WO2014122349A1 - Photocatalytic and infrared-emitting ceramic powder applicable to textile fibres and method for producing said powder - Google Patents

Photocatalytic and infrared-emitting ceramic powder applicable to textile fibres and method for producing said powder Download PDF

Info

Publication number
WO2014122349A1
WO2014122349A1 PCT/ES2014/070082 ES2014070082W WO2014122349A1 WO 2014122349 A1 WO2014122349 A1 WO 2014122349A1 ES 2014070082 W ES2014070082 W ES 2014070082W WO 2014122349 A1 WO2014122349 A1 WO 2014122349A1
Authority
WO
WIPO (PCT)
Prior art keywords
powder
photocatalytic
ceramic powder
applicable
ceramic
Prior art date
Application number
PCT/ES2014/070082
Other languages
Spanish (es)
French (fr)
Inventor
Jesús CANDEL FÁBREGAS
Julio José ALVAREZ MARTOS
Francisco GARCIA ROJAS
Original Assignee
APARICIO BORREGO, Carlos
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by APARICIO BORREGO, Carlos filed Critical APARICIO BORREGO, Carlos
Priority to EP14748945.4A priority Critical patent/EP2955254A4/en
Publication of WO2014122349A1 publication Critical patent/WO2014122349A1/en

Links

Classifications

    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F1/00General methods for the manufacture of artificial filaments or the like
    • D01F1/02Addition of substances to the spinning solution or to the melt
    • D01F1/10Other agents for modifying properties
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M11/00Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising
    • D06M11/32Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising with oxygen, ozone, ozonides, oxides, hydroxides or percompounds; Salts derived from anions with an amphoteric element-oxygen bond
    • D06M11/36Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising with oxygen, ozone, ozonides, oxides, hydroxides or percompounds; Salts derived from anions with an amphoteric element-oxygen bond with oxides, hydroxides or mixed oxides; with salts derived from anions with an amphoteric element-oxygen bond
    • D06M11/45Oxides or hydroxides of elements of Groups 3 or 13 of the Periodic System; Aluminates
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M11/00Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising
    • D06M11/32Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising with oxygen, ozone, ozonides, oxides, hydroxides or percompounds; Salts derived from anions with an amphoteric element-oxygen bond
    • D06M11/36Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising with oxygen, ozone, ozonides, oxides, hydroxides or percompounds; Salts derived from anions with an amphoteric element-oxygen bond with oxides, hydroxides or mixed oxides; with salts derived from anions with an amphoteric element-oxygen bond
    • D06M11/46Oxides or hydroxides of elements of Groups 4 or 14 of the Periodic System; Titanates; Zirconates; Stannates; Plumbates
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M11/00Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising
    • D06M11/77Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising with silicon or compounds thereof
    • D06M11/79Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising with silicon or compounds thereof with silicon dioxide, silicic acids or their salts
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M16/00Biochemical treatment of fibres, threads, yarns, fabrics, or fibrous goods made from such materials, e.g. enzymatic
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M23/00Treatment of fibres, threads, yarns, fabrics or fibrous goods made from such materials, characterised by the process
    • D06M23/08Processes in which the treating agent is applied in powder or granular form

Definitions

  • the invention refers to a photocatalytic and infrared emission ceramic powder, applicable to textile fibers, and to the process for obtaining said powder.
  • the object of the invention is focused on a composition that, formed by a mixture of alumina, silica, zircon and titanium oxide, forms a micro or nanometric ceramic powder with photocatalytic capacity when excited by light and to emit in the far infrared when heated, being capable of being incorporated in natural or synthetic textile fibers and, therefore, in fabrics to provide them with additional properties, for example bactericides.
  • a second aspect of the invention focuses on the process of obtaining said ceramic powder from the mixture of the elements that compose it and which can be found in varying amounts.
  • JP63274660 filed in 1988, refers to a ceramic mixture designed to improve the efficiency of dryers and heaters.
  • Said powder was constituted by a mixture of mineral oxides such as alumina, silica, titania and zirconia, and was doped with small amounts of platinum and palladium particles of colloidal size. This powder could be consolidated and formed using a classic Calcium Aluminum cement.
  • the patent describes a powdery mixture of alumina and pure titanium, sometimes with other components such as Silicon Carbide, with finely divided metal platinum and / or palladium additives. Said mixture would have, according to said patent, activity in the Infrared. It also claims the synthetic fibers loaded with this powder, and the textiles manufactured with them.
  • compositions for the production of far-infrared irradiation with excellent antistatic properties and fibers and products that contain it It claims a composition with antistatic, bactericidal and radioactive properties in the infrared, which contains in all possible proportions: a) Alumina; b) At least one of the oxides Ti02 and Si02; c) At least one element or compound of the following: platinum, a platinum compound, palladium, a palladium compound, iridium, an iridium compound, rhodium, or a rhodium compound; d) At least one of the following components: metallic silver or a silver compound.
  • manufacture of fibers, fabrics, and packaging material containing such compositions are also the manufacture of fibers, fabrics, and packaging material containing such compositions.
  • the compositions cited are generic (titanium dioxide, alumina, silicon oxides), and are covered by the above patents cited above.
  • titanium oxide Ti02 titanium oxide Ti02
  • UV rays ultraviolet rays
  • air purification properties, self-cleaning properties and antimicrobial properties can be generated spontaneously and simultaneously on the surface of the material that contains it.
  • titanium dioxide is a photocatalytic material that has an electronic structure composed of two bands, the valence band (full of electrons) and the conduction band (without electrons).
  • the energy difference between the conduction band and the Valencia band is the so-called prohibited band, and when a photon with an energy higher than this one, comes into direct contact with this photocatalytic material, an electron (e-) of the Valencia band It moves towards the conduction band, leaving an electronic gap (h +).
  • a portion of the hollow-electron photoexcited pairs diffuses towards the surface of the material Photocatalytic, place where it is retained to participate in chemical reactions with oxygen and water molecules present in the environment.
  • Electronic holes (h +) can react with adsorbed donor molecules such as water to produce hydroxyl radicals (highly reactive).
  • the oxygen present in the air can react with the electrons to form the superoxidant radical anions (02-).
  • the hydroxyl radicals (oxidizers) and the superoxidant radical radicals (reducing agents) generated on the surface of Ti02 have demonstrated a great capacity to degrade different types of microorganisms, almost all types of organic pollutants and other inorganic compounds such as NOx and S02. (Maury, A. and others; Mat. Construction, 60 (298), 33-50. 2010)
  • the rapidity of degradation of the compounds is a function of light absorption, transport of photogenerated charges (e- and h +) to the surface, recombination of e- and h +, reaction of e- and h +, on the photocatalyst surface, mass transfer of reactants and particle characteristics, in relation to both structural and morphological characteristics.
  • Titanium dioxide can crystallize in three types of crystalline structures that are: rutile (tetragonal), anastase (tetragonal) and brookite (orthorhombic). Of these three crystalline forms of Ti02, rutile is the most stable, since anastase and the brookita are transformed into rutile under heating. Brookite has no significant photocatalytic activity when used with visible light. Rutile, meanwhile, has the smallest prohibited band, 3.0 eV (equivalent to 413 nm in wavelength), while anastase has the widest prohibited band, 3.2 eV (388 nm). Both prohibited bands are close to the limit wavelength between the long wavelength of UV light (315-400) and visible light (400-700).
  • the invention relates to a micro or nanometric ceramic powder that exhibits photocatalytic activity when excited by light, and which is composed of a mixture of alumina, silica, zircon and titanium oxide in varying amounts.
  • this ceramic powder has as a secondary property the ability to emit electromagnetic radiation in the far infrared region, when heated.
  • the percentages of the different components are found in proportions that vary between 1 and 80%, the total sum being 100%.
  • the process for obtaining said powder comprises the mixture of ceramic powder that is milled to sizes smaller than 20 microns, in any of the usual industrial or laboratory grinding devices, dry or wet.
  • the powder mixture is incorporated into natural or synthetic textile fibers, either in bulk or in the form of a surface coating, by the usual procedures in the textile industry.
  • the fibers loaded with ceramic powders are woven by hand or on mechanical looms to obtain fabrics, cords, nets, etc.
  • Figure number 1 Shows the representation of a microscopic view of fibers loaded with the ceramic powder of the invention.
  • Figure number 2. Shows a graph of the X-ray Fluorescence Spectrum of a sample of the ceramic powder object of the invention, where its main chemical components are observed.
  • the invention focuses on a ceramic powder that can be used as a load in natural or artificial textile fibers composed of a mixture of two types of minerals: a first type, formed by alumina ( A1203), Silica (Quartz, Si02), and Zircon (Si04Zr), whose main characteristic is its stability and refractoriness, and, according to the cited literature, its ability to emit in the far infrared when these compounds are heated.
  • the other fundamental component is titanium oxide, Ti02, in the form of anatase or rutile, with a strong photocatalytic capacity, as explained in the background of this invention. This photocatalytic activity has bactericidal, anti-pollution and anti-odor effects.
  • the invention also describes the process for preparing the mixture of components and their use in the loading of fibers and fabrics.
  • the ceramic powder components are as follows:
  • Silica, Silicon oxide, and more specifically Si02.- Quartz, alpha-Si02, which is a low temperature polymorph of silica is used. It is one of the most abundant minerals in the earth's crust and is achieved with very high purities, for the glass, ceramics, refractories, etc.
  • Rutile form Hardness: 6.5; Specific weight: g / cc 4.25; Stripe: White; Fracture: Concoid; Crystal system: Tetragonal; Shape: Short prisms, needles, maclas; Special properties: Photocatalytic activity.
  • micro or nanometric ceramic powder is understood as a mixture of the mineral components mentioned in varying proportions, and for obtaining it, said components are subjected to a mixing and subsequent grinding process that guarantee the final fineness of the mixture.
  • the particle size of the final powder should be less than 20 microns, and preferably less than 5 microns, with a significant fraction below the mine. This size is achieved using well-proven grinding systems in the industry, primarily jet mills or attrition mills. In any case, the effectiveness of the powder will be greater the greater its specific surface area and therefore, the smaller its particle size.
  • the present invention it is understood as loading of the textile fibers to the process by which the ceramic powder is added or incorporated into the mass or surface of the fibers, which can be carried out by two different processes: a) mass incorporation from the powder to the polymer during the spinning process, by mixing the appropriate amounts thereof to the polymer pellet; or b) coating the surface of the fibers by the mineral powder, working hot or by means of a suitable solvent, that is, by means of a process of sizing designed for this purpose.
  • the percentage of ceramic powder added to the fiber must be sufficient for its effect to be noticeable, that is, the concentration of active elements must be sufficient for infrared emission to occur, and the photocatalytic effect sought, but this concentration should not be so high that the lightness and flexibility properties of the fibers are modified, and their ability to be woven.
  • the percentage of ceramic powder added to the fiber must be between 0.5 and 5% by weight, except for special applications, in which the percentage may be higher.
  • Example 1 This example refers to the preparation of ceramic powder, starting from the raw materials in the market, and using the standard tools of a ceramic processing laboratory.
  • the procedure object of the example is the following one:
  • micronized alumina powder (purity> 98%) are weighed, and passed to a container of inert material, such as porcelain, glass, stainless steel, etc.
  • the powder is renewed with a spatula, and 250 milliliters of ethyl alcohol or methyl alcohol are added. It is removed until a plastic mass is formed, which is passed to an attrition mill, adding 150 milliliters of distilled water. The set is milled in the presence of 30% stabilized zirconia balls 2mm in diameter.
  • the zirconia balls are separated by sieving, and the ceramic powder suspension is dried at a temperature below 50 ° C.
  • this e refers to the preparation of ceramic powder, starting from the raw materials in the market, and using the standard tools of a ceramic processing laboratory.
  • the procedure object of example 2 is the following: - 200 grams of commercial kaolinite, of formula A1203.2 Si02.2H20 are weighed and passed to a container of inert material, such as porcelain, glass, stainless steel, etc. - Next, 100 grams of zircon, commercial purity, are weighed and added to the kaolinite powder.
  • the powder is renewed with a spatula, and 300 milliliters of ethyl alcohol or methyl alcohol are added. It is removed until a plastic mass is formed, which is passed to an attrition mill, adding 200 milliliters of distilled water. The set is milled in the presence of 30% stabilized zirconia balls 2mm in diameter.
  • the zirconia balls are separated by sieving, and the ceramic powder suspension is dried at a temperature below 50 ° C.
  • dry powder is sieved by a sieve of 75 microns of mesh light, and packaged for use.
  • the powder mixture is intended to be incorporated into natural or synthetic textile fibers, either in bulk or in the form of a surface coating, by the usual procedures in the textile industry.
  • Figure 1 the representation of a micrograph of a synthetic polymeric yarn loaded with the ceramic powder of the invention can be observed, where the fibers (1) can be observed, which have diameters of 10.22 ⁇ 1.36 microns and which have a fairly smooth surface, as well as the charge particles (2) of the ceramic powder at some points of its surface.
  • Figure 2 shows a graph of the X-ray Fluorescence Spectrum of a sample of the ceramic powder object of the invention, where its main chemical components Oxygen, Silicon, Aluminum, Zirconium and Titanium are observed.

Abstract

The invention relates to a photocatalytic and infrared-emitting ceramic powder applicable to textile fibres, and to a method for producing said powder, said powder consisting of a micrometric or nanometric mixture of variable quantities of alumina, silica, zircon and titanium oxide, in proportions of between 1 and 80 %, and with a particle size of less than 20 micras, preferably less than 5 micras. The production method uses dry grinding or wet grinding systems provided with jet grinders or attrition grinders.

Description

POLVO CERAMICO FOTOCATALI TICO Y DE EMISION INFRARROJA, APLICABLE A FIBRAS TEXTILES , Y PROCEDIMIENTO DE  CERAMIC PHOTOCATALI POWDER AND INFRARED EMISSION POWDER, APPLICABLE TO TEXTILE FIBERS, AND PROCEDURE FOR
OBTENCIÓN DE DICHO POLVO  OBTAINING SUCH DUST
D E S C R I P C I Ó N D E S C R I P C I Ó N
OBJE TO DE LA INVENCIÓN OBJECT OF THE INVENTION
La invención, tal como expresa el enunciado de la presente memoria descriptiva, se refiere a un polvo cerámico fotocatalitico y de emisión infrarroja, aplicable a fibras textiles, y al procedimiento de obtención de dicho polvo. The invention, as stated in the present specification, refers to a photocatalytic and infrared emission ceramic powder, applicable to textile fibers, and to the process for obtaining said powder.
Más en particular, el objeto de la invención se centra en una composición que, formada por una mezcla de Alúmina, Sílice, Circón y Óxido de titanio, conforma un polvo cerámico micro o nanométrico con capacidad fotocatalítica cuando es excitado por la luz y para emitir en el infrarrojo lejano al ser calentado, siendo susceptible de ser incorporado en fibras textiles naturales o sintéticas y, por tanto, en tejidos para dotarlos de propiedades adicionales, por ejemplo bactericidas. More particularly, the object of the invention is focused on a composition that, formed by a mixture of alumina, silica, zircon and titanium oxide, forms a micro or nanometric ceramic powder with photocatalytic capacity when excited by light and to emit in the far infrared when heated, being capable of being incorporated in natural or synthetic textile fibers and, therefore, in fabrics to provide them with additional properties, for example bactericides.
Paralelamente, un segundo aspecto de la invención se centra en el procedimiento de obtención de dicho polvo cerámico a partir de la mezcla de los elementos que la componen y los cuales se pueden encontrar en cantidades variables. In parallel, a second aspect of the invention focuses on the process of obtaining said ceramic powder from the mixture of the elements that compose it and which can be found in varying amounts.
CAMPO DE APLICACION DE LA INVENCION El campo de aplicación de la presente invención se enmarca a la vez dentro del sector químico y textil, concerniendo principalmente a la industria dedicada a la fabricación de fibras textiles naturales o sintéticas y que, a su vez, pueden ser tejidas para fabricar tejidos, solas o mezcladas con otras. FIELD OF APPLICATION OF THE INVENTION The field of application of the present invention is framed at the same time within the chemical sector and textile, mainly concerning the industry dedicated to the manufacture of natural or synthetic textile fibers and which, in turn, can be woven to manufacture fabrics, alone or mixed with others.
ANTECEDENTES DE LA INVENCIÓN BACKGROUND OF THE INVENTION
La Patente JP63274660, presentada en 1988, se refiere a una mezcla cerámica diseñada para mejorar la eficiencia de secaderos y calentadores. Dicho polvo estaba constituido por una mezcla de óxidos minerales tales como Alúmina, Sílice, Titania y Circona, y estaba dopada con pequeñas cantidades de partículas de Platino y Paladio de tamaño coloidal. Este polvo podía consolidarse y conformarse utilizando un cemento clásico de Aluminato Cálcico. JP63274660, filed in 1988, refers to a ceramic mixture designed to improve the efficiency of dryers and heaters. Said powder was constituted by a mixture of mineral oxides such as alumina, silica, titania and zirconia, and was doped with small amounts of platinum and palladium particles of colloidal size. This powder could be consolidated and formed using a classic Calcium Aluminum cement.
A partir de 1990 aparecen una serie de patentes que, utilizando mezclas de polvo tales como la descrita en la patente citada, las incorporan a tejidos naturales y artificiales para mejorar algunas propiedades de los mismos, como su confortabilidad, su aislamiento térmico, su emisión infrarroja, y algunas propiedades biológicas, tales como el rendimiento muscular . From 1990 a series of patents appear which, using mixtures of dust such as that described in the cited patent, incorporate them into natural and artificial fabrics to improve some of their properties, such as their comfort, thermal insulation, infrared emission , and some biological properties, such as muscle performance.
Entre dichas patentes puede citarse la EP0462275B1 (1990) : "Polvo que irradia rayos infrarrojos de energía débil, fibras sintéticas que lo contienen y productos textiles fabricados con ellos". La patente describe una mezcla pulverulenta de alúmina y titanio puro, a veces con otros componentes tales como Carburo de Silicio, con aditivos de platino y/o paladio metálicos finamente divididos. Dicha mezcla tendría, según dicha patente, actividad en el Infrarrojo. Reivindica también las fibras sintéticas cargadas con este polvo, y los textiles fabricados con ellas . La patente JP19920213557/ US199403004307These patents include EP0462275B1 (1990): "Powder that radiates infrared rays of weak energy, synthetic fibers that contain it and textile products manufactured with them." The patent describes a powdery mixture of alumina and pure titanium, sometimes with other components such as Silicon Carbide, with finely divided metal platinum and / or palladium additives. Said mixture would have, according to said patent, activity in the Infrared. It also claims the synthetic fibers loaded with this powder, and the textiles manufactured with them. JP19920213557 / US199403004307
(1995) : "Fibra composite conteniendo metal, radiante en el infrarrojo lejano", reivindica los tejidos fabricados con fibras sintéticas que incluyen platino metal y al menos un óxido metálico de los metales Aluminio, Silicio y Titanio, con la propiedad de emitir radiación infrarroja cuando se pone en contacto con el cuerpo humano. (1995): "Composite fiber containing metal, radiating in the far infrared", claims fabrics made of synthetic fibers that include platinum metal and at least one metal oxide of the Aluminum, Silicon and Titanium metals, with the property of emitting infrared radiation when it comes in contact with the human body.
Otro caso a citar es la patente EP 1291405B1 (2006) : "Composición para la producción de irradiación en el infrarrojo lejano con excelentes propiedades antiestáticas y fibras y productos que la contienen". Reivindica una composición con propiedades antiestáticas, bactericidas y radiactivas en el infrarrojo, que contiene en todas las proporciones posibles: a) Alúmina; b) Al menos uno de los óxidos Ti02 y Si02; c) Al menos un elemento o compuesto de los siguientes: platino, un compuesto de platino, paladio, un compuesto de paladio, iridio, un compuesto de iridio, rodio, o un compuesto de rodio; d) Al menos uno de los siguientes componentes: plata metálica o un compuesto de plata. Dentro de las reivindicaciones se encuentra también la fabricación de fibras, tejidos, y material de packaging conteniendo este tipo de composiciones . Another case to cite is patent EP 1291405B1 (2006): "Composition for the production of far-infrared irradiation with excellent antistatic properties and fibers and products that contain it". It claims a composition with antistatic, bactericidal and radioactive properties in the infrared, which contains in all possible proportions: a) Alumina; b) At least one of the oxides Ti02 and Si02; c) At least one element or compound of the following: platinum, a platinum compound, palladium, a palladium compound, iridium, an iridium compound, rhodium, or a rhodium compound; d) At least one of the following components: metallic silver or a silver compound. Within the claims is also the manufacture of fibers, fabrics, and packaging material containing such compositions.
Finalmente, la patente US415532P /ES2341765 (2010) : "Procedimiento para mejorar el rendimiento muscular", presenta como única reivindicación procedimiento para mejorar el rendimiento muscular, que consiste en vestir un determinado tipo de material textil, y no un procedimiento de fabricación del mismo, o una composición mineral especifica. Las composiciones citadas son genéricas (dióxido de titanio, alúmina, óxidos de silicio) , y están cubiertas por las patentes anteriores citadas más arriba. Finally, patent US415532P / ES2341765 (2010): "Procedure for improving muscle performance", presents as the only claim procedure for improving muscle performance, which consists of dressing a certain type of material textile, and not a manufacturing process thereof, or a specific mineral composition. The compositions cited are generic (titanium dioxide, alumina, silicon oxides), and are covered by the above patents cited above.
Sin embargo, al menos por parte del solicitante, se desconoce que se haya descrito un polvo susceptible de ser cargado en fibras textiles y tejidos, con actividad fotocatalitica, capaz de eliminar contaminantes, moléculas productoras de olor, óxidos de nitrógeno, etc. However, at least on the part of the applicant, it is unknown that a powder capable of being loaded in textile fibers and fabrics, with photocatalytic activity, capable of removing contaminants, odor producing molecules, nitrogen oxides, etc., has been described.
Por otra parte, es sabido que en los últimos 10 años han aparecido numerosas aplicaciones de las propiedades fotocataliticas del óxido de titanio Ti02. Cuando el dióxido de titanio es expuesto a luz que contiene rayos UV, propiedades de purificación del aire, propiedades auto-limpiantes y propiedades antimicrobianas se pueden generar espontanea y simultáneamente en la superficie del material que lo contiene . On the other hand, it is known that in the last 10 years numerous applications of the photocatalytic properties of titanium oxide Ti02 have appeared. When titanium dioxide is exposed to light that contains UV rays, air purification properties, self-cleaning properties and antimicrobial properties can be generated spontaneously and simultaneously on the surface of the material that contains it.
Esto es debido a que el dióxido de titanio es un material fotocatalitico que tiene una estructura electrónica compuesta por dos bandas, la banda de valencia (llena de electrones) y la banda de conducción (sin electrones) . La diferencia energética entre la banda de conducción y la banda de valencia es la llamada banda prohibida, y cuando un fotón con una energía superior a ésta, entra en contacto directo con este material fotocatalitico, un electrón (e-) de la banda de valencia se mueve hacia la banda de conducción, dejando así un hueco electrónico (h+) . Una porción de los pares fotoexcitados hueco-electrón se difunde hacia la superficie del material fotocatalitico, lugar donde es retenida para participar en reacciones químicas con moléculas de oxígeno y agua presentes en el medio ambiente. Los huecos electrónicos (h+) pueden reaccionar con moléculas donantes adsorbidas como las de agua para producir los radicales hidroxilos (altamente reactivos) . This is because titanium dioxide is a photocatalytic material that has an electronic structure composed of two bands, the valence band (full of electrons) and the conduction band (without electrons). The energy difference between the conduction band and the Valencia band is the so-called prohibited band, and when a photon with an energy higher than this one, comes into direct contact with this photocatalytic material, an electron (e-) of the Valencia band It moves towards the conduction band, leaving an electronic gap (h +). A portion of the hollow-electron photoexcited pairs diffuses towards the surface of the material Photocatalytic, place where it is retained to participate in chemical reactions with oxygen and water molecules present in the environment. Electronic holes (h +) can react with adsorbed donor molecules such as water to produce hydroxyl radicals (highly reactive).
Actuando como receptor de electrones, el oxígeno presente en el aire puede reaccionar con los electrones para formar los aniones radicales superoxidantes (02-) . Los radicales hidroxilos (oxidantes) y los aniones radicales superoxidantes (reductores) generados sobre la superficie del Ti02 han demostrado una gran capacidad para degradar diferentes tipos de microrganismos , casi todos los tipos de contaminantes orgánicos y otros compuestos inorgánicos tales como NOx y S02. (Maury, A. y otros; Mat . Construcción, 60(298), 33-50. 2010) Acting as an electron receptor, the oxygen present in the air can react with the electrons to form the superoxidant radical anions (02-). The hydroxyl radicals (oxidizers) and the superoxidant radical radicals (reducing agents) generated on the surface of Ti02 have demonstrated a great capacity to degrade different types of microorganisms, almost all types of organic pollutants and other inorganic compounds such as NOx and S02. (Maury, A. and others; Mat. Construction, 60 (298), 33-50. 2010)
En general, la rapidez de degradación de los compuestos es función de la absorción de la luz, transporte de las cargas fotogeneradas (e- y h+) a la superficie, recombinación de e- y h+, reacción de e- y h+, sobre la superficie del fotocatalizador, transferencia de masa de los reaccionantes y las características de las partículas, en relación tanto con las características estructurales como con las morfológicas . In general, the rapidity of degradation of the compounds is a function of light absorption, transport of photogenerated charges (e- and h +) to the surface, recombination of e- and h +, reaction of e- and h +, on the photocatalyst surface, mass transfer of reactants and particle characteristics, in relation to both structural and morphological characteristics.
El dióxido de titanio puede cristalizar en tres tipos de estructuras cristalinas que son: rutilo ( tetragonal ) , anastasa (tetragonal) y brookita (ortorrómbica) . De estas tres formas cristalinas del Ti02, el rutilo es la más estable, ya que la anastasa y la brookita se transforman en rutilo bajo calentamiento. La brookita no presenta significativa actividad fotocatalitica cuando es usada con luz visible. El rutilo, por su parte, tiene la banda prohibida más pequeña, 3,0 eV (equivalente a 413 nm en longitud de onda) , mientras que el anastasa tiene la banda prohibida más amplia, 3,2 eV (388 nm) . Ambas bandas prohibidas están cercanas a la longitud de onda limite entre la longitud de onda larga de luz UV (315- 400) y la luz visible (400-700) . Cuando se han utilizado longitudes de onda larga de UV provenientes solamente de luz visible se ha observado una importante disminución de la actividad fotocatalitica del Ti02. Por lo tanto, se han realizado muchos esfuerzos para reducir la magnitud de la banda prohibida y permitir que el efecto fotocatalitico del Ti02 se pueda obtener con luz visible. Se destacan entre estas estrategias, la utilización del doping de metales (hierro y wolframio) y no metales (carbono, nitrógeno y azufre) en el Ti02. (Milani, R.; y otros; SASBE 3th International Conference Proceedings . 2009) . Titanium dioxide can crystallize in three types of crystalline structures that are: rutile (tetragonal), anastase (tetragonal) and brookite (orthorhombic). Of these three crystalline forms of Ti02, rutile is the most stable, since anastase and the brookita are transformed into rutile under heating. Brookite has no significant photocatalytic activity when used with visible light. Rutile, meanwhile, has the smallest prohibited band, 3.0 eV (equivalent to 413 nm in wavelength), while anastase has the widest prohibited band, 3.2 eV (388 nm). Both prohibited bands are close to the limit wavelength between the long wavelength of UV light (315-400) and visible light (400-700). When long wavelengths of UV from only visible light have been used, a significant decrease in the photocatalytic activity of Ti02 has been observed. Therefore, many efforts have been made to reduce the magnitude of the prohibited band and allow the photocatalytic effect of Ti02 to be obtained with visible light. Among these strategies, the doping of metals (iron and tungsten) and nonmetals (carbon, nitrogen and sulfur) in Ti02 stand out. (Milani, R .; and others; SASBE 3th International Conference Proceedings. 2009).
A pesar de los antecedentes descritos, relacionados con la presente invención, no se ha encontrado ninguna patente ni invención que presente las características técnicas estructurales y constitutivas del polvo cerámico aquí preconizado, según se reivindica. Despite the background described, related to the present invention, no patent or invention has been found that presents the structural and constitutive technical characteristics of the ceramic powder recommended herein, as claimed.
BREVE DESCRIPCIÓN DE LA INVENCIÓN BRIEF DESCRIPTION OF THE INVENTION
La invención se refiere a un polvo cerámico micro o nanométrico que presenta actividad fotocatalitica cuando es excitado por la luz, y que está compuesto de una mezcla de alúmina, sílice, circón y óxido de titanio en cantidades variables. Además, este polvo cerámico presenta como propiedad secundaria la capacidad para emitir radiación electromagnética en la región del infrarrojo lejano, cuando se calienta. The invention relates to a micro or nanometric ceramic powder that exhibits photocatalytic activity when excited by light, and which is composed of a mixture of alumina, silica, zircon and titanium oxide in varying amounts. In addition, this ceramic powder has as a secondary property the ability to emit electromagnetic radiation in the far infrared region, when heated.
Los porcentajes de los distintos componentes se encuentran en proporciones que varían entre el 1 y el 80%, siendo 100% la suma total de los mismos. El procedimiento de obtención de dicho polvo comprende la mezcla de polvo cerámico que se muele a tamaños inferiores a 20 mieras, en cualquiera de los dispositivos habituales de molienda industrial o de laboratorio, en seco o en húmedo. The percentages of the different components are found in proportions that vary between 1 and 80%, the total sum being 100%. The process for obtaining said powder comprises the mixture of ceramic powder that is milled to sizes smaller than 20 microns, in any of the usual industrial or laboratory grinding devices, dry or wet.
Posteriormente, la mezcla de polvo se incorpora a fibras textiles naturales o sintéticas, bien en masa o en forma de recubrimiento superficial, por los procedimientos habituales en la industria textil. Subsequently, the powder mixture is incorporated into natural or synthetic textile fibers, either in bulk or in the form of a surface coating, by the usual procedures in the textile industry.
Las fibras cargadas con los polvos cerámicos se tejen a mano o en telares mecánicos para obtener tejidos, cordones, redes, etc. The fibers loaded with ceramic powders are woven by hand or on mechanical looms to obtain fabrics, cords, nets, etc.
DESCRIPCIÓN DE LAS FIGURAS DESCRIPTION OF THE FIGURES
La figura número 1.- Muestra la representación de una vista microscópica de fibras cargadas con el polvo cerámico de la invención. Figure number 1.- Shows the representation of a microscopic view of fibers loaded with the ceramic powder of the invention.
La figura número 2.- Muestra un gráfico del Espectro de Fluorescencia de Rayos X de una muestra del polvo cerámico objeto de la invención, en donde se observan sus principales componentes químicos. EXPLICACIÓN DE LA INVENCIÓN Figure number 2.- Shows a graph of the X-ray Fluorescence Spectrum of a sample of the ceramic powder object of the invention, where its main chemical components are observed. EXPLANATION OF THE INVENTION
De forma concreta, la invención, tal como se ha apuntado anteriormente, se centra en un polvo cerámico susceptible de ser utilizado como carga en fibras textiles naturales o artificiales compuesto por una mezcla de dos tipos de minerales: un primer tipo, formado por Alúmina (A1203), Sílice (Cuarzo, Si02), y Circón (Si04Zr) , cuya principal característica es su estabilidad y refractariedad, y, de acuerdo con la literatura citada, su capacidad para emitir en el infrarrojo lejano cuando estos compuestos son calentados. El otro componente fundamental es el óxido de titanio, Ti02, en forma de anatasa o de rutilo, con una fuerte capacidad fotocatalítica, tal como se explica en los antecedentes de esta invención. Esta actividad fotocatalítica tiene efectos bactericidas, anticontaminantes y antiolor. La invención describe igualmente el procedimiento para preparar la mezcla de componentes y su uso en la carga de fibras y tejidos. Specifically, the invention, as noted above, focuses on a ceramic powder that can be used as a load in natural or artificial textile fibers composed of a mixture of two types of minerals: a first type, formed by alumina ( A1203), Silica (Quartz, Si02), and Zircon (Si04Zr), whose main characteristic is its stability and refractoriness, and, according to the cited literature, its ability to emit in the far infrared when these compounds are heated. The other fundamental component is titanium oxide, Ti02, in the form of anatase or rutile, with a strong photocatalytic capacity, as explained in the background of this invention. This photocatalytic activity has bactericidal, anti-pollution and anti-odor effects. The invention also describes the process for preparing the mixture of components and their use in the loading of fibers and fabrics.
De forma más concreta, los componentes del polvo cerámico son los siguientes: More specifically, the ceramic powder components are as follows:
Sílice, Óxido de silicio, y más concretamente Si02.- Se utiliza el cuarzo, alfa-Si02, que es polimorfo de baja temperatura de la sílice. Es uno de los minerales más abundantes de la corteza terrestre y se consigue con purezas muy altas, para la industria del vidrio, la cerámica, los refractarios, etc. Silica, Silicon oxide, and more specifically Si02.- Quartz, alpha-Si02, which is a low temperature polymorph of silica is used. It is one of the most abundant minerals in the earth's crust and is achieved with very high purities, for the glass, ceramics, refractories, etc.
Sus propiedades son: Dureza: 7; Peso específico: 2,65g/cc; Raya: blanca; Fractura: concoidea; No tiene exfoliación; Sistema romboédrico; Brillo vitreo; Forma hexagonal; Pertenece a la familia de los Silicatos ( Tectosilicatos ) ; Es piroeléctrico y piezoeléctrico. Alúmina, Corindón.- Su formula química es alfa- A1203. Es muy estable, y funde a muy alta temperatura (2020°C) . Tiene una gran inercia química. Su forma monocristalina es el zafiro. Es la principal materia prima de la cerámica avanzada y los refractarios. Its properties are: Hardness: 7; Specific weight: 2.65g / cc; Stripe: white; Fracture: concoid; It has no exfoliation; Rhombohedral system; Vitreous shine; Hexagonal shape; It belongs to the Silicates (Tectosilicates) family; It is pyroelectric and piezoelectric. Alumina, Corundum.- Its chemical formula is alpha-A1203. It is very stable, and melts at a very high temperature (2020 ° C). It has a great chemical inertia. Its monocrystalline form is sapphire. It is the main raw material of advanced ceramics and refractories.
Propiedades: Dureza: 9; Peso específico: 4.0 g/cc; Raya: blanca; Fractura: concoidea; No tiene exfoliación; Sistema trigonal; Brillo vitreo; Forma hexagonal, en tabletas o prismas. Properties: Hardness: 9; Specific weight: 4.0 g / cc; Stripe: white; Fracture: concoid; It has no exfoliation; Trigonal system; Vitreous shine; Hexagonal shape, in tablets or prisms.
Circón, Silicato de Circonio, concretamente Si04Zr.- Es un compuesto refractario con muy alto punto de fusión (2400°C) . Contiene pequeñas cantidades de Hafnio, y a veces es débilmente radiactivo. Se utiliza en refractarios, cerámica avanzada, como piedra preciosa, en fibras aislantes, etc. Zircon, Zirconium Silicate, specifically Si04Zr.- It is a refractory compound with a very high melting point (2400 ° C). It contains small amounts of Hafnium, and is sometimes weakly radioactive. It is used in refractories, advanced ceramics, as a precious stone, in insulating fibers, etc.
Propiedades: Dureza: 7.5; Peso específico: 4.07g/cc; Raya: blanca; Fractura: concoidea; No tiene exfoliación; Sistema tetragonal; Brillo vitreo; Forma tabular o prismática; Pertenece a la familia de los Silicatos; Es fluorescente a la luz ultravioleta. La mezcla de estos componentes presenta la capacidad de emitir radiación en el infrarrojo lejano cuando se calientan a baja temperatura. Esta propiedad es inherente a la composición y estructura de los componentes, y está suficientemente descrita en la literatura. Titania, Óxido de Titanio, concretamente Ti02.- Se presenta en tres formas polimórficas : brookita, Anatasa y Rutilo. Presentan actividad fotocatalitica la anatasa y el rutilo. Se utilizan en pinturas, recubrimientos, esmaltes, etc. Properties: Hardness: 7.5; Specific weight: 4.07g / cc; Stripe: white; Fracture: concoid; It has no exfoliation; Tetragonal system; Vitreous shine; Tabular or prismatic form; It belongs to the Silicates family; It is fluorescent in ultraviolet light. The mixture of these components has the ability to emit far infrared radiation when heated at low temperature. This property is inherent in the composition and structure of the components, and is sufficiently described in the literature. Titania, Titanium Oxide, specifically Ti02.- It comes in three polymorphic forms: brookita, Anatasa and Rutile. Anatase and rutile have photocatalytic activity. They are used in paints, coatings, enamels, etc.
Propiedades de la forma Anatasa: Dureza: 5.5; Peso especifico: g/cc 3.9; Raya: Blanca; Fractura: Subconcoidea; Sistema cristalino: Tetragonal; Forma: masas bipirámides; Propiedades especiales: Actividad fotocatalitica. Properties of the Anatase form: Hardness: 5.5; Specific weight: g / cc 3.9; Stripe: White; Fracture: Subconcoidea; Crystal system: Tetragonal; Shape: bipyramid masses; Special properties: Photocatalytic activity.
Propiedades de la forma Rutilo: Dureza: 6.5; Peso especifico: g/cc 4.25; Raya: Blanca; Fractura: Concoidea; Sistema cristalino: Tetragonal; Forma: Prismas cortos, agujas, maclas; Propiedades especiales: Actividad fotocatalitica. Properties of the Rutile form: Hardness: 6.5; Specific weight: g / cc 4.25; Stripe: White; Fracture: Concoid; Crystal system: Tetragonal; Shape: Short prisms, needles, maclas; Special properties: Photocatalytic activity.
Conviene señalar que, en la presente invención, se entiende por polvo cerámico micro o nanométrico a una mezcla de los componentes minerales citados en proporciones variables, y para la obtención de la misma, dichos componentes son sometidos a un proceso de mezclado y posterior molienda que garantice la finura final de la mezcla. It should be noted that, in the present invention, micro or nanometric ceramic powder is understood as a mixture of the mineral components mentioned in varying proportions, and for obtaining it, said components are subjected to a mixing and subsequent grinding process that guarantee the final fineness of the mixture.
Es importante destacar que el tamaño de partícula del polvo final debe ser inferior a las 20 mieras, y preferentemente inferior a 5 mieras, con una fracción importante por debajo de la miera. Este tamaño se consigue utilizando sistemas de molienda bien probados en la industria, fundamentalmente molinos jet o molinos de atrición. En cualquier caso, la efectividad del polvo será tanto mayor cuanto mayor sea su superficie específica y por tanto, cuanto menor sea su tamaño de partícula. Igualmente, en la presente invención se entiende por cargado de las fibras textiles al proceso por el cual se añade o incorpora el polvo cerámico a la masa o a la superficie de las fibras, lo cual puede efectuarse por dos procesos distintos: a) incorporación en masa del polvo al polímero durante el proceso de hilado, por mezcla de las cantidades adecuadas del mismo a la granza polimérica; o b) recubrimiento de la superficie de las fibras por el polvo mineral, trabajando en caliente o por medio de un disolvente adecuado, es decir mediante un proceso de ensimaje diseñado a este fin. It is important to note that the particle size of the final powder should be less than 20 microns, and preferably less than 5 microns, with a significant fraction below the mine. This size is achieved using well-proven grinding systems in the industry, primarily jet mills or attrition mills. In any case, the effectiveness of the powder will be greater the greater its specific surface area and therefore, the smaller its particle size. Likewise, in the present invention it is understood as loading of the textile fibers to the process by which the ceramic powder is added or incorporated into the mass or surface of the fibers, which can be carried out by two different processes: a) mass incorporation from the powder to the polymer during the spinning process, by mixing the appropriate amounts thereof to the polymer pellet; or b) coating the surface of the fibers by the mineral powder, working hot or by means of a suitable solvent, that is, by means of a process of sizing designed for this purpose.
El porcentaje de polvo cerámico añadido a la fibra debe ser suficiente para que su efecto sea perceptible, es decir, la concentración de elementos activos debe ser suficiente para que se produzca la emisión infrarroja, y el efecto fotocatalítico buscado, pero esta concentración no debe ser tan alta como para que se modifiquen las propiedades de ligereza y flexibilidad de las fibras, y su capacidad para ser tejidas. The percentage of ceramic powder added to the fiber must be sufficient for its effect to be noticeable, that is, the concentration of active elements must be sufficient for infrared emission to occur, and the photocatalytic effect sought, but this concentration should not be so high that the lightness and flexibility properties of the fibers are modified, and their ability to be woven.
Por ello, el porcentaje de polvo cerámico añadido a la fibra debe estar comprendido entre el 0.5 y el 5% en peso, excepto para aplicaciones especiales, en las cuales el porcentaje puede ser mayor. Therefore, the percentage of ceramic powder added to the fiber must be between 0.5 and 5% by weight, except for special applications, in which the percentage may be higher.
A continuación se describen ejemplos del procedimiento de preparación del polvo cerámico propuesto, según la invención. Examples of the proposed ceramic powder preparation process according to the invention are described below.
Ej emplo 1 Este ejemplo se refiere a la preparación del polvo cerámico, partiendo de las materias primas existentes en el mercado, y utilizando el utillaje estándar de un laboratorio de procesamiento cerámico. El procedimiento objeto del ejemplo es el siguiente: Example 1 This example refers to the preparation of ceramic powder, starting from the raw materials in the market, and using the standard tools of a ceramic processing laboratory. The procedure object of the example is the following one:
- Se pesan 100 gramos de polvo de alúmina micronizada (pureza >98%), y se pasan a un recipiente de material inerte, tal como porcelana, vidrio, acero inoxidable, etc. - 100 grams of micronized alumina powder (purity> 98%) are weighed, and passed to a container of inert material, such as porcelain, glass, stainless steel, etc.
- Se pesan 100 gramos de polvo de cuarzo de pureza superior al 99%, y se añaden a la alúmina en el recipiente. - 100 grams of quartz powder of more than 99% purity are weighed and added to the alumina in the container.
A continuación, se pesan 50 gramos de circón, de pureza comercial, y de nuevo se añaden a la mezcla . Next, 50 grams of zircon, commercial purity, are weighed and again added to the mixture.
- El polvo se renueve con una espátula, y se añaden 250 mililitros de alcohol etílico o de alcohol metílico. Se remueve hasta que se forma una masa plástica, que se pasa a un molino de atrición, añadiendo 150 mililitros de agua destilada. El conjunto se muele en presencia de un 30% de bolas de circona estabilizada de 2mm de diámetro. - The powder is renewed with a spatula, and 250 milliliters of ethyl alcohol or methyl alcohol are added. It is removed until a plastic mass is formed, which is passed to an attrition mill, adding 150 milliliters of distilled water. The set is milled in the presence of 30% stabilized zirconia balls 2mm in diameter.
- Tras 20 minutos de molienda, se separan las bolas de circona por tamizado, y se seca la suspensión del polvo cerámico a temperatura inferior a 50°C. - After 20 minutes of grinding, the zirconia balls are separated by sieving, and the ceramic powder suspension is dried at a temperature below 50 ° C.
- Finalmente, se tamiza el polvo seco por un tamiz de 75 mieras de luz de malla, y se envasa para su uso. Ej emp1o 2 - Finally, dry powder is sieved by a sieve of 75 microns of mesh light, and packaged for use. Ex Emp1o 2
Al igual que en el e emplo 1, este e emplo se refiere a la preparación del polvo cerámico, partiendo de las materias primas existentes en el mercado, y utilizando el utillaje estándar de un laboratorio de procesamiento cerámico. El procedimiento objeto del ejemplo 2 es el siguiente: - Se pesan 200 gramos de caolinita comercial, de fórmula A1203.2Si02.2H20 y se pasan a un recipiente de material inerte, tal como porcelana, vidrio, acero inoxidable, etc. - A continuación, se pesan 100 gramos de circón, de pureza comercial, y se añaden al polvo de caolinita . As in e 1, this e refers to the preparation of ceramic powder, starting from the raw materials in the market, and using the standard tools of a ceramic processing laboratory. The procedure object of example 2 is the following: - 200 grams of commercial kaolinite, of formula A1203.2 Si02.2H20 are weighed and passed to a container of inert material, such as porcelain, glass, stainless steel, etc. - Next, 100 grams of zircon, commercial purity, are weighed and added to the kaolinite powder.
El polvo se renueve con una espátula, y se añaden 300 mililitros de alcohol etílico o de alcohol metílico. Se remueve hasta que se forma una masa plástica, que se pasa a un molino de atrición, añadiendo 200 mililitros de agua destilada. El conjunto se muele en presencia de un 30% de bolas de circona estabilizada de 2mm de diámetro. The powder is renewed with a spatula, and 300 milliliters of ethyl alcohol or methyl alcohol are added. It is removed until a plastic mass is formed, which is passed to an attrition mill, adding 200 milliliters of distilled water. The set is milled in the presence of 30% stabilized zirconia balls 2mm in diameter.
- Tras 20 minutos de molienda, se separan las bolas de circona por tamizado, y se seca la suspensión del polvo cerámico a temperatura inferior a 50°C. - After 20 minutes of grinding, the zirconia balls are separated by sieving, and the ceramic powder suspension is dried at a temperature below 50 ° C.
- Finalmente, se tamiza el polvo seco por un tamiz de 75 mieras de luz de malla, y se envasa para su uso . Tal como se ha señalado anteriormente, la mezcla de polvo está destinada para ser incorporada a fibras textiles naturales o sintéticas, bien en masa o en forma de recubrimiento superficial, por los procedimientos habituales en la industria textil. Atendiendo a la figura número 1 se observa la representación de una micrografia de un hilo polimérico sintético cargado con el polvo cerámico de la invención, pudiendo observarse en ella las fibras (1), que presentan diámetros de 10,22 ± 1,36 mieras y que tienen la superficie bastante lisa, asi como las partículas de carga (2) del polvo cerámico en algunos puntos de su superficie. - Finally, dry powder is sieved by a sieve of 75 microns of mesh light, and packaged for use. As noted above, the powder mixture is intended to be incorporated into natural or synthetic textile fibers, either in bulk or in the form of a surface coating, by the usual procedures in the textile industry. In accordance with Figure 1, the representation of a micrograph of a synthetic polymeric yarn loaded with the ceramic powder of the invention can be observed, where the fibers (1) can be observed, which have diameters of 10.22 ± 1.36 microns and which have a fairly smooth surface, as well as the charge particles (2) of the ceramic powder at some points of its surface.
En la figura 2 se observa un gráfico del Espectro de Fluorescencia de Rayos X de una muestra del polvo cerámico objeto de la invención, en donde se observan sus principales componentes químicos Oxígeno, Silicio, Aluminio, Circonio y Titanio. Descrita suficientemente la naturaleza de la presente invención, así como la manera de ponerla en práctica, no se considera necesario hacer más extensa su explicación para que cualquier experto en la materia comprenda su alcance y las ventajas que de ella se derivan, haciéndose constar que, dentro de su esencialidad, podrá ser llevada a la práctica en otras formas de realización que difieran en detalle de la indicada a título de ejemplo, y a las cuales alcanzará igualmente la protección que se recaba siempre que no se altere, cambie o modifique su principio fundamental. Figure 2 shows a graph of the X-ray Fluorescence Spectrum of a sample of the ceramic powder object of the invention, where its main chemical components Oxygen, Silicon, Aluminum, Zirconium and Titanium are observed. Describing sufficiently the nature of the present invention, as well as the way of putting it into practice, it is not considered necessary to make its explanation more extensive so that any person skilled in the art understands its scope and the advantages that derive from it, stating that, within its essentiality, it may be carried out in other embodiments that differ in detail from that indicated by way of example, and to which it will also achieve the protection that is sought provided that it does not alter, change or modify its fundamental principle .

Claims

R E I V I N D I C A C I O N E S
1. - POLVO CERÁMICO FOTOCATALÍTICO Y DE EMISIÓN INFRARROJA APLICABLE A FIBRAS TEXTILES, que dotado de capacidad fotocatalitica cuando es excitado por la luz y para emitir en el infrarrojo lejano al ser calentado, está caracterizado por estar constituido a partir de una mezcla micro o nanométrica de cantidades variables de Alúmina, Sílice, Circón y Óxido de titanio. 1. - PHOTOCATALYTIC CERAMIC POWDER AND INFRARED EMISSION APPLICABLE TO TEXTILE FIBERS, which equipped with photocatalytic capacity when excited by light and to emit in the far infrared when heated, is characterized by being constituted from a micro or nanometric mixture of varying amounts of alumina, silica, zircon and titanium oxide.
2. - POLVO CERÁMICO FOTOCATALÍTICO Y DE EMISIÓN INFRARROJA APLICABLE A FIBRAS TEXTILES, según la reivindicación 1, caracterizado porque los porcentajes de Alúmina, Sílice, Circón y Óxido de titanio se encuentran en proporciones que varían entre el 1 y el 80%, siendo 100% la suma total de los mismos. 2. - PHOTOCATALYTIC CERAMIC POWDER AND INFRARED EMISSION APPLICABLE TO TEXTILE FIBERS, according to claim 1, characterized in that the percentages of alumina, silica, zircon and titanium oxide are in proportions ranging between 1 and 80%, 100 being % the total sum of them.
3. - POLVO CERÁMICO FOTOCATALÍTICO Y DE EMISIÓN INFRARROJA APLICABLE A FIBRAS TEXTILES, según la reivindicación 1 ó 2 caracterizado porque el tamaño de partícula del polvo final es inferior a las 20 mieras . 3. - PHOTOCATALYTIC CERAMIC POWDER AND INFRARED EMISSION APPLICABLE TO TEXTILE FIBERS, according to claim 1 or 2, characterized in that the particle size of the final powder is less than 20 microns.
4.- POLVO CERÁMICO FOTOCATALÍTICO Y DE4.- PHOTOCATALYTIC AND CERAMIC POWDER
EMISIÓN INFRARROJA APLICABLE A FIBRAS TEXTILES, según la reivindicación 2 caracterizado porque el tamaño de partícula del polvo final es inferior a 5 mieras. INFRARED EMISSION APPLICABLE TO TEXTILE FIBERS, according to claim 2, characterized in that the particle size of the final powder is less than 5 microns.
5.- PROCEDIMIENTO PARA LA OBTENCIÓN DE POLVO5.- PROCEDURE FOR OBTAINING POWDER
CERÁMICO, según el descrito en cualquiera de las reivindicaciones 1-4, caracterizado porque comprende sistemas de molienda con molinos jet o molinos de atrición, en seco o en húmedo. CERAMIC, as described in any one of claims 1-4, characterized in that it comprises grinding systems with jet mills or attrition mills, dry or wet.
6.- PROCEDIMIENTO PARA LA OBTENCIÓN DE POLVO CERÁMICO, según la reivindicación 5, caracterizado porque comprende los siguientes pasos: pesar los componentes y pasarlos a un recipiente de material inerte, tal como porcelana, vidrio, acero inoxidable, etc. 6.- PROCEDURE FOR OBTAINING POWDER CERAMIC, according to claim 5, characterized in that it comprises the following steps: weigh the components and transfer them to a container of inert material, such as porcelain, glass, stainless steel, etc.
Remover con espátula y añadir alcohol etílico o de alcohol metílico. Remover hasta que se forma una masa plástica, que se pasa a un molino, añadiendo agua destilada. Moler el conjunto en presencia de un 30% de bolas de circona estabilizada de 2mm de diámetro. - Tras 20 minutos de molienda, separar las bolas de circona por tamizado, y secar la suspensión del polvo cerámico a temperatura inferior a 50°C. Stir with spatula and add ethyl alcohol or methyl alcohol. Stir until a plastic dough is formed, which is passed to a mill, adding distilled water. Grind the assembly in the presence of 30% stabilized zirconia balls 2mm in diameter. - After 20 minutes of grinding, separate the zirconia balls by sieving, and dry the ceramic powder suspension at a temperature below 50 ° C.
- Finalmente, tamizar el polvo seco por un tamiz de 75 mieras de luz de malla, y se envasa para su uso . - Finally, sift the dry powder through a sieve of 75 microns of mesh light, and it is packaged for use.
PCT/ES2014/070082 2013-02-06 2014-02-04 Photocatalytic and infrared-emitting ceramic powder applicable to textile fibres and method for producing said powder WO2014122349A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP14748945.4A EP2955254A4 (en) 2013-02-06 2014-02-04 Photocatalytic and infrared-emitting ceramic powder applicable to textile fibres and method for producing said powder

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ES201330138A ES2492215B1 (en) 2013-02-06 2013-02-06 PHOTOCATALYTIC AND INFRARED EMISSION CERAMIC POWDER, APPLICABLE TO TEXTILE FIBERS AND PROCEDURE FOR OBTAINING THIS POWDER
ESP201330138 2013-02-06

Publications (1)

Publication Number Publication Date
WO2014122349A1 true WO2014122349A1 (en) 2014-08-14

Family

ID=51299260

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES2014/070082 WO2014122349A1 (en) 2013-02-06 2014-02-04 Photocatalytic and infrared-emitting ceramic powder applicable to textile fibres and method for producing said powder

Country Status (3)

Country Link
EP (1) EP2955254A4 (en)
ES (1) ES2492215B1 (en)
WO (1) WO2014122349A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200101452A1 (en) * 2014-09-24 2020-04-02 Kai-Li HUANG Environment-controlling fibers and fabrics using the same
ES2773604A1 (en) * 2019-01-11 2020-07-13 Bionox Group Spain S L TEXTILE MATERIAL WITH BIOCERAMIC MICROPARTICLES THAT EMITS IN THE FAR INFRARED IN FOUR CONCRETE WAVE LENGTHS SIMULTANEOUSLY (Machine-translation by Google Translate, not legally binding)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63274660A (en) 1987-05-06 1988-11-11 Hideo Ota Far infrared radiation ceramics
US4999243A (en) * 1986-12-15 1991-03-12 Nobushige Maeda Far infra-red radiant composite fiber
EP0462275B1 (en) 1989-12-20 1995-08-23 KOMURO, Toshio Powder which radiates feeble-energy infrared rays, synthetic fiber containing the same, and textile products produced therefrom
DE19606266A1 (en) * 1995-07-14 1997-01-16 Cheil Synthetics Inc Process for the production of far infrared radiating polyester fibers
EP1291405A1 (en) * 2000-05-19 2003-03-12 Toshio Komuro Composition for far infrared irradiation with excellent antistatic property and fiber and textile product both containing the same
ES2341765T3 (en) 2002-03-22 2010-06-28 Holofiber, Llc PROCEDURE TO IMPROVE MUSCLE PERFORMANCE.

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2585167B2 (en) * 1992-07-16 1997-02-26 スワニー株式会社 Underwear made of metal-containing fibers
TW539579B (en) * 1999-09-08 2003-07-01 Showa Denko Kk Photocatalytic titanium dioxide powder, process for producing same, and applications thereof
DE102006053326A1 (en) * 2006-11-10 2008-05-15 Bühler PARTEC GmbH Equipment of substrates

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4999243A (en) * 1986-12-15 1991-03-12 Nobushige Maeda Far infra-red radiant composite fiber
JPS63274660A (en) 1987-05-06 1988-11-11 Hideo Ota Far infrared radiation ceramics
EP0462275B1 (en) 1989-12-20 1995-08-23 KOMURO, Toshio Powder which radiates feeble-energy infrared rays, synthetic fiber containing the same, and textile products produced therefrom
DE19606266A1 (en) * 1995-07-14 1997-01-16 Cheil Synthetics Inc Process for the production of far infrared radiating polyester fibers
EP1291405A1 (en) * 2000-05-19 2003-03-12 Toshio Komuro Composition for far infrared irradiation with excellent antistatic property and fiber and textile product both containing the same
EP1291405B1 (en) 2000-05-19 2006-03-01 Toshio Komuro Composition for far infrared irradiation with excellent antistatic property and fiber and textile product both containing the same
ES2341765T3 (en) 2002-03-22 2010-06-28 Holofiber, Llc PROCEDURE TO IMPROVE MUSCLE PERFORMANCE.

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
MAURY, A. ET AL., MAT. CONSTRUCCION, vol. 60, no. 298, 2010, pages 33 - 50
MILANI, R. ET AL., SASBE 3RD INTERNATIONAL CONFERENCE PROCEEDINGS, 2009
PARTHASARATHI, V. ET AL.: "Synthesis and Characterization of Titanium Dioxide Nanoparticles and their applications to textiles for microbe resistance''.", JOURNAL OF TEXTILE AND APPAREL, TECHNOLOGY AND MANAGEMENT., vol. 6, no. 2, 1 January 2009 (2009-01-01), pages 1 - 8, XP055269367 *
See also references of EP2955254A4 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200101452A1 (en) * 2014-09-24 2020-04-02 Kai-Li HUANG Environment-controlling fibers and fabrics using the same
ES2773604A1 (en) * 2019-01-11 2020-07-13 Bionox Group Spain S L TEXTILE MATERIAL WITH BIOCERAMIC MICROPARTICLES THAT EMITS IN THE FAR INFRARED IN FOUR CONCRETE WAVE LENGTHS SIMULTANEOUSLY (Machine-translation by Google Translate, not legally binding)
WO2020144388A1 (en) * 2019-01-11 2020-07-16 Bionox Group Spain, S.L. Textile material with bioceramic microparticles which simultaneously emit in the far-infrared in four specific wavelengths

Also Published As

Publication number Publication date
EP2955254A4 (en) 2016-09-07
ES2492215A1 (en) 2014-09-08
ES2492215B1 (en) 2015-06-29
EP2955254A1 (en) 2015-12-16

Similar Documents

Publication Publication Date Title
ES2391642T3 (en) Process for preparing TiO2 dispersions in the form of nanoparticles, and dispersions that can be obtained with the present process and surface functionalization by applying TiO2 dispersions
Hou et al. Synthesis of porous Bi 4 Ti 3 O 12 nanofibers by electrospinning and their enhanced visible-light-driven photocatalytic properties
Gurushantha et al. Facile green fabrication of iron-doped cubic ZrO2 nanoparticles by Phyllanthus acidus: structural, photocatalytic and photoluminescent properties
Sane et al. Visible light removal of reactive dyes using CeO2 synthesized by precipitation
Stathatos et al. TiO2/palygorskite composite nanocrystalline films prepared by surfactant templating route: Synergistic effect to the photocatalytic degradation of an azo-dye in water
Amorim et al. Towards an efficient and durable self-cleaning acrylic paint containing mesoporous TiO2 microspheres
Borhade et al. Study of photocatalytic asset of the ZnSnO3 synthesized by green chemistry
Oliveira et al. Synthesis and photocatalytic investigation of ZnFe2O4 in the degradation of organic dyes under visible light
Jalalah et al. Dielectric and photocatalytic properties of sulfur doped TiO2 nanoparticles prepared by ball milling
Haque et al. Synthesis, characterization and photocatalytic activity of visible light induced Ni-doped TiO2
Kalpana et al. Photodegradation and antibacterial studies of ZnS enwrapped fly ash nanocomposite for multipurpose industrial applications
ES2492215B1 (en) PHOTOCATALYTIC AND INFRARED EMISSION CERAMIC POWDER, APPLICABLE TO TEXTILE FIBERS AND PROCEDURE FOR OBTAINING THIS POWDER
Haibo et al. Visible-light photocatalytic activity of SiC hollow spheres prepared by a vapor–solid reaction of carbon spheres and silicon monoxide
Li et al. Facile synthesis of sheet-like N–TiO 2/gC 3 N 4 heterojunctions with highly enhanced and stable visible-light photocatalytic activities
Vaja et al. Effects of ZnO nanoparticles on the wet scrub resistance and photocatalytic properties of acrylic coatings
KR100672980B1 (en) A composition of Bioceramic emitting far infrarel rays and the manufacturing method thereof
Cerro et al. Cool and photocatalytic yellow ceramic pigments; from lead-tin to Cr doped scheelite pigments
Janus et al. Preliminary studies of photocatalytic activity of gypsum plasters containing TiO co-modified with nitrogen and carbon
Docters et al. Syntheses of TiO2 photocatalysts by the molten salts method: Application to the photocatalytic degradation of Prosulfuron®
EP3898550A1 (en) A cementitious composition with photocatalytic activity
Janus et al. The mechanical and photocatalytic properties of modified gypsum materials
Haruna et al. Visible light induced photodegradation of methylene blue in sodium doped bismuth barium ferrite nanoparticle synthesized by sol-gel method
Selvapandiyan et al. Synthesis, preparation, structural, optical, morphological and elemental analysis of bismuth oxides nanoparticles
KR100698342B1 (en) Multi-functional nano-bio ceramic composition :L-BAS and preparation thereof
KR101793512B1 (en) Manufacturing method of ceramic ball for water treatment and ceramic ball manufactured thereby

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14748945

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2014748945

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE