 3 and Modification 5 of Embodiment 4 is installed in a room, and FIG. 19A is a first operation state, FIG. 17 (B) shows the second operating state.
  • FIG. 20 is a schematic diagram illustrating a state in which an air conditioner according to Modification 3 of Embodiment 3 and Modification 6 of Embodiment 4 is installed indoors.
  • FIG. 21 shows a TS diagram for a thermostrictive material.
  • FIG. 22 shows an example of tension adjusting means.
  • FIG. 23 shows an example of tension adjusting means.
  • FIG. 24 is a perspective view illustrating the structure of the cooling and heating module according to the fifth embodiment.
  • FIG. 25 is a diagram illustrating a shape example of a cam according to the fifth embodiment.
  • FIG. 26 is a diagram illustrating a shape example of a cam according to the fifth embodiment.
  • FIG. 27 is a diagram illustrating a cam shape example according to the fifth embodiment.
  • FIG. 28 is a perspective view showing the structure of the cooling and heating module according to the first modification of the fifth embodiment.
  • FIG. 29 is a perspective view showing the structure of the cooling and heating module according to the second modification of the fifth embodiment.
  • FIG. 30 is a perspective view illustrating a structure of a cooling and heating module according to the third modification of the fifth embodiment.
  • FIG. 31 is a perspective view showing a structure of a cooling and heating module according to Modification 4 of Embodiment 5.
  • FIG. 26 is a diagram illustrating a shape example of a cam according to the fifth embodiment.
  • FIG. 27 is a diagram illustrating a cam shape example according to the fifth embodiment.
  • FIG. 28 is a perspective view showing the structure of the
  • FIG. 32 is a perspective view showing a structure of a cooling and heating module according to Modification 5 of Embodiment 5.
  • FIG. 33 is a perspective view showing a structure of a cooling and heating module according to Modification 6 of Embodiment 5.
  • FIG. 34 is a perspective view showing a structure of a cooling and heating module according to Modification 7 of Embodiment 5.
  • FIG. 35 is a perspective view showing a structure of a cooling and heating module according to Modification 8 of Embodiment 5.
  • FIG. 36 is a perspective view illustrating a structure of a cooling and heating module according to Modification 9 of Embodiment 5.
  • FIG. 37 is a schematic diagram illustrating the structure of the cooling and heating module according to the sixth embodiment.
  • FIG. 38 is an enlarged view showing a part of the cooling and heating module according to Embodiment 6, wherein (A) shows the inside of the upper air passage, and (B) is a schematic view showing the inside of the lower air passage.
  • FIG. 39 is a schematic diagram illustrating the structure of the cooling and heating module according to the first modification of the sixth embodiment.
  • FIG. 40 is a schematic diagram illustrating a structure of a cooling and heating module according to the second modification of the sixth embodiment.
  • FIG. 41 is a schematic diagram illustrating a structure of a cooling and heating module according to the third modification of the sixth embodiment.
  • FIG. 42 is a perspective view illustrating a structure of a cooling / heating module according to Modification 4 of Embodiment 6.
  • FIG. 39 is a schematic diagram illustrating the structure of the cooling and heating module according to the first modification of the sixth embodiment.
  • FIG. 40 is a schematic diagram illustrating a structure of a cooling and heating module according to the second modification of the sixth embodiment.
  • FIG. 41 is
  • FIG. 43 is a schematic cross-sectional view showing the structure of the cooling and heating module according to Modification 4 of Embodiment 6.
  • FIG. 44 is a plan view showing the structure of the cooling and heating module according to the fourth modification of the sixth embodiment.
  • FIG. 45 is a perspective view showing a structure of a cooling and heating module according to Modification 5 of Embodiment 6.
  • FIG. 46 is a schematic cross-sectional view illustrating the structure of the cooling and heating module according to the fifth modification of the sixth embodiment.
  • FIG. 47 is a plan view showing the structure of the cooling and heating module according to the fifth modification of the sixth embodiment.
  • FIG. 48 is a schematic diagram illustrating the structure of the cooling and heating module according to the seventh embodiment.
  • FIG. 49 is a schematic diagram illustrating the structure of the casing and the cooling heating module according to the seventh embodiment.
  • FIG. 50 is a schematic diagram illustrating a part of a cooling and heating module according to a modification of the seventh embodiment.
  • FIG. 51 is a schematic diagram illustrating the structure of a cooling and heating module according to a modification of the seventh embodiment.
  • FIG. 52 is a schematic diagram illustrating a structure of a casing and a cooling / heating module according to a modification of the seventh embodiment.
  • FIG. 53 is a diagram showing a configuration of an actuator according to another embodiment.
  • FIG. 54 is a diagram showing a configuration of an actuator according to another embodiment.
  • FIG. 55 is a diagram showing a configuration of an actuator according to another embodiment.
  • FIG. 56 is a diagram showing a configuration of an actuator according to another embodiment.
  • FIG. 57 is a schematic view showing a state in which the humidity control apparatus according to the eighth embodiment of the present invention is installed indoors
  • FIG. 57 (A) shows the operating state of the moisture absorption operation
  • FIG. 57 (B) is the moisture release.
  • the operation state of operation is shown.
  • FIG. 58 shows a TS diagram of the thermostrictive material.
  • FIG. 59A is a diagram showing the state of the moisture release operation in the schematic configuration diagram of the humidity control module
  • FIG. 59B is a diagram showing the state of the moisture absorption operation in the schematic configuration diagram of the humidity control module.
  • FIG. 60 shows an example of tension adjusting means.
  • FIG. 61 shows an example of tension adjusting means.
  • FIG. 62 is a schematic diagram illustrating a state in which the humidity control apparatus according to the first modification of the eighth embodiment and the first modification of the eleventh embodiment is installed indoors, and FIG. 62 (A) is a first operation state, FIG. 62 (B) shows the second operating state.
  • FIG. 63 is a schematic diagram illustrating a state in which the humidity control apparatus according to the second modification of the eighth embodiment and the second modification of the eleventh embodiment is installed indoors, and FIG. 63 (A) is a first operation state, FIG. 63 (B) shows the second operating state.
  • FIG. 64 is a schematic diagram illustrating a state in which a humidity control apparatus according to Modification 3 of Embodiment 8 and Modification 3 of Embodiment 11 is installed.
  • FIG. 65 is a diagram showing a first operation operation of the humidity control apparatus of FIG. 64
  • FIG. 65 (A) is a plan structure diagram
  • FIG. 65 (B) is a left side structure diagram
  • FIG. FIG. 66 is a diagram showing a second operation operation of the humidity control apparatus of FIG. 64, in which FIG. 66 (A) is a plan structural view
  • FIG. 66 (B) is a left side structural view
  • FIG. 66 (C) is a right side view.
  • FIG. FIG. 67 is a schematic diagram illustrating a state in which the humidity control apparatus according to Modification 4 of Embodiment 8 and Modification 4 of Embodiment 11 are installed indoors.
  • FIG. 67 is a schematic diagram illustrating a state in which the humidity control apparatus according to Modification 4 of Embodiment 8 and Modification 4 of Embodiment 11 are installed indoors.
  • FIG. 67 is a schematic diagram illustrating a state in which the humidity control apparatus according to Modification 4 of Embod
  • FIG. 68 is a schematic diagram illustrating a state in which the humidity control apparatus according to the ninth embodiment and the eleventh embodiment is installed in a room.
  • FIG. 68 (A) illustrates the operating state of the moisture release operation
  • FIG. The operation state of the moisture absorption operation is shown.
  • FIG. 69 is a schematic diagram illustrating a state in which the humidity control apparatus according to the first modification of the ninth embodiment and the first modification of the eleventh embodiment is installed indoors
  • FIG. 69 (A) is a first operation state
  • FIG. 69 (B) shows the second operating state.
  • FIG. 70 is a schematic diagram illustrating a state in which the humidity control apparatus according to the second modification of the ninth embodiment and the second modification of the eleventh embodiment is installed indoors
  • FIG. 70 is a schematic diagram illustrating a state in which the humidity control apparatus according to the second modification of the ninth embodiment and the second modification of the eleventh embodiment is installed indoors
  • FIG. 70 is a schematic diagram illustrating a state in which the humidity control apparatus according
  • FIG. 70 (A) is a first operation state
  • FIG. 70 (B) shows the second operating state.
  • FIG. 71 is a schematic diagram illustrating a state in which the humidity control apparatus according to Modification 3 of Embodiment 9 and Modification 3 of Embodiment 11 are installed.
  • 72 is a diagram showing a first operation operation of the humidity control apparatus of FIG. 71
  • FIG. 72 (A) is a plan structure diagram
  • FIG. 72 (B) is a left side structure diagram
  • FIG. 72 (C) is a right side diagram.
  • FIG. 73 is a diagram showing a second operation operation of the humidity control apparatus of FIG. 71
  • FIG. 73 (A) is a plan structural diagram
  • FIG. 73 (B) is a left side structural diagram
  • FIG. 73 (C) is a right side diagram.
  • FIG. FIG. 74 is a schematic diagram illustrating a state in which the humidity control apparatus according to the fourth modification of the ninth embodiment is installed indoors.
  • FIG. 75 is a schematic diagram illustrating a state in which the humidity control apparatus according to the fifth modification of the tenth embodiment and the eleventh embodiment is installed in a room.
  • FIG. 75A is a first operation state, and FIG. Indicates the second operating state.
  • FIG. 76 is a schematic diagram illustrating a state in which the humidity control apparatus according to Modification 1 of Embodiment 10 and Modification 6 of Embodiment 11 are installed indoors.
  • FIG. 77 is a schematic diagram showing a state in which the humidity control apparatus according to the second modification of the tenth embodiment and the fifth modification of the eleventh embodiment is installed indoors, and FIG. 77 (A) is a first operation state, FIG. 77 (B) shows the second operating state.
  • FIG. 78 is a schematic diagram illustrating a state in which the humidity control apparatus according to Modification 3 of Embodiment 10 and Modification 6 of Embodiment 11 are installed indoors.
  • Embodiment 1 of the Invention A first embodiment of the present invention will be described.
  • FIG. 1 is a schematic view showing a state in which the air conditioner (1) according to Embodiment 1 is installed in a room (air-conditioning target space) (3) of a building (2).
  • FIG. FIG. 1B shows the operating state of the heating operation (heat dissipating operation).
  • the air conditioner (1) of Embodiment 1 is configured as a cooling only machine.
  • the air conditioner (1) includes a casing (10), a cooling / heating module (20) housed in the casing (10), a fan (30) for flowing air to the cooling / heating module (20), and cooling / heating. And a switching control unit (35) for adjusting the tensile force applied to the module (20).
  • the cooling / heating unit (5) is constituted by the cooling / heating module (20) and the switching control unit (35).
  • the indoor unit (U) is comprised by the casing (10) and the functional component provided in the inside.
  • an air passage (P) for allowing the air introduced into the casing (10) to pass through the cooling and heating module (20) is formed.
  • the air sucked into the casing (10) from the room (3) is processed by the cooling and heating module (20) and returned to the room (3) when passing through the air passage (P).
  • the air conditioner (1) is configured to intermittently cool the room (3) as will be described later, and when the cooling of the room (3) is stopped, the casing (10) When the air sucked into the air passes through the air passage (P), it takes heat from the cooling heating module (20) and is discharged to the outside again.
  • this air conditioner (1) is designed so that the intake air from the room, the air blown into the room, the air sucked from the outside, and the air blown out to the outside are not mixed.
  • the inside of the casing (10) is partitioned by a partition plate or a damper not shown.
  • the cooling and heating module (20) includes a thermal strain material (21) and an actuator (22) that applies a tensile force to the thermal strain material (21). ing. Note that the tensile force applied to the thermal strain material (21) constitutes the tension according to the present invention.
  • the heat-strain material (21) is made of a shape memory alloy as an example, and heats the object by applying tension while cooling the object by releasing the tension. Specifically, as shown in FIG. 21, when tension is applied to the thermostrictive material (21), the entropy is reduced by the phase change from the parent phase (austenite phase) to the martensite phase, and accordingly, The heat-strained material (21) itself is heated by generating heat (I to II). When the thermostrictive material (21) is brought into contact with the object to be heated while tension is applied to the thermostrictive material (21), the heat of the thermostrictive material (21) is transferred to the object to be heated (II to III). By doing so, the temperature of the thermostrictive material (21) is lowered.
  • the martensite phase changes to the parent phase (austenite phase) (III to IV).
  • the heat-strained material (21) is insulated, the temperature of the heat-strained material (21) decreases.
  • the heat of the object to be cooled is transferred to the heat-strained material (21) (IV to I).
  • FIG. 3A when a tensile force is applied to the heat strain material (21), the heat strain material (21) generates heat. The temperature of the air that has passed through the cooling and heating module (20) rises. Conversely, as shown in FIG. 3B, when the tensile force applied to the heat strain material (21) is released, the heat strain material (21) absorbs heat. The temperature of the air that has passed through the cooling and heating module (20) decreases.
  • the heating operation and the cooling operation of the heat strain material (21) are alternately performed, and the cooling operation using the cooling operation is intermittently performed.
  • thermostrictive material (21) decreases when the capacity peak is exceeded from the start of operation during cooling and heating. For this reason, the cooling operation and the heating operation are switched alternately.
  • Ti / Ni / Cu alloy can be mentioned.
  • those having Ti of 40 to 80%, Ni of 20 to 60%, and Cu of 0 to 30% can be used.
  • the actuator (22) is for applying a tensile force to the thermostrictive material (21).
  • the actuator (22) is connected to the switching control unit (35), and the switching control unit (35) controls the application and release of the tensile force to the thermostrictive material (21).
  • the switching control section (35) controls the actuator (22) to control the application and release of the tensile force to the thermostrictive material (21).
  • the switching control unit (35) changes the amount of tensile force applied to the thermostrain material (21) in the actuator (22), thereby generating heat from the thermostrain material (21). It is configured to adjust the amount and adjust the cooling heating capacity.
  • the switching control unit (35) changes the ratio of the thermostrictive material (21) to which a tensile force is applied out of the entire thermostrictive material (21).
  • the heat generation capacity of the heat strain material (21) may be adjusted to adjust the cooling heating capacity.
  • the switching control unit (35) is configured to adjust the heat generation amount of the thermostrictive material (21) by changing the time interval for repeating the cooling operation and the heating operation, thereby adjusting the cooling heating capacity. May be.
  • FIG. 1 (A) the tensile force to the cooling / heating module (20) that has been heated is released. If it does so, the heat-strain material (21) of FIG.2, FIG.3 will be cooled and a cooling heating module (20) will absorb heat from air (room air (RA)). Accordingly, as shown in FIG. 1 (A), the indoor air (RA) introduced into the casing (10) is cooled, and the air is returned to the room as supply air (SA) to cool the room.
  • RA room air
  • the rotation direction of the fan (30) is switched, and the outdoor air (OA) is taken into the casing (10) and processed by the cooling and heating module (20) before being discharged ( EA) is discharged outside the room.
  • a tensile force is applied to the thermostrictive material (21) of the cooling and heating module (20).
  • the thermostrictive material (21) is heated and the cooling heating module (20) dissipates heat. Therefore, during this heating operation, the air heated through the cooling and heating module (20) is discharged outside the room.
  • the cooling operation is intermittently performed by repeatedly performing the cooling operation of FIG. 1A and the heating operation of FIG.
  • the cooling and heating module (20) does not employ an elastic body such as rubber.
  • an elastic body such as rubber
  • a mechanism for expanding and contracting the elastic body is required, the structure of the air conditioner (1) is complicated, and the apparatus (1) is large.
  • the elastic body is not used for the cooling and heating module (20), it is possible to prevent the air conditioner (1) from becoming large and having a complicated structure. Can do.
  • thermostrictive material (21) since the heat generation amount of the thermostrictive material (21) can be adjusted and the cooling heating capacity can be adjusted, it is possible to operate according to the air conditioning load.
  • Modification 1 shown in FIG. 4 is configured to install two indoor units (U1, U2) in a room (3) to be air-conditioned.
  • the first indoor unit (U1) is installed on one of the opposing wall surfaces (the right wall surface in the figure), and the second indoor unit (U2) is installed on the other wall surface (the left wall surface in the figure).
  • the configuration of each indoor unit (U1, U2) is the same as that of the indoor unit (U) of the air conditioner (1) in FIG. 1, the description of the configuration of each indoor unit (U1, U2) is omitted.
  • air passages (P1, P2) are formed in the indoor units (U1, U2), respectively.
  • FIG. 4A shows a state in which the cooling operation is performed in the first indoor unit (U1) and the heating operation is performed in the second indoor unit (U2).
  • the first indoor unit (U1) the tensile force applied to the heat strain material (21) of the cooling and heating module (20) is released. Therefore, the cooling and heating module (20) of the first indoor unit (U1) absorbs heat, and the indoor air (RA) taken into the casing (10) is cooled. The cooled air is supplied to the room (3) as supply air (SA).
  • the fan (30) rotates in the direction to discharge after the outdoor air (OA) is taken into the casing (10) and processed, and at the same time, the heat strain material of the cooling and heating module (20). A tensile force is applied to (21). Therefore, the outdoor air (OA) takes the heat of the cooling and heating module (20), and is discharged outside as outdoor air (EA).
  • FIG. 4B shows a state in which the cooling operation is performed in the second indoor unit (U2) and the heating operation is performed in the first indoor unit (U1).
  • the second indoor unit (U2) the tensile force applied to the heat strain material (21) of the cooling and heating module (20) is released. Therefore, the cooling and heating module (20) of the second indoor unit (U2) absorbs heat, and the indoor air (RA) taken into the casing (10) is cooled. And the cooled air is supplied indoors as supply air (SA).
  • the fan (30) rotates in the direction to discharge the outdoor air (OA) after taking it into the casing (10) and processing it, and at the same time, the heat strain material of the cooling and heating module (20) A tensile force is applied to (21). Therefore, the outdoor air (OA) takes the heat of the cooling and heating module (20), and is discharged outside as outdoor air (EA).
  • Modification 2 The modification 2 shown in FIG. 5 is common to the apparatus (1) of FIG. 4 in that two indoor units (U1, U2) are installed in the air-conditioned room (3).
  • the difference from Modification 1 of FIG. 4 is that both the first indoor unit (U1) and the second indoor unit (U2) are installed on the right wall surface of the drawing.
  • the configuration of each indoor unit (U1, U2) is the same as that of the air conditioner (1) shown in FIGS.
  • FIG. 5A shows a state where the cooling operation is performed in the first indoor unit (U1) and the heating operation is performed in the second indoor unit (U2).
  • the first indoor unit (U1) the tensile force applied to the heat strain material (21) of the cooling and heating module (20) is released. Therefore, the cooling and heating module (20) of the first indoor unit (U1) absorbs heat, and the indoor air (RA) taken into the casing (10) is cooled. The cooled air is supplied to the room (3) as supply air (SA).
  • the fan (30) rotates in the direction to discharge after the outdoor air (OA) is taken into the casing (10) and processed, and at the same time, the heat strain material of the cooling and heating module (20). A tensile force is applied to (21). Therefore, the outdoor air (OA) takes the heat of the cooling and heating module (20), and is discharged outside as outdoor air (EA).
  • FIG. 5B shows a state in which the cooling operation is performed by the second indoor unit (U2) and the heating operation is performed by the first indoor unit (U1).
  • the second indoor unit (U2) the tensile force applied to the heat strain material (21) of the cooling and heating module (20) is released. Therefore, the cooling and heating module (20) of the second indoor unit (U2) absorbs heat, and the indoor air (RA) taken into the casing (10) is cooled. The cooled air is supplied to the room (3) as supply air (SA).
  • the fan (30) rotates in the direction to discharge the outdoor air (OA) after taking it into the casing (10) and processing it, and at the same time, the heat strain material of the cooling and heating module (20) A tensile force is applied to (21). Therefore, the outdoor air (OA) takes the heat of the cooling and heating module (20), and is discharged outside as outdoor air (EA).
  • Modification 3 In Modification 3 shown in FIG. 6, two cooling heating modules (20) are provided in the casing (10) of the air conditioner (1), and one cooling heating module (20) (first cooling heating module (20a)) is provided. ) Is supplied to the room (3), and the air that has passed through the other cooling and heating module (20) (second cooling and heating module (20b)) is discharged to the outside of the room. It is configured to switch between the second operation for supplying the air that has passed through the cooling and heating module (20b) to the room (3) and releasing the air that has passed through the first cooling and heating module (20a) to the outside of the room. is there.
  • the air conditioner (1) is specifically configured as shown in FIGS.
  • This air conditioner (1) has an integrated structure in which two cooling and heating modules (20a, 20b) and two fans (30a, 30b) are housed in one casing (10), and is installed behind the ceiling. ing.
  • FIG. 7 shows a first operation operation in which the first cooling / heating module (20a) is on the cooling side and the second cooling / heating module (20b) is on the heating side
  • FIG. 8 shows the second cooling / heating module (20b).
  • the second operation is shown in which the first cooling and heating module (20a) is on the heating side with the cooling side. 7 and 8, (A) is a plan view (showing the internal structure when the apparatus is viewed from above), (B) is a left side view, and (C) is a right side.
  • FIG. 7 shows a first operation operation in which the first cooling / heating module (20a) is on the cooling side and the second cooling / heating module (20b).
  • A is a plan view (showing the internal structure when the apparatus
  • the casing (10) of the air conditioner (1) is formed in a square box shape.
  • a first suction port (11) for taking indoor air (RA) into the casing (10) and a second air port for taking outdoor air (OA) into the casing (10) are formed on one side wall surface of the casing (10).
  • a suction port (12) is provided.
  • the 1st blower outlet (13) which supplies supply air (SA) to room
  • a second outlet (14) for discharging (EA) to the outside is provided.
  • These first suction port (11), second suction port (12), first blower outlet (13) and second blower outlet (14) are respectively provided with ducts (4a, 4b, 4c, 4d) are connected.
  • the casing (10) is provided with a cooling / heating chamber (C1, C2) in which the cooling / heating module (20) is arranged and a fan chamber (C3, C4) in which the fans (30a, 30b) are arranged.
  • the cooling and heating chambers (C1 and C2) are composed of a first cooling and heating chamber (C1) and a second cooling and heating chamber (C2) located adjacent to each other in the casing (10) in FIGS. ing.
  • the fan chambers (C3, C4) are composed of a first fan chamber (C3) and a second fan chamber (C4) that are also adjacent to the left and right of the casing (10).
  • An air supply fan (30a) is disposed in the first fan chamber (C3), and an exhaust fan (30b) is disposed in the second fan chamber (C4).
  • an inlet side ventilation chamber (C5, C6) is formed between each of the suction ports (11, 12) and the cooling / heating chamber (C1, C2).
  • the inlet-side ventilation chambers (C5, C6) are composed of a first inlet-side ventilation chamber (C5) and a second inlet-side ventilation chamber (C6) arranged in two upper and lower stages of the casing (10).
  • the first inlet side ventilation chamber (C5) is provided with a first suction port (11), and the second inlet side ventilation chamber (C6) is provided with a second suction port (12).
  • a total of four dampers (D1, D2, D3, D4) that can be opened and closed are provided between each inlet side ventilation chamber (C5, C6) and each cooling and heating chamber (C1, C2). Yes.
  • An outlet side ventilation chamber (C7, C8) is formed between the cooling and heating chamber (C1, C2) and the fan chamber (C3, C4).
  • the outlet side ventilating chambers (C7, C8) are composed of a first outlet side ventilating chamber (C7) and a second outlet side ventilating chamber (C8) arranged in two upper and lower stages of the casing (10).
  • a total of four dampers (D5, D6, D7, D8) that can be opened and closed are provided between each cooling and heating chamber (C1, C2) and each outlet side ventilation chamber (C7, C8). Yes.
  • Each outlet-side ventilation chamber (C7, C8) communicates with each fan chamber (C3, C4).
  • the first air outlet (13) is provided on the first fan chamber (C3) side of the casing (10), and the second air outlet (14) is provided on the second fan chamber (C4) side of the casing (10). It has been.
  • the first damper (D1), the fourth damper (D4), the fifth damper (D5), and the eighth damper (D8) are opened, and the second damper (D2 ), The third damper (D3), the sixth damper (D6) and the seventh damper (D7) are closed.
  • the second damper (D2), the third damper (D3), the sixth damper (D6), and the seventh damper (D7) are opened, and the first damper (D1), the fourth damper are opened.
  • the damper (D4), the fifth damper (D5) and the eighth damper (D8) are closed.
  • the damper (D1 to D8) is introduced into the casing (10) from the first suction port (11).
  • the indoor air (RA) is supplied to the room (3) from the first outlet (13) through the first damper (D1), the first cooling and heating module (20a) and the fifth damper (D5),
  • the room air introduced into the casing (10) from the second suction port (12) passes through the fourth damper (D4), the second cooling / heating module (20b), and the eighth damper (D8) to the second outlet. (14) is discharged outside the room.
  • the second driving operation as shown in FIG.
  • the indoor air (RA) introduced into the casing (10) from the first suction port (11) is converted into the third damper (D3)
  • the second The cooling and heating module (20b) and the seventh damper (D7) are supplied from the first air outlet (13) to the room (3) and introduced from the second air outlet (14) into the casing (10).
  • the outdoor air (OA) is discharged from the second outlet (14) through the second damper (D2), the first cooling and heating module (20a), and the sixth damper (D6).
  • this air conditioner (1) is configured as a cooling only machine
  • the cooling and heating module (20) through which the air supplied to the room (3) passes is the first cooling and heating module (20a) and the second cooling. It is the cooling heating module (20) in which the cooling operation is performed regardless of which of the heating modules (20b) is switched. Therefore, the cooled air is continuously supplied to the room (3).
  • the cooling / heating module (20) through which the air exhausted to the outside passes is heated by either the second cooling / heating module (20b) or the first cooling / heating module (20a). Cooling and heating module (20). Therefore, the air discharged to the outside is the air that has taken the heat of the cooling heating module (20).
  • Modification 4 shown in FIG. 9 is an example regarding the air conditioning apparatus (1) using the rotor type cooling and heating module (20).
  • This air conditioner (1) is also configured as a cooling-only machine as in the examples of FIGS.
  • the casing (10) of the air conditioner (1) is provided with an air supply side passage (P1) and an exhaust side passage (P2).
  • An air supply fan (30a) is provided in the air supply side passage (P1)
  • an exhaust fan (30b) is provided in the exhaust side passage (P2).
  • the cooling and heating module (20) is formed in a disk shape, and is disposed across the supply side passage (P1) and the exhaust side passage (P2) in the casing (10). The cooling and heating module (20) rotates about the rotation axis, so that the portion located in the supply side passage (P1) moves into the exhaust side passage (P2), and the exhaust side passage The portion located in (P2) can be moved into the supply side passage (P1).
  • the cooling operation is performed in the supply side passage (P1), and the heating operation is performed in the exhaust side passage (P2).
  • the thermal strain material (21) absorbs heat without applying a tensile force to the portion where the cooling and heating module (20) is located in the supply side passage (P1), and the air is cooled. Further, a tensile force is applied to a portion where the cooling and heating module (20) is located in the exhaust side passage (P2), and the heat strain material (21) radiates heat to the air.
  • the cooling operation and the heating operation are performed while rotating the cooling / heating module (20) continuously or intermittently. Therefore, air can be radiated from the cooling and heating module (20) to the air in the exhaust side passage (P2), and at the same time, the air can be cooled in the cooling and heating module (20) in the supply side passage (P1). Continuous cooling operation that continuously supplies air to the room (3) is possible.
  • Embodiment 2 of the Invention A second embodiment of the present invention will be described.
  • Embodiment 2 shown in FIG. 10 is an example in which the air conditioner (1) of Embodiment 1 shown in FIG. 1 is configured as a heating-only machine.
  • the air conditioner (1) includes a casing (10), a cooling / heating module (20) housed in the casing (10), and a cooling / heating module (20 ) And a switching control unit (35) for applying a tensile force to the cooling and heating module (20), and the indoor unit ( U) is configured.
  • a casing (10) In the casing (10), an air passage (P) is formed for passing the air introduced into the casing (10) through the cooling and heating module (20).
  • the air conditioner (1) of the second embodiment can perform the heating operation by introducing the air heated by the cooling and heating module (20) from the air passage (P) into the room (3). Is different from the air conditioner (1) in FIG.
  • FIG. 10 (B) the fan (30) rotates in the direction of exhausting after taking outdoor air (OA) into the casing (10) and processing it, and at the same time, the heat strain material ( The tensile force to 21) is released. Therefore, the outdoor air (OA) gives heat to the cooling and heating module (20), and is discharged to the outside as exhaust air (EA).
  • intermittent heating operation can be performed by alternately repeating the heating operation of FIG. 10A and the cooling operation of FIG. 10B.
  • Embodiment 2- Modification 1
  • the modification 1 of Embodiment 2 shown in FIG. 11 is an example which comprised the air conditioning apparatus (1) of FIG. 4 as a heating only machine.
  • a configuration in which the first indoor unit (U1) is installed on one of the opposing wall surfaces (the right wall surface in the figure) and the second indoor unit (U2) is installed on the other wall surface (the left wall surface in the figure) Is the same as the air conditioner (1) of FIG.
  • the configuration of each indoor unit (U1, U2) is the same as that of the second embodiment in FIG.
  • FIG. 11A shows a state in which the heating operation is performed in the first indoor unit (U1) and the cooling operation is performed in the second indoor unit (U2).
  • a tensile force is applied to the heat strain material (21) of the cooling and heating module (20). Therefore, the cooling and heating module (20) of the first indoor unit (U1) dissipates heat, and the indoor air (RA) taken into the casing (10) is heated.
  • the heated air is supplied to the room (3) as supply air (SA).
  • the fan (30) rotates in the direction to discharge after the outdoor air (OA) is taken into the casing (10) and processed, and at the same time, the heat strain material of the cooling and heating module (20). The tensile force to (21) is released. Accordingly, the outdoor air (OA) is deprived of heat by the cooling and heating module (21), and is discharged outside as outdoor air (EA).
  • FIG. 11B shows a state where the heating operation is performed in the second indoor unit (U2) and the cooling operation is performed in the first indoor unit (U1).
  • a tensile force is applied to the heat strain material (21) of the cooling and heating module (20). Therefore, the cooling and heating module (20) of the second indoor unit (U2) dissipates heat, and the indoor air (RA) taken into the casing (10) is heated.
  • the heated air is supplied to the room (3) as supply air (SA).
  • the fan (30) rotates in the direction to discharge the outdoor air (OA) after taking it into the casing (10) and processing it, and at the same time, the heat strain material of the cooling and heating module (20) The tensile force to (21) is released. Accordingly, the outdoor air (OA) is deprived of heat by the cooling and heating module (21), and is discharged outside as outdoor air (EA).
  • Modification 2 of Embodiment 2 shown in FIG. 12 is configured to install two indoor units (U1, U2) in a room (3) to be air-conditioned, and is a modification of Embodiment 1 shown in FIG. It is the example which comprised the air conditioning apparatus (1) of Example 2 as a heating only machine. In this modification, both the first indoor unit (U1) and the second indoor unit (U2) are installed on the right wall surface in the figure.
  • FIG. 12A shows a state in which the heating operation is performed in the first indoor unit (U1) and the cooling operation is performed in the second indoor unit (U2).
  • a tensile force is applied to the heat strain material (21) of the cooling and heating module (20). Therefore, the cooling and heating module (20) of the first indoor unit (U1) dissipates heat, and the indoor air (RA) taken into the casing (10) is heated.
  • the heated air is supplied to the room (3) as supply air (SA).
  • the fan (30) rotates in the direction to discharge after the outdoor air (OA) is taken into the casing (10) and processed, and at the same time, the heat strain material of the cooling and heating module (20). The tensile force to (21) is released. Accordingly, the outdoor air (OA) is deprived of heat by the cooling and heating module (21), and is discharged outside as outdoor air (EA).
  • FIG. 12B shows a state in which the heating operation is performed in the second indoor unit (U2) and the cooling operation is performed in the first indoor unit (U1).
  • a tensile force is applied to the heat strain material (21) of the cooling and heating module (20). Therefore, the cooling and heating module (20) of the second indoor unit (U2) dissipates heat, and the indoor air (RA) taken into the casing (10) is heated.
  • the heated air is supplied to the room (3) as supply air (SA).
  • the fan (30) rotates in the direction to discharge the outdoor air (OA) after taking it into the casing (10) and processing it, and at the same time, the heat strain material of the cooling and heating module (20) The tensile force to (21) is released. Accordingly, the outdoor air (OA) is deprived of heat by the cooling and heating module (21), and is discharged outside as outdoor air (EA).
  • a third modification of the second embodiment shown in FIG. 13 is an example in which the air conditioner (1) of the third modification of the first embodiment shown in FIGS. Specifically, this air conditioner (1) is provided with two cooling heating modules (20a, 20b) in the casing (10) as in FIGS. 6 to 8, and one cooling heating module (20) The air that has passed through the first cooling / heating module (20a) is supplied to the room (3), and the air that has passed through the other cooling / heating module (20) (second cooling / heating module (20b)) is released to the outside of the room.
  • the air conditioner (1) is specifically configured as shown in FIGS.
  • This air conditioner (1) has an integrated structure in which two cooling and heating modules (20a, 20b) and two fans (30a, 30b) are housed in one casing (10), and is installed behind the ceiling.
  • FIG. 14 shows a first operation operation in which the first cooling / heating module (20a) is on the heating side and the second cooling / heating module (20b) is on the cooling side
  • FIG. 15 shows the second cooling / heating module (20b).
  • the second operation is shown in which the first cooling and heating module (20a) is on the cooling side with the heating side.
  • (A) is a plan view (showing the internal structure when the apparatus is viewed from above)
  • (B) is a left side view
  • (C) is a right side.
  • the casing (10) of the air conditioner (1) is formed in a square box shape.
  • a first suction port (11) for taking indoor air (RA) into the casing (10) and a second air port for taking outdoor air (OA) into the casing (10) are formed on one side wall surface of the casing (10).
  • a suction port (12) is provided.
  • the 1st blower outlet (13) which supplies supply air (SA) to room
  • a second outlet (14) for discharging (EA) to the outside is provided.
  • These first inlet (11), second inlet (12), first outlet (13) and second outlet (14) are respectively provided with ducts (4a, 4b, 4c, 4d) are connected.
  • the casing (10) is provided with a cooling / heating chamber (C1, C2) in which the cooling / heating module (20) is arranged and a fan chamber (C3, C4) in which the fans (30a, 30b) are arranged.
  • the cooling and heating chambers (C1 and C2) are composed of a first cooling and heating chamber (C1) and a second cooling and heating chamber (C2) that are adjacent to each other in the casing (10) in FIGS. ing.
  • the fan chambers (C3, C4) are composed of a first fan chamber (C3) and a second fan chamber (C4) that are also adjacent to the left and right of the casing (10).
  • An air supply fan (30a) is disposed in the first fan chamber (C3), and an exhaust fan (30b) is disposed in the second fan chamber (C4).
  • an inlet side ventilation chamber (C5, C6) is formed between each of the suction ports (11, 12) and the cooling / heating chamber (C1, C2).
  • the inlet-side ventilation chambers (C5, C6) are composed of a first inlet-side ventilation chamber (C5) and a second inlet-side ventilation chamber (C6) arranged in two upper and lower stages of the casing (10).
  • the first inlet side ventilation chamber (C5) is provided with a first suction port (11), and the second inlet side ventilation chamber (C6) is provided with a second suction port (12).
  • a total of four dampers (D1, D2, D3, D4) that can be opened and closed are provided between each inlet side ventilation chamber (C5, C6) and each cooling and heating chamber (C1, C2). Yes.
  • An outlet side ventilation chamber (C7, C8) is formed between the cooling and heating chamber (C1, C2) and the fan chamber (C3, C4).
  • the outlet side ventilating chambers (C7, C8) are composed of a first outlet side ventilating chamber (C7) and a second outlet side ventilating chamber (C8) arranged in two upper and lower stages of the casing (10).
  • a total of four dampers (D5, D6, D7, D8) that can be opened and closed are provided between each cooling and heating chamber (C1, C2) and each outlet side ventilation chamber (C7, C8). Yes.
  • Each outlet-side ventilation chamber (C7, C8) communicates with each fan chamber (C3, C4).
  • the first air outlet (13) is provided on the first fan chamber (C3) side of the casing (10), and the second air outlet (14) is provided on the second fan chamber (C4) side of the casing (10). It has been.
  • the first damper (D1), the fourth damper (D4), the fifth damper (D5), and the eighth damper (D8) are opened, and the second damper (D2 ), The third damper (D3), the sixth damper (D6) and the seventh damper (D7) are closed.
  • the second damper (D2), the third damper (D3), the sixth damper (D6), and the seventh damper (D7) are opened, and the first damper (D1), the fourth damper are opened.
  • the damper (D4), the fifth damper (D5) and the eighth damper (D8) are closed.
  • the damper (D1 to D8) is introduced into the casing (10) from the first suction port (11).
  • the indoor air (RA) is supplied to the room (3) from the first outlet (13) through the first damper (D1), the first cooling and heating module (20a) and the fifth damper (D5),
  • the outdoor air (OA) introduced into the casing (10) from the second suction port (12) passes through the fourth damper (D4), the second cooling / heating module (20b), and the eighth damper (D8). It is discharged outside through the two outlets (14).
  • the second driving operation as shown in FIG.
  • the indoor air (RA) introduced into the casing (10) from the first suction port (11) is converted into the third damper (D3), the second The cooling and heating module (20b) and the seventh damper (D7) are supplied from the first air outlet (13) to the room (3) and introduced from the second air outlet (14) into the casing (10).
  • the outdoor air (OA) is discharged from the second outlet (14) through the second damper (D2), the first cooling and heating module (20a), and the sixth damper (D6).
  • the cooling and heating module (20) through which the air supplied to the room (3) passes is the first cooling and heating module (20a) and the second cooling. It is the cooling heating module (20) in which the heating operation is performed regardless of which of the heating modules (20b) is switched. Therefore, heated air is continuously supplied into the room (3).
  • the cooling / heating module (20) through which the air discharged to the outside passes is the one that performs the cooling operation regardless of whether it is switched to the second cooling / heating module (20b) or the first cooling / heating module (20a). Cooling and heating module (20). Therefore, the air released to the outside is air that has been deprived of heat by the cooling and heating module (20).
  • Modification 4 of Embodiment 2 shown in FIG. 16 relates to an air conditioner (1) using a rotor-type cooling / heating module (20).
  • This air conditioner (1) is also configured as a heating-only machine as in the second embodiment and the first to third modifications thereof.
  • the casing (10) of the air conditioner (1) is provided with an air supply side passage (P1) and an exhaust side passage (P2).
  • An air supply fan (30a) is provided in the air supply side passage (P1)
  • an exhaust fan (30b) is provided in the exhaust side passage (P2).
  • the cooling and heating module (20) is formed in a disk shape, and is disposed across the supply side passage (P1) and the exhaust side passage (P2) in the casing (10). The cooling and heating module (20) rotates about the rotation axis, so that the portion located in the supply side passage (P1) moves into the exhaust side passage (P2), and the exhaust side passage The portion located in (P2) can be moved into the supply side passage (P1).
  • the heating operation is performed in the supply side passage (P1), and the cooling operation is performed in the exhaust side passage (P2).
  • a tensile force is applied to the portion where the cooling and heating module (20) is located in the supply side passage (P1), the heat-strained material (21) dissipates heat, and the air is heated.
  • the portion where the cooling and heating module (20) is located in the exhaust side passage (P2) is not given a tensile force, and the heat-strained material (21) absorbs heat, and the heat of the air is taken away.
  • the heating operation and the cooling operation are performed while rotating the cooling and heating module (20) continuously or intermittently. Therefore, air can be heated by the cooling / heating module (20) in the air supply side passage (P1) while heat is supplied from the air to the cooling / heating module (20) in the exhaust side passage (P2). Continuous heating operation that continuously supplies the air to the room (3) is possible.
  • Embodiment 3 of the Invention >> Embodiment 3 of the present invention will be described.
  • Embodiment 3 shown in FIG. 17 is an example in which the air-conditioning apparatus (1) according to Modification 2 of Embodiment 1 shown in FIG. is there.
  • This air conditioner (1) also includes two indoor units (U1, U2) as in the example of FIG. 5, and both the first indoor unit (U1) and the second indoor unit (U2) are on one wall surface in the figure. It is installed on the right wall.
  • the first indoor unit (U1) and the second indoor unit (U2) are configured to release and absorb moisture from the air in addition to the cooling and heating module (20).
  • the humidity control module (24) is provided.
  • the humidity control module (24) includes a heat strain material (21), an actuator (22) for applying a tensile force to the heat strain material (21), and a surface thereof in FIG. And an adsorption layer (23) formed on the surface.
  • air can be humidified when a tensile force is applied, and the air can be dehumidified when the tensile force is released. That is, the humidity control module (24) is configured by forming the adsorption layer (23) on the surface of the heat strain material (21) of the cooling and heating module (20).
  • air passes through the cooling and heating module (20) and the humidity control module (24) for both the first indoor unit (U1) and the second indoor unit (U2). Therefore, in the air conditioner (1), in addition to performing the moisture absorption process and the moisture release process, the air cooling process and the heating process can be performed.
  • FIG. 17A shows a state in which the cooling and moisture absorption operation is performed in the first indoor unit (U1) and the heating and dehumidifying operation is performed in the second indoor unit (U2).
  • the first indoor unit (U1) the tensile force to the heat strain material (21) of the cooling and heating module (20) and the humidity control module (24) is released. Therefore, the indoor air (RA) taken into the casing (10) is dehumidified and cooled.
  • the dehumidified and cooled air is supplied to the room (3) as supply air (SA).
  • the fan (30) rotates in the direction to discharge after taking outdoor air (OA) into the casing (10) and processing it, and at the same time, the cooling and heating module (20) and the humidity control module A tensile force is applied to the heat strain material (21) of (24). Therefore, the air that has been heated and humidified by the cooling and heating module (20) and the humidity control module (24) is discharged to the outside as exhaust air (EA). At this time, the adsorption layer of the humidity control module (24) is regenerated by releasing moisture.
  • FIG. 17B shows a state in which the cooling and moisture absorption operation is performed in the second indoor unit (U2) and the heating and dehumidifying operation is performed in the first indoor unit (U1).
  • the second indoor unit (U2) the tensile force to the heat strain material (21) of the cooling and heating module (20) and the humidity control module (24) is released. Therefore, the indoor air (RA) taken into the casing (10) is dehumidified and cooled.
  • the dehumidified and cooled air is supplied to the room (3) as supply air (SA).
  • the fan (30) rotates in a direction to discharge after taking outdoor air (OA) into the casing (10) and processing it, and at the same time, the cooling heating module (20) and the humidity control module A tensile force is applied to the heat strain material (21) of (24). Therefore, the air that has been heated and humidified by the cooling and heating module (20) and the humidity control module (24) is discharged to the outside as exhaust air (EA). At this time, the adsorption layer of the humidity control module (24) is regenerated by releasing moisture.
  • Embodiment 3 when one of the indoor units (U1, U2) cools and dehumidifies the air and supplies the air to the room (3), the other indoor unit In (U2, U1), the dehumidifying and cooling operation can be continuously performed by alternately switching the operation of FIG. 17A and the operation of FIG.
  • the cooling and heating module (20) and the humidity control module (24) are arranged in series with respect to the air flow, and the sensible heat treatment and the latent heat treatment of air are performed in series and supplied to the room.
  • the cooling and heating module (20) and the humidity control module (24) may be arranged in parallel so that the air subjected to the sensible heat treatment and the air subjected to the latent heat treatment are mixed and supplied to the room. This configuration may be the same in the following modifications.
  • the modification 1 of Embodiment 3 shown in FIG. 18 is related with the air conditioning apparatus (1) using a rotor type cooling heating module (20).
  • the air conditioner (1) includes a rotor type humidity control module (24) in addition to the rotor type cooling and heating module (20), and is configured to perform dehumidification cooling.
  • the casing (10) of the air conditioner (1) is provided with an air supply side passage (P1) and an exhaust side passage (P2).
  • An air supply fan (30a) is provided in the air supply side passage (P1)
  • an exhaust fan (30b) is provided in the exhaust side passage (P2).
  • the cooling and heating module (20) is formed in a disk shape, and is disposed across the supply side passage (P1) and the exhaust side passage (P2) in the casing (10). The cooling and heating module (20) rotates about the rotation axis, so that the portion located in the supply side passage (P1) moves into the exhaust side passage (P2), and the exhaust side passage The portion located in (P2) can be moved into the supply side passage (P1).
  • the humidity control module (24) is also formed in a disk shape, and is disposed across the supply side passage (P1) and the exhaust side passage (P2) in the casing (10).
  • the humidity control module (24) rotates about the rotation axis, the portion located in the air supply side passage (P1) moves into the exhaust side passage (P2), and the exhaust side passage The portion located in (P2) can be moved into the supply side passage (P1).
  • the cooling and moisture absorption operation is performed in the supply side passage (P1)
  • the heating and dehumidifying operation is performed in the exhaust side passage (P2).
  • the thermal strain material (21) absorbs heat without applying a tensile force to the portion where the cooling and heating module (20) is located in the supply side passage (P1), and the air is cooled.
  • the heat-strained material (21) absorbs heat and cools the adsorbent without applying tensile force to the part where the humidity control module (24) is located in the air supply side passage (P1). Adsorbed by the adsorbent.
  • SA supply air
  • a tensile force is applied to the portion where the cooling and heating module (20) is located in the exhaust side passage (P2), the heat-strain material (21) dissipates heat, and the air is heated.
  • tensile force is applied to the part where the humidity control module (24) is located in the exhaust side passage (P2), and the heat-strained material (21) dissipates heat to heat the adsorbent and is contained in the adsorbent. Moisture is released into the air and the adsorbent is regenerated. Then, air that is heated and given moisture is discharged outside the room as exhaust air (EA).
  • the cooling moisture absorption operation and the heating and moisture releasing operation are performed while rotating the cooling heating module (20) and the humidity control module (24) continuously or intermittently. Therefore, it is possible to perform the moisture absorption cooling process in the air supply side passage (P1) while simultaneously performing the heat radiation processing of the cooling heating module (20) and the moisture release processing of the humidity control module (24) in the exhaust side passage (P2).
  • the dehumidified and cooled air can be continuously supplied to the room (3).
  • Modification 2 A second modification of the third embodiment shown in FIG. 19 is an example in which the air conditioner (1) according to the third embodiment shown in FIG. 17 is a dehumidifying cooler, and is configured as a humidifying heater. Also in this modification, both the first indoor unit (U1) and the second indoor unit (U2) are installed on the right wall surface in the figure.
  • the first indoor unit (U1) and the second indoor unit (U2) are configured to cool and heat the air in addition to the cooling heating module (20).
  • a humidity control module (24) is provided.
  • the first indoor unit (U1) and the second indoor unit (U2) are configured in the same manner as in Embodiment 3 in FIG.
  • FIG. 19 (A) shows a state where the heat and moisture release operation is performed in the first indoor unit (U1) and the cooling and moisture absorption operation is performed in the second indoor unit (U2).
  • a tensile force is applied to the heat strain material (21) of the cooling and heating module (20) and the humidity control module (24).
  • the room air (RA) taken into the casing (10) is heated and humidified, and the air is supplied to the room (3) as supply air (SA).
  • the fan (30) rotates in the direction to discharge after taking outdoor air (OA) into the casing (10) and processing it, and at the same time, the cooling and heating module (20) and the humidity control module
  • the tensile force to the heat strain material (21) of (24) is released.
  • the air that has undergone the cooling process in the cooling and heating module (20) and the moisture absorption process in the humidity control module (24) is discharged to the outside as exhaust air (EA).
  • FIG. 19B shows a state in which the heat and moisture release operation is performed in the second indoor unit (U2) and the cooling and moisture absorption operation is performed in the first indoor unit (U1).
  • a tensile force is applied to the heat strain material (21) of the cooling and heating module (20) and the humidity control module (24). Accordingly, the room air (RA) taken into the casing (10) is heated and humidified, and the air is supplied to the room (3) as supply air (SA).
  • the fan (30) rotates in a direction to discharge after taking outdoor air (OA) into the casing (10) and processing it, and at the same time, the cooling heating module (20) and the humidity control module The tensile force to the heat strain material (21) of (24) is released.
  • the air that has undergone the cooling process in the cooling and heating module (20) and the moisture absorption process in the humidity control module (24) is discharged to the outside as exhaust air (EA).
  • Modification 3 of Embodiment 3 shown in FIG. 20 is an example in which the air conditioner (1) according to Modification 1 shown in FIG. 18 is a dehumidifying cooler, and is configured as a humidifying heater. Also in this modified example, in addition to the rotor type cooling and heating module (20), the rotor type humidity control module (24) is used.
  • the casing (10), the cooling / heating module (20), and the humidity control module (24) of the air conditioner (1) are configured in the same manner as in FIG.
  • an air supply side passage (P1) and an exhaust side passage (P2) are provided in the casing (10) of the air conditioner (1).
  • An air supply fan (30a) is provided in the air supply side passage (P1)
  • an exhaust fan (30b) is provided in the exhaust side passage (P2).
  • the cooling and heating module (20) is formed in a disk shape, and is disposed across the supply side passage (P1) and the exhaust side passage (P2) in the casing (10). The cooling and heating module (20) rotates about the rotation axis, so that the portion located in the supply side passage (P1) moves into the exhaust side passage (P2), and the exhaust side passage The portion located in (P2) can be moved into the supply side passage (P1).
  • the humidity control module (24) is also formed in a disc shape, and is disposed across the supply side passage (P1) and the exhaust side passage (P2) in the casing (10). When the humidity control module (24) rotates about the rotation axis, the portion located in the air supply side passage (P1) moves into the exhaust side passage (P2), and the exhaust side passage The portion located in (P2) can be moved into the supply side passage (P1).
  • the heat and moisture releasing operation is performed in the supply side passage (P1), and the cooling and moisture absorption operation is performed in the exhaust side passage (P2).
  • a tensile force is applied to a portion where the cooling and heating module (20) is positioned in the air supply side passage (P1), whereby the thermostrictive material (21) generates heat and the air is heated.
  • the portion where the humidity control module (24) is located in the air supply side passage (P1) is heated by the tensile strain and the heat-strained material (21) generates heat to heat the adsorbent. The contained moisture is given to the air.
  • the cooling and heating module (20) is located in the exhaust side passage (P2)
  • the tensile force is released and the heat strain material (21) absorbs heat from the air.
  • the humidity control module (24) is located in the exhaust side passage (P2)
  • the tensile force is released, the heat-strained material (21) absorbs heat, the adsorbent is cooled, and moisture in the air is adsorbed Adsorbed to the agent.
  • the heat moisture release operation and the cooling moisture absorption operation are performed while rotating the cooling heating module (20) continuously or intermittently. Therefore, while performing the cooling process and the moisture absorption process in the exhaust side passage (P2), the heating process and the moisture release process can be performed in the supply side path (P1) at the same time. To supply to the room (3).
  • Embodiment 4 of the Invention >> Embodiment 4 of the present invention will be described.
  • the air conditioner (1) of the fourth embodiment includes a cooling operation for introducing the air cooled by the cooling and heating module (20) into the room (3) in the air conditioner (1) shown in FIGS.
  • the heating operation for introducing the air heated in the cooling heating module (20) into the room (3) can be switched.
  • the operation for releasing the tensile force on the material (21) and the operation for applying the tensile force to the heat strain material (21) of the cooling heating module (20) as shown in FIG. 10 (A) can be switched.
  • an operation for applying a tensile force to the cooling and heating module (20) as shown in FIG. 1 (B), and FIG. 10 (B) As shown, it is configured to be able to switch between the operation for releasing the tensile force to the cooling and heating module (20).
  • the air conditioner (1) which has an indoor unit (U) provided with one cooling heating module (20), the operation
  • Modification 1 of Embodiment 4 the operation of FIG. 4A and the operation of FIG. 11A are performed by switching the application state of the tensile force in the air conditioner (1) of FIGS.
  • the operation of FIG. 4B and the operation of FIG. 11B can be switched. Since the basic configuration of the apparatus is the same as that shown in FIGS. 4 and 11, a detailed description thereof will be omitted.
  • Modification 2 In the second modification of the fourth embodiment, in the air conditioner (1) of FIGS. 5 and 12, the operation of FIG. 5A and the operation of FIG. In addition to being configured to be switchable, the operation of FIG. 5B and the operation of FIG. 12B can be switched. Since the basic configuration of the apparatus is the same as that shown in FIGS. 5 and 12, a detailed description thereof will be omitted.
  • the tensile force to the cooling and heating module (20) through which the indoor air (RA) taken into the casing (10) passes is obtained.
  • a tensile force is applied to the cooling and heating module (20) through which the outdoor air (OA) taken in and released into the casing (10) passes.
  • 12A and 12B a tensile force is applied to the cooling and heating module (20) through which the indoor air (RA) taken into the casing (10) passes, and the inside of the casing (10)
  • the tensile force to the cooling and heating module (20) through which the outdoor air (OA) taken in is passed is released.
  • the tensile force to the cooling and heating module (20) through which the indoor air (RA) taken into the casing (10) passes is released, and the casing ( 10)
  • a tensile force is applied to the cooling and heating module (20) through which the outdoor air (OA) taken into the interior passes.
  • a tensile force is applied to the cooling and heating module (20) through which the indoor air (RA) taken into the casing (10) passes, and the outdoor taken into the casing (10).
  • the tensile force to the cooling and heating module (20) through which air (OA) passes is released.
  • the fourth modification of the fourth embodiment is configured such that the air conditioner (1) in FIG. 9 and the air conditioner (1) in FIG. 16 are configured as one device, and the operation of FIG. And the operation shown in FIG. 16 can be switched. Since the basic configuration of the apparatus is the same as that shown in FIGS. 9 and 16, a detailed description thereof will be omitted.
  • the tensile force to the cooling and heating module (20) is released at the portion where the room air (RA) taken into the casing (10) passes, and the casing ( 10)
  • a tensile force is applied to the cooling and heating module (20) at a portion through which the outdoor air (OA) taken into the passage passes.
  • a tensile force is applied to the cooling and heating module (20) at a portion through which the indoor air (RA) taken into the casing (10) passes, and the outdoor taken into the casing (10).
  • the tensile force applied to the cooling and heating module (20) is released at a portion where air (OA) passes.
  • the air conditioning apparatus (1) provided with the rotor-type cooling heating module (20), the operation
  • the cooling and heating module (20) and the humidity control module (20) through which the indoor air (RA) taken into the casing (10) passes are provided.
  • the tensile force to 24) is released, and the tensile force is applied to the cooling and heating module (20) and the humidity control module (24) through which the outdoor air (OA) taken into the casing (10) passes.
  • 19A and 19B tensile force is applied to the cooling and heating module (20) and the humidity control module (24) through which the indoor air (RA) taken into the casing (10) passes. Then, the tensile force to the cooling and heating module (20) and the humidity control module (24) through which the outdoor air (OA) taken into the casing (10) passes is released.
  • the room (3) is continuously connected. It is possible to switch between the operation of dehumidifying and cooling the air and the operation of continuously humidifying and heating the room (3).
  • a tensile force is applied to the cooling and heating module (20) and the humidity control module (24) in a portion through which the indoor air (RA) taken into the casing (10) passes, and the casing (10 )
  • the tensile force applied to the cooling and heating module (20) and the humidity control module (24) is released at a portion through which the outdoor air (OA) taken in is passed.
  • the air conditioning apparatus (1) provided with the rotor-type cooling heating module (20) and the humidity control module (24), the operation
  • Embodiment 5 of the Invention relates to a specific configuration of the cooling and heating module (20).
  • the switching control unit (35) adjusts the position of the movable plates (41a, 41b), thereby adjusting the tensile force applied to the thermostrictive material (21). Switching between grant and release.
  • the cooling / heating module (20) is composed of first and second cooling / heating modules (20a, 20b) as shown in FIG. In FIG. 24, the first cooling / heating module (20a) is disposed on the right side, and the second cooling / heating module (20b) is disposed on the left side.
  • Each cooling and heating module (20a, 20b) includes a thermostrictive material (21), an actuator (22), and a switching control unit (35). And between both the cooling heating modules (20a, 20b), it is divided into right and left by the partition plate (43).
  • the heat strain material (21) is formed in a wire shape extending vertically.
  • This heat-strain material (21) is constituted by a shape memory alloy as an example, and heats the object by applying a tensile force, while cooling the object by releasing the tensile force.
  • a tensile force is applied to the thermostrictive material (21)
  • the entropy decreases due to the phase change from the parent phase (austenite phase) to the martensite phase.
  • the heat-strained material (21) itself is heated by heating (I to II).
  • the thermal strain material (21) When the thermal strain material (21) is brought into contact with the object to be heated while a tensile force is applied to the heat strain material (21), the heat of the heat strain material (21) is transmitted to the object to be heated (II to III). By doing so, the temperature of the thermostrictive material (21) is lowered. When the tensile force applied to the thermostrictive material (21) is removed (released), the martensite phase changes to the parent phase (austenite phase) (III to IV). At this time, if the heat-strained material (21) is insulated, the temperature of the heat-strained material (21) decreases. When the object to be cooled is brought into contact with the heat-strained material whose temperature has decreased, the heat of the object to be cooled is transferred to the heat-strained material (21) (IV to I).
  • the actuator (22) includes a fixed plate (40) as a fixed portion, first and second movable plates (41a, 41b) as movable portions, and first and second cams (46, 47) as displacement mechanisms. ) And a rotating shaft (39).
  • the fixing plate (40) is formed in a substantially rectangular thin plate.
  • the lower surface of the fixed plate (40) is divided into left and right regions by a partition plate (43), and one end of the thermostrictive material (21) of the first cooling heating module (20a) (first cooling heating unit) is divided into the right region.
  • one end of the thermostrictive material (21) of the second cooling / heating module (20b) (second cooling / heating unit) is attached to the left region.
  • the partition plate (43) partitions the first and second cooling / heating modules (20a, 20b) to the left and right.
  • the partition plate (43) is a member formed in a substantially T shape.
  • the partition plate (43) is formed as a main body portion (44) formed in a rectangular thin plate extending downward in the orthogonal direction to the fixed plate (40), and a rectangular thin plate extending substantially parallel to the fixed plate (40). It is formed with a flange part (45).
  • the base end of the main body portion (44) is attached to the fixed plate (40), and the flange portion (45) is located at substantially the same height as the other end of the thermal strain material (21). Is arranged.
  • the first and second movable plates (41a, 41b) are members for applying a tensile force to the thermal strain material (21), and are a first cooling heating module (20a) and a second cooling heating module (20b). ).
  • the first movable plate (41a) is attached to the other end of the thermostrictive material (21) of the first cooling / heating module (20a), and is disposed to face the fixed plate (40).
  • the second movable plate (41b) is attached to the other end of the thermostrictive material (21) of the second cooling / heating module (20b), and is disposed to face the fixed plate (40).
  • a first air passage (42a) is formed between the first movable plate (41a) and the fixed plate (40), and a first air passage (42a) is formed between the second movable plate (41b) and the fixed plate (40). Two air passages (42b) are formed.
  • first and second movable plates (41a, 41b) are formed in a substantially rectangular thin plate and have a predetermined weight. For this reason, the first and second movable plates (41a, 41b) are given a load to the thermostrictive material (21) by the weight, and thereby a downward tensile force is applied to the thermostrictive material (21). . Therefore, the first and second movable plates (41a, 41b) have a weight capable of applying a tensile force to the heat strain material (21).
  • the first and second cams (46, 47) are members formed in a substantially cylindrical shape extending in the width direction (depth direction in FIG. 24) of the first and second movable plates (41a, 41b).
  • the first cam (46) is formed with a circular outer peripheral portion (48) and a small diameter portion (49) in which a semicircular portion is cut out. Further, the first cam (46) is attached so that the rotation shaft (39) is inserted through the center of the first cam (46) and is rotatable in the rotation direction of the rotation shaft (39).
  • the second cam (47) is formed with a circular outer peripheral portion (48) and a small diameter portion (49) with a semicircular portion cut out.
  • the second cam (47) is attached so that the rotation shaft (39) is inserted through the center of the second cam (47) and is rotatable in the rotation direction of the rotation shaft (39).
  • a switching control unit (35) is connected to the rotating shaft (39), and the rotation positions of the first and second cams (46, 47) are controlled by the switching control unit (35).
  • the first and second cams (46, 47) are 180 ° out of phase with each other on the left and right. That is, when the outer peripheral portion (48) of the first cam (46) comes into contact with the first movable plate (41a), the small diameter portion of the second cam (47) with respect to the second movable plate (41b). (49) is configured to contact.
  • the load of a 2nd movable plate (47b) is applied with respect to the thermostrictive material (21) of a 2nd cooling heating module (20b), and tensile force is provided. For this reason, the heat-strain material (21) of the second cooling and heating module (20b) generates heat, and the air flowing around it is heated.
  • thermostrictive material (21) of the first cooling and heating module (20a) the load of the first movable plate (47a) is supported by the first cam (46), and the tensile force is released. For this reason, the heat-strain material (21) of the first cooling / heating module (20a) is cooled, and the air flowing around it is cooled.
  • cooling and heating module (20) of the fifth embodiment can be put into practical use with a simple configuration and the module itself can be miniaturized, for example, by applying it to the air conditioner (1) of the first embodiment shown in FIG.
  • the configuration of the air conditioner (1) can be prevented from becoming complicated, and at the same time, the device (1) can be downsized.
  • this embodiment is suitable for the batch-switching type air conditioner (1) in the above embodiment because heating and cooling can be switched.
  • a motor may be attached to each rotary shaft (39, 39), and the two cams (46, 47) may be controlled to have a phase of 180 °. May be linked to each other.
  • the shape of the cam is such that the ratio of the small diameter portion (49) and the outer peripheral portion (48) is different as shown in FIG. 25, or the rotational shaft (39) is simply eccentric as shown in FIG. Alternatively, as shown in FIG. 27, the curvature of the outer peripheral portion (48) may be varied and the rotation shaft (39) may be eccentric.
  • the first and second cams (46, 47) according to Modification 1 extend in the longitudinal direction of the first and second movable plates (41a, 41b). Are arranged on the same axis.
  • a first rotating shaft (39) is inserted through the first and second cams (46, 47).
  • the first and second cams (46, 47) are attached to the rotating shaft (39) with a phase difference of 180 ° from each other.
  • the first and second cams (46, 47) are configured to rotate together when the rotation shaft (39) is rotated by the switching control unit (35).
  • Other configurations, operations, and effects are the same as those of the fifth embodiment.
  • Modification 2 Next, Modification 1 of Embodiment 5 will be described.
  • the second modification is different from the first embodiment in the configuration of the actuator (22).
  • the switching control unit (35) is not shown.
  • the actuator (22) according to the second modification example is similar to the actuator (22) according to the fifth embodiment described above, and has the first and second movable plates (41b) having a weight. ) And has first and second movable housings (50a, 50b) instead.
  • the first movable housing (50a) is provided corresponding to the first cooling / heating module (20a) (first cooling / heating unit), and the second movable housing (50b) is provided with the second cooling / heating module (20b) ( Corresponding to the second cooling and heating unit).
  • the first and second movable housings (50a, 50b) are each formed in a rectangular parallelepiped box whose side surfaces are open, and the upper wall protrudes left and right.
  • the other end of the thermostrain material (21) is attached to the top wall of the first and second movable housings (50a, 50b).
  • a first cam (46) and a rotation shaft (39) are arranged inside the first movable housing (50a), and a second cam (47) and a rotation shaft are arranged inside the second movable housing (50b). (39) and are arranged.
  • the first and second cams (46, 47) are 180 ° out of phase with each other by the switching control unit (35). That is, as shown in FIG.
  • the second cam is formed on the lower portion of the inner surface of the second movable housing (50b). It is comprised so that the outer peripheral part (48) of (47) may contact. By doing so, the second movable housing (50b) is pulled downward by the outer peripheral portion (48) of the second cam (47), and the thermal strain material (21) of the second cooling heating module (20b) is lowered downward. Be pulled.
  • Modification 3 of Embodiment 5 will be described.
  • the third modification differs from the first modification in the configuration of the actuator (22).
  • the switching control unit (35) is not shown.
  • the first and second cams (46, 47) extend in the longitudinal direction of the first and second movable housings (50a, 50b). Are arranged on the same axis.
  • a first rotating shaft (39) is inserted through the first and second cams (46, 47).
  • the first and second cams (46, 47) are attached to the rotating shaft (39) with a phase shift of 180 ° from each other by the switching control unit (35). By rotating the rotating shaft (39), the first and second cams (46, 47) are both rotated.
  • the repulsive force when the tensile force of the thermostrictive material (21) is released is recovered as the rotational power of the rotating shaft (39).
  • the outer peripheral portion (48) of the second cam (47) is in contact with the second movable housing (50b) (that is, the heat of the second cooling and heating module (20b)).
  • the state in which the outer peripheral portion (48) of the second cam (47) and the second movable housing (50b) are separated from the strain material (21) in a tensile force ie, the second cooling and heating module (20b)).
  • thermostrictive material (21) of the first cooling / heating module (20a) In the state in which the tensile force of the thermostrictive material (21) is released), energization of the motor that drives the rotating shaft (39) is temporarily stopped, and the rotating shaft (39) is temporarily free. It becomes a state. Then, the rotating shaft (39) is rotationally driven by the repulsive force of the thermostrictive material (21) of the second cooling / heating module (20b). As a result, the power of the rotating shaft (39) can be reduced, and energy saving of the apparatus can be achieved. Similarly, when the tensile force of the thermostrictive material (21) of the first cooling / heating module (20a) is released, the energization of the motor that drives the rotating shaft (39) is temporarily stopped. As a result, the repulsive force of the thermostrictive material (21) of the first cooling / heating module (20a) is recovered as the power of the rotating shaft (39).
  • Modification 4 of Embodiment 5 will be described.
  • the fourth modification differs from the third modification in the configuration of the actuator (22).
  • the switching control unit (35) is not shown.
  • the cooling and heating module (20) includes a heat strain material (21) and first and second fixing plates (40a, 40b) that are fixing portions. And a movable housing (50), a cam (46) as a displacement mechanism, and a rotating shaft (39).
  • the first and second fixing plates (40a, 40b) are each formed into a substantially rectangular thin plate.
  • the first fixed plate (40a) is vertically arranged near the right end corresponding to the first cooling / heating module (20a), and the second fixed plate (40b) is positioned at the left end corresponding to the second cooling / heating module (20b). It is arranged vertically.
  • One end of the heat strain material (21) of the first cooling and heating module (20a) is connected to the left end surface of the first fixed plate (40a), and the second cooling plate is connected to the right end surface of the second fixed plate (40b).
  • One end of the heat strain material (21) of the heating module (20b) is connected.
  • the movable housing (50) is provided between the first and second fixed plates (40a, 40b).
  • the movable housing (50) includes first and second movable plates (41a, 41b) and two connecting plates (59, 59).
  • the first and second movable plates (41a, 41b) are each formed in a substantially rectangular thin plate.
  • the first movable plate (41a) is vertically arranged to face the first fixed plate (40a), and the second movable plate (41b) is vertically arranged to face the second fixed plate (40b). Yes.
  • the first movable plate (41a) is attached to the other end of the thermostrictive material (21) of the first cooling / heating module (20a), and the second movable plate (41b) is the heat of the second cooling / heating module (20b).
  • Each is attached to the other end of the strained material (21).
  • a space between the first fixed plate (40a) and the first movable plate (41a) is formed in the first air passage (42a), and the second fixed plate (40b) and the second movable plate (41b) A space is formed in the second air passage (42b).
  • Each of the connecting plates (59, 59) is formed in a substantially rectangular thin plate shape, and is disposed between the first and second movable plates (41a, 41b) with a predetermined interval in the height direction. Yes. That is, the first and second movable plates (41a, 41b) and the connecting plates (59, 59) are configured to move as a unit.
  • a cam (46) and a rotating shaft (39) are arranged inside the movable housing (50).
  • the cam (46) is a member formed in a substantially cylindrical shape extending in the width direction (depth direction in FIG. 31) of the first and second movable plates (41a, 41b).
  • the cam (46) is formed with a circular outer peripheral portion (48) and a small diameter portion (49) formed by cutting out a semicircular portion of the outer peripheral portion (48).
  • the rotating shaft (39) is inserted through the center of the cam (46), and is attached so that the cam (46) can rotate in the circumferential direction.
  • the repulsive force when the tensile force of the thermostrictive material (21) is released is recovered as the rotational power of the rotating shaft (39).
  • the outer peripheral portion (48) of the cam (46) and the first movable plate (41a) are in contact (that is, the thermostrictive material of the second cooling heating module (20b)).
  • the state in which the outer peripheral portion (48) of the cam (46) is separated from the first movable plate (41a) from the state in which the tensile force is applied to (21) ie, the thermal strain of the second cooling heating module (20b)).
  • the energization of the motor that drives the rotating shaft (39) is temporarily stopped, and the rotating shaft (39) is temporarily in a free state. Then, the rotating shaft (39) is rotationally driven by the repulsive force of the thermostrictive material (21) of the second cooling / heating module (20b). As a result, the power of the rotating shaft (39) can be reduced, and energy saving of the apparatus can be achieved.
  • the tensile force of the thermostrictive material (21) of the first cooling / heating module (20a) is released, the energization of the motor that drives the rotating shaft (39) is temporarily stopped. As a result, the repulsive force of the thermostrictive material (21) of the first cooling / heating module (20a) is recovered as the power of the rotating shaft (39).
  • Modification 5 of Embodiment 5 will be described. As shown in FIG. 32, the fifth modification is different from the first embodiment in the configuration of the actuator (22). The switching control unit (35) is not shown.
  • the actuator (22) according to the fifth modification includes first and second arms (51, 52), a rotating shaft (39), and a stepping motor (not shown). is there.
  • the rotary shaft (39) is a rotary shaft whose axial direction extends in the width direction (depth direction in FIG. 32) of the movable plates (41a, 41b).
  • the rotating shaft (39) is disposed below the partition plate (43).
  • First and second arms (51, 52) are attached to the rotating shaft (39).
  • the rotating shaft (39) is connected to a stepping motor and is configured to be freely rotatable in the circumferential direction by the stepping motor.
  • the first and second arms (51, 52) are formed in an elongated plate-like member and are attached to the rotating shaft (39).
  • a first support (51a) is formed at the tip of the first arm (51) to contact the first movable plate (41a), and a second movable plate (41b) is formed at the tip of the second arm (52).
  • the 2nd support part (52a) made to contact is formed.
  • the first arm (51) has a proximal end attached to the rotation shaft (39) and a distal end extending toward the first movable plate (41a).
  • the second arm (52) has a proximal end attached to the rotation shaft (39) and a distal end extending toward the second movable plate (41b).
  • the weight of each movable plate (41a, 41b) may be adjusted by adjusting the rotation angle per step of the stepping motor. By doing so, the amount of heat generated can be adjusted by adjusting the tensile force applied to the thermostrictive material (21).
  • Modification 6 of Embodiment 5 will be described.
  • the sixth modification is different from the second and fifth modifications in the configuration of the actuator (22).
  • the actuator (22) according to the sixth modification includes first and second movable housings (50a, 50b) and first and second arms (51) which are displacement mechanisms. , 52) and a rotating shaft (39).
  • the first arm (51) is attached to the first movable housing (50a)
  • the second arm (52) is attached to the second movable housing (50b).
  • the 1st movable housing (50a) raises with the raise of the 1st support part (51a) of the 1st arm (51)
  • the 2nd support part (52a) of the 2nd arm (52) descends.
  • the second movable housing (50b) is configured to descend.
  • Other configurations, operations and effects are the same as those of the second modification.
  • the repulsive force when the tensile force of the one-thermostrictive material (21) is released is recovered as the rotational power of the rotating shaft (39).
  • the motor that drives the rotating shaft (39) is temporarily energized.
  • the rotation axis (39) becomes free.
  • the rotary shaft (39) is brought into a free state from a state in which a tensile force is applied to the thermostrictive material (21) of the second cooling / heating module (20b), the second cooling / heating module.
  • the tensile force of the heat strain material (21) of (20b) is released, and the rotating shaft (39) is rotated by the repulsive force at this time.
  • the rotating shaft (39) is in a free state from the state in which the tensile force is applied to the thermostrictive material (21) of the first cooling and heating module (20a)
  • the first cooling and heating module (20a) The tensile force of the thermostrictive material (21) is released, and the rotating shaft (39) is rotated by the repulsive force at this time.
  • Modification 7 of Embodiment 5 will be described.
  • the seventh modification differs from the fifth embodiment in the configuration of the actuator (22) and the switching control unit (35).
  • the actuator (22) according to the seventh modification includes a fixed plate (40), first and second movable plates (56, 57), and first and second plates. And an electromagnet (53, 54).
  • the fixing plate (40) is disposed below the first cooling / heating module (20a).
  • the first movable plate (56) is disposed above the first cooling / heating module (20a), and the second movable plate (57) is disposed above the second cooling / heating module (20b).
  • the fixed plate (40) and the first movable plate (56) are arranged to face each other, and the fixed plate (40) and the second movable plate (57) are arranged to face each other.
  • the first and second movable plates (56, 57) are each made of a magnetic metal such as a magnet or iron.
  • the first electromagnet (53) is disposed in the vicinity of the first movable plate (56) so as to face the second electromagnet (54), and the second electromagnet (54) is disposed in the vicinity of the second movable plate (57). Is arranged.
  • the first and second electromagnets (53, 54) are both connected to the switching control unit (35), and energization is switched by the switching control unit (35).
  • the switching control unit (35) controls energization applied to the first and second electromagnets (53, 54). That is, when a tensile force is applied to the first cooling and heating module (20a), the first electromagnet (53) has a polarity opposite to that of the opposing first movable plate (56). A tensile force is applied to the heat strain material (21) of the cooling and heating module (20a). At this time, by stopping energization of the second electromagnet (54), the tensile force to the heat strain material (21) of the second cooling heating module (20b) is released.
  • the second electromagnet (54) has a polarity opposite to that of the opposing second movable plate (57), so that the second A tensile force is applied to the heat strain material (21) of the cooling and heating module (20b).
  • the tensile force to the heat strain material (21) of the first cooling heating module (20a) is released.
  • Modification 8 of Embodiment 5 will be described.
  • the modification 8 differs from the modification 7 of the fifth embodiment in the configuration of the actuator (22). In the present modification 8, only the parts different from the modification 7 will be described.
  • the fixed plate (40) is disposed above the cooling and heating module (20).
  • the first and second movable plates (56, 57) are disposed below the cooling and heating module (20) so as to face the fixed plate (40), and the first and second movable plates (56, 57) and The first and second electromagnets (53, 54) are arranged so as to face each other.
  • the first and second movable plates (56, 57) are made of a magnetic metal such as a magnet or iron and have a predetermined weight.
  • the first cooling and heating module (20a) When a tensile force is applied to the first cooling and heating module (20a), the first cooling and heating module (20a) is reduced by the weight of the first movable plate (56) by stopping energization of the first electromagnet (53). ) To give a tensile force to the heat strain material (21). At this time, the second electromagnet (54) has the same polarity as the magnetism of the opposing second movable plate (57), and the tensile force on the thermostrictive material (21) of the second cooling heating module (20b) is released. .
  • the second cooling / heating module is reduced according to the weight of the second movable plate (57) by stopping energization of the second electromagnet (54).
  • a tensile force is applied to the heat strain material (21) of (20b).
  • the first electromagnet (53) has the same polarity as the magnetism of the opposing first movable plate (56), and the tensile force applied to the thermostrictive material (21) of the first cooling heating module (20a) is released. .
  • the first and second movable plates (56, 57) have a predetermined weight.
  • the first and second movable plates (56, 57) are replaced with magnets or irons. It may be made of a magnetic metal such as and a relatively light member.
  • the first cooling / heating module (53) has a polarity opposite to that of the first movable plate (56). Apply tensile force to the thermostrained material (21) of 20a). At this time, by stopping energization of the second electromagnet (54), the tensile force to the heat strain material (21) of the second cooling heating module (20b) is released.
  • the second electromagnet (54) is magnetized in the opposite polarity to the polarity of the second movable plate (57).
  • the heat strain material (21) of the first cooling heating module (20a) is released.
  • Modification 9 of Embodiment 5 will be described.
  • the modification 9 differs from the modification 7 of the fifth embodiment in the configuration of the actuator (22). In the present modification 8, only the parts different from the modification 7 will be described.
  • the actuator (22) according to the fourth modification includes a heat-strain material (21), first and second movable plates (56, 57), first and first Two electromagnets (53, 54) and a partition plate (43) are provided.
  • the first and second movable plates (56, 57) are each formed in a substantially rectangular thin plate.
  • the first movable plate (56) is arranged vertically near the right end of the first cooling / heating module (20a), and the second movable plate (57) is arranged vertically near the left end of the second cooling / heating module (20b). Yes.
  • One end of the heat strain material (21) of the first cooling and heating module (20a) is connected to the left end surface of the first movable plate (56), and the second cooling plate is connected to the right end surface of the second movable plate (57).
  • One end of the heat strain material (21) of the heating module (20b) is connected.
  • the partition plate (43) is disposed between the first cooling / heating module (20a) and the second cooling / heating module (20b) so as to face the first and second movable plates (56, 57). Is.
  • the other end of each heat strain material (21) of the first cooling / heating module (20a) and the second cooling / heating module (20b) is connected to the partition plate (43).
  • Embodiment 6 of the Invention Embodiment 6 of the present invention will be described.
  • Embodiment 6 shown in FIGS. 37 and 38 relates to a specific configuration of the cooling and heating module (20).
  • the belt conveyance device (65) which is a driving member for conveying the plurality of fins (70) formed of the thermostrictive material (21) in the casing (60) is provided.
  • the belt conveyance device (65) which is a driving member for conveying the plurality of fins (70) formed of the thermostrictive material (21) in the casing (60) is provided.
  • the belt conveyance device (65) which is a driving member for conveying the plurality of fins (70) formed of the thermostrictive material (21) in the casing (60) is provided.
  • the belt conveyance device (65) which is a driving member for conveying the plurality of fins (70) formed of the thermostrictive material (21) in the casing (60) is provided.
  • the air passage (P) Provided, and switching between applying and releasing
  • the casing (60) is formed in a rectangular box, and an air passage (P) is formed inside.
  • the inside of the casing (60) is configured such that air flows from the near side to the far side in FIG.
  • the inside of the casing (60) is partitioned up and down by an upper and lower partition plate (61) to form an upper air passage (62) and a lower air passage (63).
  • positioning a belt conveying apparatus (65) is formed in the up-and-down partition plate (61).
  • the belt conveying device (65) includes a guide rail (69), a belt (67), and two wheels (66, 66).
  • the wheel (66, 66) is a rotating body formed in a substantially cylindrical shape.
  • the wheels (66, 66) are configured to be able to transport the belt (67).
  • Two wheels (66, 66) are arranged side by side in the casing (60), and are configured to rotate counterclockwise.
  • the belt (67) is formed in a sheet-like member, and includes an outer peripheral belt (67a) and an inner peripheral belt (67b).
  • the inner peripheral belt (67b) is attached in contact with the two wheels (66, 66) and moves inside. That is, when the pair of wheels (66, 66) rotate counterclockwise, the inner peripheral belt (67b) moves leftward when passing through the upper air passage (62) in the casing (60). When it is transported and passes through the lower air passage (63), it is transported in the right direction.
  • the inner peripheral belt (67b) is formed with protruding portions (68) protruding outward from the portion where the thermal strain material (21) is formed at both ends in the width direction.
  • the projecting portion (68) is a portion that slides with an inner rail (69b) described later.
  • the outer peripheral belt (67a) is attached to the inner peripheral belt (67b) through the heat strain material (21) and moves outside. That is, the outer peripheral belt (67a), the thermal strain material (21), and the inner peripheral belt (67b) are conveyed together.
  • the outer peripheral belt (67a) has protruding portions (68) protruding outward from the portion where the heat-strain material (21) is formed at both ends in the width direction. This protrusion part (68) becomes a part which slides with the outer periphery rail (69a) mentioned later.
  • the guide rail (69) guides the outer peripheral belt (67a) and the inner peripheral belt (67b).
  • the guide rail (69) includes an outer peripheral rail (69a) and an inner peripheral rail (69b).
  • the outer peripheral rail (69a) is a rail member provided at both ends in the width direction of the outer peripheral belt (67a).
  • the outer peripheral rail (69a) is configured to guide the outer peripheral belt (67a) by hooking a side end portion of the outer peripheral belt (67a) to a concave portion recessed outward.
  • the inner peripheral rail (69b) is a rail member provided at both ends in the width direction of the inner peripheral belt (67b).
  • the inner peripheral rail (69b) is configured to guide the inner peripheral belt (67b) by hooking a side end portion of the inner peripheral belt (67b) to a concave portion recessed outward.
  • the distance between the outer peripheral rail (69a) and the inner peripheral rail (69b) is different between above and below the casing (60). Specifically, the distance between the outer rail (69a) and the inner rail (69b) increases above the casing (60) (upper air passage (62)) while below the casing (60) ( The lower air passage (63)) is narrower.
  • the cooling and heating module (20) includes a fin (70) made of a heat strain material (21).
  • Each fin (70) is formed in a plate shape extending in the width direction (depth direction in FIG. 37) of the casing (60). Each fin (70) has one end attached to the outer peripheral belt (67a) and the other end attached to the inner peripheral belt (67b).
  • the outer peripheral belt (67a), the inner peripheral belt (67b) and the fin (70) are conveyed.
  • the upper air passage (62) of the casing (60) is conveyed, the distance between the outer peripheral belt (67a) and the inner peripheral belt (67b) increases, so that the thermal strain constituting the fin (70) is increased.
  • the material (21) is pulled upward.
  • the distance between the outer peripheral belt (67a) and the inner peripheral belt (67b) is reduced, so that the heat strain material constituting the fin (70)
  • the tensile force to (21) is released. That is, in the casing (60), the upper air passage (62) is formed in a region for heating air, and the lower air passage (63) is formed in a region for cooling air. Therefore, since heating and cooling can be performed continuously, it is suitable for the rotor-type air conditioner (1) in the above embodiment.
  • the belt conveyance device (65) according to the first modification is configured such that the distance between the outer peripheral rail (69a) and the inner peripheral rail (69b) is different between the left and right sides of the casing (60). It is a thing. Other configurations, operations, and effects are the same as those of the sixth embodiment.
  • Modification 2 Next, Modification 2 of Embodiment 6 will be described. As shown in FIG. 40, the second modification differs from the sixth embodiment in the configuration of the drive member.
  • a rotor device (71) is provided instead of the belt conveying device (65).
  • the rotor device (71) includes an outer peripheral body (73) and an eccentric shaft (72).
  • the eccentric shaft (72) is a rotating shaft whose axial direction extends over the depth direction of the casing (60).
  • the eccentric shaft (72) is disposed inside the outer peripheral body (73) to be described later and at substantially the same height as the upper and lower partition plates (61) in the casing (60).
  • a large number of fins (70) are attached to the outer periphery of the eccentric shaft (72) in the circumferential direction and extend radially.
  • the eccentric shaft (72) is connected to a motor (not shown) and is configured to be rotatable by the motor.
  • the outer peripheral body (73) is a member that forms the outer peripheral portion of the rotor device (71).
  • the outer peripheral body (73) is formed in a substantially cylindrical shape and is rotatably arranged in the casing (60). At this time, the outer peripheral body (73) is configured to rotate at a fixed position along a guide rail (not shown).
  • the outer peripheral end of the fin (70) is attached to the inner peripheral surface of the outer peripheral body (73).
  • the fin (70) is configured in a honeycomb structure.
  • Other configurations, operations and effects are the same as those of the second modification.
  • Modification 4 of Embodiment 6 will be described. As shown in FIGS. 42 to 44, the fourth modification differs from the sixth embodiment in the configuration of the drive member.
  • a rotating device (99) is provided instead of the belt conveying device (65).
  • the casing (80) according to the fourth modification is internally partitioned left and right by a partition plate (81), the right side is formed in the first air passage (82), and the left side is formed in the second air passage (83). ing.
  • a rotating device (99) is provided in the casing (60).
  • the rotating device (99) includes a rotating shaft (84), a first rotating plate (85) attached to the rotating shaft (84), a connecting portion (88) attached to one end of the rotating shaft (84), An inclined shaft (86) attached to the rotating shaft (84) via the connecting portion (88) and a second rotating plate (87) attached to the inclined shaft (86) are provided.
  • the wire-shaped fin (70) which consists of a thermostrain material (21) is attached between the 1st rotation board (85) and the 2nd rotation board (87).
  • a slit is formed in the partition plate (81) at a position where the fin (70) passes.
  • the fourth modification is configured such that air flows to the side of the rotating device (99) (that is, the depth direction between the first rotating plate (85) and the second rotating plate (87) in FIG. 43). ing.
  • the tilt axis (86) is attached with a predetermined angle with respect to the rotation axis (84).
  • the rotating shaft (84) is connected to a motor (not shown) so as to be rotatable. For this reason, when the rotating shaft (84) rotates, the inclined shaft (86) also rotates together with the rotating shaft (84). Accordingly, the distance between the first rotating plate (85) and the second rotating plate (87) is increased by the amount of inclination. Therefore, when the fin (70) passes through the first air passage (82), the distance between the first rotating plate (85) and the second rotating plate (87) is increased, so that the fin (70) is formed. A tensile force is applied to the heat-strained material (21).
  • a hole (89) penetrating in the thickness direction is formed in the first rotating plate (85) and the second rotating plate (87). And between the 1st rotating plate (85) and the 2nd rotating plate (87), while extending radially from a rotating shaft (84) and an inclination shaft (86), it consists of a sheet-like thermostrain material (21). Fins (70) are formed.
  • Embodiment 7 of the Invention ⁇ Embodiment 7 of the present invention will be described.
  • the switching control unit (35) is not shown.
  • the seventh embodiment shown in FIGS. 48 and 49 relates to a specific configuration of the cooling and heating module (20).
  • the rotating shaft (105) provided at the base end of the thermostrain material (21) formed in a wire shape and the tip of the thermostrain material (21) are provided.
  • a first weight portion (107a) and a second weight portion (107b) Provided with a first weight portion (107a) and a second weight portion (107b), and by applying a tension to the heat strain material (21) in the air passage (P) by rotating the rotating shaft (105). It is configured to switch release.
  • the cooling and heating module (20) is provided in a casing (100) in which an air passage (P) is formed.
  • the casing (100) is formed in a rectangular box, and the interior is partitioned vertically by the upper and lower partition plates (101).
  • the casing (100) has an upper side formed in the upper air passage (103) and a lower side formed in the lower air passage (104).
  • a fan (30) is provided on the outlet side of the upper air passage (103), while a fan (30) is also provided on the outlet side of the lower air passage (104).
  • An opening (102) is formed in the upper and lower partition plates (101), and a cooling and heating module (20) is provided in the casing (100).
  • An air inlet (100a, 100b) is formed on the upper and lower sides of one side surface of the casing (100) in the longitudinal direction, and an air inlet (100a, 100b) is formed on the upper and lower sides, respectively.
  • a corresponding air outlet is formed. The air is taken into the casing (100) from the air inlets (100a, 100b), while the air is discharged from the air outlet to the outside of the casing (100).
  • the cooling and heating module (20) includes a rotating shaft (105) extending in the width direction of the casing (100), a motor shaft (108) attached to the rotating shaft (105), and one direction from the rotating shaft (105).
  • the first heat strain material (21a) is formed in a wire shape.
  • the first thermostrictive material (21a) has a base end attached to the outer periphery of the rotating shaft (105), and a tip extending from the rotating shaft (105).
  • a large number of first thermostrictive materials (21a) are provided along the axial direction of the rotating shaft (105).
  • a first weight portion (107a) is attached to the tip of each first thermostrictive material (21a).
  • the first weight portion (107a) is formed in an elongated cylindrical shape and is disposed so as to be substantially parallel to the rotation axis (105).
  • the second heat strain material (21b) is formed in a wire shape.
  • the second thermostrictive material (21b) has a base end attached to the outer periphery of the rotating shaft (105), and a distal end extending downward from the rotating shaft (105).
  • a large number of second thermostrictive materials (21b) are provided along the axial direction of the rotating shaft (105).
  • a second weight portion (107b) is attached to the tip of each second thermostrictive material (21b).
  • the second weight portion (107b) is formed in an elongated cylindrical shape and is disposed so as to be substantially parallel to the rotation axis (105).
  • the first thermal strain material (21a) and the second thermal strain material (21b) are configured to move by 180 °. And when a rotating shaft (105) rotates and a 1st weight part (107a) is located below, tensile force is provided to a 1st thermostrictive material (21a). Further, when the rotation shaft (105) rotates and the second weight portion (107b) is positioned below, a tensile force is applied to the second thermostrictive material (21b).
  • the closing plate (106) is attached horizontally to the rotating shaft (105).
  • the closing plate (106) is configured to always close the opening (102) as the rotating shaft (105) rotates.
  • the cooling and heating module (20) includes a rotating shaft (105), a motor shaft attached to the rotating shaft (105), and a large number of thermostrictive materials (21) extending radially from the rotating shaft (105). And a weight portion (107) attached to the tip of each heat strain material (21).
  • cooling and heating module (20) is installed in each of the upper air passage (103) and the lower air passage (104) in the casing (100).
  • the heat strain material (21) is formed in a wire shape.
  • the heat-strain material (21) has a base end attached to the outer periphery of the rotation shaft (105), and a tip that extends outward in the radial direction of the rotation shaft (105).
  • Sixteen thermostrain materials (21) are provided per rotation of the rotation shaft (105), and are continuously formed along the axial direction of the rotation shaft (105).
  • thermostrictive material (21) rotated by the rotation of the rotating shaft (105).
  • a tensile force is applied to the thermostrictive material (21).
  • the tensile force applied to the heat strain material (21) is released.
  • the present invention may be configured as follows with respect to the above embodiment.
  • the actuator (22) shown in FIGS. 53 to 56 may be used.
  • the actuator according to FIG. 53 is composed of a heater (111) and a bimetal (110).
  • the actuator according to FIG. 54 includes a piezo element (112).
  • the actuator according to FIG. 55 includes a drive arm (113).
  • the actuator according to FIG. 56 includes a solenoid (114).
  • the indoor air taken into the casing (10) is processed by the cooling and heating module (20) and supplied to the room (3), while the outdoor taken into the casing (10)
  • a circulation system is adopted in which air is processed by the cooling and heating module (20) and discharged outside the room, but the outdoor air taken into the casing (10) is processed by the cooling and heating module (20) and the room (3)
  • a ventilation system may be employed in which room air taken into the casing (10) is processed by the cooling and heating module (20) and discharged outside the room.
  • cooling and heating module (20) described in the above embodiments may be changed as appropriate according to the configuration of the air conditioner (1).
  • the configuration of the air conditioner (1) may be appropriately changed as long as the cooling operation or the heating operation, or the dehumidifying cooling operation or the humidifying heating operation can be performed.
  • the eighth embodiment includes a humidity control module (24) in which an adsorption layer (23) is formed on the surface of the heat strain material (21) of the cooling and heating module (20), and the humidity control module (24) controls the humidity of the air. It is an air conditioner to adjust. That is, the air conditioning apparatus of Embodiment 8 constitutes a humidity control apparatus (150).
  • the humidity control module (24) can employ the actuator (22) of the cooling and heating module (20) according to the above-described embodiments and modifications thereof.
  • FIG. 57 is a schematic view showing a state in which the humidity control apparatus (150) according to the eighth embodiment is installed in the room (air-conditioning target space) (3) of the building (2), and FIG. The operation state is shown, and FIG. 57 (B) shows the operation state of the moisture release operation.
  • the humidity control apparatus (150) of Embodiment 8 is configured as a dehumidifying apparatus.
  • the humidity control device (150) includes a casing (10), a humidity control module (24) housed in the casing (10), a fan (30) for flowing air to the humidity control module (24), and a humidity control And a switching control unit (35) for adjusting the tensile force applied to the module (24).
  • the humidity control module (24) and the switching control unit (35) constitute a humidity control unit (151).
  • the indoor unit (U) is comprised by the casing (10) and the functional component provided in the inside.
  • an air passage (P) is formed for supplying the air introduced into the casing (10) through the humidity control module (24) and supplying the air to the room (3).
  • the moisture absorption operation can be performed by introducing the air absorbed by the humidity control module (24) into the room (3) through the air passage (P).
  • the humidity control module (24) includes a thermostrictive material (21) and an actuator (22) that applies a tensile force to the thermostrictive material (21). ).
  • the tensile force applied to the thermal strain material (21) constitutes the tension according to the present invention.
  • An adsorption layer (23) capable of adsorbing and desorbing moisture in the air is provided on the surface of the humidity control module (24).
  • the thermal strain material (21) is constituted by a shape memory alloy as an example, and heats the object by applying a tensile force, while cooling the object by releasing the tensile force. Specifically, as shown in FIG. 58, when a tensile force is applied to the thermostrained material (21), the entropy decreases due to the phase change from the parent phase (austenite phase) to the martensite phase. When heat is generated, the thermostrain material (21) itself is heated (I or II). When the thermal strain material (21) is brought into contact with the object to be heated while a tensile force is applied to the heat strain material (21), the heat of the heat strain material (21) is transmitted to the object to be heated (II to III).
  • thermostrictive material (21) is lowered.
  • the martensite phase changes to the parent phase (austenite phase) III to IV).
  • the heat-strained material (21) is insulated, the temperature of the heat-strained material (21) decreases.
  • the heat of the object to be cooled is transferred to the heat-strained material (21) (IV to I).
  • thermostrictive material (21) when a tensile force is applied to the thermostrictive material (21), the thermostrictive material (21) generates heat, and the adsorption layer (23) is heated.
  • the adsorption layer (23) is heated, the moisture adsorbed on the adsorption layer (23) is released into the air (moisture release operation). Therefore, the water
  • FIG. 59B when the tensile force applied to the thermostrain material (21) is released, the thermostrain material (21) absorbs heat, and the adsorption layer (23) is cooled.
  • the moisture in the air after passing through the humidity control module (24) is less than before the passage.
  • the moisture releasing operation and the moisture absorbing operation are alternately performed.
  • Ti / Ni / Cu alloy can be mentioned.
  • those having Ti of 40 to 80%, Ni of 20 to 60%, and Cu of 0 to 30% can be used.
  • the actuator (22) is for applying a tensile force to the thermostrictive material (21).
  • the actuator (22) is connected to the switching control unit (35), and the switching control unit (35) controls the application and release of the tensile force to the thermostrictive material (21).
  • the switching control section (35) controls the actuator (22) to control the application and release of the tensile force to the thermostrictive material (21).
  • the switching control unit (35) generates heat of the thermostrain material (21) by changing the magnitude of the tensile force applied to the thermostrain material (21) in the actuator (22). It is configured to adjust the amount and adjust the moisture absorption / release capacity.
  • the switching control unit (35) changes the ratio of the thermal strain material (21) to which a tensile force is applied, out of the entire thermal strain material (21).
  • the heat generation capacity of the heat strain material (21) may be adjusted to adjust the moisture absorption / release capacity.
  • the switching control unit (35) adjusts the heat generation amount of the thermostrictive material (21) by changing the time interval for repeating the moisture absorption operation and the moisture release operation, and adjusts the moisture absorption / release capability. It may be configured.
  • the dehumidifying operation is intermittently performed by repeatedly performing the moisture absorbing operation of FIG. 57 (A) and the moisture releasing operation of FIG. 57 (B).
  • the humidity control module (24) does not employ an elastic body such as rubber coated with an adsorbent.
  • an elastic body such as rubber coated with an adsorbent
  • a mechanism for expanding and contracting the elastic body is required, and the structure of the humidity control apparatus (150) is
  • the apparatus (1) becomes large with increasing complexity, according to the present embodiment, since the elastic body is not used for the humidity control module (24), the size of the humidity control apparatus (150) is increased. And complication of the structure can be prevented.
  • the heat-strained material (21) constituting the humidity control module (24) is not an elastic body that expands and contracts greatly, it is possible to prevent the adsorbent from peeling off from the humidity control module (24). be able to.
  • the heat generation amount of the heat strain material (21) can be adjusted and the moisture absorption / release capacity can be adjusted, it is possible to operate according to the humidity control load.
  • the modification 1 shown in FIG. 62 is configured to install two indoor units (U1, U2) in a room (3) to be air-conditioned.
  • the first indoor unit (U1) is installed on one of the opposing wall surfaces (the right wall surface in the figure), and the second indoor unit (U2) is installed on the other wall surface (the left wall surface in the figure).
  • the configuration of each indoor unit (U1, U2) is the same as that of the indoor unit (U) of the humidity controller (150) in FIG. 57, the description of the configuration of each indoor unit (U1, U2) is omitted.
  • air passages (P1, P2) are formed in the indoor units (U1, U2), respectively.
  • FIG. 62 (A) shows a state where the first indoor unit (U1) performs a moisture absorption operation and the second indoor unit (U2) performs a moisture release operation.
  • the first indoor unit (U1) the tensile force applied to the heat strain material (21) of the humidity control module (24) is released. Therefore, the humidity control module (24) of the first indoor unit (U1) absorbs heat, and moisture in the air is adsorbed when the outdoor air (OA) flows from the outdoor to the indoor (3). Then, the air that has been moisture-adsorbed and dehumidified is supplied to the room (3) as supply air (SA).
  • the fan (30) rotates in the direction in which the indoor air (RA) is discharged to the outside, and at the same time, the tensile force is applied to the heat strain material (21) of the humidity control module (24). Is granted. Therefore, the moisture contained in the adsorption layer (23) is given to the air and released as exhausted air (EA) to the outside of the room, and the adsorption layer (23) of the humidity control module (24) is regenerated.
  • FIG. 62 (B) shows a state where the second indoor unit (U2) performs a moisture absorption operation and the first indoor unit (U1) performs a moisture release operation.
  • the second indoor unit (U2) the tensile force on the heat-strain material (21) of the humidity control module (24) is released. Therefore, when the humidity control module (24) of the second indoor unit (U2) absorbs heat and the outdoor air (OA) flows from the outdoor to the indoor (3), moisture in the air is adsorbed. Then, the air that has been moisture-adsorbed and dehumidified is supplied to the room (3) as supply air (SA).
  • SA supply air
  • the fan (30) rotates in the direction in which the indoor air (RA) is discharged to the outside, and at the same time, the tensile force is applied to the heat strain material (21) of the humidity control module (24). Is granted. Therefore, the moisture contained in the adsorption layer (23) is given to the air and released as exhausted air (EA) to the outside of the room, and the adsorption layer (23) of the humidity control module (24) is regenerated.
  • the dehumidifying operation can be performed continuously by alternately switching the operation of FIG. 62 (A) and the operation of FIG. 62 (B) for regenerating the adsorption layer (23).
  • Modification 2 The modification 2 shown in FIG. 63 is common to the apparatus (1) of FIG. 62 in that two indoor units (U1, U2) are installed in the air-conditioned room (3). 62 is different from Modification 1 in that both the first indoor unit (U1) and the second indoor unit (U2) are installed on the wall surface on the right side of the drawing.
  • the configuration of each indoor unit (U1, U2) is the same as that of the humidity control apparatus (150) of FIGS.
  • FIG. 63A shows a state where the first indoor unit (U1) performs a moisture absorption operation and the second indoor unit (U2) performs a moisture release operation.
  • the first indoor unit (U1) the tensile force applied to the heat strain material (21) of the humidity control module (24) is released. Therefore, the humidity control module (24) of the first indoor unit (U1) absorbs heat, and moisture in the air is adsorbed when the outdoor air (OA) flows from the outdoor to the indoor (3). Then, the air that has been moisture-adsorbed and dehumidified is supplied to the room (3) as supply air (SA).
  • SA supply air
  • the fan (30) rotates in the direction in which the indoor air (RA) is discharged to the outside, and at the same time, the tensile force is applied to the heat strain material (21) of the humidity control module (24). Is granted. Therefore, the moisture contained in the adsorption layer (23) is given to the air and released as exhausted air (EA) to the outside of the room, and the adsorption layer (23) of the humidity control module (24) is regenerated.
  • FIG. 63B shows a state in which the moisture absorption operation is performed in the second indoor unit (U2) and the moisture release operation is performed in the first indoor unit (U1).
  • the second indoor unit (U2) the tensile force on the heat-strain material (21) of the humidity control module (24) is released. Therefore, the humidity control module (24) of the second indoor unit (U2) absorbs heat, and moisture in the air is adsorbed when the outdoor air (OA) flows from the outdoor to the indoor (3). Then, the air that has been moisture-adsorbed and dehumidified is supplied to the room (3) as supply air (SA).
  • the fan (30) rotates in the direction in which the indoor air (RA) is discharged to the outside, and at the same time, the tensile force is applied to the heat strain material (21) of the humidity control module (24). Is granted. Therefore, the moisture contained in the adsorption layer (23) is given to the air and released as exhausted air (EA) to the outside of the room, and the adsorption layer (23) of the humidity control module (24) is regenerated.
  • the dehumidifying operation can be continuously performed by alternately switching the operation of FIG. 63A for regenerating the adsorption layer (23) and the operation of FIG. 63B.
  • Modification 3 In Modification 3 shown in FIG. 64, two humidity control modules (24) are provided in the casing (10) of the humidity control apparatus (150), and one humidity control module (24) (first humidity control module (24a)) is provided. ) Is supplied to the room (3) and the air that has passed through the other humidity control module (24) (second humidity control module (24b)) is discharged to the outside of the room. It is configured to switch between the second operation for supplying air that has passed through the humidity control module (24b) to the room (3) and releasing the air that has passed through the first humidity control module (24a) to the outside. is there.
  • the humidity control device (150) is specifically configured as shown in FIGS.
  • This humidity control device (150) is an integrated configuration in which two humidity control modules (24a, 24b) and two fans (30a, 30b) are housed in one casing (10), and is installed behind the ceiling.
  • FIG. 65 shows a first operation operation in which the first humidity control module (24a) is on the moisture absorption side and the second humidity control module (24b) is on the moisture release side
  • FIG. 66 is the second humidity control module (24b).
  • the second operation operation is shown in which the first humidity control module (24a) is the moisture release side.
  • (A) is a plan view (showing the internal structure when the apparatus is viewed from above)
  • (B) is a left side view
  • (C) is a right side.
  • the casing (10) of the humidity control device (150) is formed in a square box shape.
  • a first suction port (11) for taking outdoor air (OA) into the casing (10) and a second air port for taking indoor air (RA) into the casing (10) are formed on one side wall surface of the casing (10).
  • a suction port (12) is provided.
  • the 1st blower outlet (13) which supplies supply air (SA) to room
  • a second outlet (14) for discharging (EA) to the outside is provided.
  • These first suction port (11), second suction port (12), first air outlet (13) and second air outlet (14) are respectively provided with ducts (4a, 4b, 4c, 4d) are connected.
  • the casing (10) is provided with a humidity control chamber (C1, C2) in which the humidity control module (24) is disposed, and a fan chamber (C3, C4) in which the fans (30a, 30b) are disposed.
  • the humidity control chambers (C1, C2) are composed of a first humidity control chamber (C1) and a second humidity control chamber (C2) located adjacent to each other in the casing (10) in FIGS. ing.
  • the fan chambers (C3, C4) are composed of a first fan chamber (C3) and a second fan chamber (C4) that are also adjacent to the left and right of the casing (10).
  • An air supply fan (30a) is disposed in the first fan chamber (C3), and an exhaust fan (30b) is disposed in the second fan chamber (C4).
  • an inlet side ventilation chamber (C5, C6) is formed between each of the suction ports (11, 12) and the humidity control chamber (C1, C2).
  • the inlet-side ventilation chambers (C5, C6) are composed of a first inlet-side ventilation chamber (C5) and a second inlet-side ventilation chamber (C6) arranged in two upper and lower stages of the casing (10).
  • the first inlet side ventilation chamber (C5) is provided with a first suction port (11), and the second inlet side ventilation chamber (C6) is provided with a second suction port (12).
  • Outlet ventilation chambers are formed between the humidity control chambers (C1, C2) and the fan chambers (C3, C4).
  • the outlet side ventilating chambers (C7, C8) are composed of a first outlet side ventilating chamber (C7) and a second outlet side ventilating chamber (C8) arranged in two upper and lower stages of the casing (10).
  • a total of four dampers (D5, D6, D7, D8) that can be opened and closed are provided between each humidity control chamber (C1, C2) and each outlet-side ventilation chamber (C7, C8). Yes.
  • Each outlet-side ventilation chamber (C7, C8) communicates with each fan chamber (C3, C4).
  • the first air outlet (13) is provided on the first fan chamber (C3) side of the casing (10), and the second air outlet (14) is provided on the second fan chamber (C4) side of the casing (10). It has been.
  • the first damper (D1), the fourth damper (D4), the fifth damper (D5), and the eighth damper (D8) are opened, and the second damper (D2 ), The third damper (D3), the sixth damper (D6) and the seventh damper (D7) are closed.
  • the second damper (D2), the third damper (D3), the sixth damper (D6), and the seventh damper (D7) are opened, and the first damper (D1), the fourth damper are opened.
  • the damper (D4), the fifth damper (D5) and the eighth damper (D8) are closed.
  • damper (D7) are supplied to the room (3) from the first outlet (13) and the room air is introduced into the casing (10) from the second outlet (14). Is discharged from the second outlet (14) to the outside through the second damper (D2), the first humidity control module (24a) and the sixth damper (D6).
  • this humidity control device (150) is configured as a dedicated dehumidifier
  • the humidity control module (24) through which air supplied to the room (3) passes is the first humidity control module (24a) and the second humidity control module. It is the humidity control module (24) that performs the moisture absorption operation regardless of which one of the humidity modules (24b) is switched to. Therefore, dehumidified air is continuously supplied to the room (3).
  • the humidity control module (24) through which the air exhausted to the outside passes can perform moisture release operation regardless of whether it is switched to the second humidity control module (24b) or the first humidity control module (24a).
  • the humidity control module (24). Therefore, the humidity control module (24) through which the air discharged to the outside passes is always on the regeneration side.
  • the dehumidifying operation can be continuously performed by alternately switching the operation of FIG. 65 for regenerating the adsorption layer (23) and the operation of FIG.
  • Modification 4 The modification 4 shown in FIG. 67 is an example regarding the humidity control apparatus (150) using the rotor type humidity control module (24). This humidity control apparatus (150) is also configured as a dedicated dehumidifier.
  • the casing (10) of the humidity control device (150) is provided with an air supply side passage (P1) and an exhaust side passage (P2).
  • An air supply fan (30a) is provided in the air supply side passage (P1)
  • an exhaust fan (30b) is provided in the exhaust side passage (P2).
  • the humidity control module (24) is formed in a disc shape, and is disposed across the supply side passage (P1) and the exhaust side passage (P2) in the casing (10). When the humidity control module (24) rotates about the rotation axis, the portion located in the air supply side passage (P1) moves into the exhaust side passage (P2), and the exhaust side passage The portion located in (P2) can be moved into the supply side passage (P1).
  • the moisture absorption operation is performed in the supply side passage (P1), and the moisture release operation is performed in the exhaust side passage (P2).
  • the tensile force is not applied to the portion where the humidity control module (24) is located in the supply side passage (P1), and the heat-strain material (21) absorbs heat and the adsorption layer (23) is cooled. Moisture in the air is adsorbed on the adsorption layer (23).
  • a tensile force is applied to the portion where the humidity control module (24) is located in the exhaust side passage (P2), the heat-strain material (21) dissipates heat, and the adsorption layer (23) is heated, and the adsorption layer (23 ) Is released into the air to regenerate the adsorbent.
  • the moisture absorption operation and the moisture release operation are performed while rotating the humidity control module (24) continuously or intermittently. Therefore, the humidity control module (24) can be regenerated in the exhaust side passage (P2) and at the same time moisture-absorbed in the air supply side passage (P1). Can be supplied to.
  • Embodiment 9 shown in FIG. 68 is an example in which the humidity control apparatus (150) of Embodiment 8 shown in FIG. 57 is configured as a dedicated humidifier.
  • the humidity control apparatus (150) includes a casing (10), a humidity control module (24) housed in the casing (10), and a humidity control module (24 ) And a switching control unit (35) for adjusting the tensile force applied to the humidity control module (24).
  • the casing (10) and the functional parts provided in the casing (10) Unit (U) is configured.
  • an air passage (P) is formed in the casing (10) for supplying the air introduced into the casing (10) through the humidity control module (24) and supplying the air into the room (3). .
  • the humidity control device (150) can perform a humidification operation by introducing the air dehumidified by the humidity control module (24) into the room (3) through the air passage (P). This is different from the humidity control apparatus (150) of FIG.
  • this humidity control apparatus in FIG. 68 (A), a tensile force is applied to the heat-strained material (21) of the humidity control module (24) that has been cooled until then. Then, the humidity control module (24) dissipates heat, and the adsorption layer (23) is heated. When the adsorption layer (23) is heated, the moisture contained in the adsorption layer (23) is released from the outdoor to the outdoor air (OA) flowing into the indoor (3). Therefore, the humidified air is supplied to the room (3) as supply air (SA).
  • SA supply air
  • FIG. 68 (B) the rotation direction of the fan (30) is switched, and the indoor air (RA) is discharged to the outside. At this time, the tensile force to the heat-strain material (21) of the humidity control module (24) is released. Then, the humidity control module (24) absorbs heat, and the adsorption layer (23) is cooled. When the adsorption layer (23) is cooled, moisture in the air is adsorbed on the adsorption layer (23). Then, the air that has been dehumidified by adsorbing moisture is discharged outside the room as exhaust air (EA). At this time, since the thermostrictive material (21) absorbs heat, the adsorption layer (23) can be prevented from generating heat due to the heat of adsorption. Therefore, the moisture absorption operation is performed without reducing the adsorption performance.
  • Modification 1 of Embodiment 9 shown in FIG. 69 is an example in which the humidity control apparatus (150) of FIG.
  • a configuration in which the first indoor unit (U1) is installed on one of the opposing wall surfaces (the right wall surface in the figure) and the second indoor unit (U2) is installed on the other wall surface (the left wall surface in the figure) Is the same as the humidity control apparatus (150) of FIG.
  • the configuration of each indoor unit (U1, U2) is the same as that of the second embodiment in FIG.
  • FIG. 69 (A) shows a state in which the first indoor unit (U1) performs a moisture releasing operation and the second indoor unit (U2) performs a moisture absorbing operation.
  • a tensile force is applied to the heat strain material (21) of the humidity control module (24). Therefore, the humidity control module (24) of the first indoor unit (U1) dissipates heat, and moisture is given to the outdoor air (OA) flowing from the outdoor to the indoor (3). Then, air humidified with moisture is supplied to the room (3) as supply air (SA).
  • the fan (30) rotates in the direction in which the indoor air (RA) is discharged outside, and at the same time, the tensile force of the humidity control module (24) on the heat-strain material (21) Is released. Therefore, moisture in the air is adsorbed by the adsorption layer (23), and the dehumidified air is discharged to the outside as exhaust air (EA).
  • FIG. 69 (B) shows a state in which the moisture releasing operation is performed in the second indoor unit (U2) and the moisture absorbing operation is performed in the first indoor unit (U1).
  • a tensile force is applied to the heat strain material (21) of the humidity control module (24). Therefore, the humidity control module (24) of the second indoor unit (U2) dissipates heat, and moisture is given to the outdoor air (OA) flowing from the outdoor to the indoor (3). Then, air humidified with moisture is supplied to the room (3) as supply air (SA).
  • the fan (30) rotates in the direction in which the indoor air (RA) is discharged to the outside, and at the same time, the tensile force of the humidity control module (24) on the heat strain material (21) Is released. Therefore, moisture in the air is adsorbed by the adsorption layer (23), and the dehumidified air is discharged to the outside as exhaust air (EA).
  • the humidification operation can be continuously performed by alternately switching between the operation of FIG. 69A and the operation of FIG.
  • Modification 2 of Embodiment 9 shown in FIG. 70 is configured to install two indoor units (U1, U2) in a room (3) to be air-conditioned, and is a modification of Embodiment 8 shown in FIG. It is the example which comprised the humidity control apparatus (150) of Example 2 as a humidification exclusive machine. In this modification, both the first indoor unit (U1) and the second indoor unit (U2) are installed on the right wall surface in the figure.
  • FIG. 70 (A) shows a state in which a moisture releasing operation is performed in the first indoor unit (U1) and a moisture absorbing operation is performed in the second indoor unit (U2).
  • a tensile force is applied to the heat strain material (21) of the humidity control module (24). Therefore, the humidity control module (24) of the first indoor unit (U1) dissipates heat, and moisture is given to the outdoor air (OA) flowing from the outdoor to the indoor (3). Then, air humidified with moisture is supplied to the room (3) as supply air (SA).
  • the fan (30) rotates in the direction in which the indoor air (RA) is discharged outside, and at the same time, the tensile force of the humidity control module (24) on the heat-strain material (21) Is released. Therefore, moisture in the air is adsorbed by the adsorption layer (23), and the dehumidified air is discharged to the outside as exhaust air (EA).
  • FIG. 70B shows a state in which a moisture releasing operation is performed in the second indoor unit (U2) and a moisture absorbing operation is performed in the first indoor unit (U1).
  • a tensile force is applied to the heat strain material (21) of the humidity control module (24). Therefore, the humidity control module (24) of the second indoor unit (U2) dissipates heat, and moisture is given to the outdoor air (OA) flowing from the outdoor to the indoor (3). Then, air humidified with moisture is supplied to the room (3) as supply air (SA).
  • the fan (30) rotates in the direction in which the indoor air (RA) is discharged to the outside, and at the same time, the tensile force of the humidity control module (24) on the heat strain material (21) Is released. Therefore, moisture in the air is adsorbed by the adsorption layer (23), and the dehumidified air is discharged to the outside as exhaust air (EA).
  • the humidification operation can be continuously performed by alternately switching between the operation of FIG. 70A and the operation of FIG.
  • a third modification of the ninth embodiment shown in FIG. 71 is an example in which the humidity control apparatus (150) of the third modification of the eighth embodiment shown in FIGS.
  • the humidity control apparatus (150) is provided with two humidity control modules (24a, 24b) in the casing (10), as in FIGS. 64 to 66, and one humidity control module (24).
  • the air that has passed through the first humidity control module (24a) is supplied to the room (3), and the air that has passed through the other humidity control module (24) (second humidity control module (24b)) is released to the outside of the room.
  • the humidity control device (150) is specifically configured as shown in FIGS.
  • This humidity control device (150) is an integrated configuration in which two humidity control modules (24a, 24b) and two fans (30a, 30b) are housed in one casing (10), and is installed behind the ceiling.
  • 72 shows a first operation operation in which the first humidity control module (24a) is set to the moisture release side and the second humidity control module (24b) is set to the moisture absorption side
  • FIG. 73 shows the second humidity control module (24b).
  • the second operation operation is shown in which the first humidity control module (24a) is the moisture absorption side.
  • (A) is a plan view (showing the internal structure when the apparatus is viewed from above)
  • (B) is a left side view
  • (C) is a right side.
  • the casing (10) of the humidity control device (150) is formed in a square box shape.
  • a first suction port (11) for taking outdoor air (OA) into the casing (10) and a second air port for taking indoor air (RA) into the casing (10) are formed on one side wall surface of the casing (10).
  • a suction port (12) is provided.
  • the 1st blower outlet (13) which supplies supply air (SA) to room
  • a second outlet (14) for discharging (EA) to the outside is provided.
  • These first inlet (11), second inlet (12), first outlet (13) and second outlet (14) are respectively provided with ducts (4a, 4b, 4c, 4d) are connected.
  • the casing (10) is provided with a humidity control chamber (C1, C2) in which the humidity control module (24) is disposed, and a fan chamber (C3, C4) in which the fans (30a, 30b) are disposed.
  • the humidity control chambers (C1, C2) are composed of a first humidity control chamber (C1) and a second humidity control chamber (C2) that are positioned adjacent to each other in the casing (10) in FIGS. 72 and 73.
  • the fan chambers (C3, C4) are composed of a first fan chamber (C3) and a second fan chamber (C4) that are also adjacent to the left and right of the casing (10).
  • An air supply fan (30a) is disposed in the first fan chamber (C3), and an exhaust fan (30b) is disposed in the second fan chamber (C4).
  • an inlet side ventilation chamber (C5, C6) is formed between each of the suction ports (11, 12) and the humidity control chamber (C1, C2).
  • the inlet-side ventilation chambers (C5, C6) are composed of a first inlet-side ventilation chamber (C5) and a second inlet-side ventilation chamber (C6) arranged in two upper and lower stages of the casing (10).
  • the first inlet side ventilation chamber (C5) is provided with a first inlet (11), and the second inlet side ventilation (C6) is provided with a second inlet (12).
  • Outlet ventilation chambers are formed between the humidity control chambers (C1, C2) and the fan chambers (C3, C4).
  • the outlet side ventilating chambers (C7, C8) are composed of a first outlet side ventilating chamber (C7) and a second outlet side ventilating chamber (C8) arranged in two upper and lower stages of the casing (10).
  • a total of four dampers (D5, D6, D7, D8) that can be opened and closed are provided between each humidity control chamber (C1, C2) and each outlet-side ventilation chamber (C7, C8). Yes.
  • Each outlet-side ventilation chamber (C7, C8) communicates with each fan chamber (C3, C4).
  • the first air outlet (13) is provided on the first fan chamber (C3) side of the casing (10), and the second air outlet (14) is provided on the second fan chamber (C4) side of the casing (10). It has been.
  • the first damper (D1), the fourth damper (D4), the fifth damper (D5), and the eighth damper (D8) are opened, and the second damper (D2 ), The third damper (D3), the sixth damper (D6) and the seventh damper (D7) are closed.
  • the second damper (D2), the third damper (D3), the sixth damper (D6), and the seventh damper (D7) are opened, and the first damper (D1), the fourth damper are opened.
  • the damper (D4), the fifth damper (D5) and the eighth damper (D8) are closed.
  • damper (D7) are supplied to the room (3) from the first outlet (13) and the room air is introduced into the casing (10) from the second outlet (14). Is discharged from the second outlet (14) to the outside through the second damper (D2), the first humidity control module (24a) and the sixth damper (D6).
  • this humidity control device (150) is configured as a dedicated humidifier
  • the humidity control module (24) through which air supplied to the room (3) passes is the first humidity control module (24a) and the second humidity control module. It is the humidity control module (24) on which the moisture releasing operation is performed regardless of which one of the humidity modules (24b) is switched to. Therefore, humidified air is continuously supplied to the room (3).
  • the humidity control module (24) through which the air exhausted to the outside passes is the one that performs the moisture absorption operation regardless of whether it is switched to the second humidity control module (24b) or the first humidity control module (24a). Humidity control module (24). Therefore, the humidity control module (24) through which the air discharged to the outside passes is always on the adsorption side.
  • the humidification operation can be continuously performed by alternately switching the operation of FIG. 72 and the operation of FIG. 73 in which moisture in the air is adsorbed by the adsorption layer (23).
  • Modification 74 of Embodiment 9 shown in FIG. 74 relates to a humidity control apparatus (150) using a rotor type humidity control module (24).
  • This humidity control device (150) is also configured as a dedicated humidifier.
  • the casing (10) of the humidity control device (150) is provided with an air supply side passage (P1) and an exhaust side passage (P2).
  • An air supply fan (30a) is provided in the air supply side passage (P1)
  • an exhaust fan (30b) is provided in the exhaust side passage (P2).
  • the humidity control module (24) is formed in a disc shape, and is disposed across the supply side passage (P1) and the exhaust side passage (P2) in the casing (10). When the humidity control module (24) rotates about the rotation axis, the portion located in the air supply side passage (P1) moves into the exhaust side passage (P2), and the exhaust side passage The portion located in (P2) can be moved into the supply side passage (P1).
  • the moisture release operation is performed in the supply side passage (P1), and the moisture absorption operation is performed in the exhaust side passage (P2).
  • the tensile force is applied to the part where the humidity control module (24) is located in the air supply side passage (P1), the heat-strained material (21) dissipates heat, and the adsorbent is heated. Water that is regenerated and contained in the adsorbent is given to the air.
  • the portion where the humidity control module (24) is located in the exhaust side passage (P2) is not applied with tensile force, and the heat-strained material (21) absorbs heat to cool the adsorbent, adsorbing moisture in the air. Adsorbed to the agent.
  • the moisture release operation and the moisture absorption operation are performed while rotating the humidity control module (24) continuously or intermittently. Therefore, the moisture conditioning module (24) can be dehumidified in the exhaust side passage (P2) and simultaneously dehumidified in the air supply side passage (P1). ).
  • Embodiment 10 shown in FIG. 75 is an example in which the humidity control apparatus (150) according to Modification 2 of Embodiment 8 shown in FIG. 63 is a dedicated dehumidifying machine, but can also cool the air. is there.
  • This humidity control device (150) also includes two indoor units (U1, U2) as in the example of FIG. 63, and both the first indoor unit (U1) and the second indoor unit (U2) are on one wall surface in the figure. It is installed on the right wall.
  • the first indoor unit (U1) and the second indoor unit (U2) have an adsorption layer (23) in the humidity control module (24).
  • a cooling and heating module (20) configured to cool and heat the air without providing the air.
  • air passes through the humidity control module (24) and the cooling and heating module (20) for both the first indoor unit (U1) and the second indoor unit (U2). Therefore, in the humidity control apparatus (150), in addition to performing an air moisture absorption process and a moisture release process, an air cooling process and a heating process can also be performed.
  • the humidity control module (24) and the cooling / heating module (20) are located on the upstream side of the cooling / heating module (20) when the humidity control module (24) performs a moisture absorption operation. ) Is disposed so that the humidity control module (24) is positioned downstream of the cooling and heating module (20).
  • FIG. 75 (A) shows a state where the cooling and moisture absorption operation is performed in the first indoor unit (U1) and the heat and moisture discharging operation is performed in the second indoor unit (U2).
  • the first indoor unit (U1) the tensile force applied to the heat strain material (21) of the humidity control module (24) is released.
  • the humidity control module (24) of the first indoor unit (U1) absorbs heat, and moisture of outdoor air (OA) flowing from the outdoor to the indoor (3) is adsorbed.
  • the application of the tensile force to the cooling / heating module (20) is also released. Therefore, the air flowing from the outdoor to the indoor (3) is cooled.
  • the dehumidified and cooled air is supplied to the room (3) as supply air (SA).
  • the fan (30) rotates in the direction in which the indoor air (RA) is discharged to the outside, and at the same time, the tensile force is applied to the heat strain material (21c) of the cooling and heating module (20). The tensile force is also applied to the heat-strain material (21) of the humidity control module (24). Therefore, the air traveling from the room (3) to the outside is heated by the cooling heating module (20) and then passes through the humidity control module (24). At that time, the humidity control module (24) also generates heat. Moisture contained in the adsorption layer (23) of the moisture module (24) is given to the air, and the air is discharged out of the room as exhaust air (EA). Thereby, the adsorption layer (23) of the humidity control module (24) is regenerated.
  • FIG. 75 (B) shows a state where the cooling and moisture absorption operation is performed in the second indoor unit (U2) and the heating and moisture releasing operation is performed in the first indoor unit (U1).
  • the tensile force on the heat-strain material (21) of the humidity control module (24) is released. Therefore, the humidity control module (24) of the second indoor unit (U2) absorbs heat, and moisture of outdoor air (OA) flowing from the outdoor to the indoor (3) is adsorbed.
  • the application of the tensile force to the heat strain material (21c) of the cooling and heating module (20) is also released. Therefore, the air flowing from the outdoor to the indoor (3) is cooled.
  • the dehumidified and cooled air is supplied to the room (3) as supply air (SA).
  • the fan (30) rotates in the direction in which the indoor air (RA) is discharged to the outside, and at the same time, a tensile force is applied to the heat strain material (21c) of the cooling and heating module (20).
  • the tensile force is also applied to the heat-strain material (21) of the humidity control module (24). Therefore, the air traveling from the room (3) to the outside is heated by the cooling and heating module (20) and then passes through the humidity control module (24). At that time, the humidity control module (24) also generates heat. Moisture contained in the adsorption layer (23) of the moisture module (24) is given to the air, and the air is discharged to the outside as exhaust air (EA). Thereby, the adsorption layer (23) of the humidity control module (24) is regenerated.
  • Embodiment 10 when one of the indoor units (U1, U2) dehumidifies and cools the air and supplies the air to the room (3), the other indoor unit In (U2, U1), the dehumidifying and cooling operation is continuously performed by alternately switching between the operation of FIG. 75 (A) and the operation of FIG. 75 (B) in which air is heated and the adsorption layer (23) is regenerated. Can do.
  • the humidity control module (24) and the cooling and heating module (20) are arranged in series with respect to the air flow so that the outdoor air subjected to the latent heat treatment is further subjected to the sensible heat treatment and supplied to the room.
  • the humidity control module (24) and the cooling and heating module (20) are arranged in parallel so that the outdoor air subjected to the latent heat treatment and the outdoor air subjected to the sensible heat treatment are mixed and supplied to the room. Good.
  • This configuration may be the same in the following modifications.
  • Modification 1 of Embodiment 10 shown in FIG. 76 relates to a humidity control apparatus (150) using a rotor type humidity control module (24).
  • the humidity control apparatus (150) includes a rotor-type cooling and heating module (20) in addition to the rotor-type humidity control module (24), and is configured to perform dehumidification cooling.
  • the casing (10) of the humidity control device (150) is provided with an air supply side passage (P1) and an exhaust side passage (P2).
  • An air supply fan (30a) is provided in the air supply side passage (P1)
  • an exhaust fan (30b) is provided in the exhaust side passage (P2).
  • the humidity control module (24) is formed in a disc shape, and is disposed across the supply side passage (P1) and the exhaust side passage (P2) in the casing (10). When the humidity control module (24) rotates about the rotation axis, the portion located in the air supply side passage (P1) moves into the exhaust side passage (P2), and the exhaust side passage The portion located in (P2) can be moved into the supply side passage (P1).
  • the cooling and heating module (20) is also formed in a disk shape, and is disposed across the air supply side passage (P1) and the exhaust side passage (P2) in the casing (10).
  • the cooling and heating module (20) rotates about the rotation axis, so that the portion located in the supply side passage (P1) moves into the exhaust side passage (P2), and the exhaust side passage The portion located in (P2) can be moved into the supply side passage (P1).
  • the cooling and moisture absorption operation is performed in the supply side passage (P1), and the heating and dehumidifying operation is performed in the exhaust side passage (P2).
  • the tensile force is not applied to the portion where the humidity control module (24) is located in the supply side passage (P1), and the heat-strain material (21) absorbs heat and the adsorption layer (23) is cooled.
  • the water in the outdoor air (OA) is adsorbed by the adsorption layer (23).
  • the portion where the cooling and heating module (20) is located in the supply side passage (P1) is not applied with a tensile force, and the heat strain material (21c) absorbs heat, thereby cooling the air.
  • the dehumidified and cooled air is supplied to the room (3) as supply air (SA).
  • a tensile force is applied to the part where the cooling and heating module (20) is located in the exhaust side passage (P2), and the heat-strained material (21c) dissipates heat, and the room air (RA) that goes from the room (3) to the outside Is heated. Further, a tensile force is applied to the portion where the humidity control module (24) is located in the exhaust side passage (P2), the heat-strain material (21) dissipates heat, and the adsorption layer (23) is heated, and the adsorption layer (23 ) Is released into the room air (RA) to regenerate the adsorption layer (23). Then, the moisture-supplied air is discharged out of the room as exhaust air (EA).
  • the cooling moisture absorption operation and the heating moisture releasing operation are performed while rotating the humidity control module (24) and the cooling heating module (20) continuously or intermittently. Therefore, since the humidity control module (24) can be regenerated in the exhaust side passage (P2) and simultaneously subjected to moisture absorption cooling in the air supply side passage (P1), the dehumidified and cooled air is continuously supplied to the room. (3) can be supplied.
  • Modification 2 A second modification of the tenth embodiment shown in FIG. 77 is an example in which the humidity control apparatus (150) according to the tenth embodiment shown in FIG. 75 is a dehumidifying air conditioner, whereas the humidifying heater is used. Also in this modification, both the first indoor unit (U1) and the second indoor unit (U2) are installed on the right wall surface in the figure.
  • the first indoor unit (U1) and the second indoor unit (U2) have an adsorption layer (23 Is provided with a cooling and heating module (20) configured to cool and heat the air without being provided.
  • a cooling and heating module (20) when a tensile force is applied, the air can be heated, and when the tensile force is released, the air can be cooled.
  • the first indoor unit (U1) and the second indoor unit (U2) are configured in the same manner as in the tenth embodiment of FIG.
  • FIG. 77 (A) shows a state where the heat and moisture releasing operation is performed in the first indoor unit (U1) and the cooling and moisture absorbing operation is performed in the second indoor unit (U2).
  • a tensile force is applied to the heat strain material (21) of the humidity control module (24). Therefore, the humidity control module (24) of the first indoor unit (U1) dissipates heat, and moisture is given to the outdoor air (OA) flowing from the outdoor to the indoor (3).
  • a tensile force is also applied to the cooling and heating module (20). Accordingly, outdoor air (OA) flowing from the outdoor to the indoor (3) is heated. Then, humidified and heated air is supplied to the room (3) as supply air (SA).
  • the fan (30) rotates in the direction in which the indoor air (RA) is discharged outside, and at the same time, the tensile force of the cooling and heating module (20) on the heat-strained material (21c) Is released, and the application of tensile force to the heat-strain material (21) of the humidity control module (24) is also released. Therefore, indoor air (RA) heading from the room (3) to the outside is cooled by the cooling and heating module (20) and then passes through the humidity control module (24).
  • the humidity control module (24) also absorbs heat, moisture in the room air (RA) is adsorbed to the adsorption layer (23) of the humidity control module (24), and the air is discharged into the exhaust air (EA ) Is released to the outdoors.
  • FIG. 77 (B) shows a state where the heat and moisture releasing operation is performed in the second indoor unit (U2) and the cooling and moisture absorbing operation is performed in the first indoor unit (U1).
  • a tensile force is applied to the heat strain material (21) of the humidity control module (24). Therefore, the humidity control module (24) of the second indoor unit (U2) generates heat, and moisture is given to the outdoor air (OA) flowing from the outdoor to the indoor (3).
  • a tensile force is also applied to the cooling and heating module (20). Accordingly, outdoor air (OA) flowing from the outdoor to the indoor (3) is heated. Then, humidified and heated air is supplied to the room (3) as supply air (SA).
  • the fan (30) rotates in the direction in which the indoor air (RA) is discharged to the outside, and at the same time, the tensile force of the cooling heating module (20) on the heat strain material (21c) Is released, and the application of tensile force to the heat-strain material (21) of the humidity control module (24) is also released. Therefore, indoor air (RA) heading from the room (3) to the outside is cooled by the cooling and heating module (20) and then passes through the humidity control module (24).
  • the humidity control module (24) also absorbs heat, moisture in the room air (RA) is adsorbed to the adsorption layer (23) of the humidity control module (24), and the air is discharged into the exhaust air (EA ) Is released to the outdoors.
  • the humidification heating operation is continuously performed by alternately switching between the operation of FIG. 77 (A) and the operation of FIG. 77 (B) for cooling the air and absorbing moisture in the adsorption layer (23). be able to.
  • Modification 3 of Embodiment 10 shown in FIG. 78 is an example configured as a humidifying heater while the humidity control apparatus (150) according to Modification 1 shown in FIG. 76 is a dehumidifying air conditioner. Also in this modification, a rotor type cooling and heating module (20) is used in addition to the rotor type humidity control module (24).
  • the casing (10), humidity control module (24), and cooling / heating module (20) of the humidity control apparatus (150) are configured in the same manner as in FIG.
  • an air supply side passage (P1) and an exhaust side passage (P2) are provided in the casing (10) of the humidity control device (150).
  • An air supply fan (30a) is provided in the air supply side passage (P1)
  • an exhaust fan (30b) is provided in the exhaust side passage (P2).
  • the humidity control module (24) is formed in a disc shape, and is disposed across the supply side passage (P1) and the exhaust side passage (P2) in the casing (10). When the humidity control module (24) rotates about the rotation axis, the portion located in the air supply side passage (P1) moves into the exhaust side passage (P2), and the exhaust side passage The portion located in (P2) can be moved into the supply side passage (P1).
  • the cooling and heating module (20) is also formed in a disc shape, and is disposed across the supply side passage (P1) and the exhaust side passage (P2) in the casing (10).
  • the cooling and heating module (20) rotates about the rotation axis, so that the portion located in the supply side passage (P1) moves into the exhaust side passage (P2), and the exhaust side passage The portion located in (P2) can be moved into the supply side passage (P1).
  • the heat and moisture releasing operation is performed in the supply side passage (P1), and the cooling and moisture absorption operation is performed in the exhaust side passage (P2).
  • the portion where the humidity control module (24) is located in the air supply side passage (P1) is heated by the tensile strain and heat distortion material (21) generates heat, and the adsorbent is heated. Moisture adsorbed by the adsorbent is given to the air.
  • the portion where the cooling and heating module (20) is positioned in the air supply side passage (P1) is given a tensile force, whereby the thermostrictive material (21c) generates heat and the air is heated.
  • the cooling and heating module (20) is located in the exhaust side passage (P2)
  • the application of tensile force is released and the heat-strained material (21c) absorbs heat, and the air that goes from the room (3) to the outside Is cooled.
  • the humidity control module (24) is located in the exhaust side passage (P2)
  • the application of tensile force is released, the heat-strained material (21) absorbs heat and the adsorbent is cooled, and the moisture in the air Is adsorbed by the adsorbent.
  • the heat moisture release operation and the cooling moisture absorption operation are performed while rotating the humidity control module (24) continuously or intermittently. Therefore, moisture can be supplied to the humidity control module (24) in the exhaust side passage (P2) and at the same time, the moisture supply heat treatment can be performed in the air supply side passage (P1). Humidification heating operation to supply to (3) can be performed.
  • Embodiment 11 of the present invention will be described.
  • the humidity control apparatus (150) of the eleventh embodiment includes a dehumidifying operation for introducing the air absorbed by the humidity control module (24) into the room (3) in the humidity control apparatus (150) shown in FIGS.
  • the humidifying operation for introducing the air dehumidified by the humidity control module (24) into the room (3) is switchable.
  • the humidity control apparatus (150) of FIG. 57 when air is supplied from the outside to the room (3), as shown in FIG. 57 (A), to the heat strain material (21) of the humidity control module (24). It is possible to switch between the operation of releasing the tensile force and the operation of applying the tensile force to the heat strain material (21) of the humidity control module (24) as shown in FIG. 68 (A).
  • FIG. 68 (A) When releasing air from the room to the outside, the operation of applying a tensile force to the humidity control module (24) as shown in FIG. 57 (B) and the humidity control module (24) as shown in FIG. 68 (B). It is configured to be able to switch between the operation of releasing the tensile force of
  • the humidity control apparatus (150) which has an indoor unit (U) provided with one humidity control module (24), the operation
  • FIG. 62 (A) and the operation of FIG. 69 (A) are switched by switching the application state of the tensile force in the humidity control apparatus (150) of FIGS.
  • the operation of FIG. 62 (B) and the operation of FIG. 62 (B) can be switched. Since the basic configuration of the apparatus is the same as that shown in FIGS. 62 and 69, a specific description is omitted.
  • the tensile force to the humidity control module (24) through which the air supplied from the outside to the room (3) passes is released, A tensile force is applied to the humidity control module (24) through which the air discharged from the room (3) to the outside passes.
  • 69 (A) and 69 (B) a tensile force is applied to the humidity control module (24) through which air supplied from the outside to the room (3) passes, and the air is discharged from the room (3) to the outside.
  • the tensile force applied to the humidity control module (24) through which the air passes is released.
  • the humidity control apparatus (150) which installed two indoor units (U1, U2) in the wall surface which opposes a room, the operation
  • FIG. 63 (A) and the operation of FIG. 70 (A) are switched by switching the application state of the tensile force in the humidity control apparatus (150) of FIGS.
  • the operation of FIG. 63 (B) and the operation of FIG. 70 (B) can be switched. Since the basic configuration of the apparatus is the same as that shown in FIGS. 63 and 70, a detailed description thereof will be omitted.
  • the tensile force to the humidity control module (24) through which the air supplied from the outside to the room (3) passes is released, A tensile force is applied to the humidity control module (24) through which the air discharged from the room (3) to the outside passes.
  • 70A and 70B tensile force is applied to the humidity control module (24) through which air supplied from the outside to the room (3) passes, and the air is discharged from the room (3) to the outside. The tensile force applied to the humidity control module (24) through which the air passes is released.
  • the humidity control apparatus (150) which installed two indoor units (U1, U2) on the one wall surface of the room, the operation
  • FIG. 65 and the operation of FIG. 72 are performed by switching the application state of the tensile force in the humidity control apparatus (150) of FIGS. 64 to 66 and 71 to 73.
  • the operation of FIG. 66 and the operation of FIG. 73 can be switched. Since the basic configuration of the apparatus is the same as that shown in FIGS. 64 to 66 and 71 to 73, a detailed description thereof will be omitted.
  • the tensile force to the humidity control module (24) through which air supplied from the outside to the room (3) passes is released, and the room (3)
  • a tensile force is applied to the humidity control module (24) through which the air discharged to the outside passes.
  • 72 and 73 tensile force is applied to the humidity control module (24) through which air supplied from the outside to the room (3) passes, and air discharged from the room (3) to the outside passes. The tensile force to the humidity control module (24) is released.
  • the humidity control device (150) of FIG. 67 and the humidity control device (150) of FIG. 74 are configured as one device, and the operation of FIG. And the operation shown in FIG. 74 can be switched. Since the basic configuration of the apparatus is the same as that shown in FIGS. 67 and 74, a detailed description thereof is omitted.
  • the tensile force to the humidity control module (24) is released at the portion where the air supplied from the outside to the room (3) passes, and from the room (3) A tensile force is applied to the humidity control module (24) in a portion through which air discharged to the outside passes. Further, in the operation of FIG. 74, a tensile force is applied to the humidity control module (24) at a portion where the air supplied from the outside to the room (3) passes, and the air discharged from the room (3) to the outside passes. The tensile force applied to the humidity control module (24) is released at the portion to be operated.
  • the humidity control apparatus (150) provided with the rotor-type humidity control module (24), the operation
  • FIG. 75A and the operation of FIG. 76A are performed by switching the application state of the tensile force in the humidity control apparatus 150 of FIGS. 75 and 76.
  • FIG. 75 (B) and the operation of FIG. 77 (B) can be switched. Since the basic configuration of the apparatus is the same as that shown in FIGS. 75 and 77, the detailed description is omitted.
  • the room (3) is continuously connected. It is possible to switch between the operation of dehumidifying and cooling the air and the operation of continuously humidifying and heating the room (3).
  • the humidity control device (150) of FIG. 76 and the humidity control device (150) of FIG. 78 are configured as one device, and the operation of FIG. The operation of the apparatus of FIG. 78 is configured to be switchable. Since the basic configuration of the apparatus is the same as that shown in FIGS. 76 and 78, a detailed description thereof will be omitted.
  • the tensile force applied to the humidity control module (24) and the cooling / heating module (20) is released at the portion where the air supplied from the outside to the room (3) passes. Then, a tensile force is applied to the humidity control module (24) and the cooling / heating module (20) in a portion where air discharged from the room (3) to the outside passes. In the operation of FIG. 76, the tensile force applied to the humidity control module (24) and the cooling / heating module (20) is released at the portion where the air supplied from the outside to the room (3) passes. Then, a tensile force is applied to the humidity control module (24) and the cooling / heating module (20) in a portion where air discharged from the room (3) to the outside passes. In the operation of FIG.
  • a tensile force is applied to the humidity control module (24) and the cooling / heating module (20) in the portion where the air supplied from the outdoor to the indoor (3) passes, and the indoor (3) to the outdoor
  • the tensile force applied to the humidity control module (24) and the cooling / heating module (20) is released at the portion through which the air exhausted is passed.
  • movement which dehumidifies and cools a room (3) continuously, 3) can be switched between continuous humidification and heating.
  • the present invention is useful for a cooling / heating module and an air conditioner including the cooling / heating module.

Abstract

This cooling/heating module, which cools and heats air, is provided with: a first and second cooling/heating section (20a, 20b) each having a thermal distortion material (21); and an actuator (22) that imparts tension to the thermal distortion material (21). The actuator (22) is configured in a manner so as to alternately perform: an operation for imparting tension to the thermal distortion material (21) of the first cooling/heating section (20a) and releasing the tension to the thermal distortion material (21) of the second cooling/heating section (20b); and an operation for imparting tension to the thermal distortion material (21) of the second cooling/heating section (20b) and releasing the tension to the first cooling/heating section (20a).

Description

冷却加熱モジュール及び空気調和装置Cooling and heating module and air conditioner
   本発明は、空気の冷却と加熱を行う冷却加熱モジュール、該冷却加熱モジュールと切換制御部とからなる冷却加熱ユニット、及び該冷却加熱モジュールを用いて室内の温度を調節するための空気調和装置に関するものである。 The present invention relates to a cooling and heating module that cools and heats an air, a cooling and heating unit that includes the cooling and heating module and a switching control unit, and an air conditioner that adjusts the indoor temperature using the cooling and heating module. Is.
  従来、ゴムなどの弾性体を断熱伸長させるときに発熱し、断熱収縮させるときに吸熱する性質を利用したヒートポンプ装置が知られている(例えば、特許文献1,2参照)。このヒートポンプ装置を空気調和装置に適用すると、上記弾性体の断熱伸長時に加熱した空気を室内に供給すると暖房運転を行うことができ、上記弾性体の断熱収縮時に冷却した空気を室内に供給すると冷房運転を行うことができる。 Conventionally, heat pump devices are known that utilize the property of generating heat when an elastic body such as rubber is adiabatically stretched and absorbing heat when adiabatic contraction is performed (for example, see Patent Documents 1 and 2). When this heat pump device is applied to an air conditioner, heating operation can be performed when the heated air is supplied to the room when the elastic body is thermally expanded, and cooling is performed when the cooled air is supplied to the room when the elastic body is thermally contracted. You can drive.
特開平3-286975号公報Japanese Patent Laid-Open No. 3-286975 特開平10-259965号公報Japanese Patent Laid-Open No. 10-259965
  しかしながら、ゴムなどの弾性体を収縮させて空気を加熱したり冷却したりする構成では、弾性体を伸縮させるための機構が必要になり、装置の構造が複雑になるとともに装置が大型化してしまう。 However, in a configuration in which an elastic body such as rubber is contracted to heat or cool the air, a mechanism for expanding and contracting the elastic body is required, which complicates the structure of the apparatus and increases the size of the apparatus. .
  本発明は、このような問題点に鑑みてなされたものであり、その目的は、ゴムなどの弾性体を用いないヒートポンプ装置で空気調和装置を構成する際に、装置の大型化や構造の複雑化を防止できるようにすることである。 The present invention has been made in view of such problems, and its purpose is to increase the size of the apparatus and the complexity of the structure when configuring an air conditioner with a heat pump apparatus that does not use an elastic body such as rubber. It is to be able to prevent conversion.
  第1の発明は、空気の冷却と加熱を行う冷却加熱モジュールを対象とし、熱歪材料(21)をそれぞれ有する第1と第2の冷却加熱部(20a,20b)と、上記熱歪材料(21)へ張力を付与するアクチュエータ(22)とを備え、該アクチュエータ(22)は、上記第1冷却加熱部(20a)の熱歪材料(21)に張力を付与し、上記第2冷却加熱部(20b)の熱歪材料(21)の張力を解除する動作と、上記第2冷却加熱部(20b)の熱歪材料(21)に張力を付与し、上記第1冷却加熱部(20a)の張力を解除する動作とを交互に行うように構成されていることを特徴とする。 The first invention is directed to a cooling and heating module that cools and heats air, and includes first and second cooling and heating units (20a and 20b) each having a thermal strain material (21), and the thermal strain material ( 21) and an actuator (22) that applies tension to the actuator, and the actuator (22) applies tension to the thermostrictive material (21) of the first cooling and heating unit (20a), and the second cooling and heating unit. The operation of releasing the tension of the thermal strain material (21) of (20b) and the tension of the thermal strain material (21) of the second cooling and heating unit (20b) are applied to the first cooling and heating unit (20a). It is configured to alternately perform the operation of releasing the tension.
  第1の発明では、熱歪材料(21)に張力を付与すると、そのエントロピーが減少し、その分、熱歪材料(21)が発熱する。また、熱歪材料(21)への張力の付与を解除すると、マルテンサイト相から母相(オーステナイト相)に変化し、該熱歪材料(21)が断熱されていた場合、熱歪材料(21)の温度が下がる。 In the first invention, when tension is applied to the thermostrictive material (21), the entropy decreases, and the thermostrictive material (21) generates heat correspondingly. Further, when the application of tension to the thermostrictive material (21) is canceled, the martensite phase changes to the parent phase (austenite phase), and when the thermostrictive material (21) is thermally insulated, the thermostrictive material (21 ) Temperature decreases.
  第1の発明では、アクチュエータ(22)によって、2つの動作が交互に行われる。第1冷却加熱部(20a)の熱歪材料(21)に張力が付与され、第2冷却加熱部(20b)の熱歪材料(21)の張力が解除されると、第1冷却加熱部(20a)の熱歪材料(21)によって空気が加熱され、第2冷却加熱部(20b)の熱歪材料(21)によって空気が冷却される。この結果、冷却加熱モジュールでは、第1冷却加熱部(20a)によって空気が加熱されると同時に、第2冷却加熱部(20b)によって空気が冷却される。また、第2冷却加熱部(20b)の熱歪材料(21)に張力が付与され、第1冷却加熱部(20a)の熱歪材料(21)の張力が解除されると、第1冷却加熱部(20a)の熱歪材料(21)によって空気が冷却され、第2冷却加熱部(20b)の熱歪材料(21)によって空気が加熱される。この結果、冷却加熱モジュール(20)では、第1冷却加熱部(20a)によって空気が冷却されると同時に、第2冷却加熱部(20b)によって空気が加熱される。 In the first invention, two operations are alternately performed by the actuator (22). When tension is applied to the thermostrictive material (21) of the first cooling and heating section (20a) and the tension of the thermostrictive material (21) of the second cooling and heating section (20b) is released, the first cooling and heating section ( The air is heated by the heat strain material (21) of 20a), and the air is cooled by the heat strain material (21) of the second cooling heating section (20b). As a result, in the cooling and heating module, air is heated by the first cooling and heating unit (20a), and at the same time, the air is cooled by the second cooling and heating unit (20b). In addition, when tension is applied to the thermostrictive material (21) of the second cooling and heating unit (20b) and the tension of the thermostrained material (21) of the first cooling and heating unit (20a) is released, the first cooling and heating is performed. The air is cooled by the heat strain material (21) of the part (20a), and the air is heated by the heat strain material (21) of the second cooling and heating part (20b). As a result, in the cooling and heating module (20), the air is cooled by the first cooling and heating unit (20a), and at the same time, the air is heated by the second cooling and heating unit (20b).
  第2の発明は、第1の発明において、上記アクチュエータ(22)は、上記熱歪材料(21)の一端に固定される固定部(40)と、上記熱歪材料(21)の他端に固定される可動部(41a,41b)と、上記可動部(41a,41b)と上記固定部(40)の距離が変わるように該可動部(41a,41b)を往復動させる変位機構(46,47,51,52)とを備えていることを特徴とする。 In a second aspect based on the first aspect, the actuator (22) is fixed to one end of the thermostrictive material (21), and to the other end of the thermostrictive material (21). A movable mechanism (41a, 41b) that is fixed, and a displacement mechanism (46, 41b) that reciprocates the movable part (41a, 41b) so that the distance between the movable part (41a, 41b) and the fixed part (40) changes. 47, 51, 52).
  第2の発明では、固定部(40)と可動部(41a,41b)の間に熱歪材料(21)が固定される。変位機構(46,47,51,52)は、可動部(41a,41b)と固定部(40)の距離が変わるように可動部(41a,41b)を往復動させる。可動部(41a,41b)と固定部(40)の距離が大きくなると、熱歪材料(21)に張力が作用し、熱歪材料(21)が発熱する。この結果、熱歪材料(21)によって空気が加熱される。可動部(41a,41b)と固定部(40)の距離が小さくなると、熱歪材料(21)の張力が解除され、熱歪材料(21)が吸熱する。この結果、熱歪材料(21)によって空気が冷却される。 In the second invention, the heat strain material (21) is fixed between the fixed part (40) and the movable part (41a, 41b). The displacement mechanism (46, 47, 51, 52) reciprocates the movable part (41a, 41b) so that the distance between the movable part (41a, 41b) and the fixed part (40) changes. When the distance between the movable parts (41a, 41b) and the fixed part (40) increases, a tension acts on the thermostrain material (21), and the thermostrain material (21) generates heat. As a result, air is heated by the thermostrictive material (21). When the distance between the movable parts (41a, 41b) and the fixed part (40) is reduced, the tension of the thermostrain material (21) is released and the thermostrain material (21) absorbs heat. As a result, the air is cooled by the heat strain material (21).
  第3の発明は、第2の発明において、上記アクチュエータ(22)は、回転駆動される回転軸(39)を有し、上記変位機構(46,47,51,52)は、上記回転軸(39)の回転運動を上記可動部(41a,41b)の往復運動に変換するように構成されていることを特徴とする。 In a third aspect based on the second aspect, the actuator (22) has a rotational shaft (39) that is rotationally driven, and the displacement mechanism (46, 47, 51, 52) is composed of the rotational shaft (39). The rotary motion of 39) is converted into the reciprocating motion of the movable parts (41a, 41b).
  第3の発明のアクチュエータ(22)では、回転軸(39)が回転駆動されると、この回転軸(39)の回転運動が変位機構(46,47,51,52)によって可動部(41a,41b)の往復運動に変換される。これに伴い熱歪材料(21)に張力が作用する又は該張力が解除され、熱歪材料()によって空気の加熱や冷却が行われる。 In the actuator (22) of the third invention, when the rotary shaft (39) is driven to rotate, the rotary motion of the rotary shaft (39) is moved by the displacement mechanism (46, 47, 51, 52) (41a, 41b). Along with this, a tension acts on or is released from the thermostrictive material (21), and air is heated or cooled by the thermostrictive material ().
  第4の発明は、第1の発明において、上記アクチュエータ(22)は、上記第1と第2の冷却加熱部(20a,20b)の熱歪材料(21)の一端に固定される固定部(40)と、上記第1と第2の冷却加熱部(20a,20b)の熱歪材料(21)の他端にそれぞれ固定される可動部(41a,41b)と、各可動部(41a,41b)と固定部(40)の距離が変わるように、上記第1冷却加熱部(20a)に対応する可動部(41a)と第2冷却加熱部(20b)に対応する可動部(41b)とを互いに逆方向に往復動させる変位機構(46,47,51,52)とを備えていることを特徴とする。 In a fourth aspect based on the first aspect, the actuator (22) is fixed to one end of the thermal strain material (21) of the first and second cooling and heating sections (20a, 20b). 40), a movable part (41a, 41b) fixed to the other end of the thermostrictive material (21) of the first and second cooling / heating parts (20a, 20b), and each movable part (41a, 41b). ) And the fixed part (40), the movable part (41a) corresponding to the first cooling / heating part (20a) and the movable part (41b) corresponding to the second cooling / heating part (20b) are changed. Displacement mechanisms (46, 47, 51, 52) that reciprocate in opposite directions are provided.
  第4の発明では、第1冷却加熱部(20a)に対応する可動部(41a)と、第2冷却加熱部(20b)に対応する可動部(41b)とが互いに逆方向に往復運動を行う。このため、例えば第1冷却加熱部(20a)に対応する可動部(41b)と固定部(40)とが離れ、第1冷却加熱部(20a)の熱歪材料(21)に張力が付与されると、第2冷却加熱部(20b)に対応する可動部(41b)と固定部(40)とが近づき、第2冷却加熱部(20b)の熱歪材料(21)の張力が解除される。この結果、第1冷却加熱部(20a)で空気が加熱されると同時に、第2冷却加熱部(20b)で空気が冷却される。逆に、第1冷却加熱部(20a)に対応する可動部(41a)と固定部(40)とが近づき、第1冷却加熱部(20a)の熱歪材料(21)の張力が解除されると、第2冷却加熱部(20b)に対応する可動部(41b)と固定部(40)とが離れ、第2冷却加熱部(20b)の熱歪材料(21)に張力が付与される。この結果、第1冷却加熱部(20a)によって空気が冷却されると同時に、第2冷却加熱部(20b)によって空気が加熱される。 In the fourth invention, the movable part (41a) corresponding to the first cooling / heating part (20a) and the movable part (41b) corresponding to the second cooling / heating part (20b) reciprocate in opposite directions. . For this reason, for example, the movable part (41b) corresponding to the first cooling / heating part (20a) is separated from the fixed part (40), and tension is applied to the thermostrictive material (21) of the first cooling / heating part (20a). Then, the movable part (41b) and the fixed part (40) corresponding to the second cooling / heating part (20b) approach each other, and the tension of the thermostrictive material (21) of the second cooling / heating part (20b) is released. . As a result, the air is heated by the first cooling and heating unit (20a), and at the same time, the air is cooled by the second cooling and heating unit (20b). On the contrary, the movable part (41a) and the fixed part (40) corresponding to the first cooling / heating part (20a) approach each other, and the tension of the thermostrictive material (21) of the first cooling / heating part (20a) is released. Then, the movable part (41b) corresponding to the second cooling / heating part (20b) is separated from the fixed part (40), and tension is applied to the thermostrictive material (21) of the second cooling / heating part (20b). As a result, the air is cooled by the first cooling / heating unit (20a), and at the same time, the air is heated by the second cooling / heating unit (20b).
  第5の発明は、第1の発明において、上記アクチュエータ(22)は、上記熱歪材料(21)の一端が固定され、回転駆動される回転軸(108)と、上記熱歪材料(21)の他端部に固定される錘部(107)とを備えていることを特徴とする。 In a fifth aspect based on the first aspect, the actuator (22) includes a rotary shaft (108) to which one end of the thermostrictive material (21) is fixed and rotationally driven, and the thermostrictive material (21). And a weight portion (107) fixed to the other end portion.
  第5の発明では、回転軸(108)と錘部(107)との間に熱歪材料(21)が設けられる。回転軸(108)が回転駆動されると、回転軸(108)を中心として熱歪材料(21)も回転する。この結果、熱歪材料(21)の他端部には、錘部(107)によって遠心力が作用し、熱歪材料(21)に張力が付与される。回転軸(108)を停止させると、熱歪材料(21)も回転せず、熱歪材料(21)に遠心力が作用しない。この結果、熱歪材料(21)の張力が解除される。 In the fifth invention, the heat strain material (21) is provided between the rotating shaft (108) and the weight portion (107). When the rotating shaft (108) is driven to rotate, the thermostrictive material (21) also rotates about the rotating shaft (108). As a result, centrifugal force acts on the other end portion of the thermostrictive material (21) by the weight portion (107), and tension is applied to the thermostrictive material (21). When the rotating shaft (108) is stopped, the thermostrain material (21) also does not rotate, and no centrifugal force acts on the thermostrain material (21). As a result, the tension of the thermostrictive material (21) is released.
  第6の発明は、冷却加熱モジュールで加熱又は冷却した空気を室内へ供給する空気調和装置を対象とし、上記冷却加熱モジュールは、請求項1乃至5のいずれか1つの冷却加熱モジュール(20)で構成されることを特徴とする。 A sixth invention is directed to an air conditioner that supplies air heated or cooled by a cooling and heating module to a room, and the cooling and heating module is a cooling and heating module (20) according to any one of claims 1 to 5. It is characterized by being configured.
  第6の発明では、空気調和装置の冷却加熱モジュールとして、第1乃至第5のいずれか1つの発明の冷却加熱モジュール(20)が適用される。 In the sixth invention, the cooling and heating module (20) of any one of the first to fifth inventions is applied as the cooling and heating module of the air conditioner.
  本発明によれば、熱歪材料(21)に張力を付与すると、そのエントロピーが減少し、その分、熱歪材料(21)が発熱するので、空気に熱を与えて室内に供給することにより暖房運転を行うことができる。また、熱歪材料(21)への張力の付与を解除すると、マルテンサイト相から母相(オーステナイト相)に変化し、該熱歪材料(21)が断熱されていた場合、熱歪材料(21)の温度が下がるため、周囲の空気も冷却される。したがって、冷却された空気を室内に供給することにより冷房運転を行うことができる。 According to the present invention, when a tension is applied to the thermostrictive material (21), the entropy is reduced, and the thermostrained material (21) generates heat by that amount. Heating operation can be performed. Further, when the application of tension to the thermostrictive material (21) is canceled, the martensite phase changes to the parent phase (austenite phase), and when the thermostrictive material (21) is thermally insulated, the thermostrictive material (21 ), The ambient air is also cooled. Therefore, the cooling operation can be performed by supplying the cooled air into the room.
  そして、本発明によれば、ゴムなどの弾性体を採用していないので、弾性体を伸縮させるための機構は不要である。したがって、装置の構造が複雑になったり装置が大型化したりするのを防止できる。 And according to the present invention, since an elastic body such as rubber is not employed, a mechanism for expanding and contracting the elastic body is unnecessary. Therefore, it is possible to prevent the device structure from becoming complicated and the device from becoming large.
  また、本発明によれば、1つの冷却加熱モジュールにおいて、第1冷却加熱部(20a)の熱歪材料(21)に張力を付与し、第2冷却加熱部(20b)の熱歪材料(21)の張力を解除する動作と、第2冷却加熱部(20b)の熱歪材料(21)に張力を付与し、第1冷却加熱部(20a)の熱歪材料(21)の張力を解除する動作とを交互に行うことで、空気を加熱する動作と、空気を冷却する動作とを同時且つ連続的に行うことができる。 Moreover, according to this invention, in one cooling heating module, tension | tensile_strength is provided to the thermostrain material (21) of a 1st cooling heating part (20a), and the thermostrain material (21 of a 2nd cooling heating part (20b)). ) And the tension applied to the thermostrictive material (21) of the second cooling and heating section (20b), and the tension of the thermostrictive material (21) of the first cooling and heating section (20a) is released. By alternately performing the operation, the operation of heating the air and the operation of cooling the air can be performed simultaneously and continuously.
  上記第2の発明によれば、変位機構(46,47,51,52)によって可動部(41a,41b)を往復動させ、可動部(41a,41b)と固定部(40)との距離を変えるようにすることで、簡素な構成により、熱歪材料(21)への張力の付与と解除とを交互に行うことができる。 According to the second aspect, the movable portion (41a, 41b) is reciprocated by the displacement mechanism (46, 47, 51, 52), and the distance between the movable portion (41a, 41b) and the fixed portion (40) is increased. By changing, it is possible to alternately apply and release the tension to the thermostrictive material (21) with a simple configuration.
  特に上記第3の発明によれば、回転軸(39)の回転運動を可動部(41a,41b)の往復運動へ変換させることで、モータ等を駆動源として熱歪材料(21)の張力の付与と解除とを交互に行うことができる。 In particular, according to the third aspect of the present invention, the rotational movement of the rotating shaft (39) is converted into the reciprocating movement of the movable parts (41a, 41b), so that the tension of the thermostrictive material (21) is increased using a motor or the like as a driving source. Giving and releasing can be performed alternately.
  上記第4の発明によれば、第1冷却加熱部(20a)に対応する可動部(41a)と第2冷却加熱部(20b)に対応する可動部(41b)とが互いに逆方向に往復運動するため、簡易な構成により、一方の冷却加熱部(20a,20b)の熱歪材料(21)に張力を付与し、他方の冷却加熱部(20b,20a)の熱歪材料(21)の張力を解除できる。 According to the fourth aspect of the invention, the movable part (41a) corresponding to the first cooling / heating part (20a) and the movable part (41b) corresponding to the second cooling / heating part (20b) are reciprocated in directions opposite to each other. Therefore, with a simple configuration, tension is applied to the heat-strained material (21) of one cooling / heating unit (20a, 20b), and the tension of the thermo-strained material (21) of the other cooling / heating unit (20b, 20a). Can be canceled.
  上記第5の発明によれば、錘部(107)の遠心力を利用して、熱歪材料(21)への張力の付与と解除とを連続的に切り換えることができる。 According to the fifth aspect, it is possible to continuously switch between applying and releasing the tension to the thermostrictive material (21) using the centrifugal force of the weight portion (107).
  上記第6の発明によれば、上記第1乃至第5のいずれか1つの発明の冷却加熱モジュールを空気調和装置に適用することで、空気調和装置の小型化及び簡素化を図ることができる。 According to the sixth aspect of the invention, the cooling and heating module according to any one of the first to fifth aspects of the invention can be applied to an air conditioner, whereby the air conditioner can be reduced in size and simplified.
図1は、本発明の実施形態1及び実施形態4に係る空気調和装置を室内に設置した状態を示す概略図であり、図1(A)が冷却動作の運転状態を示し、図1(B)が加熱動作の運転状態を示している。FIG. 1 is a schematic diagram illustrating a state in which the air-conditioning apparatus according to Embodiments 1 and 4 of the present invention is installed in a room. FIG. 1 (A) illustrates an operating state of a cooling operation, and FIG. ) Shows the operating state of the heating operation. 図2(A)は、図1の空気調和装置に用いられる冷却加熱モジュールの概略構成図であり、図2(B)は調湿モジュールの概略構成図である。2A is a schematic configuration diagram of a cooling and heating module used in the air conditioning apparatus of FIG. 1, and FIG. 2B is a schematic configuration diagram of a humidity control module. 図3(A)は冷却加熱モジュールの概略構成図において加熱動作の状態を示す図であり、図3(B)は冷却加熱モジュールの概略構成図において冷却動作の状態を示す図である。FIG. 3A is a diagram showing the state of the heating operation in the schematic configuration diagram of the cooling heating module, and FIG. 3B is a diagram showing the state of the cooling operation in the schematic configuration diagram of the cooling heating module. 図4は、実施形態1の変形例1及び実施形態4の変形例1に係る空気調和装置を室内に設置した状態を示す概略図であり、図4(A)は第1の運転状態、図4(B)は第2の運転状態を示している。FIG. 4 is a schematic diagram illustrating a state in which the air conditioner according to the first modification of the first embodiment and the first modification of the fourth embodiment is installed in a room, and FIG. 4 (A) is a first operation state, FIG. 4 (B) shows the second operating state. 図5は、実施形態1の変形例2及び実施形態4の変形例2に係る空気調和装置を室内に設置した状態を示す概略図であり、図5(A)は第1の運転状態、図5(B)は第2の運転状態を示している。FIG. 5 is a schematic diagram illustrating a state in which the air conditioner according to the second modification of the first embodiment and the second modification of the fourth embodiment is installed in a room, and FIG. 5A is a first operation state, FIG. 5 (B) shows the second operating state. 図6は、実施形態1の変形例3及び実施形態4の変形例3に係る空気調和装置を設置した状態を示す概略図である。FIG. 6 is a schematic diagram illustrating a state in which an air conditioner according to Modification 3 of Embodiment 1 and Modification 3 of Embodiment 4 is installed. 図7は、図6の空気調和装置の第1の運転動作を示す図であり、図7(A)は平面構造図、図7(B)は左側面構造図、図7(C)は右側面構造図である。7 is a diagram illustrating a first operation operation of the air conditioner of FIG. 6, FIG. 7A is a plan structural diagram, FIG. 7B is a left side structural diagram, and FIG. 7C is a right side diagram. FIG. 図8は、図6の空気調和装置の第2の運転動作を示す図であり、図8(A)は平面構造図、図8(B)は左側面構造図、図8(C)は右側面構造図である。FIG. 8 is a diagram showing a second operation operation of the air conditioner of FIG. 6, FIG. 8A is a plan structure diagram, FIG. 8B is a left side structure diagram, and FIG. FIG. 図9は、実施形態1の変形例4及び実施形態4の変形例4に係る空気調和装置を室内に設置した状態を示す概略図である。FIG. 9 is a schematic diagram illustrating a state in which the air-conditioning apparatus according to Modification 4 of Embodiment 1 and Modification 4 of Embodiment 4 are installed indoors. 図10は、実施形態2及び実施形態4に係る空気調和装置を室内に設置した状態を示す概略図であり、図10(A)が加熱動作の運転状態を示し、図10(B)が冷却動作の運転状態を示している。FIG. 10 is a schematic diagram illustrating a state in which the air-conditioning apparatus according to Embodiments 2 and 4 is installed in a room. FIG. 10 (A) illustrates the operating state of the heating operation, and FIG. 10 (B) illustrates cooling. The operation state of operation is shown. 図11は、実施形態2の変形例1及び実施形態4の変形例1に係る空気調和装置を室内に設置した状態を示す概略図であり、図11(A)は第1の運転状態、図11(B)は第2の運転状態を示している。FIG. 11 is a schematic diagram illustrating a state in which the air conditioner according to Modification 1 of Embodiment 2 and Modification 1 of Embodiment 4 is installed in a room, and FIG. 11A illustrates a first operation state, FIG. 11 (B) shows the second operating state. 図12は、実施形態2の変形例2及び実施形態4の変形例2に係る空気調和装置を室内に設置した状態を示す概略図であり、図12(A)は第1の運転状態、図12(B)は第2の運転状態を示している。FIG. 12 is a schematic diagram illustrating a state in which the air conditioner according to the second modification of the second embodiment and the second modification of the fourth embodiment is installed indoors, and FIG. 12 (A) is a first operation state, FIG. 12 (B) shows the second operating state. 図13は、実施形態2の変形例3及び実施形態4の変形例3に係る空気調和装置を設置した状態を示す概略図である。FIG. 13 is a schematic diagram illustrating a state in which an air conditioner according to Modification 3 of Embodiment 2 and Modification 3 of Embodiment 4 is installed. 図14は、図13の空気調和装置の第1の運転動作を示す図であり、図14(A)は平面構造図、図14(B)は左側面構造図、図14(C)は右側面構造図である。FIG. 14 is a diagram showing a first operation of the air conditioner of FIG. 13, where FIG. 14 (A) is a plan structure diagram, FIG. 14 (B) is a left side structure diagram, and FIG. 14 (C) is a right side diagram. FIG. 図15は、図13の空気調和装置の第2の運転動作を示す図であり、図15(A)は平面構造図、図15(B)は左側面構造図、図15(C)は右側面構造図である。FIG. 15 is a diagram illustrating a second operation operation of the air conditioner of FIG. 13, in which FIG. 15 (A) is a plan structural diagram, FIG. 15 (B) is a left side structural diagram, and FIG. 15 (C) is a right side diagram. FIG. 図16は、実施形態2の変形例4及び実施形態4の変形例4に係る空気調和装置を室内に設置した状態を示す概略図である。FIG. 16 is a schematic diagram illustrating a state in which an air conditioner according to Modification 4 of Embodiment 2 and Modification 4 of Embodiment 4 is installed indoors. 図17は、実施形態3及び実施形態4の変形例5に係る空気調和装置を室内に設置した状態を示す概略図であり、図17(A)は第1の運転状態、図17(B)は第2の運転状態を示している。FIG. 17 is a schematic diagram illustrating a state in which the air-conditioning apparatus according to Modification 3 of Embodiment 3 and Embodiment 4 is installed in a room. FIG. 17A illustrates a first operating state, and FIG. Indicates the second operating state. 図18は、実施形態3の変形例1及び実施形態4の変形例6に係る空気調和装置を室内に設置した状態を示す概略図である。FIG. 18 is a schematic diagram illustrating a state in which an air conditioner according to Modification 1 of Embodiment 3 and Modification 6 of Embodiment 4 is installed indoors. 図19は、実施形態3の変形例2及び実施形態4の変形例5に係る空気調和装置を室内に設置した状態を示す概略図であり、図19(A)は第1の運転状態、図17(B)は第2の運転状態を示している。FIG. 19 is a schematic diagram illustrating a state in which the air-conditioning apparatus according to Modification 2 of Embodiment 3 and Modification 5 of Embodiment 4 is installed in a room, and FIG. 19A is a first operation state, FIG. 17 (B) shows the second operating state. 図20は、実施形態3の変形例3及び実施形態4の変形例6に係る空気調和装置を室内に設置した状態を示す概略図である。FIG. 20 is a schematic diagram illustrating a state in which an air conditioner according to Modification 3 of Embodiment 3 and Modification 6 of Embodiment 4 is installed indoors. 図21は、熱歪材料におけるT-S線図を示すものである。FIG. 21 shows a TS diagram for a thermostrictive material. 図22は、張力調整手段の一例を示すものである。FIG. 22 shows an example of tension adjusting means. 図23は、張力調整手段の一例を示すものである。FIG. 23 shows an example of tension adjusting means. 図24は、実施形態5に係る冷却加熱モジュールの構造を示す斜視図である。FIG. 24 is a perspective view illustrating the structure of the cooling and heating module according to the fifth embodiment. 図25は、実施形態5に係るカムの形状例を示す図である。FIG. 25 is a diagram illustrating a shape example of a cam according to the fifth embodiment. 図26は、実施形態5に係るカムの形状例を示す図である。FIG. 26 is a diagram illustrating a shape example of a cam according to the fifth embodiment. 図27は、実施形態5に係るカムの形状例を示す図である。FIG. 27 is a diagram illustrating a cam shape example according to the fifth embodiment. 図28は、実施形態5の変形例1に係る冷却加熱モジュールの構造を示す斜視図である。FIG. 28 is a perspective view showing the structure of the cooling and heating module according to the first modification of the fifth embodiment. 図29は、実施形態5の変形例2に係る冷却加熱モジュールの構造を示す斜視図である。FIG. 29 is a perspective view showing the structure of the cooling and heating module according to the second modification of the fifth embodiment. 図30は、実施形態5の変形例3に係る冷却加熱モジュールの構造を示す斜視図である。FIG. 30 is a perspective view illustrating a structure of a cooling and heating module according to the third modification of the fifth embodiment. 図31は、実施形態5の変形例4に係る冷却加熱モジュールの構造を示す斜視図である。FIG. 31 is a perspective view showing a structure of a cooling and heating module according to Modification 4 of Embodiment 5. 図32は、実施形態5の変形例5に係る冷却加熱モジュールの構造を示す斜視図である。FIG. 32 is a perspective view showing a structure of a cooling and heating module according to Modification 5 of Embodiment 5. 図33は、実施形態5の変形例6に係る冷却加熱モジュールの構造を示す斜視図である。FIG. 33 is a perspective view showing a structure of a cooling and heating module according to Modification 6 of Embodiment 5. 図34は、実施形態5の変形例7に係る冷却加熱モジュールの構造を示す斜視図である。FIG. 34 is a perspective view showing a structure of a cooling and heating module according to Modification 7 of Embodiment 5. 図35は、実施形態5の変形例8に係る冷却加熱モジュールの構造を示す斜視図である。FIG. 35 is a perspective view showing a structure of a cooling and heating module according to Modification 8 of Embodiment 5. 図36は、実施形態5の変形例9に係る冷却加熱モジュールの構造を示す斜視図である。FIG. 36 is a perspective view illustrating a structure of a cooling and heating module according to Modification 9 of Embodiment 5. 図37は、実施形態6に係る冷却加熱モジュールの構造を示す概略図である。FIG. 37 is a schematic diagram illustrating the structure of the cooling and heating module according to the sixth embodiment. 図38は、実施形態6に係る冷却加熱モジュールの一部を拡大して示す図であって、(A)は、上側空気通路内を示し、(B)は下側空気通路内を示す概略図である。FIG. 38 is an enlarged view showing a part of the cooling and heating module according to Embodiment 6, wherein (A) shows the inside of the upper air passage, and (B) is a schematic view showing the inside of the lower air passage. It is. 図39は、実施形態6の変形例1に係る冷却加熱モジュールの構造を示す概略図である。FIG. 39 is a schematic diagram illustrating the structure of the cooling and heating module according to the first modification of the sixth embodiment. 図40は、実施形態6の変形例2に係る冷却加熱モジュールの構造を示す概略図である。FIG. 40 is a schematic diagram illustrating a structure of a cooling and heating module according to the second modification of the sixth embodiment. 図41は、実施形態6の変形例3に係る冷却加熱モジュールの構造を示す概略図である。FIG. 41 is a schematic diagram illustrating a structure of a cooling and heating module according to the third modification of the sixth embodiment. 図42は、実施形態6の変形例4に係る冷却加熱モジュールの構造を示す斜視図である。FIG. 42 is a perspective view illustrating a structure of a cooling / heating module according to Modification 4 of Embodiment 6. 図43は、実施形態6の変形例4に係る冷却加熱モジュールの構造を示す概略の断面図である。FIG. 43 is a schematic cross-sectional view showing the structure of the cooling and heating module according to Modification 4 of Embodiment 6. 図44は、実施形態6の変形例4に係る冷却加熱モジュールの構造を示す平面図である。FIG. 44 is a plan view showing the structure of the cooling and heating module according to the fourth modification of the sixth embodiment. 図45は、実施形態6の変形例5に係る冷却加熱モジュールの構造を示す斜視図である。FIG. 45 is a perspective view showing a structure of a cooling and heating module according to Modification 5 of Embodiment 6. 図46は、実施形態6の変形例5に係る冷却加熱モジュールの構造を示す概略の断面図である。FIG. 46 is a schematic cross-sectional view illustrating the structure of the cooling and heating module according to the fifth modification of the sixth embodiment. 図47は、実施形態6の変形例5に係る冷却加熱モジュールの構造を示す平面図である。FIG. 47 is a plan view showing the structure of the cooling and heating module according to the fifth modification of the sixth embodiment. 図48は、実施形態7に係る冷却加熱モジュールの構造を示す概略図である。FIG. 48 is a schematic diagram illustrating the structure of the cooling and heating module according to the seventh embodiment. 図49は、実施形態7に係るケーシングと冷却加熱モジュールの構造を示す概略図である。FIG. 49 is a schematic diagram illustrating the structure of the casing and the cooling heating module according to the seventh embodiment. 図50は、実施形態7の変形例に係る冷却加熱モジュールの一部を示す概略図である。FIG. 50 is a schematic diagram illustrating a part of a cooling and heating module according to a modification of the seventh embodiment. 図51は、実施形態7の変形例に係る冷却加熱モジュールの構造を示す概略図である。FIG. 51 is a schematic diagram illustrating the structure of a cooling and heating module according to a modification of the seventh embodiment. 図52は、実施形態7の変形例に係るケーシングと冷却加熱モジュールの構造を示す概略図である。FIG. 52 is a schematic diagram illustrating a structure of a casing and a cooling / heating module according to a modification of the seventh embodiment. 図53は、その他の形態に係るアクチュエータの構成を示す図である。FIG. 53 is a diagram showing a configuration of an actuator according to another embodiment. 図54は、その他の形態に係るアクチュエータの構成を示す図である。FIG. 54 is a diagram showing a configuration of an actuator according to another embodiment. 図55は、その他の形態に係るアクチュエータの構成を示す図である。FIG. 55 is a diagram showing a configuration of an actuator according to another embodiment. 図56は、その他の形態に係るアクチュエータの構成を示す図である。FIG. 56 is a diagram showing a configuration of an actuator according to another embodiment. 図57は、本発明の実施形態8に係る調湿装置を室内に設置した状態を示す概略図であり、図57(A)が吸湿動作の運転状態を示し、図57(B)が放湿動作の運転状態を示している。FIG. 57 is a schematic view showing a state in which the humidity control apparatus according to the eighth embodiment of the present invention is installed indoors, FIG. 57 (A) shows the operating state of the moisture absorption operation, and FIG. 57 (B) is the moisture release. The operation state of operation is shown. 図58は、熱歪材料におけるT-S線図を示すものである。FIG. 58 shows a TS diagram of the thermostrictive material. 図59(A)は調湿モジュールの概略構成図において放湿運転の状態を示す図であり、図59(B)は調湿モジュールの概略構成図において吸湿運転の状態を示す図である。FIG. 59A is a diagram showing the state of the moisture release operation in the schematic configuration diagram of the humidity control module, and FIG. 59B is a diagram showing the state of the moisture absorption operation in the schematic configuration diagram of the humidity control module. 図60は、張力調整手段の一例を示すものである。FIG. 60 shows an example of tension adjusting means. 図61は、張力調整手段の一例を示すものである。FIG. 61 shows an example of tension adjusting means. 図62は、実施形態8の変形例1及び実施形態11の変形例1に係る調湿装置を室内に設置した状態を示す概略図であり、図62(A)は第1の運転状態、図62(B)は第2の運転状態を示している。FIG. 62 is a schematic diagram illustrating a state in which the humidity control apparatus according to the first modification of the eighth embodiment and the first modification of the eleventh embodiment is installed indoors, and FIG. 62 (A) is a first operation state, FIG. 62 (B) shows the second operating state. 図63は、実施形態8の変形例2及び実施形態11の変形例2に係る調湿装置を室内に設置した状態を示す概略図であり、図63(A)は第1の運転状態、図63(B)は第2の運転状態を示している。FIG. 63 is a schematic diagram illustrating a state in which the humidity control apparatus according to the second modification of the eighth embodiment and the second modification of the eleventh embodiment is installed indoors, and FIG. 63 (A) is a first operation state, FIG. 63 (B) shows the second operating state. 図64は、実施形態8の変形例3及び実施形態11の変形例3に係る調湿装置を設置した状態を示す概略図である。FIG. 64 is a schematic diagram illustrating a state in which a humidity control apparatus according to Modification 3 of Embodiment 8 and Modification 3 of Embodiment 11 is installed. 図65は、図64の調湿装置の第1の運転動作を示す図であり、図65(A)は平面構造図、図65(B)は左側面構造図、図65(C)は右側面構造図である。FIG. 65 is a diagram showing a first operation operation of the humidity control apparatus of FIG. 64, FIG. 65 (A) is a plan structure diagram, FIG. 65 (B) is a left side structure diagram, and FIG. FIG. 図66は、図64の調湿装置の第2の運転動作を示す図であり、図66(A)は平面構造図、図66(B)は左側面構造図、図66(C)は右側面構造図である。66 is a diagram showing a second operation operation of the humidity control apparatus of FIG. 64, in which FIG. 66 (A) is a plan structural view, FIG. 66 (B) is a left side structural view, and FIG. 66 (C) is a right side view. FIG. 図67は、実施形態8の変形例4及び実施形態11の変形例4に係る調湿装置を室内に設置した状態を示す概略図である。FIG. 67 is a schematic diagram illustrating a state in which the humidity control apparatus according to Modification 4 of Embodiment 8 and Modification 4 of Embodiment 11 are installed indoors. 図68は、実施形態9及び実施形態11に係る調湿装置を室内に設置した状態を示す概略図であり、図68(A)が放湿動作の運転状態を示し、図68(B)が吸湿動作の運転状態を示している。FIG. 68 is a schematic diagram illustrating a state in which the humidity control apparatus according to the ninth embodiment and the eleventh embodiment is installed in a room. FIG. 68 (A) illustrates the operating state of the moisture release operation, and FIG. The operation state of the moisture absorption operation is shown. 図69は、実施形態9の変形例1及び実施形態11の変形例1に係る調湿装置を室内に設置した状態を示す概略図であり、図69(A)は第1の運転状態、図69(B)は第2の運転状態を示している。FIG. 69 is a schematic diagram illustrating a state in which the humidity control apparatus according to the first modification of the ninth embodiment and the first modification of the eleventh embodiment is installed indoors, and FIG. 69 (A) is a first operation state, FIG. 69 (B) shows the second operating state. 図70は、実施形態9の変形例2及び実施形態11の変形例2に係る調湿装置を室内に設置した状態を示す概略図であり、図70(A)は第1の運転状態、図70(B)は第2の運転状態を示している。FIG. 70 is a schematic diagram illustrating a state in which the humidity control apparatus according to the second modification of the ninth embodiment and the second modification of the eleventh embodiment is installed indoors, and FIG. 70 (A) is a first operation state, FIG. 70 (B) shows the second operating state. 図71は、実施形態9の変形例3及び実施形態11の変形例3に係る調湿装置を設置した状態を示す概略図である。FIG. 71 is a schematic diagram illustrating a state in which the humidity control apparatus according to Modification 3 of Embodiment 9 and Modification 3 of Embodiment 11 are installed. 図72は、図71の調湿装置の第1の運転動作を示す図であり、図72(A)は平面構造図、図72(B)は左側面構造図、図72(C)は右側面構造図である。72 is a diagram showing a first operation operation of the humidity control apparatus of FIG. 71, FIG. 72 (A) is a plan structure diagram, FIG. 72 (B) is a left side structure diagram, and FIG. 72 (C) is a right side diagram. FIG. 図73は、図71の調湿装置の第2の運転動作を示す図であり、図73(A)は平面構造図、図73(B)は左側面構造図、図73(C)は右側面構造図である。73 is a diagram showing a second operation operation of the humidity control apparatus of FIG. 71, FIG. 73 (A) is a plan structural diagram, FIG. 73 (B) is a left side structural diagram, and FIG. 73 (C) is a right side diagram. FIG. 図74は、実施形態9の変形例4に係る調湿装置を室内に設置した状態を示す概略図である。FIG. 74 is a schematic diagram illustrating a state in which the humidity control apparatus according to the fourth modification of the ninth embodiment is installed indoors. 図75は、実施形態10及び実施形態11の変形例5に係る調湿装置を室内に設置した状態を示す概略図であり、図75(A)は第1の運転状態、図75(B)は第2の運転状態を示している。FIG. 75 is a schematic diagram illustrating a state in which the humidity control apparatus according to the fifth modification of the tenth embodiment and the eleventh embodiment is installed in a room. FIG. 75A is a first operation state, and FIG. Indicates the second operating state. 図76は、実施形態10の変形例1及び実施形態11の変形例6に係る調湿装置を室内に設置した状態を示す概略図である。FIG. 76 is a schematic diagram illustrating a state in which the humidity control apparatus according to Modification 1 of Embodiment 10 and Modification 6 of Embodiment 11 are installed indoors. 図77は、実施形態10の変形例2及び実施形態11の変形例5に係る調湿装置を室内に設置した状態を示す概略図であり、図77(A)は第1の運転状態、図77(B)は第2の運転状態を示している。FIG. 77 is a schematic diagram showing a state in which the humidity control apparatus according to the second modification of the tenth embodiment and the fifth modification of the eleventh embodiment is installed indoors, and FIG. 77 (A) is a first operation state, FIG. 77 (B) shows the second operating state. 図78は、実施形態10の変形例3及び実施形態11の変形例6に係る調湿装置を室内に設置した状態を示す概略図である。FIG. 78 is a schematic diagram illustrating a state in which the humidity control apparatus according to Modification 3 of Embodiment 10 and Modification 6 of Embodiment 11 are installed indoors.
  以下、本発明の実施形態を図面に基づいて詳細に説明する。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
  《発明の実施形態1》
 本発明の実施形態1について説明する。
Embodiment 1 of the Invention
A first embodiment of the present invention will be described.
  -装置の全体構成-
  図1は、実施形態1に係る空気調和装置(1)を建物(2)の室内(空調対象空間)(3)に設置した状態を示す概略図であり、図1(A)が冷却動作(吸熱動作)の運転状態を示し、図1(B)が加熱動作(放熱動作)の運転状態を示している。実施形態1の空気調和装置(1)は、冷房専用機として構成されている。
-Overall configuration of the device-
FIG. 1 is a schematic view showing a state in which the air conditioner (1) according to Embodiment 1 is installed in a room (air-conditioning target space) (3) of a building (2). FIG. FIG. 1B shows the operating state of the heating operation (heat dissipating operation). The air conditioner (1) of Embodiment 1 is configured as a cooling only machine.
  この空気調和装置(1)は、ケーシング(10)と、ケーシング(10)内に収納された冷却加熱モジュール(20)と、冷却加熱モジュール(20)に空気を流すファン(30)と、冷却加熱モジュール(20)に付与する引張力を調節する切換制御部(35)とを備えている。冷却加熱モジュール(20)と切換制御部(35)とにより冷却加熱ユニット(5)が構成されている。また、ケーシング(10)とその内部に設けられた機能部品により室内ユニット(U)が構成されている。 The air conditioner (1) includes a casing (10), a cooling / heating module (20) housed in the casing (10), a fan (30) for flowing air to the cooling / heating module (20), and cooling / heating. And a switching control unit (35) for adjusting the tensile force applied to the module (20). The cooling / heating unit (5) is constituted by the cooling / heating module (20) and the switching control unit (35). Moreover, the indoor unit (U) is comprised by the casing (10) and the functional component provided in the inside.
  ケーシング(10)内には、該ケーシング(10)内に導入された空気を冷却加熱モジュール(20)に通すための空気通路(P)が形成されている。具体的には、室内(3)からケーシング(10)内に吸い込まれた空気は空気通路(P)を通る際に冷却加熱モジュール(20)で処理されて室内(3)に戻される。また、この空気調和装置(1)は、後述するように間欠的に室内(3)を冷やすように構成されており、室内(3)の冷却を休止しているときには、室外からケーシング(10)内に吸い込まれた空気が空気通路(P)を通る際に冷却加熱モジュール(20)から熱を奪って再び室外に放出される。 In the casing (10), an air passage (P) for allowing the air introduced into the casing (10) to pass through the cooling and heating module (20) is formed. Specifically, the air sucked into the casing (10) from the room (3) is processed by the cooling and heating module (20) and returned to the room (3) when passing through the air passage (P). The air conditioner (1) is configured to intermittently cool the room (3) as will be described later, and when the cooling of the room (3) is stopped, the casing (10) When the air sucked into the air passes through the air passage (P), it takes heat from the cooling heating module (20) and is discharged to the outside again.
  以上の空気流れを実現するために、この空気調和装置(1)は、室内からの吸込空気、室内への吹出空気、室外からの吸込空気、及び室外への吹出空気が混合しないように、図示していない仕切板やダンパ等でケーシング(10)内が区画されている。 In order to realize the above air flow, this air conditioner (1) is designed so that the intake air from the room, the air blown into the room, the air sucked from the outside, and the air blown out to the outside are not mixed. The inside of the casing (10) is partitioned by a partition plate or a damper not shown.
  -冷却加熱モジュール-
  冷却加熱モジュール(20)は、概略の構成を図2(A)に示すように、熱歪材料(21)と、該熱歪材料(21)に引張力を付与するアクチュエータ(22)とを備えている。尚、この熱歪材料(21)に付与される引張力は、本発明に係る張力を構成している。
-Cooling and heating module-
As shown in FIG. 2A, the cooling and heating module (20) includes a thermal strain material (21) and an actuator (22) that applies a tensile force to the thermal strain material (21). ing. Note that the tensile force applied to the thermal strain material (21) constitutes the tension according to the present invention.
  上記熱歪材料(21)は、例示として形状記憶合金によって構成され、張力をかけることで対象物を加熱する一方、張力を解除することで対象物を冷却するものである。具体的には、図21に示すように、熱歪材料(21)に張力をかけると、母相(オーステナイト相)からマルテンサイト相へと相変化することで、エントロピーが減少し、その分、発熱して熱歪材料(21)自身が加熱される(IからII)。熱歪材料(21)に張力をかけたまま、該熱歪材料(21)を加熱対象物に接触させると、熱歪材料(21)の熱が加熱対象物に伝わる(IIからIII)。こうすることで、熱歪材料(21)の温度は下がる。そして、熱歪材料(21)にかけられている張力を除去(解除)すると、マルテンサイト相から母相(オーステナイト相)に変化する(IIIからIV)。このとき、熱歪材料(21)が断熱されていると、熱歪材料(21)の温度が下がる。温度が下がった熱歪材料に冷却対象物を接触させると、該冷却対象物の熱が熱歪材料(21)に伝わる(IVからI)。 The heat-strain material (21) is made of a shape memory alloy as an example, and heats the object by applying tension while cooling the object by releasing the tension. Specifically, as shown in FIG. 21, when tension is applied to the thermostrictive material (21), the entropy is reduced by the phase change from the parent phase (austenite phase) to the martensite phase, and accordingly, The heat-strained material (21) itself is heated by generating heat (I to II). When the thermostrictive material (21) is brought into contact with the object to be heated while tension is applied to the thermostrictive material (21), the heat of the thermostrictive material (21) is transferred to the object to be heated (II to III). By doing so, the temperature of the thermostrictive material (21) is lowered. When the tension applied to the thermostrictive material (21) is removed (released), the martensite phase changes to the parent phase (austenite phase) (III to IV). At this time, if the heat-strained material (21) is insulated, the temperature of the heat-strained material (21) decreases. When the object to be cooled is brought into contact with the thermostrained material whose temperature has decreased, the heat of the object to be cooled is transferred to the heat-strained material (21) (IV to I).
  したがって、図3(A)に示すように、熱歪材料(21)に引張力を付与すると、熱歪材料(21)が発熱する。冷却加熱モジュール(20)を通過した空気は温度が上昇する。逆に図3(B)に示すように熱歪材料(21)への引張力を解除すると、熱歪材料(21)が吸熱する。冷却加熱モジュール(20)を通過した空気は温度が低下する。この空気調和装置(1)では、熱歪材料(21)の加熱動作と冷却動作が交互に行われ、冷却動作を用いた冷房運転が間欠的に行われる。 Therefore, as shown in FIG. 3A, when a tensile force is applied to the heat strain material (21), the heat strain material (21) generates heat. The temperature of the air that has passed through the cooling and heating module (20) rises. Conversely, as shown in FIG. 3B, when the tensile force applied to the heat strain material (21) is released, the heat strain material (21) absorbs heat. The temperature of the air that has passed through the cooling and heating module (20) decreases. In the air conditioner (1), the heating operation and the cooling operation of the heat strain material (21) are alternately performed, and the cooling operation using the cooling operation is intermittently performed.
 なお、熱歪材料(21)は、冷却加熱中には動作開始から能力のピークを越えると能力が低下する。そのため、冷却動作と加熱動作が交互に切り換えられる。 It should be noted that the capacity of the thermostrictive material (21) decreases when the capacity peak is exceeded from the start of operation during cooling and heating. For this reason, the cooling operation and the heating operation are switched alternately.
  熱歪材料(21)の具体例として、Ti/Ni/Cu合金を挙げることができる。特に、上記合金の組成範囲を表すと、Tiが40~80%、Niが20~60%、Cuが0~30%のものを用いることができる。 As a specific example of the heat strain material (21), Ti / Ni / Cu alloy can be mentioned. In particular, in terms of the composition range of the above alloy, those having Ti of 40 to 80%, Ni of 20 to 60%, and Cu of 0 to 30% can be used.
  上記アクチュエータ(22)は、熱歪材料(21)に引張力を付与するためのものである。アクチュエータ(22)は、切換制御部(35)に接続され、該切換制御部(35)によって熱歪材料(21)への引張力の付与と解除とが制御される。 The actuator (22) is for applying a tensile force to the thermostrictive material (21). The actuator (22) is connected to the switching control unit (35), and the switching control unit (35) controls the application and release of the tensile force to the thermostrictive material (21).
  -引張力付与動作-
  上記切換制御部(35)は、アクチュエータ(22)を制御して、熱歪材料(21)への引張力の付与と解除を制御するものである。切換制御部(35)は、図22(A~C)において、アクチュエータ(22)における熱歪材料(21)に付与する引張力の大きさを変化させることにより該熱歪材料(21)の発熱量を調整し、冷却加熱能力を調整するように構成されている。
-Tensioning force application-
The switching control section (35) controls the actuator (22) to control the application and release of the tensile force to the thermostrictive material (21). In FIG. 22 (A to C), the switching control unit (35) changes the amount of tensile force applied to the thermostrain material (21) in the actuator (22), thereby generating heat from the thermostrain material (21). It is configured to adjust the amount and adjust the cooling heating capacity.
  また、上記切換制御部(35)は、図23(A~C)において、各熱歪材料(21)の全体のうち、引張力を付与する熱歪材料(21)の割合を変化させることにより該熱歪材料(21)の発熱力を調整し、冷却加熱能力を調整するようにしてもよい。 In addition, in FIG. 23 (A to C), the switching control unit (35) changes the ratio of the thermostrictive material (21) to which a tensile force is applied out of the entire thermostrictive material (21). The heat generation capacity of the heat strain material (21) may be adjusted to adjust the cooling heating capacity.
  さらに、上記切換制御部(35)は、上記冷却動作と加熱動作を繰り返す時間間隔を変化させることにより上記熱歪材料(21)の発熱量を調整し、冷却加熱能力を調整するように構成してもよい。 Furthermore, the switching control unit (35) is configured to adjust the heat generation amount of the thermostrictive material (21) by changing the time interval for repeating the cooling operation and the heating operation, thereby adjusting the cooling heating capacity. May be.
  -運転動作-
  この空気調和装置(1)では冷房運転のみが行われる。
-Driving operation-
In this air conditioner (1), only the cooling operation is performed.
  具体的には、図1(A)の冷却動作においては、それまで加熱されていた冷却加熱モジュール(20)への引張力が解除される。そうすると、図2,図3の熱歪材料(21)が冷却され、冷却加熱モジュール(20)が空気(室内空気(RA))から吸熱する。したがって、図1(A)に示すように、ケーシング(10)内に導入された室内空気(RA)が冷却され、その空気が供給空気(SA)として室内に戻されて室内が冷房される。 Specifically, in the cooling operation of FIG. 1 (A), the tensile force to the cooling / heating module (20) that has been heated is released. If it does so, the heat-strain material (21) of FIG.2, FIG.3 will be cooled and a cooling heating module (20) will absorb heat from air (room air (RA)). Accordingly, as shown in FIG. 1 (A), the indoor air (RA) introduced into the casing (10) is cooled, and the air is returned to the room as supply air (SA) to cool the room.
  図1(B)の加熱動作時は、ファン(30)の回転方向が切り換えられ、室外空気(OA)がケーシング(10)に取り込まれるとともに冷却加熱モジュール(20)で処理されてから排出空気(EA)として室外へ放出される。このとき、冷却加熱モジュール(20)の熱歪材料(21)に引張力が付与される。そうすると、熱歪材料(21)が加熱され、冷却加熱モジュール(20)が放熱する。したがって、この加熱動作のときには、冷却加熱モジュール(20)を通って加熱された空気が室外に排出される。 During the heating operation of FIG. 1B, the rotation direction of the fan (30) is switched, and the outdoor air (OA) is taken into the casing (10) and processed by the cooling and heating module (20) before being discharged ( EA) is discharged outside the room. At this time, a tensile force is applied to the thermostrictive material (21) of the cooling and heating module (20). Then, the thermostrictive material (21) is heated and the cooling heating module (20) dissipates heat. Therefore, during this heating operation, the air heated through the cooling and heating module (20) is discharged outside the room.
  本実施形態では、図1(A)の冷却動作と図1(B)の加熱動作を繰り返し行うことにより、冷房運転が間欠的に行われる。 In this embodiment, the cooling operation is intermittently performed by repeatedly performing the cooling operation of FIG. 1A and the heating operation of FIG.
  -実施形態1の効果-
  本実施形態によれば、冷却加熱モジュール(20)には、ゴムなどの弾性体は採用していない。ここで、ゴムのような弾性体を冷却加熱モジュールに用いると、上記弾性体を伸縮させるための機構が必要になり、空気調和装置(1)の構造が複雑になるとともに装置(1)が大型化してしまうのに対して、本実施形態によれば、上記冷却加熱モジュール(20)に上記弾性体を用いていないので、空気調和装置(1)の大型化や構造の複雑化を防止することができる。
-Effect of Embodiment 1-
According to the present embodiment, the cooling and heating module (20) does not employ an elastic body such as rubber. Here, when an elastic body such as rubber is used for the cooling and heating module, a mechanism for expanding and contracting the elastic body is required, the structure of the air conditioner (1) is complicated, and the apparatus (1) is large. On the other hand, according to this embodiment, since the elastic body is not used for the cooling and heating module (20), it is possible to prevent the air conditioner (1) from becoming large and having a complicated structure. Can do.
  また、本実施形態では、熱歪材料(21)の発熱量を調整し、冷却加熱能力を調整することができるので、空調負荷に応じた運転をすることが可能である。 Further, in this embodiment, since the heat generation amount of the thermostrictive material (21) can be adjusted and the cooling heating capacity can be adjusted, it is possible to operate according to the air conditioning load.
  -実施形態1の変形例-
  (変形例1)
  図4に示す変形例1は、2つの室内ユニット(U1,U2)を空調対象の室内(3)に設置するように構成したものである。図では、部屋の対向する壁面の一方(図の右側の壁面)に第1室内ユニット(U1)が設置され、壁面の他方(図の左側の壁面)に第2室内ユニット(U2)が設置されている。各室内ユニット(U1,U2)の構成は図1の空気調和装置(1)の室内ユニット(U)と同じであるため、各室内ユニット(U1,U2)の構成については説明を省略する。なお、室内ユニット(U1,U2)には、それぞれ空気通路(P1,P2)が形成されている。
-Modification of Embodiment 1-
(Modification 1)
Modification 1 shown in FIG. 4 is configured to install two indoor units (U1, U2) in a room (3) to be air-conditioned. In the figure, the first indoor unit (U1) is installed on one of the opposing wall surfaces (the right wall surface in the figure), and the second indoor unit (U2) is installed on the other wall surface (the left wall surface in the figure). ing. Since the configuration of each indoor unit (U1, U2) is the same as that of the indoor unit (U) of the air conditioner (1) in FIG. 1, the description of the configuration of each indoor unit (U1, U2) is omitted. Note that air passages (P1, P2) are formed in the indoor units (U1, U2), respectively.
  図4(A)は、第1室内ユニット(U1)で冷却動作を行い、第2室内ユニット(U2)で加熱動作を行う状態を示している。第1室内ユニット(U1)では、冷却加熱モジュール(20)の熱歪材料(21)への引張力が解除される。したがって、第1室内ユニット(U1)の冷却加熱モジュール(20)が吸熱し、ケーシング(10)に取り込まれた室内空気(RA)が冷却される。そして、冷却された空気が供給空気(SA)として室内(3)へ供給される。 FIG. 4A shows a state in which the cooling operation is performed in the first indoor unit (U1) and the heating operation is performed in the second indoor unit (U2). In the first indoor unit (U1), the tensile force applied to the heat strain material (21) of the cooling and heating module (20) is released. Therefore, the cooling and heating module (20) of the first indoor unit (U1) absorbs heat, and the indoor air (RA) taken into the casing (10) is cooled. The cooled air is supplied to the room (3) as supply air (SA).
  一方、第2室内ユニット(U2)では、室外空気(OA)をケーシング(10)に取り入れて処理した後に排出する方向へファン(30)が回転し、同時に冷却加熱モジュール(20)の熱歪材料(21)に引張力が付与される。したがって、冷却加熱モジュール(20)の熱を室外空気(OA)が奪い、排出空気(EA)として室外へ放出される。 On the other hand, in the second indoor unit (U2), the fan (30) rotates in the direction to discharge after the outdoor air (OA) is taken into the casing (10) and processed, and at the same time, the heat strain material of the cooling and heating module (20). A tensile force is applied to (21). Therefore, the outdoor air (OA) takes the heat of the cooling and heating module (20), and is discharged outside as outdoor air (EA).
  図4(B)は、第2室内ユニット(U2)で冷却動作を行い、第1室内ユニット(U1)で加熱動作を行う状態を示している。第2室内ユニット(U2)では、冷却加熱モジュール(20)の熱歪材料(21)への引張力が解除される。したがって、第2室内ユニット(U2)の冷却加熱モジュール(20)が吸熱し、ケーシング(10)に取り込まれた室内空気(RA)が冷却される。そして、冷却された空気が供給空気(SA)として室内へ供給される。 FIG. 4B shows a state in which the cooling operation is performed in the second indoor unit (U2) and the heating operation is performed in the first indoor unit (U1). In the second indoor unit (U2), the tensile force applied to the heat strain material (21) of the cooling and heating module (20) is released. Therefore, the cooling and heating module (20) of the second indoor unit (U2) absorbs heat, and the indoor air (RA) taken into the casing (10) is cooled. And the cooled air is supplied indoors as supply air (SA).
  一方、第1室内ユニット(U1)では、室外空気(OA)をケーシング(10)に取り入れて処理した後に排出する方向へファン(30)が回転し、同時に冷却加熱モジュール(20)の熱歪材料(21)に引張力が付与される。したがって、冷却加熱モジュール(20)の熱を室外空気(OA)が奪い、排出空気(EA)として室外へ放出される。 On the other hand, in the first indoor unit (U1), the fan (30) rotates in the direction to discharge the outdoor air (OA) after taking it into the casing (10) and processing it, and at the same time, the heat strain material of the cooling and heating module (20) A tensile force is applied to (21). Therefore, the outdoor air (OA) takes the heat of the cooling and heating module (20), and is discharged outside as outdoor air (EA).
  このように、実施形態1の変形例1によれば、いずれか一方の室内ユニット(U1,U2)で空気を冷却して、その空気を室内(3)へ供給するときに、他方の室内ユニット(U2,U1)では室外へ熱を排出する図4(A)の運転と図4(B)の運転を交互に切り換えることにより、冷房運転を連続して行うことができる。 Thus, according to Modification 1 of Embodiment 1, when one of the indoor units (U1, U2) cools the air and supplies the air to the room (3), the other indoor unit In (U2, U1), the cooling operation can be continuously performed by alternately switching the operation of FIG. 4A for discharging heat to the outside and the operation of FIG. 4B.
  (変形例2)
  図5に示す変形例2は、2つの室内ユニット(U1,U2)を空調対象の室内(3)に設置するように構成している点は図4の装置(1)と共通している。図4の変形例1と異なる点は、第1室内ユニット(U1)と第2室内ユニット(U2)の両方を、図の右側の壁面に設置した点である。各室内ユニット(U1,U2)の構成は、図1及び図4の空気調和装置(1)と同じである。
(Modification 2)
The modification 2 shown in FIG. 5 is common to the apparatus (1) of FIG. 4 in that two indoor units (U1, U2) are installed in the air-conditioned room (3). The difference from Modification 1 of FIG. 4 is that both the first indoor unit (U1) and the second indoor unit (U2) are installed on the right wall surface of the drawing. The configuration of each indoor unit (U1, U2) is the same as that of the air conditioner (1) shown in FIGS.
  図5(A)は、第1室内ユニット(U1)で冷却動作を行い、第2室内ユニット(U2)で加熱動作を行う状態を示している。第1室内ユニット(U1)では、冷却加熱モジュール(20)の熱歪材料(21)への引張力が解除される。したがって、第1室内ユニット(U1)の冷却加熱モジュール(20)が吸熱し、ケーシング(10)内に取り込まれた室内空気(RA)が冷却される。そして、冷却された空気が供給空気(SA)として室内(3)へ供給される。 FIG. 5A shows a state where the cooling operation is performed in the first indoor unit (U1) and the heating operation is performed in the second indoor unit (U2). In the first indoor unit (U1), the tensile force applied to the heat strain material (21) of the cooling and heating module (20) is released. Therefore, the cooling and heating module (20) of the first indoor unit (U1) absorbs heat, and the indoor air (RA) taken into the casing (10) is cooled. The cooled air is supplied to the room (3) as supply air (SA).
  一方、第2室内ユニット(U2)では、室外空気(OA)をケーシング(10)に取り入れて処理した後に排出する方向へファン(30)が回転し、同時に冷却加熱モジュール(20)の熱歪材料(21)に引張力が付与される。したがって、冷却加熱モジュール(20)の熱を室外空気(OA)が奪い、排出空気(EA)として室外へ放出される。 On the other hand, in the second indoor unit (U2), the fan (30) rotates in the direction to discharge after the outdoor air (OA) is taken into the casing (10) and processed, and at the same time, the heat strain material of the cooling and heating module (20). A tensile force is applied to (21). Therefore, the outdoor air (OA) takes the heat of the cooling and heating module (20), and is discharged outside as outdoor air (EA).
  図5(B)は、第2室内ユニット(U2)で冷却動作を行い、第1室内ユニット(U1)で加熱動作を行う状態を示している。第2室内ユニット(U2)では、冷却加熱モジュール(20)の熱歪材料(21)への引張力が解除される。したがって、第2室内ユニット(U2)の冷却加熱モジュール(20)が吸熱し、ケーシング(10)内に取り込まれた室内空気(RA)が冷却される。そして、冷却された空気が供給空気(SA)として室内(3)へ供給される。 FIG. 5B shows a state in which the cooling operation is performed by the second indoor unit (U2) and the heating operation is performed by the first indoor unit (U1). In the second indoor unit (U2), the tensile force applied to the heat strain material (21) of the cooling and heating module (20) is released. Therefore, the cooling and heating module (20) of the second indoor unit (U2) absorbs heat, and the indoor air (RA) taken into the casing (10) is cooled. The cooled air is supplied to the room (3) as supply air (SA).
  一方、第1室内ユニット(U1)では、室外空気(OA)をケーシング(10)に取り入れて処理した後に排出する方向へファン(30)が回転し、同時に冷却加熱モジュール(20)の熱歪材料(21)に引張力が付与される。したがって、冷却加熱モジュール(20)の熱を室外空気(OA)が奪い、排出空気(EA)として室外へ放出される。 On the other hand, in the first indoor unit (U1), the fan (30) rotates in the direction to discharge the outdoor air (OA) after taking it into the casing (10) and processing it, and at the same time, the heat strain material of the cooling and heating module (20) A tensile force is applied to (21). Therefore, the outdoor air (OA) takes the heat of the cooling and heating module (20), and is discharged outside as outdoor air (EA).
  このように、実施形態1の変形例2によれば、いずれか一方の室内ユニット(U1,U2)で空気を冷却して、その空気を室内(3)へ供給するときに、他方の室内ユニット(U2,U1)では室外へ熱を排出する図5(A)の運転と図5(B)の運転を交互に切り換えることにより、冷房運転を連続して行うことができる。 Thus, according to Modification 2 of Embodiment 1, when one of the indoor units (U1, U2) cools the air and supplies the air to the room (3), the other indoor unit In (U2, U1), the cooling operation can be continuously performed by alternately switching between the operation of FIG. 5A and the operation of FIG.
  (変形例3)
  図6に示す変形例3は、空気調和装置(1)のケーシング(10)内に2つの冷却加熱モジュール(20)を設け、一方の冷却加熱モジュール(20)(第1冷却加熱モジュール(20a))を通過した空気を室内(3)に供給して他方の冷却加熱モジュール(20)(第2冷却加熱モジュール(20b))を通過した空気を室外へ放出する第1の運転動作と、第2冷却加熱モジュール(20b)を通過した空気を室内(3)に供給して第1冷却加熱モジュール(20a)を通過した空気を室外へ放出する第2の運転動作とを切り換えるように構成したものである。
(Modification 3)
In Modification 3 shown in FIG. 6, two cooling heating modules (20) are provided in the casing (10) of the air conditioner (1), and one cooling heating module (20) (first cooling heating module (20a)) is provided. ) Is supplied to the room (3), and the air that has passed through the other cooling and heating module (20) (second cooling and heating module (20b)) is discharged to the outside of the room. It is configured to switch between the second operation for supplying the air that has passed through the cooling and heating module (20b) to the room (3) and releasing the air that has passed through the first cooling and heating module (20a) to the outside of the room. is there.
  空気調和装置(1)は、具体的には図7,8に示すように構成されている。この空気調和装置(1)は、2つの冷却加熱モジュール(20a,20b)と2つのファン(30a,30b)を1つのケーシング(10)内に収納した一体型の構成で、天井裏に設置されている。図7は、第1冷却加熱モジュール(20a)を冷却側にして第2冷却加熱モジュール(20b)を加熱側にする第1の運転動作を示し、図8は、第2冷却加熱モジュール(20b)を冷却側にして第1冷却加熱モジュール(20a)を加熱側にする第2の運転動作を示している。また、図7及び図8において、それぞれ、(A)図は平面構造図(装置を平面から見て内部構造を示す図)、(B)図は左側面構造図、(C)図は右側面構造図である。 The air conditioner (1) is specifically configured as shown in FIGS. This air conditioner (1) has an integrated structure in which two cooling and heating modules (20a, 20b) and two fans (30a, 30b) are housed in one casing (10), and is installed behind the ceiling. ing. FIG. 7 shows a first operation operation in which the first cooling / heating module (20a) is on the cooling side and the second cooling / heating module (20b) is on the heating side, and FIG. 8 shows the second cooling / heating module (20b). The second operation is shown in which the first cooling and heating module (20a) is on the heating side with the cooling side. 7 and 8, (A) is a plan view (showing the internal structure when the apparatus is viewed from above), (B) is a left side view, and (C) is a right side. FIG.
  この空気調和装置(1)のケーシング(10)は、四角い箱形に形成されている。このケーシング(10)の1つの側壁面には、室内空気(RA)をケーシング(10)内に取り入れる第1吸込口(11)と、室外空気(OA)をケーシング(10)内に取り入れる第2吸込口(12)が設けられている。また、上記各吸込口(11,12)が設けられている側壁面の左右の側壁面には、供給空気(SA)を室内(3)に供給する第1吹出口(13)と、排出空気(EA)を室外に排出する第2吹出口(14)が設けられている。これらの第1吸込口(11)、第2吸込口(12)、第1吹出口(13)及び第2吹出口(14)には、それぞれ図6に模式的に矢印で示すダクト(4a,4b,4c,4d)が接続されている。 The casing (10) of the air conditioner (1) is formed in a square box shape. A first suction port (11) for taking indoor air (RA) into the casing (10) and a second air port for taking outdoor air (OA) into the casing (10) are formed on one side wall surface of the casing (10). A suction port (12) is provided. Moreover, the 1st blower outlet (13) which supplies supply air (SA) to room | chamber (3), and exhaust air are in the side wall surface on either side of the side wall surface in which each said inlet (11,12) is provided. A second outlet (14) for discharging (EA) to the outside is provided. These first suction port (11), second suction port (12), first blower outlet (13) and second blower outlet (14) are respectively provided with ducts (4a, 4b, 4c, 4d) are connected.
  上記ケーシング(10)内は、上記冷却加熱モジュール(20)が配置された冷却加熱室(C1,C2)と、ファン(30a,30b)が配置されたファン室(C3,C4)が設けられている。冷却加熱室(C1,C2)は、図7,図8においてケーシング(10)内の左右に隣り合って位置する第1冷却加熱室(C1)と第2冷却加熱室(C2)とから構成されている。上記ファン室(C3,C4)は、同じくケーシング(10)の左右に隣り合って位置する第1ファン室(C3)と第2ファン室(C4)とから構成されている。第1ファン室(C3)には給気ファン(30a)が配置され、第2ファン室(C4)には排気ファン(30b)が配置されている。 The casing (10) is provided with a cooling / heating chamber (C1, C2) in which the cooling / heating module (20) is arranged and a fan chamber (C3, C4) in which the fans (30a, 30b) are arranged. Yes. The cooling and heating chambers (C1 and C2) are composed of a first cooling and heating chamber (C1) and a second cooling and heating chamber (C2) located adjacent to each other in the casing (10) in FIGS. ing. The fan chambers (C3, C4) are composed of a first fan chamber (C3) and a second fan chamber (C4) that are also adjacent to the left and right of the casing (10). An air supply fan (30a) is disposed in the first fan chamber (C3), and an exhaust fan (30b) is disposed in the second fan chamber (C4).
  また、上記各吸込口(11,12)と冷却加熱室(C1,C2)の間には入口側通風室(C5,C6)が形成されている。入口側通風室(C5,C6)は、上記ケーシング(10)の上下2段に配置された第1入口側通風室(C5)と第2入口側通風室(C6)とから構成されている。第1入口側通風室(C5)には第1吸込口(11)が設けられ、第2入口側通風室(C6)には第2吸込口(12)が設けられている。各入口側通風室(C5,C6)と各冷却加熱室(C1,C2)との間には、開閉可能なダンパ(D1,D2,D3,D4)が1枚ずつ、合計4枚設けられている。 In addition, an inlet side ventilation chamber (C5, C6) is formed between each of the suction ports (11, 12) and the cooling / heating chamber (C1, C2). The inlet-side ventilation chambers (C5, C6) are composed of a first inlet-side ventilation chamber (C5) and a second inlet-side ventilation chamber (C6) arranged in two upper and lower stages of the casing (10). The first inlet side ventilation chamber (C5) is provided with a first suction port (11), and the second inlet side ventilation chamber (C6) is provided with a second suction port (12). A total of four dampers (D1, D2, D3, D4) that can be opened and closed are provided between each inlet side ventilation chamber (C5, C6) and each cooling and heating chamber (C1, C2). Yes.
  上記冷却加熱室(C1,C2)と上記ファン室(C3,C4)との間には出口側通風室(C7,C8)が形成されている。出口側通風室(C7,C8)は、上記ケーシング(10)の上下2段に配置された第1出口側通風室(C7)と第2出口側通風室(C8)とから構成されている。各冷却加熱室(C1,C2)と各出口側通風室(C7,C8)との間には、開閉可能なダンパ(D5,D6,D7,D8)が1枚ずつ、合計4枚設けられている。 An outlet side ventilation chamber (C7, C8) is formed between the cooling and heating chamber (C1, C2) and the fan chamber (C3, C4). The outlet side ventilating chambers (C7, C8) are composed of a first outlet side ventilating chamber (C7) and a second outlet side ventilating chamber (C8) arranged in two upper and lower stages of the casing (10). A total of four dampers (D5, D6, D7, D8) that can be opened and closed are provided between each cooling and heating chamber (C1, C2) and each outlet side ventilation chamber (C7, C8). Yes.
  各出口側通風室(C7,C8)は、上記各ファン室(C3,C4)と連通している。上記第1吹出口(13)はケーシング(10)の第1ファン室(C3)側に設けられ、上記第2吹出口(14)はケーシング(10)の第2ファン室(C4)側に設けられている。 Each outlet-side ventilation chamber (C7, C8) communicates with each fan chamber (C3, C4). The first air outlet (13) is provided on the first fan chamber (C3) side of the casing (10), and the second air outlet (14) is provided on the second fan chamber (C4) side of the casing (10). It has been.
  以上の構成においては、第1の運転動作のとき、第1ダンパ(D1)、第4ダンパ(D4)、第5ダンパ(D5)及び第8ダンパ(D8)が開かれ、第2ダンパ(D2)、第3ダンパ(D3)、第6ダンパ(D6)及び第7ダンパ(D7)は閉じられる。また、第2の運転動作のとき、第2ダンパ(D2)、第3ダンパ(D3)、第6ダンパ(D6)及び第7ダンパ(D7)が開かれ、第1ダンパ(D1)、第4ダンパ(D4)、第5ダンパ(D5)及び第8ダンパ(D8)は閉じられる。 In the above configuration, during the first driving operation, the first damper (D1), the fourth damper (D4), the fifth damper (D5), and the eighth damper (D8) are opened, and the second damper (D2 ), The third damper (D3), the sixth damper (D6) and the seventh damper (D7) are closed. In the second driving operation, the second damper (D2), the third damper (D3), the sixth damper (D6), and the seventh damper (D7) are opened, and the first damper (D1), the fourth damper are opened. The damper (D4), the fifth damper (D5) and the eighth damper (D8) are closed.
  このようにダンパ(D1~D8)の開閉状態を制御することにより、第1の運転動作においては、図7に示すように、第1吸込口(11)からケーシング(10)内に導入された室内空気(RA)が、第1ダンパ(D1)、第1冷却加熱モジュール(20a)及び第5ダンパ(D5)を通って第1吹出口(13)から室内(3)へ供給されるとともに、第2吸込口(12)からケーシング(10)内に導入された室内空気が、第4ダンパ(D4)、第2冷却加熱モジュール(20b)及び第8ダンパ(D8)を通って第2吹出口(14)から室外へ排出される。また、第2の運転動作においては、図8に示すように、第1吸込口(11)からケーシング(10)内に導入された室内空気(RA)が、第3ダンパ(D3)、第2冷却加熱モジュール(20b)及び第7ダンパ(D7)を通って第1吹出口(13)から室内(3)へ供給されるとともに、第2吹出口(14)からケーシング(10)内に導入された室外空気(OA)が、第2ダンパ(D2)、第1冷却加熱モジュール(20a)及び第6ダンパ(D6)を通って第2吹出口(14)から室外へ排出される。 By controlling the open / close state of the dampers (D1 to D8) in this way, in the first driving operation, as shown in FIG. 7, the damper (D1 to D8) is introduced into the casing (10) from the first suction port (11). The indoor air (RA) is supplied to the room (3) from the first outlet (13) through the first damper (D1), the first cooling and heating module (20a) and the fifth damper (D5), The room air introduced into the casing (10) from the second suction port (12) passes through the fourth damper (D4), the second cooling / heating module (20b), and the eighth damper (D8) to the second outlet. (14) is discharged outside the room. In the second driving operation, as shown in FIG. 8, the indoor air (RA) introduced into the casing (10) from the first suction port (11) is converted into the third damper (D3), the second The cooling and heating module (20b) and the seventh damper (D7) are supplied from the first air outlet (13) to the room (3) and introduced from the second air outlet (14) into the casing (10). The outdoor air (OA) is discharged from the second outlet (14) through the second damper (D2), the first cooling and heating module (20a), and the sixth damper (D6).
  そして、この実施形態1の変形例3では、ダンパの開閉状態を切り換えることにより、図7の第1運転動作と図8の第2運転動作が交互に繰り返される。 And in the modification 3 of this Embodiment 1, the 1st driving | running operation | movement of FIG. 7 and the 2nd driving | running operation | movement of FIG. 8 are repeated alternately by switching the open / close state of a damper.
  この空気調和装置(1)は冷房専用機として構成されているので、室内(3)へ供給される空気が通過する冷却加熱モジュール(20)は、第1冷却加熱モジュール(20a)と第2冷却加熱モジュール(20b)のどちらに切り換わっても、冷却動作が行われる方の冷却加熱モジュール(20)である。したがって、室内(3)へは、冷却された空気が連続して供給される。また、室外へ排出される空気が通過する冷却加熱モジュール(20)は、第2冷却加熱モジュール(20b)と第1冷却加熱モジュール(20a)のどちらに切り換わっても加熱動作が行われる方の冷却加熱モジュール(20)である。したがって、室外へ放出される空気は冷却加熱モジュール(20)の熱を奪った空気である。 Since this air conditioner (1) is configured as a cooling only machine, the cooling and heating module (20) through which the air supplied to the room (3) passes is the first cooling and heating module (20a) and the second cooling. It is the cooling heating module (20) in which the cooling operation is performed regardless of which of the heating modules (20b) is switched. Therefore, the cooled air is continuously supplied to the room (3). In addition, the cooling / heating module (20) through which the air exhausted to the outside passes is heated by either the second cooling / heating module (20b) or the first cooling / heating module (20a). Cooling and heating module (20). Therefore, the air discharged to the outside is the air that has taken the heat of the cooling heating module (20).
  このように、実施形態1の変形例3によれば、いずれか一方の冷却加熱モジュール(20a,20b)で空気を冷却して、その空気を室内(3)へ供給するときに、他方の冷却加熱モジュール(20b,20a)から排出空気(EA)が熱を奪う図7の運転と図8の運転を交互に切り換えることにより、冷房運転を連続して行うことができる。 As described above, according to the third modification of the first embodiment, when one of the cooling heating modules (20a, 20b) cools the air and supplies the air to the room (3), the other cooling is performed. By alternately switching between the operation of FIG. 7 in which the exhaust air (EA) takes heat from the heating modules (20b, 20a) and the operation of FIG. 8, the cooling operation can be performed continuously.
  (変形例4)
  図9に示す変形例4は、ロータ式の冷却加熱モジュール(20)を用いた空気調和装置(1)に関する例である。この空気調和装置(1)も、図1~図8の例と同様に冷房専用機として構成されている。
(Modification 4)
The modification 4 shown in FIG. 9 is an example regarding the air conditioning apparatus (1) using the rotor type cooling and heating module (20). This air conditioner (1) is also configured as a cooling-only machine as in the examples of FIGS.
  この空気調和装置(1)のケーシング(10)には、給気側通路(P1)と排気側通路(P2)が設けられている。給気側通路(P1)には給気ファン(30a)が設けられ、排気側通路(P2)には排気ファン(30b)が設けられている。上記冷却加熱モジュール(20)は円板状に形成され、上記ケーシング(10)内で給気側通路(P1)と排気側通路(P2)に跨って配置されている。この冷却加熱モジュール(20)は、回転軸を中心として回転することにより、給気側通路(P1)の中に位置していた部分が排気側通路(P2)の中へ移動し、排気側通路(P2)の中に位置していた部分が給気側通路(P1)の中へ移動できるように構成されている。 The casing (10) of the air conditioner (1) is provided with an air supply side passage (P1) and an exhaust side passage (P2). An air supply fan (30a) is provided in the air supply side passage (P1), and an exhaust fan (30b) is provided in the exhaust side passage (P2). The cooling and heating module (20) is formed in a disk shape, and is disposed across the supply side passage (P1) and the exhaust side passage (P2) in the casing (10). The cooling and heating module (20) rotates about the rotation axis, so that the portion located in the supply side passage (P1) moves into the exhaust side passage (P2), and the exhaust side passage The portion located in (P2) can be moved into the supply side passage (P1).
  この変形例4の空気調和装置(1)では、給気側通路(P1)で冷却動作が行われ、排気側通路(P2)で加熱動作が行われる。具体的には、冷却加熱モジュール(20)が給気側通路(P1)に位置する部分には引張力が付与されずに熱歪材料(21)が吸熱し、空気が冷却される。また、冷却加熱モジュール(20)が排気側通路(P2)に位置する部分には引張力が付与されて熱歪材料(21)が空気に放熱する。 In the air conditioner (1) of Modification 4, the cooling operation is performed in the supply side passage (P1), and the heating operation is performed in the exhaust side passage (P2). Specifically, the thermal strain material (21) absorbs heat without applying a tensile force to the portion where the cooling and heating module (20) is located in the supply side passage (P1), and the air is cooled. Further, a tensile force is applied to a portion where the cooling and heating module (20) is located in the exhaust side passage (P2), and the heat strain material (21) radiates heat to the air.
  この実施形態では、冷却動作と加熱動作は冷却加熱モジュール(20)を連続的または間欠的に回転させながら行われる。したがって、排気側通路(P2)で冷却加熱モジュール(20)から空気に放熱しながら、同時に給気側通路(P1)では冷却加熱モジュール(20)で空気を冷却することができるから、その冷却された空気を連続して室内(3)へ供給する連続冷房運転が可能である。 In this embodiment, the cooling operation and the heating operation are performed while rotating the cooling / heating module (20) continuously or intermittently. Therefore, air can be radiated from the cooling and heating module (20) to the air in the exhaust side passage (P2), and at the same time, the air can be cooled in the cooling and heating module (20) in the supply side passage (P1). Continuous cooling operation that continuously supplies air to the room (3) is possible.
  《発明の実施形態2》
  本発明の実施形態2について説明する。
<< Embodiment 2 of the Invention >>
A second embodiment of the present invention will be described.
  図10に示す実施形態2は、図1に示す実施形態1の空気調和装置(1)を暖房専用機として構成した例である。 Embodiment 2 shown in FIG. 10 is an example in which the air conditioner (1) of Embodiment 1 shown in FIG. 1 is configured as a heating-only machine.
  この空気調和装置(1)は、図1の空気調和装置(1)と同様に、ケーシング(10)と、ケーシング(10)内に収納された冷却加熱モジュール(20)と、冷却加熱モジュール(20)に空気を流すファン(30)と、冷却加熱モジュール(20)に引張力を付与する切換制御部(35)とを備え、ケーシング(10)とその内部に設けられた機能部品により室内ユニット(U)が構成されている。また、ケーシング(10)内には、該ケーシング(10)内に導入された空気を冷却加熱モジュール(20)に通すための空気通路(P)が形成されている。 As with the air conditioner (1) of FIG. 1, the air conditioner (1) includes a casing (10), a cooling / heating module (20) housed in the casing (10), and a cooling / heating module (20 ) And a switching control unit (35) for applying a tensile force to the cooling and heating module (20), and the indoor unit ( U) is configured. In the casing (10), an air passage (P) is formed for passing the air introduced into the casing (10) through the cooling and heating module (20).
  この実施形態2の空気調和装置(1)は、上記冷却加熱モジュール(20)で加熱処理した空気を空気通路(P)から室内(3)に導入することにより、暖房運転を行うことができるようになっている点が図1の空気調和装置(1)と異なっている。 The air conditioner (1) of the second embodiment can perform the heating operation by introducing the air heated by the cooling and heating module (20) from the air passage (P) into the room (3). Is different from the air conditioner (1) in FIG.
  この空気調和装置(1)では、図10(A)において、それまで冷却されていた冷却加熱モジュール(20)の熱歪材料(21)に引張力が付与される。そうすると、熱歪材料(21)が加熱され、冷却加熱モジュール(20)が放熱する。したがって、冷却加熱モジュール(20)を通過して加熱された空気が供給空気(SA)として室内(3)に供給される。 In this air conditioner (1), in FIG. 10 (A), a tensile force is applied to the heat strain material (21) of the cooling and heating module (20) that has been cooled until then. Then, the thermostrictive material (21) is heated and the cooling heating module (20) dissipates heat. Therefore, the air heated through the cooling and heating module (20) is supplied to the room (3) as supply air (SA).
  一方、図10(B)においては、室外空気(OA)をケーシング(10)に取り入れて処理した後に排出する方向へファン(30)が回転し、同時に冷却加熱モジュール(20)の熱歪材料(21)への引張力が解除される。したがって、冷却加熱モジュール(20)に室外空気(OA)が熱を与え、排出空気(EA)として室外へ放出される。 On the other hand, in FIG. 10 (B), the fan (30) rotates in the direction of exhausting after taking outdoor air (OA) into the casing (10) and processing it, and at the same time, the heat strain material ( The tensile force to 21) is released. Therefore, the outdoor air (OA) gives heat to the cooling and heating module (20), and is discharged to the outside as exhaust air (EA).
  このように、本実施形態2によれば、図10(A)の加熱動作と図10(B)の冷却動作を交互に繰り返すことにより、間欠暖房運転を行うことができる。 Thus, according to the second embodiment, intermittent heating operation can be performed by alternately repeating the heating operation of FIG. 10A and the cooling operation of FIG. 10B.
  -実施形態2の変形例-
  (変形例1)
  図11に示す実施形態2の変形例1は、図4の空気調和装置(1)を暖房専用機として構成した例である。部屋の対向する壁面の一方(図の右側の壁面)に第1室内ユニット(U1)が設置され、壁面の他方(図の左側の壁面)に第2室内ユニット(U2)が設置されている構成は、図4の空気調和装置(1)と同じである。また、各室内ユニット(U1,U2)の構成は図10の実施形態2と同じである。
-Modification of Embodiment 2-
(Modification 1)
The modification 1 of Embodiment 2 shown in FIG. 11 is an example which comprised the air conditioning apparatus (1) of FIG. 4 as a heating only machine. A configuration in which the first indoor unit (U1) is installed on one of the opposing wall surfaces (the right wall surface in the figure) and the second indoor unit (U2) is installed on the other wall surface (the left wall surface in the figure) Is the same as the air conditioner (1) of FIG. The configuration of each indoor unit (U1, U2) is the same as that of the second embodiment in FIG.
  図11(A)は、第1室内ユニット(U1)で加熱動作を行い、第2室内ユニット(U2)で冷却動作を行う状態を示している。第1室内ユニット(U1)では、冷却加熱モジュール(20)の熱歪材料(21)に引張力が付与される。したがって、第1室内ユニット(U1)の冷却加熱モジュール(20)が放熱し、ケーシング(10)に取り込まれた室内空気(RA)が加熱される。そして、加熱された空気が供給空気(SA)として室内(3)へ供給される。 FIG. 11A shows a state in which the heating operation is performed in the first indoor unit (U1) and the cooling operation is performed in the second indoor unit (U2). In the first indoor unit (U1), a tensile force is applied to the heat strain material (21) of the cooling and heating module (20). Therefore, the cooling and heating module (20) of the first indoor unit (U1) dissipates heat, and the indoor air (RA) taken into the casing (10) is heated. The heated air is supplied to the room (3) as supply air (SA).
  一方、第2室内ユニット(U2)では、室外空気(OA)をケーシング(10)に取り入れて処理した後に排出する方向へファン(30)が回転し、同時に冷却加熱モジュール(20)の熱歪材料(21)への引張力が解除される。したがって、室外空気(OA)が冷却加熱モジュール(21)に熱を奪われ、排出空気(EA)として室外に放出される。 On the other hand, in the second indoor unit (U2), the fan (30) rotates in the direction to discharge after the outdoor air (OA) is taken into the casing (10) and processed, and at the same time, the heat strain material of the cooling and heating module (20). The tensile force to (21) is released. Accordingly, the outdoor air (OA) is deprived of heat by the cooling and heating module (21), and is discharged outside as outdoor air (EA).
  図11(B)は、第2室内ユニット(U2)で加熱動作を行い、第1室内ユニット(U1)で冷却動作を行う状態を示している。第2室内ユニット(U2)では、冷却加熱モジュール(20)の熱歪材料(21)に引張力が付与される。したがって、第2室内ユニット(U2)の冷却加熱モジュール(20)が放熱し、ケーシング(10)に取り込まれた室内空気(RA)が加熱される。そして、加熱された空気が供給空気(SA)として室内(3)へ供給される。 FIG. 11B shows a state where the heating operation is performed in the second indoor unit (U2) and the cooling operation is performed in the first indoor unit (U1). In the second indoor unit (U2), a tensile force is applied to the heat strain material (21) of the cooling and heating module (20). Therefore, the cooling and heating module (20) of the second indoor unit (U2) dissipates heat, and the indoor air (RA) taken into the casing (10) is heated. The heated air is supplied to the room (3) as supply air (SA).
  一方、第1室内ユニット(U1)では、室外空気(OA)をケーシング(10)に取り入れて処理した後に排出する方向へファン(30)が回転し、同時に冷却加熱モジュール(20)の熱歪材料(21)への引張力が解除される。したがって、室外空気(OA)が冷却加熱モジュール(21)に熱を奪われ、排出空気(EA)として室外に放出される。 On the other hand, in the first indoor unit (U1), the fan (30) rotates in the direction to discharge the outdoor air (OA) after taking it into the casing (10) and processing it, and at the same time, the heat strain material of the cooling and heating module (20) The tensile force to (21) is released. Accordingly, the outdoor air (OA) is deprived of heat by the cooling and heating module (21), and is discharged outside as outdoor air (EA).
  このように、この実施形態2の変形例1によれば、いずれか一方の室内ユニット(U1,U2)で空気を加熱して、その空気を室内(3)へ供給するときに、他方の室内ユニット(U2,U1)では冷却動作を行う図11(A)の運転と図11(B)の運転を交互に切り換えることにより、暖房運転を連続して行うことができる。 Thus, according to Modification 1 of Embodiment 2, when one of the indoor units (U1, U2) heats the air and supplies the air to the room (3), the other room In the units (U2, U1), the heating operation can be continuously performed by alternately switching the operation of FIG. 11A for performing the cooling operation and the operation of FIG. 11B.
  (変形例2)
  図12に示す実施形態2の変形例2は、2つの室内ユニット(U1,U2)を空調対象の室内(3)に設置するように構成したものであり、図5に示す実施形態1の変形例2の空気調和装置(1)を暖房専用機として構成した例である。この変形例では、第1室内ユニット(U1)と第2室内ユニット(U2)の両方が、図の右側の壁面に設置されている。
(Modification 2)
Modification 2 of Embodiment 2 shown in FIG. 12 is configured to install two indoor units (U1, U2) in a room (3) to be air-conditioned, and is a modification of Embodiment 1 shown in FIG. It is the example which comprised the air conditioning apparatus (1) of Example 2 as a heating only machine. In this modification, both the first indoor unit (U1) and the second indoor unit (U2) are installed on the right wall surface in the figure.
  図12(A)は、第1室内ユニット(U1)で加熱動作を行い、第2室内ユニット(U2)で冷却動作を行う状態を示している。第1室内ユニット(U1)では、冷却加熱モジュール(20)の熱歪材料(21)に引張力が付与される。したがって、第1室内ユニット(U1)の冷却加熱モジュール(20)が放熱し、ケーシング(10)に取り込まれた室内空気(RA)が加熱される。そして、加熱された空気が供給空気(SA)として室内(3)へ供給される。 FIG. 12A shows a state in which the heating operation is performed in the first indoor unit (U1) and the cooling operation is performed in the second indoor unit (U2). In the first indoor unit (U1), a tensile force is applied to the heat strain material (21) of the cooling and heating module (20). Therefore, the cooling and heating module (20) of the first indoor unit (U1) dissipates heat, and the indoor air (RA) taken into the casing (10) is heated. The heated air is supplied to the room (3) as supply air (SA).
  一方、第2室内ユニット(U2)では、室外空気(OA)をケーシング(10)に取り入れて処理した後に排出する方向へファン(30)が回転し、同時に冷却加熱モジュール(20)の熱歪材料(21)への引張力が解除される。したがって、室外空気(OA)が冷却加熱モジュール(21)に熱を奪われ、排出空気(EA)として室外に放出される。 On the other hand, in the second indoor unit (U2), the fan (30) rotates in the direction to discharge after the outdoor air (OA) is taken into the casing (10) and processed, and at the same time, the heat strain material of the cooling and heating module (20). The tensile force to (21) is released. Accordingly, the outdoor air (OA) is deprived of heat by the cooling and heating module (21), and is discharged outside as outdoor air (EA).
  図12(B)は、第2室内ユニット(U2)で加熱動作を行い、第1室内ユニット(U1)で冷却動作を行う状態を示している。第2室内ユニット(U2)では、冷却加熱モジュール(20)の熱歪材料(21)に引張力が付与される。したがって、第2室内ユニット(U2)の冷却加熱モジュール(20)が放熱し、ケーシング(10)に取り込まれた室内空気(RA)が加熱される。そして、加熱された空気が供給空気(SA)として室内(3)へ供給される。 FIG. 12B shows a state in which the heating operation is performed in the second indoor unit (U2) and the cooling operation is performed in the first indoor unit (U1). In the second indoor unit (U2), a tensile force is applied to the heat strain material (21) of the cooling and heating module (20). Therefore, the cooling and heating module (20) of the second indoor unit (U2) dissipates heat, and the indoor air (RA) taken into the casing (10) is heated. The heated air is supplied to the room (3) as supply air (SA).
 一方、第1室内ユニット(U1)では、室外空気(OA)をケーシング(10)に取り入れて処理した後に排出する方向へファン(30)が回転し、同時に冷却加熱モジュール(20)の熱歪材料(21)への引張力が解除される。したがって、室外空気(OA)が冷却加熱モジュール(21)に熱を奪われ、排出空気(EA)として室外に放出される。 On the other hand, in the first indoor unit (U1), the fan (30) rotates in the direction to discharge the outdoor air (OA) after taking it into the casing (10) and processing it, and at the same time, the heat strain material of the cooling and heating module (20) The tensile force to (21) is released. Accordingly, the outdoor air (OA) is deprived of heat by the cooling and heating module (21), and is discharged outside as outdoor air (EA).
 このように、この実施形態2の変形例2によれば、いずれか一方の室内ユニット(U1,U2)で空気を加熱して、その空気を室内(3)へ供給するときに、他方の室内ユニット(U2,U1)では冷却動作を行う図12(A)の運転と図12(B)の運転を交互に切り換えることにより、暖房運転を連続して行うことができる。 Thus, according to Modification 2 of Embodiment 2, when one of the indoor units (U1, U2) heats the air and supplies the air to the room (3), the other room In the units (U2, U1), the heating operation can be continuously performed by alternately switching the operation of FIG. 12A and the operation of FIG.
  (変形例3)
  図13に示す実施形態2の変形例3は、図6~図8に示す実施形態1の変形例3の空気調和装置(1)を暖房専用機として構成した例である。この空気調和装置(1)は、具体的には、図6~図8と同様に、ケーシング(10)内に2つの冷却加熱モジュール(20a,20b)を設け、一方の冷却加熱モジュール(20)(第1冷却加熱モジュール(20a))を通過した空気を室内(3)に供給して他方の冷却加熱モジュール(20)(第2冷却加熱モジュール(20b))を通過した空気を室外へ放出する第1の運転動作と、第2冷却加熱モジュール(20b)を通過した空気を室内(3)に供給して第1冷却加熱モジュール(20a)を通過した空気を室外へ放出する第2の運転動作とを切り換えるように構成されている。
(Modification 3)
A third modification of the second embodiment shown in FIG. 13 is an example in which the air conditioner (1) of the third modification of the first embodiment shown in FIGS. Specifically, this air conditioner (1) is provided with two cooling heating modules (20a, 20b) in the casing (10) as in FIGS. 6 to 8, and one cooling heating module (20) The air that has passed through the first cooling / heating module (20a) is supplied to the room (3), and the air that has passed through the other cooling / heating module (20) (second cooling / heating module (20b)) is released to the outside of the room. 1st driving | operation operation | movement and the 2nd driving | operation operation | movement which supplies the air which passed the 2nd cooling heating module (20b) to the room | chamber interior (3), and discharge | releases the air which passed the 1st cooling heating module (20a) outside the room And are configured to be switched.
  空気調和装置(1)は、具体的には図14,15に示すように構成されている。この空気調和装置(1)は、2つの冷却加熱モジュール(20a,20b)と2つのファン(30a,30b)を1つのケーシング(10)内に収納した一体型の構成で、天井裏に設置されている。図14は、第1冷却加熱モジュール(20a)を加熱側にして第2冷却加熱モジュール(20b)を冷却側にする第1の運転動作を示し、図15は、第2冷却加熱モジュール(20b)を加熱側にして第1冷却加熱モジュール(20a)を冷却側にする第2の運転動作を示している。また、図14及び図15において、それぞれ、(A)図は平面構造図(装置を平面から見て内部構造を示す図)、(B)図は左側面構造図、(C)図は右側面構造図である。 The air conditioner (1) is specifically configured as shown in FIGS. This air conditioner (1) has an integrated structure in which two cooling and heating modules (20a, 20b) and two fans (30a, 30b) are housed in one casing (10), and is installed behind the ceiling. ing. FIG. 14 shows a first operation operation in which the first cooling / heating module (20a) is on the heating side and the second cooling / heating module (20b) is on the cooling side, and FIG. 15 shows the second cooling / heating module (20b). The second operation is shown in which the first cooling and heating module (20a) is on the cooling side with the heating side. 14 and 15, (A) is a plan view (showing the internal structure when the apparatus is viewed from above), (B) is a left side view, and (C) is a right side. FIG.
  この空気調和装置(1)のケーシング(10)は、四角い箱形に形成されている。このケーシング(10)の1つの側壁面には、室内空気(RA)をケーシング(10)内に取り入れる第1吸込口(11)と、室外空気(OA)をケーシング(10)内に取り入れる第2吸込口(12)が設けられている。また、上記各吸込口(11,12)が設けられている側壁面の左右の側壁面には、供給空気(SA)を室内(3)に供給する第1吹出口(13)と、排出空気(EA)を室外に排出する第2吹出口(14)が設けられている。これらの第1吸込口(11)、第2吸込口(12)、第1吹出口(13)及び第2吹出口(14)には、それぞれ図13に模式的に矢印で示すダクト(4a,4b,4c,4d)が接続されている。 The casing (10) of the air conditioner (1) is formed in a square box shape. A first suction port (11) for taking indoor air (RA) into the casing (10) and a second air port for taking outdoor air (OA) into the casing (10) are formed on one side wall surface of the casing (10). A suction port (12) is provided. Moreover, the 1st blower outlet (13) which supplies supply air (SA) to room | chamber (3), and exhaust air are in the side wall surface on either side of the side wall surface in which each said inlet (11,12) is provided. A second outlet (14) for discharging (EA) to the outside is provided. These first inlet (11), second inlet (12), first outlet (13) and second outlet (14) are respectively provided with ducts (4a, 4b, 4c, 4d) are connected.
  上記ケーシング(10)内は、上記冷却加熱モジュール(20)が配置された冷却加熱室(C1,C2)と、ファン(30a,30b)が配置されたファン室(C3,C4)が設けられている。冷却加熱室(C1,C2)は、図14,図15においてケーシング(10)内の左右に隣り合って位置する第1冷却加熱室(C1)と第2冷却加熱室(C2)とから構成されている。上記ファン室(C3,C4)は、同じくケーシング(10)の左右に隣り合って位置する第1ファン室(C3)と第2ファン室(C4)とから構成されている。第1ファン室(C3)には給気ファン(30a)が配置され、第2ファン室(C4)には排気ファン(30b)が配置されている。 The casing (10) is provided with a cooling / heating chamber (C1, C2) in which the cooling / heating module (20) is arranged and a fan chamber (C3, C4) in which the fans (30a, 30b) are arranged. Yes. The cooling and heating chambers (C1 and C2) are composed of a first cooling and heating chamber (C1) and a second cooling and heating chamber (C2) that are adjacent to each other in the casing (10) in FIGS. ing. The fan chambers (C3, C4) are composed of a first fan chamber (C3) and a second fan chamber (C4) that are also adjacent to the left and right of the casing (10). An air supply fan (30a) is disposed in the first fan chamber (C3), and an exhaust fan (30b) is disposed in the second fan chamber (C4).
  また、上記各吸込口(11,12)と冷却加熱室(C1,C2)の間には入口側通風室(C5,C6)が形成されている。入口側通風室(C5,C6)は、上記ケーシング(10)の上下2段に配置された第1入口側通風室(C5)と第2入口側通風室(C6)とから構成されている。第1入口側通風室(C5)には第1吸込口(11)が設けられ、第2入口側通風室(C6)には第2吸込口(12)が設けられている。各入口側通風室(C5,C6)と各冷却加熱室(C1,C2)との間には、開閉可能なダンパ(D1,D2,D3,D4)が1枚ずつ、合計4枚設けられている。 In addition, an inlet side ventilation chamber (C5, C6) is formed between each of the suction ports (11, 12) and the cooling / heating chamber (C1, C2). The inlet-side ventilation chambers (C5, C6) are composed of a first inlet-side ventilation chamber (C5) and a second inlet-side ventilation chamber (C6) arranged in two upper and lower stages of the casing (10). The first inlet side ventilation chamber (C5) is provided with a first suction port (11), and the second inlet side ventilation chamber (C6) is provided with a second suction port (12). A total of four dampers (D1, D2, D3, D4) that can be opened and closed are provided between each inlet side ventilation chamber (C5, C6) and each cooling and heating chamber (C1, C2). Yes.
  上記冷却加熱室(C1,C2)と上記ファン室(C3,C4)との間には出口側通風室(C7,C8)が形成されている。出口側通風室(C7,C8)は、上記ケーシング(10)の上下2段に配置された第1出口側通風室(C7)と第2出口側通風室(C8)とから構成されている。各冷却加熱室(C1,C2)と各出口側通風室(C7,C8)との間には、開閉可能なダンパ(D5,D6,D7,D8)が1枚ずつ、合計4枚設けられている。 An outlet side ventilation chamber (C7, C8) is formed between the cooling and heating chamber (C1, C2) and the fan chamber (C3, C4). The outlet side ventilating chambers (C7, C8) are composed of a first outlet side ventilating chamber (C7) and a second outlet side ventilating chamber (C8) arranged in two upper and lower stages of the casing (10). A total of four dampers (D5, D6, D7, D8) that can be opened and closed are provided between each cooling and heating chamber (C1, C2) and each outlet side ventilation chamber (C7, C8). Yes.
  各出口側通風室(C7,C8)は、上記各ファン室(C3,C4)と連通している。上記第1吹出口(13)はケーシング(10)の第1ファン室(C3)側に設けられ、上記第2吹出口(14)はケーシング(10)の第2ファン室(C4)側に設けられている。 Each outlet-side ventilation chamber (C7, C8) communicates with each fan chamber (C3, C4). The first air outlet (13) is provided on the first fan chamber (C3) side of the casing (10), and the second air outlet (14) is provided on the second fan chamber (C4) side of the casing (10). It has been.
 以上の構成においては、第1の運転動作のとき、第1ダンパ(D1)、第4ダンパ(D4)、第5ダンパ(D5)及び第8ダンパ(D8)が開かれ、第2ダンパ(D2)、第3ダンパ(D3)、第6ダンパ(D6)及び第7ダンパ(D7)は閉じられる。また、第2の運転動作のとき、第2ダンパ(D2)、第3ダンパ(D3)、第6ダンパ(D6)及び第7ダンパ(D7)が開かれ、第1ダンパ(D1)、第4ダンパ(D4)、第5ダンパ(D5)及び第8ダンパ(D8)は閉じられる。 In the above configuration, during the first driving operation, the first damper (D1), the fourth damper (D4), the fifth damper (D5), and the eighth damper (D8) are opened, and the second damper (D2 ), The third damper (D3), the sixth damper (D6) and the seventh damper (D7) are closed. In the second driving operation, the second damper (D2), the third damper (D3), the sixth damper (D6), and the seventh damper (D7) are opened, and the first damper (D1), the fourth damper are opened. The damper (D4), the fifth damper (D5) and the eighth damper (D8) are closed.
  このようにダンパ(D1~D8)の開閉状態を制御することにより、第1の運転動作においては、図14に示すように、第1吸込口(11)からケーシング(10)内に導入された室内空気(RA)が、第1ダンパ(D1)、第1冷却加熱モジュール(20a)及び第5ダンパ(D5)を通って第1吹出口(13)から室内(3)へ供給されるとともに、第2吸込口(12)からケーシング(10)内に導入された室外空気(OA)が、第4ダンパ(D4)、第2冷却加熱モジュール(20b)及び第8ダンパ(D8)を通って第2吹出口(14)から室外へ排出される。また、第2の運転動作においては、図15に示すように、第1吸込口(11)からケーシング(10)内に導入された室内空気(RA)が、第3ダンパ(D3)、第2冷却加熱モジュール(20b)及び第7ダンパ(D7)を通って第1吹出口(13)から室内(3)へ供給されるとともに、第2吹出口(14)からケーシング(10)内に導入された室外空気(OA)が、第2ダンパ(D2)、第1冷却加熱モジュール(20a)及び第6ダンパ(D6)を通って第2吹出口(14)から室外へ排出される。 By controlling the open / close state of the dampers (D1 to D8) in this way, in the first driving operation, as shown in FIG. 14, the damper (D1 to D8) is introduced into the casing (10) from the first suction port (11). The indoor air (RA) is supplied to the room (3) from the first outlet (13) through the first damper (D1), the first cooling and heating module (20a) and the fifth damper (D5), The outdoor air (OA) introduced into the casing (10) from the second suction port (12) passes through the fourth damper (D4), the second cooling / heating module (20b), and the eighth damper (D8). It is discharged outside through the two outlets (14). Further, in the second driving operation, as shown in FIG. 15, the indoor air (RA) introduced into the casing (10) from the first suction port (11) is converted into the third damper (D3), the second The cooling and heating module (20b) and the seventh damper (D7) are supplied from the first air outlet (13) to the room (3) and introduced from the second air outlet (14) into the casing (10). The outdoor air (OA) is discharged from the second outlet (14) through the second damper (D2), the first cooling and heating module (20a), and the sixth damper (D6).
  そして、この実施形態2の変形例3では、ダンパの開閉状態を切り換えることにより、図14の第1運転動作と図15の第2運転動作が交互に繰り返される。 And in the modification 3 of this Embodiment 2, the 1st driving | running operation | movement of FIG. 14 and the 2nd driving | running operation | movement of FIG. 15 are repeated alternately by switching the open / close state of a damper.
  この空気調和装置(1)は暖房専用機として構成されているので、室内(3)へ供給される空気が通過する冷却加熱モジュール(20)は、第1冷却加熱モジュール(20a)と第2冷却加熱モジュール(20b)のどちらに切り換わっても、加熱動作が行われる方の冷却加熱モジュール(20)である。したがって、室内(3)へは、加熱された空気が連続して供給される。また、室外へ排出される空気が通過する冷却加熱モジュール(20)は、第2冷却加熱モジュール(20b)と第1冷却加熱モジュール(20a)のどちらに切り換わっても冷却動作が行われる方の冷却加熱モジュール(20)である。したがって、室外へ放出される空気は、冷却加熱モジュール(20)に熱を奪われた空気である。 Since this air conditioner (1) is configured as a heating-only machine, the cooling and heating module (20) through which the air supplied to the room (3) passes is the first cooling and heating module (20a) and the second cooling. It is the cooling heating module (20) in which the heating operation is performed regardless of which of the heating modules (20b) is switched. Therefore, heated air is continuously supplied into the room (3). In addition, the cooling / heating module (20) through which the air discharged to the outside passes is the one that performs the cooling operation regardless of whether it is switched to the second cooling / heating module (20b) or the first cooling / heating module (20a). Cooling and heating module (20). Therefore, the air released to the outside is air that has been deprived of heat by the cooling and heating module (20).
  このように、実施形態2の変形例3によれば、いずれか一方の冷却加熱モジュール(20a,20b)で空気を加熱して、その空気を室内(3)へ供給するときに、他方の冷却加熱モジュール(20b,20a)に熱を与える図14の運転と図15の運転を交互に切り換えることにより、暖房運転を連続して行うことができる。 As described above, according to the third modification of the second embodiment, when one of the cooling heating modules (20a, 20b) heats the air and supplies the air to the room (3), the other cooling is performed. By alternately switching the operation of FIG. 14 and the operation of FIG. 15 that apply heat to the heating modules (20b, 20a), the heating operation can be performed continuously.
  (変形例4)
  図16に示す実施形態2の変形例4は、ロータ式の冷却加熱モジュール(20)を用いた空気調和装置(1)に関するものである。この空気調和装置(1)も、実施形態2及びその変形例1~3と同様に暖房専用機として構成されている。
(Modification 4)
Modification 4 of Embodiment 2 shown in FIG. 16 relates to an air conditioner (1) using a rotor-type cooling / heating module (20). This air conditioner (1) is also configured as a heating-only machine as in the second embodiment and the first to third modifications thereof.
  この空気調和装置(1)のケーシング(10)には、給気側通路(P1)と排気側通路(P2)が設けられている。給気側通路(P1)には給気ファン(30a)が設けられ、排気側通路(P2)には排気ファン(30b)が設けられている。上記冷却加熱モジュール(20)は円板状に形成され、上記ケーシング(10)内で給気側通路(P1)と排気側通路(P2)に跨って配置されている。この冷却加熱モジュール(20)は、回転軸を中心として回転することにより、給気側通路(P1)の中に位置していた部分が排気側通路(P2)の中へ移動し、排気側通路(P2)の中に位置していた部分が給気側通路(P1)の中へ移動できるように構成されている。 The casing (10) of the air conditioner (1) is provided with an air supply side passage (P1) and an exhaust side passage (P2). An air supply fan (30a) is provided in the air supply side passage (P1), and an exhaust fan (30b) is provided in the exhaust side passage (P2). The cooling and heating module (20) is formed in a disk shape, and is disposed across the supply side passage (P1) and the exhaust side passage (P2) in the casing (10). The cooling and heating module (20) rotates about the rotation axis, so that the portion located in the supply side passage (P1) moves into the exhaust side passage (P2), and the exhaust side passage The portion located in (P2) can be moved into the supply side passage (P1).
  この変形例4の空気調和装置(1)では、給気側通路(P1)で加熱動作が行われ、排気側通路(P2)で冷却動作が行われる。具体的には、冷却加熱モジュール(20)が給気側通路(P1)に位置する部分には引張力が付与されて熱歪材料(21)が放熱し、空気が加熱される。また、冷却加熱モジュール(20)が排気側通路(P2)に位置する部分には引張力が付与されずに熱歪材料(21)が吸熱し、空気の熱が奪われる。 In the air conditioner (1) of the fourth modification, the heating operation is performed in the supply side passage (P1), and the cooling operation is performed in the exhaust side passage (P2). Specifically, a tensile force is applied to the portion where the cooling and heating module (20) is located in the supply side passage (P1), the heat-strained material (21) dissipates heat, and the air is heated. Further, the portion where the cooling and heating module (20) is located in the exhaust side passage (P2) is not given a tensile force, and the heat-strained material (21) absorbs heat, and the heat of the air is taken away.
  この実施形態では、加熱動作と冷却動作は冷却加熱モジュール(20)を連続的または間欠的に回転させながら行われる。したがって、排気側通路(P2)で空気から冷却加熱モジュール(20)に熱を与えながら、同時に給気側通路(P1)では冷却加熱モジュール(20)で空気を加熱することができるから、その加熱された空気を連続して室内(3)へ供給する連続暖房運転が可能である。 In this embodiment, the heating operation and the cooling operation are performed while rotating the cooling and heating module (20) continuously or intermittently. Therefore, air can be heated by the cooling / heating module (20) in the air supply side passage (P1) while heat is supplied from the air to the cooling / heating module (20) in the exhaust side passage (P2). Continuous heating operation that continuously supplies the air to the room (3) is possible.
  《発明の実施形態3》
  本発明の実施形態3について説明する。
<< Embodiment 3 of the Invention >>
Embodiment 3 of the present invention will be described.
  図17に示す実施形態3は、図5に示す実施形態1の変形例2に係る空気調和装置(1)が暖房専用機であるのに対して、空気の加湿もできるように構成した例である。この空気調和装置(1)も図5の例と同様に2つの室内ユニット(U1,U2)を備え、第1室内ユニット(U1)と第2室内ユニット(U2)の両方が図の一つの壁面(右側の壁面)に設置されている。 Embodiment 3 shown in FIG. 17 is an example in which the air-conditioning apparatus (1) according to Modification 2 of Embodiment 1 shown in FIG. is there. This air conditioner (1) also includes two indoor units (U1, U2) as in the example of FIG. 5, and both the first indoor unit (U1) and the second indoor unit (U2) are on one wall surface in the figure. It is installed on the right wall.
  この空気調和装置(1)では、第1室内ユニット(U1)と第2室内ユニット(U2)に、上記冷却加熱モジュール(20)に加えて、空気に対する水分の放湿と吸湿を行うように構成した上記調湿モジュール(24)が設けられている。上述したように、この調湿モジュール(24)は、図2(B)において、熱歪材料(21)と、この熱歪材料(21)に引張力を付与するアクチュエータ(22)と、その表面に形成された吸着層(23)とを有している。調湿モジュール(24)では、引張力を付与すると空気を加湿することができ、引張力を解除すると空気を減湿することができる。つまり、調湿モジュール(24)は、冷却加熱モジュール(20)の熱歪材料(21)の表面に吸着層(23)が形成されて構成される。 In this air conditioner (1), the first indoor unit (U1) and the second indoor unit (U2) are configured to release and absorb moisture from the air in addition to the cooling and heating module (20). The humidity control module (24) is provided. As described above, the humidity control module (24) includes a heat strain material (21), an actuator (22) for applying a tensile force to the heat strain material (21), and a surface thereof in FIG. And an adsorption layer (23) formed on the surface. In the humidity control module (24), air can be humidified when a tensile force is applied, and the air can be dehumidified when the tensile force is released. That is, the humidity control module (24) is configured by forming the adsorption layer (23) on the surface of the heat strain material (21) of the cooling and heating module (20).
  この実施形態3では、第1室内ユニット(U1)と第2室内ユニット(U2)のいずれについても、空気は冷却加熱モジュール(20)と調湿モジュール(24)を通過する。したがって、この空気調和装置(1)では、空気の吸湿処理及び放湿処理を行うことに加えて、空気の冷却処理と加熱処理も行うことができる。 In the third embodiment, air passes through the cooling and heating module (20) and the humidity control module (24) for both the first indoor unit (U1) and the second indoor unit (U2). Therefore, in the air conditioner (1), in addition to performing the moisture absorption process and the moisture release process, the air cooling process and the heating process can be performed.
  図17(A)は、第1室内ユニット(U1)で冷却吸湿動作を行い、第2室内ユニット(U2)で加熱放湿動作を行う状態を示している。第1室内ユニット(U1)では、冷却加熱モジュール(20)と調湿モジュール(24)の熱歪材料(21)への引張力が解除される。したがって、ケーシング(10)内に取り込まれた室内空気(RA)が減湿されるとともに冷却される。そして、減湿されるとともに冷却された空気が供給空気(SA)として室内(3)へ供給される。 FIG. 17A shows a state in which the cooling and moisture absorption operation is performed in the first indoor unit (U1) and the heating and dehumidifying operation is performed in the second indoor unit (U2). In the first indoor unit (U1), the tensile force to the heat strain material (21) of the cooling and heating module (20) and the humidity control module (24) is released. Therefore, the indoor air (RA) taken into the casing (10) is dehumidified and cooled. The dehumidified and cooled air is supplied to the room (3) as supply air (SA).
  一方、第2室内ユニット(U2)では、室外空気(OA)をケーシング(10)に取り入れて処理した後に排出する方向へファン(30)が回転し、同時に冷却加熱モジュール(20)と調湿モジュール(24)の熱歪材料(21)に引張力が付与される。したがって、冷却加熱モジュール(20)と調湿モジュール(24)により加熱加湿処理された空気が排出空気(EA)として室外へ放出される。このとき、調湿モジュール(24)の吸着層は水分を放出して再生される。 On the other hand, in the second indoor unit (U2), the fan (30) rotates in the direction to discharge after taking outdoor air (OA) into the casing (10) and processing it, and at the same time, the cooling and heating module (20) and the humidity control module A tensile force is applied to the heat strain material (21) of (24). Therefore, the air that has been heated and humidified by the cooling and heating module (20) and the humidity control module (24) is discharged to the outside as exhaust air (EA). At this time, the adsorption layer of the humidity control module (24) is regenerated by releasing moisture.
  図17(B)は、第2室内ユニット(U2)で冷却吸湿動作を行い、第1室内ユニット(U1)で加熱放湿動作を行う状態を示している。第2室内ユニット(U2)では、冷却加熱モジュール(20)と調湿モジュール(24)の熱歪材料(21)への引張力が解除される。したがって、ケーシング(10)内に取り込まれた室内空気(RA)が減湿されるとともに冷却される。そして、減湿されるとともに冷却された空気が供給空気(SA)として室内(3)へ供給される。 FIG. 17B shows a state in which the cooling and moisture absorption operation is performed in the second indoor unit (U2) and the heating and dehumidifying operation is performed in the first indoor unit (U1). In the second indoor unit (U2), the tensile force to the heat strain material (21) of the cooling and heating module (20) and the humidity control module (24) is released. Therefore, the indoor air (RA) taken into the casing (10) is dehumidified and cooled. The dehumidified and cooled air is supplied to the room (3) as supply air (SA).
  一方、第1室内ユニット(U1)では、室外空気(OA)をケーシング(10)に取り入れて処理した後に排出する方向へファン(30)が回転し、同時に冷却加熱モジュール(20)と調湿モジュール(24)の熱歪材料(21)に引張力が付与される。したがって、冷却加熱モジュール(20)と調湿モジュール(24)により加熱加湿処理された空気が排出空気(EA)として室外へ放出される。このとき、調湿モジュール(24)の吸着層は水分を放出して再生される。 On the other hand, in the first indoor unit (U1), the fan (30) rotates in a direction to discharge after taking outdoor air (OA) into the casing (10) and processing it, and at the same time, the cooling heating module (20) and the humidity control module A tensile force is applied to the heat strain material (21) of (24). Therefore, the air that has been heated and humidified by the cooling and heating module (20) and the humidity control module (24) is discharged to the outside as exhaust air (EA). At this time, the adsorption layer of the humidity control module (24) is regenerated by releasing moisture.
  このように、実施形態3によれば、いずれか一方の室内ユニット(U1,U2)で空気の冷却と減湿を行って、その空気を室内(3)へ供給するときに、他方の室内ユニット(U2,U1)では加熱処理と放湿処理を行う図17(A)の運転と図17(B)の運転を交互に切り換えることにより、除湿冷房運転を連続して行うことができる。 Thus, according to Embodiment 3, when one of the indoor units (U1, U2) cools and dehumidifies the air and supplies the air to the room (3), the other indoor unit In (U2, U1), the dehumidifying and cooling operation can be continuously performed by alternately switching the operation of FIG. 17A and the operation of FIG.
  なお、この実施形態では、空気の流れに対して冷却加熱モジュール(20)と調湿モジュール(24)を直列に配置して、空気の顕熱処理と潜熱処理を直列で行って室内に供給するようにしているが、冷却加熱モジュール(20)と調湿モジュール(24)を並列に配置して、顕熱処理をした空気と潜熱処理をした空気を混合して室内に供給するようにしてもよい。このように構成してもよいことは、以下の変形例においても同様である。 In this embodiment, the cooling and heating module (20) and the humidity control module (24) are arranged in series with respect to the air flow, and the sensible heat treatment and the latent heat treatment of air are performed in series and supplied to the room. However, the cooling and heating module (20) and the humidity control module (24) may be arranged in parallel so that the air subjected to the sensible heat treatment and the air subjected to the latent heat treatment are mixed and supplied to the room. This configuration may be the same in the following modifications.
   -実施形態3の変形例-
  (変形例1)
  図18に示す実施形態3の変形例1は、ロータ式の冷却加熱モジュール(20)を用いた空気調和装置(1)に関するものである。この空気調和装置(1)は、ロータ式の冷却加熱モジュール(20)に加えて、ロータ式の調湿モジュール(24)も備え、除湿冷房を行えるように構成されている。
-Modification of Embodiment 3-
(Modification 1)
The modification 1 of Embodiment 3 shown in FIG. 18 is related with the air conditioning apparatus (1) using a rotor type cooling heating module (20). The air conditioner (1) includes a rotor type humidity control module (24) in addition to the rotor type cooling and heating module (20), and is configured to perform dehumidification cooling.
 この空気調和装置(1)のケーシング(10)には、給気側通路(P1)と排気側通路(P2)が設けられている。給気側通路(P1)には給気ファン(30a)が設けられ、排気側通路(P2)には排気ファン(30b)が設けられている。上記冷却加熱モジュール(20)は円板状に形成され、上記ケーシング(10)内で給気側通路(P1)と排気側通路(P2)に跨って配置されている。この冷却加熱モジュール(20)は、回転軸を中心として回転することにより、給気側通路(P1)の中に位置していた部分が排気側通路(P2)の中へ移動し、排気側通路(P2)の中に位置していた部分が給気側通路(P1)の中へ移動できるように構成されている。 The casing (10) of the air conditioner (1) is provided with an air supply side passage (P1) and an exhaust side passage (P2). An air supply fan (30a) is provided in the air supply side passage (P1), and an exhaust fan (30b) is provided in the exhaust side passage (P2). The cooling and heating module (20) is formed in a disk shape, and is disposed across the supply side passage (P1) and the exhaust side passage (P2) in the casing (10). The cooling and heating module (20) rotates about the rotation axis, so that the portion located in the supply side passage (P1) moves into the exhaust side passage (P2), and the exhaust side passage The portion located in (P2) can be moved into the supply side passage (P1).
  また、調湿モジュール(24)も円板状に形成され、上記ケーシング(10)内で給気側通路(P1)と排気側通路(P2)に跨って配置されている。この調湿モジュール(24)は、回転軸を中心として回転することにより、給気側通路(P1)の中に位置していた部分が排気側通路(P2)の中へ移動し、排気側通路(P2)の中に位置していた部分が給気側通路(P1)の中へ移動できるように構成されている。 In addition, the humidity control module (24) is also formed in a disk shape, and is disposed across the supply side passage (P1) and the exhaust side passage (P2) in the casing (10). When the humidity control module (24) rotates about the rotation axis, the portion located in the air supply side passage (P1) moves into the exhaust side passage (P2), and the exhaust side passage The portion located in (P2) can be moved into the supply side passage (P1).
  この実施形態3の変形例1の空気調和装置(1)では、給気側通路(P1)で冷却吸湿動作が行われ、排気側通路(P2)で加熱放湿動作が行われる。具体的には、冷却加熱モジュール(20)が給気側通路(P1)に位置する部分には引張力が付与されずに熱歪材料(21)が吸熱し、空気が冷却される。また、調湿モジュール(24)が給気側通路(P1)に位置する部分にも引張力が付与されずに熱歪材料(21)が吸熱して吸着剤が冷却され、空気中の水分が吸着剤に吸着される。そして、冷却されて減湿された空気が供給空気(SA)として室内(3)に供給される。 In the air conditioner (1) of the first modification of the third embodiment, the cooling and moisture absorption operation is performed in the supply side passage (P1), and the heating and dehumidifying operation is performed in the exhaust side passage (P2). Specifically, the thermal strain material (21) absorbs heat without applying a tensile force to the portion where the cooling and heating module (20) is located in the supply side passage (P1), and the air is cooled. In addition, the heat-strained material (21) absorbs heat and cools the adsorbent without applying tensile force to the part where the humidity control module (24) is located in the air supply side passage (P1). Adsorbed by the adsorbent. The cooled and dehumidified air is supplied to the room (3) as supply air (SA).
  一方、冷却加熱モジュール(20)が排気側通路(P2)に位置する部分には引張力が付与されて熱歪材料(21)が放熱し、空気が加熱される。また、調湿モジュール(24)が排気側通路(P2)に位置する部分にも引張力が付与されて熱歪材料(21)が放熱して吸着剤が加熱され、吸着剤に含まれている水分が空気に放出されて吸着剤が再生される。そして、加熱されるとともに水分が与えられた空気が排出空気(EA)として室外へ放出される。 On the other hand, a tensile force is applied to the portion where the cooling and heating module (20) is located in the exhaust side passage (P2), the heat-strain material (21) dissipates heat, and the air is heated. In addition, tensile force is applied to the part where the humidity control module (24) is located in the exhaust side passage (P2), and the heat-strained material (21) dissipates heat to heat the adsorbent and is contained in the adsorbent. Moisture is released into the air and the adsorbent is regenerated. Then, air that is heated and given moisture is discharged outside the room as exhaust air (EA).
 この変形例では、冷却吸湿動作と加熱放湿動作は冷却加熱モジュール(20)と調湿モジュール(24)を連続的または間欠的に回転させながら行われる。したがって、冷却加熱モジュール(20)の放熱処理と調湿モジュール(24)の放湿処理を排気側通路(P2)で行いながら、同時に給気側通路(P1)で吸湿冷却処理することができるから、減湿かつ冷却された空気を連続して室内(3)へ供給することができる。 In this modification, the cooling moisture absorption operation and the heating and moisture releasing operation are performed while rotating the cooling heating module (20) and the humidity control module (24) continuously or intermittently. Therefore, it is possible to perform the moisture absorption cooling process in the air supply side passage (P1) while simultaneously performing the heat radiation processing of the cooling heating module (20) and the moisture release processing of the humidity control module (24) in the exhaust side passage (P2). The dehumidified and cooled air can be continuously supplied to the room (3).
  (変形例2)
  図19に示す実施形態3の変形例2は、図17に示した実施形態3に係る空気調和装置(1)が除湿冷房機であるのに対して、加湿暖房機として構成した例である。この変形例においても、第1室内ユニット(U1)と第2室内ユニット(U2)の両方が、図の右側の壁面に設置されている。
(Modification 2)
A second modification of the third embodiment shown in FIG. 19 is an example in which the air conditioner (1) according to the third embodiment shown in FIG. 17 is a dehumidifying cooler, and is configured as a humidifying heater. Also in this modification, both the first indoor unit (U1) and the second indoor unit (U2) are installed on the right wall surface in the figure.
  この空気調和装置(1)においても、第1室内ユニット(U1)と第2室内ユニット(U2)に、上記冷却加熱モジュール(20)に加えて、空気の冷却と加熱を行うように構成した上記調湿モジュール(24)が設けられている。 In the air conditioner (1), the first indoor unit (U1) and the second indoor unit (U2) are configured to cool and heat the air in addition to the cooling heating module (20). A humidity control module (24) is provided.
  第1室内ユニット(U1)と第2室内ユニット(U2)は、図17の実施形態3と同様に構成されている。 The first indoor unit (U1) and the second indoor unit (U2) are configured in the same manner as in Embodiment 3 in FIG.
  図19(A)は、第1室内ユニット(U1)で加熱放湿動作を行い、第2室内ユニット(U2)で冷却吸湿動作を行う状態を示している。第1室内ユニット(U1)では、冷却加熱モジュール(20)と調湿モジュール(24)の熱歪材料(21)に引張力が付与される。したがって、ケーシング(10)内に取り込まれた室内空気(RA)が加熱されるとともに加湿され、その空気が供給空気(SA)として室内(3)へ供給される。 FIG. 19 (A) shows a state where the heat and moisture release operation is performed in the first indoor unit (U1) and the cooling and moisture absorption operation is performed in the second indoor unit (U2). In the first indoor unit (U1), a tensile force is applied to the heat strain material (21) of the cooling and heating module (20) and the humidity control module (24). Accordingly, the room air (RA) taken into the casing (10) is heated and humidified, and the air is supplied to the room (3) as supply air (SA).
  一方、第2室内ユニット(U2)では、室外空気(OA)をケーシング(10)に取り入れて処理した後に排出する方向へファン(30)が回転し、同時に冷却加熱モジュール(20)と調湿モジュール(24)の熱歪材料(21)への引張力が解除される。冷却加熱モジュール(20)での冷却処理と調湿モジュール(24)での吸湿処理の行われた空気が排出空気(EA)として室外に放出される。 On the other hand, in the second indoor unit (U2), the fan (30) rotates in the direction to discharge after taking outdoor air (OA) into the casing (10) and processing it, and at the same time, the cooling and heating module (20) and the humidity control module The tensile force to the heat strain material (21) of (24) is released. The air that has undergone the cooling process in the cooling and heating module (20) and the moisture absorption process in the humidity control module (24) is discharged to the outside as exhaust air (EA).
  図19(B)は、第2室内ユニット(U2)で加熱放湿動作を行い、第1室内ユニット(U1)で冷却吸湿動作を行う状態を示している。第2室内ユニット(U2)では、冷却加熱モジュール(20)と調湿モジュール(24)の熱歪材料(21)に引張力が付与される。したがって、ケーシング(10)内に取り込まれた室内空気(RA)が加熱されるとともに加湿され、その空気が供給空気(SA)として室内(3)へ供給される。 FIG. 19B shows a state in which the heat and moisture release operation is performed in the second indoor unit (U2) and the cooling and moisture absorption operation is performed in the first indoor unit (U1). In the second indoor unit (U2), a tensile force is applied to the heat strain material (21) of the cooling and heating module (20) and the humidity control module (24). Accordingly, the room air (RA) taken into the casing (10) is heated and humidified, and the air is supplied to the room (3) as supply air (SA).
  一方、第1室内ユニット(U1)では、室外空気(OA)をケーシング(10)に取り入れて処理した後に排出する方向へファン(30)が回転し、同時に冷却加熱モジュール(20)と調湿モジュール(24)の熱歪材料(21)への引張力が解除される。冷却加熱モジュール(20)での冷却処理と調湿モジュール(24)での吸湿処理の行われた空気が排出空気(EA)として室外に放出される。 On the other hand, in the first indoor unit (U1), the fan (30) rotates in a direction to discharge after taking outdoor air (OA) into the casing (10) and processing it, and at the same time, the cooling heating module (20) and the humidity control module The tensile force to the heat strain material (21) of (24) is released. The air that has undergone the cooling process in the cooling and heating module (20) and the moisture absorption process in the humidity control module (24) is discharged to the outside as exhaust air (EA).
  この実施形態3の変形例2によれば、いずれか一方の室内ユニット(U1,U2)で空気の加湿と加熱を行って、その空気を室内(3)へ供給するときに、他方の室内ユニット(U2,U1)では空気の冷却と吸着層(23)での吸湿を行う図19(A)の運転と図19(B)の運転を交互に切り換えることにより、加湿暖房運転を連続して行うことができる。 According to Modification 2 of Embodiment 3, when one of the indoor units (U1, U2) performs humidification and heating of the air and supplies the air to the room (3), the other indoor unit In (U2, U1), the humidification heating operation is continuously performed by alternately switching the operation of FIG. 19A and the operation of FIG. 19B which cools the air and absorbs moisture in the adsorption layer (23). be able to.
  (変形例3)
  図20に示す実施形態3の変形例3は、図18に示す変形例1に係る空気調和装置(1)が除湿冷房機であるのに対して、加湿暖房機として構成した例である。この変形例においても、ロータ式の冷却加熱モジュール(20)に加えて、ロータ式の調湿モジュール(24)が用いられている。
(Modification 3)
Modification 3 of Embodiment 3 shown in FIG. 20 is an example in which the air conditioner (1) according to Modification 1 shown in FIG. 18 is a dehumidifying cooler, and is configured as a humidifying heater. Also in this modified example, in addition to the rotor type cooling and heating module (20), the rotor type humidity control module (24) is used.
  この空気調和装置(1)のケーシング(10)、冷却加熱モジュール(20)及び調湿モジュール(24)は図18と同様に構成されている。 The casing (10), the cooling / heating module (20), and the humidity control module (24) of the air conditioner (1) are configured in the same manner as in FIG.
  具体的には、空気調和装置(1)のケーシング(10)に、給気側通路(P1)と排気側通路(P2)が設けられている。給気側通路(P1)には給気ファン(30a)が設けられ、排気側通路(P2)には排気ファン(30b)が設けられている。上記冷却加熱モジュール(20)は円板状に形成され、上記ケーシング(10)内で給気側通路(P1)と排気側通路(P2)に跨って配置されている。この冷却加熱モジュール(20)は、回転軸を中心として回転することにより、給気側通路(P1)の中に位置していた部分が排気側通路(P2)の中へ移動し、排気側通路(P2)の中に位置していた部分が給気側通路(P1)の中へ移動できるように構成されている。また、調湿モジュール(24)も円板状に形成され、上記ケーシング(10)内で給気側通路(P1)と排気側通路(P2)に跨って配置されている。この調湿モジュール(24)は、回転軸を中心として回転することにより、給気側通路(P1)の中に位置していた部分が排気側通路(P2)の中へ移動し、排気側通路(P2)の中に位置していた部分が給気側通路(P1)の中へ移動できるように構成されている。 Specifically, an air supply side passage (P1) and an exhaust side passage (P2) are provided in the casing (10) of the air conditioner (1). An air supply fan (30a) is provided in the air supply side passage (P1), and an exhaust fan (30b) is provided in the exhaust side passage (P2). The cooling and heating module (20) is formed in a disk shape, and is disposed across the supply side passage (P1) and the exhaust side passage (P2) in the casing (10). The cooling and heating module (20) rotates about the rotation axis, so that the portion located in the supply side passage (P1) moves into the exhaust side passage (P2), and the exhaust side passage The portion located in (P2) can be moved into the supply side passage (P1). Further, the humidity control module (24) is also formed in a disc shape, and is disposed across the supply side passage (P1) and the exhaust side passage (P2) in the casing (10). When the humidity control module (24) rotates about the rotation axis, the portion located in the air supply side passage (P1) moves into the exhaust side passage (P2), and the exhaust side passage The portion located in (P2) can be moved into the supply side passage (P1).
  この変形例3の空気調和装置(1)では、給気側通路(P1)で加熱放湿動作が行われ、排気側通路(P2)で冷却吸湿動作が行われる。具体的には、冷却加熱モジュール(20)が給気側通路(P1)に位置する部分には、引張力が付与されることにより熱歪材料(21)が発熱し、空気が加熱される。また、調湿モジュール(24)が給気側通路(P1)に位置する部分には、引張力が付与されることにより熱歪材料(21)が発熱して吸着剤が加熱され、吸着剤に含まれている水分が空気に与えられる。 In the air conditioner (1) of the third modified example, the heat and moisture releasing operation is performed in the supply side passage (P1), and the cooling and moisture absorption operation is performed in the exhaust side passage (P2). Specifically, a tensile force is applied to a portion where the cooling and heating module (20) is positioned in the air supply side passage (P1), whereby the thermostrictive material (21) generates heat and the air is heated. In addition, the portion where the humidity control module (24) is located in the air supply side passage (P1) is heated by the tensile strain and the heat-strained material (21) generates heat to heat the adsorbent. The contained moisture is given to the air.
  一方、冷却加熱モジュール(20)が排気側通路(P2)に位置する部分には、引張力が解除されて熱歪材料(21)が空気から吸熱する。また、調湿モジュール(24)が排気側通路(P2)に位置する部分には、引張力が解除されて熱歪材料(21)が吸熱して吸着剤が冷却され、空気中の水分が吸着剤に吸着される。 On the other hand, at the portion where the cooling and heating module (20) is located in the exhaust side passage (P2), the tensile force is released and the heat strain material (21) absorbs heat from the air. Also, at the part where the humidity control module (24) is located in the exhaust side passage (P2), the tensile force is released, the heat-strained material (21) absorbs heat, the adsorbent is cooled, and moisture in the air is adsorbed Adsorbed to the agent.
  この実施形態3の変形例3では、加熱放湿動作と冷却吸湿動作は冷却加熱モジュール(20)を連続的または間欠的に回転させながら行われる。したがって、排気側通路(P2)で冷却処理と吸湿処理を行いながら、同時に給気側通路(P1)で加熱処理と放湿処理をすることができるから、加熱と加湿のされた空気を連続して室内(3)へ供給する運転を行うことができる。 In the third modification of the third embodiment, the heat moisture release operation and the cooling moisture absorption operation are performed while rotating the cooling heating module (20) continuously or intermittently. Therefore, while performing the cooling process and the moisture absorption process in the exhaust side passage (P2), the heating process and the moisture release process can be performed in the supply side path (P1) at the same time. To supply to the room (3).
  《発明の実施形態4》
  本発明の実施形態4について説明する。
<< Embodiment 4 of the Invention >>
Embodiment 4 of the present invention will be described.
  この実施形態4の空気調和装置(1)は、図1及び図10に示す空気調和装置(1)において、冷却加熱モジュール(20)で冷却処理した空気を室内(3)に導入する冷却動作と、冷却加熱モジュール(20)で加熱処理した空気を室内(3)に導入する加熱動作とを切り換え可能に構成したものである。 The air conditioner (1) of the fourth embodiment includes a cooling operation for introducing the air cooled by the cooling and heating module (20) into the room (3) in the air conditioner (1) shown in FIGS. The heating operation for introducing the air heated in the cooling heating module (20) into the room (3) can be switched.
  例えば、図1の空気調和装置(1)において、ケーシング(10)に取り込まれた室内空気(RA)を処理するときに、図1(A)に示すように冷却加熱モジュール(20)の熱歪材料(21)への引張力を解除する運転と、図10(A)に示すように冷却加熱モジュール(20)の熱歪材料(21)に引張力を付与する運転とを切り換え可能に構成され、ケーシング(10)に取り込まれた室外空気(OA)を処理するときに、図1(B)に示すように冷却加熱モジュール(20)に引張力を付与する運転と、図10(B)に示すように冷却加熱モジュール(20)への引張力を解除する運転とを切り換え可能に構成される。 For example, when the indoor air (RA) taken into the casing (10) is processed in the air conditioner (1) of FIG. 1, the thermal distortion of the cooling / heating module (20) as shown in FIG. 1 (A). The operation for releasing the tensile force on the material (21) and the operation for applying the tensile force to the heat strain material (21) of the cooling heating module (20) as shown in FIG. 10 (A) can be switched. When the outdoor air (OA) taken into the casing (10) is processed, an operation for applying a tensile force to the cooling and heating module (20) as shown in FIG. 1 (B), and FIG. 10 (B) As shown, it is configured to be able to switch between the operation for releasing the tensile force to the cooling and heating module (20).
  このように構成すれば、1つの冷却加熱モジュール(20)を備えた室内ユニット(U)を有する空気調和装置(1)において、室内(3)を間欠的に冷房する運転と、室内(3)を間欠的に暖房する運転とを切り換えて行うことが可能になる。 If comprised in this way, in the air conditioner (1) which has an indoor unit (U) provided with one cooling heating module (20), the operation | movement which cools a room | chamber (3) intermittently, and indoor (3) It is possible to switch between the operation of intermittently heating.
  -実施形態4の変形例-
  (変形例1)
  実施形態4の変形例1は、図4及び図11の空気調和装置(1)において、引張力の付与状態を切り換えることにより、図4(A)の運転と図11(A)の運転とを切り換え可能に構成するとともに、図4(B)の運転と図11(B)の運転とを切り換え可能に構成したものである。装置の基本的な構成は図4及び図11と同様であるため、具体的な説明は省略する。
-Modification of Embodiment 4-
(Modification 1)
In Modification 1 of Embodiment 4, the operation of FIG. 4A and the operation of FIG. 11A are performed by switching the application state of the tensile force in the air conditioner (1) of FIGS. In addition to being configured to be switchable, the operation of FIG. 4B and the operation of FIG. 11B can be switched. Since the basic configuration of the apparatus is the same as that shown in FIGS. 4 and 11, a detailed description thereof will be omitted.
  この空気調和装置(1)において、図4(A),(B)の運転では、ケーシング(10)内に取り込まれた室内空気(RA)が通過する冷却加熱モジュール(20)への引張力が解除され、ケーシング(10)内に取り込まれた室外空気(OA)が通過する冷却加熱モジュール(20)へ引張力が付与される。また、図11(A),(B)の運転では、ケーシング(10)内に取り込まれた室内空気(RA)が通過する冷却加熱モジュール(20)に引張力が付与され、ケーシング(10)内に取り込まれた室外空気(OA)が通過する冷却加熱モジュール(20)への引張力が解除される。 In this air conditioner (1), in the operation of FIGS. 4A and 4B, the tensile force to the cooling and heating module (20) through which the indoor air (RA) taken into the casing (10) passes is obtained. A tensile force is applied to the cooling and heating module (20) through which the outdoor air (OA) taken in and released into the casing (10) passes. Further, in the operation of FIGS. 11A and 11B, a tensile force is applied to the cooling and heating module (20) through which the indoor air (RA) taken into the casing (10) passes, and the inside of the casing (10) The tensile force to the cooling and heating module (20) through which the outdoor air (OA) taken in is passed is released.
  このように構成すれば、2つの室内ユニット(U1,U2)を部屋の対向する壁面に設置した空気調和装置(1)において、室内(3)を連続的に冷房する運転と、室内(3)を連続的に暖房する運転とを切り換えて行うことが可能になる。 If comprised in this way, in the air conditioner (1) which installed two indoor units (U1, U2) on the wall surface which opposes a room, the operation | movement which cools a room | chamber (3) continuously, and indoor (3) It is possible to switch between the operation of heating continuously.
  (変形例2)
  実施形態4の変形例2は、図5及び図12の空気調和装置(1)において、引張力の付与状態を切り換えることにより、図5(A)の運転と図12(A)の運転とを切り換え可能に構成するとともに、図5(B)の運転と図12(B)の運転とを切り換え可能に構成したものである。装置の基本的な構成は図5及び図12と同様であるため、具体的な説明は省略する。
(Modification 2)
In the second modification of the fourth embodiment, in the air conditioner (1) of FIGS. 5 and 12, the operation of FIG. 5A and the operation of FIG. In addition to being configured to be switchable, the operation of FIG. 5B and the operation of FIG. 12B can be switched. Since the basic configuration of the apparatus is the same as that shown in FIGS. 5 and 12, a detailed description thereof will be omitted.
  この空気調和装置(1)において、図5(A),(B)の運転では、ケーシング(10)内に取り込まれた室内空気(RA)が通過する冷却加熱モジュール(20)への引張力が解除され、ケーシング(10)内に取り込まれた室外空気(OA)が通過する冷却加熱モジュール(20)へ引張力が付与される。また、図12(A),(B)の運転では、ケーシング(10)内に取り込まれた室内空気(RA)が通過する冷却加熱モジュール(20)に引張力が付与され、ケーシング(10)内に取り込まれた室外空気(OA)が通過する冷却加熱モジュール(20)への引張力が解除される。 In this air conditioner (1), in the operation of FIGS. 5 (A) and 5 (B), the tensile force to the cooling and heating module (20) through which the indoor air (RA) taken into the casing (10) passes is obtained. A tensile force is applied to the cooling and heating module (20) through which the outdoor air (OA) taken in and released into the casing (10) passes. 12A and 12B, a tensile force is applied to the cooling and heating module (20) through which the indoor air (RA) taken into the casing (10) passes, and the inside of the casing (10) The tensile force to the cooling and heating module (20) through which the outdoor air (OA) taken in is passed is released.
  このように構成すれば、2つの室内ユニット(U1,U2)を部屋の一方の壁面に設置した空気調和装置(1)において、室内(3)を連続的に冷房する運転と、室内(3)を連続的に暖房する運転とを切り換えて行うことが可能になる。 If comprised in this way, in the air conditioner (1) which installed two indoor units (U1, U2) on the one wall surface of a room, the operation | movement which cools a room (3) continuously, and a room (3) It is possible to switch between the operation of heating continuously.
  (変形例3)
  実施形態4の変形例3は、図6~図8及び図13~図15の空気調和装置(1)において、引張力の付与状態を切り換えることにより、図7の運転と図14の運転とを切り換え可能に構成するとともに、図8の運転と図15の運転とを切り換え可能に構成したものである。装置の基本的な構成は図6~図8及び図13~図15と同様であるため、具体的な説明は省略する。
(Modification 3)
In the third modification of the fourth embodiment, in the air conditioner (1) of FIGS. 6 to 8 and 13 to 15, the operation of FIG. 7 and the operation of FIG. In addition to being configured to be switchable, the operation of FIG. 8 and the operation of FIG. 15 are configured to be switchable. Since the basic configuration of the apparatus is the same as that shown in FIGS. 6 to 8 and FIGS. 13 to 15, a detailed description thereof will be omitted.
  この空気調和装置(1)において、図7,8の運転では、ケーシング(10)内に取り込まれた室内空気(RA)が通過する冷却加熱モジュール(20)への引張力が解除され、ケーシング(10)内に取り込まれた室外空気(OA)が通過する冷却加熱モジュール(20)へ引張力が付与される。また、図14,15の運転では、ケーシング(10)内に取り込まれた室内空気(RA)が通過する冷却加熱モジュール(20)に引張力が付与され、ケーシング(10)内に取り込まれた室外空気(OA)が通過する冷却加熱モジュール(20)への引張力が解除される。 In the air conditioner (1), in the operation of FIGS. 7 and 8, the tensile force to the cooling and heating module (20) through which the indoor air (RA) taken into the casing (10) passes is released, and the casing ( 10) A tensile force is applied to the cooling and heating module (20) through which the outdoor air (OA) taken into the interior passes. 14 and 15, a tensile force is applied to the cooling and heating module (20) through which the indoor air (RA) taken into the casing (10) passes, and the outdoor taken into the casing (10). The tensile force to the cooling and heating module (20) through which air (OA) passes is released.
  このように構成すれば、2つの冷却加熱モジュール(20)を備えたケーシング(10)内で空気の流通経路を切り換え可能なユニットを用いた空気調和装置(1)において、室内(3)を連続的に冷房する運転と、室内(3)を連続的に暖房する運転とを切り換えて行うことが可能になる。 If comprised in this way, in the air conditioner (1) using the unit which can switch the distribution | circulation path | route of air within the casing (10) provided with two cooling heating modules (20), indoor (3) is continued. It is possible to switch between a cooling operation and a continuous heating operation of the room (3).
  (変形例4)
  実施形態4の変形例4は、図9の空気調和装置(1)と図16の空気調和装置(1)を1つの装置として構成し、引張力の付与状態を切り換えることにより、図9の運転と図16の運転を切り換え可能に構成したものである。装置の基本的な構成は図9及び図16と同様であるため、具体的な説明は省略する。
(Modification 4)
The fourth modification of the fourth embodiment is configured such that the air conditioner (1) in FIG. 9 and the air conditioner (1) in FIG. 16 are configured as one device, and the operation of FIG. And the operation shown in FIG. 16 can be switched. Since the basic configuration of the apparatus is the same as that shown in FIGS. 9 and 16, a detailed description thereof will be omitted.
  この空気調和装置(1)において、図9の運転では、ケーシング(10)内に取り込まれた室内空気(RA)が通過する部分において冷却加熱モジュール(20)への引張力が解除され、ケーシング(10)内に取り込まれた室外空気(OA)が通過する部分において冷却加熱モジュール(20)へ引張力が付与される。また、図16の運転では、ケーシング(10)内に取り込まれた室内空気(RA)が通過する部分において冷却加熱モジュール(20)に引張力が付与され、ケーシング(10)内に取り込まれた室外空気(OA)が通過する部分において冷却加熱モジュール(20)への引張力が解除される。 In the operation of FIG. 9, in this air conditioner (1), the tensile force to the cooling and heating module (20) is released at the portion where the room air (RA) taken into the casing (10) passes, and the casing ( 10) A tensile force is applied to the cooling and heating module (20) at a portion through which the outdoor air (OA) taken into the passage passes. Further, in the operation of FIG. 16, a tensile force is applied to the cooling and heating module (20) at a portion through which the indoor air (RA) taken into the casing (10) passes, and the outdoor taken into the casing (10). The tensile force applied to the cooling and heating module (20) is released at a portion where air (OA) passes.
  このように構成すれば、ロータ式の冷却加熱モジュール(20)を備えた空気調和装置(1)において、室内(3)を連続的に冷房する運転と、室内(3)を連続的に暖房する運転とを切り換えて行うことが可能になる。 If comprised in this way, in the air conditioning apparatus (1) provided with the rotor-type cooling heating module (20), the operation | movement which cools a room | chamber (3) continuously and the room | chamber (3) will be heated continuously. It becomes possible to switch between operation.
  (変形例5)
  実施形態4の変形例5は、図17及び図19の空気調和装置(1)において、引張力の付与状態を切り換えることにより、図17(A)の運転と図19(A)の運転とを切り換え可能に構成するとともに、図17(B)の運転と図19(B)の運転とを切り換え可能に構成したものである。装置の基本的な構成は図17及び図19と同様であるため、具体的な説明は省略する。
(Modification 5)
In the fifth modification of the fourth embodiment, in the air conditioner (1) shown in FIGS. 17 and 19, the operation of FIG. 17A and the operation of FIG. In addition to being configured to be switchable, the operation of FIG. 17B and the operation of FIG. 19B are configured to be switchable. Since the basic configuration of the apparatus is the same as that shown in FIGS. 17 and 19, a detailed description thereof will be omitted.
  この空気調和装置(1)において、図17(A),(B)の運転では、ケーシング(10)内に取り込まれた室内空気(RA)が通過する冷却加熱モジュール(20)と調湿モジュール(24)への引張力が解除され、ケーシング(10)内に取り込まれた室外空気(OA)が通過する冷却加熱モジュール(20)と調湿モジュール(24)へ引張力が付与される。また、図19(A),(B)の運転では、ケーシング(10)内に取り込まれた室内空気(RA)が通過する冷却加熱モジュール(20)と調湿モジュール(24)に引張力が付与され、ケーシング(10)内に取り込まれた室外空気(OA)が通過する冷却加熱モジュール(20)と調湿モジュール(24)への引張力が解除される。 In the air conditioner (1), in the operation of FIGS. 17A and 17B, the cooling and heating module (20) and the humidity control module (20) through which the indoor air (RA) taken into the casing (10) passes are provided. The tensile force to 24) is released, and the tensile force is applied to the cooling and heating module (20) and the humidity control module (24) through which the outdoor air (OA) taken into the casing (10) passes. 19A and 19B, tensile force is applied to the cooling and heating module (20) and the humidity control module (24) through which the indoor air (RA) taken into the casing (10) passes. Then, the tensile force to the cooling and heating module (20) and the humidity control module (24) through which the outdoor air (OA) taken into the casing (10) passes is released.
  このように構成すれば、2つの室内ユニット(U1,U2)のそれぞれに冷却加熱モジュール(20)と調湿モジュール(24)を設けた空気調和装置(1)において、室内(3)を連続的に除湿冷房する運転と、室内(3)を連続的に加湿暖房する運転とを切り換えて行うことが可能になる。 With this configuration, in the air conditioner (1) in which the cooling unit (20) and the humidity control module (24) are provided in each of the two indoor units (U1, U2), the room (3) is continuously connected. It is possible to switch between the operation of dehumidifying and cooling the air and the operation of continuously humidifying and heating the room (3).
  (変形例6)
  実施形態4の変形例6は、図18の空気調和装置(1)と図20の空気調和装置(1)を1つの装置として構成し、引張力の付与状態を切り換えることにより、図18の運転と図20の装置の運転を切り換え可能に構成したものである。装置の基本的な構成は図18及び図20と同様であるため、具体的な説明は省略する。
(Modification 6)
In the sixth modification of the fourth embodiment, the air conditioner (1) of FIG. 18 and the air conditioner (1) of FIG. 20 are configured as one device, and the operation of FIG. And the operation of the apparatus of FIG. 20 can be switched. Since the basic configuration of the apparatus is the same as that shown in FIGS. 18 and 20, a detailed description thereof will be omitted.
 この空気調和装置(1)において、図18の運転では、ケーシング(10)内に取り込まれた室内空気(RA)が通過する部分において冷却加熱モジュール(20)と調湿モジュール(24)への引張力が解除され、ケーシング(10)内に取り込まれた室外空気(OA)が通過する部分において冷却加熱モジュール(20)と調湿モジュール(24)へ引張力が付与される。また、図20の運転では、ケーシング(10)内に取り込まれた室内空気(RA)が通過する部分において冷却加熱モジュール(20)と調湿モジュール(24)に引張力が付与され、ケーシング(10)内に取り込まれた室外空気(OA)が通過する部分において冷却加熱モジュール(20)と調湿モジュール(24)への引張力が解除される。 In this air conditioner (1), in the operation shown in FIG. 18, in the portion through which the room air (RA) taken into the casing (10) passes, the cooling and heating module (20) and the humidity control module (24) are pulled. The force is released, and a tensile force is applied to the cooling and heating module (20) and the humidity control module (24) at a portion through which the outdoor air (OA) taken into the casing (10) passes. In the operation of FIG. 20, a tensile force is applied to the cooling and heating module (20) and the humidity control module (24) in a portion through which the indoor air (RA) taken into the casing (10) passes, and the casing (10 ) The tensile force applied to the cooling and heating module (20) and the humidity control module (24) is released at a portion through which the outdoor air (OA) taken in is passed.
  このように構成すれば、ロータ式の冷却加熱モジュール(20)と調湿モジュール(24)を備えた空気調和装置(1)において、室内(3)を連続的に除湿冷房する運転と、室内(3)を連続的に加湿暖房する運転とを切り換えて行うことが可能になる。 If comprised in this way, in the air conditioning apparatus (1) provided with the rotor-type cooling heating module (20) and the humidity control module (24), the operation | movement which dehumidifies and cools a room | chamber (3) continuously, 3) can be switched between continuous humidification and heating.
  《発明の実施形態5》
  本発明の実施形態5について説明する。図24に示す実施形態5は、冷却加熱モジュール(20)の具体的な構成に関するものである。本実施形態5に係る冷却加熱モジュール(20)では、切換制御部(35)によって、可動板(41a,41b)の位置を調節することで、熱歪材料(21)へ付与される引張力の付与と解除を切り換えている。
<< Embodiment 5 of the Invention >>
Embodiment 5 of the present invention will be described. Embodiment 5 shown in FIG. 24 relates to a specific configuration of the cooling and heating module (20). In the cooling and heating module (20) according to the fifth embodiment, the switching control unit (35) adjusts the position of the movable plates (41a, 41b), thereby adjusting the tensile force applied to the thermostrictive material (21). Switching between grant and release.
  本実施形態5に係る冷却加熱モジュール(20)は、図24に示すように、第1および第2冷却加熱モジュール(20a,20b)で構成されている。図24において、第1冷却加熱モジュール(20a)が右側に配置され、第2冷却加熱モジュール(20b)が左側に配置されているものとする。 The cooling / heating module (20) according to the fifth embodiment is composed of first and second cooling / heating modules (20a, 20b) as shown in FIG. In FIG. 24, the first cooling / heating module (20a) is disposed on the right side, and the second cooling / heating module (20b) is disposed on the left side.
  各冷却加熱モジュール(20a,20b)は、それぞれが熱歪材料(21)と、アクチュエータ(22)と、切換制御部(35)とを備えている。そして、両冷却加熱モジュール(20a,20b)の間は、仕切板(43)によって左右に仕切られている。 Each cooling and heating module (20a, 20b) includes a thermostrictive material (21), an actuator (22), and a switching control unit (35). And between both the cooling heating modules (20a, 20b), it is divided into right and left by the partition plate (43).
  上記熱歪材料(21)は、上下に延びるワイヤ状に形成されている。この熱歪材料(21)は、例示として形状記憶合金によって構成され、引張力をかけることで対象物を加熱する一方、引張力を解除することで対象物を冷却するものである。具体的には、図21に示すように、熱歪材料(21)に引張力をかけると、母相(オーステナイト相)からマルテンサイト相へと相変化することで、エントロピーが減少し、その分、発熱して熱歪材料(21)自身が加熱される(IからII)。熱歪材料(21)に引張力をかけたまま、該熱歪材料(21)を加熱対象物に接触させると、熱歪材料(21)の熱が加熱対象物に伝わる(IIからIII)。こうすることで、熱歪材料(21)の温度は下がる。そして、熱歪材料(21)にかけられている引張力を除去(解除)すると、マルテンサイト相から母相(オーステナイト相)に変化する(IIIからIV)。このとき、熱歪材料(21)が断熱されていると、熱歪材料(21)の温度が下がる。温度が下がった熱歪材料に冷却対象物を接触させると、該冷却対象物の熱が熱歪材料(21)に伝わる(IVからI)。 The heat strain material (21) is formed in a wire shape extending vertically. This heat-strain material (21) is constituted by a shape memory alloy as an example, and heats the object by applying a tensile force, while cooling the object by releasing the tensile force. Specifically, as shown in FIG. 21, when a tensile force is applied to the thermostrictive material (21), the entropy decreases due to the phase change from the parent phase (austenite phase) to the martensite phase. The heat-strained material (21) itself is heated by heating (I to II). When the thermal strain material (21) is brought into contact with the object to be heated while a tensile force is applied to the heat strain material (21), the heat of the heat strain material (21) is transmitted to the object to be heated (II to III). By doing so, the temperature of the thermostrictive material (21) is lowered. When the tensile force applied to the thermostrictive material (21) is removed (released), the martensite phase changes to the parent phase (austenite phase) (III to IV). At this time, if the heat-strained material (21) is insulated, the temperature of the heat-strained material (21) decreases. When the object to be cooled is brought into contact with the heat-strained material whose temperature has decreased, the heat of the object to be cooled is transferred to the heat-strained material (21) (IV to I).
  上記アクチュエータ(22)は、固定部である固定板(40)と、可動部である第1および第2可動板(41a,41b)と、変位機構である第1および第2カム(46,47)と回転軸(39)とを備えている。上記固定板(40)は、略長方形状の薄板に形成されている。固定板(40)の下面は、仕切板(43)によって左右の領域に仕切られ、右側の領域に第1冷却加熱モジュール(20a)(第1冷却加熱部)の熱歪材料(21)の一端が取り付けられ、左側の領域に第2冷却加熱モジュール(20b)(第2冷却加熱部)の熱歪材料(21)の一端が取り付けられている。 The actuator (22) includes a fixed plate (40) as a fixed portion, first and second movable plates (41a, 41b) as movable portions, and first and second cams (46, 47) as displacement mechanisms. ) And a rotating shaft (39). The fixing plate (40) is formed in a substantially rectangular thin plate. The lower surface of the fixed plate (40) is divided into left and right regions by a partition plate (43), and one end of the thermostrictive material (21) of the first cooling heating module (20a) (first cooling heating unit) is divided into the right region. And one end of the thermostrictive material (21) of the second cooling / heating module (20b) (second cooling / heating unit) is attached to the left region.
  上記仕切板(43)は、第1および第2冷却加熱モジュール(20a,20b)の間を左右に仕切るものである。仕切板(43)は、略T字状に形成された部材である。仕切板(43)は、固定板(40)と直交方向の下方に延びる矩形の薄板に形成される本体部(44)と、固定板(40)と略平行に延びる矩形の薄板に形成されるフランジ部(45)とで形成されている。仕切板(43)は、本体部(44)の基端が固定板(40)に対して取り付けられ、フランジ部(45)は、熱歪材料(21)の他端と略同じ高さ位置に配置されている。 The partition plate (43) partitions the first and second cooling / heating modules (20a, 20b) to the left and right. The partition plate (43) is a member formed in a substantially T shape. The partition plate (43) is formed as a main body portion (44) formed in a rectangular thin plate extending downward in the orthogonal direction to the fixed plate (40), and a rectangular thin plate extending substantially parallel to the fixed plate (40). It is formed with a flange part (45). In the partition plate (43), the base end of the main body portion (44) is attached to the fixed plate (40), and the flange portion (45) is located at substantially the same height as the other end of the thermal strain material (21). Is arranged.
  上記第1および第2可動板(41a,41b)は、熱歪材料(21)に引張力を付与するための部材であって、第1冷却加熱モジュール(20a)および第2冷却加熱モジュール(20b)に対応して設けられている。第1可動板(41a)は、第1冷却加熱モジュール(20a)の熱歪材料(21)の他端に取り付けられ、固定板(40)と対向して配置されている。また、第2可動板(41b)は、第2冷却加熱モジュール(20b)の熱歪材料(21)の他端に取り付けられ、固定板(40)と対向して配置されている。第1可動板(41a)と固定板(40)との間には、第1空気通路(42a)が形成され、第2可動板(41b)と固定板(40)との間には、第2空気通路(42b)が形成されている。 The first and second movable plates (41a, 41b) are members for applying a tensile force to the thermal strain material (21), and are a first cooling heating module (20a) and a second cooling heating module (20b). ). The first movable plate (41a) is attached to the other end of the thermostrictive material (21) of the first cooling / heating module (20a), and is disposed to face the fixed plate (40). The second movable plate (41b) is attached to the other end of the thermostrictive material (21) of the second cooling / heating module (20b), and is disposed to face the fixed plate (40). A first air passage (42a) is formed between the first movable plate (41a) and the fixed plate (40), and a first air passage (42a) is formed between the second movable plate (41b) and the fixed plate (40). Two air passages (42b) are formed.
  また、第1および第2可動板(41a,41b)は、略矩形状の薄板に形成されると共に、所定の重量を有している。このため、第1および第2可動板(41a,41b)は、その重みによって熱歪材料(21)に荷重がかかることで、該熱歪材料(21)に下方への引張力が付与される。したがって、第1および第2可動板(41a,41b)は、熱歪材料(21)に対して引張力を付与可能な重さを有している。 Further, the first and second movable plates (41a, 41b) are formed in a substantially rectangular thin plate and have a predetermined weight. For this reason, the first and second movable plates (41a, 41b) are given a load to the thermostrictive material (21) by the weight, and thereby a downward tensile force is applied to the thermostrictive material (21). . Therefore, the first and second movable plates (41a, 41b) have a weight capable of applying a tensile force to the heat strain material (21).
  上記第1および第2カム(46,47)は、第1および第2可動板(41a,41b)の幅方向(図24の奥行き方向)に延びる略円筒形状に形成された部材である。第1カム(46)には、円形の外周部(48)と、半円部分が切り欠かれた小径部(49)とが形成されている。また、第1カム(46)には、回転軸(39)がその中心に挿通され、回転軸(39)の回転方向に回転可能となるように取り付けられている。第2カム(47)には、円形の外周部(48)と、半円部分が切り欠かれた小径部(49)とが形成されている。また、第2カム(47)には、回転軸(39)がその中心に挿通され、回転軸(39)の回転方向に回転可能となるように取り付けられている。回転軸(39)には、切換制御部(35)が接続され、切換制御部(35)によって、第1および第2カム(46,47)の回転位置が制御される。 The first and second cams (46, 47) are members formed in a substantially cylindrical shape extending in the width direction (depth direction in FIG. 24) of the first and second movable plates (41a, 41b). The first cam (46) is formed with a circular outer peripheral portion (48) and a small diameter portion (49) in which a semicircular portion is cut out. Further, the first cam (46) is attached so that the rotation shaft (39) is inserted through the center of the first cam (46) and is rotatable in the rotation direction of the rotation shaft (39). The second cam (47) is formed with a circular outer peripheral portion (48) and a small diameter portion (49) with a semicircular portion cut out. The second cam (47) is attached so that the rotation shaft (39) is inserted through the center of the second cam (47) and is rotatable in the rotation direction of the rotation shaft (39). A switching control unit (35) is connected to the rotating shaft (39), and the rotation positions of the first and second cams (46, 47) are controlled by the switching control unit (35).
  そして、第1および第2カム(46,47)は、左右で互いに180°位相がずれるようになっている。すなわち、第1可動板(41a)に対して、第1カム(46)の外周部(48)が接触した場合、第2可動板(41b)に対して、第2カム(47)の小径部(49)が接触するように構成されている。こうすることで、第2冷却加熱モジュール(20b)の熱歪材料(21)に対して第2可動板(47b)の荷重がかかり、引張力が付与される。このため、第2冷却加熱モジュール(20b)の熱歪材料(21)が発熱されて、周囲を流れる空気が加熱される。一方、第1冷却加熱モジュール(20a)の熱歪材料(21)は、第1可動板(47a)の荷重が第1カム(46)に支えられ、引張力が解除されている。このため、第1冷却加熱モジュール(20a)の熱歪材料(21)が冷却されて、周囲を流れる空気が冷却される。 The first and second cams (46, 47) are 180 ° out of phase with each other on the left and right. That is, when the outer peripheral portion (48) of the first cam (46) comes into contact with the first movable plate (41a), the small diameter portion of the second cam (47) with respect to the second movable plate (41b). (49) is configured to contact. By carrying out like this, the load of a 2nd movable plate (47b) is applied with respect to the thermostrictive material (21) of a 2nd cooling heating module (20b), and tensile force is provided. For this reason, the heat-strain material (21) of the second cooling and heating module (20b) generates heat, and the air flowing around it is heated. On the other hand, in the thermostrictive material (21) of the first cooling and heating module (20a), the load of the first movable plate (47a) is supported by the first cam (46), and the tensile force is released. For this reason, the heat-strain material (21) of the first cooling / heating module (20a) is cooled, and the air flowing around it is cooled.
  この実施形態5の冷却加熱モジュール(20)は、簡単な構成で実用化できるとともにモジュール自体を小型化できるので、例えば図1に示した実施形態1の空気調和装置(1)に適用することにより、空気調和装置(1)の構成が複雑化するのを抑え、同時に装置(1)を小型化することもできる。 Since the cooling and heating module (20) of the fifth embodiment can be put into practical use with a simple configuration and the module itself can be miniaturized, for example, by applying it to the air conditioner (1) of the first embodiment shown in FIG. In addition, the configuration of the air conditioner (1) can be prevented from becoming complicated, and at the same time, the device (1) can be downsized.
  また、本形態では、加熱と冷却とを切り換えて行うことができるため、上記実施形態におけるバッチ切換型の空気調和装置(1)に対して好適である。 Further, this embodiment is suitable for the batch-switching type air conditioner (1) in the above embodiment because heating and cooling can be switched.
  尚、各回転軸(39,39)には、それぞれにモータを取り付けて2つのカム(46,47)の位相が180°になるように制御してもよいし、1つのモータからギヤなどを介して連動するようにしてもよい。 A motor may be attached to each rotary shaft (39, 39), and the two cams (46, 47) may be controlled to have a phase of 180 °. May be linked to each other.
  また、カムの形状は、図25に示すように、小径部(49)と外周部(48)との割合を異ならせたり、図26に示すように、単に回転軸(39)を偏心させて構成するようにしてもよいし、図27に示すように、外周部(48)の曲率を異ならせ、且つ回転軸(39)を偏心させるようにしてもよい。 Further, the shape of the cam is such that the ratio of the small diameter portion (49) and the outer peripheral portion (48) is different as shown in FIG. 25, or the rotational shaft (39) is simply eccentric as shown in FIG. Alternatively, as shown in FIG. 27, the curvature of the outer peripheral portion (48) may be varied and the rotation shaft (39) may be eccentric.
  -実施形態5の変形例-
  (変形例1)
  次に、実施形態5の変形例1について説明する。本変形例1は、上記実施形態1とは、アクチュエータ(22)の構成が異なっている。尚、切換制御部(35)の図示は省略している。
-Modification of Embodiment 5-
(Modification 1)
Next, Modification 1 of Embodiment 5 will be described. The first modification is different from the first embodiment in the configuration of the actuator (22). The switching control unit (35) is not shown.
  具体的には、図28に示すように、本変形例1に係る第1および第2カム(46,47)は、第1および第2可動板(41a,41b)の長手方向に向かって延び、同軸上に配置されている。そして、第1および第2カム(46,47)には、一の回転軸(39)が挿通されている。第1および第2カム(46,47)は、互いに180°位相をずらして回転軸(39)に取り付けられている。切換制御部(35)によって、回転軸(39)が回転することで、第1および第2カム(46,47)が共に回転するように構成されている。その他の構成、作用・効果は実施形態5と同様である。 Specifically, as shown in FIG. 28, the first and second cams (46, 47) according to Modification 1 extend in the longitudinal direction of the first and second movable plates (41a, 41b). Are arranged on the same axis. A first rotating shaft (39) is inserted through the first and second cams (46, 47). The first and second cams (46, 47) are attached to the rotating shaft (39) with a phase difference of 180 ° from each other. The first and second cams (46, 47) are configured to rotate together when the rotation shaft (39) is rotated by the switching control unit (35). Other configurations, operations, and effects are the same as those of the fifth embodiment.
  (変形例2)
  次に、実施形態5の変形例1について説明する。本変形例2は、上記実施形態1とは、アクチュエータ(22)の構成が異なっている。尚、切換制御部(35)の図示は省略している。
(Modification 2)
Next, Modification 1 of Embodiment 5 will be described. The second modification is different from the first embodiment in the configuration of the actuator (22). The switching control unit (35) is not shown.
  具体的には、図29に示すように、本変形例2に係るアクチュエータ(22)は、上記実施形態5に係るアクチュエータ(22)のように、重量を有する第1および第2可動板(41b)を備えておらず、代わりに第1および第2可動ハウジング(50a,50b)を有している。この第1可動ハウジング(50a)は、第1冷却加熱モジュール(20a)(第1冷却加熱部)に対応して設けられ、第2可動ハウジング(50b)は、第2冷却加熱モジュール(20b)(第2冷却加熱部)に対応して設けられている。 Specifically, as shown in FIG. 29, the actuator (22) according to the second modification example is similar to the actuator (22) according to the fifth embodiment described above, and has the first and second movable plates (41b) having a weight. ) And has first and second movable housings (50a, 50b) instead. The first movable housing (50a) is provided corresponding to the first cooling / heating module (20a) (first cooling / heating unit), and the second movable housing (50b) is provided with the second cooling / heating module (20b) ( Corresponding to the second cooling and heating unit).
  第1および第2可動ハウジング(50a,50b)は、それぞれ側面が開口した直方体状の箱体に形成され、上面壁が左右に突出して形成されている。第1および第2可動ハウジング(50a,50b)の上面壁には、熱歪材料(21)の他端が取り付けられている。第1可動ハウジング(50a)の内部には、第1カム(46)と回転軸(39)とが配置され、第2可動ハウジング(50b)の内部には、第2カム(47)と回転軸(39)とが配置されている。第1および第2カム(46,47)は、切換制御部(35)によって、左右で180°位相がずれるようになっている。すなわち、図29に示すように、第1可動ハウジング(50a)の内面下部に第1カム(46)の小径部(49)が接触すると、第2可動ハウジング(50b)の内面下部に第2カム(47)の外周部(48)が接触するように構成されている。こうすることで、第2可動ハウジング(50b)が、第2カム(47)の外周部(48)によって下方に引っ張られ、第2冷却加熱モジュール(20b)の熱歪材料(21)が下方に引っ張られる。 The first and second movable housings (50a, 50b) are each formed in a rectangular parallelepiped box whose side surfaces are open, and the upper wall protrudes left and right. The other end of the thermostrain material (21) is attached to the top wall of the first and second movable housings (50a, 50b). A first cam (46) and a rotation shaft (39) are arranged inside the first movable housing (50a), and a second cam (47) and a rotation shaft are arranged inside the second movable housing (50b). (39) and are arranged. The first and second cams (46, 47) are 180 ° out of phase with each other by the switching control unit (35). That is, as shown in FIG. 29, when the small-diameter portion (49) of the first cam (46) contacts the lower portion of the inner surface of the first movable housing (50a), the second cam is formed on the lower portion of the inner surface of the second movable housing (50b). It is comprised so that the outer peripheral part (48) of (47) may contact. By doing so, the second movable housing (50b) is pulled downward by the outer peripheral portion (48) of the second cam (47), and the thermal strain material (21) of the second cooling heating module (20b) is lowered downward. Be pulled.
  そして、各回転軸(39,39)が回転すると、位相が180°ずれ、第2可動ハウジング(50b)の内面下部に第2カム(47)の小径部(49)が接触し、第1可動ハウジング(50a)の内面下部に第1カム(46)の外周部(48)が接触する。こうすることで、第1可動ハウジング(50a)が、第1カム(46)の外周部(48)によって下方に引っ張られ、第1冷却加熱モジュール(20a)の熱歪材料(21)が下方に引っ張られる。 When each rotation shaft (39, 39) rotates, the phase shifts by 180 °, and the small diameter portion (49) of the second cam (47) comes into contact with the lower part of the inner surface of the second movable housing (50b). The outer peripheral portion (48) of the first cam (46) contacts the lower part of the inner surface of the housing (50a). By doing so, the first movable housing (50a) is pulled downward by the outer peripheral portion (48) of the first cam (46), and the heat strain material (21) of the first cooling heating module (20a) is lowered downward. Be pulled.
  (変形例3)
  次に、実施形態5の変形例3について説明する。本変形例3は、上記変形例1とは、アクチュエータ(22)の構成が異なっている。尚、切換制御部(35)の図示は省略している。
(Modification 3)
Next, Modification 3 of Embodiment 5 will be described. The third modification differs from the first modification in the configuration of the actuator (22). The switching control unit (35) is not shown.
  具体的には、図30に示すように、本変形例3に係る第1および第2カム(46,47)は、第1および第2可動ハウジング(50a,50b)の長手方向に向かって延び、同軸上に配置されている。そして、第1および第2カム(46,47)には、一の回転軸(39)が挿通されている。第1および第2カム(46,47)は、切換制御部(35)によって、互いに180°位相をずらして回転軸(39)に取り付けられている。この回転軸(39)が回転することで、第1および第2カム(46,47)が共に回転するように構成されている。 Specifically, as shown in FIG. 30, the first and second cams (46, 47) according to Modification 3 extend in the longitudinal direction of the first and second movable housings (50a, 50b). Are arranged on the same axis. A first rotating shaft (39) is inserted through the first and second cams (46, 47). The first and second cams (46, 47) are attached to the rotating shaft (39) with a phase shift of 180 ° from each other by the switching control unit (35). By rotating the rotating shaft (39), the first and second cams (46, 47) are both rotated.
  この変形例3では、熱歪材料(21)の引張力が解除される際の反発力が、回転軸(39)の回転動力として回収される。具体的に、例えば図30に示すように、第2カム(47)の外周部(48)と第2可動ハウジング(50b)とが接触する状態(即ち、第2冷却加熱モジュール(20b)の熱歪材料(21)に引張力が付与された状態)から第2カム(47)の外周部(48)と第2可動ハウジング(50b)とが離間する状態(即ち、第2冷却加熱モジュール(20b)の熱歪材料(21)の引張力が解除された状態)に至ると、回転軸(39)を駆動するモータの通電が一時的に停止され、回転軸(39)が一時的にフリーな状態になる。すると、回転軸(39)は、第2冷却加熱モジュール(20b)の熱歪材料(21)の反発力によって回転駆動される。この結果、回転軸(39)の動力を低減でき、装置の省エネルギー化を図ることができる。同様にして、第1冷却加熱モジュール(20a)の熱歪材料(21)の引張力が解除される際にも、回転軸(39)を駆動するモータの通電が一時的に停止される。この結果、第1冷却加熱モジュール(20a)の熱歪材料(21)の反発力が回転軸(39)の動力として回収される。 In this modified example 3, the repulsive force when the tensile force of the thermostrictive material (21) is released is recovered as the rotational power of the rotating shaft (39). Specifically, as shown in FIG. 30, for example, the outer peripheral portion (48) of the second cam (47) is in contact with the second movable housing (50b) (that is, the heat of the second cooling and heating module (20b)). The state in which the outer peripheral portion (48) of the second cam (47) and the second movable housing (50b) are separated from the strain material (21) in a tensile force (ie, the second cooling and heating module (20b)). ) In the state in which the tensile force of the thermostrictive material (21) is released), energization of the motor that drives the rotating shaft (39) is temporarily stopped, and the rotating shaft (39) is temporarily free. It becomes a state. Then, the rotating shaft (39) is rotationally driven by the repulsive force of the thermostrictive material (21) of the second cooling / heating module (20b). As a result, the power of the rotating shaft (39) can be reduced, and energy saving of the apparatus can be achieved. Similarly, when the tensile force of the thermostrictive material (21) of the first cooling / heating module (20a) is released, the energization of the motor that drives the rotating shaft (39) is temporarily stopped. As a result, the repulsive force of the thermostrictive material (21) of the first cooling / heating module (20a) is recovered as the power of the rotating shaft (39).
  (変形例4)
  次に、実施形態5の変形例4について説明する。本変形例4は、上記変形例3とは、アクチュエータ(22)の構成が異なっている。尚、切換制御部(35)の図示は省略している。
(Modification 4)
Next, Modification 4 of Embodiment 5 will be described. The fourth modification differs from the third modification in the configuration of the actuator (22). The switching control unit (35) is not shown.
  具体的には、図31に示すように、本変形例4に係る冷却加熱モジュール(20)は、熱歪材料(21)と、固定部である第1および第2固定板(40a,40b)と、可動ハウジング(50)と、変位機構であるカム(46)と、回転軸(39)とを備えている。 Specifically, as shown in FIG. 31, the cooling and heating module (20) according to the fourth modification includes a heat strain material (21) and first and second fixing plates (40a, 40b) that are fixing portions. And a movable housing (50), a cam (46) as a displacement mechanism, and a rotating shaft (39).
  上記第1および第2固定板(40a,40b)は、それぞれが略長方形状の薄板に形成されている。第1固定板(40a)は、第1冷却加熱モジュール(20a)に対応して右端寄りに縦配置され、第2固定板(40b)は、第2冷却加熱モジュール(20b)に対応して左端寄りに縦配置されている。第1固定板(40a)の左端面には、第1冷却加熱モジュール(20a)の熱歪材料(21)の一端が接続され、第2固定板(40b)の右端面には、第2冷却加熱モジュール(20b)の熱歪材料(21)の一端が接続されている。 The first and second fixing plates (40a, 40b) are each formed into a substantially rectangular thin plate. The first fixed plate (40a) is vertically arranged near the right end corresponding to the first cooling / heating module (20a), and the second fixed plate (40b) is positioned at the left end corresponding to the second cooling / heating module (20b). It is arranged vertically. One end of the heat strain material (21) of the first cooling and heating module (20a) is connected to the left end surface of the first fixed plate (40a), and the second cooling plate is connected to the right end surface of the second fixed plate (40b). One end of the heat strain material (21) of the heating module (20b) is connected.
  上記可動ハウジング(50)は、第1および第2固定板(40a,40b)の間に設けられるものである。可動ハウジング(50)は、第1および第2可動板(41a,41b)と、2枚の連結板(59,59)とを備えている。 The movable housing (50) is provided between the first and second fixed plates (40a, 40b). The movable housing (50) includes first and second movable plates (41a, 41b) and two connecting plates (59, 59).
  第1および第2可動板(41a,41b)は、それぞれが略矩形状の薄板に形成されている。第1可動板(41a)は、第1固定板(40a)と対向するように縦配置され、第2可動板(41b)は、第2固定板(40b)と対向するように縦配置されている。第1可動板(41a)は、第1冷却加熱モジュール(20a)の熱歪材料(21)の他端に取り付けられ、第2可動板(41b)は、第2冷却加熱モジュール(20b)の熱歪材料(21)の他端にそれぞれ取り付けられている。そして、第1固定板(40a)と第1可動板(41a)との間は、第1空気通路(42a)に形成され、第2固定板(40b)と第2可動板(41b)との間は、第2空気通路(42b)に形成されている。 The first and second movable plates (41a, 41b) are each formed in a substantially rectangular thin plate. The first movable plate (41a) is vertically arranged to face the first fixed plate (40a), and the second movable plate (41b) is vertically arranged to face the second fixed plate (40b). Yes. The first movable plate (41a) is attached to the other end of the thermostrictive material (21) of the first cooling / heating module (20a), and the second movable plate (41b) is the heat of the second cooling / heating module (20b). Each is attached to the other end of the strained material (21). A space between the first fixed plate (40a) and the first movable plate (41a) is formed in the first air passage (42a), and the second fixed plate (40b) and the second movable plate (41b) A space is formed in the second air passage (42b).
  上記各連結板(59,59)は、略矩形の薄板状に形成され、第1および第2可動板(41a,41b)の間に、高さ方向に所定の間隔を有して配置されている。つまり、第1および第2可動板(41a,41b)、および連結板(59,59)は、一体として移動するように構成されている。 Each of the connecting plates (59, 59) is formed in a substantially rectangular thin plate shape, and is disposed between the first and second movable plates (41a, 41b) with a predetermined interval in the height direction. Yes. That is, the first and second movable plates (41a, 41b) and the connecting plates (59, 59) are configured to move as a unit.
  上記可動ハウジング(50)の内部には、カム(46)と回転軸(39)とが配置されている。上記カム(46)は、第1および第2可動板(41a,41b)の幅方向(図31の奥行き方向)に延びる略円筒形状に形成された部材である。カム(46)には、円形の外周部(48)と、該外周部(48)の半円部分が切り欠かれて形成される小径部(49)とが形成されている。また、回転軸(39)は、カム(46)の中心に挿通され、該カム(46)をその周方向に回転可能となるように取り付けられている。すなわち、カム(46)が回転することで、第1可動板(41a)に対して、カム(46)の外周部(48)が接触した場合、第2可動板(41b)にカム(46)の小径部(49)が接触するように構成されている。こうすることで、可動ハウジング(50)が右方向に移動し、第2可動板(41b)が右方向に引っ張られ、第2冷却加熱モジュール(20b)の熱歪材料(21)が右方向に引っ張られる。 A cam (46) and a rotating shaft (39) are arranged inside the movable housing (50). The cam (46) is a member formed in a substantially cylindrical shape extending in the width direction (depth direction in FIG. 31) of the first and second movable plates (41a, 41b). The cam (46) is formed with a circular outer peripheral portion (48) and a small diameter portion (49) formed by cutting out a semicircular portion of the outer peripheral portion (48). The rotating shaft (39) is inserted through the center of the cam (46), and is attached so that the cam (46) can rotate in the circumferential direction. That is, when the outer peripheral portion (48) of the cam (46) comes into contact with the first movable plate (41a) by the rotation of the cam (46), the cam (46) contacts the second movable plate (41b). The small diameter portion (49) is configured to come into contact. By doing so, the movable housing (50) moves to the right, the second movable plate (41b) is pulled to the right, and the thermal strain material (21) of the second cooling and heating module (20b) is moved to the right. Be pulled.
  逆に、カム(46)が回転することで、第2可動板(41b)に対して、カム(46)の外周部(48)が接触した場合、第1可動板(41a)にカム(46)の小径部(49)が接触するように構成されている。こうすることで、可動ハウジング(50)が左方向に移動し、第1可動板(41a)が左方向に引っ張られ、第1冷却加熱モジュール(20a)の熱歪材料(21)が左方向に引っ張られる。 Conversely, when the cam (46) rotates and the outer peripheral portion (48) of the cam (46) comes into contact with the second movable plate (41b), the cam (46 ) Of the small diameter portion (49). By doing so, the movable housing (50) moves to the left, the first movable plate (41a) is pulled to the left, and the thermostrictive material (21) of the first cooling / heating module (20a) moves to the left. Be pulled.
  この変形例4においても、熱歪材料(21)の引張力が解除される際の反発力が、回転軸(39)の回転動力として回収される。具体的に、例えば図31に示すように、カム(46)の外周部(48)と第1可動板(41a)とが接触する状態(即ち、第2冷却加熱モジュール(20b)の熱歪材料(21)に引張力が付与された状態)からカム(46)の外周部(48)と第1可動板(41a)とが離間する状態(即ち、第2冷却加熱モジュール(20b)の熱歪材料(21)の引張力が解除された状態)に至ると、回転軸(39)を駆動するモータの通電が一時的に停止され、回転軸(39)が一時的にフリーな状態になる。すると、回転軸(39)は、第2冷却加熱モジュール(20b)の熱歪材料(21)の反発力によって回転駆動される。この結果、回転軸(39)の動力を低減でき、装置の省エネルギー化を図ることができる。同様にして、第1冷却加熱モジュール(20a)の熱歪材料(21)の引張力が解除される際にも、回転軸(39)を駆動するモータの通電が一時的に停止される。この結果、第1冷却加熱モジュール(20a)の熱歪材料(21)の反発力が回転軸(39)の動力として回収される。 Also in this modified example 4, the repulsive force when the tensile force of the thermostrictive material (21) is released is recovered as the rotational power of the rotating shaft (39). Specifically, for example, as shown in FIG. 31, the outer peripheral portion (48) of the cam (46) and the first movable plate (41a) are in contact (that is, the thermostrictive material of the second cooling heating module (20b)). The state in which the outer peripheral portion (48) of the cam (46) is separated from the first movable plate (41a) from the state in which the tensile force is applied to (21) (ie, the thermal strain of the second cooling heating module (20b)). When the tensile force of the material (21) is released), the energization of the motor that drives the rotating shaft (39) is temporarily stopped, and the rotating shaft (39) is temporarily in a free state. Then, the rotating shaft (39) is rotationally driven by the repulsive force of the thermostrictive material (21) of the second cooling / heating module (20b). As a result, the power of the rotating shaft (39) can be reduced, and energy saving of the apparatus can be achieved. Similarly, when the tensile force of the thermostrictive material (21) of the first cooling / heating module (20a) is released, the energization of the motor that drives the rotating shaft (39) is temporarily stopped. As a result, the repulsive force of the thermostrictive material (21) of the first cooling / heating module (20a) is recovered as the power of the rotating shaft (39).
  (変形例5)
  次に、実施形態5の変形例5について説明する。本変形例5は、図32に示すように、上記実施形態1とは、アクチュエータ(22)の構成が異なっている。尚、切換制御部(35)の図示は省略している。
(Modification 5)
Next, Modification 5 of Embodiment 5 will be described. As shown in FIG. 32, the fifth modification is different from the first embodiment in the configuration of the actuator (22). The switching control unit (35) is not shown.
  具体的には、本変形例5に係るアクチュエータ(22)は、第1および第2アーム(51,52)と、回転軸(39)と、ステッピングモータ(図示なし)とを備えているものである。 Specifically, the actuator (22) according to the fifth modification includes first and second arms (51, 52), a rotating shaft (39), and a stepping motor (not shown). is there.
  上記回転軸(39)は、その軸方向が可動板(41a,41b)の幅方向(図32の奥行き方向)に延びる回転軸である。回転軸(39)は、仕切板(43)の下方に配置されている。回転軸(39)には、第1および第2アーム(51,52)が取り付けられている。この回転軸(39)は、ステッピングモータに接続され、該ステッピングモータによって周方向に自在に回転可能に構成されている。 The rotary shaft (39) is a rotary shaft whose axial direction extends in the width direction (depth direction in FIG. 32) of the movable plates (41a, 41b). The rotating shaft (39) is disposed below the partition plate (43). First and second arms (51, 52) are attached to the rotating shaft (39). The rotating shaft (39) is connected to a stepping motor and is configured to be freely rotatable in the circumferential direction by the stepping motor.
  上記第1および第2アーム(51,52)は、細長い板状部材に形成され、回転軸(39)に対して取り付けられている。第1アーム(51)の先端には、第1可動板(41a)に接触させる第1支持部(51a)が形成され、第2アーム(52)の先端には、第2可動板(41b)に接触させる第2支持部(52a)が形成されている。第1アーム(51)は、その基端が回転軸(39)に取り付けられ、その先端が第1可動板(41a)に向かって延びている。また、第2アーム(52)は、その基端が回転軸(39)に取り付けられ、その先端が第2可動板(41b)に向かって延びている。 The first and second arms (51, 52) are formed in an elongated plate-like member and are attached to the rotating shaft (39). A first support (51a) is formed at the tip of the first arm (51) to contact the first movable plate (41a), and a second movable plate (41b) is formed at the tip of the second arm (52). The 2nd support part (52a) made to contact is formed. The first arm (51) has a proximal end attached to the rotation shaft (39) and a distal end extending toward the first movable plate (41a). The second arm (52) has a proximal end attached to the rotation shaft (39) and a distal end extending toward the second movable plate (41b).
  そして、図32に示すように、回転軸(39)が反時計回りに回転した場合、回転に伴って第1アーム(51)の先端の第1支持部(51a)が上昇し、反対に第2アーム(52)の先端の第2支持部(52a)が下降する。このとき、第1アーム(51)の第1支持部(51a)が下方から第1可動板(41a)を押し上げることで、第1冷却加熱モジュール(20a)の熱歪材料(21)に第1可動板(41a)の重みが、かからなくなって引張力が解除され、反対に、第2冷却加熱モジュール(20b)の熱歪材料(21)へ第2可動板(41b)の重みがかかり、引張力が付与される。 Then, as shown in FIG. 32, when the rotation shaft (39) rotates counterclockwise, the first support portion (51a) at the tip of the first arm (51) rises with the rotation, and conversely, The second support portion (52a) at the tip of the two arms (52) is lowered. At this time, the first support portion (51a) of the first arm (51) pushes up the first movable plate (41a) from below, so that the first strain is applied to the heat strain material (21) of the first cooling and heating module (20a). The weight of the movable plate (41a) is no longer applied and the tensile force is released. Conversely, the weight of the second movable plate (41b) is applied to the heat strain material (21) of the second cooling heating module (20b), A tensile force is applied.
  逆に、図32に示すように、回転軸(39)が時計回りに回転した場合、第1アーム(51)の第1支持部(51a)が下降して第1可動板(41a)から離れることで、第1冷却加熱モジュール(20a)に第1可動板(41a)の重みがかかる。このため、第1冷却加熱モジュール(20a)の熱歪材料(21)へ引張力が付与される。 On the other hand, as shown in FIG. 32, when the rotation shaft (39) rotates clockwise, the first support portion (51a) of the first arm (51) descends and separates from the first movable plate (41a). Thus, the weight of the first movable plate (41a) is applied to the first cooling / heating module (20a). For this reason, a tensile force is applied to the thermostrictive material (21) of the first cooling / heating module (20a).
  尚、本変形例5では、ステッピングモータの1ステップあたりの回転角を調整することで、各可動板(41a,41b)の重量を調整するようにしてもよい。こうすることで、熱歪材料(21)へ付与される引張力を調整して発熱量を調整することができる。 In the fifth modification, the weight of each movable plate (41a, 41b) may be adjusted by adjusting the rotation angle per step of the stepping motor. By doing so, the amount of heat generated can be adjusted by adjusting the tensile force applied to the thermostrictive material (21).
  (変形例6)
  次に、実施形態5の変形例6について説明する。本変形例6は、上記変形例2および5とは、アクチュエータ(22)の構成が異なっている。
(Modification 6)
Next, Modification 6 of Embodiment 5 will be described. The sixth modification is different from the second and fifth modifications in the configuration of the actuator (22).
  具体的には、図33に示すように、本変形例6に係るアクチュエータ(22)は、第1および第2可動ハウジング(50a,50b)と、変位機構である第1および第2アーム(51,52)と回転軸(39)とを備えている。第1アーム(51)は、第1可動ハウジング(50a)に対して取り付けられ、第2アーム(52)は、第2可動ハウジング(50b)に対して取り付けられている。このため、第1アーム(51)の第1支持部(51a)の上昇に伴って第1可動ハウジング(50a)が上昇する一方、第2アーム(52)の第2支持部(52a)の下降に伴って第2可動ハウジング(50b)が下降するように構成されている。その他の構成、作用・効果は、上記変形例2と同様である。 Specifically, as shown in FIG. 33, the actuator (22) according to the sixth modification includes first and second movable housings (50a, 50b) and first and second arms (51) which are displacement mechanisms. , 52) and a rotating shaft (39). The first arm (51) is attached to the first movable housing (50a), and the second arm (52) is attached to the second movable housing (50b). For this reason, while the 1st movable housing (50a) raises with the raise of the 1st support part (51a) of the 1st arm (51), the 2nd support part (52a) of the 2nd arm (52) descends. Accordingly, the second movable housing (50b) is configured to descend. Other configurations, operations and effects are the same as those of the second modification.
  この変形例6では、一熱歪材料(21)の引張力が解除される際の反発力が、回転軸(39)の回転動力として回収される。具体的に、変形例6では、第1アーム(51)が下端に位置する状態や、第2アーム(52)が下端に位置する状態において、回転軸(39)を駆動するモータの通電が一時的に停止され、回転軸(39)がフリーな状態となる。例えば図33に示すように、第2冷却加熱モジュール(20b)の熱歪材料(21)に引張力が付与された状態から、回転軸(39)がフリーな状態になると、第2冷却加熱モジュール(20b)の熱歪材料(21)の引張力が解除され、この際の反発力によって回転軸(39)が回動される。同様にして、第1冷却加熱モジュール(20a)の熱歪材料(21)に引張力が付与された状態から、回転軸(39)がフリーな状態になると、第1冷却加熱モジュール(20a)の熱歪材料(21)の引張力が解除され、この際の反発力によって回転軸(39)が回動される。これにより、変形例6では、装置の省エネルギー化を図ることができる。 In this modified example 6, the repulsive force when the tensile force of the one-thermostrictive material (21) is released is recovered as the rotational power of the rotating shaft (39). Specifically, in Modification 6, in a state where the first arm (51) is located at the lower end and a state where the second arm (52) is located at the lower end, the motor that drives the rotating shaft (39) is temporarily energized. The rotation axis (39) becomes free. For example, as shown in FIG. 33, when the rotary shaft (39) is brought into a free state from a state in which a tensile force is applied to the thermostrictive material (21) of the second cooling / heating module (20b), the second cooling / heating module. The tensile force of the heat strain material (21) of (20b) is released, and the rotating shaft (39) is rotated by the repulsive force at this time. Similarly, when the rotating shaft (39) is in a free state from the state in which the tensile force is applied to the thermostrictive material (21) of the first cooling and heating module (20a), the first cooling and heating module (20a) The tensile force of the thermostrictive material (21) is released, and the rotating shaft (39) is rotated by the repulsive force at this time. Thereby, in the modification 6, the energy saving of an apparatus can be achieved.
  (変形例7)
  次に、実施形態5の変形例7について説明する。本変形例7は、上記実施形態5とは、アクチュエータ(22)と切換制御部(35)の構成が異なっている。
(Modification 7)
Next, Modification 7 of Embodiment 5 will be described. The seventh modification differs from the fifth embodiment in the configuration of the actuator (22) and the switching control unit (35).
  具体的には、図34に示すように、本変形例7に係るアクチュエータ(22)は、固定板(40)と、第1および第2可動板(56,57)と、第1および第2電磁石(53,54)とを備えている。 Specifically, as shown in FIG. 34, the actuator (22) according to the seventh modification includes a fixed plate (40), first and second movable plates (56, 57), and first and second plates. And an electromagnet (53, 54).
  上記固定板(40)は、第1冷却加熱モジュール(20a)の下方に配置されている。第1可動板(56)は、第1冷却加熱モジュール(20a)の上方に配置され、第2可動板(57)は、第2冷却加熱モジュール(20b)の上方側に配置されている。固定板(40)と第1可動板(56)とは、互いに対向して配置され、固定板(40)と第2可動板(57)とは互いに対向して配置されている。この第1および第2可動板(56,57)は、それぞれ磁石又は鉄などの磁性金属によって構成されている。第1電磁石(53)は、第1可動板(56)の近傍で、且つ対向するように配置され、第2電磁石(54)は、第2可動板(57)の近傍で、且つ対向するように配置されている。第1および第2電磁石(53,54)は、共に切換制御部(35)に接続され、切換制御部(35)によって通電が切換制御されている。 The fixing plate (40) is disposed below the first cooling / heating module (20a). The first movable plate (56) is disposed above the first cooling / heating module (20a), and the second movable plate (57) is disposed above the second cooling / heating module (20b). The fixed plate (40) and the first movable plate (56) are arranged to face each other, and the fixed plate (40) and the second movable plate (57) are arranged to face each other. The first and second movable plates (56, 57) are each made of a magnetic metal such as a magnet or iron. The first electromagnet (53) is disposed in the vicinity of the first movable plate (56) so as to face the second electromagnet (54), and the second electromagnet (54) is disposed in the vicinity of the second movable plate (57). Is arranged. The first and second electromagnets (53, 54) are both connected to the switching control unit (35), and energization is switched by the switching control unit (35).
  上記切換制御部(35)は、第1および第2電磁石(53,54)に対して付与する通電を制御するものである。すなわち、第1冷却加熱モジュール(20a)に対して引張力を付与する場合、第1電磁石(53)の極性を対向する第1可動板(56)の磁性と逆極性にすることで、第1冷却加熱モジュール(20a)の熱歪材料(21)に引張力を付与する。このとき、第2電磁石(54)への通電を停止することで、第2冷却加熱モジュール(20b)の熱歪材料(21)への引張力を解除する。 The switching control unit (35) controls energization applied to the first and second electromagnets (53, 54). That is, when a tensile force is applied to the first cooling and heating module (20a), the first electromagnet (53) has a polarity opposite to that of the opposing first movable plate (56). A tensile force is applied to the heat strain material (21) of the cooling and heating module (20a). At this time, by stopping energization of the second electromagnet (54), the tensile force to the heat strain material (21) of the second cooling heating module (20b) is released.
  一方、第2冷却加熱モジュール(20b)に対して引張力を付与する場合、第2電磁石(54)の極性を対向する第2可動板(57)の磁性と逆極性にすることで、第2冷却加熱モジュール(20b)の熱歪材料(21)に引張力を付与する。このとき、第1電磁石(53)への通電を停止することで、第1冷却加熱モジュール(20a)の熱歪材料(21)への引張力を解除する。 On the other hand, when a tensile force is applied to the second cooling and heating module (20b), the second electromagnet (54) has a polarity opposite to that of the opposing second movable plate (57), so that the second A tensile force is applied to the heat strain material (21) of the cooling and heating module (20b). At this time, by stopping energization to the first electromagnet (53), the tensile force to the heat strain material (21) of the first cooling heating module (20a) is released.
  (変形例8)
  次に、実施形態5の変形例8について説明する。本変形例8は、上記実施形態5の変形例7とは、アクチュエータ(22)の構成が異なっている。本変形例8では、上記変形例7と異なる部分についてのみ説明する。
(Modification 8)
Next, Modification 8 of Embodiment 5 will be described. The modification 8 differs from the modification 7 of the fifth embodiment in the configuration of the actuator (22). In the present modification 8, only the parts different from the modification 7 will be described.
  具体的には、図35に示すように、本変形例8に係るアクチュエータ(22)では、固定板(40)が冷却加熱モジュール(20)の上方に配置されている。第1および第2可動板(56,57)は、冷却加熱モジュール(20)の下方に固定板(40)と対向して配置され、これらの第1および第2可動板(56,57)と対向するように第1および第2電磁石(53,54)が配置されている。 Specifically, as shown in FIG. 35, in the actuator (22) according to the modification 8, the fixed plate (40) is disposed above the cooling and heating module (20). The first and second movable plates (56, 57) are disposed below the cooling and heating module (20) so as to face the fixed plate (40), and the first and second movable plates (56, 57) and The first and second electromagnets (53, 54) are arranged so as to face each other.
  上記第1および第2可動板(56,57)は、磁石又は鉄などの磁性金属によって構成されると共に、所定の重量を有している。 The first and second movable plates (56, 57) are made of a magnetic metal such as a magnet or iron and have a predetermined weight.
  第1冷却加熱モジュール(20a)に対して引張力を付与する場合、第1電磁石(53)への通電を停止することで、第1可動板(56)の重量によって第1冷却加熱モジュール(20a)の熱歪材料(21)に引張力を付与する。このとき、第2電磁石(54)の極性を対向する第2可動板(57)の磁性と同極として、第2冷却加熱モジュール(20b)の熱歪材料(21)への引張力を解除する。 When a tensile force is applied to the first cooling and heating module (20a), the first cooling and heating module (20a) is reduced by the weight of the first movable plate (56) by stopping energization of the first electromagnet (53). ) To give a tensile force to the heat strain material (21). At this time, the second electromagnet (54) has the same polarity as the magnetism of the opposing second movable plate (57), and the tensile force on the thermostrictive material (21) of the second cooling heating module (20b) is released. .
  一方、第2冷却加熱モジュール(20b)に対して引張力を付与する場合、第2電磁石(54)への通電を停止することで、第2可動板(57)の重量によって第2冷却加熱モジュール(20b)の熱歪材料(21)に引張力を付与する。このとき、第1電磁石(53)の極性を対向する第1可動板(56)の磁性と同極として、第1冷却加熱モジュール(20a)の熱歪材料(21)への引張力を解除する。 On the other hand, when a tensile force is applied to the second cooling / heating module (20b), the second cooling / heating module is reduced according to the weight of the second movable plate (57) by stopping energization of the second electromagnet (54). A tensile force is applied to the heat strain material (21) of (20b). At this time, the first electromagnet (53) has the same polarity as the magnetism of the opposing first movable plate (56), and the tensile force applied to the thermostrictive material (21) of the first cooling heating module (20a) is released. .
  尚、本変形例8では、第1および第2可動板(56,57)は、所定の重量を有するようにしていたが、第1および第2可動板(56,57)を、磁石又は鉄などの磁性金属によって構成され、且つ比較的軽量な部材で構成するようにしてもよい。 In the present modification 8, the first and second movable plates (56, 57) have a predetermined weight. However, the first and second movable plates (56, 57) are replaced with magnets or irons. It may be made of a magnetic metal such as and a relatively light member.
  この場合、第1冷却加熱モジュール(20a)に対して引張力を付与する際、第1電磁石(53)の磁性を第1可動板(56)の極性と逆極性にして第1冷却加熱モジュール(20a)の熱歪材料(21)に引張力を付与する。このとき、第2電磁石(54)への通電を停止することで、第2冷却加熱モジュール(20b)の熱歪材料(21)への引張力を解除する。 In this case, when a tensile force is applied to the first cooling / heating module (20a), the first cooling / heating module (53) has a polarity opposite to that of the first movable plate (56). Apply tensile force to the thermostrained material (21) of 20a). At this time, by stopping energization of the second electromagnet (54), the tensile force to the heat strain material (21) of the second cooling heating module (20b) is released.
  一方、第2冷却加熱モジュール(20b)に対して引張力を付与する際、第2電磁石(54)の磁性を第2可動板(57)の極性と逆極性にして第2冷却加熱モジュール(20b)の熱歪材料(21)に引張力を付与する。このとき、第1電磁石(53)への通電を停止することで、第1冷却加熱モジュール(20a)の熱歪材料(21)への引張力を解除する。 On the other hand, when a tensile force is applied to the second cooling and heating module (20b), the second electromagnet (54) is magnetized in the opposite polarity to the polarity of the second movable plate (57). ) To give a tensile force to the heat strain material (21). At this time, by stopping energization to the first electromagnet (53), the tensile force to the heat strain material (21) of the first cooling heating module (20a) is released.
  (変形例9)
  次に、実施形態5の変形例9について説明する。本変形例9は、上記実施形態5の変形例7とは、アクチュエータ(22)の構成が異なっている。本変形例8では、上記変形例7と異なる部分についてのみ説明する。
(Modification 9)
Next, Modification 9 of Embodiment 5 will be described. The modification 9 differs from the modification 7 of the fifth embodiment in the configuration of the actuator (22). In the present modification 8, only the parts different from the modification 7 will be described.
  具体的には、図36に示すように、本変形例4に係るアクチュエータ(22)は、熱歪材料(21)と、第1および第2可動板(56,57)と、第1および第2電磁石(53,54)と、仕切板(43)と、を備えている。 Specifically, as shown in FIG. 36, the actuator (22) according to the fourth modification includes a heat-strain material (21), first and second movable plates (56, 57), first and first Two electromagnets (53, 54) and a partition plate (43) are provided.
  上記第1および第2可動板(56,57)は、それぞれが略長方形状の薄板に形成されている。第1可動板(56)は、第1冷却加熱モジュール(20a)の右端寄りに縦配置され、第2可動板(57)は、第2冷却加熱モジュール(20b)の左端寄りに縦配置されている。第1可動板(56)の左端面には、第1冷却加熱モジュール(20a)の熱歪材料(21)の一端が接続され、第2可動板(57)の右端面には、第2冷却加熱モジュール(20b)の熱歪材料(21)の一端が接続されている。 The first and second movable plates (56, 57) are each formed in a substantially rectangular thin plate. The first movable plate (56) is arranged vertically near the right end of the first cooling / heating module (20a), and the second movable plate (57) is arranged vertically near the left end of the second cooling / heating module (20b). Yes. One end of the heat strain material (21) of the first cooling and heating module (20a) is connected to the left end surface of the first movable plate (56), and the second cooling plate is connected to the right end surface of the second movable plate (57). One end of the heat strain material (21) of the heating module (20b) is connected.
  上記仕切板(43)は、第1冷却加熱モジュール(20a)と第2冷却加熱モジュール(20b)との間に、第1および第2可動板(56,57)と対向するように配置されるものである。仕切板(43)には、第1冷却加熱モジュール(20a)および第2冷却加熱モジュール(20b)のそれぞれの熱歪材料(21)の他端が接続されている。 The partition plate (43) is disposed between the first cooling / heating module (20a) and the second cooling / heating module (20b) so as to face the first and second movable plates (56, 57). Is. The other end of each heat strain material (21) of the first cooling / heating module (20a) and the second cooling / heating module (20b) is connected to the partition plate (43).
  《発明の実施形態6》
  本発明の実施形態6について説明する。図37および図38に示す実施形態6は、冷却加熱モジュール(20)の具体的な構成に関するものである。本実施形態6に係る冷却加熱モジュール(20)では、ケーシング(60)内に熱歪材料(21)で形成された複数のフィン(70)を搬送させる駆動部材であるベルト搬送装置(65)を備え、空気通路(P)内で熱歪材料(21)への張力の付与と解除を切り換えるようにしたものである。
Embodiment 6 of the Invention
Embodiment 6 of the present invention will be described. Embodiment 6 shown in FIGS. 37 and 38 relates to a specific configuration of the cooling and heating module (20). In the cooling and heating module (20) according to the sixth embodiment, the belt conveyance device (65) which is a driving member for conveying the plurality of fins (70) formed of the thermostrictive material (21) in the casing (60) is provided. Provided, and switching between applying and releasing the tension to the thermostrictive material (21) in the air passage (P).
  上記ケーシング(60)は、長方形の箱体に形成され、内部に空気通路(P)が形成されている。ケーシング(60)の内部は、図37における手前から奥側に向かって空気が流れるように構成されている。ケーシング(60)の内部は、上下仕切板(61)によって上下に仕切られ、上側空気通路(62)と下側空気通路(63)が形成されている。そして、上下仕切板(61)には、ベルト搬送装置(65)を配置するための開口が形成されている。 The casing (60) is formed in a rectangular box, and an air passage (P) is formed inside. The inside of the casing (60) is configured such that air flows from the near side to the far side in FIG. The inside of the casing (60) is partitioned up and down by an upper and lower partition plate (61) to form an upper air passage (62) and a lower air passage (63). And the opening for arrange | positioning a belt conveying apparatus (65) is formed in the up-and-down partition plate (61).
  上記ベルト搬送装置(65)は、ガイドレール(69)と、ベルト(67)と、2つのホイール(66,66)とを備えている。 The belt conveying device (65) includes a guide rail (69), a belt (67), and two wheels (66, 66).
  上記ホイール(66,66)は、略円筒状に形成された回転体である。ホイール(66,66)は、ベルト(67)を搬送可能となるように構成されている。ホイール(66,66)は、ケーシング(60)内の左右に2つ並んで配置され、互いに反時計回りに回転するように構成されている。 The wheel (66, 66) is a rotating body formed in a substantially cylindrical shape. The wheels (66, 66) are configured to be able to transport the belt (67). Two wheels (66, 66) are arranged side by side in the casing (60), and are configured to rotate counterclockwise.
  上記ベルト(67)は、シート状の部材に形成され、外周ベルト(67a)と内周ベルト(67b)とで構成されている。 The belt (67) is formed in a sheet-like member, and includes an outer peripheral belt (67a) and an inner peripheral belt (67b).
  上記内周ベルト(67b)は、上記2つのホイール(66,66)に対して接触して取り付けられ、内側を移動するものである。つまり、一対のホイール(66,66)が反時計回りに回転することで、内周ベルト(67b)は、ケーシング(60)内の上側空気通路(62)内を通過する際は、左方向へ搬送され、下側空気通路(63)を通過する際は、右方向へ搬送される。内周ベルト(67b)は、幅方向の両端部に、熱歪材料(21)の形成部分よりも外側に突き出た突出部(68)が形成されている。この突出部(68)は、後述する内周レール(69b)との摺動する部分になる。 The inner peripheral belt (67b) is attached in contact with the two wheels (66, 66) and moves inside. That is, when the pair of wheels (66, 66) rotate counterclockwise, the inner peripheral belt (67b) moves leftward when passing through the upper air passage (62) in the casing (60). When it is transported and passes through the lower air passage (63), it is transported in the right direction. The inner peripheral belt (67b) is formed with protruding portions (68) protruding outward from the portion where the thermal strain material (21) is formed at both ends in the width direction. The projecting portion (68) is a portion that slides with an inner rail (69b) described later.
  上記外周ベルト(67a)は、熱歪材料(21)を介して内周ベルト(67b)に取り付けられ、外側を移動するものである。すなわち、外周ベルト(67a)と熱歪材料(21)と内周ベルト(67b)とは、一体となって搬送されるものである。外周ベルト(67a)は、幅方向の両端部に、熱歪材料(21)の形成部分よりも外側に突き出た突出部(68)が形成されている。この突出部(68)は、後述する外周レール(69a)との摺動する部分になる。 The outer peripheral belt (67a) is attached to the inner peripheral belt (67b) through the heat strain material (21) and moves outside. That is, the outer peripheral belt (67a), the thermal strain material (21), and the inner peripheral belt (67b) are conveyed together. The outer peripheral belt (67a) has protruding portions (68) protruding outward from the portion where the heat-strain material (21) is formed at both ends in the width direction. This protrusion part (68) becomes a part which slides with the outer periphery rail (69a) mentioned later.
  図38に示すように、上記ガイドレール(69)は、外周ベルト(67a)および内周ベルト(67b)をガイドするものである。ガイドレール(69)は、外周レール(69a)と内周レール(69b)とで構成されている。 As shown in FIG. 38, the guide rail (69) guides the outer peripheral belt (67a) and the inner peripheral belt (67b). The guide rail (69) includes an outer peripheral rail (69a) and an inner peripheral rail (69b).
  上記外周レール(69a)は、上記外周ベルト(67a)の幅方向の両端に設けられるレール部材である。外周レール(69a)は、外側に凹む凹部に外周ベルト(67a)の側端部を引っ掛けることで、該外周ベルト(67a)を案内するように構成されている。 The outer peripheral rail (69a) is a rail member provided at both ends in the width direction of the outer peripheral belt (67a). The outer peripheral rail (69a) is configured to guide the outer peripheral belt (67a) by hooking a side end portion of the outer peripheral belt (67a) to a concave portion recessed outward.
  上記内周レール(69b)は、上記内周ベルト(67b)の幅方向の両端に設けられるレール部材である。内周レール(69b)は、外側に凹む凹部に内周ベルト(67b)の側端部を引っ掛けることで、該内周ベルト(67b)を案内するように構成されている。 The inner peripheral rail (69b) is a rail member provided at both ends in the width direction of the inner peripheral belt (67b). The inner peripheral rail (69b) is configured to guide the inner peripheral belt (67b) by hooking a side end portion of the inner peripheral belt (67b) to a concave portion recessed outward.
  外周レール(69a)と内周レール(69b)との間の距離は、ケーシング(60)の上方と下方とで異なっている。具体的には、外周レール(69a)と内周レール(69b)との間の距離は、ケーシング(60)の上方(上側空気通路(62))では、拡がる一方、ケーシング(60)の下方(下側空気通路(63))では、狭くなっている。 The distance between the outer peripheral rail (69a) and the inner peripheral rail (69b) is different between above and below the casing (60). Specifically, the distance between the outer rail (69a) and the inner rail (69b) increases above the casing (60) (upper air passage (62)) while below the casing (60) ( The lower air passage (63)) is narrower.
  また、上記冷却加熱モジュール(20)は、熱歪材料(21)からなるフィン(70)を備えている。 The cooling and heating module (20) includes a fin (70) made of a heat strain material (21).
  各フィン(70)は、ケーシング(60)の幅方向(図37の奥行き方向)に延びる板状に形成されている。各フィン(70)は、一端が外周ベルト(67a)に取り付けられ、他端が内周ベルト(67b)に取り付けられている。 Each fin (70) is formed in a plate shape extending in the width direction (depth direction in FIG. 37) of the casing (60). Each fin (70) has one end attached to the outer peripheral belt (67a) and the other end attached to the inner peripheral belt (67b).
  ホイール(66,66)を同時に回転させると、外周ベルト(67a)、内周ベルト(67b)およびフィン(70)が搬送される。そして、ケーシング(60)の上側空気通路(62)を搬送される際、外周ベルト(67a)と内周ベルト(67b)との間の距離が拡がることで、フィン(70)を構成する熱歪材料(21)が上方向に引っ張られる。 When the wheels (66, 66) are simultaneously rotated, the outer peripheral belt (67a), the inner peripheral belt (67b) and the fin (70) are conveyed. When the upper air passage (62) of the casing (60) is conveyed, the distance between the outer peripheral belt (67a) and the inner peripheral belt (67b) increases, so that the thermal strain constituting the fin (70) is increased. The material (21) is pulled upward.
  一方、ケーシング(60)の下側空気通路(63)を搬送される際、外周ベルト(67a)と内周ベルト(67b)との距離が縮まることで、フィン(70)を構成する熱歪材料(21)への引張力が解除される。つまり、ケーシング(60)内において、上側空気通路(62)は、空気を加熱する領域に形成され、下側空気通路(63)は、空気を冷却する領域に形成されている。したがって、加熱と冷却とを連続して行うことができるため、上記実施形態におけるロータ型の空気調和装置(1)に対して好適である。 On the other hand, when being conveyed through the lower air passage (63) of the casing (60), the distance between the outer peripheral belt (67a) and the inner peripheral belt (67b) is reduced, so that the heat strain material constituting the fin (70) The tensile force to (21) is released. That is, in the casing (60), the upper air passage (62) is formed in a region for heating air, and the lower air passage (63) is formed in a region for cooling air. Therefore, since heating and cooling can be performed continuously, it is suitable for the rotor-type air conditioner (1) in the above embodiment.
  -実施形態6の変形例-
  (変形例1)
  次に、実施形態6の変形例1について説明する。本変形例1は、図39に示すように、上記実施形態6とは、ベルト搬送装置(65)の構成が異なっている。
-Modification of Embodiment 6-
(Modification 1)
Next, Modification 1 of Embodiment 6 will be described. As shown in FIG. 39, the first modification differs from the sixth embodiment in the configuration of the belt conveyance device (65).
  具体的には、本変形例1に係るベルト搬送装置(65)は、外周レール(69a)と、内周レール(69b)との間の距離を、ケーシング(60)の左右で異なるように構成したものである。その他の構成、作用・効果は実施形態6と同様である。 Specifically, the belt conveyance device (65) according to the first modification is configured such that the distance between the outer peripheral rail (69a) and the inner peripheral rail (69b) is different between the left and right sides of the casing (60). It is a thing. Other configurations, operations, and effects are the same as those of the sixth embodiment.
  (変形例2)
  次に、実施形態6の変形例2について説明する。本変形例2は、図40に示すように、上記実施形態6とは、駆動部材の構成が異なっている。
(Modification 2)
Next, Modification 2 of Embodiment 6 will be described. As shown in FIG. 40, the second modification differs from the sixth embodiment in the configuration of the drive member.
  具体的に、本変形例2では、ベルト搬送装置(65)の代わりに、ロータ装置(71)を設けたものである。上記ロータ装置(71)は、外周体(73)と、偏心軸(72)とを備えている。 Specifically, in the second modification, a rotor device (71) is provided instead of the belt conveying device (65). The rotor device (71) includes an outer peripheral body (73) and an eccentric shaft (72).
  上記偏心軸(72)は、その軸方向が、ケーシング(60)の奥行き方向に亘って延びる回転軸である。偏心軸(72)は、後述する外周体(73)の内部であって、ケーシング(60)内の上下仕切板(61)とほぼ同じ高さ位置に配置されている。偏心軸(72)の外周には、周方向に多数のフィン(70)が取り付けられ、放射状に延びている。また、偏心軸(72)は、図示しないモータに接続され、該モータによって回転可能に構成されている。 The eccentric shaft (72) is a rotating shaft whose axial direction extends over the depth direction of the casing (60). The eccentric shaft (72) is disposed inside the outer peripheral body (73) to be described later and at substantially the same height as the upper and lower partition plates (61) in the casing (60). A large number of fins (70) are attached to the outer periphery of the eccentric shaft (72) in the circumferential direction and extend radially. The eccentric shaft (72) is connected to a motor (not shown) and is configured to be rotatable by the motor.
  上記外周体(73)は、ロータ装置(71)の外周部分を形成する部材である。外周体(73)は、略円筒形状に形成され、ケーシング(60)内において回転可能に配置されている。このとき、外周体(73)は、図示しないガイドレールに沿って定位置で回転するように構成されている。外周体(73)の内周面には、フィン(70)の外周端が取り付けられている。 The outer peripheral body (73) is a member that forms the outer peripheral portion of the rotor device (71). The outer peripheral body (73) is formed in a substantially cylindrical shape and is rotatably arranged in the casing (60). At this time, the outer peripheral body (73) is configured to rotate at a fixed position along a guide rail (not shown). The outer peripheral end of the fin (70) is attached to the inner peripheral surface of the outer peripheral body (73).
  偏心軸(72)が回転すると、フィン(70)および外周体(73)が一体に回転する。外周体(73)に対して偏心軸(72)が偏心しているため、ケーシング(60)の上側空気通路(62)を通過する際に、熱歪材料(21)が引っ張られる一方、下側空気通路(63)を通過する際に、熱歪材料(21)への引張力が解除される。つまり、ケーシング(60)の上側空気通路(62)は、空気を加熱する領域に形成され、ケーシング(60)の下側空気通路(63)は、空気を冷却する領域に形成されている。その他の構成、作用・効果は実施形態6と同様である。 ¡When the eccentric shaft (72) rotates, the fin (70) and the outer peripheral body (73) rotate integrally. Since the eccentric shaft (72) is eccentric with respect to the outer peripheral body (73), the thermal strain material (21) is pulled while passing through the upper air passage (62) of the casing (60), while the lower air When passing through the passage (63), the tensile force on the heat strain material (21) is released. That is, the upper air passage (62) of the casing (60) is formed in a region where air is heated, and the lower air passage (63) of the casing (60) is formed in a region where air is cooled. Other configurations, operations, and effects are the same as those of the sixth embodiment.
  (変形例3)
  次に、実施形態6の変形例3について説明する。本変形例3は、図41に示すように、上記変形例3とは、ロータ装置(71)の構成が異なっている。
(Modification 3)
Next, Modification 3 of Embodiment 6 will be described. As shown in FIG. 41, the third modification differs from the third modification in the configuration of the rotor device (71).
  具体的に、本変形例3に係るロータ装置(71)では、フィン(70)をハニカム構造に構成したものである。その他の構成、作用・効果は上記変形例2と同様である。 Specifically, in the rotor device (71) according to the third modification, the fin (70) is configured in a honeycomb structure. Other configurations, operations and effects are the same as those of the second modification.
  (変形例4)
  次に、実施形態6の変形例4について説明する。本変形例4は、図42~図44に示すように、上記実施形態6とは、駆動部材の構成が異なっている。
(Modification 4)
Next, Modification 4 of Embodiment 6 will be described. As shown in FIGS. 42 to 44, the fourth modification differs from the sixth embodiment in the configuration of the drive member.
  具体的に、本変形例4では、ベルト搬送装置(65)の代わりに、回転装置(99)を設けたものである。 Specifically, in the fourth modification, a rotating device (99) is provided instead of the belt conveying device (65).
  本変形例4に係るケーシング(80)は、仕切板(81)によって内部が左右に仕切られ、右側が第1空気通路(82)に形成され、左側が第2空気通路(83)に形成されている。そして、ケーシング(60)内に、回転装置(99)が設けられている。 The casing (80) according to the fourth modification is internally partitioned left and right by a partition plate (81), the right side is formed in the first air passage (82), and the left side is formed in the second air passage (83). ing. A rotating device (99) is provided in the casing (60).
  上記回転装置(99)は、回転軸(84)と、該回転軸(84)に取り付けられる第1回転板(85)と、回転軸(84)の一端に取り付けられる連結部(88)と、該連結部(88)を介して回転軸(84)に取り付けられる傾斜軸(86)と、傾斜軸(86)に取り付けられる第2回転板(87)とを備えている。そして、第1回転板(85)と第2回転板(87)との間に、熱歪材料(21)からなるワイヤ状のフィン(70)が取り付けられている。また、仕切板(81)には、フィン(70)の通過位置にスリットが形成されている。本変形例4では、回転装置(99)の側方(すなわち、図43における第1回転板(85)と第2回転板(87)との間の奥行き方向)に空気が流れるように構成されている。 The rotating device (99) includes a rotating shaft (84), a first rotating plate (85) attached to the rotating shaft (84), a connecting portion (88) attached to one end of the rotating shaft (84), An inclined shaft (86) attached to the rotating shaft (84) via the connecting portion (88) and a second rotating plate (87) attached to the inclined shaft (86) are provided. And the wire-shaped fin (70) which consists of a thermostrain material (21) is attached between the 1st rotation board (85) and the 2nd rotation board (87). In addition, a slit is formed in the partition plate (81) at a position where the fin (70) passes. The fourth modification is configured such that air flows to the side of the rotating device (99) (that is, the depth direction between the first rotating plate (85) and the second rotating plate (87) in FIG. 43). ing.
  上記傾斜軸(86)は、回転軸(84)に対して所定の角度だけ傾斜して取り付けられている。そして、回転軸(84)は、図示しないモータに接続されて回転可能に構成されている。このため、回転軸(84)が回転すると、該回転軸(84)と共に傾斜軸(86)も回転する。したがって、第1回転板(85)と第2回転板(87)との傾斜分だけ両者の距離が離れることとなる。このため、フィン(70)が第1空気通路(82)を通過する際には、第1回転板(85)と第2回転板(87)との距離が離れるため、フィン(70)を形成する熱歪材料(21)に引張力が付与される。一方、フィン(70)が第2空気通路(83)を通過する際には、第1回転板(85)と第2回転板(87)との距離が近づくため、フィン(70)を形成する熱歪材料(21)の引張力が解除される。 The tilt axis (86) is attached with a predetermined angle with respect to the rotation axis (84). The rotating shaft (84) is connected to a motor (not shown) so as to be rotatable. For this reason, when the rotating shaft (84) rotates, the inclined shaft (86) also rotates together with the rotating shaft (84). Accordingly, the distance between the first rotating plate (85) and the second rotating plate (87) is increased by the amount of inclination. Therefore, when the fin (70) passes through the first air passage (82), the distance between the first rotating plate (85) and the second rotating plate (87) is increased, so that the fin (70) is formed. A tensile force is applied to the heat-strained material (21). On the other hand, when the fin (70) passes through the second air passage (83), the distance between the first rotating plate (85) and the second rotating plate (87) approaches, so the fin (70) is formed. The tensile force of the heat strain material (21) is released.
  (変形例5)
  次に、実施形態6の変形例5について説明する。本変形例5は、図45~図47に示すように、上記変形例4とは、回転装置(99)の構成が異なっている。
(Modification 5)
Next, Modification 5 of Embodiment 6 will be described. As shown in FIGS. 45 to 47, the fifth modification is different from the fourth modification in the configuration of the rotating device (99).
  具体的に、本変形例5に係る回転装置(99)は、第1回転板(85)と第2回転板(87)に厚み方向に貫通する孔(89)が形成されている。そして、第1回転板(85)と第2回転板(87)との間において、回転軸(84)および傾斜軸(86)から放射状に延びると共に、シート状の熱歪材料(21)からなるフィン(70)が形成されている。 Specifically, in the rotating device (99) according to the fifth modification, a hole (89) penetrating in the thickness direction is formed in the first rotating plate (85) and the second rotating plate (87). And between the 1st rotating plate (85) and the 2nd rotating plate (87), while extending radially from a rotating shaft (84) and an inclination shaft (86), it consists of a sheet-like thermostrain material (21). Fins (70) are formed.
  すなわち、本変形例5では、回転装置(99)の上下方向(すなわち、図46における第1回転板(85)と第2回転板(87)との間の上下方向)に空気が流れるように構成されている。 That is, in the fifth modification, air flows in the vertical direction of the rotating device (99) (that is, the vertical direction between the first rotating plate (85) and the second rotating plate (87) in FIG. 46). It is configured.
  尚、本変形例5では、仕切板(81)と、同位置にフィン(70)を配置することで、ケーシング(60)内を左右に仕切っている。 In addition, in this modification 5, the inside of the casing (60) is divided into right and left by arranging the fin (70) at the same position as the partition plate (81).
  《発明の実施形態7》
  本発明の実施形態7について説明する。尚、切換制御部(35)の図示は省略している。図48および図49に示す実施形態7は、冷却加熱モジュール(20)の具体的な構成に関するものである。本実施形態7に係る冷却加熱モジュール(20)では、ワイヤ状に形成された熱歪材料(21)の基端に設けられる回転軸(105)と、該熱歪材料(21)の先端に設けられる第1錘部(107a)および第2錘部(107b)とを備え、回転軸(105)を回転させることで空気通路(P)内で上記熱歪材料(21)への張力の付与と解除を切り換えるように構成されている。冷却加熱モジュール(20)は、空気通路(P)が形成されるケーシング(100)内に設けられている。
<< Embodiment 7 of the Invention >>
Embodiment 7 of the present invention will be described. The switching control unit (35) is not shown. The seventh embodiment shown in FIGS. 48 and 49 relates to a specific configuration of the cooling and heating module (20). In the cooling and heating module (20) according to the seventh embodiment, the rotating shaft (105) provided at the base end of the thermostrain material (21) formed in a wire shape and the tip of the thermostrain material (21) are provided. Provided with a first weight portion (107a) and a second weight portion (107b), and by applying a tension to the heat strain material (21) in the air passage (P) by rotating the rotating shaft (105). It is configured to switch release. The cooling and heating module (20) is provided in a casing (100) in which an air passage (P) is formed.
  ケーシング(100)は、長方形状の箱体に形成され、上下仕切板(101)によって内部が上下に仕切られている。ケーシング(100)は、内部の上側が上側空気通路(103)に形成され、下側が下側空気通路(104)に形成されている。上側空気通路(103)の出口側には、ファン(30)が設けられる一方、下側空気通路(104)の出口側にもファン(30)が設けられてる。そして、上記上下仕切板(101)には、開口部(102)が形成され、ケーシング(100)内に冷却加熱モジュール(20)が設けられている。 The casing (100) is formed in a rectangular box, and the interior is partitioned vertically by the upper and lower partition plates (101). The casing (100) has an upper side formed in the upper air passage (103) and a lower side formed in the lower air passage (104). A fan (30) is provided on the outlet side of the upper air passage (103), while a fan (30) is also provided on the outlet side of the lower air passage (104). An opening (102) is formed in the upper and lower partition plates (101), and a cooling and heating module (20) is provided in the casing (100).
  上記ケーシング(100)の長手方向の一側面には、上部および下部にそれぞれ空気流入口(100a,100b)が形成され、他側面には、上部および下部にそれぞれ空気流入口(100a,100b)に対応する空気流出口が形成されている。そして、空気流入口(100a,100b)からケーシング(100)内に空気が取り込まれる一方、空気流出口からケーシング(100)外に空気が排出されるように構成されている。 An air inlet (100a, 100b) is formed on the upper and lower sides of one side surface of the casing (100) in the longitudinal direction, and an air inlet (100a, 100b) is formed on the upper and lower sides, respectively. A corresponding air outlet is formed. The air is taken into the casing (100) from the air inlets (100a, 100b), while the air is discharged from the air outlet to the outside of the casing (100).
  上記冷却加熱モジュール(20)は、ケーシング(100)の幅方向に延びる回転軸(105)と、該回転軸(105)に取り付けられるモータ軸(108)と、回転軸(105)から一方に向かって延びる第1熱歪材料(21a)と、第1錘部(107a)と、回転軸(105)から第1熱歪材料(21a)と反対方向に向かって延びる第2熱歪材料(21b)と、第2錘部(107b)と、回転軸(105)に対して取り付けられる閉鎖板(106)とを備えている。 The cooling and heating module (20) includes a rotating shaft (105) extending in the width direction of the casing (100), a motor shaft (108) attached to the rotating shaft (105), and one direction from the rotating shaft (105). A first thermal strain material (21a), a first weight portion (107a), and a second thermal strain material (21b) extending in the direction opposite to the first thermal strain material (21a) from the rotating shaft (105). And a second weight portion (107b) and a closing plate (106) attached to the rotating shaft (105).
  上記第1熱歪材料(21a)は、ワイヤ状に形成されている。第1熱歪材料(21a)は、その基端が回転軸(105)の外周に取り付けられる一方、その先端が回転軸(105)から上方に延びて形成されている。第1熱歪材料(21a)は、回転軸(105)の軸方向に沿って多数設けられている。各第1熱歪材料(21a)の先端には、第1錘部(107a)が取り付けられている。第1錘部(107a)は、細長の円柱状に形成され、回転軸(105)と略平行となるように配置されている。 The first heat strain material (21a) is formed in a wire shape. The first thermostrictive material (21a) has a base end attached to the outer periphery of the rotating shaft (105), and a tip extending from the rotating shaft (105). A large number of first thermostrictive materials (21a) are provided along the axial direction of the rotating shaft (105). A first weight portion (107a) is attached to the tip of each first thermostrictive material (21a). The first weight portion (107a) is formed in an elongated cylindrical shape and is disposed so as to be substantially parallel to the rotation axis (105).
  上記第2熱歪材料(21b)は、ワイヤ状に形成されている。第2熱歪材料(21b)は、その基端が回転軸(105)の外周に取り付けられる一方、その先端が回転軸(105)から下方に延びて形成されている。第2熱歪材料(21b)は、回転軸(105)の軸方向に沿って多数設けられている。各第2熱歪材料(21b)の先端には、第2錘部(107b)が取り付けられている。第2錘部(107b)は、細長の円柱状に形成され、回転軸(105)と略平行となるように配置されている。 The second heat strain material (21b) is formed in a wire shape. The second thermostrictive material (21b) has a base end attached to the outer periphery of the rotating shaft (105), and a distal end extending downward from the rotating shaft (105). A large number of second thermostrictive materials (21b) are provided along the axial direction of the rotating shaft (105). A second weight portion (107b) is attached to the tip of each second thermostrictive material (21b). The second weight portion (107b) is formed in an elongated cylindrical shape and is disposed so as to be substantially parallel to the rotation axis (105).
  つまり、回転軸(105)が図示しないモータによって回転すると、第1熱歪材料(21a)および第2熱歪材料(21b)は、180°ずつ移動するよう構成されている。そして、回転軸(105)が回転して、第1錘部(107a)が下方に位置した場合は、第1熱歪材料(21a)に引張力が付与される。また、回転軸(105)が回転して、第2錘部(107b)が下方に位置した場合は、第2熱歪材料(21b)に引張力が付与される。 That is, when the rotating shaft (105) is rotated by a motor (not shown), the first thermal strain material (21a) and the second thermal strain material (21b) are configured to move by 180 °. And when a rotating shaft (105) rotates and a 1st weight part (107a) is located below, tensile force is provided to a 1st thermostrictive material (21a). Further, when the rotation shaft (105) rotates and the second weight portion (107b) is positioned below, a tensile force is applied to the second thermostrictive material (21b).
  上記閉鎖板(106)は、回転軸(105)に対して水平に取り付けられている。閉鎖板(106)は、回転軸(105)の回転に伴って開口部(102)を常時閉鎖するように構成されている。 The closing plate (106) is attached horizontally to the rotating shaft (105). The closing plate (106) is configured to always close the opening (102) as the rotating shaft (105) rotates.
  -実施形態7の変形例-
  (変形例)
  次に、実施形態7の変形例について説明する。本変形例は、図50~図52に示すように、上記実施形態7とは、冷却加熱モジュール(20)の構成が異なっている。
-Modification of Embodiment 7-
(Modification)
Next, a modification of the seventh embodiment will be described. As shown in FIGS. 50 to 52, the present modification is different from the seventh embodiment in the configuration of the cooling and heating module (20).
  本変形例に係る冷却加熱モジュール(20)は、回転軸(105)と、回転軸(105)に取り付けられるモータ軸と、回転軸(105)から放射状に延びる多数の熱歪材料(21)と、各熱歪材料(21)の先端に取り付けられる錘部(107)とを備えている。 The cooling and heating module (20) according to the present modification includes a rotating shaft (105), a motor shaft attached to the rotating shaft (105), and a large number of thermostrictive materials (21) extending radially from the rotating shaft (105). And a weight portion (107) attached to the tip of each heat strain material (21).
  本変形例では、ケーシング(100)内の上側空気通路(103)と、下側空気通路(104)のそれぞれに冷却加熱モジュール(20)が設置されている。 In this modification, the cooling and heating module (20) is installed in each of the upper air passage (103) and the lower air passage (104) in the casing (100).
  熱歪材料(21)は、ワイヤ状に形成されている。熱歪材料(21)は、その基端が回転軸(105)の外周に取り付けられる一方、その先端が回転軸(105)の径方向外方に向かって延びて形成されている。熱歪材料(21)は、回転軸(105)の一周あたり、16本設けられ、回転軸(105)の軸方向に沿って連続して形成されている。 The heat strain material (21) is formed in a wire shape. The heat-strain material (21) has a base end attached to the outer periphery of the rotation shaft (105), and a tip that extends outward in the radial direction of the rotation shaft (105). Sixteen thermostrain materials (21) are provided per rotation of the rotation shaft (105), and are continuously formed along the axial direction of the rotation shaft (105).
  つまり、回転軸(105)の回転によって回転する熱歪材料(21)には、錘部(107)によって生じる遠心力が加わる。これによって、熱歪材料(21)に引張力が付与される。反対に回転軸(105)の回転を停止することで、熱歪材料(21)への引張力は解除される。 That is, the centrifugal force generated by the weight portion (107) is applied to the thermostrictive material (21) rotated by the rotation of the rotating shaft (105). As a result, a tensile force is applied to the thermostrictive material (21). On the other hand, by stopping the rotation of the rotating shaft (105), the tensile force applied to the heat strain material (21) is released.
 〈その他の実施形態〉
  本発明は、上記実施形態について、以下のような構成としてもよい。
<Other embodiments>
The present invention may be configured as follows with respect to the above embodiment.
  上記実施形態に係る冷却加熱モジュール(20)において、図53~図56に示すアクチュエータ(22)を用いて構成してもよい。 In the cooling and heating module (20) according to the above embodiment, the actuator (22) shown in FIGS. 53 to 56 may be used.
  図53に係るアクチュエータは、ヒータ(111)とバイメタル(110)により構成されている。図54に係るアクチュエータは、ピエゾ素子(112)により構成されている。図55に係るアクチュエータは、駆動アーム(113)により構成されている。図56に係るに係るアクチュエータは、ソレノイド(114)により構成されている。 The actuator according to FIG. 53 is composed of a heater (111) and a bimetal (110). The actuator according to FIG. 54 includes a piezo element (112). The actuator according to FIG. 55 includes a drive arm (113). The actuator according to FIG. 56 includes a solenoid (114).
  また、例えば、上記各実施形態においては、ケーシング(10)内に取り込んだ室内空気を冷却加熱モジュール(20)で処理して室内(3)に供給する一方、ケーシング(10)内に取り込んだ室外空気を冷却加熱モジュール(20)で処理して室外に排出する循環方式を採用しているが、ケーシング(10)内に取り込んだ室外空気を冷却加熱モジュール(20)で処理して室内(3)に供給する一方、ケーシング(10)内に取り込んだ室内空気を冷却加熱モジュール(20)で処理して室外に排出する換気方式を採用してもよい。 Also, for example, in each of the above embodiments, the indoor air taken into the casing (10) is processed by the cooling and heating module (20) and supplied to the room (3), while the outdoor taken into the casing (10) A circulation system is adopted in which air is processed by the cooling and heating module (20) and discharged outside the room, but the outdoor air taken into the casing (10) is processed by the cooling and heating module (20) and the room (3) On the other hand, a ventilation system may be employed in which room air taken into the casing (10) is processed by the cooling and heating module (20) and discharged outside the room.
  また、上記各実施形態において説明している冷却加熱モジュール(20)の具体的な構成は、空気調和装置(1)の装置構成に応じて適宜変更してもよい。 In addition, the specific configuration of the cooling and heating module (20) described in the above embodiments may be changed as appropriate according to the configuration of the air conditioner (1).
  さらには、空気調和装置(1)の構成も、冷房運転や暖房運転、あるいは除湿冷房運転や加湿暖房運転を行える限りは適宜変更してもよい。 Furthermore, the configuration of the air conditioner (1) may be appropriately changed as long as the cooling operation or the heating operation, or the dehumidifying cooling operation or the humidifying heating operation can be performed.
  〈発明の実施形態8〉
  実施形態8は、冷却加熱モジュール(20)の熱歪材料(21)の表面に吸着層(23)を形成した調湿モジュール(24)を備え、該調湿モジュール(24)で空気の湿度を調節する空気調和装置である。つまり、実施形態8の空気調和装置は、調湿装置(150)を構成している。調湿モジュール(24)は、上述した各実施形態及びその変形例に係る冷却加熱モジュール(20)のアクチュエータ(22)を採用することができる。
<Embodiment 8 of the Invention>
The eighth embodiment includes a humidity control module (24) in which an adsorption layer (23) is formed on the surface of the heat strain material (21) of the cooling and heating module (20), and the humidity control module (24) controls the humidity of the air. It is an air conditioner to adjust. That is, the air conditioning apparatus of Embodiment 8 constitutes a humidity control apparatus (150). The humidity control module (24) can employ the actuator (22) of the cooling and heating module (20) according to the above-described embodiments and modifications thereof.
  -装置の全体構成-
  図57は、実施形態8に係る調湿装置(150)を建物(2)の室内(空調対象空間)(3)に設置した状態を示す概略図であり、図57(A)が吸湿動作の運転状態を示し、図57(B)が放湿動作の運転状態を示している。実施形態8の調湿装置(150)は、除湿装置として構成されている。
-Overall configuration of the device-
FIG. 57 is a schematic view showing a state in which the humidity control apparatus (150) according to the eighth embodiment is installed in the room (air-conditioning target space) (3) of the building (2), and FIG. The operation state is shown, and FIG. 57 (B) shows the operation state of the moisture release operation. The humidity control apparatus (150) of Embodiment 8 is configured as a dehumidifying apparatus.
  この調湿装置(150)は、ケーシング(10)と、ケーシング(10)内に収納された調湿モジュール(24)と、調湿モジュール(24)に空気を流すファン(30)と、調湿モジュール(24)に付与する引張力を調節する切換制御部(35)とを備えている。調湿モジュール(24)と切換制御部(35)とにより調湿ユニット(151)が構成されている。また、ケーシング(10)とその内部に設けられた機能部品により室内ユニット(U)が構成されている。 The humidity control device (150) includes a casing (10), a humidity control module (24) housed in the casing (10), a fan (30) for flowing air to the humidity control module (24), and a humidity control And a switching control unit (35) for adjusting the tensile force applied to the module (24). The humidity control module (24) and the switching control unit (35) constitute a humidity control unit (151). Moreover, the indoor unit (U) is comprised by the casing (10) and the functional component provided in the inside.
  ケーシング(10)内には、該ケーシング(10)内に導入された空気を調湿モジュール(24)に通して室内(3)へ供給するための空気通路(P)が形成されている。この実施形態では、上記調湿モジュール(24)で吸湿処理した空気をこの空気通路(P)により室内(3)に導入することにより、吸湿運転を行うことができるようになっている。 In the casing (10), an air passage (P) is formed for supplying the air introduced into the casing (10) through the humidity control module (24) and supplying the air to the room (3). In this embodiment, the moisture absorption operation can be performed by introducing the air absorbed by the humidity control module (24) into the room (3) through the air passage (P).
    -調湿モジュール-
  上記調湿モジュール(24)は、概略の構成を図2(B)に示すように、熱歪材料(Thermoelastic)(21)と、該熱歪材料(21)に引張力を付与するアクチュエータ(22)とを備えている。尚、この熱歪材料(21)に付与される引張力は、本発明に係る張力を構成している。調湿モジュール(24)の表面には、空気中の水分の吸着と脱離が可能な吸着層(23)が設けられている。
-Humidity control module-
As shown in FIG. 2B, the humidity control module (24) includes a thermostrictive material (21) and an actuator (22) that applies a tensile force to the thermostrictive material (21). ). Note that the tensile force applied to the thermal strain material (21) constitutes the tension according to the present invention. An adsorption layer (23) capable of adsorbing and desorbing moisture in the air is provided on the surface of the humidity control module (24).
  上記熱歪材料(21)は、例示として形状記憶合金によって構成され、引張力をかけることで対象物を加熱する一方、引張力を解除することで対象物を冷却するものである。具体的には、図58に示すように、熱歪材料(21)に引張力をかけると、母相(オーステナイト相)からマルテンサイト相へと相変化することで、エントロピーが減少し、その分、発熱して熱歪材料(21)自身が加熱される(IかII)。熱歪材料(21)に引張力をかけたまま、該熱歪材料(21)を加熱対象物に接触させると、熱歪材料(21)の熱が加熱対象物に伝わる(IIからIII)。こうすることで、熱歪材料(21)の温度は下がる。そして、熱歪材料(21)にかけられている引張力を除去(解除)すると、マルテンサイト相から母相(オーステナイト相)に変化すIIIからIV)。このとき、熱歪材料(21)が断熱されていると、熱歪材料(21)の温度が下がる。温度が下がった熱歪材料に冷却対象物を接触させると、該冷却対象物の熱が熱歪材料(21)に伝わる(IVからI)。 The thermal strain material (21) is constituted by a shape memory alloy as an example, and heats the object by applying a tensile force, while cooling the object by releasing the tensile force. Specifically, as shown in FIG. 58, when a tensile force is applied to the thermostrained material (21), the entropy decreases due to the phase change from the parent phase (austenite phase) to the martensite phase. When heat is generated, the thermostrain material (21) itself is heated (I or II). When the thermal strain material (21) is brought into contact with the object to be heated while a tensile force is applied to the heat strain material (21), the heat of the heat strain material (21) is transmitted to the object to be heated (II to III). By doing so, the temperature of the thermostrictive material (21) is lowered. When the tensile force applied to the thermostrained material (21) is removed (released), the martensite phase changes to the parent phase (austenite phase) III to IV). At this time, if the heat-strained material (21) is insulated, the temperature of the heat-strained material (21) decreases. When the object to be cooled is brought into contact with the heat-strained material whose temperature has decreased, the heat of the object to be cooled is transferred to the heat-strained material (21) (IV to I).
  したがって、図59(A)に示すように、熱歪材料(21)に引張力を付与すると、熱歪材料(21)が発熱し、吸着層(23)が加熱される。吸着層(23)が加熱されると、吸着層(23)に吸着されていた水分が空気中に放出される(放湿動作)。したがって、調湿モジュール(24)を通過した後の空気中の水分は通過前より多くなる。逆に図59(B)に示すように熱歪材料(21)への引張力を解除すると、熱歪材料(21)が吸熱し、吸着層(23)が冷却される。吸着層(23)が冷却されると、空気中の水分が吸着層(23)に吸着される(吸湿動作)。したがって、調湿モジュール(24)を通過した後の空気中の水分は通過前より少なくなる。この調湿装置(150)では、放湿動作と吸湿動作が交互に行われる。 Therefore, as shown in FIG. 59A, when a tensile force is applied to the thermostrictive material (21), the thermostrictive material (21) generates heat, and the adsorption layer (23) is heated. When the adsorption layer (23) is heated, the moisture adsorbed on the adsorption layer (23) is released into the air (moisture release operation). Therefore, the water | moisture content in the air after passing a humidity control module (24) becomes more than before the passage. Conversely, as shown in FIG. 59B, when the tensile force applied to the thermostrain material (21) is released, the thermostrain material (21) absorbs heat, and the adsorption layer (23) is cooled. When the adsorption layer (23) is cooled, moisture in the air is adsorbed on the adsorption layer (23) (moisture absorption operation). Therefore, the moisture in the air after passing through the humidity control module (24) is less than before the passage. In the humidity control apparatus (150), the moisture releasing operation and the moisture absorbing operation are alternately performed.
  熱歪材料(21)の具体例として、Ti/Ni/Cu合金を挙げることができる。特に、上記合金の組成範囲を表すと、Tiが40~80%、Niが20~60%、Cuが0~30%のものを用いることができる。 As a specific example of the heat strain material (21), Ti / Ni / Cu alloy can be mentioned. In particular, in terms of the composition range of the above alloy, those having Ti of 40 to 80%, Ni of 20 to 60%, and Cu of 0 to 30% can be used.
  上記アクチュエータ(22)は、熱歪材料(21)に引張力を付与するためのものである。アクチュエータ(22)は、切換制御部(35)に接続され、該切換制御部(35)によって熱歪材料(21)への引張力の付与と解除とが制御される。 The actuator (22) is for applying a tensile force to the thermostrictive material (21). The actuator (22) is connected to the switching control unit (35), and the switching control unit (35) controls the application and release of the tensile force to the thermostrictive material (21).
  -引張力付与動作-
  上記切換制御部(35)は、アクチュエータ(22)を制御して、熱歪材料(21)への引張力の付与と解除を制御するものである。切換制御部(35)は、図60(A~C)において、アクチュエータ(22)における熱歪材料(21)に付与する引張力の大きさを変化させることにより該熱歪材料(21)の発熱量を調整し、吸放湿能力を調整するように構成されている。
-Tensioning force application-
The switching control section (35) controls the actuator (22) to control the application and release of the tensile force to the thermostrictive material (21). In FIG. 60 (A to C), the switching control unit (35) generates heat of the thermostrain material (21) by changing the magnitude of the tensile force applied to the thermostrain material (21) in the actuator (22). It is configured to adjust the amount and adjust the moisture absorption / release capacity.
  また、上記切換制御部(35)は、図61(A~C)において、各熱歪材料(21)の全体のうち、引張力を付与する熱歪材料(21)の割合を変化させることにより該熱歪材料(21)の発熱力を調整し、吸放湿能力を調整するようにしてもよい。 In addition, in FIG. 61 (A to C), the switching control unit (35) changes the ratio of the thermal strain material (21) to which a tensile force is applied, out of the entire thermal strain material (21). The heat generation capacity of the heat strain material (21) may be adjusted to adjust the moisture absorption / release capacity.
  さらに、上記切換制御部(35)は、上記吸湿動作と放湿動作を繰り返す時間間隔を変化させることにより上記熱歪材料(21)の発熱量を調整し、吸放湿能力を調整するように構成してもよい。 Further, the switching control unit (35) adjusts the heat generation amount of the thermostrictive material (21) by changing the time interval for repeating the moisture absorption operation and the moisture release operation, and adjusts the moisture absorption / release capability. It may be configured.
  -運転動作-
  この調湿装置(150)では除湿動作のみが行われる。具体的には、図57(A)においては、それまで加熱されていた調湿モジュール(24)への引張力が解除される。そうすると、調湿モジュール(24)が空気(室外空気(OA))から吸熱し、図2(B)、図59の吸着層(23)が冷却される。吸着層(23)は、それまで加熱されていたことにより、既に水分を放出している。したがって、図57(A)に示すように、室外から室内(3)へ向かって空気が流れると、その空気から水分が吸着される。そして、水分が吸着されて減湿された空気(供給空気(SA))が室内(3)へ供給される。また、このとき、調湿モジュール(24)が冷却されるため、吸着熱による吸着層(23)の発熱が抑えられる。したがって、吸着性能が低下せずに吸湿動作が行われる。
-Driving operation-
In the humidity control apparatus (150), only the dehumidifying operation is performed. Specifically, in FIG. 57A, the tensile force applied to the humidity control module (24) that has been heated is released. Then, the humidity control module (24) absorbs heat from the air (outdoor air (OA)), and the adsorption layer (23) in FIGS. 2 (B) and 59 is cooled. The adsorption layer (23) has already released moisture because it has been heated. Therefore, as shown in FIG. 57A, when air flows from the outdoor toward the indoor (3), moisture is adsorbed from the air. And the air (supply air (SA)) by which moisture was adsorbed and dehumidified is supplied to the room (3). At this time, since the humidity control module (24) is cooled, heat generation of the adsorption layer (23) due to heat of adsorption can be suppressed. Therefore, the moisture absorption operation is performed without reducing the adsorption performance.
  次に、図57(B)の放湿運転時は、ファン(30)の回転方向が切り換えられ、室内空気(RA)が室外へ排出される。このとき、調湿モジュール(24)の熱歪材料(21)に引張力が付与される。そうすると、調湿モジュール(24)が放熱し、吸着層(23)が加熱される。吸着層(23)が加熱されると、吸着層(23)に含まれていた水分が室内(3)から室外へ流れる空気に放出される。したがって、この放湿運転のときには、調湿モジュール(24)の吸着層(23)が再生され、水分は空気(排出空気(EA))とともに室外に排出される。 Next, during the moisture releasing operation of FIG. 57 (B), the rotation direction of the fan (30) is switched, and the indoor air (RA) is discharged to the outside. At this time, a tensile force is applied to the heat strain material (21) of the humidity control module (24). Then, the humidity control module (24) dissipates heat, and the adsorption layer (23) is heated. When the adsorption layer (23) is heated, moisture contained in the adsorption layer (23) is released from the room (3) to the air flowing outside the room. Therefore, at the time of this moisture releasing operation, the adsorption layer (23) of the humidity control module (24) is regenerated, and moisture is discharged to the outside together with air (exhaust air (EA)).
  本実施形態では、図57(A)の吸湿動作と図57(B)の放湿動作を繰り返し行うことにより、除湿運転が間欠的に行われる。 In the present embodiment, the dehumidifying operation is intermittently performed by repeatedly performing the moisture absorbing operation of FIG. 57 (A) and the moisture releasing operation of FIG. 57 (B).
  -実施形態8の効果-
  本実施形態8によれば、調湿モジュール(24)には、ゴムなどの弾性体に吸着剤を塗布したものは採用していない。ここで、ゴムのような弾性体に吸着剤を塗布したものを調湿モジュール(24)に用いると、上記弾性体を伸縮させるための機構が必要になり、調湿装置(150)の構造が複雑になるとともに装置(1)が大型化してしまうのに対して、本実施形態によれば、上記調湿モジュール(24)に上記弾性体を用いていないので、調湿装置(150)の大型化や構造の複雑化を防止することができる。
-Effect of Embodiment 8-
According to the eighth embodiment, the humidity control module (24) does not employ an elastic body such as rubber coated with an adsorbent. Here, if an elastic body such as rubber coated with an adsorbent is used in the humidity control module (24), a mechanism for expanding and contracting the elastic body is required, and the structure of the humidity control apparatus (150) is Although the apparatus (1) becomes large with increasing complexity, according to the present embodiment, since the elastic body is not used for the humidity control module (24), the size of the humidity control apparatus (150) is increased. And complication of the structure can be prevented.
  また、調湿モジュール(24)を構成する熱歪材料(21)が大きく伸縮するような弾性体ではないため、調湿モジュール(24)から吸着剤が剥離するような不具合も生じないようにすることができる。 Moreover, since the heat-strained material (21) constituting the humidity control module (24) is not an elastic body that expands and contracts greatly, it is possible to prevent the adsorbent from peeling off from the humidity control module (24). be able to.
 また、本実施形態8では、熱歪材料(21)の発熱量を調整し、吸放湿能力を調整することができるので、調湿負荷に応じた運転をすることが可能である。 In the eighth embodiment, since the heat generation amount of the heat strain material (21) can be adjusted and the moisture absorption / release capacity can be adjusted, it is possible to operate according to the humidity control load.
  -実施形態8の変形例-
  (変形例1)
  図62に示す変形例1は、2つの室内ユニット(U1,U2)を空調対象の室内(3)に設置するように構成したものである。図62では、部屋の対向する壁面の一方(図の右側の壁面)に第1室内ユニット(U1)が設置され、壁面の他方(図の左側の壁面)に第2室内ユニット(U2)が設置されている。各室内ユニット(U1,U2)の構成は図57の調湿装置(150)の室内ユニット(U)と同じであるため、各室内ユニット(U1,U2)の構成については説明を省略する。なお、室内ユニット(U1,U2)には、それぞれ空気通路(P1,P2)が形成されている。
-Modification of Embodiment 8-
(Modification 1)
The modification 1 shown in FIG. 62 is configured to install two indoor units (U1, U2) in a room (3) to be air-conditioned. In FIG. 62, the first indoor unit (U1) is installed on one of the opposing wall surfaces (the right wall surface in the figure), and the second indoor unit (U2) is installed on the other wall surface (the left wall surface in the figure). Has been. Since the configuration of each indoor unit (U1, U2) is the same as that of the indoor unit (U) of the humidity controller (150) in FIG. 57, the description of the configuration of each indoor unit (U1, U2) is omitted. Note that air passages (P1, P2) are formed in the indoor units (U1, U2), respectively.
  図62(A)は、第1室内ユニット(U1)で吸湿動作を行い、第2室内ユニット(U2)で放湿動作を行う状態を示している。第1室内ユニット(U1)では、調湿モジュール(24)の熱歪材料(21)への引張力が解除される。したがって、第1室内ユニット(U1)の調湿モジュール(24)が吸熱し、室外空気(OA)が室外から室内(3)へ流れる際に空気中の水分が吸着される。そして、水分が吸着されて減湿された空気が供給空気(SA)として室内(3)へ供給される。 FIG. 62 (A) shows a state where the first indoor unit (U1) performs a moisture absorption operation and the second indoor unit (U2) performs a moisture release operation. In the first indoor unit (U1), the tensile force applied to the heat strain material (21) of the humidity control module (24) is released. Therefore, the humidity control module (24) of the first indoor unit (U1) absorbs heat, and moisture in the air is adsorbed when the outdoor air (OA) flows from the outdoor to the indoor (3). Then, the air that has been moisture-adsorbed and dehumidified is supplied to the room (3) as supply air (SA).
 一方、第2室内ユニット(U2)では、室内空気(RA)が室外へ排出される方向へファン(30)が回転し、同時に調湿モジュール(24)の熱歪材料(21)に引張力が付与される。したがって、吸着層(23)に含まれている水分が空気に与えられて、排出空気(EA)として室外へ放出され、調湿モジュール(24)の吸着層(23)が再生される。 On the other hand, in the second indoor unit (U2), the fan (30) rotates in the direction in which the indoor air (RA) is discharged to the outside, and at the same time, the tensile force is applied to the heat strain material (21) of the humidity control module (24). Is granted. Therefore, the moisture contained in the adsorption layer (23) is given to the air and released as exhausted air (EA) to the outside of the room, and the adsorption layer (23) of the humidity control module (24) is regenerated.
  図62(B)は、第2室内ユニット(U2)で吸湿動作を行い、第1室内ユニット(U1)で放湿動作を行う状態を示している。第2室内ユニット(U2)では、調湿モジュール(24)の熱歪材料(21)への引張力が解除される。したがって、第2室内ユニット(U2)の調湿モジュール(24)が吸熱し、室外空気(OA)が室外から室内(3)へ流れる際に空気の水分が吸着される。そして、水分が吸着されて減湿された空気が供給空気(SA)として室内(3)へ供給される。 FIG. 62 (B) shows a state where the second indoor unit (U2) performs a moisture absorption operation and the first indoor unit (U1) performs a moisture release operation. In the second indoor unit (U2), the tensile force on the heat-strain material (21) of the humidity control module (24) is released. Therefore, when the humidity control module (24) of the second indoor unit (U2) absorbs heat and the outdoor air (OA) flows from the outdoor to the indoor (3), moisture in the air is adsorbed. Then, the air that has been moisture-adsorbed and dehumidified is supplied to the room (3) as supply air (SA).
  一方、第1室内ユニット(U1)では、室内空気(RA)が室外へ排出される方向へファン(30)が回転し、同時に調湿モジュール(24)の熱歪材料(21)に引張力が付与される。したがって、吸着層(23)に含まれている水分が空気に与えられて、排出空気(EA)として室外へ放出され、調湿モジュール(24)の吸着層(23)が再生される。 On the other hand, in the first indoor unit (U1), the fan (30) rotates in the direction in which the indoor air (RA) is discharged to the outside, and at the same time, the tensile force is applied to the heat strain material (21) of the humidity control module (24). Is granted. Therefore, the moisture contained in the adsorption layer (23) is given to the air and released as exhausted air (EA) to the outside of the room, and the adsorption layer (23) of the humidity control module (24) is regenerated.
  このように、実施形態8の変形例1によれば、いずれか一方の室内ユニット(U1,U2)で空気を減湿して、その空気を室内(3)へ供給するときに、他方の室内ユニット(U2,U1)では吸着層(23)を再生する図62(A)の運転と図62(B)の運転を交互に切り換えることにより、除湿運転を連続して行うことができる。 Thus, according to the first modification of the eighth embodiment, when one of the indoor units (U1, U2) dehumidifies the air and supplies the air to the room (3), the other room In the units (U2, U1), the dehumidifying operation can be performed continuously by alternately switching the operation of FIG. 62 (A) and the operation of FIG. 62 (B) for regenerating the adsorption layer (23).
  (変形例2)
  図63に示す変形例2は、2つの室内ユニット(U1,U2)を空調対象の室内(3)に設置するように構成している点は図62の装置(1)と共通している。図62の変形例1と異なる点は、第1室内ユニット(U1)と第2室内ユニット(U2)の両方を、図の右側の壁面に設置した点である。各室内ユニット(U1,U2)の構成は、図57及び図62の調湿装置(150)と同じである。
(Modification 2)
The modification 2 shown in FIG. 63 is common to the apparatus (1) of FIG. 62 in that two indoor units (U1, U2) are installed in the air-conditioned room (3). 62 is different from Modification 1 in that both the first indoor unit (U1) and the second indoor unit (U2) are installed on the wall surface on the right side of the drawing. The configuration of each indoor unit (U1, U2) is the same as that of the humidity control apparatus (150) of FIGS.
  図63(A)は、第1室内ユニット(U1)で吸湿動作を行い、第2室内ユニット(U2)で放湿動作を行う状態を示している。第1室内ユニット(U1)では、調湿モジュール(24)の熱歪材料(21)への引張力が解除される。したがって、第1室内ユニット(U1)の調湿モジュール(24)が吸熱し、室外空気(OA)が室外から室内(3)へ流れる際に空気中の水分が吸着される。そして、水分が吸着されて減湿された空気が供給空気(SA)として室内(3)へ供給される。 FIG. 63A shows a state where the first indoor unit (U1) performs a moisture absorption operation and the second indoor unit (U2) performs a moisture release operation. In the first indoor unit (U1), the tensile force applied to the heat strain material (21) of the humidity control module (24) is released. Therefore, the humidity control module (24) of the first indoor unit (U1) absorbs heat, and moisture in the air is adsorbed when the outdoor air (OA) flows from the outdoor to the indoor (3). Then, the air that has been moisture-adsorbed and dehumidified is supplied to the room (3) as supply air (SA).
  一方、第2室内ユニット(U2)では、室内空気(RA)が室外へ排出される方向へファン(30)が回転し、同時に調湿モジュール(24)の熱歪材料(21)に引張力が付与される。したがって、吸着層(23)に含まれている水分が空気に与えられて、排出空気(EA)として室外へ放出され、調湿モジュール(24)の吸着層(23)が再生される。 On the other hand, in the second indoor unit (U2), the fan (30) rotates in the direction in which the indoor air (RA) is discharged to the outside, and at the same time, the tensile force is applied to the heat strain material (21) of the humidity control module (24). Is granted. Therefore, the moisture contained in the adsorption layer (23) is given to the air and released as exhausted air (EA) to the outside of the room, and the adsorption layer (23) of the humidity control module (24) is regenerated.
  図63(B)は、第2室内ユニット(U2)で吸湿動作を行い、第1室内ユニット(U1)で放湿動作を行う状態を示している。第2室内ユニット(U2)では、調湿モジュール(24)の熱歪材料(21)への引張力が解除される。したがって、第2室内ユニット(U2)の調湿モジュール(24)が吸熱し、室外空気(OA)が室外から室内(3)へ流れる際に空気中の水分が吸着される。そして、水分が吸着されて減湿された空気が供給空気(SA)として室内(3)へ供給される。 FIG. 63B shows a state in which the moisture absorption operation is performed in the second indoor unit (U2) and the moisture release operation is performed in the first indoor unit (U1). In the second indoor unit (U2), the tensile force on the heat-strain material (21) of the humidity control module (24) is released. Therefore, the humidity control module (24) of the second indoor unit (U2) absorbs heat, and moisture in the air is adsorbed when the outdoor air (OA) flows from the outdoor to the indoor (3). Then, the air that has been moisture-adsorbed and dehumidified is supplied to the room (3) as supply air (SA).
  一方、第1室内ユニット(U1)では、室内空気(RA)が室外へ排出される方向へファン(30)が回転し、同時に調湿モジュール(24)の熱歪材料(21)に引張力が付与される。したがって、吸着層(23)に含まれている水分が空気に与えられて、排出空気(EA)として室外へ放出され、調湿モジュール(24)の吸着層(23)が再生される。 On the other hand, in the first indoor unit (U1), the fan (30) rotates in the direction in which the indoor air (RA) is discharged to the outside, and at the same time, the tensile force is applied to the heat strain material (21) of the humidity control module (24). Is granted. Therefore, the moisture contained in the adsorption layer (23) is given to the air and released as exhausted air (EA) to the outside of the room, and the adsorption layer (23) of the humidity control module (24) is regenerated.
 このように、実施形態8の変形例2によれば、いずれか一方の室内ユニット(U1,U2)で空気を減湿して、その空気を室内(3)へ供給するときに、他方の室内ユニット(U2,U1)では吸着層(23)を再生する図63(A)の運転と図63(B)の運転を交互に切り換えることにより、除湿運転を連続して行うことができる。 Thus, according to the second modification of the eighth embodiment, when one of the indoor units (U1, U2) dehumidifies the air and supplies the air to the room (3), the other room In the units (U2, U1), the dehumidifying operation can be continuously performed by alternately switching the operation of FIG. 63A for regenerating the adsorption layer (23) and the operation of FIG. 63B.
  (変形例3)
  図64に示す変形例3は、調湿装置(150)のケーシング(10)内に2つの調湿モジュール(24)を設け、一方の調湿モジュール(24)(第1調湿モジュール(24a))を通過した空気を室内(3)に供給して他方の調湿モジュール(24)(第2調湿モジュール(24b))を通過した空気を室外へ放出する第1の運転動作と、第2調湿モジュール(24b)を通過した空気を室内(3)に供給して第1調湿モジュール(24a)を通過した空気を室外へ放出する第2の運転動作とを切り換えるように構成したものである。
(Modification 3)
In Modification 3 shown in FIG. 64, two humidity control modules (24) are provided in the casing (10) of the humidity control apparatus (150), and one humidity control module (24) (first humidity control module (24a)) is provided. ) Is supplied to the room (3) and the air that has passed through the other humidity control module (24) (second humidity control module (24b)) is discharged to the outside of the room. It is configured to switch between the second operation for supplying air that has passed through the humidity control module (24b) to the room (3) and releasing the air that has passed through the first humidity control module (24a) to the outside. is there.
  調湿装置(150)は、具体的には図65,66に示すように構成されている。この調湿装置(150)は、2つの調湿モジュール(24a,24b)と2つのファン(30a,30b)を1つのケーシング(10)内に収納した一体型の構成で、天井裏に設置されている。図65は、第1調湿モジュール(24a)を吸湿側にして第2調湿モジュール(24b)を放湿側にする第1の運転動作を示し、図66は、第2調湿モジュール(24b)を吸湿側にして第1調湿モジュール(24a)を放湿側にする第2の運転動作を示している。また、図65及び図66において、それぞれ、(A)図は平面構造図(装置を平面から見て内部構造を示す図)、(B)図は左側面構造図、(C)図は右側面構造図である。 The humidity control device (150) is specifically configured as shown in FIGS. This humidity control device (150) is an integrated configuration in which two humidity control modules (24a, 24b) and two fans (30a, 30b) are housed in one casing (10), and is installed behind the ceiling. ing. FIG. 65 shows a first operation operation in which the first humidity control module (24a) is on the moisture absorption side and the second humidity control module (24b) is on the moisture release side, and FIG. 66 is the second humidity control module (24b). ) Is the moisture absorption side, and the second operation operation is shown in which the first humidity control module (24a) is the moisture release side. In FIGS. 65 and 66, (A) is a plan view (showing the internal structure when the apparatus is viewed from above), (B) is a left side view, and (C) is a right side. FIG.
  この調湿装置(150)のケーシング(10)は、四角い箱形に形成されている。このケーシング(10)の1つの側壁面には、室外空気(OA)をケーシング(10)内に取り入れる第1吸込口(11)と、室内空気(RA)をケーシング(10)内に取り入れる第2吸込口(12)が設けられている。また、上記各吸込口(11,12)が設けられている側壁面の左右の側壁面には、供給空気(SA)を室内(3)に供給する第1吹出口(13)と、排出空気(EA)を室外に排出する第2吹出口(14)が設けられている。これらの第1吸込口(11)、第2吸込口(12)、第1吹出口(13)及び第2吹出口(14)には、それぞれ図64に模式的に矢印で示すダクト(4a,4b,4c,4d)が接続されている。 The casing (10) of the humidity control device (150) is formed in a square box shape. A first suction port (11) for taking outdoor air (OA) into the casing (10) and a second air port for taking indoor air (RA) into the casing (10) are formed on one side wall surface of the casing (10). A suction port (12) is provided. Moreover, the 1st blower outlet (13) which supplies supply air (SA) to room | chamber (3), and exhaust air are in the side wall surface on either side of the side wall surface in which each said inlet (11,12) is provided. A second outlet (14) for discharging (EA) to the outside is provided. These first suction port (11), second suction port (12), first air outlet (13) and second air outlet (14) are respectively provided with ducts (4a, 4b, 4c, 4d) are connected.
  上記ケーシング(10)内は、上記調湿モジュール(24)が配置された調湿室(C1,C2)と、ファン(30a,30b)が配置されたファン室(C3,C4)が設けられている。調湿室(C1,C2)は、図65,図66においてケーシング(10)内の左右に隣り合って位置する第1調湿室(C1)と第2調湿室(C2)とから構成されている。上記ファン室(C3,C4)は、同じくケーシング(10)の左右に隣り合って位置する第1ファン室(C3)と第2ファン室(C4)とから構成されている。第1ファン室(C3)には給気ファン(30a)が配置され、第2ファン室(C4)には排気ファン(30b)が配置されている。 The casing (10) is provided with a humidity control chamber (C1, C2) in which the humidity control module (24) is disposed, and a fan chamber (C3, C4) in which the fans (30a, 30b) are disposed. Yes. The humidity control chambers (C1, C2) are composed of a first humidity control chamber (C1) and a second humidity control chamber (C2) located adjacent to each other in the casing (10) in FIGS. ing. The fan chambers (C3, C4) are composed of a first fan chamber (C3) and a second fan chamber (C4) that are also adjacent to the left and right of the casing (10). An air supply fan (30a) is disposed in the first fan chamber (C3), and an exhaust fan (30b) is disposed in the second fan chamber (C4).
  また、上記各吸込口(11,12)と調湿室(C1,C2)の間には入口側通風室(C5,C6)が形成されている。入口側通風室(C5,C6)は、上記ケーシング(10)の上下2段に配置された第1入口側通風室(C5)と第2入口側通風室(C6)とから構成されている。第1入口側通風室(C5)には第1吸込口(11)が設けられ、第2入口側通風室(C6)には第2吸込口(12)が設けられている。各入口側通風室(C5,C6)と各調湿室(C1,C2)との間には、開閉可能なダンパ(D1,D2,D3,D4)が1枚ずつ、合計4枚設けられている。 In addition, an inlet side ventilation chamber (C5, C6) is formed between each of the suction ports (11, 12) and the humidity control chamber (C1, C2). The inlet-side ventilation chambers (C5, C6) are composed of a first inlet-side ventilation chamber (C5) and a second inlet-side ventilation chamber (C6) arranged in two upper and lower stages of the casing (10). The first inlet side ventilation chamber (C5) is provided with a first suction port (11), and the second inlet side ventilation chamber (C6) is provided with a second suction port (12). There are four dampers (D1, D2, D3, D4) that can be opened and closed between each inlet-side ventilation chamber (C5, C6) and each humidity control chamber (C1, C2). Yes.
  上記調湿室(C1,C2)と上記ファン室(C3,C4)との間には出口側通風室(C7,C8)が形成されている。出口側通風室(C7,C8)は、上記ケーシング(10)の上下2段に配置された第1出口側通風室(C7)と第2出口側通風室(C8)とから構成されている。各調湿室(C1,C2)と各出口側通風室(C7,C8)との間には、開閉可能なダンパ(D5,D6,D7,D8)が1枚ずつ、合計4枚設けられている。 Outlet ventilation chambers (C7, C8) are formed between the humidity control chambers (C1, C2) and the fan chambers (C3, C4). The outlet side ventilating chambers (C7, C8) are composed of a first outlet side ventilating chamber (C7) and a second outlet side ventilating chamber (C8) arranged in two upper and lower stages of the casing (10). A total of four dampers (D5, D6, D7, D8) that can be opened and closed are provided between each humidity control chamber (C1, C2) and each outlet-side ventilation chamber (C7, C8). Yes.
  各出口側通風室(C7,C8)は、上記各ファン室(C3,C4)と連通している。上記第1吹出口(13)はケーシング(10)の第1ファン室(C3)側に設けられ、上記第2吹出口(14)はケーシング(10)の第2ファン室(C4)側に設けられている。 Each outlet-side ventilation chamber (C7, C8) communicates with each fan chamber (C3, C4). The first air outlet (13) is provided on the first fan chamber (C3) side of the casing (10), and the second air outlet (14) is provided on the second fan chamber (C4) side of the casing (10). It has been.
  以上の構成においては、第1の運転動作のとき、第1ダンパ(D1)、第4ダンパ(D4)、第5ダンパ(D5)及び第8ダンパ(D8)が開かれ、第2ダンパ(D2)、第3ダンパ(D3)、第6ダンパ(D6)及び第7ダンパ(D7)は閉じられる。また、第2の運転動作のとき、第2ダンパ(D2)、第3ダンパ(D3)、第6ダンパ(D6)及び第7ダンパ(D7)が開かれ、第1ダンパ(D1)、第4ダンパ(D4)、第5ダンパ(D5)及び第8ダンパ(D8)は閉じられる。 In the above configuration, during the first driving operation, the first damper (D1), the fourth damper (D4), the fifth damper (D5), and the eighth damper (D8) are opened, and the second damper (D2 ), The third damper (D3), the sixth damper (D6) and the seventh damper (D7) are closed. In the second driving operation, the second damper (D2), the third damper (D3), the sixth damper (D6), and the seventh damper (D7) are opened, and the first damper (D1), the fourth damper are opened. The damper (D4), the fifth damper (D5) and the eighth damper (D8) are closed.
  このようにダンパ(D1~D8)の開閉状態を制御することにより、第1の運転動作においては、図65に示すように、第1吸込口(11)からケーシング(10)内に導入された室外空気が、第1ダンパ(D1)、第1調湿モジュール(24a)及び第5ダンパ(D5)を通って第1吹出口(13)から室内(3)へ供給されるとともに、第2吸込口(12)からケーシング(10)内に導入された室内空気が、第4ダンパ(D4)、第2調湿モジュール(24b)及び第8ダンパ(D8)を通って第2吹出口(14)から室外へ排出される。また、第2の運転動作においては、図66に示すように、第1吸込口(11)からケーシング(10)内に導入された室外空気が、第3ダンパ(D3)、第2調湿モジュール(24b)及び第7ダンパ(D7)を通って第1吹出口(13)から室内(3)へ供給されるとともに、第2吹出口(14)からケーシング(10)内に導入された室内空気が、第2ダンパ(D2)、第1調湿モジュール(24a)及び第6ダンパ(D6)を通って第2吹出口(14)から室外へ排出される。 By controlling the open / closed state of the dampers (D1 to D8) in this way, in the first driving operation, as shown in FIG. Outdoor air is supplied from the first outlet (13) to the room (3) through the first damper (D1), the first humidity control module (24a) and the fifth damper (D5), and the second suction. The room air introduced into the casing (10) from the mouth (12) passes through the fourth damper (D4), the second humidity control module (24b), and the eighth damper (D8) to the second outlet (14). It is discharged outside from the room. In the second operation, as shown in FIG. 66, outdoor air introduced into the casing (10) from the first suction port (11) is converted into the third damper (D3), the second humidity control module. (24b) and the seventh damper (D7) are supplied to the room (3) from the first outlet (13) and the room air is introduced into the casing (10) from the second outlet (14). Is discharged from the second outlet (14) to the outside through the second damper (D2), the first humidity control module (24a) and the sixth damper (D6).
  そして、この実施形態8の変形例3では、ダンパの開閉状態を切り換えることにより、図65の第1運転動作と図66の第2運転動作が交互に繰り返される。 And in the modification 3 of this Embodiment 8, the 1st driving | running operation | movement of FIG. 65 and the 2nd driving | running operation | movement of FIG. 66 are repeated alternately by switching the open / close state of a damper.
  この調湿装置(150)は除湿専用機として構成されているので、室内(3)へ供給される空気が通過する調湿モジュール(24)は、第1調湿モジュール(24a)と第2調湿モジュール(24b)のどちらに切り換わっても、吸湿動作が行われる方の調湿モジュール(24)である。したがって、室内(3)へは、減湿された空気が連続して供給される。また、室外へ排出される空気が通過する調湿モジュール(24)は、第2調湿モジュール(24b)と第1調湿モジュール(24a)のどちらに切り換わっても放湿動作が行われる方の調湿モジュール(24)である。したがって、室外へ放出される空気が通過する調湿モジュール(24)は、常に再生側となる。 Since this humidity control device (150) is configured as a dedicated dehumidifier, the humidity control module (24) through which air supplied to the room (3) passes is the first humidity control module (24a) and the second humidity control module. It is the humidity control module (24) that performs the moisture absorption operation regardless of which one of the humidity modules (24b) is switched to. Therefore, dehumidified air is continuously supplied to the room (3). In addition, the humidity control module (24) through which the air exhausted to the outside passes can perform moisture release operation regardless of whether it is switched to the second humidity control module (24b) or the first humidity control module (24a). The humidity control module (24). Therefore, the humidity control module (24) through which the air discharged to the outside passes is always on the regeneration side.
  このように、実施形態8の変形例3によれば、いずれか一方の調湿モジュール(24a,24b)で空気を減湿して、その空気を室内(3)へ供給するときに、他方の調湿モジュール(24b,24a)では吸着層(23)を再生する図65の運転と図66の運転を交互に切り換えることにより、除湿運転を連続して行うことができる。 Thus, according to the third modification of the eighth embodiment, when one of the humidity control modules (24a, 24b) dehumidifies air and supplies the air to the room (3), the other In the humidity control module (24b, 24a), the dehumidifying operation can be continuously performed by alternately switching the operation of FIG. 65 for regenerating the adsorption layer (23) and the operation of FIG.
  (変形例4)
  図67に示す変形例4は、ロータ式の調湿モジュール(24)を用いた調湿装置(150)に関する例である。この調湿装置(150)も、除湿専用機として構成されている。
(Modification 4)
The modification 4 shown in FIG. 67 is an example regarding the humidity control apparatus (150) using the rotor type humidity control module (24). This humidity control apparatus (150) is also configured as a dedicated dehumidifier.
  この調湿装置(150)のケーシング(10)には、給気側通路(P1)と排気側通路(P2)が設けられている。給気側通路(P1)には給気ファン(30a)が設けられ、排気側通路(P2)には排気ファン(30b)が設けられている。上記調湿モジュール(24)は円板状に形成され、上記ケーシング(10)内で給気側通路(P1)と排気側通路(P2)に跨って配置されている。この調湿モジュール(24)は、回転軸を中心として回転することにより、給気側通路(P1)の中に位置していた部分が排気側通路(P2)の中へ移動し、排気側通路(P2)の中に位置していた部分が給気側通路(P1)の中へ移動できるように構成されている。 The casing (10) of the humidity control device (150) is provided with an air supply side passage (P1) and an exhaust side passage (P2). An air supply fan (30a) is provided in the air supply side passage (P1), and an exhaust fan (30b) is provided in the exhaust side passage (P2). The humidity control module (24) is formed in a disc shape, and is disposed across the supply side passage (P1) and the exhaust side passage (P2) in the casing (10). When the humidity control module (24) rotates about the rotation axis, the portion located in the air supply side passage (P1) moves into the exhaust side passage (P2), and the exhaust side passage The portion located in (P2) can be moved into the supply side passage (P1).
  この変形例4の調湿装置(150)では、給気側通路(P1)で吸湿動作が行われ、排気側通路(P2)で放湿動作が行われる。具体的には、調湿モジュール(24)が給気側通路(P1)に位置する部分には引張力が付与されずに熱歪材料(21)が吸熱して吸着層(23)が冷却され、空気中の水分が吸着層(23)に吸着される。また、調湿モジュール(24)が排気側通路(P2)に位置する部分には引張力が付与されて熱歪材料(21)が放熱して吸着層(23)が加熱され、吸着層(23)に含まれている水分が空気に放出されて吸着剤が再生される。 In the humidity control apparatus (150) of the modified example 4, the moisture absorption operation is performed in the supply side passage (P1), and the moisture release operation is performed in the exhaust side passage (P2). Specifically, the tensile force is not applied to the portion where the humidity control module (24) is located in the supply side passage (P1), and the heat-strain material (21) absorbs heat and the adsorption layer (23) is cooled. Moisture in the air is adsorbed on the adsorption layer (23). Further, a tensile force is applied to the portion where the humidity control module (24) is located in the exhaust side passage (P2), the heat-strain material (21) dissipates heat, and the adsorption layer (23) is heated, and the adsorption layer (23 ) Is released into the air to regenerate the adsorbent.
  この実施形態では、吸湿動作と放湿動作は調湿モジュール(24)を連続的または間欠的に回転させながら行われる。したがって、調湿モジュール(24)を排気側通路(P2)で再生しながら、同時に給気側通路(P1)で吸湿処理することができるから、減湿された空気を連続して室内(3)へ供給することができる。 In this embodiment, the moisture absorption operation and the moisture release operation are performed while rotating the humidity control module (24) continuously or intermittently. Therefore, the humidity control module (24) can be regenerated in the exhaust side passage (P2) and at the same time moisture-absorbed in the air supply side passage (P1). Can be supplied to.
  〈発明の実施形態9〉
  次に、本発明の実施形態9について説明する。
<Ninth Embodiment of the Invention>
Next, a ninth embodiment of the present invention will be described.
  図68に示す実施形態9は、図57に示す実施形態8の調湿装置(150)を加湿専用機として構成した例である。 Embodiment 9 shown in FIG. 68 is an example in which the humidity control apparatus (150) of Embodiment 8 shown in FIG. 57 is configured as a dedicated humidifier.
  この調湿装置(150)は、図57の調湿装置(150)と同様に、ケーシング(10)と、ケーシング(10)内に収納された調湿モジュール(24)と、調湿モジュール(24)に空気を流すファン(30)と、調湿モジュール(24)に付与する引張力を調節する切換制御部(35)とを備え、ケーシング(10)とその内部に設けられた機能部品により室内ユニット(U)が構成されている。また、ケーシング(10)内には、該ケーシング(10)内に導入された空気を調湿モジュール(24)に通して室内(3)へ供給するための空気通路(P)が形成されている。 As with the humidity control apparatus (150) of FIG. 57, the humidity control apparatus (150) includes a casing (10), a humidity control module (24) housed in the casing (10), and a humidity control module (24 ) And a switching control unit (35) for adjusting the tensile force applied to the humidity control module (24). The casing (10) and the functional parts provided in the casing (10) Unit (U) is configured. Further, an air passage (P) is formed in the casing (10) for supplying the air introduced into the casing (10) through the humidity control module (24) and supplying the air into the room (3). .
  この調湿装置(150)は、上記調湿モジュール(24)で放湿処理した空気を空気通路(P)により室内(3)に導入することにより、加湿運転を行うことができるようになっている点が図57の調湿装置(150)と異なっている。 The humidity control device (150) can perform a humidification operation by introducing the air dehumidified by the humidity control module (24) into the room (3) through the air passage (P). This is different from the humidity control apparatus (150) of FIG.
  この調湿装置(150)では、図68(A)において、それまで冷却されていた調湿モジュール(24)の熱歪材料(21)に引張力が付与される。そうすると、調湿モジュール(24)が放熱し、吸着層(23)が加熱される。吸着層(23)が加熱されると、吸着層(23)に含まれていた水分が室外から室内(3)へ流れる室外空気(OA)に放出される。したがって、加湿された空気が供給空気(SA)として室内(3)に供給される。 In this humidity control apparatus (150), in FIG. 68 (A), a tensile force is applied to the heat-strained material (21) of the humidity control module (24) that has been cooled until then. Then, the humidity control module (24) dissipates heat, and the adsorption layer (23) is heated. When the adsorption layer (23) is heated, the moisture contained in the adsorption layer (23) is released from the outdoor to the outdoor air (OA) flowing into the indoor (3). Therefore, the humidified air is supplied to the room (3) as supply air (SA).
 一方、図68(B)においては、ファン(30)の回転方向が切り換えられ、室内空気(RA)が室外へ排出される。このとき、調湿モジュール(24)の熱歪材料(21)への引張力が解除される。そうすると、調湿モジュール(24)が吸熱し、吸着層(23)が冷却される。吸着層(23)が冷却されると、空気中の水分が吸着層(23)に吸着される。そして、水分が吸着されて減湿された空気が排出空気(EA)として室外へ放出される。このとき、熱歪材料(21)が吸熱するため、吸着熱で吸着層(23)が発熱するのが抑えられる。したがって、吸着性能が低下せずに吸湿動作が行われる。 On the other hand, in FIG. 68 (B), the rotation direction of the fan (30) is switched, and the indoor air (RA) is discharged to the outside. At this time, the tensile force to the heat-strain material (21) of the humidity control module (24) is released. Then, the humidity control module (24) absorbs heat, and the adsorption layer (23) is cooled. When the adsorption layer (23) is cooled, moisture in the air is adsorbed on the adsorption layer (23). Then, the air that has been dehumidified by adsorbing moisture is discharged outside the room as exhaust air (EA). At this time, since the thermostrictive material (21) absorbs heat, the adsorption layer (23) can be prevented from generating heat due to the heat of adsorption. Therefore, the moisture absorption operation is performed without reducing the adsorption performance.
  -実施形態9の変形例-
  (変形例1)
  図69に示す実施形態9の変形例1は、図62の調湿装置(150)を加湿専用機として構成した例である。部屋の対向する壁面の一方(図の右側の壁面)に第1室内ユニット(U1)が設置され、壁面の他方(図の左側の壁面)に第2室内ユニット(U2)が設置されている構成は、図69の調湿装置(150)と同じである。また、各室内ユニット(U1,U2)の構成は図68の実施形態2と同じである。
-Modification of Embodiment 9-
(Modification 1)
Modification 1 of Embodiment 9 shown in FIG. 69 is an example in which the humidity control apparatus (150) of FIG. A configuration in which the first indoor unit (U1) is installed on one of the opposing wall surfaces (the right wall surface in the figure) and the second indoor unit (U2) is installed on the other wall surface (the left wall surface in the figure) Is the same as the humidity control apparatus (150) of FIG. The configuration of each indoor unit (U1, U2) is the same as that of the second embodiment in FIG.
  図69(A)は、第1室内ユニット(U1)で放湿動作を行い、第2室内ユニット(U2)で吸湿動作を行う状態を示している。第1室内ユニット(U1)では、調湿モジュール(24)の熱歪材料(21)へ引張力が付与される。したがって、第1室内ユニット(U1)の調湿モジュール(24)が放熱し、室外から室内(3)へ流れる室外空気(OA)に水分が与えられる。そして、水分が与えられて加湿された空気が供給空気(SA)として室内(3)へ供給される。 FIG. 69 (A) shows a state in which the first indoor unit (U1) performs a moisture releasing operation and the second indoor unit (U2) performs a moisture absorbing operation. In the first indoor unit (U1), a tensile force is applied to the heat strain material (21) of the humidity control module (24). Therefore, the humidity control module (24) of the first indoor unit (U1) dissipates heat, and moisture is given to the outdoor air (OA) flowing from the outdoor to the indoor (3). Then, air humidified with moisture is supplied to the room (3) as supply air (SA).
  一方、第2室内ユニット(U2)では、室内空気(RA)が室外へ排出される方向へファン(30)が回転し、同時に調湿モジュール(24)の熱歪材料(21)への引張力が解除される。したがって、空気中の水分が吸着層(23)に吸着され、減湿された空気が排出空気(EA)として室外に放出される。 On the other hand, in the second indoor unit (U2), the fan (30) rotates in the direction in which the indoor air (RA) is discharged outside, and at the same time, the tensile force of the humidity control module (24) on the heat-strain material (21) Is released. Therefore, moisture in the air is adsorbed by the adsorption layer (23), and the dehumidified air is discharged to the outside as exhaust air (EA).
  図69(B)は、第2室内ユニット(U2)で放湿動作を行い、第1室内ユニット(U1)で吸湿動作を行う状態を示している。第2室内ユニット(U2)では、調湿モジュール(24)の熱歪材料(21)に引張力が付与される。したがって、第2室内ユニット(U2)の調湿モジュール(24)が放熱し、室外から室内(3)へ流れる室外空気(OA)に水分が与えられる。そして、水分が与えられて加湿された空気が供給空気(SA)として室内(3)へ供給される。 FIG. 69 (B) shows a state in which the moisture releasing operation is performed in the second indoor unit (U2) and the moisture absorbing operation is performed in the first indoor unit (U1). In the second indoor unit (U2), a tensile force is applied to the heat strain material (21) of the humidity control module (24). Therefore, the humidity control module (24) of the second indoor unit (U2) dissipates heat, and moisture is given to the outdoor air (OA) flowing from the outdoor to the indoor (3). Then, air humidified with moisture is supplied to the room (3) as supply air (SA).
  一方、第1室内ユニット(U1)では、室内空気(RA)が室外へ排出される方向へファン(30)が回転し、同時に調湿モジュール(24)の熱歪材料(21)への引張力が解除される。したがって、空気中の水分が吸着層(23)に吸着され、減湿された空気が排出空気(EA)として室外に放出される。 On the other hand, in the first indoor unit (U1), the fan (30) rotates in the direction in which the indoor air (RA) is discharged to the outside, and at the same time, the tensile force of the humidity control module (24) on the heat strain material (21) Is released. Therefore, moisture in the air is adsorbed by the adsorption layer (23), and the dehumidified air is discharged to the outside as exhaust air (EA).
  このように、この実施形態9の変形例1によれば、いずれか一方の室内ユニット(U1,U2)で空気を加湿して、その空気を室内(3)へ供給するときに、他方の室内ユニット(U2,U1)では吸湿動作を行う図69(A)の運転と図69(B)の運転を交互に切り換えることにより、加湿運転を連続して行うことができる。 Thus, according to the first modification of the ninth embodiment, when one of the indoor units (U1, U2) humidifies the air and supplies the air to the room (3), the other room In the units (U2, U1), the humidification operation can be continuously performed by alternately switching between the operation of FIG. 69A and the operation of FIG.
  (変形例2)
  図70に示す実施形態9の変形例2は、2つの室内ユニット(U1,U2)を空調対象の室内(3)に設置するように構成したものであり、図63に示す実施形態8の変形例2の調湿装置(150)を加湿専用機として構成した例である。この変形例では、第1室内ユニット(U1)と第2室内ユニット(U2)の両方が、図の右側の壁面に設置されている。
(Modification 2)
Modification 2 of Embodiment 9 shown in FIG. 70 is configured to install two indoor units (U1, U2) in a room (3) to be air-conditioned, and is a modification of Embodiment 8 shown in FIG. It is the example which comprised the humidity control apparatus (150) of Example 2 as a humidification exclusive machine. In this modification, both the first indoor unit (U1) and the second indoor unit (U2) are installed on the right wall surface in the figure.
  図70(A)は、第1室内ユニット(U1)で放湿動作を行い、第2室内ユニット(U2)で吸湿動作を行う状態を示している。第1室内ユニット(U1)では、調湿モジュール(24)の熱歪材料(21)に引張力が付与される。したがって、第1室内ユニット(U1)の調湿モジュール(24)が放熱し、室外から室内(3)へ流れる室外空気(OA)に水分が与えられる。そして、水分が与えられて加湿された空気が供給空気(SA)として室内(3)へ供給される。 FIG. 70 (A) shows a state in which a moisture releasing operation is performed in the first indoor unit (U1) and a moisture absorbing operation is performed in the second indoor unit (U2). In the first indoor unit (U1), a tensile force is applied to the heat strain material (21) of the humidity control module (24). Therefore, the humidity control module (24) of the first indoor unit (U1) dissipates heat, and moisture is given to the outdoor air (OA) flowing from the outdoor to the indoor (3). Then, air humidified with moisture is supplied to the room (3) as supply air (SA).
  一方、第2室内ユニット(U2)では、室内空気(RA)が室外へ排出される方向へファン(30)が回転し、同時に調湿モジュール(24)の熱歪材料(21)への引張力が解除される。したがって、空気中の水分が吸着層(23)に吸着され、減湿された空気が排出空気(EA)として室外に放出される。 On the other hand, in the second indoor unit (U2), the fan (30) rotates in the direction in which the indoor air (RA) is discharged outside, and at the same time, the tensile force of the humidity control module (24) on the heat-strain material (21) Is released. Therefore, moisture in the air is adsorbed by the adsorption layer (23), and the dehumidified air is discharged to the outside as exhaust air (EA).
  図70(B)は、第2室内ユニット(U2)で放湿動作を行い、第1室内ユニット(U1)で吸湿動作を行う状態を示している。第2室内ユニット(U2)では、調湿モジュール(24)の熱歪材料(21)に引張力が付与される。したがって、第2室内ユニット(U2)の調湿モジュール(24)が放熱し、室外から室内(3)へ流れる室外空気(OA)に水分が与えられる。そして、水分が与えられて加湿された空気が供給空気(SA)として室内(3)へ供給される。 FIG. 70B shows a state in which a moisture releasing operation is performed in the second indoor unit (U2) and a moisture absorbing operation is performed in the first indoor unit (U1). In the second indoor unit (U2), a tensile force is applied to the heat strain material (21) of the humidity control module (24). Therefore, the humidity control module (24) of the second indoor unit (U2) dissipates heat, and moisture is given to the outdoor air (OA) flowing from the outdoor to the indoor (3). Then, air humidified with moisture is supplied to the room (3) as supply air (SA).
  一方、第1室内ユニット(U1)では、室内空気(RA)が室外へ排出される方向へファン(30)が回転し、同時に調湿モジュール(24)の熱歪材料(21)への引張力が解除される。したがって、空気中の水分が吸着層(23)に吸着され、減湿された空気が排出空気(EA)として室外に放出される。 On the other hand, in the first indoor unit (U1), the fan (30) rotates in the direction in which the indoor air (RA) is discharged to the outside, and at the same time, the tensile force of the humidity control module (24) on the heat strain material (21) Is released. Therefore, moisture in the air is adsorbed by the adsorption layer (23), and the dehumidified air is discharged to the outside as exhaust air (EA).
  このように、この実施形態9の変形例2によれば、いずれか一方の室内ユニット(U1,U2)で空気を加湿して、その空気を室内(3)へ供給するときに、他方の室内ユニット(U2,U1)では吸湿動作を行う図70(A)の運転と図70(B)の運転を交互に切り換えることにより、加湿運転を連続して行うことができる。 Thus, according to the second modification of the ninth embodiment, when one of the indoor units (U1, U2) humidifies the air and supplies the air to the room (3), the other room In the units (U2, U1), the humidification operation can be continuously performed by alternately switching between the operation of FIG. 70A and the operation of FIG.
  (変形例3)
  図71に示す実施形態9の変形例3は、図64~図66に示す実施形態8の変形例3の調湿装置(150)を加湿専用機として構成した例である。この調湿装置(150)は、具体的には、図64~図66と同様に、ケーシング(10)内に2つの調湿モジュール(24a,24b)を設け、一方の調湿モジュール(24)(第1調湿モジュール(24a))を通過した空気を室内(3)に供給して他方の調湿モジュール(24)(第2調湿モジュール(24b))を通過した空気を室外へ放出する第1の運転動作と、第2調湿モジュール(24b)を通過した空気を室内(3)に供給して第1調湿モジュール(24a)を通過した空気を室外へ放出する第2の運転動作とを切り換えるように構成されている。
(Modification 3)
A third modification of the ninth embodiment shown in FIG. 71 is an example in which the humidity control apparatus (150) of the third modification of the eighth embodiment shown in FIGS. Specifically, the humidity control apparatus (150) is provided with two humidity control modules (24a, 24b) in the casing (10), as in FIGS. 64 to 66, and one humidity control module (24). The air that has passed through the first humidity control module (24a) is supplied to the room (3), and the air that has passed through the other humidity control module (24) (second humidity control module (24b)) is released to the outside of the room. The first driving operation and the second driving operation for supplying the air that has passed through the second humidity control module (24b) to the room (3) and releasing the air that has passed through the first humidity control module (24a) to the outside. And are configured to be switched.
  調湿装置(150)は、具体的には図72,73に示すように構成されている。この調湿装置(150)は、2つの調湿モジュール(24a,24b)と2つのファン(30a,30b)を1つのケーシング(10)内に収納した一体型の構成で、天井裏に設置されている。図72は、第1調湿モジュール(24a)を放湿側にして第2調湿モジュール(24b)を吸湿側にする第1の運転動作を示し、図73は、第2調湿モジュール(24b)を放湿側にして第1調湿モジュール(24a)を吸湿側にする第2の運転動作を示している。また、図72及び図73において、それぞれ、(A)図は平面構造図(装置を平面から見て内部構造を示す図)、(B)図は左側面構造図、(C)図は右側面構造図である。 The humidity control device (150) is specifically configured as shown in FIGS. This humidity control device (150) is an integrated configuration in which two humidity control modules (24a, 24b) and two fans (30a, 30b) are housed in one casing (10), and is installed behind the ceiling. ing. 72 shows a first operation operation in which the first humidity control module (24a) is set to the moisture release side and the second humidity control module (24b) is set to the moisture absorption side, and FIG. 73 shows the second humidity control module (24b). ) Is the moisture release side, and the second operation operation is shown in which the first humidity control module (24a) is the moisture absorption side. 72 and 73, (A) is a plan view (showing the internal structure when the apparatus is viewed from above), (B) is a left side view, and (C) is a right side. FIG.
  この調湿装置(150)のケーシング(10)は、四角い箱形に形成されている。このケーシング(10)の1つの側壁面には、室外空気(OA)をケーシング(10)内に取り入れる第1吸込口(11)と、室内空気(RA)をケーシング(10)内に取り入れる第2吸込口(12)が設けられている。また、上記各吸込口(11,12)が設けられている側壁面の左右の側壁面には、供給空気(SA)を室内(3)に供給する第1吹出口(13)と、排出空気(EA)を室外に排出する第2吹出口(14)が設けられている。これらの第1吸込口(11)、第2吸込口(12)、第1吹出口(13)及び第2吹出口(14)には、それぞれ図71に模式的に矢印で示すダクト(4a,4b,4c,4d)が接続されている。 The casing (10) of the humidity control device (150) is formed in a square box shape. A first suction port (11) for taking outdoor air (OA) into the casing (10) and a second air port for taking indoor air (RA) into the casing (10) are formed on one side wall surface of the casing (10). A suction port (12) is provided. Moreover, the 1st blower outlet (13) which supplies supply air (SA) to room | chamber (3), and exhaust air are in the side wall surface on either side of the side wall surface in which each said inlet (11,12) is provided. A second outlet (14) for discharging (EA) to the outside is provided. These first inlet (11), second inlet (12), first outlet (13) and second outlet (14) are respectively provided with ducts (4a, 4b, 4c, 4d) are connected.
  上記ケーシング(10)内は、上記調湿モジュール(24)が配置された調湿室(C1,C2)と、ファン(30a,30b)が配置されたファン室(C3,C4)が設けられている。調湿室(C1,C2)は、図72,図73においてケーシング(10)内の左右に隣り合って位置する第1調湿室(C1)と第2調湿室(C2)とから構成されている。上記ファン室(C3,C4)は、同じくケーシング(10)の左右に隣り合って位置する第1ファン室(C3)と第2ファン室(C4)とから構成されている。第1ファン室(C3)には給気ファン(30a)が配置され、第2ファン室(C4)には排気ファン(30b)が配置されている。 The casing (10) is provided with a humidity control chamber (C1, C2) in which the humidity control module (24) is disposed, and a fan chamber (C3, C4) in which the fans (30a, 30b) are disposed. Yes. The humidity control chambers (C1, C2) are composed of a first humidity control chamber (C1) and a second humidity control chamber (C2) that are positioned adjacent to each other in the casing (10) in FIGS. 72 and 73. ing. The fan chambers (C3, C4) are composed of a first fan chamber (C3) and a second fan chamber (C4) that are also adjacent to the left and right of the casing (10). An air supply fan (30a) is disposed in the first fan chamber (C3), and an exhaust fan (30b) is disposed in the second fan chamber (C4).
 また、上記各吸込口(11,12)と調湿室(C1,C2)の間には入口側通風室(C5,C6)が形成されている。入口側通風室(C5,C6)は、上記ケーシング(10)の上下2段に配置された第1入口側通風室(C5)と第2入口側通風室(C6)とから構成されている。第1入口側通風室(C5)には第1吸込口(11)が設けられ、第2入口側通風湿(C6)には第2吸込口(12)が設けられている。各入口側通風室(C5,C6)と各調湿室(C1,C2)との間には、開閉可能なダンパ(D1,D2,D3,D4)が1枚ずつ、合計4枚設けられている。 In addition, an inlet side ventilation chamber (C5, C6) is formed between each of the suction ports (11, 12) and the humidity control chamber (C1, C2). The inlet-side ventilation chambers (C5, C6) are composed of a first inlet-side ventilation chamber (C5) and a second inlet-side ventilation chamber (C6) arranged in two upper and lower stages of the casing (10). The first inlet side ventilation chamber (C5) is provided with a first inlet (11), and the second inlet side ventilation (C6) is provided with a second inlet (12). There are four dampers (D1, D2, D3, D4) that can be opened and closed between each inlet-side ventilation chamber (C5, C6) and each humidity control chamber (C1, C2). Yes.
  上記調湿室(C1,C2)と上記ファン室(C3,C4)との間には出口側通風室(C7,C8)が形成されている。出口側通風室(C7,C8)は、上記ケーシング(10)の上下2段に配置された第1出口側通風室(C7)と第2出口側通風室(C8)とから構成されている。各調湿室(C1,C2)と各出口側通風室(C7,C8)との間には、開閉可能なダンパ(D5,D6,D7,D8)が1枚ずつ、合計4枚設けられている。 Outlet ventilation chambers (C7, C8) are formed between the humidity control chambers (C1, C2) and the fan chambers (C3, C4). The outlet side ventilating chambers (C7, C8) are composed of a first outlet side ventilating chamber (C7) and a second outlet side ventilating chamber (C8) arranged in two upper and lower stages of the casing (10). A total of four dampers (D5, D6, D7, D8) that can be opened and closed are provided between each humidity control chamber (C1, C2) and each outlet-side ventilation chamber (C7, C8). Yes.
  各出口側通風室(C7,C8)は、上記各ファン室(C3,C4)と連通している。上記第1吹出口(13)はケーシング(10)の第1ファン室(C3)側に設けられ、上記第2吹出口(14)はケーシング(10)の第2ファン室(C4)側に設けられている。 Each outlet-side ventilation chamber (C7, C8) communicates with each fan chamber (C3, C4). The first air outlet (13) is provided on the first fan chamber (C3) side of the casing (10), and the second air outlet (14) is provided on the second fan chamber (C4) side of the casing (10). It has been.
 以上の構成においては、第1の運転動作のとき、第1ダンパ(D1)、第4ダンパ(D4)、第5ダンパ(D5)及び第8ダンパ(D8)が開かれ、第2ダンパ(D2)、第3ダンパ(D3)、第6ダンパ(D6)及び第7ダンパ(D7)は閉じられる。また、第2の運転動作のとき、第2ダンパ(D2)、第3ダンパ(D3)、第6ダンパ(D6)及び第7ダンパ(D7)が開かれ、第1ダンパ(D1)、第4ダンパ(D4)、第5ダンパ(D5)及び第8ダンパ(D8)は閉じられる。 In the above configuration, during the first driving operation, the first damper (D1), the fourth damper (D4), the fifth damper (D5), and the eighth damper (D8) are opened, and the second damper (D2 ), The third damper (D3), the sixth damper (D6) and the seventh damper (D7) are closed. In the second driving operation, the second damper (D2), the third damper (D3), the sixth damper (D6), and the seventh damper (D7) are opened, and the first damper (D1), the fourth damper are opened. The damper (D4), the fifth damper (D5) and the eighth damper (D8) are closed.
  このようにダンパ(D1~D8)の開閉状態を制御することにより、第1の運転動作においては、図72に示すように、第1吸込口(11)からケーシング(10)内に導入された室外空気が、第1ダンパ(D1)、第1調湿モジュール(24a)及び第5ダンパ(D5)を通って第1吹出口(13)から室内(3)へ供給されるとともに、第2吸込口(12)からケーシング(10)内に導入された室内空気が、第4ダンパ(D4)、第2調湿モジュール(24b)及び第8ダンパ(D8)を通って第2吹出口(14)から室外へ排出される。また、第2の運転動作においては、図73に示すように、第1吸込口(11)からケーシング(10)内に導入された室外空気が、第3ダンパ(D3)、第2調湿モジュール(24b)及び第7ダンパ(D7)を通って第1吹出口(13)から室内(3)へ供給されるとともに、第2吹出口(14)からケーシング(10)内に導入された室内空気が、第2ダンパ(D2)、第1調湿モジュール(24a)及び第6ダンパ(D6)を通って第2吹出口(14)から室外へ排出される。 By controlling the open / closed state of the dampers (D1 to D8) in this way, in the first driving operation, as shown in FIG. Outdoor air is supplied from the first outlet (13) to the room (3) through the first damper (D1), the first humidity control module (24a) and the fifth damper (D5), and the second suction. The room air introduced into the casing (10) from the mouth (12) passes through the fourth damper (D4), the second humidity control module (24b), and the eighth damper (D8) to the second outlet (14). It is discharged outside from the room. In the second operation, as shown in FIG. 73, outdoor air introduced into the casing (10) from the first suction port (11) is converted into the third damper (D3) and the second humidity control module. (24b) and the seventh damper (D7) are supplied to the room (3) from the first outlet (13) and the room air is introduced into the casing (10) from the second outlet (14). Is discharged from the second outlet (14) to the outside through the second damper (D2), the first humidity control module (24a) and the sixth damper (D6).
 そして、この実施形態9の変形例3では、ダンパの開閉状態を切り換えることにより、図72の第1運転動作と図73の第2運転動作が交互に繰り返される。 And in the modification 3 of this Embodiment 9, the 1st driving | running operation | movement of FIG. 72 and the 2nd driving | running operation | movement of FIG. 73 are repeated alternately by switching the open / close state of a damper.
  この調湿装置(150)は加湿専用機として構成されているので、室内(3)へ供給される空気が通過する調湿モジュール(24)は、第1調湿モジュール(24a)と第2調湿モジュール(24b)のどちらに切り換わっても、放湿動作が行われる方の調湿モジュール(24)である。したがって、室内(3)へは、加湿された空気が連続して供給される。また、室外へ排出される空気が通過する調湿モジュール(24)は、第2調湿モジュール(24b)と第1調湿モジュール(24a)のどちらに切り換わっても吸湿動作が行われる方の調湿モジュール(24)である。したがって、室外へ放出される空気が通過する調湿モジュール(24)は、常に吸着側となる。 Since this humidity control device (150) is configured as a dedicated humidifier, the humidity control module (24) through which air supplied to the room (3) passes is the first humidity control module (24a) and the second humidity control module. It is the humidity control module (24) on which the moisture releasing operation is performed regardless of which one of the humidity modules (24b) is switched to. Therefore, humidified air is continuously supplied to the room (3). In addition, the humidity control module (24) through which the air exhausted to the outside passes is the one that performs the moisture absorption operation regardless of whether it is switched to the second humidity control module (24b) or the first humidity control module (24a). Humidity control module (24). Therefore, the humidity control module (24) through which the air discharged to the outside passes is always on the adsorption side.
  このように、実施形態9の変形例3によれば、いずれか一方の調湿モジュール(24a,24b)で空気を加湿して、その空気を室内(3)へ供給するときに、他方の調湿モジュール(24b,24a)では吸着層(23)で空気中の水分を吸着する図72の運転と図73の運転を交互に切り換えることにより、加湿運転を連続して行うことができる。 Thus, according to the third modification of the ninth embodiment, when one of the humidity control modules (24a, 24b) humidifies the air and supplies the air to the room (3), the other conditioning In the humidity module (24b, 24a), the humidification operation can be continuously performed by alternately switching the operation of FIG. 72 and the operation of FIG. 73 in which moisture in the air is adsorbed by the adsorption layer (23).
  (変形例4)
  図74に示す実施形態9の変形例4は、ロータ式の調湿モジュール(24)を用いた調湿装置(150)に関するものである。この調湿装置(150)も、加湿専用機として構成されている。
(Modification 4)
74 of Embodiment 9 shown in FIG. 74 relates to a humidity control apparatus (150) using a rotor type humidity control module (24). This humidity control device (150) is also configured as a dedicated humidifier.
  この調湿装置(150)のケーシング(10)には、給気側通路(P1)と排気側通路(P2)が設けられている。給気側通路(P1)には給気ファン(30a)が設けられ、排気側通路(P2)には排気ファン(30b)が設けられている。上記調湿モジュール(24)は円板状に形成され、上記ケーシング(10)内で給気側通路(P1)と排気側通路(P2)に跨って配置されている。この調湿モジュール(24)は、回転軸を中心として回転することにより、給気側通路(P1)の中に位置していた部分が排気側通路(P2)の中へ移動し、排気側通路(P2)の中に位置していた部分が給気側通路(P1)の中へ移動できるように構成されている。 The casing (10) of the humidity control device (150) is provided with an air supply side passage (P1) and an exhaust side passage (P2). An air supply fan (30a) is provided in the air supply side passage (P1), and an exhaust fan (30b) is provided in the exhaust side passage (P2). The humidity control module (24) is formed in a disc shape, and is disposed across the supply side passage (P1) and the exhaust side passage (P2) in the casing (10). When the humidity control module (24) rotates about the rotation axis, the portion located in the air supply side passage (P1) moves into the exhaust side passage (P2), and the exhaust side passage The portion located in (P2) can be moved into the supply side passage (P1).
  この変形例4の調湿装置(150)では、給気側通路(P1)で放湿動作が行われ、排気側通路(P2)で吸湿動作が行われる。具体的には、調湿モジュール(24)が給気側通路(P1)に位置する部分には引張力が付与されて熱歪材料(21)が放熱して吸着剤が加熱され、吸着剤が再生されるとともに吸着剤に含まれている水分が空気に与えられる。また、調湿モジュール(24)が排気側通路(P2)に位置する部分には引張力が付与されずに熱歪材料(21)が吸熱して吸着剤が冷却され、空気中の水分が吸着剤に吸着される。 In the humidity control apparatus (150) of the fourth modification, the moisture release operation is performed in the supply side passage (P1), and the moisture absorption operation is performed in the exhaust side passage (P2). Specifically, the tensile force is applied to the part where the humidity control module (24) is located in the air supply side passage (P1), the heat-strained material (21) dissipates heat, and the adsorbent is heated. Water that is regenerated and contained in the adsorbent is given to the air. In addition, the portion where the humidity control module (24) is located in the exhaust side passage (P2) is not applied with tensile force, and the heat-strained material (21) absorbs heat to cool the adsorbent, adsorbing moisture in the air. Adsorbed to the agent.
  この実施形態では、放湿動作と吸湿動作は調湿モジュール(24)を連続的または間欠的に回転させながら行われる。したがって、調湿モジュール(24)を排気側通路(P2)で吸湿処理しながら、同時に給気側通路(P1)で放湿処理することができるから、加湿された空気を連続して室内(3)へ供給することができる。 In this embodiment, the moisture release operation and the moisture absorption operation are performed while rotating the humidity control module (24) continuously or intermittently. Therefore, the moisture conditioning module (24) can be dehumidified in the exhaust side passage (P2) and simultaneously dehumidified in the air supply side passage (P1). ).
  〈発明の実施形態10〉
  次に、本発明の実施形態10について説明する。
<Embodiment 10 of the Invention>
Next, a tenth embodiment of the present invention will be described.
  図75に示す実施形態10は、図63に示す実施形態8の変形例2に係る調湿装置(150)が除湿専用機であるのに対して、空気の冷却もできるように構成した例である。この調湿装置(150)も図63の例と同様に2つの室内ユニット(U1,U2)を備え、第1室内ユニット(U1)と第2室内ユニット(U2)の両方が図の一つの壁面(右側の壁面)に設置されている。 Embodiment 10 shown in FIG. 75 is an example in which the humidity control apparatus (150) according to Modification 2 of Embodiment 8 shown in FIG. 63 is a dedicated dehumidifying machine, but can also cool the air. is there. This humidity control device (150) also includes two indoor units (U1, U2) as in the example of FIG. 63, and both the first indoor unit (U1) and the second indoor unit (U2) are on one wall surface in the figure. It is installed on the right wall.
  この調湿装置(150)では、第1室内ユニット(U1)と第2室内ユニット(U2)に、上記調湿モジュール(24)に加えて、該調湿モジュール(24)に吸着層(23)を設けずに空気の冷却と加熱を行うように構成した冷却加熱モジュール(20)が設けられている。 In the humidity control apparatus (150), in addition to the humidity control module (24), the first indoor unit (U1) and the second indoor unit (U2) have an adsorption layer (23) in the humidity control module (24). There is provided a cooling and heating module (20) configured to cool and heat the air without providing the air.
  この実施形態10では、第1室内ユニット(U1)と第2室内ユニット(U2)のいずれについても、空気は調湿モジュール(24)と冷却加熱モジュール(20)を通過する。したがって、この調湿装置(150)では、空気の吸湿処理及び放湿処理を行うことに加えて、空気の冷却処理と加熱処理も行うことができる。 In the tenth embodiment, air passes through the humidity control module (24) and the cooling and heating module (20) for both the first indoor unit (U1) and the second indoor unit (U2). Therefore, in the humidity control apparatus (150), in addition to performing an air moisture absorption process and a moisture release process, an air cooling process and a heating process can also be performed.
  調湿モジュール(24)と冷却加熱モジュール(20)は、調湿モジュール(24)の吸湿動作時に調湿モジュール(24)が冷却加熱モジュール(20)の上流側に位置し、調湿モジュール(24)の放湿動作時には調湿モジュール(24)が冷却加熱モジュール(20)の下流側に位置するように配置されている。 The humidity control module (24) and the cooling / heating module (20) are located on the upstream side of the cooling / heating module (20) when the humidity control module (24) performs a moisture absorption operation. ) Is disposed so that the humidity control module (24) is positioned downstream of the cooling and heating module (20).
  図75(A)は、第1室内ユニット(U1)で冷却吸湿動作を行い、第2室内ユニット(U2)で加熱放湿動作を行う状態を示している。第1室内ユニット(U1)では、調湿モジュール(24)の熱歪材料(21)への引張力が解除される。したがって、第1室内ユニット(U1)の調湿モジュール(24)が吸熱し、室外から室内(3)へ流れる室外空気(OA)の水分が吸着される。また、第1室内ユニット(U1)では、冷却加熱モジュール(20)への引張力の付与も解除される。したがって、室外から室内(3)へ流れる空気が冷却される。そして、減湿されるとともに冷却された空気が供給空気(SA)として室内(3)へ供給される。 FIG. 75 (A) shows a state where the cooling and moisture absorption operation is performed in the first indoor unit (U1) and the heat and moisture discharging operation is performed in the second indoor unit (U2). In the first indoor unit (U1), the tensile force applied to the heat strain material (21) of the humidity control module (24) is released. Accordingly, the humidity control module (24) of the first indoor unit (U1) absorbs heat, and moisture of outdoor air (OA) flowing from the outdoor to the indoor (3) is adsorbed. In the first indoor unit (U1), the application of the tensile force to the cooling / heating module (20) is also released. Therefore, the air flowing from the outdoor to the indoor (3) is cooled. The dehumidified and cooled air is supplied to the room (3) as supply air (SA).
  一方、第2室内ユニット(U2)では、室内空気(RA)が室外へ排出される方向へファン(30)が回転し、同時に冷却加熱モジュール(20)の熱歪材料(21c)に引張力が付与され、調湿モジュール(24)の熱歪材料(21)にも引張力が付与される。したがって、室内(3)から室外へ向かう空気が冷却加熱モジュール(20)で加熱されてから調湿モジュール(24)を通過し、その際に調湿モジュール(24)も発熱しているので、調湿モジュール(24)の吸着層(23)に含まれている水分が空気に与えられて、該空気が排出空気(EA)として室外に放出される。このことにより、調湿モジュール(24)の吸着層(23)が再生される。 On the other hand, in the second indoor unit (U2), the fan (30) rotates in the direction in which the indoor air (RA) is discharged to the outside, and at the same time, the tensile force is applied to the heat strain material (21c) of the cooling and heating module (20). The tensile force is also applied to the heat-strain material (21) of the humidity control module (24). Therefore, the air traveling from the room (3) to the outside is heated by the cooling heating module (20) and then passes through the humidity control module (24). At that time, the humidity control module (24) also generates heat. Moisture contained in the adsorption layer (23) of the moisture module (24) is given to the air, and the air is discharged out of the room as exhaust air (EA). Thereby, the adsorption layer (23) of the humidity control module (24) is regenerated.
  図75(B)は、第2室内ユニット(U2)で冷却吸湿動作を行い、第1室内ユニット(U1)で加熱放湿動作を行う状態を示している。第2室内ユニット(U2)では、調湿モジュール(24)の熱歪材料(21)への引張力が解除される。したがって、第2室内ユニット(U2)の調湿モジュール(24)が吸熱し、室外から室内(3)へ流れる室外空気(OA)の水分が吸着される。また、第2室内ユニット(U2)では、冷却加熱モジュール(20)の熱歪材料(21c)への引張力の付与も解除される。したがって、室外から室内(3)へ流れる空気が冷却される。そして、減湿されるとともに冷却された空気が供給空気(SA)として室内(3)へ供給される。 FIG. 75 (B) shows a state where the cooling and moisture absorption operation is performed in the second indoor unit (U2) and the heating and moisture releasing operation is performed in the first indoor unit (U1). In the second indoor unit (U2), the tensile force on the heat-strain material (21) of the humidity control module (24) is released. Therefore, the humidity control module (24) of the second indoor unit (U2) absorbs heat, and moisture of outdoor air (OA) flowing from the outdoor to the indoor (3) is adsorbed. In the second indoor unit (U2), the application of the tensile force to the heat strain material (21c) of the cooling and heating module (20) is also released. Therefore, the air flowing from the outdoor to the indoor (3) is cooled. The dehumidified and cooled air is supplied to the room (3) as supply air (SA).
  一方、第1室内ユニット(U1)では、室内空気(RA)が室外へ排出される方向へファン(30)が回転し、同時に冷却加熱モジュール(20)の熱歪材料(21c)に引張力が付与され、調湿モジュール(24)の熱歪材料(21)にも引張力が付与される。したがって、室内(3)から室外へ向かう空気が冷却加熱モジュール(20)で加熱されてから調湿モジュール(24)を通過し、その際に調湿モジュール(24)も発熱しているので、調湿モジュール(24)の吸着層(23)に含まれている水分が空気に与えられて、該空気が排出空気(EA)として室外に放出される。このことにより、調湿モジュール(24)の吸着層(23)が再生される。 On the other hand, in the first indoor unit (U1), the fan (30) rotates in the direction in which the indoor air (RA) is discharged to the outside, and at the same time, a tensile force is applied to the heat strain material (21c) of the cooling and heating module (20). The tensile force is also applied to the heat-strain material (21) of the humidity control module (24). Therefore, the air traveling from the room (3) to the outside is heated by the cooling and heating module (20) and then passes through the humidity control module (24). At that time, the humidity control module (24) also generates heat. Moisture contained in the adsorption layer (23) of the moisture module (24) is given to the air, and the air is discharged to the outside as exhaust air (EA). Thereby, the adsorption layer (23) of the humidity control module (24) is regenerated.
  このように、実施形態10によれば、いずれか一方の室内ユニット(U1,U2)で空気の減湿と冷却を行って、その空気を室内(3)へ供給するときに、他方の室内ユニット(U2,U1)では空気の加熱と吸着層(23)の再生を行う図75(A)の運転と図75(B)の運転を交互に切り換えることにより、除湿冷房運転を連続して行うことができる。 Thus, according to Embodiment 10, when one of the indoor units (U1, U2) dehumidifies and cools the air and supplies the air to the room (3), the other indoor unit In (U2, U1), the dehumidifying and cooling operation is continuously performed by alternately switching between the operation of FIG. 75 (A) and the operation of FIG. 75 (B) in which air is heated and the adsorption layer (23) is regenerated. Can do.
  なお、この実施形態では、空気の流れに対して調湿モジュール(24)と冷却加熱モジュール(20)を直列に配置して、潜熱処理をした室外空気をさらに顕熱処理して室内に供給するようにしているが、調湿モジュール(24)と冷却加熱モジュール(20)を並列に配置して、潜熱処理をした室外空気と顕熱処理をした室外空気を混合して室内に供給するようにしてもよい。このように構成してもよいことは、以下の変形例においても同様である。 In this embodiment, the humidity control module (24) and the cooling and heating module (20) are arranged in series with respect to the air flow so that the outdoor air subjected to the latent heat treatment is further subjected to the sensible heat treatment and supplied to the room. However, the humidity control module (24) and the cooling and heating module (20) are arranged in parallel so that the outdoor air subjected to the latent heat treatment and the outdoor air subjected to the sensible heat treatment are mixed and supplied to the room. Good. This configuration may be the same in the following modifications.
  -実施形態10の変形例-
  (変形例1)
  図76に示す実施形態10の変形例1は、ロータ式の調湿モジュール(24)を用いた調湿装置(150)に関するものである。この調湿装置(150)は、ロータ式の調湿モジュール(24)に加えて、ロータ式の冷却加熱モジュール(20)も備え、除湿冷房を行えるように構成されている。
-Modification of Embodiment 10-
(Modification 1)
Modification 1 of Embodiment 10 shown in FIG. 76 relates to a humidity control apparatus (150) using a rotor type humidity control module (24). The humidity control apparatus (150) includes a rotor-type cooling and heating module (20) in addition to the rotor-type humidity control module (24), and is configured to perform dehumidification cooling.
  この調湿装置(150)のケーシング(10)には、給気側通路(P1)と排気側通路(P2)が設けられている。給気側通路(P1)には給気ファン(30a)が設けられ、排気側通路(P2)には排気ファン(30b)が設けられている。上記調湿モジュール(24)は円板状に形成され、上記ケーシング(10)内で給気側通路(P1)と排気側通路(P2)に跨って配置されている。この調湿モジュール(24)は、回転軸を中心として回転することにより、給気側通路(P1)の中に位置していた部分が排気側通路(P2)の中へ移動し、排気側通路(P2)の中に位置していた部分が給気側通路(P1)の中へ移動できるように構成されている。 The casing (10) of the humidity control device (150) is provided with an air supply side passage (P1) and an exhaust side passage (P2). An air supply fan (30a) is provided in the air supply side passage (P1), and an exhaust fan (30b) is provided in the exhaust side passage (P2). The humidity control module (24) is formed in a disc shape, and is disposed across the supply side passage (P1) and the exhaust side passage (P2) in the casing (10). When the humidity control module (24) rotates about the rotation axis, the portion located in the air supply side passage (P1) moves into the exhaust side passage (P2), and the exhaust side passage The portion located in (P2) can be moved into the supply side passage (P1).
  また、冷却加熱モジュール(20)も円板状に形成され、上記ケーシング(10)内で給気側通路(P1)と排気側通路(P2)に跨って配置されている。この冷却加熱モジュール(20)は、回転軸を中心として回転することにより、給気側通路(P1)の中に位置していた部分が排気側通路(P2)の中へ移動し、排気側通路(P2)の中に位置していた部分が給気側通路(P1)の中へ移動できるように構成されている。 In addition, the cooling and heating module (20) is also formed in a disk shape, and is disposed across the air supply side passage (P1) and the exhaust side passage (P2) in the casing (10). The cooling and heating module (20) rotates about the rotation axis, so that the portion located in the supply side passage (P1) moves into the exhaust side passage (P2), and the exhaust side passage The portion located in (P2) can be moved into the supply side passage (P1).
  この変形例1の調湿装置(150)では、給気側通路(P1)で冷却吸湿動作が行われ、排気側通路(P2)で加熱放湿動作が行われる。具体的には、調湿モジュール(24)が給気側通路(P1)に位置する部分には引張力が付与されずに熱歪材料(21)が吸熱して吸着層(23)が冷却され、室外空気(OA)中の水分が吸着層(23)に吸着される。また、冷却加熱モジュール(20)が給気側通路(P1)に位置する部分には引張力が付与されずに熱歪材料(21c)が吸熱し、空気が冷却される。そして、減湿されて冷却された空気が供給空気(SA)として室内(3)に供給される。 In the humidity control apparatus (150) of the first modification, the cooling and moisture absorption operation is performed in the supply side passage (P1), and the heating and dehumidifying operation is performed in the exhaust side passage (P2). Specifically, the tensile force is not applied to the portion where the humidity control module (24) is located in the supply side passage (P1), and the heat-strain material (21) absorbs heat and the adsorption layer (23) is cooled. The water in the outdoor air (OA) is adsorbed by the adsorption layer (23). Further, the portion where the cooling and heating module (20) is located in the supply side passage (P1) is not applied with a tensile force, and the heat strain material (21c) absorbs heat, thereby cooling the air. The dehumidified and cooled air is supplied to the room (3) as supply air (SA).
  一方、冷却加熱モジュール(20)が排気側通路(P2)に位置する部分には引張力が付与されて熱歪材料(21c)が放熱し、室内(3)から室外へ向かう室内空気(RA)が加熱される。また、調湿モジュール(24)が排気側通路(P2)に位置する部分には引張力が付与されて熱歪材料(21)が放熱して吸着層(23)が加熱され、吸着層(23)に含まれている水分が室内空気(RA)に放出されて吸着層(23)が再生される。そして、水分の与えられた空気が排出空気(EA)として室外へ放出される。 On the other hand, a tensile force is applied to the part where the cooling and heating module (20) is located in the exhaust side passage (P2), and the heat-strained material (21c) dissipates heat, and the room air (RA) that goes from the room (3) to the outside Is heated. Further, a tensile force is applied to the portion where the humidity control module (24) is located in the exhaust side passage (P2), the heat-strain material (21) dissipates heat, and the adsorption layer (23) is heated, and the adsorption layer (23 ) Is released into the room air (RA) to regenerate the adsorption layer (23). Then, the moisture-supplied air is discharged out of the room as exhaust air (EA).
  この変形例では、冷却吸湿動作と加熱放湿動作は調湿モジュール(24)と冷却加熱モジュール(20)を連続的または間欠的に回転させながら行われる。したがって、調湿モジュール(24)を排気側通路(P2)で再生しながら、同時に給気側通路(P1)で吸湿冷却処理することができるから、減湿かつ冷却された空気を連続して室内(3)へ供給することができる。 In this modified example, the cooling moisture absorption operation and the heating moisture releasing operation are performed while rotating the humidity control module (24) and the cooling heating module (20) continuously or intermittently. Therefore, since the humidity control module (24) can be regenerated in the exhaust side passage (P2) and simultaneously subjected to moisture absorption cooling in the air supply side passage (P1), the dehumidified and cooled air is continuously supplied to the room. (3) can be supplied.
  (変形例2)
  図77に示す実施形態10の変形例2は、図75に示した実施形態10に係る調湿装置(150)が除湿冷房機であるのに対して、加湿暖房機として構成した例である。この変形例においても、第1室内ユニット(U1)と第2室内ユニット(U2)の両方が、図の右側の壁面に設置されている。
(Modification 2)
A second modification of the tenth embodiment shown in FIG. 77 is an example in which the humidity control apparatus (150) according to the tenth embodiment shown in FIG. 75 is a dehumidifying air conditioner, whereas the humidifying heater is used. Also in this modification, both the first indoor unit (U1) and the second indoor unit (U2) are installed on the right wall surface in the figure.
  この調湿装置(150)においても、第1室内ユニット(U1)と第2室内ユニット(U2)に、上記調湿モジュール(24)に加えて、該調湿モジュール(24)に吸着層(23)を設けずに空気の冷却と加熱を行うように構成した冷却加熱モジュール(20)が設けられている。冷却加熱モジュール(20)では、引張力を付与すると空気を加熱することができ、引張力を解除すると空気を冷却することができる。 In the humidity control apparatus (150), in addition to the humidity control module (24), the first indoor unit (U1) and the second indoor unit (U2) have an adsorption layer (23 Is provided with a cooling and heating module (20) configured to cool and heat the air without being provided. In the cooling and heating module (20), when a tensile force is applied, the air can be heated, and when the tensile force is released, the air can be cooled.
  第1室内ユニット(U1)と第2室内ユニット(U2)は、図75の実施形態10と同様に構成されている。 The first indoor unit (U1) and the second indoor unit (U2) are configured in the same manner as in the tenth embodiment of FIG.
  図77(A)は、第1室内ユニット(U1)で加熱放湿動作を行い、第2室内ユニット(U2)で冷却吸湿動作を行う状態を示している。第1室内ユニット(U1)では、調湿モジュール(24)の熱歪材料(21)に引張力が付与される。したがって、第1室内ユニット(U1)の調湿モジュール(24)が放熱し、室外から室内(3)へ流れる室外空気(OA)に水分が与えられる。また、第1室内ユニット(U1)では、冷却加熱モジュール(20)へも引張力が付与される。したがって、室外から室内(3)へ流れる室外空気(OA)が加熱される。そして、加湿されるとともに加熱された空気が供給空気(SA)として室内(3)へ供給される。 FIG. 77 (A) shows a state where the heat and moisture releasing operation is performed in the first indoor unit (U1) and the cooling and moisture absorbing operation is performed in the second indoor unit (U2). In the first indoor unit (U1), a tensile force is applied to the heat strain material (21) of the humidity control module (24). Therefore, the humidity control module (24) of the first indoor unit (U1) dissipates heat, and moisture is given to the outdoor air (OA) flowing from the outdoor to the indoor (3). In the first indoor unit (U1), a tensile force is also applied to the cooling and heating module (20). Accordingly, outdoor air (OA) flowing from the outdoor to the indoor (3) is heated. Then, humidified and heated air is supplied to the room (3) as supply air (SA).
  一方、第2室内ユニット(U2)では、室内空気(RA)が室外へ排出される方向へファン(30)が回転し、同時に冷却加熱モジュール(20)の熱歪材料(21c)への引張力の付与が解除され、調湿モジュール(24)の熱歪材料(21)への引張力の付与も解除される。したがって、室内(3)から室外へ向かう室内空気(RA)が冷却加熱モジュール(20)で冷却されてから調湿モジュール(24)を通過する。その際に、調湿モジュール(24)も吸熱しているので、調湿モジュール(24)の吸着層(23)に室内空気(RA)中の水分が吸着されて、該空気が排出空気(EA)として室外に放出される。 On the other hand, in the second indoor unit (U2), the fan (30) rotates in the direction in which the indoor air (RA) is discharged outside, and at the same time, the tensile force of the cooling and heating module (20) on the heat-strained material (21c) Is released, and the application of tensile force to the heat-strain material (21) of the humidity control module (24) is also released. Therefore, indoor air (RA) heading from the room (3) to the outside is cooled by the cooling and heating module (20) and then passes through the humidity control module (24). At this time, since the humidity control module (24) also absorbs heat, moisture in the room air (RA) is adsorbed to the adsorption layer (23) of the humidity control module (24), and the air is discharged into the exhaust air (EA ) Is released to the outdoors.
  図77(B)は、第2室内ユニット(U2)で加熱放湿動作を行い、第1室内ユニット(U1)で冷却吸湿動作を行う状態を示している。第2室内ユニット(U2)では、調湿モジュール(24)の熱歪材料(21)に引張力が付与される。したがって、第2室内ユニット(U2)の調湿モジュール(24)が発熱し、室外から室内(3)へ流れる室外空気(OA)に水分が与えられる。また、第2室内ユニット(U2)では、冷却加熱モジュール(20)にも引張力が付与される。したがって、室外から室内(3)へ流れる室外空気(OA)が加熱される。そして、加湿されるとともに加熱された空気が供給空気(SA)として室内(3)へ供給される。 FIG. 77 (B) shows a state where the heat and moisture releasing operation is performed in the second indoor unit (U2) and the cooling and moisture absorbing operation is performed in the first indoor unit (U1). In the second indoor unit (U2), a tensile force is applied to the heat strain material (21) of the humidity control module (24). Therefore, the humidity control module (24) of the second indoor unit (U2) generates heat, and moisture is given to the outdoor air (OA) flowing from the outdoor to the indoor (3). In the second indoor unit (U2), a tensile force is also applied to the cooling and heating module (20). Accordingly, outdoor air (OA) flowing from the outdoor to the indoor (3) is heated. Then, humidified and heated air is supplied to the room (3) as supply air (SA).
  一方、第1室内ユニット(U1)では、室内空気(RA)が室外へ排出される方向へファン(30)が回転し、同時に冷却加熱モジュール(20)の熱歪材料(21c)への引張力の付与が解除され、調湿モジュール(24)の熱歪材料(21)への引張力の付与も解除される。したがって、室内(3)から室外へ向かう室内空気(RA)が冷却加熱モジュール(20)で冷却されてから調湿モジュール(24)を通過する。その際に、調湿モジュール(24)も吸熱しているので、調湿モジュール(24)の吸着層(23)に室内空気(RA)中の水分が吸着されて、該空気が排出空気(EA)として室外に放出される。 On the other hand, in the first indoor unit (U1), the fan (30) rotates in the direction in which the indoor air (RA) is discharged to the outside, and at the same time, the tensile force of the cooling heating module (20) on the heat strain material (21c) Is released, and the application of tensile force to the heat-strain material (21) of the humidity control module (24) is also released. Therefore, indoor air (RA) heading from the room (3) to the outside is cooled by the cooling and heating module (20) and then passes through the humidity control module (24). At this time, since the humidity control module (24) also absorbs heat, moisture in the room air (RA) is adsorbed to the adsorption layer (23) of the humidity control module (24), and the air is discharged into the exhaust air (EA ) Is released to the outdoors.
  この実施形態10の変形例2によれば、いずれか一方の室内ユニット(U1,U2)で空気の加湿と加熱を行って、その空気を室内(3)へ供給するときに、他方の室内ユニット(U2,U1)では空気の冷却と吸着層(23)での吸湿を行う図77(A)の運転と図77(B)の運転を交互に切り換えることにより、加湿暖房運転を連続して行うことができる。 According to the second modification of the tenth embodiment, when one of the indoor units (U1, U2) performs humidification and heating of the air and supplies the air to the room (3), the other indoor unit In (U2, U1), the humidification heating operation is continuously performed by alternately switching between the operation of FIG. 77 (A) and the operation of FIG. 77 (B) for cooling the air and absorbing moisture in the adsorption layer (23). be able to.
  (変形例3)
  図78に示す実施形態10の変形例3は、図76に示す変形例1に係る調湿装置(150)が除湿冷房機であるのに対して、加湿暖房機として構成した例である。この変形例においても、ロータ式の調湿モジュール(24)に加えて、ロータ式の冷却加熱モジュール(20)が用いられている。
(Modification 3)
Modification 3 of Embodiment 10 shown in FIG. 78 is an example configured as a humidifying heater while the humidity control apparatus (150) according to Modification 1 shown in FIG. 76 is a dehumidifying air conditioner. Also in this modification, a rotor type cooling and heating module (20) is used in addition to the rotor type humidity control module (24).
  この調湿装置(150)のケーシング(10)、調湿モジュール(24)及び冷却加熱モジュール(20)は図76と同様に構成されている。 The casing (10), humidity control module (24), and cooling / heating module (20) of the humidity control apparatus (150) are configured in the same manner as in FIG.
  具体的には、調湿装置(150)のケーシング(10)に、給気側通路(P1)と排気側通路(P2)が設けられている。給気側通路(P1)には給気ファン(30a)が設けられ、排気側通路(P2)には排気ファン(30b)が設けられている。上記調湿モジュール(24)は円板状に形成され、上記ケーシング(10)内で給気側通路(P1)と排気側通路(P2)に跨って配置されている。この調湿モジュール(24)は、回転軸を中心として回転することにより、給気側通路(P1)の中に位置していた部分が排気側通路(P2)の中へ移動し、排気側通路(P2)の中に位置していた部分が給気側通路(P1)の中へ移動できるように構成されている。また、冷却加熱モジュール(20)も円板状に形成され、上記ケーシング(10)内で給気側通路(P1)と排気側通路(P2)に跨って配置されている。この冷却加熱モジュール(20)は、回転軸を中心として回転することにより、給気側通路(P1)の中に位置していた部分が排気側通路(P2)の中へ移動し、排気側通路(P2)の中に位置していた部分が給気側通路(P1)の中へ移動できるように構成されている。 Specifically, an air supply side passage (P1) and an exhaust side passage (P2) are provided in the casing (10) of the humidity control device (150). An air supply fan (30a) is provided in the air supply side passage (P1), and an exhaust fan (30b) is provided in the exhaust side passage (P2). The humidity control module (24) is formed in a disc shape, and is disposed across the supply side passage (P1) and the exhaust side passage (P2) in the casing (10). When the humidity control module (24) rotates about the rotation axis, the portion located in the air supply side passage (P1) moves into the exhaust side passage (P2), and the exhaust side passage The portion located in (P2) can be moved into the supply side passage (P1). The cooling and heating module (20) is also formed in a disc shape, and is disposed across the supply side passage (P1) and the exhaust side passage (P2) in the casing (10). The cooling and heating module (20) rotates about the rotation axis, so that the portion located in the supply side passage (P1) moves into the exhaust side passage (P2), and the exhaust side passage The portion located in (P2) can be moved into the supply side passage (P1).
  この変形例3の調湿装置(150)では、給気側通路(P1)で加熱放湿動作が行われ、排気側通路(P2)で冷却吸湿動作が行われる。具体的には、調湿モジュール(24)が給気側通路(P1)に位置する部分には、引張力が付与されることにより熱歪材料(21)が発熱して吸着剤が加熱され、吸着剤に吸着されている水分が空気に与えられる。また、冷却加熱モジュール(20)が給気側通路(P1)に位置する部分には、引張力が付与されることにより熱歪材料(21c)が発熱し、空気が加熱される。 In the humidity control apparatus (150) of the third modification, the heat and moisture releasing operation is performed in the supply side passage (P1), and the cooling and moisture absorption operation is performed in the exhaust side passage (P2). Specifically, the portion where the humidity control module (24) is located in the air supply side passage (P1) is heated by the tensile strain and heat distortion material (21) generates heat, and the adsorbent is heated. Moisture adsorbed by the adsorbent is given to the air. Further, the portion where the cooling and heating module (20) is positioned in the air supply side passage (P1) is given a tensile force, whereby the thermostrictive material (21c) generates heat and the air is heated.
  一方、冷却加熱モジュール(20)が排気側通路(P2)に位置する部分には、引張力の付与が解除されて熱歪材料(21c)が吸熱して、室内(3)から室外へ向かう空気が冷却される。また、調湿モジュール(24)が排気側通路(P2)に位置する部分には、引張力の付与が解除されて熱歪材料(21)が吸熱して吸着剤が冷却され、空気中の水分が吸着剤に吸着される。 On the other hand, in the part where the cooling and heating module (20) is located in the exhaust side passage (P2), the application of tensile force is released and the heat-strained material (21c) absorbs heat, and the air that goes from the room (3) to the outside Is cooled. In addition, in the part where the humidity control module (24) is located in the exhaust side passage (P2), the application of tensile force is released, the heat-strained material (21) absorbs heat and the adsorbent is cooled, and the moisture in the air Is adsorbed by the adsorbent.
  この実施形態10の変形例3では、加熱放湿動作と冷却吸湿動作は調湿モジュール(24)を連続的または間欠的に回転させながら行われる。したがって、調湿モジュール(24)に排気側通路(P2)で水分を与えながら、同時に給気側通路(P1)で放湿加熱処理することができるから、加熱加湿された空気を連続して室内(3)へ供給する加湿暖房運転を行うことができる。 In the third modification of the tenth embodiment, the heat moisture release operation and the cooling moisture absorption operation are performed while rotating the humidity control module (24) continuously or intermittently. Therefore, moisture can be supplied to the humidity control module (24) in the exhaust side passage (P2) and at the same time, the moisture supply heat treatment can be performed in the air supply side passage (P1). Humidification heating operation to supply to (3) can be performed.
  〈発明の実施形態11〉
  本発明の実施形態11について説明する。
<Embodiment 11 of the Invention>
Embodiment 11 of the present invention will be described.
  この実施形態11の調湿装置(150)は、図57及び図68に示す調湿装置(150)において、調湿モジュール(24)で吸湿処理した空気を室内(3)に導入する除湿動作と、調湿モジュール(24)で放湿処理した空気を室内(3)に導入する加湿動作とを切り換え可能に構成したものである。 The humidity control apparatus (150) of the eleventh embodiment includes a dehumidifying operation for introducing the air absorbed by the humidity control module (24) into the room (3) in the humidity control apparatus (150) shown in FIGS. The humidifying operation for introducing the air dehumidified by the humidity control module (24) into the room (3) is switchable.
  例えば、図57の調湿装置(150)において、室外から室内(3)へ空気を供給するときに、図57(A)に示すように調湿モジュール(24)の熱歪材料(21)への引張力を解除する運転と、図68(A)に示すように調湿モジュール(24)の熱歪材料(21)に引張力を付与する運転とを切り換え可能に構成され、室内(3)から室外へ空気を放出するときに、図57(B)に示すように調湿モジュール(24)に引張力を付与する運転と、図68(B)に示すように調湿モジュール(24)への引張力を解除する運転とを切り換え可能に構成される。 For example, in the humidity control apparatus (150) of FIG. 57, when air is supplied from the outside to the room (3), as shown in FIG. 57 (A), to the heat strain material (21) of the humidity control module (24). It is possible to switch between the operation of releasing the tensile force and the operation of applying the tensile force to the heat strain material (21) of the humidity control module (24) as shown in FIG. 68 (A). When releasing air from the room to the outside, the operation of applying a tensile force to the humidity control module (24) as shown in FIG. 57 (B) and the humidity control module (24) as shown in FIG. 68 (B). It is configured to be able to switch between the operation of releasing the tensile force of
  このように構成すれば、1つの調湿モジュール(24)を備えた室内ユニット(U)を有する調湿装置(150)において、室内(3)を間欠的に除湿する運転と、室内(3)を間欠的に加湿する運転とを切り換えて行うことが可能になる。 If comprised in this way, in the humidity control apparatus (150) which has an indoor unit (U) provided with one humidity control module (24), the operation | movement which dehumidifies indoor (3) intermittently, and indoor (3) It is possible to switch between the operation of intermittently humidifying the operation.
  -実施形態11の変形例-
  (変形例1)
  実施形態11の変形例1は、図62及び図69の調湿装置(150)において、引張力の付与状態を切り換えることにより、図62(A)の運転と図69(A)の運転とを切り換え可能に構成するとともに、図62(B)の運転と図62(B)の運転とを切り換え可能に構成したものである。装置の基本的な構成は図62及び図69と同様であるため、具体的な説明は省略する。
-Modification of Embodiment 11-
(Modification 1)
In the first modification of the eleventh embodiment, the operation of FIG. 62 (A) and the operation of FIG. 69 (A) are switched by switching the application state of the tensile force in the humidity control apparatus (150) of FIGS. In addition to being configured to be switchable, the operation of FIG. 62 (B) and the operation of FIG. 62 (B) can be switched. Since the basic configuration of the apparatus is the same as that shown in FIGS. 62 and 69, a specific description is omitted.
  この調湿装置(150)において、図62(A),(B)の運転では、室外から室内(3)へ供給される空気が通過する調湿モジュール(24)への引張力が解除され、室内(3)から室外へ排出される空気が通過する調湿モジュール(24)へ引張力が付与される。また、図69(A),(B)の運転では、室外から室内(3)へ供給される空気が通過する調湿モジュール(24)に引張力が付与され、室内(3)から室外へ排出される空気が通過する調湿モジュール(24)への引張力が解除される。 In the humidity control apparatus (150), in the operation of FIGS. 62 (A) and (B), the tensile force to the humidity control module (24) through which the air supplied from the outside to the room (3) passes is released, A tensile force is applied to the humidity control module (24) through which the air discharged from the room (3) to the outside passes. 69 (A) and 69 (B), a tensile force is applied to the humidity control module (24) through which air supplied from the outside to the room (3) passes, and the air is discharged from the room (3) to the outside. The tensile force applied to the humidity control module (24) through which the air passes is released.
  このように構成すれば、2つの室内ユニット(U1,U2)を部屋の対向する壁面に設置した調湿装置(150)において、室内(3)を連続的に除湿する運転と、室内(3)を連続的に加湿する運転とを切り換えて行うことが可能になる。 If comprised in this way, in the humidity control apparatus (150) which installed two indoor units (U1, U2) in the wall surface which opposes a room, the operation | movement which dehumidifies a room (3) continuously, and a room (3) It is possible to switch between the operation of continuously humidifying the operation.
  (変形例2)
  実施形態11の変形例2は、図63及び図70の調湿装置(150)において、引張力の付与状態を切り換えることにより、図63(A)の運転と図70(A)の運転とを切り換え可能に構成するとともに、図63(B)の運転と図70(B)の運転とを切り換え可能に構成したものである。装置の基本的な構成は図63及び図70と同様であるため、具体的な説明は省略する。
(Modification 2)
In the second modification of the eleventh embodiment, the operation of FIG. 63 (A) and the operation of FIG. 70 (A) are switched by switching the application state of the tensile force in the humidity control apparatus (150) of FIGS. In addition to being configured to be switchable, the operation of FIG. 63 (B) and the operation of FIG. 70 (B) can be switched. Since the basic configuration of the apparatus is the same as that shown in FIGS. 63 and 70, a detailed description thereof will be omitted.
  この調湿装置(150)において、図63(A),(B)の運転では、室外から室内(3)へ供給される空気が通過する調湿モジュール(24)への引張力が解除され、室内(3)から室外へ排出される空気が通過する調湿モジュール(24)へ引張力が付与される。また、図70(A),(B)の運転では、室外から室内(3)へ供給される空気が通過する調湿モジュール(24)に引張力が付与され、室内(3)から室外へ排出される空気が通過する調湿モジュール(24)への引張力が解除される。 In the humidity control apparatus (150), in the operation of FIGS. 63 (A) and 63 (B), the tensile force to the humidity control module (24) through which the air supplied from the outside to the room (3) passes is released, A tensile force is applied to the humidity control module (24) through which the air discharged from the room (3) to the outside passes. 70A and 70B, tensile force is applied to the humidity control module (24) through which air supplied from the outside to the room (3) passes, and the air is discharged from the room (3) to the outside. The tensile force applied to the humidity control module (24) through which the air passes is released.
  このように構成すれば、2つの室内ユニット(U1,U2)を部屋の一方の壁面に設置した調湿装置(150)において、室内(3)を連続的に除湿する運転と、室内(3)を連続的に加湿する運転とを切り換えて行うことが可能になる。 If comprised in this way, in the humidity control apparatus (150) which installed two indoor units (U1, U2) on the one wall surface of the room, the operation | movement which dehumidifies indoor (3) continuously, and indoor (3) It is possible to switch between the operation of continuously humidifying the operation.
  (変形例3)
  実施形態11の変形例3は、図64~図66及び図71~図73の調湿装置(150)において、引張力の付与状態を切り換えることにより、図65の運転と図72の運転とを切り換え可能に構成するとともに、図66の運転と図73の運転とを切り換え可能に構成したものである。装置の基本的な構成は図64~図66及び図71~図73と同様であるため、具体的な説明は省略する。
(Modification 3)
In the third modification of the eleventh embodiment, the operation of FIG. 65 and the operation of FIG. 72 are performed by switching the application state of the tensile force in the humidity control apparatus (150) of FIGS. 64 to 66 and 71 to 73. In addition to being configured to be switchable, the operation of FIG. 66 and the operation of FIG. 73 can be switched. Since the basic configuration of the apparatus is the same as that shown in FIGS. 64 to 66 and 71 to 73, a detailed description thereof will be omitted.
  この調湿装置(150)において、図65,66の運転では、室外から室内(3)へ供給される空気が通過する調湿モジュール(24)への引張力が解除され、室内(3)から室外へ排出される空気が通過する調湿モジュール(24)へ引張力が付与される。また、図72,73の運転では、室外から室内(3)へ供給される空気が通過する調湿モジュール(24)に引張力が付与され、室内(3)から室外へ排出される空気が通過する調湿モジュール(24)への引張力が解除される。 In the humidity control apparatus (150), in the operation of FIGS. 65 and 66, the tensile force to the humidity control module (24) through which air supplied from the outside to the room (3) passes is released, and the room (3) A tensile force is applied to the humidity control module (24) through which the air discharged to the outside passes. 72 and 73, tensile force is applied to the humidity control module (24) through which air supplied from the outside to the room (3) passes, and air discharged from the room (3) to the outside passes. The tensile force to the humidity control module (24) is released.
  このように構成すれば、2つの調湿モジュール(24)を備えたケーシング(10)内で空気の流通経路を切り換え可能なユニットを用いた調湿装置(150)において、室内(3)を連続的に除湿する運転と、室内(3)を連続的に加湿する運転とを切り換えて行うことが可能になる。 If comprised in this way, in the humidity control apparatus (150) using the unit which can switch the distribution | circulation path | route of air within the casing (10) provided with two humidity control modules (24), indoor (3) is continued. Thus, it is possible to switch between the operation of dehumidifying automatically and the operation of continuously humidifying the room (3).
  (変形例4)
  実施形態11の変形例4は、図67の調湿装置(150)と図74の調湿装置(150)を1つの装置として構成し、引張力の付与状態を切り換えることにより、図67の運転と図74の運転を切り換え可能に構成したものである。装置の基本的な構成は図67及び図74と同様であるため、具体的な説明は省略する。
(Modification 4)
In the fourth modification of the eleventh embodiment, the humidity control device (150) of FIG. 67 and the humidity control device (150) of FIG. 74 are configured as one device, and the operation of FIG. And the operation shown in FIG. 74 can be switched. Since the basic configuration of the apparatus is the same as that shown in FIGS. 67 and 74, a detailed description thereof is omitted.
  この調湿装置(150)において、図67の運転では、室外から室内(3)へ供給される空気が通過する部分において調湿モジュール(24)への引張力が解除され、室内(3)から室外へ排出される空気が通過する部分において調湿モジュール(24)へ引張力が付与される。また、図74の運転では、室外から室内(3)へ供給される空気が通過する部分において調湿モジュール(24)に引張力が付与され、室内(3)から室外へ排出される空気が通過する部分において調湿モジュール(24)への引張力が解除される。 In the humidity control apparatus (150), in the operation of FIG. 67, the tensile force to the humidity control module (24) is released at the portion where the air supplied from the outside to the room (3) passes, and from the room (3) A tensile force is applied to the humidity control module (24) in a portion through which air discharged to the outside passes. Further, in the operation of FIG. 74, a tensile force is applied to the humidity control module (24) at a portion where the air supplied from the outside to the room (3) passes, and the air discharged from the room (3) to the outside passes. The tensile force applied to the humidity control module (24) is released at the portion to be operated.
  このように構成すれば、ロータ式の調湿モジュール(24)を備えた調湿装置(150)において、室内(3)を連続的に除湿する運転と、室内(3)を連続的に加湿する運転とを切り換えて行うことが可能になる。 If comprised in this way, in the humidity control apparatus (150) provided with the rotor-type humidity control module (24), the operation | movement which dehumidifies indoor (3) continuously, and humidifies indoor (3) continuously It becomes possible to switch between operation.
 (変形例5)
  実施形態11の変形例5は、図75及び図76の調湿装置(150)において、引張力の付与状態を切り換えることにより、図75(A)の運転と図76(A)の運転とを切り換え可能に構成するとともに、図75(B)の運転と図77(B)の運転とを切り換え可能に構成したものである。装置の基本的な構成は図75及び図77と同様であるため、具体的な説明は省略する。
(Modification 5)
In the fifth modification of the eleventh embodiment, the operation of FIG. 75A and the operation of FIG. 76A are performed by switching the application state of the tensile force in the humidity control apparatus 150 of FIGS. 75 and 76. In addition to being configured to be switchable, the operation of FIG. 75 (B) and the operation of FIG. 77 (B) can be switched. Since the basic configuration of the apparatus is the same as that shown in FIGS. 75 and 77, the detailed description is omitted.
  この調湿装置(150)において、図75(A),(B)の運転では、室外から室内(3)へ供給される空気が通過する調湿モジュール(24)と冷却加熱モジュール(20)への引張力が解除され、室内(3)から室外へ排出される空気が通過する調湿モジュール(24)と冷却加熱モジュール(20)へ引張力が付与される。また、図77(A),(B)の運転では、室外から室内(3)へ供給される空気が通過する調湿モジュール(24)と冷却加熱モジュール(20)に引張力が付与され、室内(3)から室外へ排出される空気が通過する調湿モジュール(24)と冷却加熱モジュール(20)への引張力が解除される。 In the humidity control apparatus (150), in the operation of FIGS. 75 (A) and 75 (B), to the humidity control module (24) and the cooling / heating module (20) through which air supplied from the outside to the room (3) passes. The tensile force is released, and the tensile force is applied to the humidity control module (24) and the cooling and heating module (20) through which the air discharged from the room (3) to the outside passes. 77 (A) and 77 (B), a tensile force is applied to the humidity control module (24) and the cooling / heating module (20) through which the air supplied from the outside to the room (3) passes. The tension on the humidity control module (24) and the cooling / heating module (20) through which the air exhausted from (3) passes is released.
  このように構成すれば、2つの室内ユニット(U1,U2)のそれぞれに調湿モジュール(24)と冷却加熱モジュール(20)を設けた調湿装置(150)において、室内(3)を連続的に除湿冷房する運転と、室内(3)を連続的に加湿暖房する運転とを切り換えて行うことが可能になる。 With this configuration, in the humidity control device (150) in which the humidity control module (24) and the cooling and heating module (20) are provided in each of the two indoor units (U1, U2), the room (3) is continuously connected. It is possible to switch between the operation of dehumidifying and cooling the air and the operation of continuously humidifying and heating the room (3).
  (変形例6)
  実施形態11の変形例6は、図76の調湿装置(150)と図78の調湿装置(150)を1つの装置として構成し、引張力の状態を切り換えることにより、図76の運転と図78の装置の運転を切り換え可能に構成したものである。装置の基本的な構成は図76及び図78と同様であるため、具体的な説明は省略する。
(Modification 6)
In the sixth modification of the eleventh embodiment, the humidity control device (150) of FIG. 76 and the humidity control device (150) of FIG. 78 are configured as one device, and the operation of FIG. The operation of the apparatus of FIG. 78 is configured to be switchable. Since the basic configuration of the apparatus is the same as that shown in FIGS. 76 and 78, a detailed description thereof will be omitted.
  この調湿装置(150)において、図76の運転では、室外から室内(3)へ供給される空気が通過する部分において調湿モジュール(24)と冷却加熱モジュール(20)への引張力が解除され、室内(3)から室外へ排出される空気が通過する部分において調湿モジュール(24)と冷却加熱モジュール(20)へ引張力が付与される。また、図78の運転では、室外から室内(3)へ供給される空気が通過する部分において調湿モジュール(24)と冷却加熱モジュール(20)に引張力が付与され、室内(3)から室外へ排出される空気が通過する部分において調湿モジュール(24)と冷却加熱モジュール(20)への引張力が解除される。 In the humidity control apparatus (150), in the operation shown in FIG. 76, the tensile force applied to the humidity control module (24) and the cooling / heating module (20) is released at the portion where the air supplied from the outside to the room (3) passes. Then, a tensile force is applied to the humidity control module (24) and the cooling / heating module (20) in a portion where air discharged from the room (3) to the outside passes. In the operation of FIG. 78, a tensile force is applied to the humidity control module (24) and the cooling / heating module (20) in the portion where the air supplied from the outdoor to the indoor (3) passes, and the indoor (3) to the outdoor The tensile force applied to the humidity control module (24) and the cooling / heating module (20) is released at the portion through which the air exhausted is passed.
  このように構成すれば、ロータ式の調湿モジュール(24)と冷却加熱モジュール(20)を備えた調湿装置(150)において、室内(3)を連続的に除湿冷房する運転と、室内(3)を連続的に加湿暖房する運転とを切り換えて行うことが可能になる。 If comprised in this way, in the humidity control apparatus (150) provided with the rotor-type humidity control module (24) and the cooling heating module (20), the operation | movement which dehumidifies and cools a room (3) continuously, 3) can be switched between continuous humidification and heating.
  尚、以上の実施形態は、本質的に好ましい例示であって、本発明、その適用物、あるいはその用途の範囲を制限することを意図するものではない。 In addition, the above embodiment is an essentially preferable example, and is not intended to limit the scope of the present invention, its application, or its use.
  以上説明したように、本発明は、冷却加熱モジュール、及びこの冷却加熱モジュールを備えた空気調和装置について有用である。 As described above, the present invention is useful for a cooling / heating module and an air conditioner including the cooling / heating module.
1      空気調和装置
20     冷却加熱モジュール
20a    第1冷却加熱モジュール(第1冷却加熱部)
20b    第2冷却加熱モジュール(第2冷却加熱部)
21     熱歪材料
22     アクチュエータ
39     回転軸
40     固定板(固定部)
41a    第1可動板(可動部)
41b    第2可動板(可動部)
46     第1カム(変位機構)
47     第2カム(変位機構)
51     第1アーム(変位機構)
52     第2アーム(変位機構)
107    錘部
108    回転軸
DESCRIPTION OF SYMBOLS 1 Air conditioning apparatus 20 Cooling heating module 20a 1st cooling heating module (1st cooling heating part)
20b 2nd cooling heating module (2nd cooling heating part)
21 Thermal strain material 22 Actuator 39 Rotating shaft 40 Fixed plate (fixed part)
41a First movable plate (movable part)
41b Second movable plate (movable part)
46 1st cam (displacement mechanism)
47 Second cam (displacement mechanism)
51 First arm (displacement mechanism)
52 Second arm (displacement mechanism)
107 spindle 108 rotation axis

Claims (6)

  1.   空気の冷却と加熱を行う冷却加熱モジュールであって、
      熱歪材料(21)をそれぞれ有する第1と第2の冷却加熱部(20a,20b)と、
      上記熱歪材料(21)へ張力を付与するアクチュエータ(22)とを備え、
      上記アクチュエータ(22)は、上記第1冷却加熱部(20a)の熱歪材料(21)に張力を付与し、上記第2冷却加熱部(20b)の熱歪材料(21)の張力を解除する動作と、上記第2冷却加熱部(20b)の熱歪材料(21)に張力を付与し、上記第1冷却加熱部(20a)の張力を解除する動作とを交互に行うように構成されている
      ことを特徴とする冷却加熱モジュール。
    A cooling and heating module for cooling and heating air,
    First and second cooling and heating sections (20a, 20b) each having a thermostrictive material (21);
    An actuator (22) for applying tension to the thermal strain material (21),
    The actuator (22) applies tension to the thermostrictive material (21) of the first cooling / heating unit (20a) and releases the tension of the thermostrictive material (21) of the second cooling / heating unit (20b). The operation and the operation of applying tension to the thermostrictive material (21) of the second cooling / heating unit (20b) and releasing the tension of the first cooling / heating unit (20a) are alternately performed. A cooling and heating module characterized by comprising:
  2.   請求項1において、
      上記アクチュエータ(22)は、
      上記熱歪材料(21)の一端に固定される固定部(40)と、
      上記熱歪材料(21)の他端に固定される可動部(41a,41b)と、
      上記可動部(41a,41b)と上記固定部(40)の距離が変わるように該可動部(41a,41b)を往復動させる変位機構(46,47,51,52)とを備えている
     ことを特徴とする冷却加熱モジュール。
    In claim 1,
    The actuator (22)
    A fixing part (40) fixed to one end of the thermal strain material (21);
    A movable part (41a, 41b) fixed to the other end of the thermal strain material (21);
    A displacement mechanism (46, 47, 51, 52) for reciprocating the movable part (41a, 41b) so that the distance between the movable part (41a, 41b) and the fixed part (40) changes. Cooling heating module characterized by
  3.   請求項2において、
      上記アクチュエータ(22)は、回転駆動される回転軸(39)を有し、
      上記変位機構(46,47,51,52)は、上記回転軸(39)の回転運動を上記可動部(41a,41b)の往復運動に変換するように構成されている
      ことを特徴とする冷却加熱モジュール。
    In claim 2,
    The actuator (22) has a rotating shaft (39) that is driven to rotate,
    The displacement mechanism (46, 47, 51, 52) is configured to convert the rotational motion of the rotating shaft (39) into the reciprocating motion of the movable portion (41a, 41b). Heating module.
  4.   請求項1において、
      上記アクチュエータ(22)は、
      上記第1と第2の冷却加熱部(20a,20b)の熱歪材料(21)の一端に固定される固定部(40)と、
      上記第1と第2の冷却加熱部(20a,20b)の熱歪材料(21)の他端にそれぞれ固定される可動部(41a,41b)と、
      各可動部(41a,41b)と固定部(40)の距離が変わるように、上記第1冷却加熱部(20a)に対応する可動部(41a)と第2冷却加熱部(20b)の可動部(41b)とを互いに逆方向に往復動させる変位機構(46,47,51,52)と
      を備えている
      ことを特徴とする冷却加熱モジュール。
    In claim 1,
    The actuator (22)
    A fixing part (40) fixed to one end of the heat strain material (21) of the first and second cooling and heating parts (20a, 20b);
    Movable parts (41a, 41b) fixed respectively to the other ends of the thermostrictive material (21) of the first and second cooling / heating parts (20a, 20b);
    The movable part (41a) corresponding to the first cooling / heating part (20a) and the movable part of the second cooling / heating part (20b) so that the distance between each movable part (41a, 41b) and the fixed part (40) changes. A cooling and heating module comprising: a displacement mechanism (46, 47, 51, 52) that reciprocally moves (41b) in opposite directions.
  5.   請求項1において、
      上記アクチュエータ(22)は、
      上記熱歪材料(21)の一端が固定され、回転駆動される回転軸(108)と、
      上記熱歪材料(21)の他端部に固定される錘部(107)と
      を備えている
      ことを特徴とする冷却加熱モジュール。
    In claim 1,
    The actuator (22)
    One end of the thermal strain material (21) is fixed, and a rotary shaft (108) that is driven to rotate,
    A cooling and heating module comprising: a weight portion (107) fixed to the other end portion of the thermostrictive material (21).
  6.   冷却加熱モジュールで加熱又は冷却した空気を室内へ供給する空気調和装置であって、
      上記冷却加熱モジュールは、請求項1乃至5のいずれか1つの冷却加熱モジュール(20)で構成されることを特徴とする空気調和装置。
    An air conditioner for supplying air heated or cooled by a cooling heating module into a room,
    The air-conditioning apparatus according to any one of claims 1 to 5, wherein the cooling and heating module includes the cooling and heating module (20) according to any one of claims 1 to 5.
PCT/JP2013/005310 2013-02-06 2013-09-06 Cooling/heating module and air conditioning device WO2014122701A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/765,214 US10107529B2 (en) 2013-02-06 2013-09-06 Cooling/heating module and air conditioning device

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2013-021478 2013-02-06
JP2013021469A JP5510567B2 (en) 2012-02-06 2013-02-06 Humidity control module and humidity control device
JP2013021478A JP5510569B2 (en) 2012-02-06 2013-02-06 Cooling and heating module and air conditioner
JP2013-021469 2013-02-06

Publications (1)

Publication Number Publication Date
WO2014122701A1 true WO2014122701A1 (en) 2014-08-14

Family

ID=51300308

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/005310 WO2014122701A1 (en) 2013-02-06 2013-09-06 Cooling/heating module and air conditioning device

Country Status (1)

Country Link
WO (1) WO2014122701A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03286975A (en) * 1990-03-30 1991-12-17 Shimadzu Corp Heat pump with resilient rubber
JPH10259965A (en) * 1997-03-19 1998-09-29 Masaru Utamura Method for heat transfer and heat pump device
JP2012220184A (en) * 2011-04-11 2012-11-12 Cui Jun Thermoelastic cooling

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03286975A (en) * 1990-03-30 1991-12-17 Shimadzu Corp Heat pump with resilient rubber
JPH10259965A (en) * 1997-03-19 1998-09-29 Masaru Utamura Method for heat transfer and heat pump device
JP2012220184A (en) * 2011-04-11 2012-11-12 Cui Jun Thermoelastic cooling

Similar Documents

Publication Publication Date Title
WO2014122702A1 (en) Air conditioning device
US10107529B2 (en) Cooling/heating module and air conditioning device
JP5768911B2 (en) Cooling and heating module and air conditioner
JP2013160460A (en) Air conditioner
JP2006125824A (en) Ventilation device
WO2019069579A1 (en) Humidity control device
JP5510567B2 (en) Humidity control module and humidity control device
JP2002089896A (en) Air conditioner
WO2014122701A1 (en) Cooling/heating module and air conditioning device
JP2014178094A (en) Cooling and heating unit, air conditioner, humidity control unit, and humidity controller
JP2011255316A (en) Dehumidifying drier
JP2014095543A (en) Humidity controller
JP2006189189A (en) Air conditioner
JPH07275642A (en) Dehumidifier
JP2014077604A (en) Cooling/heating unit, humidity conditioning unit, and air conditioner
JP5906708B2 (en) Humidity control device
JP2013160459A (en) Humidity controller
JP2006071171A (en) Humidity controller
JP2008025923A (en) Humidity conditioning device and air conditioner
JP2008121962A (en) Indoor unit of air conditioner
JP2014119237A (en) Humidity controller
JP2007071501A (en) Dehumidifying air-conditioner
JP2013134031A (en) Air conditioner
JP6073163B2 (en) Air conditioning system and operation method thereof
JP2019086171A (en) Adsorption type refrigeration unit

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13874413

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14765214

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13874413

Country of ref document: EP

Kind code of ref document: A1