WO2014119737A1 - Compound eye optical system, image capture device, and method for producing compound eye optical system - Google Patents

Compound eye optical system, image capture device, and method for producing compound eye optical system Download PDF

Info

Publication number
WO2014119737A1
WO2014119737A1 PCT/JP2014/052284 JP2014052284W WO2014119737A1 WO 2014119737 A1 WO2014119737 A1 WO 2014119737A1 JP 2014052284 W JP2014052284 W JP 2014052284W WO 2014119737 A1 WO2014119737 A1 WO 2014119737A1
Authority
WO
WIPO (PCT)
Prior art keywords
lens
optical system
eye optical
gate
lens array
Prior art date
Application number
PCT/JP2014/052284
Other languages
French (fr)
Japanese (ja)
Inventor
金野賢治
下間剛
Original Assignee
コニカミノルタ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタ株式会社 filed Critical コニカミノルタ株式会社
Priority to JP2014559778A priority Critical patent/JPWO2014119737A1/en
Publication of WO2014119737A1 publication Critical patent/WO2014119737A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B3/00Simple or compound lenses
    • G02B3/0006Arrays
    • G02B3/0037Arrays characterized by the distribution or form of lenses
    • G02B3/0056Arrays characterized by the distribution or form of lenses arranged along two different directions in a plane, e.g. honeycomb arrangement of lenses
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/50Constructional details
    • H04N23/55Optical parts specially adapted for electronic image sensors; Mounting thereof
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B3/00Simple or compound lenses
    • G02B3/0006Arrays
    • G02B3/0012Arrays characterised by the manufacturing method
    • G02B3/0031Replication or moulding, e.g. hot embossing, UV-casting, injection moulding
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/45Cameras or camera modules comprising electronic image sensors; Control thereof for generating image signals from two or more image sensors being of different type or operating in different modes, e.g. with a CMOS sensor for moving images in combination with a charge-coupled device [CCD] for still images
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/95Computational photography systems, e.g. light-field imaging systems
    • H04N23/951Computational photography systems, e.g. light-field imaging systems by using two or more images to influence resolution, frame rate or aspect ratio

Definitions

  • the present invention relates to a compound-eye optical system having a plurality of compound optical systems formed by stacking lens arrays, an imaging device incorporating the compound-eye optical system, and a compound-eye optical system manufacturing method.
  • Patent Document 1 discloses an optical array in which three types of lenses are adjacently integrated in the direction perpendicular to the optical axis as a compound eye optical system, and two molded products are stacked in the vertical direction in the optical axis direction.
  • a single-piece optical element is disclosed.
  • Patent Document 2 discloses a lens array assembly in which a plurality of lens arrays made of a synthetic resin, in which a plurality of lenses and a positioning portion are integrally formed, are overlapped so that the lenses are aligned on the same optical axis. ing.
  • the compound eye optical system of Patent Document 1 is formed of a photocurable resin and is not formed of a thermoplastic resin.
  • the photocurable resin is lightweight as a material, the molding process is relatively complicated, and cost reduction is not easy. Further, since the viscosity of the photo-curing resin before curing is very low, there is a problem such as leakage from the mold, and there is a problem that molding by injection molding is difficult.
  • the lens array assembly of Patent Document 2 uses a plurality of lens arrays molded by resin injection from the side of the mold into the mold, and is related to the optical performance of the lens array and the distance from the gate. There is no description about the shrinkage of the molded article, and sufficient studies have not been made on securing optical performance when a plurality of lens arrays are laminated.
  • the present invention has been made in view of the above-mentioned background art, and aims to provide a compound eye optical system that is lightweight, can ensure cost reduction by simple molding, has a high image quality, and is ultra-thin, and a method for manufacturing the same. To do.
  • Another object of the present invention is to provide a small and high-performance imaging apparatus incorporating the compound eye optical system.
  • a compound eye optical system is a compound eye optical system obtained by superimposing a plurality of lens arrays each having a lens element molded in a thermoplastic resin and arranged two-dimensionally.
  • Each lens array has a resin injecting portion, and each resin injecting portion is disposed on the side of the lens array and is disposed corresponding to the same reference direction with respect to the arrangement of the lens elements.
  • An imaging apparatus includes the compound eye optical system described above, a sensor array provided corresponding to a plurality of lens arrays, and an image processing unit that performs processing on an image signal detected by the sensor array. Is provided.
  • the compound eye optical system manufacturing method includes a step of molding a plurality of lens arrays each having two-dimensionally arranged lens elements by injection of a thermoplastic resin, and superimposing the plurality of lens arrays.
  • the compound eye optical system manufacturing method comprising the steps of: obtaining a compound eye optical system, wherein the resin injection portions of the lens array are arranged corresponding to the same reference direction with respect to the arrangement of the lens elements.
  • the resin injection portion formed in the lens array is arranged on the side of the lens array, when the thermoplastic resin is injected into the mold space via the gate corresponding to the resin injection portion, etc.
  • the resin can be easily supplied to a portion corresponding to the thin portion of the lens array, and the obtained lens array can be highly accurate.
  • the resin injecting portions of the plurality of lens arrays are arranged corresponding to the same reference direction with respect to the arrangement of the lens elements, the resin injecting portions protrude when the lens array or the compound eye optical system is stored in the case. However, it is only necessary to provide a relief on one side of the case, so that it is easy to incorporate the lens array and to improve positioning accuracy.
  • the resin shrinkage differs depending on the distance from the gate.
  • the lens array is stacked with the gate, that is, the resin injection portion aligned in the same direction, the difference in shrinkage will be the same, and the optical axis of all lens elements will be the same.
  • the alignment can be performed with relatively high accuracy.
  • the lens array may be slightly warped along the gate direction, and in the case of a compound eye optical system, the size is approximately the same. Since the lens array requires the same performance, the molding conditions and the like are similar, and the direction and amount of warping are also similar in the plurality of lens arrays. At that time, if the lens array is stacked with the gates or resin injection portions aligned in the same direction as described above, the warp of the lens array is aligned. Problems are less likely to occur.
  • 1A and 1B are a plan view and a side sectional view for explaining the compound eye optical system and the like of the first embodiment. It is a conceptual perspective view explaining the stacking method of the some lens array which comprises a compound eye optical system.
  • 3A and 3B are a plan view and a side sectional view illustrating one lens array constituting the compound eye optical system.
  • 4A and 4B are a partially enlarged cross-sectional view and a cross-sectional conceptual diagram illustrating the lens array molding die shown in FIG. 3A and the like. It is a figure explaining the effect of contraction at the time of stacking of a lens array. It is a figure explaining the effect of the bending at the time of stacking of a lens array. It is a perspective view explaining the compound-eye optical system of 2nd Embodiment. It is a typical perspective view explaining the compound-eye optical system of 3rd Embodiment.
  • the compound eye optical system 100 of the present embodiment is a laminated body in which a first lens array 10, a second lens array 20, and a third lens array 30 are bonded together.
  • the first to third lens arrays 10, 20, and 30 are flat members extending in parallel to the XY plane. These lens arrays 10, 20, and 30 are stacked in the Z-axis direction perpendicular to the XY plane.
  • the first lens array 10 on the + Z side (upper side of the drawing) of the compound-eye optical system 100 is a molded product made of a thermoplastic resin and has a rectangular (including square) outline in plan view.
  • the first lens array 10 includes a plurality of lens elements 10a, each of which is an optical element, and a support portion 10b that supports the plurality of lens elements 10a from the periphery.
  • the plurality of lens elements 10a constituting the first lens array 10 are two-dimensionally arranged on square lattice points (16 ⁇ 4 ⁇ 4) arranged in parallel to the XY plane. That is, the lens elements 10a are arranged in a matrix along four orthogonal reference directions DR1, DR2, DR3, DR4.
  • the array region of the lens elements 10a is a rectangular frame RL having a rectangular outline, like the first lens array 10 as a whole.
  • Each lens element 10a has a convex first optical surface 11a on one main surface 10p side, and a convex second optical surface 11b on the other main surface 10q side. Both optical surfaces 11a and 11b are aspherical surfaces, for example.
  • the first lens array 10 has ribs 12 protruding in the ⁇ Z direction from the main surface 10q along the four surrounding sides S1, S2, S3, and S4.
  • the ribs 12 of the first lens array 10 function as spacers for the second lens array 20 adjacent thereto.
  • a block-shaped resin injection portion 14 protrudes from the center of one side S4 in the fourth reference direction DR4 ( ⁇ X side in the drawing) of the first lens array 10.
  • the resin injecting portion 14 is a gate mark corresponding to the gate at the time of molding, and can be excised in advance before the first lens array 10 is laminated, but is left for simplification of the process.
  • the excision trace remains, and this excision trace is referred to as the resin injection part 14.
  • the side S4 provided with the resin injection portion 14 is parallel to one side RL4 in the fourth reference direction DR4 ( ⁇ X side in the drawing) of the rectangular frame RL in which the lens elements 10a are arranged. It extends.
  • the resin injecting portion 14 is disposed outside the center of the side RL4 so as to face one side RL4 of the rectangular frame RL.
  • the resin injecting portion 14 can be arranged corresponding to the arrangement frame of the lens elements 10a, and the characteristic deterioration caused by the resin injection process described later can be made to correspond to the arrangement frame of the lens elements 10a.
  • the resin injecting portion 14 does not need to completely coincide with the center of the side S4 as viewed from the Z direction (the same applies to resin injecting portions 24 and 34 described later).
  • the resin injection portions 14, 24, 34 of the lens arrays 10, 20, 30 may be provided so as to be shifted from the center and deviated to the same side in the side S ⁇ b> 4.
  • the second lens array 20 is a molded product made of a thermoplastic resin and has a rectangular outline in plan view.
  • the second lens array 20 includes a plurality of lens elements 20a, each of which is an optical element, and a support portion 20b that supports the plurality of lens elements 20a from the periphery.
  • the plurality of lens elements 20a are two-dimensionally arranged on square lattice points (16 ⁇ 4 ⁇ 4) arranged in parallel to the XY plane. That is, the lens elements 20a are arranged in a matrix along the four orthogonal reference directions DR1, DR2, DR3, DR4.
  • the array region of the lens elements 20a is a rectangular frame RL having a rectangular outline, like the second lens array 20 as a whole.
  • Each lens element 20a has a convex first optical surface 21a on one main surface 20p side and a concave second optical surface 21b on the other main surface 20q side. Both optical surfaces 21a and 21b are aspherical surfaces, for example.
  • the second lens array 20 has ribs 22 protruding in the ⁇ Z direction from the main surface 20q along the four surrounding sides S1, S2, S3, and S4.
  • the ribs 22 of the second lens array 20 function as spacers for the third lens array 30 adjacent thereto.
  • a block-shaped resin injection portion 24 protrudes from the center of one side S4 in the fourth reference direction DR4 ( ⁇ X side in the drawing) of the second lens array 20.
  • the resin injecting portion 24 is a gate trace corresponding to the gate at the time of molding, and can be excised in advance before the second lens array 20 is laminated, but is left for simplification of the process.
  • the cut trace is referred to as the resin injection part 24.
  • the side S4 provided with the resin injection part 24 is parallel to one side RL4 in the fourth reference direction DR4 ( ⁇ X side in the drawing) of the rectangular frame RL in which the lens elements 20a are arranged. It extends.
  • the resin injecting portion 24 is disposed outside the center of the side RL4 so as to face one side RL4 of the rectangular frame RL.
  • the third lens array 30 is a molded product made of a thermoplastic resin and has a rectangular outline in plan view.
  • the third lens array 30 includes a plurality of lens elements 30a, each of which is an optical element, and a support portion 30b that supports the plurality of lens elements 30a from the periphery.
  • the plurality of lens elements 30 a are two-dimensionally arranged on square lattice points (16 ⁇ 4 ⁇ 4) arranged in parallel to the XY plane. That is, the lens elements 30a are arranged in a matrix along the four orthogonal reference directions DR1, DR2, DR3, DR4.
  • the array region of the lens elements 30a is a rectangular frame RL having a rectangular outline, as in the third lens array 30 as a whole.
  • Each lens element 30a has a concave first optical surface 31a on one main surface 30p side, and a convex second optical surface 31b on the other main surface 30q side. Both optical surfaces 31a and 31b are aspherical surfaces,
  • the third lens array 30 has ribs 32 protruding in the ⁇ Z direction from the main surface 30q along the four surrounding sides S1, S2, S3, S4.
  • the ribs 32 of the third lens array 30 function as spacers for the sensor array 60 adjacent thereto.
  • a block-shaped resin injection portion 34 protrudes from the center of one side S4 in the fourth reference direction DR4 ( ⁇ X side in the drawing) of the third lens array 30.
  • the resin injecting portion 34 is a gate mark corresponding to the gate at the time of molding, and can be excised in advance before the third lens array 30 is laminated, but is left for simplification of the process.
  • the cut trace is referred to as the resin injection part 34.
  • the side S4 provided with the resin injection portion 34 is parallel to one side RL4 in the fourth reference direction DR4 ( ⁇ X side in the drawing) of the rectangular frame RL in which the lens elements 30a are arranged. It extends.
  • the resin injecting portion 34 is disposed outside the center of the side RL4 so as to face one side RL4 of the rectangular frame RL.
  • the first lens array 10 and the second lens array 20 constituting the compound-eye optical system 100 are joined with a photo-curing adhesive. That is, the lower end surface of the rib 12 of the first lens array 10 is bonded to the upper main surface 20p of the second lens array 20 via the adhesive.
  • the second lens array 20 and the third lens array 30 are joined with a photo-curing adhesive. That is, the lower end surface of the rib 22 of the second lens array 20 is bonded to the upper main surface 30p of the third lens array 30 via the adhesive.
  • the compound eye optical system 100 obtained by stacking and joining the first to third lens arrays 10, 20, and 30 is a two-dimensional array of a number of compound optical systems 2 that are a number of individual lens systems. ing.
  • the compound optical system (single lens system) 2 is arranged on square lattice points (4 ⁇ 4 16 points) arranged in parallel to the XY plane. That is, the composite optical system 2 is arranged in a matrix along four orthogonal reference directions DR1, DR2, DR3, DR4.
  • the first to third lens arrays 10, 20, and 30 are resin injection portions 14, 24, and 34 outside the center of a specific side RL4 among the four sides RL1 to RL4 of the rectangular frame RL. Is prominent. That is, the resin injecting portions 14, 24, and 34 are arranged in the first to third lens arrays 10, 20, and 30 so as to align with a specific reference direction DR4 among the reference directions DR1, DR2, DR3, and DR4.
  • the imaging apparatus 1000 incorporating the compound eye optical system 100 includes, in addition to the compound eye optical system 100 described above, a sensor array 60 provided corresponding to the plurality of lens arrays 10, 20, and 30. And an image processing unit 65 that performs processing on an image signal detected by the sensor array 60.
  • the compound eye optical system 100 is bonded to the sensor array 60 and accommodated in a rectangular frame-like case 50.
  • An opening 51 is formed in the case 50 at a position corresponding to the lens element 10 a such as the lens array 10.
  • the compound-eye optical system 100 has the compound optical system (single-lens system) 2 arranged two-dimensionally along the XY plane as described above.
  • CMOS Complementary Metal Metal Oxide Semiconductor
  • other solid-state imaging devices 61 are formed in a two-dimensional array corresponding to each composite optical system 2.
  • Each compound eye optical system 100 includes three lens elements 10a, 20a, and 30a. By appropriately performing the optical design of these lens elements 10a, 20a, and 30a, the compound-eye optical system 100 generally has (1) an optical system that observes the same field of view by a plurality of compound optical systems 2, and (2) a plurality of The compound optical system 2 is used as either one of the optical systems for observing different fields of view.
  • the compound-eye optical system 100 is used in the super-resolution method (1).
  • the lens elements 10a, 20a, and 30a constituting each composite optical system 2 and the corresponding solid-state imaging device 61 in the sensor array 60 are completely centered on the optical axis AX so that their fields of view coincide with each other. Arranged to match.
  • each compound optical system 2 constituting the compound-eye optical system 100 When the compound-eye optical system 100 is used for super-resolution image detection, the compound optical system 2 constituting the compound-eye optical system 100 enables observation of the same field of view at the same time, and each compound optical system 2 has the same field of view. Then, each solid-state image sensor 61 converts an image from the same field of view into an electrical image signal. The image processing unit 65 appropriately performs image processing on the image signal output from the solid-state imaging device 61, and obtains a high-resolution image with the same visual field from a low-resolution image with the same visual field. When the compound-eye optical system 100 is used in a super-resolution system, each composite optical system 2 has substantially the same optical design.
  • the number of individual eyes constituting the compound-eye optical system 100 that is, the number of compound optical systems 2 is larger.
  • the number of compound optical systems 2 is larger.
  • the maximum number of pixels is four times (twice in the length direction).
  • the number of pixels of the solid-state imaging device 61 for the composite optical system 2 constituting the compound-eye optical system 100 is Ni and the number of pixels after super-resolution processing is Ns, the following conditional expression (3) Ns / Ni> 5 (3) It is desirable to satisfy.
  • the performance of the original lens is required to be high to some extent. That is, in order to recover or improve the pixels smaller than the pixels provided corresponding to the individual composite optical systems 2, the spatial frequency corresponding to the number of pixels after super-resolution is used for each composite optical system 2. Lens performance is required.
  • the requirement for the decentering of the lens elements 10 a, 20 a, and 30 a required for that purpose requires a smaller accuracy than the pixel pitch of the composite optical system 2.
  • the compound-eye optical system 100 in which the accuracy of the shape and decentering of the lens elements 10a, 20a, and 30a is increased to easily improve the performance of each composite optical system 2 is suitable for the super-resolution system. .
  • the lens elements 10a, 20a, and 30a in the gate vertical direction crossing the gate GA corresponding to the resin injection portions 14, 24, and 34 are arranged.
  • the maximum interval is P
  • the single pixel pitch of the solid-state image sensor 61 provided corresponding to the single-eye compound optical system 2 in the sensor array 60 is d
  • the eccentricity tends to increase, and the eccentricity accuracy is related to the pixel pitch.
  • FIG. 2 is a perspective view conceptually illustrating the structure and manufacturing method of the compound-eye optical system 100.
  • the first lens array 10, the second lens array 20, and the third lens array 30 are sequentially joined.
  • These lens arrays 10, 20, and 30 are formed of resin injection portions 14, 24, 34 are stacked at the same rotation position.
  • the protrusion from the compound-eye optical system 100 is increased. It gathers in one place and is easy to incorporate into the case 50 and alignment.
  • these lens arrays 10, 20, and 30 are formed of a thermoplastic resin and have a problem of heat shrinkage and bending.
  • the lens arrays 10, 20, and 30 are based on the resin injection portions 14, 24, and 34. When the directions are aligned, it is easy to match the directionality and tendency of heat shrinkage and deflection between the lens arrays 10, 20, and 30, and centering in each composite optical system 2 becomes relatively easy.
  • 3A and 3B are a plan view and a side sectional view of the first lens array 10.
  • the resin injection portion 14 of the first lens array 10 is formed on the side S4 or the side surface SF4. This is because the first lens array 10 is obtained by molding a thermoplastic resin by a side gate method.
  • the compound-eye optical system 100 is attracting attention from the viewpoint of reducing the thickness of the imaging apparatus 1000 in applications such as a super-resolution method.
  • Various compound-eye optical systems have been proposed so far, but the requirements necessary to achieve ultra-thinness with high image quality using a lightweight resin (thermoplastic resin) that is excellent in cost reduction are proposed. There was nothing to do.
  • the resin injecting portion is formed in the vertical direction.
  • the inflow direction of the resin and the spreading direction are perpendicular to each other, there is a disadvantage that it is difficult for the resin to enter the thin portions of the lens arrays 10, 20, and 30.
  • the side gate since the inflow direction of the resin and the spreading direction are almost the same, the resin can easily enter the thin portions of the lens arrays 10, 20, and 30, and the shape of the compound eye optical system 100 is required to be accurately transferred. This is advantageous as a manufacturing method.
  • the gate In the case of a pin gate, the gate is automatically cut at the time of mold release, but since the gate is cut in such a way that it is torn, the vicinity of the gate of the lens is locally deformed, which is disadvantageous for molding a highly accurate lens. It is.
  • the gate In the case of a side gate, the gate is released without being cut, and is cut using a gate cutting machine or the like in a later process, so that local deformation is unlikely to occur in the gate portion, and a highly accurate lens is formed. Is advantageous.
  • FIG. 4A is a diagram for explaining a mold for molding the first lens array 10.
  • the mold apparatus 70 includes a first mold 71 and a second mold 72.
  • the first mold 71 and the second mold 72 are mold-matched at the mold-matching surface PL, and a cavity 70 a is formed between the molds 71 and 72.
  • the first mold 71 is formed with a transfer surface 71c for transferring the shape on the main surface 10p side of the first lens array 10 so as to face the cavity 70a, and the second mold 72 has a first lens.
  • a transfer surface 72c for transferring the shape on the main surface 10q side of the array 10 is formed.
  • the transfer surfaces 71c and 72c have a plurality of optical transfer portions 71g and 72g arranged two-dimensionally at a part thereof in order to transfer the optical surfaces 11a and 11b of the lens element 10a.
  • the second mold 72 is also formed with a transfer surface 72f for forming the rib 12.
  • a gate GA communicating with the cavity 70a is formed in the mold apparatus 70.
  • the gate GA is provided adjacent to the transfer surface 72 f of the rib 12.
  • FIG. 4B is a cross-sectional view illustrating the entire structure of the mold apparatus 70.
  • a runner RA is connected to the cavity 70a of FIG. 4A through a gate GA, and the runner RA is connected to the sprue SP on the resin supply side.
  • the molten resin J from the sprue SP fills the runner RA and fills the cavity 70a through the gate GA.
  • a sprue portion 81 corresponding to the sprue SP By separating the first mold 71 and the second mold 72 after cooling the molten resin J, a sprue portion 81 corresponding to the sprue SP, a runner portion 82 corresponding to the runner RA, and a gate corresponding to the gate GA.
  • a molded product 80 including a portion 83 and a lens array body 84 corresponding to the cavity 70a is formed.
  • the gate part 83 is subjected to a gate cut process, and the first lens array 10 is obtained by the resin injection part 14 that is the remaining part of the gate part 83 and the lens array body 84 ahead.
  • a process such as removing a gate cut burr is required for the resin injection portion 14 after the gate cut process.
  • Such removal of the gate cut burr is simple in the side gate method in which the resin injection portion 14 is formed in the periphery, but is not necessarily simple in the pin gate method or the like.
  • the arrangement and shape of the resin injection portion 14 in the first lens array 10 will be considered.
  • the resin injecting portion 14 is disposed at a position corresponding to the center of the side S4 or the side surface SF4.
  • the resin injection portion 14 ′ is formed near the end of the side S4 or the side surface SF4, or the resin injection portion 14 ′′ is formed at the corner where the pair of sides S1 and S4 intersect.
  • the distance to the farthest lens element 10a is larger than in the case of the resin injection portion 14 arranged at the center, and the resin injection portion in the corner portion.
  • the transfer portion of the lens element 10a is preferably as close to the gate GA as possible.
  • the gate GA is not located on a specific side of the first lens array 10. It is desirable to arrange corresponding to the center of S4 or side surface SF4. As a result, it can be said that in the first lens array 10, it is desirable that the resin injection portion 14 is disposed at the center of the specific side S ⁇ b> 4 or the side surface SF ⁇ b> 4 or in the vicinity thereof. Thereby, the pressure loss of resin can be suppressed and each lens element 10a can be shape
  • the cross-sectional area of the gate GA shown in FIG. 4A is desirably large from the viewpoint of ensuring the surface accuracy required for each lens element 10a. That is, in order to mold each lens element 10a with high accuracy, it is better that the molten resin J has good fluidity, and the lateral width of the gate GA (that is, the resin injection portion 14) is set to D with reference to FIG.
  • the vertical width of the gate GA that is, the resin injection portion 14
  • the gate cross-sectional area (D ⁇ h) is large.
  • the lateral width (gate width D) of the gate GA or the resin injecting portion 14 is good in fluidity, but if it is too wide, gate cut processing becomes difficult.
  • the vertical width h of the gate GA or the resin injection portion 14 is preferably large, but generally cannot be larger than the flange height H.
  • each lens array 10, 20, 30 has a minimum thickness T, and the length of each lens array 10, 20, 30 in the gate direction, that is, the ⁇ X direction, is L.
  • Conditional expression (1) sets the ratio of the length and the thinness in the gate direction of the lens arrays 10, 20, and 30 in an appropriate range in order to achieve good filling and a thin optical system.
  • conditional expression (1) By making it smaller than the upper limit of conditional expression (1), it is not too long in the depth direction, the flow of the resin is ensured, and the resin can be filled well. On the other hand, by making it larger than the lower limit of the conditional expression (1), the lens array 10, 20, 30 does not become excessively thick, and a thin compound eye optical system 100 can be realized. Thereby, the fluidity of the molten resin J can be ensured during molding while making the lens arrays 10, 20, and 30 thin.
  • each lens array 10, 20, 30 has a gate width in the gate vertical direction that crosses the gate GA corresponding to the resin injection portion 14, 24, 34, that is, the gate width in the ⁇ Y direction as D, Conditional expression (2) below, where W is the length of each lens array 10, 20, 30 in the gate vertical direction, that is, the ⁇ Y direction. 1.3 ⁇ W / D ⁇ 25 (2) Meet.
  • Conditional expression (2) sets the ratio of the length of the lens array 10 and the like in the vertical direction of the gate to the gate width in an appropriate range in order to improve the filling and facilitate the gate cut process.
  • the gate GA By making it smaller than the upper limit of conditional expression (2), the size of the gate GA can be ensured, the fluidity can be kept good, and the occurrence of poor filling can be suppressed.
  • the gate GA By making it larger than the lower limit of conditional expression (2), the gate GA can be narrowed to some extent and the gate cut processing can be facilitated.
  • the gate cut processing is facilitated by making the lateral width of the gate GA larger than a certain extent and maintaining the fluidity of the molten resin J while preventing the lateral width of the gate GA from becoming too large.
  • the first lens array 10 and the like may be deformed after molding. . That is, the molded lens array body 84 or the first lens array 10 contracts when the pressure loss during molding increases, and generally shrinks in a portion near the gate GA and shrinks in a portion away from the gate GA. . Therefore, if the gate GA or the resin injecting portions 14, 24, and 34 are made to coincide with each other when the lens arrays 10, 20, and 30 are laminated, the contraction state or tendency of the lens arrays 10, 20, and 30 coincide with each other.
  • each compound optical system 2 constituting the compound-eye optical system 100, and the optical performance of each compound optical system 2 can be achieved with a small amount of decentering. It is expected to get as high as possible.
  • FIG. 5 is a conceptual diagram exaggerating the contraction of the first and second lens arrays 10 and 20.
  • Rectangular outlines 10m and 20m indicated by phantom lines indicate a case where the first and second lens arrays 10 and 20 are ideally shaped and no contraction occurs.
  • molding shrinkage occurs such that the displacement due to shrinkage increases as the distance from the gate GA increases due to pressure loss at the time of injection, resulting in trapezoidal contours 10 m and 20 m indicated by solid lines.
  • the lattice axes 8a and 8b of the molded product indicated by the solid lines are distorted as compared with the original accurate lattice axes 7a and 7b indicated by the phantom lines.
  • the lens elements 10a and 20a constituting the first and second lens arrays 10 and 20 are mutually connected with the optical axis AX. Are maintained in a consistent state, and the resolution of each composite optical system 2 and thus the resolution of the imaging apparatus 1000 can be increased.
  • the lens array body 84 or the first lens array 10 is moved in the gate direction due to the asymmetry of the lens array body 84 (for example, the presence of the ribs 12). May be slightly warped in the gate vertical direction at each position along the line.
  • the compound-eye optical system 100 for applications such as super-resolution includes lens arrays 10, 20, and 30 having substantially the same size, and equivalent performance is required for each. For this reason, the molding conditions and the like are also similar, and the direction and amount of warpage between the plurality of lens arrays 10, 20, and 30 are also similar.
  • the warp of the three lens arrays 10, 20, and 30 is copied by matching the gate GA or the resin injection portions 14, 24, and 34 with each other. Problems such as interval fluctuations and occurrence of eccentricity due to such warpage are less likely to occur or are reduced.
  • FIG. 6 is a conceptual diagram exaggerating the warp of the lens arrays 10, 20, and 30 in an easily understandable manner.
  • the lens arrays 10, 20, and 30 are slightly bent downward with the ribs 12, 22, and 32 as the distance from the resin injection portions 14, 24, and 34 corresponding to the gate GA is increased.
  • the bending methods of the arrays 10, 20, and 30 are substantially the same, and in each compound optical system (single-lens system) 2 constituting the compound-eye optical system 100 obtained by stacking the lens arrays 10, 20, 30, lenses
  • the relative position between the elements 10a, 20a, 30a is kept uniform.
  • the warpage of the lens arrays 10, 20, and 30 is considered to occur due to differences in shrinkage due to resin pressure, temperature, and resin flow orientation during molding.
  • the warpage can be reduced by optimizing the molding conditions, it is not easy to achieve the micrometer accuracy required for the compound-eye optical system 100 for applications such as super-resolution. Therefore, the warp of the lens arrays 10, 20, and 30 is left, and the resin injection portions 14, 24, and 34 are made to coincide with each other, so that the relative arrangement of the lens elements 10 a, 20 a, and 30 a can be easily made accurately. The accuracy of the optical system 100 can be improved.
  • the specific composite optical system 2 close to the resin injection portions 14, 24, and 34 is used.
  • the influence of birefringence is likely to occur, and the superposition of these tends to cause a large deterioration in performance compared to the surroundings. Therefore, it is desirable that the individual lens arrays 10, 20, and 30 have a small amount of birefringence. For this reason, it is conceivable to select a material for molding the lens arrays 10, 20, and 30 to reduce the birefringence amount.
  • the photoelastic coefficient of the resin for molding each lens array 10, 20, 30 is 50 ⁇ 10 ⁇ 7 (cm 2 / Kgf) or less, preferably 30 ⁇ 10 ⁇ 7 (cm 2 / Kgf).
  • the photoelastic coefficient of the resin forming the lens elements 10a, 20a, and 30a is kept small, the performance of the lens arrays 10, 20, and 30 is maintained at a certain level or more, and the compound optical system 2 or compound eye in which these are stacked.
  • the performance of the entire optical system 100 can also be improved.
  • polycarbonate resins EP4000, EP5000 (Mitsubishi Gas Chemical Co., Ltd.), polyolefin resin APEL (Mitsui Chemicals Co., Ltd.) and the like can be used as the material of the lens arrays 10, 20, 30.
  • the photoelastic coefficient of general polycarbonate is 71 ⁇ 10 ⁇ 7 (cm 2 / Kgf), and the photoelastic coefficients of EP4000, EP5000, and APEL are 30 ⁇ 10 ⁇ 7 (cm 2 / Kgf) or less. Become.
  • the optical transfer portions 71g and 72g formed on the transfer surfaces 71c and 72c of the mold apparatus 70 shown in FIG. 4A can be corrected to reduce the influence of birefringence in advance. It can also be. At this time, the processing of the nested core members 71k and 72k for forming the optical transfer portions 71g and 72g is individually adjusted.
  • the lens arrays 10, 20, and 30 may be provided with alignment marks MA.
  • the alignment mark MA By using the alignment mark MA to adjust the XY ⁇ between the lens arrays 10, 20, and 30, or by feeding back the measurement results, it is possible to implement a highly accurate integration.
  • the alignment mark MA by providing the alignment mark MA at a location where the displacement between the lens arrays 10, 20, and 30 can be reduced, the point to be adjusted can be adjusted firmly, and the eccentricity is reduced at other locations as a result.
  • the molded product 80 is ejected by an ejector pin (not shown) provided on one of the first mold 71 and the second mold 72.
  • the lens array main body 84 may be pushed out.
  • the lens array body 84 or the four corners of the lens arrays 10, 20, and 30 are pushed out in a well-balanced manner, it is possible to suppress the warpage of the lens array body 84 or the lens arrays 10, 20, 30 and the like.
  • the resin injection portions 14, 24, and 34 formed in the lens arrays 10, 20, and 30 are disposed on the sides of the lens arrays 10, 20, and 30, so that a thermoplastic resin is injected into the resin.
  • the resin can be easily supplied to the thin portions of the lens arrays 10, 20, 30, and the obtained lens array 10, 20, and 30 can be made highly accurate.
  • the resin injection portions 14, 24, and 34 of the plurality of lens arrays 10, 20, and 30 are arranged corresponding to the same reference direction DR4 with respect to the arrangement of the lens elements 10a, 20a, and 30a.
  • the lens array 10, 20, 30 or the compound eye optical system 100 is accommodated in the case 50, even if the resin injection portions 14, 24, 34 protrude, it is only necessary to provide relief on one side of the case 50.
  • the arrays 10, 20, and 30 can be easily incorporated, and the positioning accuracy can be easily obtained.
  • the shrinkage of the resin differs depending on the distance from the gate GA.
  • the lens arrays 10, 20, and 30 are stacked with the gate GA, that is, the resin injection portions 14, 24, and 34 aligned in the same direction, the shrinkage occurs.
  • the optical axis alignment of all the lens elements 10a, 20a, and 30a can be performed with relatively high accuracy.
  • the lens arrays 10, 20, 30 may be slightly warped in the gate direction.
  • the lens array 10, 20, 30 since the lens array 10, 20, 30 having substantially the same size requires the same performance, the molding conditions and the like are similar, and the plurality of lens arrays 10, 20, 30 warp. The direction and amount of will be similar.
  • the lens arrays 10, 20, and 30 are stacked with the gate GA, that is, the resin injection portions 14, 24, and 34 aligned in the same direction as described above, the lens arrays 10, 20, and 30 are warped. Problems such as variations in the distance between the lens elements 10a, 20a, and 30a and occurrence of eccentricity due to differences in warpage between the 10, 20, and 30 are also unlikely to occur.
  • the imaging apparatus 1000 incorporating the compound eye optical system 100 described above easily increases the accuracy of the shape and decentering of the lens elements 10a, 20a, and 30a, and easily improves the performance of each compound optical system 2 that is a single-eye lens system. It has become. As a result, the image pickup apparatus 1000 is thin and lightweight, but has high quality.
  • Table 1 shows an example in which molding was performed while changing parameters such as the thickness T, length L, gate width D, and length W of the lens arrays 10, 20, and 30.
  • Table 1 Any of Examples 1 to 6 was a high-performance lens array, and the compound eye optical system 100 in which these lens arrays were combined had the expected performance.
  • the compound eye optical system according to the second embodiment will be described below.
  • the compound eye optical system of the second embodiment is a modification of the compound eye optical system of the first embodiment, and items not specifically described are the same as those of the first embodiment.
  • the compound-eye optical system 100 of the present embodiment is formed by stacking four lens arrays 10, 20, 30, and 40.
  • the positions of the resin injection portions 14, 24, 34, and 44 are oriented in the same reference direction DR4.
  • the compound eye optical system according to the third embodiment will be described below.
  • the compound eye optical system of the third embodiment is a modification of the compound eye optical system of the first embodiment, and items not specifically described are the same as those of the first embodiment.
  • the compound eye optical system 100 describes a method of stacking the lens arrays 10, 20, 30 in the compound eye optical system 100 including three lens arrays 10, 20, 30.
  • the three lens arrays 10, 20, and 30 are configured by arranging a plurality of lens elements 10a, 20a, and 30a on 3 ⁇ 3 square lattice points.
  • the three lens arrays 10, 20, and 30 are stacked so that the resin injection portions 14, 24, and 34 are oriented in the same direction.
  • the compound eye optical system of the present embodiment it is possible to increase the degree of super-resolution (improvement of resolution when obtaining an entire image from a single eye) while suppressing an increase in thickness.
  • the compound eye optical system of the present invention is not limited to the above embodiment.
  • the outline of the lens arrays 10, 20, 30, 40 in plan view is not limited to a rectangle, but may be a circle or an ellipse.
  • the lens element 10a and the composite optical system 2 are arranged on square lattice points.
  • the lens elements 10a, 20a, and 30a can be arranged on rectangular lattice points, triangular lattice points, and the like. is there.
  • the entire compound-eye optical system 100 becomes thicker, or the performance deterioration at a temperature other than room temperature increases due to the influence of the temperature variation of the resin. Since practicality is lowered, 3 to 5 lens arrays are preferable.
  • the arrangement of the lens elements 10a and the composite optical system 2 can be 5 ⁇ 5 or more in a matrix form.
  • a diaphragm member is provided before and after the compound eye optical system 100 or between each lens array, or a light shielding material is provided on at least one main surface of at least one of the lens arrays. It may be applied to form a diaphragm.
  • a case 50 having a plurality of openings provided corresponding to each lens element may have a diaphragm function.
  • the size, optical surface shape, and the like of the lens elements 10a, 20a, and 30a can be appropriately changed according to the application and function.

Abstract

Provided are: a high-resolution, ultrathin compound eye optical system that is lightweight and capable of ensuring a reduction in cost due to a simple molding; and a method for producing the compound eye optical system. In the case of a side gate in which a resin injection part (14) is positioned on a side of a lens array (10), the lens array (10) sometimes warps slightly in the direction of the gate. In the case of the compound eye optical system (100), equivalent performance is demanded in lens arrays (10, 20, 30) that are substantially the same size, therefore, molding conditions etc. are similar, and the direction and magnitude of warp are similar in the plurality of lens arrays (10, 20, 30). At that time, as described above, when gates (GA), in other words, resin injection parts (14, 24, 34) are aligned in the same direction and the lens arrays (10, 20, 30) are stacked on one another, the warps of the lens arrays (10, 20, 30) align, making it difficult for problems such as interval variations and eccentricity of lens elements (10a, 20a, 30a) due to differences in the warps of the lens arrays (10, 20, 30) to occur.

Description

複眼光学系、撮像装置、及び複眼光学系の製造方法Compound eye optical system, imaging apparatus, and compound eye optical system manufacturing method
 本発明は、レンズアレイを積み重ねて形成した複数の複合光学系を有する複眼光学系、これを組み込んだ撮像装置、及び複眼光学系の製造方法に関する。 The present invention relates to a compound-eye optical system having a plurality of compound optical systems formed by stacking lens arrays, an imaging device incorporating the compound-eye optical system, and a compound-eye optical system manufacturing method.
 複数のレンズを用いて撮像素子上に複数の画像を結像し、得られた複数画像から1つの画像を再構成する複眼撮像装置に用いられる複眼光学系として、樹脂製のレンズアレイを複数光軸方向に重ねたものが知られている。例えば、特許文献1には、複眼光学系として、3種類のレンズを光軸垂直方向に隣接させ一体化させている光学アレイであって、2つの成形品を光軸方向の上下に重ねた2枚構成の光学素子が開示されている。
 また、特許文献2には、複数のレンズと位置決め部とが一体成形された合成樹脂製のレンズアレイを、レンズ同士が同一光軸上に並ぶように複数重ね合わされたレンズアレイ組立品が開示されている。
 しかしながら、特許文献1の複眼光学系は、光硬化性樹脂で形成されており、熱可塑性樹脂で形成されていない。光硬化性樹脂は、材料として軽量ではあるが、成形工程が比較的複雑であり、コストダウンも容易でない。また、硬化前の光硬化性樹脂は粘度が非常に低いため、金型からの漏れ出し等の問題があり、射出成形による成形が難しいという問題もある。
 特許文献2のレンズアレイ組立品は、金型側方から金型内への樹脂の射出により成形されたレンズアレイを複数用いるものであるが、レンズアレイの光学性能やゲートからの距離に関連する成形体の収縮等についての記載がなく、複数のレンズアレイを積層した際の光学性能の確保について十分検討がなされていない。
As a compound eye optical system used in a compound eye imaging device that forms a plurality of images on an image sensor using a plurality of lenses and reconstructs one image from the obtained images, a plurality of resin lens arrays are used. An axial stack is known. For example, Patent Document 1 discloses an optical array in which three types of lenses are adjacently integrated in the direction perpendicular to the optical axis as a compound eye optical system, and two molded products are stacked in the vertical direction in the optical axis direction. A single-piece optical element is disclosed.
Patent Document 2 discloses a lens array assembly in which a plurality of lens arrays made of a synthetic resin, in which a plurality of lenses and a positioning portion are integrally formed, are overlapped so that the lenses are aligned on the same optical axis. ing.
However, the compound eye optical system of Patent Document 1 is formed of a photocurable resin and is not formed of a thermoplastic resin. Although the photocurable resin is lightweight as a material, the molding process is relatively complicated, and cost reduction is not easy. Further, since the viscosity of the photo-curing resin before curing is very low, there is a problem such as leakage from the mold, and there is a problem that molding by injection molding is difficult.
The lens array assembly of Patent Document 2 uses a plurality of lens arrays molded by resin injection from the side of the mold into the mold, and is related to the optical performance of the lens array and the distance from the gate. There is no description about the shrinkage of the molded article, and sufficient studies have not been made on securing optical performance when a plurality of lens arrays are laminated.
特開2005-338505号公報JP 2005-338505 A 特開2000-227505号公報JP 2000-227505 A
 本発明は、上記背景技術に鑑みてなされたものであり、軽量で、簡易な成形によってコストダウンを確保でき、高画質で超薄型の複眼光学系及びその製造方法を提供することを目的とする。
 また、本発明は、上記複眼光学系を組み込んだ小型で高性能の撮像装置を提供することを目的とする。
The present invention has been made in view of the above-mentioned background art, and aims to provide a compound eye optical system that is lightweight, can ensure cost reduction by simple molding, has a high image quality, and is ultra-thin, and a method for manufacturing the same. To do.
Another object of the present invention is to provide a small and high-performance imaging apparatus incorporating the compound eye optical system.
 上記課題を解決するため、本発明に係る複眼光学系は、熱可塑性樹脂で成形され、2次元的に配列されたレンズ要素をそれぞれ有する複数のレンズアレイを重ね合わせることによって得られる複眼光学系であって、各レンズアレイには、樹脂注入部があり、各樹脂注入部は、レンズアレイの側方に配置され、レンズ要素の配列に関する同一の基準方向に対応して配置されている。 In order to solve the above problems, a compound eye optical system according to the present invention is a compound eye optical system obtained by superimposing a plurality of lens arrays each having a lens element molded in a thermoplastic resin and arranged two-dimensionally. Each lens array has a resin injecting portion, and each resin injecting portion is disposed on the side of the lens array and is disposed corresponding to the same reference direction with respect to the arrangement of the lens elements.
 また、本発明に係る撮像装置は、上述の複眼光学系と、複数のレンズアレイに対応して設けられたセンサーアレイと、センサーアレイによって検出された画像信号に対して処理を行う画像処理部とを備える。 An imaging apparatus according to the present invention includes the compound eye optical system described above, a sensor array provided corresponding to a plurality of lens arrays, and an image processing unit that performs processing on an image signal detected by the sensor array. Is provided.
 また、本発明に係る複眼光学系の製造方法は、2次元的に配列されたレンズ要素をそれぞれ有する複数のレンズアレイを熱可塑性樹脂の注入によって成形する工程と、複数のレンズアレイを重ね合わせることによって複眼光学系を得る工程とを備える複眼光学系の製造方法であって、レンズアレイの樹脂注入部を、レンズ要素の配列に関する同一の基準方向に対応して配置する。 The compound eye optical system manufacturing method according to the present invention includes a step of molding a plurality of lens arrays each having two-dimensionally arranged lens elements by injection of a thermoplastic resin, and superimposing the plurality of lens arrays. The compound eye optical system manufacturing method comprising the steps of: obtaining a compound eye optical system, wherein the resin injection portions of the lens array are arranged corresponding to the same reference direction with respect to the arrangement of the lens elements.
 上記複眼光学系では、レンズアレイに形成される樹脂注入部がレンズアレイの側方に配置されるので、熱可塑性樹脂を樹脂注入部に対応するゲート等を介して型空間内に注入する際に、レンズアレイの薄い部分に相当する部分にも樹脂を供給しやすく、得られるレンズアレイを高精度とすることができる。また、複数のレンズアレイの樹脂注入部がレンズ要素の配列に関する同一の基準方向に対応して配置されているので、レンズアレイ又は複眼光学系をケースに収納する際に、樹脂注入部が出っ張っていてもケースの1辺だけ逃げを設けるだけですみ、レンズアレイを組み込みやすく、位置決めの精度を出しやすい。また、樹脂の収縮はゲートからの距離で異なることが知られているが、ゲートすなわち樹脂注入部を同じ方向に揃えてレンズアレイを積み重ねると、収縮の違いも同様となり全てのレンズ要素の光軸合わせを比較的精度良く行うことができる。さらに、樹脂注入部がレンズアレイの側方に配置されるサイドゲートの場合は、レンズアレイがゲート方向に沿って若干反ってしまうことがあり、さらに複眼光学系の場合は、略同一の大きさのレンズアレイで同等性能を要求するので成形の条件等も似ることになり、複数のレンズアレイで反りの方向や量も似てしまう。その時に、上記のようにゲートすなわち樹脂注入部を同じ方向に揃えてレンズアレイを積み重ねると、レンズアレイの反りが揃うので、レンズアレイの反りの違いによるレンズ要素の間隔変動や偏芯の発生といった問題も発生しにくい。 In the compound eye optical system, since the resin injection portion formed in the lens array is arranged on the side of the lens array, when the thermoplastic resin is injected into the mold space via the gate corresponding to the resin injection portion, etc. The resin can be easily supplied to a portion corresponding to the thin portion of the lens array, and the obtained lens array can be highly accurate. In addition, since the resin injecting portions of the plurality of lens arrays are arranged corresponding to the same reference direction with respect to the arrangement of the lens elements, the resin injecting portions protrude when the lens array or the compound eye optical system is stored in the case. However, it is only necessary to provide a relief on one side of the case, so that it is easy to incorporate the lens array and to improve positioning accuracy. In addition, it is known that the resin shrinkage differs depending on the distance from the gate. However, if the lens array is stacked with the gate, that is, the resin injection portion aligned in the same direction, the difference in shrinkage will be the same, and the optical axis of all lens elements will be the same. The alignment can be performed with relatively high accuracy. Furthermore, in the case of a side gate in which the resin injection portion is arranged on the side of the lens array, the lens array may be slightly warped along the gate direction, and in the case of a compound eye optical system, the size is approximately the same. Since the lens array requires the same performance, the molding conditions and the like are similar, and the direction and amount of warping are also similar in the plurality of lens arrays. At that time, if the lens array is stacked with the gates or resin injection portions aligned in the same direction as described above, the warp of the lens array is aligned. Problems are less likely to occur.
図1A及び1Bは、第1実施形態の複眼光学系等を説明する平面図及び側方断面図である。1A and 1B are a plan view and a side sectional view for explaining the compound eye optical system and the like of the first embodiment. 複眼光学系を構成する複数のレンズアレイの積み重ね方法を説明する概念的な斜視図である。It is a conceptual perspective view explaining the stacking method of the some lens array which comprises a compound eye optical system. 図3A及び3Bは、複眼光学系を構成する1つのレンズアレイを説明する平面図及び側方断面図である。3A and 3B are a plan view and a side sectional view illustrating one lens array constituting the compound eye optical system. 図4A及び4Bは、図3A等に示すレンズアレイ用の成形金型を説明する部分拡大断面図及び断面概念図である。4A and 4B are a partially enlarged cross-sectional view and a cross-sectional conceptual diagram illustrating the lens array molding die shown in FIG. 3A and the like. レンズアレイの積み重ねに際しての収縮の効果を説明する図である。It is a figure explaining the effect of contraction at the time of stacking of a lens array. レンズアレイの積み重ねに際しての撓みの効果を説明する図である。It is a figure explaining the effect of the bending at the time of stacking of a lens array. 第2実施形態の複眼光学系を説明する斜視図である。It is a perspective view explaining the compound-eye optical system of 2nd Embodiment. 第3実施形態の複眼光学系を説明する模式的な斜視図である。It is a typical perspective view explaining the compound-eye optical system of 3rd Embodiment.
〔第1実施形態〕
 図1A及び1B等に示すように、本実施形態の複眼光学系100は、第1レンズアレイ10と第2レンズアレイ20と第3レンズアレイ30とを貼り合わせた積層体である。第1~第3レンズアレイ10,20,30は、XY面に平行に延びる平板状の部材である。これらのレンズアレイ10,20,30は、XY面に垂直なZ軸方向に積み重ねられている。
[First Embodiment]
As shown in FIGS. 1A and 1B and the like, the compound eye optical system 100 of the present embodiment is a laminated body in which a first lens array 10, a second lens array 20, and a third lens array 30 are bonded together. The first to third lens arrays 10, 20, and 30 are flat members extending in parallel to the XY plane. These lens arrays 10, 20, and 30 are stacked in the Z-axis direction perpendicular to the XY plane.
 複眼光学系100のうち+Z側(図面の上側)の第1レンズアレイ10は、熱可塑性樹脂製の成形品であり、平面視において矩形(正方形を含む)の輪郭を有する。第1レンズアレイ10は、それぞれが光学素子である複数のレンズ要素10aと、複数のレンズ要素10aを周囲から支持する支持部10bとを有する。第1レンズアレイ10を構成する複数のレンズ要素10aは、XY面に平行に配列された正方の格子点(4×4の16点)上に2次元的に配列されている。つまり、レンズ要素10aは、直交する4つの基準方向DR1,DR2,DR3,DR4に沿ってマトリックス状に配置されている。レンズ要素10aの配列領域は、第1レンズアレイ10全体と同様に矩形の輪郭を有する矩形枠RLとなっている。各レンズ要素10aは、一方の主面10p側に凸の第1光学面11aを有し、他方の主面10q側に凸の第2光学面11bを有する。両光学面11a,11bは、例えば非球面となっている。 The first lens array 10 on the + Z side (upper side of the drawing) of the compound-eye optical system 100 is a molded product made of a thermoplastic resin and has a rectangular (including square) outline in plan view. The first lens array 10 includes a plurality of lens elements 10a, each of which is an optical element, and a support portion 10b that supports the plurality of lens elements 10a from the periphery. The plurality of lens elements 10a constituting the first lens array 10 are two-dimensionally arranged on square lattice points (16 × 4 × 4) arranged in parallel to the XY plane. That is, the lens elements 10a are arranged in a matrix along four orthogonal reference directions DR1, DR2, DR3, DR4. The array region of the lens elements 10a is a rectangular frame RL having a rectangular outline, like the first lens array 10 as a whole. Each lens element 10a has a convex first optical surface 11a on one main surface 10p side, and a convex second optical surface 11b on the other main surface 10q side. Both optical surfaces 11a and 11b are aspherical surfaces, for example.
 第1レンズアレイ10は、周囲の4辺S1,S2,S3,S4に沿って主面10qから-Z方向に突出するリブ12を有する。第1レンズアレイ10のリブ12は、これに隣接する第2レンズアレイ20に対するスペーサーとして機能する。第1レンズアレイ10のうち第4基準方向DR4(図面中の-X側)にある1つの辺S4の中央からは、ブロック状の樹脂注入部14が突出している。樹脂注入部14は、成形時のゲートに対応するゲート跡であり、第1レンズアレイ10の積層前に予め切除することもできるが、工程の簡素化のため残したままとしている。なお、樹脂注入部14を除去して1つの辺S4に対応する側面SF4を平坦化し若しくはこれに窪みを形成した場合も、切除跡が残り、この切除跡を樹脂注入部14と呼ぶものとする。ここで、樹脂注入部14を設けた辺S4は、レンズ要素10aを配列した矩形枠RLのうち第4基準方向DR4(図面中の-X側)にある1つの辺RL4に対向して平行に延びている。樹脂注入部14は、矩形枠RLの1つの辺RL4に対向してこの辺RL4の中央の外側に配置されていることになる。この場合、樹脂注入部14をレンズ要素10aの配列枠に対応させて配置することができ、後述する樹脂の注入工程に起因する特性劣化をレンズ要素10aの配列枠に対応させることができる。なお、樹脂注入部14は、Z方向からみて辺S4の中央に完全に一致している必要はない(後述する樹脂注入部24,34についても同様)。例えば、各レンズアレイ10,20,30の樹脂注入部14,24,34は、辺S4において中心からずれて同じ側に偏って設けられていてもよい。 The first lens array 10 has ribs 12 protruding in the −Z direction from the main surface 10q along the four surrounding sides S1, S2, S3, and S4. The ribs 12 of the first lens array 10 function as spacers for the second lens array 20 adjacent thereto. A block-shaped resin injection portion 14 protrudes from the center of one side S4 in the fourth reference direction DR4 (−X side in the drawing) of the first lens array 10. The resin injecting portion 14 is a gate mark corresponding to the gate at the time of molding, and can be excised in advance before the first lens array 10 is laminated, but is left for simplification of the process. In addition, when the resin injection part 14 is removed and the side surface SF4 corresponding to one side S4 is flattened or a depression is formed in this, the excision trace remains, and this excision trace is referred to as the resin injection part 14. . Here, the side S4 provided with the resin injection portion 14 is parallel to one side RL4 in the fourth reference direction DR4 (−X side in the drawing) of the rectangular frame RL in which the lens elements 10a are arranged. It extends. The resin injecting portion 14 is disposed outside the center of the side RL4 so as to face one side RL4 of the rectangular frame RL. In this case, the resin injecting portion 14 can be arranged corresponding to the arrangement frame of the lens elements 10a, and the characteristic deterioration caused by the resin injection process described later can be made to correspond to the arrangement frame of the lens elements 10a. The resin injecting portion 14 does not need to completely coincide with the center of the side S4 as viewed from the Z direction (the same applies to resin injecting portions 24 and 34 described later). For example, the resin injection portions 14, 24, 34 of the lens arrays 10, 20, 30 may be provided so as to be shifted from the center and deviated to the same side in the side S <b> 4.
 第2レンズアレイ20は、熱可塑性樹脂製の成形品であり、平面視において矩形の輪郭を有する。第2レンズアレイ20は、それぞれが光学素子である複数のレンズ要素20aと、複数のレンズ要素20aを周囲から支持する支持部20bとを有する。複数のレンズ要素20aは、XY面に平行に配列された正方の格子点(4×4の16点)上に2次元的に配列されている。つまり、レンズ要素20aは、直交する4つの基準方向DR1,DR2,DR3,DR4に沿ってマトリックス状に配置されている。レンズ要素20aの配列領域は、第2レンズアレイ20全体と同様に矩形の輪郭を有する矩形枠RLとなっている。各レンズ要素20aは、一方の主面20p側に凸の第1光学面21aを有し、他方の主面20q側に凹の第2光学面21bを有する。両光学面21a,21bは、例えば非球面となっている。 The second lens array 20 is a molded product made of a thermoplastic resin and has a rectangular outline in plan view. The second lens array 20 includes a plurality of lens elements 20a, each of which is an optical element, and a support portion 20b that supports the plurality of lens elements 20a from the periphery. The plurality of lens elements 20a are two-dimensionally arranged on square lattice points (16 × 4 × 4) arranged in parallel to the XY plane. That is, the lens elements 20a are arranged in a matrix along the four orthogonal reference directions DR1, DR2, DR3, DR4. The array region of the lens elements 20a is a rectangular frame RL having a rectangular outline, like the second lens array 20 as a whole. Each lens element 20a has a convex first optical surface 21a on one main surface 20p side and a concave second optical surface 21b on the other main surface 20q side. Both optical surfaces 21a and 21b are aspherical surfaces, for example.
 第2レンズアレイ20は、周囲の4辺S1,S2,S3,S4に沿って主面20qから-Z方向に突出するリブ22を有する。第2レンズアレイ20のリブ22は、これに隣接する第3レンズアレイ30に対するスペーサーとして機能する。第2レンズアレイ20のうち第4基準方向DR4(図面中の-X側)にある1つの辺S4の中央からは、ブロック状の樹脂注入部24が突出している。樹脂注入部24は、成形時のゲートに対応するゲート跡であり、第2レンズアレイ20の積層前に予め切除することもできるが、工程の簡素化のため残したままとしている。なお、樹脂注入部24を除去して側面SF4を平坦化し若しくはこれに窪みを形成した場合も、その切除跡を樹脂注入部24と呼ぶものとする。ここで、樹脂注入部24を設けた辺S4は、レンズ要素20aを配列した矩形枠RLのうち第4基準方向DR4(図面中の-X側)にある1つの辺RL4に対向して平行に延びている。樹脂注入部24は、矩形枠RLの1つの辺RL4に対向してこの辺RL4の中央の外側に配置されていることになる。 The second lens array 20 has ribs 22 protruding in the −Z direction from the main surface 20q along the four surrounding sides S1, S2, S3, and S4. The ribs 22 of the second lens array 20 function as spacers for the third lens array 30 adjacent thereto. A block-shaped resin injection portion 24 protrudes from the center of one side S4 in the fourth reference direction DR4 (−X side in the drawing) of the second lens array 20. The resin injecting portion 24 is a gate trace corresponding to the gate at the time of molding, and can be excised in advance before the second lens array 20 is laminated, but is left for simplification of the process. In addition, also when the resin injection part 24 is removed and the side surface SF4 is flattened or a depression is formed in the side surface SF4, the cut trace is referred to as the resin injection part 24. Here, the side S4 provided with the resin injection part 24 is parallel to one side RL4 in the fourth reference direction DR4 (−X side in the drawing) of the rectangular frame RL in which the lens elements 20a are arranged. It extends. The resin injecting portion 24 is disposed outside the center of the side RL4 so as to face one side RL4 of the rectangular frame RL.
 第3レンズアレイ30は、熱可塑性樹脂製の成形品であり、平面視において矩形の輪郭を有する。第3レンズアレイ30は、それぞれが光学素子である複数のレンズ要素30aと、複数のレンズ要素30aを周囲から支持する支持部30bとを有する。複数のレンズ要素30aは、XY面に平行に配列された正方の格子点(4×4の16点)上に2次元的に配列されている。つまり、レンズ要素30aは、直交する4つの基準方向DR1,DR2,DR3,DR4に沿ってマトリックス状に配置されている。レンズ要素30aの配列領域は、第3レンズアレイ30全体と同様に矩形の輪郭を有する矩形枠RLとなっている。各レンズ要素30aは、一方の主面30p側に凹の第1光学面31aを有し、他方の主面30q側に凸の第2光学面31bを有する。両光学面31a,31bは、例えば非球面となっている。 The third lens array 30 is a molded product made of a thermoplastic resin and has a rectangular outline in plan view. The third lens array 30 includes a plurality of lens elements 30a, each of which is an optical element, and a support portion 30b that supports the plurality of lens elements 30a from the periphery. The plurality of lens elements 30 a are two-dimensionally arranged on square lattice points (16 × 4 × 4) arranged in parallel to the XY plane. That is, the lens elements 30a are arranged in a matrix along the four orthogonal reference directions DR1, DR2, DR3, DR4. The array region of the lens elements 30a is a rectangular frame RL having a rectangular outline, as in the third lens array 30 as a whole. Each lens element 30a has a concave first optical surface 31a on one main surface 30p side, and a convex second optical surface 31b on the other main surface 30q side. Both optical surfaces 31a and 31b are aspherical surfaces, for example.
 第3レンズアレイ30は、周囲の4辺S1,S2,S3,S4に沿って主面30qから-Z方向に突出するリブ32を有する。第3レンズアレイ30のリブ32は、これに隣接するセンサーアレイ60に対するスペーサーとして機能する。第3レンズアレイ30のうち第4基準方向DR4(図面中の-X側)にある1つの辺S4の中央からは、ブロック状の樹脂注入部34が突出している。樹脂注入部34は、成形時のゲートに対応するゲート跡であり、第3レンズアレイ30の積層前に予め切除することもできるが、工程の簡素化のため残したままとしている。なお、樹脂注入部34を除去して側面SF4を平坦化し若しくはこれに窪みを形成した場合も、その切除跡を樹脂注入部34と呼ぶものとする。ここで、樹脂注入部34を設けた辺S4は、レンズ要素30aを配列した矩形枠RLのうち第4基準方向DR4(図面中の-X側)にある1つの辺RL4に対向して平行に延びている。樹脂注入部34は、矩形枠RLの1つの辺RL4に対向してこの辺RL4の中央の外側に配置されていることになる。 The third lens array 30 has ribs 32 protruding in the −Z direction from the main surface 30q along the four surrounding sides S1, S2, S3, S4. The ribs 32 of the third lens array 30 function as spacers for the sensor array 60 adjacent thereto. A block-shaped resin injection portion 34 protrudes from the center of one side S4 in the fourth reference direction DR4 (−X side in the drawing) of the third lens array 30. The resin injecting portion 34 is a gate mark corresponding to the gate at the time of molding, and can be excised in advance before the third lens array 30 is laminated, but is left for simplification of the process. In addition, also when the resin injection part 34 is removed and the side surface SF4 is flattened or a depression is formed in the side surface SF4, the cut trace is referred to as the resin injection part 34. Here, the side S4 provided with the resin injection portion 34 is parallel to one side RL4 in the fourth reference direction DR4 (−X side in the drawing) of the rectangular frame RL in which the lens elements 30a are arranged. It extends. The resin injecting portion 34 is disposed outside the center of the side RL4 so as to face one side RL4 of the rectangular frame RL.
 以上において、複眼光学系100を構成する第1レンズアレイ10と第2レンズアレイ20とは、光硬化型の接着剤で接合されている。つまり、第1レンズアレイ10のリブ12の下端面が、接着剤を介して第2レンズアレイ20の上側の主面20pに接合される。また、第2レンズアレイ20と第3レンズアレイ30とは、光硬化型の接着剤で接合されている。つまり、第2レンズアレイ20のリブ22の下端面が、接着剤を介して第3レンズアレイ30の上側の主面30pに接合される。第1~第3レンズアレイ10,20,30を積み重ねて接合して得た複眼光学系100は、多数の個眼レンズ系である多数の複合光学系2を2次元的に配列したものとなっている。具体的には、複合光学系(個眼レンズ系)2は、XY面に平行に配列された正方の格子点(4×4の16点)上に配列されている。つまり、複合光学系2は、直交する4つの基準方向DR1,DR2,DR3,DR4に沿ってマトリックス状に配置されている。この複眼光学系100において、第1~第3レンズアレイ10,20,30は、矩形枠RLの4つの辺RL1~RL4のうち特定の辺RL4の中央の外側に樹脂注入部14,24,34が突出するものとなっている。つまり、樹脂注入部14,24,34は、第1~第3レンズアレイ10,20,30において、基準方向DR1,DR2,DR3,DR4のうち特定の基準方向DR4に揃えて配置されている。 In the above, the first lens array 10 and the second lens array 20 constituting the compound-eye optical system 100 are joined with a photo-curing adhesive. That is, the lower end surface of the rib 12 of the first lens array 10 is bonded to the upper main surface 20p of the second lens array 20 via the adhesive. The second lens array 20 and the third lens array 30 are joined with a photo-curing adhesive. That is, the lower end surface of the rib 22 of the second lens array 20 is bonded to the upper main surface 30p of the third lens array 30 via the adhesive. The compound eye optical system 100 obtained by stacking and joining the first to third lens arrays 10, 20, and 30 is a two-dimensional array of a number of compound optical systems 2 that are a number of individual lens systems. ing. Specifically, the compound optical system (single lens system) 2 is arranged on square lattice points (4 × 4 16 points) arranged in parallel to the XY plane. That is, the composite optical system 2 is arranged in a matrix along four orthogonal reference directions DR1, DR2, DR3, DR4. In the compound eye optical system 100, the first to third lens arrays 10, 20, and 30 are resin injection portions 14, 24, and 34 outside the center of a specific side RL4 among the four sides RL1 to RL4 of the rectangular frame RL. Is prominent. That is, the resin injecting portions 14, 24, and 34 are arranged in the first to third lens arrays 10, 20, and 30 so as to align with a specific reference direction DR4 among the reference directions DR1, DR2, DR3, and DR4.
 図1Bに示すように、複眼光学系100を組み込んだ撮像装置1000は、上述した複眼光学系100の他に、複数のレンズアレイ10,20,30に対応して設けられたセンサーアレイ60と、センサーアレイ60によって検出された画像信号に対して処理を行う画像処理部65とを備える。ここで、複眼光学系100は、センサーアレイ60に接合され、矩形枠状のケース50に収納されている。ケース50には、レンズアレイ10等のレンズ要素10a等に対応する位置に開口51が形成されている。 As shown in FIG. 1B, the imaging apparatus 1000 incorporating the compound eye optical system 100 includes, in addition to the compound eye optical system 100 described above, a sensor array 60 provided corresponding to the plurality of lens arrays 10, 20, and 30. And an image processing unit 65 that performs processing on an image signal detected by the sensor array 60. Here, the compound eye optical system 100 is bonded to the sensor array 60 and accommodated in a rectangular frame-like case 50. An opening 51 is formed in the case 50 at a position corresponding to the lens element 10 a such as the lens array 10.
 複眼光学系100は、上述のようにXY面に沿って2次元的に配列された複合光学系(個眼レンズ系)2を有している。センサーアレイ60には、CMOS(Complementary Metal Oxide Semiconductor)その他の固体撮像素子61が各複合光学系2に対応する2次元的配列で形成されている。なお、各複眼光学系100は、3つのレンズ要素10a,20a,30aからなる。これらのレンズ要素10a,20a,30aの光学設計を適宜行うことで、複眼光学系100は、一般に(1)複数の複合光学系2によって同じ視野をそれぞれ観察する光学系と、(2)複数の複合光学系2によって別の視野をそれぞれ観察する光学系とのいずれか一方として用いられるが、本実施形態では複眼光学系100を(1)の超解像方式で用いる。この場合、各複合光学系2を構成するレンズ要素10a,20a,30aと、センサーアレイ60のうち対応する固体撮像素子61とは、互いに視野を一致させるように光軸AX上に中心を完全に一致させて配置される。 The compound-eye optical system 100 has the compound optical system (single-lens system) 2 arranged two-dimensionally along the XY plane as described above. In the sensor array 60, CMOS (Complementary Metal Metal Oxide Semiconductor) and other solid-state imaging devices 61 are formed in a two-dimensional array corresponding to each composite optical system 2. Each compound eye optical system 100 includes three lens elements 10a, 20a, and 30a. By appropriately performing the optical design of these lens elements 10a, 20a, and 30a, the compound-eye optical system 100 generally has (1) an optical system that observes the same field of view by a plurality of compound optical systems 2, and (2) a plurality of The compound optical system 2 is used as either one of the optical systems for observing different fields of view. In this embodiment, the compound-eye optical system 100 is used in the super-resolution method (1). In this case, the lens elements 10a, 20a, and 30a constituting each composite optical system 2 and the corresponding solid-state imaging device 61 in the sensor array 60 are completely centered on the optical axis AX so that their fields of view coincide with each other. Arranged to match.
 複眼光学系100が超解像方式の画像検出に用いられる場合、複眼光学系100を構成する複合光学系2は、同時に同じ視野を観察可能にするものであり、各複合光学系2が同じ視野から画像を取り込み、各固体撮像素子61が同じ視野からの画像を電気的な画像信号に変換する。画像処理部65は、固体撮像素子61から出力された画像信号に対して適宜画像処理を行って、同じ視野の低解像の画像から同じ視野の高解像の画像を得る。複眼光学系100を超解像方式で用いる場合、各複合光学系2が略同一の光学的な設計となる。このことは、例えば第1レンズアレイ10を構成する全レンズ要素10aが略同一形状を有することを意味する。このように、超解像方式の用途では、同じ形状が揃うレンズアレイを成形することになるので、射出成形では樹脂の流れ方も同じになり、第1レンズアレイ10を構成するレンズ要素10aごとの精度が出しやすい。逆に、視野分割方式のようにレンズ要素の形状が異なる場合は、厚みの変化が大きく安定した形状を出すのが難しい。そして、超解像方式は非常に高い光学性能を要求するため、レンズの形状や偏芯の精度も非常に厳しいものとなる。そのため、樹脂注入部14,24,34が同じ方向に配置される効果は、視野分割より超解像の方で発揮されやすい。なお、複眼光学系100を超解像方式で用いる場合、複合光学系2ごとに色収差やピント位置を異ならせることがあるので、それに配慮して上記のように「同じ」ではなく「略同じ」と表現している。 When the compound-eye optical system 100 is used for super-resolution image detection, the compound optical system 2 constituting the compound-eye optical system 100 enables observation of the same field of view at the same time, and each compound optical system 2 has the same field of view. Then, each solid-state image sensor 61 converts an image from the same field of view into an electrical image signal. The image processing unit 65 appropriately performs image processing on the image signal output from the solid-state imaging device 61, and obtains a high-resolution image with the same visual field from a low-resolution image with the same visual field. When the compound-eye optical system 100 is used in a super-resolution system, each composite optical system 2 has substantially the same optical design. This means that, for example, all the lens elements 10a constituting the first lens array 10 have substantially the same shape. In this way, in the super-resolution system application, a lens array having the same shape is molded. Therefore, in the injection molding, the flow of resin is the same, and each lens element 10a constituting the first lens array 10 is the same. It is easy to get the accuracy. On the contrary, when the shape of the lens element is different as in the field division method, it is difficult to obtain a stable shape with a large change in thickness. Since the super-resolution method requires very high optical performance, the lens shape and the accuracy of decentration are very strict. Therefore, the effect that the resin injection portions 14, 24, and 34 are arranged in the same direction is more easily exhibited in the super-resolution direction than the field division. When the compound eye optical system 100 is used in the super-resolution method, the chromatic aberration and the focus position may be different for each composite optical system 2, so that it is “same” instead of “same” as described above. It expresses.
 超解像方式で高解像を得るには、複眼光学系100を構成する個眼数すなわち複合光学系2の数が多い方が良い。たとえば2×2個の配列だと、4つの複合光学系2しか備えないため、最大でも4倍の画素(長さ方向では2倍)にしかならない。このため、高解像化や薄型化への効果が小さく、1つのセンサーに1つのレンズを用いる単眼方式との能力差が少ない。そこで、少なくとも3×3個の複合光学系2を有していることが好ましい。これにより、複眼光学系100を薄くでき、個眼から全体画像を合成した際の超解像の向上度合いも大きくできる。 In order to obtain high resolution by the super-resolution method, it is better that the number of individual eyes constituting the compound-eye optical system 100, that is, the number of compound optical systems 2 is larger. For example, in the case of a 2 × 2 array, since only four composite optical systems 2 are provided, the maximum number of pixels is four times (twice in the length direction). For this reason, the effect on high resolution and thinning is small, and there is little difference in ability from a monocular system using one lens for one sensor. Therefore, it is preferable to have at least 3 × 3 composite optical systems 2. Thereby, the compound eye optical system 100 can be thinned, and the degree of improvement in super-resolution when the entire image is synthesized from a single eye can also be increased.
 複眼光学系100を構成する複合光学系2用の固体撮像素子61の画素数をNiとし、超解像処理後の画素数をNsとした場合、以下の条件式(3)
 Ns/Ni>5  …  (3)
を満たすことが望ましい。超解像方式で解像度(画素数)を向上させるには、元々のレンズの性能がある程度高いことが要求される。つまり、個々の複合光学系2に対応して設けられた画素よりも小さな画素に回復又は向上させるためには、各複合光学系2に対して超解像後の画素数に相当する空間周波数でのレンズ性能が要求される。そのために必要なレンズ要素10a,20a,30aの偏芯に対する要求は、複合光学系2の画素ピッチよりも小さな精度を要求する。つまり、レンズ要素10a,20a,30aの形状や偏芯に関する精度を高くして個々の複合光学系2の性能を高めやすいものとなっている複眼光学系100は、超解像方式の用途に適する。
When the number of pixels of the solid-state imaging device 61 for the composite optical system 2 constituting the compound-eye optical system 100 is Ni and the number of pixels after super-resolution processing is Ns, the following conditional expression (3)
Ns / Ni> 5 (3)
It is desirable to satisfy. In order to improve the resolution (number of pixels) by the super-resolution method, the performance of the original lens is required to be high to some extent. That is, in order to recover or improve the pixels smaller than the pixels provided corresponding to the individual composite optical systems 2, the spatial frequency corresponding to the number of pixels after super-resolution is used for each composite optical system 2. Lens performance is required. The requirement for the decentering of the lens elements 10 a, 20 a, and 30 a required for that purpose requires a smaller accuracy than the pixel pitch of the composite optical system 2. In other words, the compound-eye optical system 100 in which the accuracy of the shape and decentering of the lens elements 10a, 20a, and 30a is increased to easily improve the performance of each composite optical system 2 is suitable for the super-resolution system. .
 複眼光学系100を構成する第1~第3レンズアレイ10,20,30については、樹脂注入部14,24,34に対応するゲートGAを横断するゲート垂直方向に関するレンズ要素10a,20a,30aの最大間隔をPとし、センサーアレイ60において個眼の複合光学系2に対応して設けられた固体撮像素子61の個眼画素ピッチをdとして、以下の条件式(4)
 20>(P/d)/1000  …  (4)
を満たす。第1~第3レンズアレイ10,20,30におけるレンズ要素10a,20a,30aの間隔が広がると偏芯も大きくなる傾向があり、偏芯精度は画素ピッチと関連したものとなっている。特に超解像のように非常に高い性能を求められているときは、画素ピッチ程度のずれでも劣化が問題になるが、上記条件式(4)の範囲とすることで、偏芯の少ない複合光学系2によって超解像処理後の解像度向上が実効的なものとなる。
Regarding the first to third lens arrays 10, 20, and 30 constituting the compound eye optical system 100, the lens elements 10a, 20a, and 30a in the gate vertical direction crossing the gate GA corresponding to the resin injection portions 14, 24, and 34 are arranged. When the maximum interval is P and the single pixel pitch of the solid-state image sensor 61 provided corresponding to the single-eye compound optical system 2 in the sensor array 60 is d, the following conditional expression (4)
20> (P / d) / 1000 (4)
Meet. As the distance between the lens elements 10a, 20a, 30a in the first to third lens arrays 10, 20, 30 increases, the eccentricity tends to increase, and the eccentricity accuracy is related to the pixel pitch. In particular, when extremely high performance such as super-resolution is required, deterioration becomes a problem even with a deviation of about the pixel pitch. However, by setting the range of the conditional expression (4), a compound with less eccentricity can be obtained. The optical system 2 effectively improves the resolution after super-resolution processing.
 図2は、複眼光学系100の構造及び製造方法を概念的に説明する斜視図である。複眼光学系100において、第1レンズアレイ10と第2レンズアレイ20と第3レンズアレイ30とが順次接合されているが、これらのレンズアレイ10,20,30は、樹脂注入部14,24,34を基準として、同一の回転位置で積層されている。このように、本実施形態の場合、樹脂注入部14,24,34の位置を基準方向DR1,DR2,DR3,DR4のいずれか1つに一致させているので、複眼光学系100からの出っ張りが1箇所に集まり、ケース50への組み込みやアライメントが容易である。また、これらのレンズアレイ10,20,30は、熱可塑性樹脂で形成されており、熱収縮及び撓みの問題があるが、レンズアレイ10,20,30が樹脂注入部14,24,34を基準として方向を揃えている場合、熱収縮及び撓みの方向性や傾向をレンズアレイ10,20,30間で一致させやすく、各複合光学系2における芯出しが比較的容易になる。 FIG. 2 is a perspective view conceptually illustrating the structure and manufacturing method of the compound-eye optical system 100. In the compound eye optical system 100, the first lens array 10, the second lens array 20, and the third lens array 30 are sequentially joined. These lens arrays 10, 20, and 30 are formed of resin injection portions 14, 24, 34 are stacked at the same rotation position. As described above, in the case of the present embodiment, since the positions of the resin injection portions 14, 24, and 34 are made to coincide with any one of the reference directions DR1, DR2, DR3, and DR4, the protrusion from the compound-eye optical system 100 is increased. It gathers in one place and is easy to incorporate into the case 50 and alignment. Further, these lens arrays 10, 20, and 30 are formed of a thermoplastic resin and have a problem of heat shrinkage and bending. However, the lens arrays 10, 20, and 30 are based on the resin injection portions 14, 24, and 34. When the directions are aligned, it is easy to match the directionality and tendency of heat shrinkage and deflection between the lens arrays 10, 20, and 30, and centering in each composite optical system 2 becomes relatively easy.
 以下、樹脂注入部14,24,34を固定後を基準とする4辺S1,S2,S3,S4のうちいずれか1つである同一の辺に配置する理由について説明する。 Hereinafter, the reason why the resin injection portions 14, 24, and 34 are arranged on the same side that is any one of the four sides S1, S2, S3, and S4 with reference to the fixed side will be described.
 図3A及び3Bは、第1レンズアレイ10の平面図及び側方断面図である。第1レンズアレイ10の樹脂注入部14は、辺S4又は側面SF4に形成されている。これは、第1レンズアレイ10が熱可塑性樹脂をサイドゲート方式で成形することによって得られたものであることに起因している。複眼光学系100は、超解像方式等の用途において、撮像装置1000を薄型化できる観点で注目されている。これまでに、各種の複眼光学系が提案されているが、軽量でコストダウンに優れている樹脂(熱可塑性樹脂)を用いて、高画質で超薄型を達成するために必要な要件を提案しているものはなかった。本実施形態では、複眼光学系100を構成する第1レンズアレイ10だけでなく、他のレンズアレイ20,30も熱可塑性樹脂で成形し、超薄型ながら高画質を達成することを提案する。 3A and 3B are a plan view and a side sectional view of the first lens array 10. The resin injection portion 14 of the first lens array 10 is formed on the side S4 or the side surface SF4. This is because the first lens array 10 is obtained by molding a thermoplastic resin by a side gate method. The compound-eye optical system 100 is attracting attention from the viewpoint of reducing the thickness of the imaging apparatus 1000 in applications such as a super-resolution method. Various compound-eye optical systems have been proposed so far, but the requirements necessary to achieve ultra-thinness with high image quality using a lightweight resin (thermoplastic resin) that is excellent in cost reduction are proposed. There was nothing to do. In the present embodiment, it is proposed that not only the first lens array 10 constituting the compound-eye optical system 100 but also the other lens arrays 20 and 30 are molded from a thermoplastic resin to achieve high image quality while being ultra-thin.
 レンズアレイ10,20,30を熱可塑性樹脂で成形する場合、サイドゲート、ピンゲート等のいずれを採用するかの問題がある。ピンゲートの場合、樹脂注入部が上下方向に形成されるが、樹脂の流入方向と広がる方向とが垂直のためレンズアレイ10,20,30の薄い箇所に樹脂が入りにくいという不利がある。一方、サイドゲートの場合、樹脂の流入方向と広がる方向とが概ね一致するため、レンズアレイ10,20,30の薄い箇所にも樹脂が入り込みやすく、形状の転写精度が求められる複眼光学系100の製造方法として有利である。また、ピンゲートの場合は離型の際にゲートが自動切断されるが、ゲートが引きちぎられる形で切断されるため、レンズのゲート付近が局所的に変形し、高精度なレンズの成形には不利である。一方、サイドゲートの場合はゲートが切断されずに離型され、後工程にてゲートカット機等を用いて切断されるため、ゲート部に局所的な変形が起こりづらく、高精度なレンズの成形に有利である。 When the lens arrays 10, 20, and 30 are molded from a thermoplastic resin, there is a problem of whether to use a side gate or a pin gate. In the case of a pin gate, the resin injecting portion is formed in the vertical direction. However, since the inflow direction of the resin and the spreading direction are perpendicular to each other, there is a disadvantage that it is difficult for the resin to enter the thin portions of the lens arrays 10, 20, and 30. On the other hand, in the case of the side gate, since the inflow direction of the resin and the spreading direction are almost the same, the resin can easily enter the thin portions of the lens arrays 10, 20, and 30, and the shape of the compound eye optical system 100 is required to be accurately transferred. This is advantageous as a manufacturing method. In the case of a pin gate, the gate is automatically cut at the time of mold release, but since the gate is cut in such a way that it is torn, the vicinity of the gate of the lens is locally deformed, which is disadvantageous for molding a highly accurate lens. It is. On the other hand, in the case of a side gate, the gate is released without being cut, and is cut using a gate cutting machine or the like in a later process, so that local deformation is unlikely to occur in the gate portion, and a highly accurate lens is formed. Is advantageous.
 図4Aは、第1レンズアレイ10を成形する金型を説明する図である。金型装置70は、第1金型71と第2金型72とを備える。第1金型71と第2金型72とは、型合わせ面PLで型合わせされ、金型71,72間にキャビティ70aを形成する。キャビティ70aに臨むように、第1金型71には、第1レンズアレイ10の主面10p側の形状を転写するための転写面71cが形成され、第2金型72には、第1レンズアレイ10の主面10q側の形状を転写するための転写面72cが形成されている。転写面71c,72cは、レンズ要素10aの光学面11a,11bを転写するため、その一部に2次元的に配列された複数の光学転写部71g,72gを有する。なお、第2金型72には、リブ12を形成するための転写面72fも形成されている。金型装置70には、キャビティ70aに連通するゲートGAが形成されている。ゲートGAは、リブ12の転写面72fに隣接して設けられている。 FIG. 4A is a diagram for explaining a mold for molding the first lens array 10. The mold apparatus 70 includes a first mold 71 and a second mold 72. The first mold 71 and the second mold 72 are mold-matched at the mold-matching surface PL, and a cavity 70 a is formed between the molds 71 and 72. The first mold 71 is formed with a transfer surface 71c for transferring the shape on the main surface 10p side of the first lens array 10 so as to face the cavity 70a, and the second mold 72 has a first lens. A transfer surface 72c for transferring the shape on the main surface 10q side of the array 10 is formed. The transfer surfaces 71c and 72c have a plurality of optical transfer portions 71g and 72g arranged two-dimensionally at a part thereof in order to transfer the optical surfaces 11a and 11b of the lens element 10a. The second mold 72 is also formed with a transfer surface 72f for forming the rib 12. In the mold apparatus 70, a gate GA communicating with the cavity 70a is formed. The gate GA is provided adjacent to the transfer surface 72 f of the rib 12.
 図4Bは、金型装置70の全体構造を説明する断面図である。図4Aのキャビティ70aには、ゲートGAを介してランナーRAが連結され、ランナーRAは、樹脂供給側のスプルーSPに繋がっている。結果的に、スプルーSPからの溶融樹脂Jは、ランナーRAを充填し、ゲートGAを介してキャビティ70aを充填する。溶融樹脂Jの冷却後に第1金型71と第2金型72とを離間させることで、スプルーSPに対応するスプルー部81と、ランナーRAに対応するランナー部82と、ゲートGAに対応するゲート部83と、キャビティ70aに対応するレンズアレイ本体84とを備える成形品80が形成される。ここで、ゲート部83に対しては、ゲートカット処理が施され、ゲート部83の残りである樹脂注入部14と、その先のレンズアレイ本体84とによって、第1レンズアレイ10が得られる。以上のような成形を行う場合、ゲートカット処理後の樹脂注入部14に対して、ゲートカットバリを除去する等の工程が必要となる。このようなゲートカットバリの除去は、樹脂注入部14が周辺に形成されるサイドゲート方式では簡易なものとなるが、ピンゲート方式等では必ずしも簡易にならない。 FIG. 4B is a cross-sectional view illustrating the entire structure of the mold apparatus 70. A runner RA is connected to the cavity 70a of FIG. 4A through a gate GA, and the runner RA is connected to the sprue SP on the resin supply side. As a result, the molten resin J from the sprue SP fills the runner RA and fills the cavity 70a through the gate GA. By separating the first mold 71 and the second mold 72 after cooling the molten resin J, a sprue portion 81 corresponding to the sprue SP, a runner portion 82 corresponding to the runner RA, and a gate corresponding to the gate GA. A molded product 80 including a portion 83 and a lens array body 84 corresponding to the cavity 70a is formed. Here, the gate part 83 is subjected to a gate cut process, and the first lens array 10 is obtained by the resin injection part 14 that is the remaining part of the gate part 83 and the lens array body 84 ahead. When the molding as described above is performed, a process such as removing a gate cut burr is required for the resin injection portion 14 after the gate cut process. Such removal of the gate cut burr is simple in the side gate method in which the resin injection portion 14 is formed in the periphery, but is not necessarily simple in the pin gate method or the like.
 図3Aに戻って、第1レンズアレイ10における樹脂注入部14の配置や形状について考察する。図示の例では、樹脂注入部14が辺S4又は側面SF4の中央に対応する位置に配置されている。これに対して、一点鎖線で示すように、樹脂注入部14'を辺S4又は側面SF4の端部寄りに形成したり、樹脂注入部14"を一対の辺S1,S4の交わる隅部に形成したりすることが考えられる。しかしながら、端部寄りの樹脂注入部14'は、最も遠いレンズ要素10aまでの距離が中央配置の樹脂注入部14の場合よりも増加し、隅部の樹脂注入部14"は、最も遠いレンズ要素10aまでの距離が端部寄りの樹脂注入部14'の場合よりもさらに増加する。第1レンズアレイ10を構成するレンズ要素10aの面精度を高めるには、金型装置70のキャビティ70a内のレンズ要素10aに対応する部分に十分な圧力をかける必要がある。このため、金型装置70において、いずれかのレンズ要素10aの転写部がゲートGAから遠くなると、圧力損失が大きくなり、レンズ要素10aの面精度が低下しやすくなる。したがって、レンズ要素10aの転写部はできるだけゲートGAに近い方が良く、レンズ要素10aの転写部とゲートGAの位置とを最も近くするためには、ゲートGAが第1レンズアレイ10の特定の辺S4又は側面SF4の中央に対応して配置されることが望ましい。結果的に、第1レンズアレイ10において樹脂注入部14が特定の辺S4又は側面SF4の中央又はその近傍に配置されることが望ましいといえる。これにより、樹脂の圧力損失を抑えることができ、各レンズ要素10aを比較的高品位で成形することができる。 3A, the arrangement and shape of the resin injection portion 14 in the first lens array 10 will be considered. In the illustrated example, the resin injecting portion 14 is disposed at a position corresponding to the center of the side S4 or the side surface SF4. On the other hand, as indicated by the alternate long and short dash line, the resin injection portion 14 ′ is formed near the end of the side S4 or the side surface SF4, or the resin injection portion 14 ″ is formed at the corner where the pair of sides S1 and S4 intersect. However, in the resin injection portion 14 'closer to the end, the distance to the farthest lens element 10a is larger than in the case of the resin injection portion 14 arranged at the center, and the resin injection portion in the corner portion. 14 ″ further increases compared to the case of the resin injection portion 14 ′ whose distance to the farthest lens element 10a is closer to the end. In order to increase the surface accuracy of the lens elements 10 a constituting the first lens array 10, it is necessary to apply sufficient pressure to a portion corresponding to the lens elements 10 a in the cavity 70 a of the mold apparatus 70. For this reason, in the mold apparatus 70, when the transfer portion of one of the lens elements 10a is far from the gate GA, the pressure loss increases, and the surface accuracy of the lens element 10a is likely to decrease. Therefore, the transfer portion of the lens element 10a is preferably as close to the gate GA as possible. In order to make the transfer portion of the lens element 10a and the position of the gate GA closest, the gate GA is not located on a specific side of the first lens array 10. It is desirable to arrange corresponding to the center of S4 or side surface SF4. As a result, it can be said that in the first lens array 10, it is desirable that the resin injection portion 14 is disposed at the center of the specific side S <b> 4 or the side surface SF <b> 4 or in the vicinity thereof. Thereby, the pressure loss of resin can be suppressed and each lens element 10a can be shape | molded by comparatively high quality.
 図4Aに示すゲートGAの断面積は、各レンズ要素10aに要求される面精度を確保する観点で大きいことが望ましい。つまり、各レンズ要素10aを高精度に成形するためには、溶融樹脂Jの流動性が良い方が良く、図3A等も参照して、ゲートGA(すなわち樹脂注入部14)の横幅をDとしゲートGA(すなわち樹脂注入部14)の縦幅をhとした場合に、ゲート断面積(D×h)は大きい方が望ましい。ここで、ゲートGA又は樹脂注入部14の横幅(ゲート幅D)は、広い方が流動性が良いが、広すぎるとゲートカット処理が難しくなるので、
 1mm≦D≦10mm
の範囲とする。また、ゲートGA又は樹脂注入部14の縦幅hは、大きい方が良いが、一般にフランジ高さHよりは大きくできないため、
 0.5≦h/H≦1.0
の範囲とする。さらに好ましくは、
 0.5≦h/H≦0.8
の範囲とする。
The cross-sectional area of the gate GA shown in FIG. 4A is desirably large from the viewpoint of ensuring the surface accuracy required for each lens element 10a. That is, in order to mold each lens element 10a with high accuracy, it is better that the molten resin J has good fluidity, and the lateral width of the gate GA (that is, the resin injection portion 14) is set to D with reference to FIG. When the vertical width of the gate GA (that is, the resin injection portion 14) is h, it is desirable that the gate cross-sectional area (D × h) is large. Here, the lateral width (gate width D) of the gate GA or the resin injecting portion 14 is good in fluidity, but if it is too wide, gate cut processing becomes difficult.
1mm ≦ D ≦ 10mm
The range. Further, the vertical width h of the gate GA or the resin injection portion 14 is preferably large, but generally cannot be larger than the flange height H.
0.5 ≦ h / H ≦ 1.0
The range. More preferably,
0.5 ≦ h / H ≦ 0.8
The range.
 さらに、キャビティ70aの充填不良を生じさせないで、薄型の第1レンズアレイ10等を成形するためには、第1レンズアレイ10等の断面サイズを適正に設定する必要がある。具体的には、図3Bを参照して、各レンズアレイ10,20,30は、その最小厚みをTとし、ゲート方向すなわち±X方向に関する各レンズアレイ10,20,30の長さをLとして、以下の条件式(1)
 10<L/T<60  …  (1)
を満たす。条件式(1)は、充填を良好にし薄型の光学系にするために、レンズアレイ10,20,30のゲート方向の長さと薄さとの比を適切な範囲に設定するものである。条件式(1)の上限より小さくすることで、奥行き方向に長くなりすぎず、樹脂の流動を確保して、樹脂の充填を良好なものとできる。一方、条件式(1)の下限より大きくすることで、レンズアレイ10,20,30が必要以上に厚くなりすぎず、薄型の複眼光学系100を実現することができる。これにより、各レンズアレイ10,20,30を薄型にしながら成形に際して溶融樹脂Jの流動性を確保することができる。
Furthermore, in order to mold the thin first lens array 10 and the like without causing the filling failure of the cavity 70a, it is necessary to appropriately set the cross-sectional size of the first lens array 10 and the like. Specifically, referring to FIG. 3B, each lens array 10, 20, 30 has a minimum thickness T, and the length of each lens array 10, 20, 30 in the gate direction, that is, the ± X direction, is L. The following conditional expression (1)
10 <L / T <60 (1)
Meet. Conditional expression (1) sets the ratio of the length and the thinness in the gate direction of the lens arrays 10, 20, and 30 in an appropriate range in order to achieve good filling and a thin optical system. By making it smaller than the upper limit of conditional expression (1), it is not too long in the depth direction, the flow of the resin is ensured, and the resin can be filled well. On the other hand, by making it larger than the lower limit of the conditional expression (1), the lens array 10, 20, 30 does not become excessively thick, and a thin compound eye optical system 100 can be realized. Thereby, the fluidity of the molten resin J can be ensured during molding while making the lens arrays 10, 20, and 30 thin.
 さらに、図3Aを参照して、各レンズアレイ10,20,30は、その樹脂注入部14,24,34に対応するゲートGAを横断するゲート垂直方向すなわち±Y方向のゲート幅をDとし、ゲート垂直方向すなわち±Y方向に関する各レンズアレイ10,20,30の長さをWとして、以下の条件式(2)
 1.3<W/D<25  …  (2)
を満たす。条件式(2)は、充填を良好にしゲートカット処理をやりやすくするために、ゲート垂直方向に関するレンズアレイ10等の長さとゲート幅との比を適切な範囲に設定するものである。条件式(2)の上限より小さくすることで、ゲートGAのサイズを確保することができ、流動性を良好に保って充填不良の発生を抑制できる。一方、条件式(2)の下限より大きくすることで、ゲートGAをある程度狭くして、ゲートカット処理を容易にできる。これにより、ゲートGAの横幅をある程度以上大きくして溶融樹脂Jの流動性を保ちつつもゲートGAの横幅が大きくなりすぎないようにしてゲートカット処理を容易にしている。
Further, referring to FIG. 3A, each lens array 10, 20, 30 has a gate width in the gate vertical direction that crosses the gate GA corresponding to the resin injection portion 14, 24, 34, that is, the gate width in the ± Y direction as D, Conditional expression (2) below, where W is the length of each lens array 10, 20, 30 in the gate vertical direction, that is, the ± Y direction.
1.3 <W / D <25 (2)
Meet. Conditional expression (2) sets the ratio of the length of the lens array 10 and the like in the vertical direction of the gate to the gate width in an appropriate range in order to improve the filling and facilitate the gate cut process. By making it smaller than the upper limit of conditional expression (2), the size of the gate GA can be ensured, the fluidity can be kept good, and the occurrence of poor filling can be suppressed. On the other hand, by making it larger than the lower limit of conditional expression (2), the gate GA can be narrowed to some extent and the gate cut processing can be facilitated. Thus, the gate cut processing is facilitated by making the lateral width of the gate GA larger than a certain extent and maintaining the fluidity of the molten resin J while preventing the lateral width of the gate GA from becoming too large.
 図4B等に示すような金型装置70を上記のように溶融樹脂Jの流動性や転写性を確保できる条件で用いても、成形後において第1レンズアレイ10等が変形する可能性がある。すなわち、成形後のレンズアレイ本体84又は第1レンズアレイ10は、成形時の圧力損失が大きくなると収縮し、一般にゲートGAに近い部分の収縮は少なく、ゲートGAから離れた部分の収縮は多くなる。したがって、レンズアレイ10,20,30を積層する際にゲートGA又は樹脂注入部14,24,34を互いに一致させると、レンズアレイ10,20,30の収縮の状態又は傾向も各所において相互に一致するので、複眼光学系100を構成する各複合光学系2においてレンズ要素10a,20a,30a間で中心を一致させることが容易になり、少ない偏芯によって個々の複合光学系2の光学性能を可能な限り高める得ることが期待される。 Even if the mold apparatus 70 as shown in FIG. 4B or the like is used under the conditions that can ensure the fluidity and transferability of the molten resin J as described above, the first lens array 10 and the like may be deformed after molding. . That is, the molded lens array body 84 or the first lens array 10 contracts when the pressure loss during molding increases, and generally shrinks in a portion near the gate GA and shrinks in a portion away from the gate GA. . Therefore, if the gate GA or the resin injecting portions 14, 24, and 34 are made to coincide with each other when the lens arrays 10, 20, and 30 are laminated, the contraction state or tendency of the lens arrays 10, 20, and 30 coincide with each other. Therefore, it becomes easy to match the centers of the lens elements 10a, 20a, and 30a in each compound optical system 2 constituting the compound-eye optical system 100, and the optical performance of each compound optical system 2 can be achieved with a small amount of decentering. It is expected to get as high as possible.
 図5は、第1及び第2レンズアレイ10,20の収縮を誇張した概念図である。仮想線(一点鎖線)で示す矩形の輪郭10m,20mは、第1及び第2レンズアレイ10,20が理想的に成形され収縮が生じなかった場合を示す。実際には、射出時の圧力損失によってゲートGAから離れるほど収縮による変位が大きくなる成形収縮が発生し、実線で示す台形状の輪郭10m,20mとなる。実線で示す成形品の格子軸8a,8bは、仮想線で示す元の正確な格子軸7a,7bと比較して歪んだものとなる。しかしながら、第1レンズアレイ10でも第2レンズアレイ20でも同様の傾向を示す成形収縮が生じるので、第1及び第2レンズアレイ10,20を構成する各レンズ要素10a,20aは、互いに光軸AXが一致した状態に維持され、各複合光学系2の解像度、延いては撮像装置1000の解像度を高くすることができる。 FIG. 5 is a conceptual diagram exaggerating the contraction of the first and second lens arrays 10 and 20. Rectangular outlines 10m and 20m indicated by phantom lines (one-dot chain lines) indicate a case where the first and second lens arrays 10 and 20 are ideally shaped and no contraction occurs. In practice, molding shrinkage occurs such that the displacement due to shrinkage increases as the distance from the gate GA increases due to pressure loss at the time of injection, resulting in trapezoidal contours 10 m and 20 m indicated by solid lines. The lattice axes 8a and 8b of the molded product indicated by the solid lines are distorted as compared with the original accurate lattice axes 7a and 7b indicated by the phantom lines. However, since molding contraction showing the same tendency occurs in both the first lens array 10 and the second lens array 20, the lens elements 10a and 20a constituting the first and second lens arrays 10 and 20 are mutually connected with the optical axis AX. Are maintained in a consistent state, and the resolution of each composite optical system 2 and thus the resolution of the imaging apparatus 1000 can be increased.
 さらに、図4Aに示す金型装置70のようにサイドゲートの場合、レンズアレイ本体84の非対称性(例えばリブ12が存在すること等)によって、レンズアレイ本体84又は第1レンズアレイ10はゲート方向に沿った各位置においてゲート垂直方向に若干反ってしまうことがある。超解像といった用途の複眼光学系100は、略同一の大きさのレンズアレイ10,20,30を備え、それぞれに同等性能が要求される。このため、成形の条件等も似ることになり、複数枚のレンズアレイ10,20,30間で反りの方向や量も似る。したがって、上記のようにレンズアレイ10,20,30を積層する際にゲートGA又は樹脂注入部14,24,34を互いに一致させることで、3つのレンズアレイ10,20,30の反りが互いに倣い、かかる反りによる間隔変動や偏芯の発生といった問題も発生しにくくなり或いは低減される。 Further, in the case of a side gate as in the mold apparatus 70 shown in FIG. 4A, the lens array body 84 or the first lens array 10 is moved in the gate direction due to the asymmetry of the lens array body 84 (for example, the presence of the ribs 12). May be slightly warped in the gate vertical direction at each position along the line. The compound-eye optical system 100 for applications such as super-resolution includes lens arrays 10, 20, and 30 having substantially the same size, and equivalent performance is required for each. For this reason, the molding conditions and the like are also similar, and the direction and amount of warpage between the plurality of lens arrays 10, 20, and 30 are also similar. Therefore, when the lens arrays 10, 20, and 30 are stacked as described above, the warp of the three lens arrays 10, 20, and 30 is copied by matching the gate GA or the resin injection portions 14, 24, and 34 with each other. Problems such as interval fluctuations and occurrence of eccentricity due to such warpage are less likely to occur or are reduced.
 図6は、レンズアレイ10,20,30の反りを分かりやすく誇張した概念図である。図示の例では、レンズアレイ10,20,30は、ゲートGAに対応する樹脂注入部14,24,34から離れるほど、リブ12,22,32のある下側に僅かに撓むが、これらレンズアレイ10,20,30の撓み方は略一致しており、レンズアレイ10,20,30を積層して得た複眼光学系100を構成する各複合光学系(個眼レンズ系)2において、レンズ要素10a,20a,30a間の相対位置が一様に保たれている。なお、レンズアレイ10,20,30の反りは、成形時の樹脂圧力、温度、樹脂の流動配向による収縮率の違いが原因で発生すると考えられる。成形条件を最適化することにより、そりを低減させることはできるが、超解像といった用途の複眼光学系100に求められるマイクロメートルの精度を達成することは容易でない。よって、レンズアレイ10,20,30の反りを残したままとし、樹脂注入部14,24,34を互いに一致させることで、簡易にレンズ要素10a,20a,30aの相対的配置を正確にして複眼光学系100を高精度化することができる。 FIG. 6 is a conceptual diagram exaggerating the warp of the lens arrays 10, 20, and 30 in an easily understandable manner. In the illustrated example, the lens arrays 10, 20, and 30 are slightly bent downward with the ribs 12, 22, and 32 as the distance from the resin injection portions 14, 24, and 34 corresponding to the gate GA is increased. The bending methods of the arrays 10, 20, and 30 are substantially the same, and in each compound optical system (single-lens system) 2 constituting the compound-eye optical system 100 obtained by stacking the lens arrays 10, 20, 30, lenses The relative position between the elements 10a, 20a, 30a is kept uniform. The warpage of the lens arrays 10, 20, and 30 is considered to occur due to differences in shrinkage due to resin pressure, temperature, and resin flow orientation during molding. Although the warpage can be reduced by optimizing the molding conditions, it is not easy to achieve the micrometer accuracy required for the compound-eye optical system 100 for applications such as super-resolution. Therefore, the warp of the lens arrays 10, 20, and 30 is left, and the resin injection portions 14, 24, and 34 are made to coincide with each other, so that the relative arrangement of the lens elements 10 a, 20 a, and 30 a can be easily made accurately. The accuracy of the optical system 100 can be improved.
 以上のように、各レンズアレイ10,20,30の角度を、樹脂注入部14,24,34を基準として互いに揃えることで、樹脂注入部14,24,34に近い特定の複合光学系2では、複屈折の影響が出やすくなり、これが重畳することで周囲に比較して性能の劣化が大きくなりやすい。したがって、個々のレンズアレイ10,20,30が小さな複屈折量を有するようにすることが望ましい。このため、レンズアレイ10,20,30を成形する材料を選択して複屈折量を小さくすることが考えられる。一般的には、各レンズアレイ10,20,30を成形する樹脂の光弾性係数は、50×10-7(cm/Kgf)以下とし、好ましくは30×10-7(cm/Kgf)以下とする。これにより、レンズ要素10a,20a,30aを形成する樹脂の光弾性係数を小さく抑え、レンズアレイ10,20,30単独での性能を一定レベル以上に保ち、これらを積み重ねた複合光学系2又は複眼光学系100全体としても性能を向上させることができる。 As described above, by aligning the angles of the lens arrays 10, 20, and 30 with respect to the resin injection portions 14, 24, and 34, the specific composite optical system 2 close to the resin injection portions 14, 24, and 34 is used. The influence of birefringence is likely to occur, and the superposition of these tends to cause a large deterioration in performance compared to the surroundings. Therefore, it is desirable that the individual lens arrays 10, 20, and 30 have a small amount of birefringence. For this reason, it is conceivable to select a material for molding the lens arrays 10, 20, and 30 to reduce the birefringence amount. Generally, the photoelastic coefficient of the resin for molding each lens array 10, 20, 30 is 50 × 10 −7 (cm 2 / Kgf) or less, preferably 30 × 10 −7 (cm 2 / Kgf). The following. Accordingly, the photoelastic coefficient of the resin forming the lens elements 10a, 20a, and 30a is kept small, the performance of the lens arrays 10, 20, and 30 is maintained at a certain level or more, and the compound optical system 2 or compound eye in which these are stacked. The performance of the entire optical system 100 can also be improved.
 具体的には、レンズアレイ10,20,30の材料として、ポリカーボネート系の樹脂EP4000、EP5000(三菱瓦斯化学社)、ポリオレフィン系の樹脂APEL(三井化学社)等を用いることができる。なお、一般的なポリカーボネートの光弾性係数は、71×10-7(cm/Kgf)であり、EP4000、EP5000やAPELの光弾性係数は、30×10-7(cm/Kgf)以下となる。 Specifically, polycarbonate resins EP4000, EP5000 (Mitsubishi Gas Chemical Co., Ltd.), polyolefin resin APEL (Mitsui Chemicals Co., Ltd.) and the like can be used as the material of the lens arrays 10, 20, 30. The photoelastic coefficient of general polycarbonate is 71 × 10 −7 (cm 2 / Kgf), and the photoelastic coefficients of EP4000, EP5000, and APEL are 30 × 10 −7 (cm 2 / Kgf) or less. Become.
 上記のような複屈折に対しては、図4Aに示す金型装置70の転写面71c,72cに形成する光学転写部71g,72gに補正をかけて、予め複屈折の影響を低減できるようなものとすることもできる。この際、光学転写部71g,72gを形成するための入れ子状のコア部材71k,72kの加工を個別に調整する。 For the birefringence as described above, the optical transfer portions 71g and 72g formed on the transfer surfaces 71c and 72c of the mold apparatus 70 shown in FIG. 4A can be corrected to reduce the influence of birefringence in advance. It can also be. At this time, the processing of the nested core members 71k and 72k for forming the optical transfer portions 71g and 72g is individually adjusted.
 以上では、説明を省略したが、図2に示すように、レンズアレイ10,20,30には、アライメントマークMAを設けることができる。アライメントマークMAを利用してレンズアレイ10,20,30相互のXYΘを調整し、又は測定結果をフィードバックすることで、精度の良い組み込みを実現できる。この際、レンズアレイ10,20,30相互のずれを小さくできる箇所にアライメントマークMAを設けることで、調整するポイントをしっかり調整することができ、他の所も結果的に偏芯が小さくなる。 Although not described above, as shown in FIG. 2, the lens arrays 10, 20, and 30 may be provided with alignment marks MA. By using the alignment mark MA to adjust the XYΘ between the lens arrays 10, 20, and 30, or by feeding back the measurement results, it is possible to implement a highly accurate integration. At this time, by providing the alignment mark MA at a location where the displacement between the lens arrays 10, 20, and 30 can be reduced, the point to be adjusted can be adjusted firmly, and the eccentricity is reduced at other locations as a result.
 その他、レンズアレイ10,20,30を金型装置70から取り出す際には、第1金型71と第2金型72とのうちいずれか一方に設けたエジェクターピン(不図示)によって成形品80のレンズアレイ本体84を押し出す場合がある。ここで、レンズアレイ本体84又はレンズアレイ10,20,30の4隅等をバランス良く押し出すならば、レンズアレイ本体84又はレンズアレイ10,20,30等に反りが発生することを抑制できる。 In addition, when the lens arrays 10, 20, and 30 are taken out from the mold apparatus 70, the molded product 80 is ejected by an ejector pin (not shown) provided on one of the first mold 71 and the second mold 72. The lens array main body 84 may be pushed out. Here, if the lens array body 84 or the four corners of the lens arrays 10, 20, and 30 are pushed out in a well-balanced manner, it is possible to suppress the warpage of the lens array body 84 or the lens arrays 10, 20, 30 and the like.
 以上説明した複眼光学系では、レンズアレイ10,20,30に形成される樹脂注入部14,24,34がレンズアレイ10,20,30の側方に配置されるので、熱可塑性樹脂を樹脂注入部14,24,34に対応するゲートGA等を介して型空間内に注入する際に、レンズアレイ10,20,30の薄い部分に相当する部分にも樹脂を供給しやすく、得られるレンズアレイ10,20,30を高精度とすることができる。また、複数のレンズアレイ10,20,30の樹脂注入部14,24,34がレンズ要素10a,20a,30aの配列に関する同一の基準方向DR4に対応して配置されている。そのため、レンズアレイ10,20,30又は複眼光学系100をケース50に収納する際に、樹脂注入部14,24,34が出っ張っていてもケース50の1辺だけ逃げを設けるだけですみ、レンズアレイ10,20,30を組み込みやすく、位置決めの精度を出しやすい。また、樹脂の収縮はゲートGAからの距離で異なることが知られているが、ゲートGAすなわち樹脂注入部14,24,34を同じ方向に揃えてレンズアレイ10,20,30を積み重ねると、収縮の違いも同様となり全てのレンズ要素10a,20a,30aの光軸合わせを比較的精度良く行うことができる。さらに、樹脂注入部14,24,34がレンズアレイ10,20,30の側方に配置されるサイドゲートの場合は、レンズアレイ10,20,30がゲート方向に若干反ってしまうことがあり、さらに複眼光学系100の場合は、略同一の大きさのレンズアレイ10,20,30で同等性能を要求するので成形の条件等も似ることになり、複数のレンズアレイ10,20,30で反りの方向や量も似てしまう。その時に、上記のようにゲートGAすなわち樹脂注入部14,24,34を同じ方向に揃えてレンズアレイ10,20,30を積み重ねると、レンズアレイ10,20,30の反りが揃うので、レンズアレイ10,20,30の反りの違いによるレンズ要素10a,20a,30aの間隔変動や偏芯の発生といった問題も発生しにくい。 In the compound eye optical system described above, the resin injection portions 14, 24, and 34 formed in the lens arrays 10, 20, and 30 are disposed on the sides of the lens arrays 10, 20, and 30, so that a thermoplastic resin is injected into the resin. When the resin is injected into the mold space through the gate GA corresponding to the portions 14, 24, 34, etc., the resin can be easily supplied to the thin portions of the lens arrays 10, 20, 30, and the obtained lens array 10, 20, and 30 can be made highly accurate. Further, the resin injection portions 14, 24, and 34 of the plurality of lens arrays 10, 20, and 30 are arranged corresponding to the same reference direction DR4 with respect to the arrangement of the lens elements 10a, 20a, and 30a. Therefore, when the lens array 10, 20, 30 or the compound eye optical system 100 is accommodated in the case 50, even if the resin injection portions 14, 24, 34 protrude, it is only necessary to provide relief on one side of the case 50. The arrays 10, 20, and 30 can be easily incorporated, and the positioning accuracy can be easily obtained. In addition, it is known that the shrinkage of the resin differs depending on the distance from the gate GA. However, if the lens arrays 10, 20, and 30 are stacked with the gate GA, that is, the resin injection portions 14, 24, and 34 aligned in the same direction, the shrinkage occurs. Similarly, the optical axis alignment of all the lens elements 10a, 20a, and 30a can be performed with relatively high accuracy. Further, in the case where the resin injection portions 14, 24, 34 are side gates arranged on the sides of the lens arrays 10, 20, 30, the lens arrays 10, 20, 30 may be slightly warped in the gate direction. Further, in the case of the compound eye optical system 100, since the lens array 10, 20, 30 having substantially the same size requires the same performance, the molding conditions and the like are similar, and the plurality of lens arrays 10, 20, 30 warp. The direction and amount of will be similar. At that time, if the lens arrays 10, 20, and 30 are stacked with the gate GA, that is, the resin injection portions 14, 24, and 34 aligned in the same direction as described above, the lens arrays 10, 20, and 30 are warped. Problems such as variations in the distance between the lens elements 10a, 20a, and 30a and occurrence of eccentricity due to differences in warpage between the 10, 20, and 30 are also unlikely to occur.
 上述の複眼光学系100を組み込んだ撮像装置1000は、レンズ要素10a,20a,30aの形状や偏芯に関する精度を高くして個眼レンズ系である個々の複合光学系2の性能を高めやすいものとなっている。これにより、撮像装置1000は、薄型で軽量でありながら高品位なものとなる。 The imaging apparatus 1000 incorporating the compound eye optical system 100 described above easily increases the accuracy of the shape and decentering of the lens elements 10a, 20a, and 30a, and easily improves the performance of each compound optical system 2 that is a single-eye lens system. It has become. As a result, the image pickup apparatus 1000 is thin and lightweight, but has high quality.
 以下、具体的な実施例について説明する。以下の表1は、レンズアレイ10,20,30の厚みT、長さL、ゲート幅D、長さW等のパラメータを変更しつつ成形を行った実施例を示している。
〔表1〕
Figure JPOXMLDOC01-appb-I000001
いずれの実施例1~6も高性能のレンズアレイとなり、これらのレンズアレイを組み合わせた複眼光学系100では所期の性能が得られた。
Specific examples will be described below. Table 1 below shows an example in which molding was performed while changing parameters such as the thickness T, length L, gate width D, and length W of the lens arrays 10, 20, and 30.
[Table 1]
Figure JPOXMLDOC01-appb-I000001
Any of Examples 1 to 6 was a high-performance lens array, and the compound eye optical system 100 in which these lens arrays were combined had the expected performance.
〔第2実施形態〕
 以下、第2実施形態に係る複眼光学系等について説明する。なお、第2実施形態の複眼光学系等は第1実施形態の複眼光学系等を変形したものであり、特に説明しない事項は第1実施形態と同様である。
[Second Embodiment]
The compound eye optical system according to the second embodiment will be described below. The compound eye optical system of the second embodiment is a modification of the compound eye optical system of the first embodiment, and items not specifically described are the same as those of the first embodiment.
 図7に示すように、本実施形態の複眼光学系100は、4枚のレンズアレイ10,20,30,40を積層したものとなっている。これらのレンズアレイ10,20,30,40は、樹脂注入部14,24,34,44の位置が同一の基準方向DR4に向いたものとなっている。 As shown in FIG. 7, the compound-eye optical system 100 of the present embodiment is formed by stacking four lens arrays 10, 20, 30, and 40. In these lens arrays 10, 20, 30, and 40, the positions of the resin injection portions 14, 24, 34, and 44 are oriented in the same reference direction DR4.
〔第3実施形態〕
 以下、第3実施形態に係る複眼光学系等について説明する。なお、第3実施形態の複眼光学系等は第1実施形態の複眼光学系等を変形したものであり、特に説明しない事項は第1実施形態と同様である。
[Third Embodiment]
The compound eye optical system according to the third embodiment will be described below. The compound eye optical system of the third embodiment is a modification of the compound eye optical system of the first embodiment, and items not specifically described are the same as those of the first embodiment.
 図8に示すように、本実施形態の複眼光学系100は、3枚のレンズアレイ10,20,30からなる複眼光学系100におけるレンズアレイ10,20,30の積層方法を説明したものである。この場合、3つのレンズアレイ10,20,30は、複数のレンズ要素10a,20a,30aを3×3の正方の格子点上に配列したものとなっている。また、3つのレンズアレイ10,20,30は、それぞれの樹脂注入部14,24,34が同じ方向に向くように積層される。 As shown in FIG. 8, the compound eye optical system 100 according to the present embodiment describes a method of stacking the lens arrays 10, 20, 30 in the compound eye optical system 100 including three lens arrays 10, 20, 30. . In this case, the three lens arrays 10, 20, and 30 are configured by arranging a plurality of lens elements 10a, 20a, and 30a on 3 × 3 square lattice points. The three lens arrays 10, 20, and 30 are stacked so that the resin injection portions 14, 24, and 34 are oriented in the same direction.
 本実施形態の複眼光学系によれば、厚みの増加を抑えつつ超解像の度合い(個眼から全体画像を得る際の解像度の向上)を大きくすることができる。 According to the compound eye optical system of the present embodiment, it is possible to increase the degree of super-resolution (improvement of resolution when obtaining an entire image from a single eye) while suppressing an increase in thickness.
 以上では、本実施形態に即して本発明を説明したが、本発明の複眼光学系は、上記実施形態に限定されるものではない。例えば、また、レンズアレイ10,20,30,40の平面視の輪郭は、矩形に限らず、円形や楕円形とすることもできる。 In the above, the present invention has been described according to the present embodiment, but the compound eye optical system of the present invention is not limited to the above embodiment. For example, the outline of the lens arrays 10, 20, 30, 40 in plan view is not limited to a rectangle, but may be a circle or an ellipse.
 以上の説明では、レンズ要素10aや複合光学系2が正方格子点上に配列されているが、レンズ要素10a,20a,30aを長方形格子点、3角格子点上等に配列することも可能である。 In the above description, the lens element 10a and the composite optical system 2 are arranged on square lattice points. However, the lens elements 10a, 20a, and 30a can be arranged on rectangular lattice points, triangular lattice points, and the like. is there.
 以上の説明では、レンズアレイ10,20,30,40を3又は4枚以上積層する場合について説明したが、レンズアレイは5枚積層するものであってもよい。なお、複眼光学系100を3枚以上のレンズアレイの積層によって構成することにより、解像度向上が期待される。ただし、枚数が増えると誤差感度も厳しくなるので、レンズアレイが3枚以上だとゲートGAに対応する樹脂注入部を同じ向きにしないと、複数のレンズアレイでつじつまが合いにくくなり、樹脂注入部14,24,34,44を揃えることの効果がさらに高まる。一方で、複眼光学系100を構成するレンズアレイを6枚よりも多くすると、複眼光学系100全体が厚くなったり、樹脂の温度変動の影響で常温以外での性能劣化が大きくなったりして、実用性が下がるので、レンズアレイは3~5枚が良い。 In the above description, the case where three or four lens arrays 10, 20, 30, and 40 are stacked has been described. However, five lens arrays may be stacked. In addition, the improvement in resolution is expected by configuring the compound eye optical system 100 by stacking three or more lens arrays. However, since the error sensitivity becomes severe as the number of sheets increases, if there are three or more lens arrays, the resin injection part corresponding to the gate GA is not aligned in the same direction. The effect of aligning 14, 24, 34, 44 is further enhanced. On the other hand, if the number of lens arrays constituting the compound-eye optical system 100 is more than six, the entire compound-eye optical system 100 becomes thicker, or the performance deterioration at a temperature other than room temperature increases due to the influence of the temperature variation of the resin. Since practicality is lowered, 3 to 5 lens arrays are preferable.
 その他、レンズ要素10aや複合光学系2の配列は、マトリックス状とする場合、5×5以上とすることができる。 In addition, the arrangement of the lens elements 10a and the composite optical system 2 can be 5 × 5 or more in a matrix form.
 また、上記実施形態において、必要に応じて、複眼光学系100の前後や各レンズアレイの間に絞り部材を設けたり、各レンズアレイのうち少なくとも1つについて、少なくとも一方の主面に遮光材料を塗布して絞りを形成したりしてもよい。各レンズ要素に対応して設けられた複数の開口を有するケース50に絞りの機能を持たせるようにしてもよい。 In the above embodiment, if necessary, a diaphragm member is provided before and after the compound eye optical system 100 or between each lens array, or a light shielding material is provided on at least one main surface of at least one of the lens arrays. It may be applied to form a diaphragm. A case 50 having a plurality of openings provided corresponding to each lens element may have a diaphragm function.
 また、上記実施形態において、レンズ要素10a,20a,30aのサイズや光学面形状等は、用途や機能に応じて適宜変更することができる。 In the above embodiment, the size, optical surface shape, and the like of the lens elements 10a, 20a, and 30a can be appropriately changed according to the application and function.

Claims (14)

  1.  熱可塑性樹脂で成形され、2次元的に配列されたレンズ要素をそれぞれ有する複数のレンズアレイを重ね合わせることによって得られる複眼光学系であって、
     各レンズアレイには、樹脂注入部があり、
     各樹脂注入部は、レンズアレイの側方に配置され、レンズ要素の配列に関する同一の基準方向に対応して配置されている複眼光学系。
    A compound-eye optical system obtained by superimposing a plurality of lens arrays each formed of a thermoplastic resin and having two-dimensionally arranged lens elements,
    Each lens array has a resin injection part,
    Each resin injection part is arranged on the side of the lens array, and is arranged corresponding to the same reference direction with respect to the arrangement of the lens elements.
  2.  各レンズアレイにおいて、前記レンズ要素は、直交する4つの基準方向に沿ってマトリックス状に配置され、前記樹脂注入部は、前記レンズ要素を配列した矩形枠を構成する辺のいずれか1つの辺に対向して配置されている、請求項1に記載の複眼光学系。 In each lens array, the lens elements are arranged in a matrix along four orthogonal reference directions, and the resin injecting portion is arranged on any one of the sides constituting a rectangular frame in which the lens elements are arranged. The compound eye optical system according to claim 1, which is disposed so as to face each other.
  3.  各レンズアレイは、前記矩形枠に対応する矩形輪郭を有し、前記樹脂注入部は、前記矩形輪郭のいずれかの辺の中央外側に設けられている、請求項2に記載の複眼光学系。 3. The compound eye optical system according to claim 2, wherein each lens array has a rectangular outline corresponding to the rectangular frame, and the resin injecting portion is provided on a central outer side of any side of the rectangular outline.
  4.  各レンズアレイは、当該レンズアレイの最小厚みをTとし、当該レンズアレイの樹脂注入部に対応するゲートが延びるゲート方向に関する当該レンズアレイの長さをLとして、以下の条件式
     10<L/T<60
    を満たす、請求項1から3までのいずれか一項に記載の複眼光学系。
    Each lens array has the following conditional expression 10 <L / T, where T is the minimum thickness of the lens array and L is the length of the lens array in the gate direction in which the gate corresponding to the resin injection portion of the lens array extends. <60
    The compound eye optical system according to any one of claims 1 to 3, wherein
  5.  各レンズアレイは、当該レンズアレイの樹脂注入部に対応するゲートを横断するゲート垂直方向のゲート幅をDとし、当該レンズアレイの前記ゲート垂直方向に関する長さをWとして、以下の条件式
     1.3<W/D<25
    を満たす、請求項1から4までのいずれか一項に記載の複眼光学系。
    Each lens array has the following conditional expression 1 where D is the gate width in the gate vertical direction across the gate corresponding to the resin injection portion of the lens array, and W is the length of the lens array in the gate vertical direction. 3 <W / D <25
    The compound eye optical system according to any one of claims 1 to 4, wherein
  6.  前記複数のレンズアレイを重ね合わせることで得られる2次元的に配列された複数の複合光学系は、略同一の形状を有する、請求項1から5までのいずれか一項に記載の複眼光学系。 The compound eye optical system according to any one of claims 1 to 5, wherein the plurality of two-dimensionally arranged composite optical systems obtained by superimposing the plurality of lens arrays have substantially the same shape. .
  7.  前記複数の複合光学系は、同じ視野をそれぞれ観察する、請求項1から6までのいずれか一項に記載の複眼光学系。 The compound eye optical system according to any one of claims 1 to 6, wherein each of the plurality of compound optical systems observes the same visual field.
  8.  前記複数の複合光学系は、3×3以上のアレイ数で配列されている、請求項7に記載の複眼光学系。 The compound eye optical system according to claim 7, wherein the plurality of compound optical systems are arranged in an array number of 3 × 3 or more.
  9.  前記複数のレンズアレイとして、3枚以上5枚以下のレンズアレイが積層されている、請求項1から8までのいずれか一項に記載の複眼光学系。 The compound-eye optical system according to any one of claims 1 to 8, wherein three or more and five or less lens arrays are stacked as the plurality of lens arrays.
  10.  請求項1から9までのいずれか一項に記載の複眼光学系と、
     前記複数のレンズアレイに対応して設けられたセンサーアレイと、
     前記センサーアレイによって検出された画像信号に対して処理を行う画像処理部と、を備える撮像装置。
    A compound eye optical system according to any one of claims 1 to 9,
    A sensor array provided corresponding to the plurality of lens arrays;
    An image processing apparatus comprising: an image processing unit that performs processing on an image signal detected by the sensor array.
  11.  複数のレンズアレイを重ね合わせることで得られる2次元的に配列された複数の複合光学系は、同じ視野をそれぞれ観察するものであり、
     前記画像処理部は、前記センサーアレイによって検出された画像信号の超解像処理を行う、請求項10に記載の撮像装置。
    A plurality of two-dimensionally arrayed composite optical systems obtained by superimposing a plurality of lens arrays are for observing the same field of view.
    The imaging apparatus according to claim 10, wherein the image processing unit performs super-resolution processing of an image signal detected by the sensor array.
  12.  前記センサーアレイにおいて各複合光学系に対応して設けられたセンサーの個眼画素数をNiとし、超解像後の画素数をNsとして、以下の条件式
     Ns/Ni>5
    を満たす、請求項11に記載の撮像装置。
    The following conditional expression Ns / Ni> 5, where Ni is the number of single-eye pixels of the sensor provided corresponding to each composite optical system in the sensor array, and Ns is the number of pixels after super-resolution.
    The imaging device according to claim 11, wherein:
  13.  前記レンズアレイの樹脂注入部に対応するゲートを横断するゲート垂直方向に関するレンズアレイの最大間隔をPとし、前記センサーアレイにおいて各複合光学系に対応して設けられたセンサーの個眼画素ピッチをdとして、以下の条件式
     20>(P/d)/1000
    を満たす、請求項11及び12のいずれか一項に記載の撮像装置。
    The maximum distance between the lens arrays in the gate vertical direction across the gate corresponding to the resin injection portion of the lens array is P, and the individual pixel pitch of the sensor provided corresponding to each compound optical system in the sensor array is d. The following conditional expression 20> (P / d) / 1000
    The imaging device according to any one of claims 11 and 12, which satisfies:
  14.  2次元的に配列されたレンズ要素をそれぞれ有する複数のレンズアレイを熱可塑性樹脂の注入によって成形する工程と、
     複数のレンズアレイを重ね合わせることによって複眼光学系を得る工程とを備える複眼光学系の製造方法であって、
     前記レンズアレイの樹脂注入部を、レンズ要素の配列に関する同一の基準方向に対応して配置する複眼光学系の製造方法。
    Molding a plurality of lens arrays each having two-dimensionally arranged lens elements by injection of a thermoplastic resin;
    A method for producing a compound eye optical system comprising a step of obtaining a compound eye optical system by superimposing a plurality of lens arrays,
    A compound eye optical system manufacturing method in which resin injection portions of the lens array are arranged corresponding to the same reference direction with respect to the arrangement of lens elements.
PCT/JP2014/052284 2013-02-01 2014-01-31 Compound eye optical system, image capture device, and method for producing compound eye optical system WO2014119737A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014559778A JPWO2014119737A1 (en) 2013-02-01 2014-01-31 Compound eye optical system, imaging apparatus, and compound eye optical system manufacturing method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013019010 2013-02-01
JP2013-019010 2013-02-01

Publications (1)

Publication Number Publication Date
WO2014119737A1 true WO2014119737A1 (en) 2014-08-07

Family

ID=51262434

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/052284 WO2014119737A1 (en) 2013-02-01 2014-01-31 Compound eye optical system, image capture device, and method for producing compound eye optical system

Country Status (2)

Country Link
JP (1) JPWO2014119737A1 (en)
WO (1) WO2014119737A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113067975A (en) * 2021-03-29 2021-07-02 华勤技术股份有限公司 Imaging module and electronic equipment

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003186108A (en) * 2001-12-20 2003-07-03 Hitachi Ltd Image formation unit and image display using the same
JP2003202411A (en) * 2001-11-01 2003-07-18 Nippon Sheet Glass Co Ltd Resin erect lens array
JP2007065685A (en) * 1997-12-26 2007-03-15 Nippon Sheet Glass Co Ltd Erecting life-size resin lens array and its manufacturing method
JP2009225064A (en) * 2008-03-14 2009-10-01 Ricoh Co Ltd Image input device, authentication device, and electronic apparatus having them mounted thereon
JP2010170149A (en) * 2007-09-10 2010-08-05 Oki Data Corp Method of manufacturing lens array, lens array, led head, exposure device, image forming apparatus, and reading apparatus
JP2012507250A (en) * 2009-10-14 2012-03-22 フラウンホッファー−ゲゼルシャフト ツァ フェルダールング デァ アンゲヴァンテン フォアシュンク エー.ファオ Optical image apparatus, optical image processing apparatus, and optical image forming method

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007065685A (en) * 1997-12-26 2007-03-15 Nippon Sheet Glass Co Ltd Erecting life-size resin lens array and its manufacturing method
JP2003202411A (en) * 2001-11-01 2003-07-18 Nippon Sheet Glass Co Ltd Resin erect lens array
JP2003186108A (en) * 2001-12-20 2003-07-03 Hitachi Ltd Image formation unit and image display using the same
JP2010170149A (en) * 2007-09-10 2010-08-05 Oki Data Corp Method of manufacturing lens array, lens array, led head, exposure device, image forming apparatus, and reading apparatus
JP2009225064A (en) * 2008-03-14 2009-10-01 Ricoh Co Ltd Image input device, authentication device, and electronic apparatus having them mounted thereon
JP2012507250A (en) * 2009-10-14 2012-03-22 フラウンホッファー−ゲゼルシャフト ツァ フェルダールング デァ アンゲヴァンテン フォアシュンク エー.ファオ Optical image apparatus, optical image processing apparatus, and optical image forming method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113067975A (en) * 2021-03-29 2021-07-02 华勤技术股份有限公司 Imaging module and electronic equipment

Also Published As

Publication number Publication date
JPWO2014119737A1 (en) 2017-01-26

Similar Documents

Publication Publication Date Title
JP5812521B2 (en) Compound eye unit
CN108627941B (en) Plastic lens barrel, camera module and electronic device
US8982486B2 (en) Image pickup lens unit manufacturing method and image pickup lens unit
CN210954387U (en) Imaging lens, camera module and electronic device
CN102712515B (en) Method for manufacturing lens unit, imaging device, method for manufacturing die, molding die, and method for forming glass lens array
WO2014098075A1 (en) Layered lens array, production method for layered lens array, and production method for layered lens
JP2006188388A (en) Method for manufacturing glass lens, and glass lens
JP2012154825A (en) Imaging module
WO2014119737A1 (en) Compound eye optical system, image capture device, and method for producing compound eye optical system
JP6380391B2 (en) Multilayer lens array unit and imaging apparatus
JPWO2015019768A1 (en) LENS ARRAY, LENS ARRAY LAMINATE, AND MANUFACTURING METHOD THEREOF
US20130037976A1 (en) Lens Array Production Method and Laminated Lens Array Production Method
WO2014119751A1 (en) Lens array, compound eye optical system and lens array manufacturing method
WO2014119738A1 (en) Compound eye optical system, imaging device, and method for producing compound eye optical system
WO2013047653A1 (en) Image pickup lens unit and method for manufacturing image pickup lens unit
JP2014006329A (en) Method for manufacturing wafer lens, and imaging lens
CN105980903A (en) Optical element unit, and manufacturing method for optical element unit
JP2011013577A (en) Multilayer lens, layered type wafer lens and method for manufacturing the same
JP6439604B2 (en) Optical element and optical element manufacturing method
US20130314583A1 (en) Wafer level camera module array
JP2014235307A (en) Lens array unit and imaging device
JP2015204590A (en) Compound-eye imaging apparatus and imaging processing device
JP2010237319A (en) Plastic lens, plastic lens wafer, molding die, plastic lens unit, image capturing apparatus, electronic device, and method of manufacturing plastic lens
JP6508201B2 (en) Array lens, compound eye optical system, imaging device, measuring method, evaluation method and manufacturing method
TWI428635B (en) Array of optical elements, mold for molding array of optical elements, and unit including optical elements

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14745337

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014559778

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14745337

Country of ref document: EP

Kind code of ref document: A1