WO2014119899A1 - Optical film comprising light-emitting material, and backlight unit comprising same - Google Patents

Optical film comprising light-emitting material, and backlight unit comprising same Download PDF

Info

Publication number
WO2014119899A1
WO2014119899A1 PCT/KR2014/000788 KR2014000788W WO2014119899A1 WO 2014119899 A1 WO2014119899 A1 WO 2014119899A1 KR 2014000788 W KR2014000788 W KR 2014000788W WO 2014119899 A1 WO2014119899 A1 WO 2014119899A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical film
prism
transparent substrate
light
emitting material
Prior art date
Application number
PCT/KR2014/000788
Other languages
French (fr)
Korean (ko)
Inventor
김진우
이수경
김현영
우제하
은종혁
주영현
Original Assignee
제일모직 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 제일모직 주식회사 filed Critical 제일모직 주식회사
Publication of WO2014119899A1 publication Critical patent/WO2014119899A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09BORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
    • C09B1/00Dyes with anthracene nucleus not condensed with any other ring
    • C09B1/16Amino-anthraquinones
    • C09B1/20Preparation from starting materials already containing the anthracene nucleus
    • C09B1/26Dyes with amino groups substituted by hydrocarbon radicals
    • C09B1/32Dyes with amino groups substituted by hydrocarbon radicals substituted by aryl groups
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09BORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
    • C09B1/00Dyes with anthracene nucleus not condensed with any other ring
    • C09B1/16Amino-anthraquinones
    • C09B1/20Preparation from starting materials already containing the anthracene nucleus
    • C09B1/26Dyes with amino groups substituted by hydrocarbon radicals
    • C09B1/32Dyes with amino groups substituted by hydrocarbon radicals substituted by aryl groups
    • C09B1/325Dyes with no other substituents than the amino groups
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09BORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
    • C09B3/00Dyes with an anthracene nucleus condensed with one or more carbocyclic rings
    • C09B3/02Benzathrones
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09BORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
    • C09B57/00Other synthetic dyes of known constitution
    • C09B57/10Metal complexes of organic compounds not being dyes in uncomplexed form
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/02Diffusing elements; Afocal elements
    • G02B5/0205Diffusing elements; Afocal elements characterised by the diffusing properties
    • G02B5/021Diffusing elements; Afocal elements characterised by the diffusing properties the diffusion taking place at the element's surface, e.g. by means of surface roughening or microprismatic structures
    • G02B5/0231Diffusing elements; Afocal elements characterised by the diffusing properties the diffusion taking place at the element's surface, e.g. by means of surface roughening or microprismatic structures the surface having microprismatic or micropyramidal shape
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0033Means for improving the coupling-out of light from the light guide
    • G02B6/005Means for improving the coupling-out of light from the light guide provided by one optical element, or plurality thereof, placed on the light output side of the light guide
    • G02B6/0053Prismatic sheet or layer; Brightness enhancement element, sheet or layer
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133602Direct backlight
    • G02F1/133606Direct backlight including a specially adapted diffusing, scattering or light controlling members
    • G02F1/133607Direct backlight including a specially adapted diffusing, scattering or light controlling members the light controlling member including light directing or refracting elements, e.g. prisms or lenses

Definitions

  • Optical film containing a light emitting material and a backlight unit including the same
  • the present invention relates to an optical film and a backlight unit including the same.
  • the performance of the image display means using the optical film is greatly affected by the performance of the back-light unit. This is because the basic method is to adjust the amount of light by reflecting or transmitting light through the optical film.
  • the prism sheet of the optical film is a film for improving the brightness of the liquid crystal display (LCD).
  • LCDs liquid crystal displays
  • CCFLs or LEDs light sources
  • the prism sheet can increase side brightness by converting side light into front light and focusing reflected light.
  • the prism sheet as the light collecting sheet is an optical film having a thin film flexibility, and serves to increase the brightness by forming an optical pattern structured in a linear arrangement of prism shapes on one surface.
  • the prism-shaped optical sheet has a problem in that the horizontal viewing angle is not good because of the sidelobe light loss, which is a structural problem of the prism shape, as compared to the lenticular-shaped optical sheet.
  • various types of film development have been attempted to solve this problem.
  • a high refractive index resin conventionally used, bromine-substituted epoxy resins are frequently used.
  • acrylic acid is added to tetrabromo bisphenol A type epoxy resin and bisphenol A type epoxy resin, and styrene,
  • the epoxy resin manufactured by mixing divinylbenzene, benzyl methacrylate, etc. is used.
  • the epoxy resin still exhibits a low refractive index of 1.590.
  • Abesu number was low as 32, so there was much room for improvement for optics.
  • the halogen-based resin may cause toxic carcinogens such as polyhalogenated aromatic dioxin or polyhalogenated dibenzofuran (1> 0 ⁇ 11310 ⁇ ⁇ 6 (1 dibenzofuran) during combustion.
  • gases generated during combustion such as hydrogen chloride, adversely affect the human body and the environment.
  • an optical material having a urethane bond or a thiocarbanic acid S-alkyl ester bond polymerized by adding an internal mold release agent to a mixture with an active hydrogen compound containing an aromatic polyisocyanate, a polyol, and a polythiol containing sulfur atoms was developed. It is becoming. However, there is a problem that the optical product is partially deformed during hard coating due to low thermal stability.
  • An object of the present invention is to provide an optical film having improved brightness without changing the refractive.
  • Another object of the present invention is to provide an optical film having an improved horizontal viewing angle.
  • Another object of the present invention is to provide an optical film that can increase the efficiency of the light source.
  • One aspect of the invention is a transparent substrate; And at least one film provided with a plurality of prisms arranged on the transparent substrate, wherein the transparent substrate and the At least one of the prisms includes a luminescent material and relates to an optical film having a relative emission peak intensity of about 0.9 or less in a wavelength band of about 380 nm to about 480 nm.
  • Another aspect of the invention relates to a backlight unit comprising the optical film.
  • the intensity is about 0.9 or less
  • the second optical film relates to a composite optical film including at least one optical pattern of a prism, a lenticular lens, a micro lens, and a rough shape on a transparent substrate.
  • the optical film of the present invention is excellent in luminance without lowering the refractive index and has an improved horizontal viewing angle without side-lobe light loss.
  • FIG. 1 illustrates a cross-sectional photograph of a prism acid according to one embodiment of the present invention.
  • 2 is a conceptual diagram for explaining the radius of curvature of the prism and the height of the prism peak.
  • FIG 3 is a perspective view of a backlight unit according to an embodiment of the present invention.
  • FIG. 4 illustrates a perspective view of a composite optical film according to an embodiment of the present invention.
  • FIG. 5 is a graph showing the horizontal viewing angles of Examples 1-2 and Comparative Examples 1-3.
  • 6 is a graph showing the vertical viewing angles of Examples 1-2 and Comparative Examples 1-2.
  • 7 is a graph showing emission peaks according to emission wavelength bands of Examples 1 and 3.
  • FIG. 8 is a graph showing emission peaks according to emission wavelength bands of Examples 2 and 4.
  • FIG. 5 is a graph showing the horizontal viewing angles of Examples 1-2 and Comparative Examples 1-3.
  • 6 is a graph showing the vertical viewing angles of Examples 1-2 and Comparative Examples 1-2.
  • 7 is a graph showing emission peaks according to emission wavelength bands of Examples 1 and 3.
  • FIG. 8 is a graph showing emission peaks according to emission wavelength bands of Examples 2 and 4.
  • FIGS. 1 and 2 are cross-sectional photographs of a prism mountain according to an embodiment of the present invention
  • Figure 2 is a conceptual diagram for explaining the curvature radius of the prism and the height of the prism mountain.
  • an optical film according to an embodiment of the present invention will be described with reference to FIGS. 1 and 2.
  • An optical film according to an embodiment of the present invention includes a transparent substrate and a prism acid arranged on the transparent substrate.
  • the prism mountain may be arcuate in shape.
  • FIG. 1A illustrates a cross-sectional photograph of a prism mountain according to an embodiment of the present invention, and illustrates a case in which the government of the prism mountain is rounded in an arch shape.
  • the prisms of the prism mountain can be rounded to form an arch to secure a wide horizontal viewing angle.
  • At least one of the transparent substrate and the prism acid may include a light emitting material.
  • the light emitting material described below may be introduced into at least one of the transparent substrate and the prism acid to ensure excellent luminance.
  • the light emitting material is at least one of a fluorescent material and a phosphor, and the light emitting material absorbs light in a specific region of the light source, thereby improving the brightness of the optical film without using a high refractive index resin, thereby replacing the high refractive index resin.
  • the light emitting material may include a material having an emission characteristic by being excited by the emission wavelength band of the CCFL or LED lamp used as a light source in the backlight unit.
  • the light emitting material may absorb energy in a blue region or an ultraviolet wavelength region and emit energy in a green region.
  • the light emitting material may have an absorption wavelength of about 240 nm to about 380 nm or about 420 nm to about 480 nm, and the emission wavelength may be about 520 nm to about 580 nm.
  • Absorption wavelengths and emission wavelengths were measured in THF, CH 2 C1 2) or their mixed solvents at low concentrations (usually 0.02 g / 100 ml samples on a sample basis ) .
  • the type of light emitting material included in the optical film may vary depending on the type of light source of the backlight unit including the optical film. Because the light from the light source of the backlight unit is reflected or transmitted through the optical film, the amount of light Because it is controlled. As a light source of the backlight unit, an LED lamp or CCFL may be used.
  • the light emitting material absorbs energy in the blue region and emits energy in the green region.
  • the light emitting material has an absorption wavelength of about 420 nm to about 480 nm and an emission wavelength of about 520 nm to about 580 nm. This can be used.
  • the light emitting material absorbs energy in the ultraviolet wavelength region and emits energy in the green region, and emits light having an absorption wavelength of about 240 nm to about 380 nm and an emission wavelength of about 520 nm to about 580 nm. Materials can be used.
  • the optical film according to an embodiment of the present invention including the light emitting material may have a relative emission peak intensity of about 0.9 or less in an emission wavelength band of about 380 nm to about 480 nm, and about 1.1 or more in an emission wavelength band of about 520 nm to about 580 nm. have.
  • the relative emission peak intensity is a parameter normalized to the emission peak intensity of the LED lamp light source, and means a value representing the emission peak intensity of the optical film including the light emitting material relative to the emission peak intensity of the LED lamp light source.
  • the luminescent material may be an organic fluorescent or phosphorescent material, or an organic-inorganic hybrid fluorescent or phosphorescent material.
  • the organic-inorganic hybrid fluorescent or phosphorescent material means a light emitting material in which an organic component and an inorganic component are simultaneously included in one material.
  • Inorganic fluorescent or phosphorescent materials may absorb only certain regions of R, G, and B in the light of a light source, such as an LED lamp. Therefore, in order to improve light source efficiency, a plurality of inorganic fluorescent materials must be used to compensate for wavelength absorption for each of R, G, and B. However, when a plurality of inorganic fluorescent substances are included in the resin, there is a problem in dispersibility and color coordinate uniformity. On the other hand, the organic light emitting material may exhibit a wavelength absorption complementary effect on R, G, and B alone.
  • the fluorescent substance may include one or more of coumarin derivatives, pyran derivatives, quinacridone derivatives, aminoanthracene derivatives, naphthacene derivatives, phenylene vinylene, fluorene derivatives, naphthalene vinylene peri-naphthalene.
  • coumarin derivatives pyran derivatives, quinacridone derivatives, aminoanthracene derivatives, naphthacene derivatives, phenylene vinylene, fluorene derivatives, naphthalene vinylene peri-naphthalene.
  • TPA TPA
  • 5 (5,6,11,12) -tetraphenylnaphthacene ((5,6,11,12) -Tetraphenylnaphthacene, product name Rubrene)
  • PPV poly (p ⁇ phenylene vinylene )
  • Formula 7 Polyf luorene, poly (naphthalene vinylene) (PNV), poly per i-naphthalene (PPN) or a combination thereof.
  • the phosphor may comprise a pyridine iridium derivative. Specifically, Tris [2- (p-tolyl) pyridine] iridium (III); Ir (mppy) 3) (Formula 8), Ir (piq) 3 (Formula 9), Bis [3,5-dif luoro-2- (2-pyr idyl) phenyl- (2-carboxypyr idyl) iridium (III) ( ⁇ l ⁇ T 3 ⁇ 4 FlrPicK Formula 10), Tris (2-phenylpyridine) iridium (III)
  • the light emitting material may include an ultraviolet curable unsaturated functional group.
  • the ultraviolet curable unsaturated functional group may be a vinyl group or the like, but is not limited thereto.
  • the UV curable unsaturated functional group is included, the UV curable unsaturated compound and the curing reaction are performed to improve the strength and durability of the optical film together with the brightness improving effect.
  • the luminescent material may be included in about 0.001 percent by weight to about 0.5 weight 3 ⁇ 4 of the optical film, such as about 0.001 percent by weight to about 0.1 weight 3 ⁇ 4. Within this range, there may be a brightness synergistic effect. '
  • the luminescent material may be included in about 0.001 weight 3 ⁇ 4 to about 0.5 weight percent of the transparent substrate, for example, about 0.001 weight to about 0 ⁇ weight 3 ⁇ 4. Within this range, there may be a brightness synergistic effect.
  • the luminescent material may be included in about 0.001% to about 0.5% by weight, such as about 0.001% by weight to about 0.1% by weight of the prism acid. Within this range, there may be a brightness synergistic effect.
  • the prism acid may be a cured product of the resin composition including the light emitting material.
  • the resin composition may further include an ultraviolet curable unsaturated compound, an initiator, and the like.
  • UV-curable unsaturated compounds include fluorene derivative unsaturated resins, phenoxybenzyl (meth) acrylate, phenylphenoxyethyl (meth) acrylate, ethoxylated thiodiphenyl di (meth) acrylate, phenylthioethyl
  • the transparent substrate may be a glass film, a transparent synthetic resin, or the like as a transparent resin film. Generally, a transparent synthetic resin containing a polyethylene terephthalate material or the like can be used. The thickness of the transparent substrate may be about 30 to about 300.
  • the prism acid according to one embodiment of the present invention may have an arch-shaped cross section with a radius of curvature of about 1 to about 35 / zm. For example, from about 10 to about 20
  • It may have an arch-shaped cross section which is IM.
  • FIG. 1 (a) is a photograph of a cross section of a film including a curvature prism acid having a curvature radius of about 15 /
  • FIG. 1 (b) is a photograph of a cross section of a film having a lenticular shape with a curvature radius of about 20 One picture.
  • the radius of curvature refers to a radius of a circle inscribed simultaneously on an isosceles except for the base of a triangle, which is a cross section of a prism.
  • the prism peak has a sharp original cross-sectional shape. The larger the radius of curvature, the larger the roundness of the prism mount, but the lower the height of the prism mount.
  • the prism mountain it is advantageous in the aspect of the prism mountain to have a curved cross section having a radius of about 1 to about 35! M, for example, about 10 to about 20, in terms of securing front luminance and horizontal viewing angle.
  • the prism acid has a base length of about
  • the prism acid in the above range is excellent in characteristics such as brightness, but there is no problem such as moire.
  • the transparent substrate and the prism acid may be integrally formed.
  • the backlight unit may include the optical film.
  • the backlight unit 10 includes a light source 11, a light guide plate 12, and a light guide plate 12 that guide light emitted from the light source 11.
  • the diffusion sheet 14 disposed above the light guide plate 12, the optical film 15 disposed above the diffusion sheet 14, and the optical film 15.
  • It may include a protective sheet 16 disposed on the top.
  • the light source cover 11a may be disposed outside the light source 11 of the backlight unit.
  • a liquid crystal display panel and an antireflection layer are sequentially stacked on the backlight unit 10 to form a liquid crystal display device.
  • the light source 11 generates light, and various light sources such as a line light source lamp or a surface light source lamp, CCFL, or LED may be used.
  • the light guide plate 12 guides the light generated by the light source 11 to the diffusion sheet 14, and may be omitted when a direct type light source is adopted.
  • the reflective sheet 13 serves to reflect the light generated from the light source 11 and to supply it in the direction of the diffusion sheet 14.
  • the diffusion sheet 14 diffuses and scatters light incident through the light guide plate 12 to supply the prism sheet 15.
  • the optical film 15 refracts light incident through the diffusion sheet 14 to condense light onto a plane of a liquid crystal display panel (not shown).
  • Optical film can be modified and combined with various design values such as the shape of the light collector and the angle of the slope of the light collector according to various design goals such as high light collection efficiency, wide viewing angle, prevention of moiré phenomenon, and prevention of optical wet out with Dalon film. And commercially applicable.
  • the optical film may be configured by combining one or more sheets.
  • an optical film may be further provided above or below the optical film.
  • a prism acid arranged on the transparent substrate, wherein at least one of the transparent substrate and the prism acid includes a light emitting material, wherein the prism acid has an arch shape having a radius of curvature of about 1 / to about 35 / ffli.
  • a first optical film a second optical film having the same or vertical direction as the first optical film is provided in the same direction as the first optical film.
  • a second optical film including one or more optical patterns of a prism, a lenticular lens, a micro lens, and a umber shape may be further provided on or below the first optical film.
  • Figure 4 is a combination provided with a second optical film having a micro lens pattern on the optical film upper layer according to an embodiment of the present invention.
  • the resin composition for an optical film having the composition of Table 1 and Table 2 was prepared according to the following optical film manufacturing method, and the radius of the radius of prism acid was 2 sheets as shown in Table 3 below (lower film ®: bottom, upper film 1 : After placing the optical film of the top) perpendicular to the prism acid array direction and the physical properties measured according to the measurement method shown in Table 3 below.
  • the resin composition for an optical film prepared above was applied to a metal mold having a prism layer imprinted thereon, and one side of the transparent base PET film (polyethylene terephthalate film) was in contact with the coating surface applied to the metal mold.
  • UV light of 400 nm wavelength was mounted on an electrodeless ultraviolet irradiation device (600W / inch) with a Type-D bulb and irradiated with energy of 250 mJ / cin 2 to 500 mJ / cirf) to cure the coated composition. .
  • an optical film having a prism layer formed on one surface of the transparent substrate film was prepared.
  • the height of the optical film layer was set to 35-40.
  • Refraction The refractive index of the optical films prepared in Examples and Comparative Examples was measured using a refractometer (Model: IT, Japan ATAGO ABBE). A light source for the measurement was a D-beam sodium lamp of 589.3 nm.
  • Luminance Fix the above-mentioned prism film to a 32-inch liquid crystal display panel backlight unit, and measure the average value by measuring the luminance at 13 points and 5 points using a luminance meter (Model name: SR3, Japan TOPCON Co., Ltd.). It was. In this case, an LED lamp was used as a light source of the backlight unit. The brightness
  • FIG. 7 shows light emission peaks measured using an LED lamp light source having a maximum light emission peak of about 3.0E-0.2 (au) measured by the device in the light emission wavelength band of 380 nm to 480 nm
  • FIG. 8 shows a light emission peak of 380 nm to 480 nm.
  • the emission peak was measured using an LED lamp light source having a maximum emission peak of about 2.5E-0.2 (au) when measured by the device in the nm emission wavelength band.
  • Comparative Examples 1 to 3 containing no light emitting material did not have good brightness, and in Comparative Example 4 in which the prism structure was not formed, the viewing angle was not good.
  • Figure 7 is a graph showing the emission peak according to the emission wavelength band of Example 1 and Example 3
  • Figure 8 is a graph showing the emission peak according to the emission wavelength band of Example 2 and Example 4
  • the optical films of Examples 1 to 4 including a light emitting material and having a curvature prism structure have a relative emission peak intensity of 0.9 or less in an emission wavelength band of 380 nm to 480 nm, and in an emission wavelength band of 520 nm to 580 nm. It turns out that it is 1.1 or more.
  • Ref. Is the emission peak of the LED lamp light source itself, and in Comparative Examples 1 and 2, Ref. And the emission peak are substantially the same, and are not separately shown.

Abstract

The present invention relates to an optical film comprising one or more sheets of film provided with a transparent substrate and a plurality of prisms arrayed thereon, wherein one or both of the transparent substrate and the prisms comprise light-emitting material, and the comparative light-emission peak is approximately 0.9 or lower in a wavelength band of approximately 380-480nm. The optical film is characterized by having superb intensity without a reduction in the refractive index and a wide viewing angle.

Description

【명세서】  【Specification】
【발명의 명칭】  [Name of invention]
발광물질을 포함하는 광학필름 및 이를 포함하는 백라이트 유닛 【기술분야】  Optical film containing a light emitting material and a backlight unit including the same
본 발명은 광학필름 및 이를 포함하는 백라이트 유닛에 관한 것이다. 【배경기술】  The present invention relates to an optical film and a backlight unit including the same. Background Art
액정 표시 장치 (LCD)에 있어서, 광학필름올 사용하는 영상표시 수단의 성능은 백라이트 유닛 (Back-Light Unit)의 성능에 크게 영향을 받는다. 이는 광학필름을 통해 빛을 반사하거나 투과시켜 빛의 양을 조절하는 방식이 기본이 되기 때문이다.  In the liquid crystal display (LCD), the performance of the image display means using the optical film is greatly affected by the performance of the back-light unit. This is because the basic method is to adjust the amount of light by reflecting or transmitting light through the optical film.
영상표시 수단에 효과적으로 적용하기 위해 광학적 성능이 우수한 다양한 광학필름이 제시되어 왔다. 이러한 광학필름 중 프리즘 시트는 액정표시장치 (LCD)의 휘도를 향상시키기 위한 필름이다. 액정표시장치 (LCD)는 스스로 빛을 낼 수 없기 때문에 광원 (CCFL 또는 LED)을 사용하여 광을 얻고, 이 광을 도광판을 통해 전체 면적으로 분포시키고, 확산시트를 이용하여 보다 균일한 밝기의 면광원으로 변형시킨다. 이러한 과정에서 초기 광원으로부터 출사된 광의 효율은 점점 떨어지게 된다. 프리즘 시트는 측광 (side light)을 정면광으로 바꾸고 반사광을 집광시켜 휘도를 높일 수 있다.  Various optical films with excellent optical performance have been proposed for effective application to image display means. The prism sheet of the optical film is a film for improving the brightness of the liquid crystal display (LCD). Liquid crystal displays (LCDs) cannot emit light by themselves, so they use light sources (CCFLs or LEDs) to obtain light, distribute the light through the light guide plate over the entire area, and use diffuser sheets to provide more uniform brightness. Transform into a light source. In this process, the efficiency of light emitted from the initial light source is gradually reduced. The prism sheet can increase side brightness by converting side light into front light and focusing reflected light.
이와 같이 집광 시트로서 프리즘 시트는 박막 유연성을 갖는 광학필름으로서, 한쪽 면에 프리즘 형상이 선형 배열로 구조화된 광학 패턴을 형성하여 휘도를 증가시키는 역할을 한다. 그러나 프리즘 형상의 광학 시트는 렌티클러 형상의 광학 시트에 비하여, 프리즘 형상의 구조적인 문제인 사이드ᅳ로브 광 손실이 발생하기 때문에 수평 시야각이 좋지 않은 문제점이 있다. 현재 이러한 문제점을 해결하기 위한 다양한 형태의 필름 개발이 시도되고 있다. 굴절률이 높을수록 프리즘 필름의 성능이 향상되어 높은 휘도를 구현할 수 있다. 종래 대표적으로 사용되는 고굴절률 수지로는 브롬이 치환된 에폭시수지가 많이 이용되고 있다. 예를 들면 테트라브로모 비스페놀 A 형의 에폭시 수지와 비스페놀 A 형 에폭시 수지에 아크릴산을 부가하고 여기에 스틸렌, 디비닐벤젠, 벤질메타아크릴레이트 등을 흔합하여 제조된 에폭시 수지를 이용한다. As such, the prism sheet as the light collecting sheet is an optical film having a thin film flexibility, and serves to increase the brightness by forming an optical pattern structured in a linear arrangement of prism shapes on one surface. However, the prism-shaped optical sheet has a problem in that the horizontal viewing angle is not good because of the sidelobe light loss, which is a structural problem of the prism shape, as compared to the lenticular-shaped optical sheet. At present, various types of film development have been attempted to solve this problem. The higher the refractive index, the better the performance of the prism film can achieve a high luminance. As a high refractive index resin conventionally used, bromine-substituted epoxy resins are frequently used. For example, acrylic acid is added to tetrabromo bisphenol A type epoxy resin and bisphenol A type epoxy resin, and styrene, The epoxy resin manufactured by mixing divinylbenzene, benzyl methacrylate, etc. is used.
. 그러나, 상기 에폭시 수지는 굴절률이 1.590 으로 여전히 낮은 수치를 나타내고 있다. 또한, 아베수 역시 32 정도로 낮아서 광학용으로는 개선의 여지가 많았다. 또한, 상기 할로겐계 수지는 연소시 폴리할로겐화 아로마 다이옥신 (Polyhalogenated aromatic dioxin) 또는 폴리할로겐화 디벤조퓨란(1>0^11310 ∞^6(1 dibenzofuran)등의 유독성 발암물질이 발생할 우려가 있고, 브름화수소나 염화수소 등과 같이 연소시 발생되는 가스가 인체 및 환경에 악영향을 미친다는 문제점이 있었다.  . However, the epoxy resin still exhibits a low refractive index of 1.590. In addition, Abesu number was low as 32, so there was much room for improvement for optics. In addition, the halogen-based resin may cause toxic carcinogens such as polyhalogenated aromatic dioxin or polyhalogenated dibenzofuran (1> 0 ^ 11310 ∞ ^ 6 (1 dibenzofuran) during combustion. There was a problem that gases generated during combustion, such as hydrogen chloride, adversely affect the human body and the environment.
또한, 황원자를 함유하는 방향족 폴리이소시아네이트, 폴리올, 폴리티올인 활성수소 화합물과의 흔합물에 내부 이형제를 첨가하여 주형 중합된 우레탄 결합 또는 티오카르 바인산 S-알킬에스테르 결합을 가진 광학용 소재가 개발되고 있다. 그러나, 열안정성이 낮아서 하드 코팅시 광학제품이 부분 변형되는 문제점이 있다.  In addition, an optical material having a urethane bond or a thiocarbanic acid S-alkyl ester bond polymerized by adding an internal mold release agent to a mixture with an active hydrogen compound containing an aromatic polyisocyanate, a polyol, and a polythiol containing sulfur atoms was developed. It is becoming. However, there is a problem that the optical product is partially deformed during hard coating due to low thermal stability.
【발명의 상세한 설명】 [Detailed Description of the Invention]
【기술적 과제】  [Technical problem]
본 발명의 목적은 굴절를의 변화없이 휘도가 개선된 광학필름을 제공하기 위함이다.  An object of the present invention is to provide an optical film having improved brightness without changing the refractive.
본 발명의 다른 목적은 수평 시야각이 개선된 광학필름을 제공하기 위함이다.  Another object of the present invention is to provide an optical film having an improved horizontal viewing angle.
본 발명의 또 다른 목적은 광원의 효율을 증가시킬 수 있는 광학필름을 제공하기 위함이다.  Another object of the present invention is to provide an optical film that can increase the efficiency of the light source.
본 발명의 상기 및 기타의 목적들은 하기 설명되는 본 발명에 의하여 모두 달성될 수 있다.  The above and other objects of the present invention can be achieved by the present invention described below.
【기술적 해결방법】 Technical Solution
본 발명의 하나의 관점은 투명기재; 및 상기 투명기재 상에 배열된 복수 개의 프리즘;이 구비된 필름을 하나 이상 포함하고, 상기 투명기재와 상기 프리즘 중 하나 이상은 발광물질을 포함하며, 약 380nm 내지 약 480nm 의 파장대역에서 상대 발광 피크 강도가 약 0.9 이하인 광학필름에 관한 것이다. 본 발명의 다른 관점은 상기 광학필름을 포함하는 백라이트 유닛에 관한 것이다. One aspect of the invention is a transparent substrate; And at least one film provided with a plurality of prisms arranged on the transparent substrate, wherein the transparent substrate and the At least one of the prisms includes a luminescent material and relates to an optical film having a relative emission peak intensity of about 0.9 or less in a wavelength band of about 380 nm to about 480 nm. Another aspect of the invention relates to a backlight unit comprising the optical film.
본 발명의 또 다른 관점은 제 1 광학필름; 및 상기 제 1 광학필름 상부 또는 하부에 구비된 제 2 광학필름;을 포함하고, 상기 제 1 광학필름은 투명기재; 및 상기 투명기재 상에 배열된 복수 개의 프리즘;이 구비된 필름을 하나 이상 포함하고, 상기 투명기재와 상기 프리즘 중 하나 이상은 발광물질을 포함하고, 약 380nm 내지 약 480nm 의 파장대역에서 상대 발광 피크 강도가 약 0.9 이하이며, 상기 제 2 광학필름은 투명기재 상에 프리즘, 렌티클러 렌즈, 마이크로 렌즈, 및 엄보 형상 중 하나 이상의 광학패턴을 포함하는 복합광학필름에 관한 것이다.  Another aspect of the invention the first optical film; And a second optical film provided above or below the first optical film, wherein the first optical film comprises a transparent substrate; And at least one film having a plurality of prisms arranged on the transparent substrate, wherein at least one of the transparent substrate and the prism includes a light emitting material and has a relative emission peak in a wavelength band of about 380 nm to about 480 nm. The intensity is about 0.9 or less, and the second optical film relates to a composite optical film including at least one optical pattern of a prism, a lenticular lens, a micro lens, and a rough shape on a transparent substrate.
【유리한 효과】 Advantageous Effects
본 발명의 광학필름은 굴절률의 저하없이 휘도가 우수하고 및 사이드 -로브 광 손실 없이 수평 시야각 개선된 효과를 갖는다.  The optical film of the present invention is excellent in luminance without lowering the refractive index and has an improved horizontal viewing angle without side-lobe light loss.
【도면의 간단한 설명】 [Brief Description of Drawings]
도 1 은 본 발명의 일 구체예에 따른 프리즘 산의 단면 사진을 도시한 것이다.  1 illustrates a cross-sectional photograph of a prism acid according to one embodiment of the present invention.
도 2 는 프리즘의 곡률반지름과 프리즘 산의 높이를 설명하기 위한 개념도이다.  2 is a conceptual diagram for explaining the radius of curvature of the prism and the height of the prism peak.
도 3 은 본 발명의 일 구체예에 따른 백라이트 유닛의 사시도를 도시한 것이다.  3 is a perspective view of a backlight unit according to an embodiment of the present invention.
도 4 는 본 발명의 일 구체예에 따른 복합광학필름의 사시도를 도시한 것이다.  4 illustrates a perspective view of a composite optical film according to an embodiment of the present invention.
도 5는 실시예 1~2 및 비교예 1~3의 수평 시야각을 나타낸 그래프이다. 도 6은 실시예 1~2 및 비교예 1~2의 수직 시야각을 나타낸 그래프이다. 도 7 은 실시예 1 및 실시예 3 의 발광 파장 대역에 따른 발광 피크를 나타낸 그래프이다. 도 8 은 실시예 2 및 실시예 4 의 발광 파장 대역에 따른 발광 피크를 나타낸 그래프이다. 5 is a graph showing the horizontal viewing angles of Examples 1-2 and Comparative Examples 1-3. 6 is a graph showing the vertical viewing angles of Examples 1-2 and Comparative Examples 1-2. 7 is a graph showing emission peaks according to emission wavelength bands of Examples 1 and 3. FIG. 8 is a graph showing emission peaks according to emission wavelength bands of Examples 2 and 4. FIG.
【발명의 실시를 위한 최선의 형태】 [Best form for implementation of the invention]
도 1은 본 발명의 일 구체예에 따른 프리즘 산의 단면 사진이고, 도 2는 프리즘의 곡률반지름과 프리즘 산의 높이를 설명하기 위한 개념도이다. 이하, 도 1 및 도 2를 참조하여 본 발명의 일 구체예에 따른 광학필름을 설명한다.  1 is a cross-sectional photograph of a prism mountain according to an embodiment of the present invention, Figure 2 is a conceptual diagram for explaining the curvature radius of the prism and the height of the prism mountain. Hereinafter, an optical film according to an embodiment of the present invention will be described with reference to FIGS. 1 and 2.
본 발명의 일 구체예에 따른 광학필름은 투명기재 및 상기 투명기재 상에 배열된 프리즘 산을 포함한다.  An optical film according to an embodiment of the present invention includes a transparent substrate and a prism acid arranged on the transparent substrate.
상기 프리즘 산은 정부가 아치 형상일 수 있다. 도 1 의 (a)는 본 발명의 일 구체예에 따른 프리즘 산의 단면 사진을 도시한 것으로 프리즘 산의 정부가 아치 형상으로 라운드 처리된 경우를 예시한다. 프리즘 산의 정부를 아치 형상으로 라운드 처리하여 넓은 수평 시야각을 확보할 수 있다.  The prism mountain may be arcuate in shape. FIG. 1A illustrates a cross-sectional photograph of a prism mountain according to an embodiment of the present invention, and illustrates a case in which the government of the prism mountain is rounded in an arch shape. The prisms of the prism mountain can be rounded to form an arch to secure a wide horizontal viewing angle.
상기 투명기재 및 상기 프리즘 산 중 하나 이상은 발광물질을 포함할 수 있다. 상기 투명기재 및 상기 프리즘 산 중 하나 이상에 하기에서 기술되는 발광물질을 도입하여 우수한 휘도를 확보할 수 있다.  At least one of the transparent substrate and the prism acid may include a light emitting material. The light emitting material described below may be introduced into at least one of the transparent substrate and the prism acid to ensure excellent luminance.
상기 발광물질은 형광 물질, 인광 물질 중 하나 이상으로서, 상기 발광물질은 광원의 특정 영역의 빛을 흡수함으로서 고굴절률 수지를 사용하지 않아도 광학필름의 휘도를 향상시킬 수 있어, 고굴절률 수지를 대체할 수 있다. 상기 발광물질은 백라이트 유닛에 광원으로 사용되는 CCFL 또는 LED 램프의 발광 파장대에 의해 여기되어 발광 특성을 갖는 물질을 포함할 수 있다. 상기 발광물질은 청색 영역 또는 자외선 파장 영역의 에너지를 흡수하고 녹색 영역의 에너지를 발광할 수 있다. 구체적으로 발광물질은 흡수 파장이 약 240nm 내지 약 380nm 또는 약 420nm 내지 약 480nm 이고, 발광 파장은 약 520nm 내지 약 580nm 가 될 수 있다. 흡수 파장과 발광 파장은 저 (低) 농도 (통상 샘플 기준으로 0.02g/100ml 샘플)로 THF, CH2C12) 또는 이들의 흔합 용매에서 측정된 것이다. The light emitting material is at least one of a fluorescent material and a phosphor, and the light emitting material absorbs light in a specific region of the light source, thereby improving the brightness of the optical film without using a high refractive index resin, thereby replacing the high refractive index resin. Can be. The light emitting material may include a material having an emission characteristic by being excited by the emission wavelength band of the CCFL or LED lamp used as a light source in the backlight unit. The light emitting material may absorb energy in a blue region or an ultraviolet wavelength region and emit energy in a green region. Specifically, the light emitting material may have an absorption wavelength of about 240 nm to about 380 nm or about 420 nm to about 480 nm, and the emission wavelength may be about 520 nm to about 580 nm. Absorption wavelengths and emission wavelengths were measured in THF, CH 2 C1 2) or their mixed solvents at low concentrations (usually 0.02 g / 100 ml samples on a sample basis ) .
광학필름에 포함되는 발광물질의 종류는 광학필름이 포함되는 백라이트 유닛의 광원 종류에 따라 달라질 수 있다. 왜냐하면, 백라이트 유닛의 광원으로부터 나온 광이 광학필름을 통해 반사되거나 투과되어 빛의 양이 조절되기 때문이다. 백라이트 유닛의 광원으로는 LED 램프 또는 CCFL 이 사용될 수 있다. The type of light emitting material included in the optical film may vary depending on the type of light source of the backlight unit including the optical film. Because the light from the light source of the backlight unit is reflected or transmitted through the optical film, the amount of light Because it is controlled. As a light source of the backlight unit, an LED lamp or CCFL may be used.
백라이트 유닛에서 광원이 LED 램프일 때, 발광물질은 청색 영역의 에너지를 흡수하고 녹색 영역의 에너지를 발광하는 물질로서, 흡수 파장이 약 420nm 내지 약 480nm, 발광 파장이 약 520nm 내지 약 580nm 인 발광물질이 사용될 수 있다.  When the light source in the backlight unit is an LED lamp, the light emitting material absorbs energy in the blue region and emits energy in the green region. The light emitting material has an absorption wavelength of about 420 nm to about 480 nm and an emission wavelength of about 520 nm to about 580 nm. This can be used.
백라이트 유닛에서 광원이 CCFL 일 때, 발광물질은 자외선 파장 영역의 에너지를 흡수하고 녹색 영역의 에너지를 발광하는 발광물질로서, 흡수 파장이 약 240nm 내지 약 380nm, 발광 파장이 약 520nm 내지 약 580nm 인 발광물질이 사용될 수 있다.  In the backlight unit, when the light source is CCFL, the light emitting material absorbs energy in the ultraviolet wavelength region and emits energy in the green region, and emits light having an absorption wavelength of about 240 nm to about 380 nm and an emission wavelength of about 520 nm to about 580 nm. Materials can be used.
상기 발광물질을 포함하는 본 발명의 일 구체예에 따른 광학필름은 상대 발광 피크 강도가 약 380nm 내지 약 480nm 발광 파장 대역에서 약 0.9 이하일 수 있으며, 약 520nm 내지 약 580nm 발광 파장 대역에서 약 1.1 이상일 수 있다. 본 발명에서 상대 발광 피크 강도는 LED 램프 광원의 발광 피크 강도로 정규화된 파라미터로서, LED 램프 광원의 발광 피크 강도에 대한 발광물질을 포함하는 광학필름의 발광 피크 강도를 상대적으로 나타낸 값을 의미한다.  The optical film according to an embodiment of the present invention including the light emitting material may have a relative emission peak intensity of about 0.9 or less in an emission wavelength band of about 380 nm to about 480 nm, and about 1.1 or more in an emission wavelength band of about 520 nm to about 580 nm. have. In the present invention, the relative emission peak intensity is a parameter normalized to the emission peak intensity of the LED lamp light source, and means a value representing the emission peak intensity of the optical film including the light emitting material relative to the emission peak intensity of the LED lamp light source.
발광물질은 유기 형광 또는 인광 물질, 또는 유기 -무기 하이브리드 형광 또는 인광 물질이 될 수 있다. 상기 유기 -무기 하이브리드 형광 또는 인광 물질은 하나의 물질에 유기 성분과 무기 성분이 동시에 포함되는 발광물질을 의미한다 .  The luminescent material may be an organic fluorescent or phosphorescent material, or an organic-inorganic hybrid fluorescent or phosphorescent material. The organic-inorganic hybrid fluorescent or phosphorescent material means a light emitting material in which an organic component and an inorganic component are simultaneously included in one material.
무기 형광 또는 인광 물질은 광원 예를 들면 LED 램프의 광에서 R, G, B 중 특정 영역만을 흡수할 수 있다. 따라서, 광원 효율을 높이기 위해서는 R, G, B 각각에 대한 파장 흡수를 보완하기 위해 복수 개의 무기 형광 물질을 사용해야 한다. 그러나, 무기 형광 물질을 수지에 복수 개 포함시킬 경우 분산성, 색좌표 균일성에 문제가 있다. 반면에, 유기 발광물질은 단독으로 R, G, B 에 대한 파장 흡수 보완 효과를 나타낼 수 있다.  Inorganic fluorescent or phosphorescent materials may absorb only certain regions of R, G, and B in the light of a light source, such as an LED lamp. Therefore, in order to improve light source efficiency, a plurality of inorganic fluorescent materials must be used to compensate for wavelength absorption for each of R, G, and B. However, when a plurality of inorganic fluorescent substances are included in the resin, there is a problem in dispersibility and color coordinate uniformity. On the other hand, the organic light emitting material may exhibit a wavelength absorption complementary effect on R, G, and B alone.
상기 형광 물질은 쿠마린 유도체, 피란 유도체, 퀴나크리돈 유도체, 아미노안트라센 유도체, 나프타센 유도체, 페닐렌 비닐렌, 플루오렌 유도체, 나프탈렌 비닐렌 페리-나프탈렌 중 하나 이상을 포함할 수 있다. 구체적으로, The fluorescent substance may include one or more of coumarin derivatives, pyran derivatives, quinacridone derivatives, aminoanthracene derivatives, naphthacene derivatives, phenylene vinylene, fluorene derivatives, naphthalene vinylene peri-naphthalene. Specifically,
2,3,6,7-Tetrahydro-l,l,7,7,-tetramethyl-lH,5H,llH-10-(2-benzothiazolyl)quin olizino[9,9a,lgh] coumarin (제품명 C545T) (화학식 1), 2,3,6,7-Tetrahydro-l, l, 7,7, tetramethyl-lH, 5H, llH-10- (2-benzothiazolyl) quin olizino [9,9a, lgh] coumarin (Product name C545T) One),
3- ( 2 ' -benzo t h i azo 1 y 1 ) -7-N , N-d i e t hy 1 am i no coumarin (coumarin 6) (화학식 2), 4-(Di cyanome t hy 1 ene )-2-tert一 but y l-6-(l, 1,7,7-tetr ame t hy 1 3- (2 '-benzo thi azo 1 y 1) -7-N, Nd iet hy 1 am i no coumarin (coumarin 6) (Formula 2), 4- (Di cyanome t hy 1 ene) -2-tert 一but y l-6- (l, 1,7,7-tetr ame t hy 1
julol idin-4-yl-vinyl )-4H-pyran(E), Ν,Ν'ᅳ Dimethy卜 quinacr idone (제품명julol idin-4-yl-vinyl) -4H-pyran (E) , Ν, Ν 'ᅳ Dimethy 卜 quinacr idone (
DMQAK화학식 3), 9,10-bis[N,N-di-(p-tolyl)-ainino]anthraceiie (제품명 TTPA) (화학식 4), 9,10-bis[phenyl(m-tolyl)-aiTiino]anthracene (제품명DMQAK Formula 3), 9,10-bis [N, N-di- (p-tolyl) -ainino] anthraceiie (Product Name TTPA) (Formula 4), 9,10-bis [phenyl (m-tolyl) -aiTiino] anthracene (product name
TPA) (화학식 5), (5,6,11,12)-테트라페닐나프타센 ((5,6,11,12)-Tetraphenylnaphthacene, 제품명 Rubrene) (화학식 6), PPV(poly(pᅳ phenylene vinylene)) (화학식 7), Polyf luorene, PNV (poly (naphthalene vinylene) , PPN(poly per i -naphthalene) 또는 이들의 흔합물이 될 수 있다. TPA) (Formula 5), (5,6,11,12) -tetraphenylnaphthacene ((5,6,11,12) -Tetraphenylnaphthacene, product name Rubrene) (Formula 6), PPV (poly (p ᅳ phenylene vinylene )) (Formula 7), Polyf luorene, poly (naphthalene vinylene) (PNV), poly per i-naphthalene (PPN) or a combination thereof.
상기 인광 물질은 피리딘 이리듐 유도체를 포함할 수 있다. 구체적으로, Tris[2-(p-tolyl)pyridine]iridium(III); Ir(mppy)3) (화학식 8), Ir(piq)3 (화학식 9), Bis[3,5-dif luoro-2-(2-pyr idyl )phenyl-(2-carboxypyr idyl )iridium(III)(^l^T¾ FlrPicK화학식 10), Tris(2-phenylpyridine)iridium(III) (제품명The phosphor may comprise a pyridine iridium derivative. Specifically, Tris [2- (p-tolyl) pyridine] iridium (III); Ir (mppy) 3) (Formula 8), Ir (piq) 3 (Formula 9), Bis [3,5-dif luoro-2- (2-pyr idyl) phenyl- (2-carboxypyr idyl) iridium (III) (^ l ^ T ¾ FlrPicK Formula 10), Tris (2-phenylpyridine) iridium (III)
Ir(PPy)3) (화학식 11) 또는 이들의 흔합물이 될 수 있다. Ir ( PP y) 3) (Formula 11) or a combination thereof.
<화학식 1>  <Formula 1>
Figure imgf000008_0001
Figure imgf000008_0001
<화학식 2>  <Formula 2>
Figure imgf000008_0002
<화학식 3>
Figure imgf000008_0002
<Formula 3>
Figure imgf000009_0001
Figure imgf000009_0001
<화학식 6〉
Figure imgf000009_0002
<화학식 7>
Figure imgf000010_0001
<Formula 6>
Figure imgf000009_0002
<Formula 7>
Figure imgf000010_0001
(n 은 100 내지 500 의 정수이다) <화학식 8>  (n is an integer of 100 to 500)
Figure imgf000010_0002
<화학식 11>
Figure imgf000010_0002
<Formula 11>
Figure imgf000011_0001
상기 발광물질은 자외선 경화형 불포화 작용기를 포함할 수 있다. 자외선 경화형 불포화 작용기는 비닐기 등이 될 수 있지만 이에 제한되지 않는다. 자외선 경화형 불포화 작용기 포함시 하기 자외선 경화형 불포화 화합물과 경화 반웅을 수행함으로써, 휘도 향상 효과와 함께 광학필름의 강도와 내구성을 개선할 수 있다.
Figure imgf000011_0001
The light emitting material may include an ultraviolet curable unsaturated functional group. The ultraviolet curable unsaturated functional group may be a vinyl group or the like, but is not limited thereto. When the UV curable unsaturated functional group is included, the UV curable unsaturated compound and the curing reaction are performed to improve the strength and durability of the optical film together with the brightness improving effect.
발광물질은 광학필름 중 약 0.001 증량 % 내지 약 0.5 중량 ¾, 예로서 약 0.001 증량 % 내지 약 0.1 중량 ¾로 포함될 수 있다. 상기 범위 내에서, 휘도 상승효과가 있을 수 있다. ' The luminescent material may be included in about 0.001 percent by weight to about 0.5 weight ¾ of the optical film, such as about 0.001 percent by weight to about 0.1 weight ¾. Within this range, there may be a brightness synergistic effect. '
발광물질은 투명기재 중 약 0.001 중량 ¾ 내지 약 0.5 중량 %, 예로서 약 0.001 중량 내지 약 0Λ 중량 ¾로 포함될 수 있다. 상기 범위 내에서, 휘도 상승효과가 있을 수 있다.  The luminescent material may be included in about 0.001 weight ¾ to about 0.5 weight percent of the transparent substrate, for example, about 0.001 weight to about 0Λ weight ¾. Within this range, there may be a brightness synergistic effect.
발광물질은 프리즘 산 중 약 0.001 중량 % 내지 약 0.5 중량 %, 예로서 약 0.001 중량 ¾ 내지 약 0.1 중량 %로 포함될 수 있다. 상기 범위 내에서, 휘도 상승효과가 있을 수 있다.  The luminescent material may be included in about 0.001% to about 0.5% by weight, such as about 0.001% by weight to about 0.1% by weight of the prism acid. Within this range, there may be a brightness synergistic effect.
프리즘 산은 발광물질을 포함하는 수지 조성물의 경화물이 될 수 있다. 상기 수지 조성물은 자외선 경화형 불포화 화합물, 개시제 등을 더 포함할 수 있다. 특히, 자외선 경화형 불포화 화합물서 플루오렌 유도체 불포화 수지와 페녹시벤질 (메타)아크릴레이트, 페닐페녹시에틸 (메타)아크릴레이트, 에록시레이티드 티오디페닐 디 (메타)아크릴레이트, 페닐티오에틸 The prism acid may be a cured product of the resin composition including the light emitting material. The resin composition may further include an ultraviolet curable unsaturated compound, an initiator, and the like. In particular, UV-curable unsaturated compounds, fluorene derivative unsaturated resins, phenoxybenzyl (meth) acrylate, phenylphenoxyethyl (meth) acrylate, ethoxylated thiodiphenyl di (meth) acrylate, phenylthioethyl
(메타)아크릴레이트 단량체 또는 이들의 을리고머를 포함함으로써, 투명기재와의 접착력을 높이고, 프리즘 산의 표면 경도를 향상시킬 수 있다. 프리즘 산에 있어서 광원으로부터 멀어질수록 발광물질의 농도는 증가할 수 있다. By including (meth) acrylate monomers or their oligomers, It is possible to improve the adhesion and to improve the surface hardness of the prism acid. As the prism acid moves away from the light source, the concentration of the light emitting material may increase.
상기 투명기재는 투명 재질의 수지 필름으로서, 유리, 투명 합성수지 등이 사용될 수 있다. 일반적으로는 폴리에틸렌테레프탈레이트 재질 등을 포함하는 투명 합성수지를 사용할 수 있다. 상기 투명기재의 두께는 약 30 내지 약 300 가 될 수 있다.  The transparent substrate may be a glass film, a transparent synthetic resin, or the like as a transparent resin film. Generally, a transparent synthetic resin containing a polyethylene terephthalate material or the like can be used. The thickness of the transparent substrate may be about 30 to about 300.
본 발명의 일 구체예에 따른 프리즘 산은 정부의 곡률 반지름이 약 1 내지 약 35 /zm 인 아치 형상의 단면을 가질 수 있다. 예로서 약 10 내지 약 20 The prism acid according to one embodiment of the present invention may have an arch-shaped cross section with a radius of curvature of about 1 to about 35 / zm. For example, from about 10 to about 20
IM 인 아치 형상의 단면을 가질 수 있다. It may have an arch-shaped cross section which is IM.
도 1 (a)는 곡률반지름이 약 15 / 인 곡률 프리즘 산을 포함하는 필름의 단면을 촬영한 사진이며, 도 1 (b)는 곡률반지름이 약 20 인 렌티클러 형상을 갖는 필름의 단면을 촬영한 사진이다.  FIG. 1 (a) is a photograph of a cross section of a film including a curvature prism acid having a curvature radius of about 15 /, and FIG. 1 (b) is a photograph of a cross section of a film having a lenticular shape with a curvature radius of about 20 One picture.
도 2 를 참고하면, 곡률반지름은 프리즘 산의 단면인 삼각형의 밑변을 제외한 이등변에 동시에 내접하는 원의 반지름을 의미하는 것으로 곡률 반지름이 0 인 경우에는 프리즘 산 정부가 뾰족한 본래의 단면 형상을 가지며, 곡률 반지름이 클 수록 프리즘 산 정부의 라운드 정도가 커지게 되나, 프리즘 산의 높이 (Height)는 낮아지게 된다.  Referring to FIG. 2, the radius of curvature refers to a radius of a circle inscribed simultaneously on an isosceles except for the base of a triangle, which is a cross section of a prism. When the radius of curvature is 0, the prism peak has a sharp original cross-sectional shape. The larger the radius of curvature, the larger the roundness of the prism mount, but the lower the height of the prism mount.
본 발명에서 프리즘 산의 정부는 곡를 반지름이 약 1 내지 약 35 !M, 예로서 약 10 내지 약 20 인 아치 형상의 단면을 갖는 것이 정면휘도 및 수평 시야각을 확보하는 면에서 유리하다. 상기 프리즘 산은 밑변의 길이가 약 In the present invention, it is advantageous in the aspect of the prism mountain to have a curved cross section having a radius of about 1 to about 35! M, for example, about 10 to about 20, in terms of securing front luminance and horizontal viewing angle. The prism acid has a base length of about
25 내지 약 60 prn 이고, 높이가 약 12.5 μτη 내지 약 30 ; ΜΠ일 수 있다. 상기 범위의 프리즘 산은 휘도 등의 특성아 우수한 반면, 모아레 (moire) 등의 문제가 없다. 상기 투명기재와 프리즘 산은 일체로 형성될 수 있다. 25 to about 60 prn, and a height of about 12.5 μτη to about 30; The prism acid in the above range is excellent in characteristics such as brightness, but there is no problem such as moire. The transparent substrate and the prism acid may be integrally formed.
본 발명의 다른 관점인 백라이트 유닛은 상기 광학필름을 포함할 수 있다. 일 구체예로서, 도 3 을 참조하면, 본 발명의 일 구체예에 따른 백라이트 유닛 (10)은 광원 (11), 상기 광원 (11)으로부터 발광되는 빛을 안내하는 도광판 (12), 도광판 (12)의 하부에 배치되는 반사시트 (13), 도광판 (12)의 상부에 배치되는 확산시트 (14), 확산시트 (14)의 상부에 배치되는 광학필름 (15), 및 광학필름 (15)의 상부에 배치되는 보호시트 (16)를 포함할 수 있다. 또한, 백라이트 유닛의 광원 (11) 외부에는 광원 커버 (11a)가 배치될 수 있다. 또한, 여기에서는 비록 도시되지 않았지만, 상기 백라이트 유니트 (10) 상에 액정표시패널과 반사방지층이 차례로 적층되어 액정표시장치를 구성하게 된다. 광원 (11)은 광을 발생시키는 것으로, 선광원 램프 또는 면광원 램프, CCFL 또는 LED등 다양한 광원들이 사용될 수 있다. In another aspect of the present invention, the backlight unit may include the optical film. As an embodiment, referring to FIG. 3, the backlight unit 10 according to an embodiment of the present invention includes a light source 11, a light guide plate 12, and a light guide plate 12 that guide light emitted from the light source 11. ) Of the reflective sheet 13 disposed below the light guide plate, the diffusion sheet 14 disposed above the light guide plate 12, the optical film 15 disposed above the diffusion sheet 14, and the optical film 15. It may include a protective sheet 16 disposed on the top. In addition, the light source cover 11a may be disposed outside the light source 11 of the backlight unit. Also, Although not shown here, a liquid crystal display panel and an antireflection layer are sequentially stacked on the backlight unit 10 to form a liquid crystal display device. The light source 11 generates light, and various light sources such as a line light source lamp or a surface light source lamp, CCFL, or LED may be used.
도광판 (12)은 광원 (11)에서 발생된 광을 확산시트 (14)로 가이드하는 것으로서, 직하형 광원을 채택하는 경우에는 생략될 수 있다.  The light guide plate 12 guides the light generated by the light source 11 to the diffusion sheet 14, and may be omitted when a direct type light source is adopted.
반사시트 (13)는 광원 (11)에서 발생된 광을 반사시켜 확산시트 (14)의 방향으로 공급하는 역할을 수행한다.  The reflective sheet 13 serves to reflect the light generated from the light source 11 and to supply it in the direction of the diffusion sheet 14.
확산시트 (14)는 도광판 (12)을 통해 입사되는 광을 확산 및 산란시켜 프리즘시트 (15)로 공급하는 역할을 수행한다.  The diffusion sheet 14 diffuses and scatters light incident through the light guide plate 12 to supply the prism sheet 15.
광학필름 (15)은 확산시트 (14)를 통해 입사되는 광을 굴절시켜 액정표시패널 (미도시)의 평면에 집광시키는 역할을 수행한다. 광학필름은 높은 집광효율, 넓은 시야각, 모아레 현상 방지, 다론 필름과의 광학적 결합 (wet out) 방지 등 다양한 설계 목표에 따라 집광부의 형태 및 집광부 경사면의 각도 등 다양한 설계치의 변형 및 조합들이 가능하며, 상업적으로 적용되고 있다.  The optical film 15 refracts light incident through the diffusion sheet 14 to condense light onto a plane of a liquid crystal display panel (not shown). Optical film can be modified and combined with various design values such as the shape of the light collector and the angle of the slope of the light collector according to various design goals such as high light collection efficiency, wide viewing angle, prevention of moiré phenomenon, and prevention of optical wet out with Dalon film. And commercially applicable.
본 발명에서, 상기 광학필름은 1 매 이상으로 조합되어 구성될 수 있다. 일 예로서, 상기 광학필름의 상부 또는 하부에 추가적으로 광학필름이 더 구비될 수 있다.  In the present invention, the optical film may be configured by combining one or more sheets. As an example, an optical film may be further provided above or below the optical film.
즉, 투명기재; 및 상기 투명기재 상에 배열된 프리즘 산을 포함하고 상기 투명기재 및 상기 프리즘 산 중 하나 이상은 발광물질을 포함하며, 상기 프리즘 산은 정부의 곡률 반지름이 약 1 / 내지 약 35 /ffli 인 아치 형상의 단면을 갖는 본 발명의 일 구체예에 따른 광학필름을 제 1 광학필름이라 할 때, 상기 제 1 광학필름과 동일한 필름으로서 프리즘 산의 배열 방향이 동일하거나 또는 수직 방향인 제 2 광학필름이 더 구비될 수 있다.  That is, transparent substrate; And a prism acid arranged on the transparent substrate, wherein at least one of the transparent substrate and the prism acid includes a light emitting material, wherein the prism acid has an arch shape having a radius of curvature of about 1 / to about 35 / ffli. When the optical film according to an embodiment of the present invention having a cross section is called a first optical film, a second optical film having the same or vertical direction as the first optical film is provided in the same direction as the first optical film. Can be.
또한, 상기 제 1 광학필름의 상부 또는 하부에는 프리즘, 렌티클러 렌즈, 마이크로 렌즈, 엄보 형상 중 하나 이상의 광학패턴을 포함하는 제 2 광학필름이 더 구비될 수 있다. 일 예로서, 도 4 는 본 발명의 일 구체예에 따른 광학필름 상층에 마이크로 렌즈 패턴을 갖는 제 2 광학필름이 구비된 조합이다. 【발명의 실시를 위한 형태】 이하, 실시예를 통하여 본 발명을 보다 구체적으로 설명하고자 하나, 이러한 실시예들은 단지 설명의 목적을 위한 것으로, 본 발명을 제한하는 것으로 해석되어서는 안 된다. 실시예 In addition, a second optical film including one or more optical patterns of a prism, a lenticular lens, a micro lens, and a umber shape may be further provided on or below the first optical film. As an example, Figure 4 is a combination provided with a second optical film having a micro lens pattern on the optical film upper layer according to an embodiment of the present invention. [Form for implementation of invention] Hereinafter, the present invention will be described in more detail with reference to examples, but these examples are for illustrative purposes only and should not be construed as limiting the present invention. Example
하기 실시예와 비교예에서 사용된 성분의 구체적인 사양은 다음과 같다. (A) 발광물질:  Specific specifications of the components used in the following Examples and Comparative Examples are as follows. (A) Luminescent material:
화학식 4 의 9,1으비스 [페닐 (m-를릴) -아미노]안트라센 (흡수파장: 9,1 Ibis [phenyl (m-lryl) -amino] anthracene of formula (4)
292.458nm(in CH2C12), 광발광 파장: 532nm(in CH2C12)) 292.458 nm (in CH 2 C1 2 ), photoluminescence wavelength: 532 nm (in CH 2 C1 2 ))
(B) 자외선 경화형 불포화 화합물:  (B) UV curable unsaturated compound:
(B1) 플루오렌계 유도체 불포화 수지 (BPF-022, 한농화성, 굴절률: 1.601) (B1) fluorene derivative unsaturated resin (BPF-022, thickening, refractive index: 1.601)
(B21) 페녹시벤질 아크릴레이트 (굴절률: 1.56) (B21) phenoxybenzyl acrylate (refractive index: 1.56)
(B22) 페닐페녹시에틸 아크릴레이트 (굴절률: 1.54)  (B22) Phenylphenoxyethyl acrylate (refractive index: 1.54)
(C) 개시제:  (C) initiator:
(CI) Irgcure 184  (CI) Irgcure 184
(C2) Iragacure TPO 실시예 1 - 6및 비교예 1 - 5  (C2) Iragacure TPO Examples 1-6 and Comparative Examples 1-5
하기 표 1 및 표 2 의 조성을 갖는 광학필름용 수지 조성물을 하기의 광학필름 제조방법에 따라 제조하였으며, 프리즘산 정부의 곡를반지름이 하기 표 3과 같이 2매 (하층 필름 ®: bottom, 상층 필름 ①: top)의 광학필름을 프리즘 산 배열 방향을 서로 수직되게 배치한 후 하기 측정방법에 따라 물성 측정 후 결과 값올 하기 표 3에 나타내었다.  The resin composition for an optical film having the composition of Table 1 and Table 2 was prepared according to the following optical film manufacturing method, and the radius of the radius of prism acid was 2 sheets as shown in Table 3 below (lower film ®: bottom, upper film ① : After placing the optical film of the top) perpendicular to the prism acid array direction and the physical properties measured according to the measurement method shown in Table 3 below.
【표 1】 Table 1
Figure imgf000015_0001
Figure imgf000015_0001
[단위 : 중량 %]  [Unit: weight%]
【표 2] [Table 2]
Figure imgf000015_0002
Figure imgf000015_0002
[단위 : 중량 « 광학필름 제조  [Unit: weight «Optical film manufacturing
상기 제조한 광학필름용 수지 조성물을 프리즘 층이 인각된 금속 몰드에 도포하고, 투명기재 PET 필름 (폴리에틸렌테레프탈레이트 필름)의 일면올 상기 금속 몰드에 도포된 코팅면과 접촉시킨 상태에서, 190 nm 내지 400 nm 파장의 자외선을 무전극형 자외선 조사 장치 (600W/inch)에 D 타입 벌브 (Type-D bulb) 장착하여 250 mJ/cin2~500 mJ/cirf의 에너지로 조사)하여 코팅된 조성물을 경화시켰다. 투명기재 필름에 접착되어 경화된 코팅층을 금속 몰드로부터 분리시킴으로써, 투명기재 필름의 일면에 프리즘 층이 형성된 광학필름을 제조하였다. 광학필름 층의 높이는 35 ~40 가 되도록 하였다. 물성 측정 방법 The resin composition for an optical film prepared above was applied to a metal mold having a prism layer imprinted thereon, and one side of the transparent base PET film (polyethylene terephthalate film) was in contact with the coating surface applied to the metal mold. UV light of 400 nm wavelength was mounted on an electrodeless ultraviolet irradiation device (600W / inch) with a Type-D bulb and irradiated with energy of 250 mJ / cin 2 to 500 mJ / cirf) to cure the coated composition. . By separating the cured coating layer adhered to the transparent substrate film from the metal mold, an optical film having a prism layer formed on one surface of the transparent substrate film was prepared. The height of the optical film layer was set to 35-40. Property measurement method
(1) 굴절를: 굴절계 (모델명: IT, 일본 ATAGO ABBE)를 사용하여 실시예 및 비교예에서 제조된 광학필름의 굴절율을 측정하였다. 측정을 위한 광원은 589.3nm의 D광선 나트륨램프를 이용하였다.  (1) Refraction: The refractive index of the optical films prepared in Examples and Comparative Examples was measured using a refractometer (Model: IT, Japan ATAGO ABBE). A light source for the measurement was a D-beam sodium lamp of 589.3 nm.
(2) 휘도: 32 인치 액정디스플레이 패널용 백라이트 유닛에 상기 제작된 프리즘 필름을 고정하고, 휘도계 (모델명: SR3, 일본 TOPCON 사)를 사용하여 13 지점 및 5 지점의 휘도를 측정하여 평균값을 구하였다. 이때 백라이트 유닛의 광원은 LED 램프를 사용하였다. 휘도는 직경 60 MLA 시트를 2 층으로 적층한 구조를 갖는 광학필름의 휘도를 기준값으로 하여 %로 나타내었다.  (2) Luminance: Fix the above-mentioned prism film to a 32-inch liquid crystal display panel backlight unit, and measure the average value by measuring the luminance at 13 points and 5 points using a luminance meter (Model name: SR3, Japan TOPCON Co., Ltd.). It was. In this case, an LED lamp was used as a light source of the backlight unit. The brightness | luminance was shown in% based on the brightness | luminance of the optical film which has a structure which laminated | stacked 60 MLA sheets of diameter into two layers.
(3) 시야각: 시야각 역시 휘도 장비와 동일한 장비를 사용하여 좌우 (0° 에서 180° ) 기울기를 가하면서 측정하였다. 이때 백라이트 유닛의 광원은 LED 램프를 사용하였다. 실시예 1~2 및 비교예 1~3 의 수평 시야각은 도 5 의 그래프로 나타내었으며, 실시예 1~2 및 비교예 1~2 의 수직 시야각은 도 6 의 그래프로 나타내었다.  (3) Viewing angle: The viewing angle was also measured using the same equipment as the luminance equipment while applying the inclination (0 ° to 180 °). In this case, an LED lamp was used as a light source of the backlight unit. The horizontal viewing angles of Examples 1 and 2 and Comparative Examples 1 to 3 are shown in the graph of FIG. 5, and the vertical viewing angles of Examples 1 and 2 and Comparative Examples 1 and 2 are shown in the graph of FIG. 6.
(4) 상대 발광 피크 강도: 상기 실시예 및 비교예에서 제조한 프리즘 시트에 대해 LED 램프 광원을 사용하여 측정기기 (모델명 : CS-2000, 일본 TOPCON 사)로 발광피크 (arbituary unit)를 각각 측정하여 도 7 및 도 8 에 나타내었다. 도 7은 380 nm 내지 480 nm 발광 파장 대역에서 상기 기기로 측정시 최대 발광 피크가 약 3.0E-0.2(a.u.)인 LED 램프 광원을 사용하여 발광피크를 측정한 것이며, 도 8 은 380 nm 내지 480 nm 발광 파장 대역에서 상기 기기로 측정시 최대 발광 피크가 약 2.5E-0.2(a.u.)인 LED 램프 광원을 사용하여 발광피크를 측정한 것이다. 【표 3] (4) Relative emission peak intensity: For each of the prism sheets prepared in Examples and Comparative Examples, the emission peaks were measured with a measuring device (model name: CS-2000, TOPCON, Japan) using a measuring device (Model name: CS-2000, Japan TOPCON Co., Ltd.). 7 and 8 are shown. FIG. 7 shows light emission peaks measured using an LED lamp light source having a maximum light emission peak of about 3.0E-0.2 (au) measured by the device in the light emission wavelength band of 380 nm to 480 nm, and FIG. 8 shows a light emission peak of 380 nm to 480 nm. The emission peak was measured using an LED lamp light source having a maximum emission peak of about 2.5E-0.2 (au) when measured by the device in the nm emission wavelength band. [Table 3]
Figure imgf000017_0001
상기 표 3에 나타난 바와 같이, 발광물질을 포함하지 않는 비교예 1 내지 3 은 휘도가 좋지 않았으며, 곡를 프리즘 구조가 형성되지 않은 비교예 4 의 경우에는 시야각이 좋지 않았다.
Figure imgf000017_0001
As shown in Table 3, Comparative Examples 1 to 3 containing no light emitting material did not have good brightness, and in Comparative Example 4 in which the prism structure was not formed, the viewing angle was not good.
또한, 도 7 은 실시예 1 및 실시예 3 의 발광 파장 대역에 따른 발광 피크를 나타낸 그래프이며, 도 8 은 실시예 2 및 실시예 4 의 발광 파장 대역에 따른 발광 피크를 나타낸 그래프로서, 도 7 및 도 8 을 참고하면, 발광물질을 포함하고 곡률 프리즘 구조를 갖는 실시예 1~4 의 광학필름은 상대 발광 피크 강도가 380 nm 내지 480nm 발광 파장 대역에서 0.9 이하이며, 520 내지 580nm 발광 파장 대역에서 1.1 이상인 것을 알 수 있다. Ref. 는 LED 램프 광원 자체의 발광 피크로 비교예 1 및 2 의 경우 Ref.와 발광 피크가 실질적으로 동일하여 별도로 도시하지 않았다.  In addition, Figure 7 is a graph showing the emission peak according to the emission wavelength band of Example 1 and Example 3, Figure 8 is a graph showing the emission peak according to the emission wavelength band of Example 2 and Example 4, Figure 7 8, the optical films of Examples 1 to 4 including a light emitting material and having a curvature prism structure have a relative emission peak intensity of 0.9 or less in an emission wavelength band of 380 nm to 480 nm, and in an emission wavelength band of 520 nm to 580 nm. It turns out that it is 1.1 or more. Ref. Is the emission peak of the LED lamp light source itself, and in Comparative Examples 1 and 2, Ref. And the emission peak are substantially the same, and are not separately shown.
본 발명의 단순한 변형 내지 변경은 이 분야의 통상의 지식을 가진 자에 의하여 용이하게 실시될 수 있으며, 이러한 변형이나 변경은 모두 본 발명의 영역에 포함되는 것으로 볼 수 있다.  Simple modifications and variations of the present invention can be easily made by those skilled in the art, and all such modifications or changes can be seen to be included in the scope of the present invention.

Claims

【청구의 범위】 [Range of request]
【청구항 1]  [Claim 1]
투명기재; 및  Transparent substrate; And
상기 투명기재 상에 배열된 복수 개의 프리즘;이 구비된 필름을 하나 이상 포함하고,  At least one film having a plurality of prisms arranged on the transparent substrate;
상기 투명기재와 상기 프리즘 중 하나 이상은 발광물질을 포함하며, 약 380nm 내지 약 480nm 의 파장대역에서 상대 발광 피크 강도가 약 0.9 이하인 것을 특징으로 하는 광학필름. 【청구항 2】  At least one of the transparent substrate and the prism includes a light emitting material, and the relative emission peak intensity in the wavelength band of about 380nm to about 480nm, characterized in that less than about 0.9. [Claim 2]
제 1항에 있어서,  The method of claim 1,
약 520nm 내지 약 580nm 의 파장대역에서 상대 발광 피크 강도가 약 iᅳ i 이상인 것을 특징으로 하는 광학필름. 【청구항 3】  An optical film having a relative emission peak intensity in the wavelength band of about 520 nm to about 580 nm of about i ᅳ i or more. [Claim 3]
제 1항에 있어서,  The method of claim 1,
상기 프리즘의 프리즘 산은 정부의 곡률 반지름이 약 1卿 내지 약 35/mi인 아치 형상의 단면을 가지는 것을 특징으로 하는 광학필름. 【청구항 4】  The prism acid of the prism has an arch-shaped cross section with a radius of curvature of about 1 kPa to about 35 / mi. [Claim 4]
제 1항에 있어서,  The method of claim 1,
상기 발광물질은 형광 물질과 인광 물질 중 하나 이상인 것을 특징으로 하는 광학필름. 【청구항 5】  The light emitting material is an optical film, characterized in that at least one of a fluorescent material and a phosphorescent material. [Claim 5]
제 1항에 있어서,  The method of claim 1,
상기 발광물질은 자외선 경화형 작용기를 포함하는 것을 특징으로 하는 광학필름. 【청구항 6】 제 4항에 있어서, The luminescent material comprises an ultraviolet curable functional group. [Claim 6] The method of claim 4,
상기 상기 형광 물질은 2,3,6 -Tetrahydro-l,l,7,7,-tetramethyl-;LH, 5H, HH-10-(2-benzothiazolyl )quinol izino[9,9a, lgh] coumarin, The fluorescent material is 2,3,6-Tetrahydro-l, l, 7,7, tetramethyl-; LH, 5H, HH-10- (2-benzothiazolyl) quinol izino [9,9a, lgh] coumarin,
3- (2' -benzothiazolyl )-7-N,N-di ethyl ami no coumarin,3- (2'-benzothiazolyl) -7-N, N-di ethyl ami no coumarin,
4- (Dicyanomethylene)-2-tert-butyl-6-(l, l,7,7-tetramethylejulolidin-4-yl-vin yl )-4H-pyran(E) , Ν,Ν'-Dimethyl-quinacridone, 9, 10一 bis[N,N— di一 (p_tolyl ) -ami no] anthracene, 4- (Dicyanomethylene) -2-tert-butyl-6- (l, l, 7,7-tetramethylejulolidin-4-yl-vin yl) -4H-pyran (E), Ν, Ν'-Dimethyl-quinacridone, 9 , 10 一 bis [N, N— di 一 (p_tolyl) -ami no] anthracene,
9, 10一 bis [phenyl (m-tolyl )_amin이 anthracene, 5,6, 11, 12-Tetraphenylnaphthacene PPV ( po 1 y ( -pheny 1 ene vinylene)) , Polyf luorene, PNV(po ly (naphtha 1 ene vinylene) PPN(poly peri nanphthalene) , 또는 이들의 흔합물이고,  9, 10 bis [phenyl (m-tolyl) _amin is anthracene, 5,6, 11, 12-Tetraphenylnaphthacene PPV (po 1 y (-pheny 1 ene vinylene)), Polyf luorene, PNV (po ly (naphtha 1 ene vinylene) poly peri nanphthalene (PPN), or a combination thereof,
상기 인광 물질은 Tris[2-(p-tolyl)pyridine]iridium(III), Bis[3,5-dif 1 uoro-2- ( 2-pyr idyl ) heny 1― ( 2-carboxypyr idyl)iridium(III) ,  The phosphors include Tris [2- (p-tolyl) pyridine] iridium (III), Bis [3,5-dif 1 uoro-2- (2-pyr idyl) heny 1― (2-carboxypyr idyl) iridium (III) ),
Tris(2-phenylpyridine)iridium(III) 또는 이들의 흔합물인 광학필름. 【청구항 7】 Tris (2-phenylpyridine) iridium (III) or an optical film thereof. [Claim 7]
제 1항에 있어서,  The method of claim 1,
상기 발광물질은 상기 광학필름 중 약 0.001 중량 % 내지 약 0.5 중량 %로 포함되는 것을 특징으로 하는 광학필름.  The light emitting material is an optical film, characterized in that included in about 0.001% to about 0.5% by weight of the optical film.
【청구항 8] [Claim 8]
제 1 항에 있어서, 상기 프리즘은 밑변의 길이가 약 25 urn 내지
Figure imgf000020_0001
이고, 높이가 약 12.5 내지 약 30/zm인 것을 특징으로 하는 광학필름.
The method of claim 1 wherein the prism has a base length of about 25 urn to
Figure imgf000020_0001
And a height of about 12.5 to about 30 / zm.
【청구항 9] [Claim 9]
제 1항에 있어서,  The method of claim 1,
상기 투명기재와 프리즘은 일체로 형성된 것을 특징으로 하는 광학필름.  The transparent substrate and the prism is an optical film, characterized in that formed integrally.
【청구항 10】 [Claim 10]
제 1항 내지 제 9항 중 어느 한 항에 따른 광학필름을 포함하는 백라이트 유닛. 【청구항 HI A backlight unit comprising the optical film according to any one of claims 1 to 9. Claim Port HI
제 1 광학필름; 및 상기 제 1 광학필름 상부 또는 하부에 구비된 제 2 광학필름;을 포함하고,  A first optical film; And a second optical film provided above or below the first optical film.
상기 제 1광학필름은 제 1항 내지 제 9항 중 어느 한 항의 광학필름이며, 상기 제 2 광학필름은 투명기재 상에 프리즘, 렌티클러 렌즈, 마이크로 렌즈, 및 염보 형상 중 하나 이상의 광학패턴을 포함하는 것을 특징으로 하는 복합광학필름.  The first optical film is an optical film according to any one of claims 1 to 9, wherein the second optical film includes at least one optical pattern of a prism, a lenticular lens, a micro lens, and a gloss shape on a transparent substrate. Composite optical film, characterized in that.
【청구항 12] [Claim 12]
제 11항에 있어서,  The method of claim 11,
상기 복합광학필름은 투명기재상에 직경이 약 60 卿인 마이크로 렌즈가 배열된 확산필름 2 매가 적층된 복합 확산 필름 대비 휘도가 약 90% 이상이며, 수평 및 수직 시야각이 모두 약 70 ° 이상인 것을 특징으로 하는 복합광학필름. The composite optical film has a brightness of about 90% or more, and a horizontal and vertical viewing angle of about 70 ° or more, compared to a composite diffusion film in which two diffusion films having a diameter of about 60 microns are arranged on a transparent substrate. Composite optical film.
PCT/KR2014/000788 2013-01-31 2014-01-28 Optical film comprising light-emitting material, and backlight unit comprising same WO2014119899A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2013-0011424 2013-01-31
KR1020130011424A KR20140098580A (en) 2013-01-31 2013-01-31 Optical firm comprising luminescent material and back light unit the same

Publications (1)

Publication Number Publication Date
WO2014119899A1 true WO2014119899A1 (en) 2014-08-07

Family

ID=51262556

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2014/000788 WO2014119899A1 (en) 2013-01-31 2014-01-28 Optical film comprising light-emitting material, and backlight unit comprising same

Country Status (2)

Country Link
KR (1) KR20140098580A (en)
WO (1) WO2014119899A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20060056834A (en) * 2004-11-22 2006-05-25 (주)케이디티 Backlight unit by phosphorescent diffusion sheet
KR20060082011A (en) * 2005-01-11 2006-07-14 (주)케이디티 Backlight unit by photoluminescent diffusion sheet
KR100646029B1 (en) * 2005-08-26 2006-11-14 주식회사 엘지에스 Optical film and back light unit having the same
US20080213508A1 (en) * 2007-01-25 2008-09-04 Nitto Denko Corporation Color purity improving sheet, optical apparatus, image display, and liquid crystal display
KR20080110357A (en) * 2007-06-15 2008-12-18 미래나노텍(주) Color correcting optical sheet
KR20090098121A (en) * 2008-03-13 2009-09-17 동우 화인켐 주식회사 Uv-curable resin composition for forming prism layer of a prism film or a prism functional complex film, the prism film and the liquid crystalline device employing the same

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20060056834A (en) * 2004-11-22 2006-05-25 (주)케이디티 Backlight unit by phosphorescent diffusion sheet
KR20060082011A (en) * 2005-01-11 2006-07-14 (주)케이디티 Backlight unit by photoluminescent diffusion sheet
KR100646029B1 (en) * 2005-08-26 2006-11-14 주식회사 엘지에스 Optical film and back light unit having the same
US20080213508A1 (en) * 2007-01-25 2008-09-04 Nitto Denko Corporation Color purity improving sheet, optical apparatus, image display, and liquid crystal display
KR20080110357A (en) * 2007-06-15 2008-12-18 미래나노텍(주) Color correcting optical sheet
KR20090098121A (en) * 2008-03-13 2009-09-17 동우 화인켐 주식회사 Uv-curable resin composition for forming prism layer of a prism film or a prism functional complex film, the prism film and the liquid crystalline device employing the same

Also Published As

Publication number Publication date
KR20140098580A (en) 2014-08-08

Similar Documents

Publication Publication Date Title
KR101624377B1 (en) Surface light source device, lighting equipment, backlight device
KR100974195B1 (en) Prism sheet and Method of Manufacturing the same and Liquid Crystal Display using the same
US20100085735A1 (en) Optical sheets
JP6679988B2 (en) Light wavelength conversion sheet, backlight device including the same, image display device, and method for manufacturing light wavelength conversion sheet
JP2012073613A (en) Optical member, display device including the same and manufacturing method for the same
CN109477617A (en) Backlight film
JP6732045B2 (en) Wavelength conversion film and backlight unit
KR20150136504A (en) Optical film, optical film manufacturing method and surface light-emitting body
CN1847890A (en) Light conducting board, back light assembly, display device and producing method of light conducting board
CN101351728A (en) Backlight unit and method of manufacturing an optical sheet included in the same
CN109477917A (en) Backlight film
JP6955470B2 (en) Sealing member for light guide plate and manufacturing method of light guide plate using it
TWI526709B (en) Optical film and optical display apparatus comprising the same
TW201219927A (en) Backlight unit
CN105242457A (en) Light guide device with high color saturation
CN1854849A (en) Liquid crystal display apparatus having a light guiding plate
KR100621672B1 (en) Backlight unit by photoluminescent diffusion sheet
KR20120054765A (en) Method for manufacturing back light unit within rasin or optical pattern
JP2009198749A (en) Light beam control member
KR20140003855A (en) Lamination type optical sheet
WO2014119899A1 (en) Optical film comprising light-emitting material, and backlight unit comprising same
KR20110101465A (en) Light guide plate and backlight unit having the same
KR20150085382A (en) Complex optical sheet and optical display apparatus comprising the same
TW201712378A (en) Optical sheet and optical display comprising the same
KR101332510B1 (en) Condensing type optical sheet

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14746604

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14746604

Country of ref document: EP

Kind code of ref document: A1