WO2014119490A1 - Coordinate input device, coordinate input method, and storage medium - Google Patents

Coordinate input device, coordinate input method, and storage medium Download PDF

Info

Publication number
WO2014119490A1
WO2014119490A1 PCT/JP2014/051579 JP2014051579W WO2014119490A1 WO 2014119490 A1 WO2014119490 A1 WO 2014119490A1 JP 2014051579 W JP2014051579 W JP 2014051579W WO 2014119490 A1 WO2014119490 A1 WO 2014119490A1
Authority
WO
WIPO (PCT)
Prior art keywords
ratio
pressure
cal
coordinate
pressing position
Prior art date
Application number
PCT/JP2014/051579
Other languages
French (fr)
Japanese (ja)
Inventor
成人 豊田
Original Assignee
株式会社資生堂
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社資生堂 filed Critical 株式会社資生堂
Publication of WO2014119490A1 publication Critical patent/WO2014119490A1/en

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/0414Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means using force sensing means to determine a position

Definitions

  • One aspect of the present disclosure relates to a coordinate input device, a coordinate input method, and a storage medium.
  • a method for detecting a finger contact position or a pressed position of a touch panel used for display means such as a smartphone, a tablet terminal, and an input / output display
  • electromagnetic induction or parallel A method using light blocking, a method using rigid body dynamics, and the like are known.
  • a method of utilizing rigid body mechanics a member that supports a panel is provided with a sensor that detects a component force of the force applied to the panel, and the finger is applied to the panel by comparing the output values detected from each sensor.
  • a method for identifying a contact area is known (for example, see Patent Document 1).
  • Patent Document 1 has an advantage that the structure of the sensing method is simple and does not depend on the characteristics of the panel.
  • the pressed position is simply determined using the force component detected by the sensor. For this reason, there has been a problem that the pressed position on the panel cannot be detected with high accuracy.
  • the present invention has been made in view of the above problems, and an object thereof is to accurately determine the pressing position on the panel.
  • the four pressure sensors arranged at predetermined positions of the panel and the output values obtained by the four pressure sensors are summed, and for each of the pressure sensors, the sum of the output values with respect to the summed output values.
  • the ratio of the output value of the pressure sensor is obtained, and the ratio of the obtained output value is acquired as an individual output ratio for each of the pressure sensors, and for each of the pressure sensors obtained by the output ratio acquisition means
  • a coordinate input device is provided that includes a pressing position determination unit that determines a pressing position on the panel using the individual output ratio and the coordinate correction amount acquired in advance.
  • ⁇ Schematic diagram of coordinate input device> 1A and 1B are diagrams illustrating an example of a schematic configuration of a coordinate input device according to the present embodiment.
  • the coordinate input device 10 is configured to include a sensor unit 20 and a PC (Personal Computer) 30.
  • PC Personal Computer
  • the sensor unit 20 is configured to include a housing unit 21, a panel 22, and a strain gauge 23 as a pressure sensor.
  • the housing unit 21 has strain gauges 23 arranged at predetermined positions (four corners in the example of FIG. 1A). In addition, as shown in FIG. 1B, the housing portion 21 has a panel 22 disposed on a strain gauge 23.
  • the panel 22 is made of, for example, a silicon material, an aluminum plate, a metal synthetic plate, or the like.
  • the panel 22 and the strain gauge 23 are connected by, for example, point contact.
  • the panel 22 includes, for example, a panel, a sheet, and the like for detecting a pressure level and a position where a pressure load is generated, and may be, for example, a touch panel as a display unit.
  • the strain gauge 23 is composed of, for example, a load cell, and has strain gauges 23-1 to 23-4.
  • the strain gauges 23-1 to 23-4 are arranged on the housing portion 21 so as to support predetermined positions of the panel 22 (four corners in the example of FIG. 1A).
  • the strain gauge 23 may incorporate an amplifier.
  • the sensor unit 20 converts the values obtained by the strain gauges 23-1 to 23-4 into digital values using a built-in AD converter, and transmits the converted digital values to the PC 30 via, for example, a USB cable.
  • the panel 22 is circular in addition to a rectangle. Or the like.
  • the PC 30 uses the digital value acquired from the sensor unit 20 to determine the position where the panel 22 is touched or pressed, and based on the determined position, detects a user action or the like performed on the sensor unit 20.
  • Information processing apparatus uses the digital value acquired from the sensor unit 20 to determine the position where the panel 22 is touched or pressed, and based on the determined position, detects a user action or the like performed on the sensor unit 20.
  • Information processing apparatus uses the digital value acquired from the sensor unit 20 to determine the position where the panel 22 is touched or pressed, and based on the determined position, detects a user action or the like performed on the sensor unit 20.
  • the PC 30 may be, for example, a PD (Portable Device), a PDA (Personal Data Assistant), a mobile phone, a game machine, or the like, or may be configured to be integrated with the sensor unit 20.
  • PD Portable Device
  • PDA Personal Data Assistant
  • FIG. 2 is a diagram illustrating an example of a functional configuration of the PC according to the present embodiment.
  • the coordinate input device 10 includes an input unit 31, an output unit 32, a storage unit 33, an output ratio acquisition unit 34, each side pressure acquisition unit 35, and a vertical horizontal direction pressure acquisition unit 36.
  • the coordinate input device 10 in the present embodiment performs two processes, a pre-process and a pressed position determination process, in short.
  • a correction target area on a rectangle for example, on the panel 22
  • a coordinate correction amount for example, a scale having a reference point of the correction target region and resolution
  • This coordinate correction amount is obtained by using, for example, the output ratio acquisition unit 34, each side pressure acquisition unit 35, the vertical and horizontal direction pressure acquisition unit 36, the displacement amount acquisition unit 37, and the coordinate correction amount acquisition unit 38. can get.
  • the pressing position is determined from the coordinate correction amount acquired in the pre-processing and the value obtained from the strain gauges 23-1 to 23-4 when the panel 22 is pressed by the user.
  • This pressing position is determined by using the output ratio acquisition means 34, each side pressure acquisition means 35, the vertical and horizontal direction pressure acquisition means 36, the displacement amount acquisition means 37, and the pressing position determination means 39.
  • the input unit 31 includes, for example, a keyboard, a pointing device such as a mouse, and the like, and receives inputs such as start and end of various instructions.
  • the output unit 32 includes, for example, a display, a speaker, and the like, and displays the content input by the input unit 31 and the content executed based on the input content, and outputs a sound.
  • the storage unit 33 stores information such as an output value such as a pressing force obtained by the sensor unit 20, a coordinate correction amount acquired in advance, a value obtained by each unit, and the like.
  • the output ratio acquisition means 34 totals the output values of the four strain gauges 23-1 to 23-4 obtained by the sensor unit 20, and each strain gauge 23 (strain gauge 23-1 to 23-) with respect to the total output value. The ratio of the output value (1 out of 4) is obtained. Further, the output ratio acquisition unit 34 acquires the calculated ratio of output values as the individual output ratio of each strain gauge 23.
  • the output ratio acquisition unit 34 obtains strain gauges 23-1 to 23-4 obtained by pressing predetermined positions (for example, 25 locations) set at equal intervals in the correction target area on the rectangle described above. Based on this value, the individual output ratio of each strain gauge 23 for each predetermined position is acquired. In the pressing position determination process, the individual output ratio of each strain gauge 23 at the user's pressing point is acquired based on the values of the strain gauges 23-1 to 23-4 obtained by the user's pressing.
  • the output ratio acquisition unit 34 can adjust the acquired maximum value and minimum value of the individual output ratio of each strain gauge 23 to be predetermined values (for example, “100”, “0”), respectively.
  • predetermined values for example, “100”, “0”
  • the present invention is not limited to this.
  • Each side pressure acquisition means 35 is respectively for the total of individual output ratios of two strain gauges 23 (for example, strain gauges 23-1 and 23-2) arranged at both ends of each side of the correction target region on the rectangle described above.
  • the individual output ratio of the strain gauge 23 for example, the strain gauge 23-1 or the strain gauge 23-2
  • pressures relating to the respective sides for example, the upper side, the lower side, the right side, and the left side constituting the correction target area on the rectangle Find the percentage of each.
  • each side pressure acquisition unit 35 may obtain the ratio of the pressure related to each side at a predetermined position on each side (for example, 16 points in contact with the outer periphery of the rectangle among the 25 points described above). . Further, in the pressing position determination process, the ratio of the pressure related to each side at the pressing position of the user is obtained based on the individual output ratio of each strain gauge 23 obtained by the pressing of the user.
  • the vertical / horizontal pressure acquisition means 36 uses the ratio of the pressure relating to each side of the rectangle (correction target area) obtained by each side pressure acquisition means 35 to make the rectangle (correction target area) vertical or horizontal. Each of the pressure ratios is determined.
  • the vertical / horizontal pressure means 36 may obtain the ratio of the pressure in the vertical direction or the horizontal direction at a predetermined position (for example, 16 positions described above) on each side described above.
  • a predetermined position for example, 16 positions described above
  • the ratio of the pressure in the vertical or horizontal direction at the pressing position of the user is obtained.
  • the displacement amount acquisition means 37 uses the ratio of the pressure related to each side obtained by each side pressure acquisition means 35 and the ratio of the pressure related to the vertical direction or the horizontal direction obtained by the vertical horizontal direction pressure acquisition means 36. Thus, the displacement amount from each side of the rectangle (correction target area) at the pressed position is acquired.
  • the displacement amount acquisition unit 37 calculates the ratio of the pressure related to each side at a predetermined position on each side described above (for example, 16 positions described above) and the ratio of the pressure applied in the vertical direction or the horizontal direction. It is preferable to obtain a displacement amount from each side at a predetermined position on each side. In the pressing position determination process, the displacement amount from each side at the pressing position of the user is acquired.
  • the coordinate correction amount acquisition unit 38 acquires the average value of the displacement amount of each side using the displacement amount from each side at a predetermined position on each side obtained by the displacement amount acquisition unit 37 in the pre-processing, for example. In addition, the coordinate correction amount acquisition unit 38 acquires a coordinate correction amount for setting the coordinates of the correction target region described above using the average value of the displacement amounts of the respective sides.
  • the average value of the displacement amount on the left side and the average value of the displacement amount on the upper side are respectively obtained as reference points of the correction target region and set as coordinate correction amounts. Further, by dividing a predetermined value (for example, “100”) by the difference between the average value of the displacement amount on the left side and the average value of the displacement amount on the right side, the resolution between the left side and the right side of the correction target region is obtained. Coordinate correction amount. Similarly, by dividing a predetermined value (for example, “100”) by the difference between the average value of the displacement amount on the upper side and the average value of the displacement amount on the lower side, the resolution between the upper side and the lower side of the correction target region To obtain the coordinate correction amount.
  • a predetermined value for example, “100”
  • the coordinate correction amount acquisition unit 38 stores the coordinate correction amount obtained in this way (for example, a scale having a reference point and resolution of the correction target region) in the storage unit 33.
  • the coordinate correction amount stored in the storage unit 33 is used in the pressing position determination process in the pressing position determination unit 39.
  • the pressing position determination means 39 determines the pressing position on the panel 20 using the individual output ratio of the strain gauge 23 obtained by the output ratio acquisition means 34. Specifically, the pressing position determination unit 39 includes the displacement amount from each side obtained by the displacement amount acquisition unit 37 when the panel is pressed by the user, and the coordinate correction amount obtained by the coordinate correction amount acquisition unit 38. Are used to determine the pressed position.
  • the control means 40 controls the entire components of the coordinate input device 10.
  • the control means 40 is based on an instruction from the input means 31 by a user or the like, for example, an output ratio acquisition means 34, each side pressure acquisition means 35, a vertical and horizontal direction pressure acquisition means 36, a displacement amount acquisition means 37,
  • the coordinate correction amount acquisition unit 38 and the pressed position determination unit 39 are controlled to determine the pressed position with respect to the panel 22.
  • FIG. 3 is a diagram illustrating an example of a hardware configuration of the PC according to the present embodiment.
  • the PC 30 includes an input device 41, an output device 42, a drive device 43, an auxiliary storage device 44, a memory device 45, a CPU (Central Processing Unit) 46, and a network connection device 47. These are connected to each other by a system bus B.
  • a system bus B bus
  • the input device 41 has a pointing device such as a keyboard and a mouse operated by a user or the like, and inputs various operation signals such as execution of a program from the user or the like.
  • the output device 42 has a display for displaying a GUI (Graphical User Interface), a screen, and the like necessary for operating the computer main body for performing each process of the present embodiment, and the program is executed by the control program of the CPU 46 Progress and results are displayed.
  • GUI Graphic User Interface
  • the input device 41 and the output device 42 may be integrated input / output devices such as a touch panel.
  • the coordinate input program installed in the computer main body is provided by a portable storage medium 48 such as a USB memory or a CD-ROM, for example.
  • the storage medium 48 can be set in the drive device 43, and a program included in the storage medium 48 is installed from the storage medium 48 to the auxiliary storage device 44 via the drive device 43.
  • the auxiliary storage device 44 is a storage means such as a hard disk, and stores a coordinate input program, a control program provided in the computer, etc., and performs input / output as necessary.
  • the memory device 45 stores a program read from the auxiliary storage device 44 by the CPU 46.
  • the memory device 45 uses, for example, a ROM (Read Only Memory), a RAM (Random Access Memory), or the like.
  • the CPU 46 controls processing of the entire computer such as various operations and data input / output with each hardware component based on a control program such as an OS (Operating System) and a program stored in the memory device 45.
  • a control program such as an OS (Operating System) and a program stored in the memory device 45.
  • OS Operating System
  • Various information during the execution of the program is acquired from the auxiliary storage device 44, and the execution result and the like are stored.
  • the network connection device 47 obtains a program from another device connected to the communication network by connecting to the communication network or the like, and provides the execution result obtained by executing the program to the other device. To do.
  • the PC 30 can execute each process according to the present embodiment by having the above-described hardware configuration.
  • each of the four strain gauges 23-1 to 23-4 has a rectangle formed by four sides having two strain gauges 23 as end portions, and the formed rectangular region (that is, a correction target) A rectangular panel 22 is provided corresponding to the region.
  • the strain gauges 23 are disposed at the end portions of the panel 22, and the sides having the two strain gauges 23 as the end portions correspond to the sides of the panel 22. Therefore, in the example of FIG. 4A, when a predetermined portion on the panel 22 in this rectangular area is pressed, the coordinates on the panel 22 can be acquired.
  • the present invention is not limited to this, and the shape of the rectangular area may not correspond to the shape of the panel 22.
  • the rectangular area that is, the panel 22
  • predetermined positions set at equal intervals in advance in the example of FIG. 4A, 25 corners of the grid
  • the output ratio acquisition means 34 is obtained from the strain gauges 23-1 to 23-4 in a state where nothing is placed on the panel 22 (for example, 0 g) at a predetermined timing, for example, at the time of shipment or an instruction from the user.
  • An output value (zero value data a 0, n ) is acquired (n: number 1, 2, 3, 4 of strain gauge 23).
  • the output ratio acquisition means 34 is predetermined on the coordinate points set at the above-described equal intervals on the panel 22 (25 corners in the above-described square in the example of FIG. 4B).
  • the output ratio acquisition unit 34 subtracts the zero value data a 0, n from the output value c cal, n (x, y) in a state where a predetermined weight is placed, and outputs an output value d cal, n (x, y) is acquired.
  • the output value d cal, n (x, y) after zero value correction is obtained using the following equation (1).
  • the output ratio acquisition means 34 sums up the output values d cal, n (x, y) obtained by correcting the zero values of the strain gauges 23-1 to 23-4 at the coordinate points set as described above.
  • the total output value D cal, n (x, y) is obtained using the following equation (2).
  • the total output value D cal, n (x, y) strain gauges 23-1 to 23-4 each output value d cal for, n (x, y) ratio e cal of, n and (x, y) below It acquires using Formula (3) of these.
  • the output ratio acquisition unit 34 calculates the ratio e cal, n (x, y) of the output values of the strain gauges 23-1 to 23-4 at each set coordinate point to the strain gauge at each coordinate point. Obtained as individual output ratios e cal, n (x, y) of 23-1 to 23-4.
  • the output ratio acquisition means 34 determines that the difference between the maximum value and the minimum value of the individual output ratios e cal, n (x, y) of the strain gauges 23-1 to 23-4 is a predetermined value (eg, “100”). ),
  • the calibration value Val cal, n (x, y) may be obtained using the following equation (4).
  • the output ratio acquisition means 34 uses the calibration value Val cal, n (x, y), and the maximum value of the individual output ratios e cal, n (x, y) of the strain gauges 23-1 to 23-4. And calibrated values f cal, n (x, y) are obtained by using the following equation (5) so that the minimum value and the minimum value become predetermined values (for example, “100”, “0”).
  • sensor calibration of the strain gauges 23-1 to 23-4 is performed in advance, and the calibrated values f cal, n (x, y) of the strain gauges 23-1 to 23-4 are used.
  • a coordinate correction amount for setting the coordinates of the rectangular area (correction target area) may be obtained.
  • the side with the strain gauges 23-1 and 23-2 as the end is the left side, and the side with the strain gauges 23-2 and 23-3 as the end is the lower side. And Further, the side having the strain gauges 23-3 and 23-4 as the end portion is the right side, and the side having the strain gauges 23-4 and 23-1 as the side is the top side.
  • a description will be given using an example in which the panel 22 is arranged in a rectangular area (that is, a correction target area).
  • FIG. 5 is a flowchart showing the flow of coordinate correction amount acquisition processing according to the present embodiment.
  • the output ratio acquisition means 34 first performs the above-described sensor calibration at a predetermined timing such as at the time of shipment or an instruction from the user.
  • the output ratio acquisition means 34 acquires the zero value data a 0, n from the strain gauges 23-1 to 23-4 (S10), and each coordinate point set at equal intervals on the panel 22 (S10).
  • an output value c cal, n (x, y) when a predetermined weight (for example, 100 g) is placed on the above-mentioned square corners 25) is acquired (S11), and each coordinate is obtained.
  • An output value d cal, n (x, y) obtained by correcting the zero value at the point is acquired (S12).
  • the output ratio acquisition means 34 acquires the total output value D cal, n (x, y) at each coordinate point
  • the strain gauge 23 ⁇ for the total output value D cal, n (x, y) at each coordinate point.
  • the individual output ratio e cal, n (x, y) which is the ratio of the output values d cal, n (x, y) of 1 to 23-4 is acquired (S13).
  • the output ratio acquisition means 34 obtains the maximum value and the minimum value among the individual output ratios e cal, n (x, y) of the strain gauges 23-1 to 23-4, and calculates the maximum value and the minimum value.
  • a calibration value Val cal, n for the difference to be a predetermined value (for example, “100”) is obtained (S14).
  • the output ratio acquisition unit 34 sets the individual output ratios e of the strain gauges 23-1 to 23-4 so that the maximum value and the minimum value become predetermined values (for example, “100”, “0”), respectively.
  • cal, n (x, y) is calibrated using the calibration value Val cal, n (x, y), and a calibrated value f cal, n (x, y) is obtained (S15).
  • each side pressure acquisition means 35 for example, the ratio U cal (x, y) of the pressure related to each side at a predetermined position of each side (for example, 16 positions in contact with the outer periphery of the panel 22 among the 25 positions described above). ), B cal (x, y), L cal (x, y), and R cal (x, y) are obtained (S16). For example, each side pressure acquisition means 35 acquires the ratio of the pressure concerning each side using the following formula (6).
  • the vertical and horizontal direction pressure acquisition means 36 uses the ratio of the pressure relating to each side when the above-mentioned predetermined position is pressed, and touches the outer periphery of the panel 22 among the predetermined positions (for example, 25 locations).
  • the pressure ratio V cal (x, y) in the vertical direction when pressing the position) or the pressure ratio H cal (x, y) in the horizontal direction is determined (S17).
  • the vertical / horizontal pressure acquisition unit 36 uses the following equation (7) for the pressure ratio V cal (x, y) in the vertical direction or the pressure ratio H cal (x, y) in the horizontal direction. Get.
  • the displacement amount acquiring unit 37 uses the pressure ratio V cal (x, y) in the vertical direction or the pressure ratio H cal (x, y) in the horizontal direction to set the predetermined position (for example, 25 Displacement amounts WX cal (x, y) and WY cal (x, y) from the respective sides at 16 locations in contact with the outer periphery of the panel 22 are acquired using the following equation (8) (S18). ).
  • the average of the amount of displacement on the left side is calculated from the amount of displacement at each coordinate point (0, 1), (0, 2), (0, 3), (0, 4) on the left side.
  • (Lcx average (WX cal (0, y))
  • the average value of the displacement amounts of the right side, the upper side, and the lower side is obtained from the displacement amounts of the coordinate points of the right side, the upper side, and the lower side.
  • the coordinate correction amount acquisition means 38 acquires a coordinate correction amount for setting the coordinates of the rectangular area (that is, the correction target area) described above (S20).
  • the coordinate correction amount acquisition unit 38 sets the average value Lcx of the displacement amount on the left side as the reference point calXval and the average value Ucy of the displacement amount on the upper side as the reference point calYval. Further, the coordinate correction amount acquisition unit 38 uses the difference between the average value Lcx of the displacement amount on the left side and the average value Rcx of the displacement amount on the right side to obtain a resolution calXscale where the difference becomes a predetermined value (for example, “100”). get. Similarly, using the difference between the average value Ucy of the displacement amount on the upper side and the average value Bcy of the displacement amount on the lower side, a resolution calYscale where the difference becomes a predetermined value (for example, “100”) is acquired.
  • the displacement amount determination unit 37 acquires the above-described coordinate correction amounts (reference points calXval, calXval, resolution calXscale, calYscale) using, for example, the following equation (10).
  • a coordinate correction amount for setting the coordinates of the correction target region is acquired in advance processing.
  • the acquired coordinate correction amount is stored in the storage means 33, for example, and used in the pressed position determination process.
  • an example of acquiring the coordinate correction amount is not limited to this.
  • FIG. 6 is a diagram for explaining an example of a concept of an expression used for obtaining the displacement amount.
  • the ratio of the weight of the upper side to the whole and the ratio of the weight of the lower side to the whole are respectively expressed as follows.
  • V cal f cal, 1 + f cal, 4 / (f cal, 1 + f cal, 2 + f cal, 3 + f cal, 4 )
  • V cal is an expression similar to that described as the ratio of the pressure in the vertical direction described above.
  • the pressure related to the upper side point P (U cal , 0) is set as f cal, 1 + f cal, 4, and the pressure related to the lower side point Q (B cal , 0) is set as , F cal, 2 + f cal, 3 .
  • WX (x, y) can be expressed as follows.
  • WX (x, y) (U cal ⁇ (1 ⁇ V cal ) + B cal ⁇ V cal , V cal ) Therefore, the X coordinate of the pressing position A, taking into account the horizontal weight ratios of the upper side and the lower side, can be expressed as U cal ⁇ (1 ⁇ V cal ) + B cal ⁇ V cal .
  • the ratio of the weight of the left side to the whole and the ratio of the weight of the right side to the whole are respectively expressed as follows.
  • the pressure related to the point P ′ (0, L cal ) on the left side when the pressing position A is pressed is set to f cal, 1 + f cal, 4, and the pressure related to the point Q ′ (1, R cal ) on the right side. Is f cal, 3 + f cal, 4 .
  • the Y-coordinate of the center of gravity between the point P ′ and the point Q ′ (that is, the y-coordinate of WY) is expressed as follows by using an internal dividing formula that internally divides the mass point a of the mass m and the mass point b of the mass n. Can be expressed as
  • the x coordinate of the displacement amount WY of pressing the pressing position A can be expressed as follows.
  • WY (x, y) can be expressed as follows.
  • the left end of the upper side shown in FIG. 6 is coordinates (x1, y1)
  • the left end of the lower side is coordinates (x1, y1 + 1)
  • the right end of the upper side is coordinates (x4, y4)
  • the right end of the lower side is coordinates (x4).
  • the coordinates of the point P described above are (Px, Py), and the ratio of the pressure from the upper side coordinates (x1, y1) to the point P is f cal, 1 / (f cal, 1 + f cal, 4 ).
  • the ratio of the pressure from the point P to the upper side coordinates (x4, y4) is f cal, 4 / (f cal, 1 + f cal, 4 ).
  • the coordinates of the point Q described above are (Qx, Qy), the ratio of the pressure from the lower side coordinates (x1, y1 + 1) to the point Q is f cal, 2 / (f cal, 2 + f cal, 3 ), The ratio of the pressure from the point Q to the lower side coordinate (x4, y4 + 1) is defined as f cal, 4 / (f cal, 2 + f cal, 3 ).
  • Px and Qx can be expressed as follows.
  • WX x1 + (x4 ⁇ x1) ⁇ f cal, 1 / (f cal, 1 + f cal, 4 )
  • Qx x1 + (x4 ⁇ x1) ⁇ f cal, 2 / (f cal, 2 + f cal, 3 ) Therefore, WX can be expressed as:
  • a (x) be the point from the point where a line perpendicular to the lower side from the point P and a line passing through the pressing position A from the left side and perpendicular to the right side to the pressing position A.
  • b (x) is defined as a point that intersects the lower side when passing through the pressing position A from the upper side and descending vertically to the lower side and the point Q.
  • the X coordinate of the pressing position A can be expressed by the following method.
  • the pressing position can be determined by obtaining the displacement amounts WX and WY from each side at the pressing position when pressed by the user, for example, using the above-described equation for obtaining the displacement amount. It becomes.
  • FIG. 7 is a flowchart showing the flow of the pressed position determination process according to the present embodiment. The processing from S21 to S26 in FIG. 7 is executed by the method used in the processing from S12 to S13 and S15 to S18 in FIG.
  • the processing in FIG. 5 is performed when a predetermined position is pressed by placing predetermined weights at predetermined positions on the rectangle (for example, 25 places divided at equal intervals) in order to set coordinates on the rectangle. While the amount of displacement is obtained, the processing of FIG. 7 differs in that the amount of displacement is obtained based on output values obtained from the four strain gauges 23-1 to 23-4 when the user presses.
  • the output ratio acquisition means 34 acquires the output values of the strain gauges 23-1 to 23-4 in the process of S10 of FIG.
  • the zero value data a is subtracted to obtain the zero value corrected output value d cal (S21).
  • the output ratio acquisition means 24 obtains the total output value D cal from the four output values d cal acquired in the process of S21, and outputs each of the strain gauges 23-1 to 23-4 with respect to the total output value D cal .
  • An individual output ratio e cal which is a ratio of values is acquired (S22).
  • the output ratio acquisition means 34 obtains the maximum value and the minimum value among the individual output ratios e cal of the strain gauges 23-1 to 23-4, and the maximum value and the minimum value are set to respective predetermined values (for example, (100), “0”) is calibrated using the calibration value Val cal obtained by the process of S14 of FIG. 5 described above, and a calibrated value f cal is obtained (S23).
  • each side pressure acquisition means 35 obtains the pressure ratios U cal , B cal , L cal , and R cal related to each side using the four calibration values Val cal acquired in the process of S23 (S24). .
  • the vertical / horizontal pressure acquisition unit 36 obtains the pressure ratio V cal in the vertical direction or the pressure ratio H cal in the horizontal direction (S25).
  • displacement amounts WX cal and WY cal from each side are obtained by the displacement amount obtaining unit 37 (S26).
  • the pressing position determination unit 39 uses the coordinate correction amounts (for example, the reference points calXval, calXval, resolution calXscale, calYscale) acquired in advance in the process of FIG. 5 to determine the displacement from each side acquired in the process of S26.
  • the amounts WX cal and WY cal are calibrated to obtain calibration values Xp and Yp (S27).
  • the pressing position determination unit 39 may acquire the calibration values Xp and Yp using, for example, the following formula (14).
  • the pressing position determination means 39 uses the difference from a predetermined value (for example, “50” when the diagonal line is divided into 100) in order to set the calibration values Xp and Yp as displacements from the center coordinates of the panel 22.
  • a predetermined value for example, “50” when the diagonal line is divided into 100
  • the position offset values calXposOffset and calYposOffset are obtained (S28).
  • the pressed position determination unit 39 may acquire, for example, the position offset values calXposOffset and calYposOffset using the following equation (15).
  • the pressed position determination means 39 may determine the coordinates Xpos and Ypos by the following equation (16).

Abstract

A coordinate input device comprises: four pressure sensors that are disposed in predetermined positions of a panel; an output ratio acquisition means that sums up output values obtained by the four pressure sensors, with respect to the respective pressure sensors, finds the ratios of the output values of the pressure sensors to the summed output values, and acquires the found ratios of the output values as individual output ratios of the respective pressure sensors; and a pressing position determination means that, using the individual output ratios of the respective pressure sensors obtained by the output ratio acquisition means and a previously acquired coordinate correction amount, determines a pressing position on the panel.

Description

座標入力装置、座標入力方法、及び記憶媒体Coordinate input device, coordinate input method, and storage medium
 本開示の一側面は、座標入力装置、座標入力方法、及び記憶媒体に関する。 One aspect of the present disclosure relates to a coordinate input device, a coordinate input method, and a storage medium.
 従来では、例えばスマートフォンやタブレット端末、入出力ディスプレイ等の表示手段に用いられるタッチパネル(以下、必要に応じて「パネル」という)の指の接触位置や押圧位置を検出する方法として、電磁誘導や平行光線の遮断を利用する方法、剛体力学を利用する方法等が知られている。剛体力学を利用する方法としては、パネルを支持する部材に、パネルに加えられた力の分力を検出するセンサを備え、各センサから検出された出力値を比較することによって、指がパネルに接触した領域を特定する方法が知られている(例えば、特許文献1参照)。 Conventionally, as a method for detecting a finger contact position or a pressed position of a touch panel (hereinafter referred to as “panel” as necessary) used for display means such as a smartphone, a tablet terminal, and an input / output display, electromagnetic induction or parallel A method using light blocking, a method using rigid body dynamics, and the like are known. As a method of utilizing rigid body mechanics, a member that supports a panel is provided with a sensor that detects a component force of the force applied to the panel, and the finger is applied to the panel by comparing the output values detected from each sensor. A method for identifying a contact area is known (for example, see Patent Document 1).
特開昭61-292732号公報Japanese Patent Laid-Open No. 61-292732
 しかしながら、上述した特許文献1に記載された方法は、センシング方法の構造が簡単で、パネルの特性に依存しない利点がある一方、単にセンサから検出された力の分力を用いて押圧位置を判定するため、パネル上の押圧位置を精度良く検出することができないという問題が生じた。 However, the method described in Patent Document 1 described above has an advantage that the structure of the sensing method is simple and does not depend on the characteristics of the panel. On the other hand, the pressed position is simply determined using the force component detected by the sensor. For this reason, there has been a problem that the pressed position on the panel cannot be detected with high accuracy.
 本発明は、上記の課題に鑑みてなされたものであり、パネル上の押圧位置を精度良く判定することを目的とする。 The present invention has been made in view of the above problems, and an object thereof is to accurately determine the pressing position on the panel.
 本開示の一側面によれば、パネルの所定位置に配置された4つの圧力センサと、前記4つの圧力センサにより得られる出力値を合計し、前記圧力センサごとに、前記合計した出力値に対する前記圧力センサの出力値の割合をそれぞれ求め、求めた出力値の割合を、前記圧力センサごとの個別出力割合として取得する出力割合取得手段と、前記出力割合取得手段により得られた前記圧力センサごとの個別出力割合と予め取得した座標補正量とを用いて、前記パネルに対する押圧位置を判定する押圧位置判定手段とを有する座標入力装置が提供される。 According to one aspect of the present disclosure, the four pressure sensors arranged at predetermined positions of the panel and the output values obtained by the four pressure sensors are summed, and for each of the pressure sensors, the sum of the output values with respect to the summed output values. The ratio of the output value of the pressure sensor is obtained, and the ratio of the obtained output value is acquired as an individual output ratio for each of the pressure sensors, and for each of the pressure sensors obtained by the output ratio acquisition means A coordinate input device is provided that includes a pressing position determination unit that determines a pressing position on the panel using the individual output ratio and the coordinate correction amount acquired in advance.
 本開示の一側面によれば、パネル上の押圧位置を精度良く判定することを可能とする。 According to one aspect of the present disclosure, it is possible to accurately determine the pressed position on the panel.
本実施形態に係る座標入力装置の概略構成の一例を示す平面図である。It is a top view which shows an example of schematic structure of the coordinate input device which concerns on this embodiment. 本実施形態に係る座標入力装置の概略構成の一例を示す側面図である。It is a side view which shows an example of schematic structure of the coordinate input device which concerns on this embodiment. 本実施形態に係るPCの機能構成の一例を示す図である。It is a figure which shows an example of the function structure of PC concerning this embodiment. 本実施形態に係るPCのハードウェア構成の一例を示す図である。It is a figure which shows an example of the hardware constitutions of PC concerning this embodiment. 歪ゲージのセンサキャリブレーションについて説明するための図である。It is a figure for demonstrating the sensor calibration of a strain gauge. 歪ゲージのセンサキャリブレーションについて説明するための図である。It is a figure for demonstrating the sensor calibration of a strain gauge. 歪ゲージのセンサキャリブレーションについて説明するための図である。It is a figure for demonstrating the sensor calibration of a strain gauge. 本実施形態に係る座標補正量取得処理の流れを示すフローチャートである。It is a flowchart which shows the flow of the coordinate correction amount acquisition process which concerns on this embodiment. 本実施形態に係る変位量取得式の考え方の一例を説明する図である。It is a figure explaining an example of the idea of the displacement amount acquisition type | formula which concerns on this embodiment. 本実施形態に係る押圧位置判定処理の流れを示すフローチャートである。It is a flowchart which shows the flow of the press position determination process which concerns on this embodiment.
 以下、本発明の実施の形態について詳細に説明する。 Hereinafter, embodiments of the present invention will be described in detail.
 <座標入力装置の概略図>
 図1A及び1Bは、本実施形態に係る座標入力装置の概略構成の一例を示す図である。図1Aに示すように、座標入力装置10は、センサ部20と、PC(Personal Computer)30とを有するように構成される。
<Schematic diagram of coordinate input device>
1A and 1B are diagrams illustrating an example of a schematic configuration of a coordinate input device according to the present embodiment. As shown in FIG. 1A, the coordinate input device 10 is configured to include a sensor unit 20 and a PC (Personal Computer) 30.
 センサ部20は、筐体部21と、パネル22と、圧力センサとしての歪ゲージ23とを有するように構成される。 The sensor unit 20 is configured to include a housing unit 21, a panel 22, and a strain gauge 23 as a pressure sensor.
 筐体部21は、所定位置(図1Aの例では4隅)に歪ゲージ23を配置する。また、図1Bに示すように、筐体部21は、歪ゲージ23上にパネル22を配置する。 The housing unit 21 has strain gauges 23 arranged at predetermined positions (four corners in the example of FIG. 1A). In addition, as shown in FIG. 1B, the housing portion 21 has a panel 22 disposed on a strain gauge 23.
 パネル22は、例えばシリコン素材や、アルミ板、金属製の合成板等により構成される。パネル22と歪ゲージ23とは、例えば点接触により接続される。なお、パネル22は、例えば圧力の大きさや圧力負荷が生じている位置を検出するためのパネル、シート等を含み、例えば表示手段としてのタッチパネル等であっても良い。 The panel 22 is made of, for example, a silicon material, an aluminum plate, a metal synthetic plate, or the like. The panel 22 and the strain gauge 23 are connected by, for example, point contact. Note that the panel 22 includes, for example, a panel, a sheet, and the like for detecting a pressure level and a position where a pressure load is generated, and may be, for example, a touch panel as a display unit.
 歪ゲージ23は、例えばロードセル等により構成され、歪ゲージ23-1~23-4を有するように構成される。歪ゲージ23-1~23-4は、パネル22の所定位置(図1Aの例では4隅)を支持するように筐体部21に配置される。なお、歪みゲージ23は、増幅器を内蔵しても良い。 The strain gauge 23 is composed of, for example, a load cell, and has strain gauges 23-1 to 23-4. The strain gauges 23-1 to 23-4 are arranged on the housing portion 21 so as to support predetermined positions of the panel 22 (four corners in the example of FIG. 1A). The strain gauge 23 may incorporate an amplifier.
 センサ部20は、歪ゲージ23-1~23-4により得られた値を、内蔵するADコンバータでデジタル値に変換し、変換したデジタル値を、例えばUSBケーブル等を介してPC30へ伝送する。 The sensor unit 20 converts the values obtained by the strain gauges 23-1 to 23-4 into digital values using a built-in AD converter, and transmits the converted digital values to the PC 30 via, for example, a USB cable.
 なお、図1A及び1Bに示すセンサ部における筐体部21、パネル22、歪ゲージ23等の大きさや、形状等については、これに限定されるものではなく、例えばパネル22は矩形の他、円形等により構成されても良い。 In addition, about the magnitude | size, shape, etc. of the housing | casing part 21, the panel 22, the strain gauge 23, etc. in the sensor part shown to FIG. 1A and 1B, it is not limited to this, For example, the panel 22 is circular in addition to a rectangle. Or the like.
 PC30は、センサ部20から取得したデジタル値を用いて、パネル22上を接触又は押圧した位置を判定し、判定した位置に基づいて、センサ部20に対して実行されたユーザの動作等を検出する情報処理装置である。 The PC 30 uses the digital value acquired from the sensor unit 20 to determine the position where the panel 22 is touched or pressed, and based on the determined position, detects a user action or the like performed on the sensor unit 20. Information processing apparatus.
 なお、PC30は、例えばPD(Portable Device)、PDA(Personal Data Assistant)、携帯電話、ゲーム機等であっても良く、センサ部20と一体化された構成であっても良い。 Note that the PC 30 may be, for example, a PD (Portable Device), a PDA (Personal Data Assistant), a mobile phone, a game machine, or the like, or may be configured to be integrated with the sensor unit 20.
 <PC30:機能構成例>
 次に、上述した座標入力装置10に含まれるPC30の機能構成について説明する。図2は、本実施形態に係るPCの機能構成の一例を示す図である。
<PC30: Functional configuration example>
Next, a functional configuration of the PC 30 included in the coordinate input device 10 described above will be described. FIG. 2 is a diagram illustrating an example of a functional configuration of the PC according to the present embodiment.
 図2に示すように、座標入力装置10は、入力手段31と、出力手段32と、記憶手段33と、出力割合取得手段34と、各辺圧力取得手段35と、垂直水平方向圧力取得手段36と、変位量取得手段37と、座標補正量取得手段38と、押圧位置判定手段39と、制御手段40とを有するように構成される。 As shown in FIG. 2, the coordinate input device 10 includes an input unit 31, an output unit 32, a storage unit 33, an output ratio acquisition unit 34, each side pressure acquisition unit 35, and a vertical horizontal direction pressure acquisition unit 36. A displacement amount acquisition means 37, a coordinate correction amount acquisition means 38, a pressed position determination means 39, and a control means 40.
 ここで、本実施形態における座標入力装置10は、大略すると事前処理と、押圧位置判定処理との2つの処理を行う。事前処理では、予め、それぞれが4つの歪ゲージ23-1~23-4のうち2つの歪ゲージ23を端部とする4つの辺により形成される矩形上の補正対象領域(例えばパネル22上)の座標を設定するための座標補正量(例えば、補正対象領域の基準点と分解能とを有する尺度(スケール))を取得する。 Here, the coordinate input device 10 in the present embodiment performs two processes, a pre-process and a pressed position determination process, in short. In the pre-processing, a correction target area on a rectangle (for example, on the panel 22) formed in advance by four sides each having two strain gauges 23 as end portions of the four strain gauges 23-1 to 23-4. A coordinate correction amount (for example, a scale having a reference point of the correction target region and resolution) is acquired.
 この座標補正量は、例えば、出力割合取得手段34と、各辺圧力取得手段35と、垂直水平方向圧力取得手段36と、変位量取得手段37と、座標補正量取得手段38とを用いることにより得られる。 This coordinate correction amount is obtained by using, for example, the output ratio acquisition unit 34, each side pressure acquisition unit 35, the vertical and horizontal direction pressure acquisition unit 36, the displacement amount acquisition unit 37, and the coordinate correction amount acquisition unit 38. can get.
 また、押圧位置判定処理では、事前処理で取得した座標補正量と、ユーザによりパネル22を押圧したときに歪ゲージ23-1~23-4から得られる値から押圧位置を判定する。 In the pressing position determination process, the pressing position is determined from the coordinate correction amount acquired in the pre-processing and the value obtained from the strain gauges 23-1 to 23-4 when the panel 22 is pressed by the user.
 この押圧位置は、出力割合取得手段34と、各辺圧力取得手段35と、垂直水平方向圧力取得手段36と、変位量取得手段37と、押圧位置判定手段39とを用いることにより判定される。 This pressing position is determined by using the output ratio acquisition means 34, each side pressure acquisition means 35, the vertical and horizontal direction pressure acquisition means 36, the displacement amount acquisition means 37, and the pressing position determination means 39.
 以下、具体的に説明する。入力手段31は、例えばキーボードや、マウス等のポインティングデバイス等を有し、各種指示の開始や終了等の入力を受け付ける。 The details will be described below. The input unit 31 includes, for example, a keyboard, a pointing device such as a mouse, and the like, and receives inputs such as start and end of various instructions.
 出力手段32は、例えばディスプレイやスピーカ等を有し、入力手段31により入力された内容や、入力内容に基づいて実行された内容等の表示、音声出力等を行う。 The output unit 32 includes, for example, a display, a speaker, and the like, and displays the content input by the input unit 31 and the content executed based on the input content, and outputs a sound.
 記憶手段33は、センサ部20により得られた押圧力等の出力値や、予め取得した座標補正量、各手段により得られた値等の情報を記憶する。 The storage unit 33 stores information such as an output value such as a pressing force obtained by the sensor unit 20, a coordinate correction amount acquired in advance, a value obtained by each unit, and the like.
 出力割合取得手段34は、センサ部20により得られた4つの歪ゲージ23-1~23-4の出力値を合計し、合計した出力値に対する各歪ゲージ23(歪ゲージ23-1~23-4のうち1つ)の出力値の割合をそれぞれ求める。また、出力割合取得手段34は、求めた出力値の割合を、各歪ゲージ23の個別出力割合として取得する。 The output ratio acquisition means 34 totals the output values of the four strain gauges 23-1 to 23-4 obtained by the sensor unit 20, and each strain gauge 23 (strain gauge 23-1 to 23-) with respect to the total output value. The ratio of the output value (1 out of 4) is obtained. Further, the output ratio acquisition unit 34 acquires the calculated ratio of output values as the individual output ratio of each strain gauge 23.
 出力割合取得手段34は、例えば事前処理では、上述した矩形上の補正対象領域において等間隔に設定される所定位置(例えば25ヶ所)を押圧したときに得られる歪ゲージ23-1~23-4の値に基づき、所定位置ごとの各歪ゲージ23の個別出力割合を取得する。また、押圧位置判定処理では、ユーザの押圧により得られる歪ゲージ23-1~23-4の値に基づき、ユーザの押圧地点での各歪ゲージ23の個別出力割合を取得する。 For example, in the preliminary process, the output ratio acquisition unit 34 obtains strain gauges 23-1 to 23-4 obtained by pressing predetermined positions (for example, 25 locations) set at equal intervals in the correction target area on the rectangle described above. Based on this value, the individual output ratio of each strain gauge 23 for each predetermined position is acquired. In the pressing position determination process, the individual output ratio of each strain gauge 23 at the user's pressing point is acquired based on the values of the strain gauges 23-1 to 23-4 obtained by the user's pressing.
 なお、出力割合取得手段34は、取得した各歪ゲージ23の個別出力割合の最大値と最小値とがそれぞれ所定の値(例えば「100」、「0」)となるように調整することができるが、これに限定されるものではない。 The output ratio acquisition unit 34 can adjust the acquired maximum value and minimum value of the individual output ratio of each strain gauge 23 to be predetermined values (for example, “100”, “0”), respectively. However, the present invention is not limited to this.
 各辺圧力取得手段35は、上述した矩形上の補正対象領域の各辺の両端に配置された2つの歪ゲージ23(例えば歪ゲージ23-1及び23-2)の個別出力割合の合計に対するそれぞれの歪ゲージ23(例えば歪ゲージ23-1又は歪ゲージ23-2)の個別出力割合を用いて、矩形上の補正対象領域を構成する各辺(例えば上辺、下辺、右辺、左辺)に係る圧力の割合をそれぞれ求める。 Each side pressure acquisition means 35 is respectively for the total of individual output ratios of two strain gauges 23 (for example, strain gauges 23-1 and 23-2) arranged at both ends of each side of the correction target region on the rectangle described above. Using the individual output ratio of the strain gauge 23 (for example, the strain gauge 23-1 or the strain gauge 23-2), pressures relating to the respective sides (for example, the upper side, the lower side, the right side, and the left side) constituting the correction target area on the rectangle Find the percentage of each.
 各辺圧力取得手段35は、例えば事前処理では、各辺上の所定位置(例えば上述した25ヶ所のうち、矩形の外周と接する16ヶ所)での各辺に係る圧力の割合をそれぞれ求めると良い。また、押圧位置判定処理では、ユーザの押圧により得られる各歪ゲージ23の個別出力割合に基づき、ユーザの押圧位置での各辺に係る圧力の割合を求める。 For example, in the pre-processing, each side pressure acquisition unit 35 may obtain the ratio of the pressure related to each side at a predetermined position on each side (for example, 16 points in contact with the outer periphery of the rectangle among the 25 points described above). . Further, in the pressing position determination process, the ratio of the pressure related to each side at the pressing position of the user is obtained based on the individual output ratio of each strain gauge 23 obtained by the pressing of the user.
 垂直水平方向圧力取得手段36は、各辺圧力取得手段35により得られた矩形(補正対象領域)の各辺に係る圧力の割合を用いて、矩形(補正対象領域)の垂直方向又は水平方向に係る圧力の割合をそれぞれ求める。 The vertical / horizontal pressure acquisition means 36 uses the ratio of the pressure relating to each side of the rectangle (correction target area) obtained by each side pressure acquisition means 35 to make the rectangle (correction target area) vertical or horizontal. Each of the pressure ratios is determined.
 垂直水平方向圧力手段36は、例えば事前処理では、上述した各辺上の所定位置(例えば上述した16ヶ所)での垂直方向又は水平方向に係る圧力の割合をそれぞれ求めると良い。また、押圧位置判定処理では、ユーザの押圧位置での垂直又は水平方向に係る圧力の割合をそれぞれ求める。 For example, in the pre-processing, the vertical / horizontal pressure means 36 may obtain the ratio of the pressure in the vertical direction or the horizontal direction at a predetermined position (for example, 16 positions described above) on each side described above. In the pressing position determination process, the ratio of the pressure in the vertical or horizontal direction at the pressing position of the user is obtained.
 変位量取得手段37は、各辺圧力取得手段35により得られた各辺に係る圧力の割合と、垂直水平方向圧力取得手段36により得られた垂直方向又は水平方向に係る圧力の割合とを用いて、押圧位置における矩形(補正対象領域)各辺からの変位量を取得する。 The displacement amount acquisition means 37 uses the ratio of the pressure related to each side obtained by each side pressure acquisition means 35 and the ratio of the pressure related to the vertical direction or the horizontal direction obtained by the vertical horizontal direction pressure acquisition means 36. Thus, the displacement amount from each side of the rectangle (correction target area) at the pressed position is acquired.
 変位量取得手段37は、例えば事前処理では、上述した各辺上の所定位置(例えば上述した16ヶ所)での各辺に係る圧力の割合と、垂直方向又は水平方向にかかる圧力の割合とを用いて、各辺上の所定位置での各辺からの変位量を取得すると良い。また、押圧位置判定処理では、ユーザの押圧位置での各辺からの変位量を取得する。 For example, in the pre-processing, the displacement amount acquisition unit 37 calculates the ratio of the pressure related to each side at a predetermined position on each side described above (for example, 16 positions described above) and the ratio of the pressure applied in the vertical direction or the horizontal direction. It is preferable to obtain a displacement amount from each side at a predetermined position on each side. In the pressing position determination process, the displacement amount from each side at the pressing position of the user is acquired.
 座標補正量取得手段38は、例えば事前処理において変位量取得手段37により得られた各辺上の所定位置における各辺からの変位量を用いて、各辺の変位量の平均値を取得する。また、座標補正量取得手段38は、各辺の変位量の平均値を用いて、上述した補正対象領域の座標を設定するための座標補正量を取得する。 The coordinate correction amount acquisition unit 38 acquires the average value of the displacement amount of each side using the displacement amount from each side at a predetermined position on each side obtained by the displacement amount acquisition unit 37 in the pre-processing, for example. In addition, the coordinate correction amount acquisition unit 38 acquires a coordinate correction amount for setting the coordinates of the correction target region described above using the average value of the displacement amounts of the respective sides.
 ここで、例えば左辺の変位量の平均値と上辺の変位量の平均値とをそれぞれ補正対象領域の基準点として求め、座標補正量とする。また、所定の値(例えば「100」)を左辺の変位量の平均値と右辺の変位量の平均値との差分で割ることにより、補正対象領域の左辺と右辺との間の分解能を求め、座標補正量とする。また、同様に、所定の値(例えば「100」)を上辺の変位量の平均値と下辺の変位量の平均値との差分で割ることにより、補正対象領域の上辺と下辺との間の分解能を求め、座標補正量とする。 Here, for example, the average value of the displacement amount on the left side and the average value of the displacement amount on the upper side are respectively obtained as reference points of the correction target region and set as coordinate correction amounts. Further, by dividing a predetermined value (for example, “100”) by the difference between the average value of the displacement amount on the left side and the average value of the displacement amount on the right side, the resolution between the left side and the right side of the correction target region is obtained. Coordinate correction amount. Similarly, by dividing a predetermined value (for example, “100”) by the difference between the average value of the displacement amount on the upper side and the average value of the displacement amount on the lower side, the resolution between the upper side and the lower side of the correction target region To obtain the coordinate correction amount.
 座標補正量取得手段38は、このように得られた座標補正量(例えば、補正対象領域の基準点と分解能とを有する尺度(スケール))を記憶手段33に記憶する。なお、記憶手段33に記憶された座標補正量は、押圧位置判定手段39における押圧位置判定処理において用いられる。 The coordinate correction amount acquisition unit 38 stores the coordinate correction amount obtained in this way (for example, a scale having a reference point and resolution of the correction target region) in the storage unit 33. The coordinate correction amount stored in the storage unit 33 is used in the pressing position determination process in the pressing position determination unit 39.
 押圧位置判定手段39は、出力割合取得手段34により得られた歪ゲージ23の個別出力割合を用いて、パネル20上の押圧位置を判定する。具体的には、押圧位置判定手段39は、ユーザによりパネルが押圧されたときの変位量取得手段37により得られる各辺からの変位量と、座標補正量取得手段38により得られた座標補正量とを用いて押圧位置を判定する。 The pressing position determination means 39 determines the pressing position on the panel 20 using the individual output ratio of the strain gauge 23 obtained by the output ratio acquisition means 34. Specifically, the pressing position determination unit 39 includes the displacement amount from each side obtained by the displacement amount acquisition unit 37 when the panel is pressed by the user, and the coordinate correction amount obtained by the coordinate correction amount acquisition unit 38. Are used to determine the pressed position.
 制御手段40は、座標入力装置10の各構成部全体の制御を行う。制御手段40は、例えばユーザ等による入力手段31からの指示に基づいて、出力割合取得手段34と、各辺圧力取得手段35と、垂直水平方向圧力取得手段36と、変位量取得手段37と、座標補正量取得手段38と、押圧位置判定手段39等を制御し、パネル22に対する押圧位置を判定する。 The control means 40 controls the entire components of the coordinate input device 10. The control means 40 is based on an instruction from the input means 31 by a user or the like, for example, an output ratio acquisition means 34, each side pressure acquisition means 35, a vertical and horizontal direction pressure acquisition means 36, a displacement amount acquisition means 37, The coordinate correction amount acquisition unit 38 and the pressed position determination unit 39 are controlled to determine the pressed position with respect to the panel 22.
 <PC30:ハードウェア構成例>
 上述したPC30は、各機能又は各手段をコンピュータに実行させる座標入力プログラムを生成し、例えば汎用のパーソナルコンピュータ等にインストールすることにより実行することが可能である。図3は、本実施形態に係るPCのハードウェア構成の一例を示す図である。
<PC30: Hardware configuration example>
The PC 30 described above can be executed by generating a coordinate input program for causing a computer to execute each function or each means, and installing it on a general-purpose personal computer, for example. FIG. 3 is a diagram illustrating an example of a hardware configuration of the PC according to the present embodiment.
 図3に示すように、PC30は、入力装置41と、出力装置42と、ドライブ装置43と、補助記憶装置44と、メモリ装置45と、CPU(Central Processing Unit)46と、ネットワーク接続装置47とを有するように構成されており、これらはシステムバスBで相互に接続されている。 As shown in FIG. 3, the PC 30 includes an input device 41, an output device 42, a drive device 43, an auxiliary storage device 44, a memory device 45, a CPU (Central Processing Unit) 46, and a network connection device 47. These are connected to each other by a system bus B.
 入力装置41は、ユーザ等が操作するキーボード及びマウス等のポインティングデバイスを有し、ユーザ等からのプログラムの実行等、各種操作信号を入力する。 The input device 41 has a pointing device such as a keyboard and a mouse operated by a user or the like, and inputs various operation signals such as execution of a program from the user or the like.
 出力装置42は、本実施形態の各処理を行うためのコンピュータ本体を操作するのに必要なGUI(Graphical User Interface)や画面等を表示するディスプレイを有し、CPU46が有する制御プログラムによりプログラムの実行経過や結果等を表示する。 The output device 42 has a display for displaying a GUI (Graphical User Interface), a screen, and the like necessary for operating the computer main body for performing each process of the present embodiment, and the program is executed by the control program of the CPU 46 Progress and results are displayed.
 なお、入力装置41と出力装置42とは、例えばタッチパネル等のような一体型の入出力装置であっても良い。 The input device 41 and the output device 42 may be integrated input / output devices such as a touch panel.
 ここで、コンピュータ本体にインストールされる座標入力プログラムは、例えばUSBメモリやCD-ROM等の可搬型の記憶媒体48等により提供される。記憶媒体48は、ドライブ装置43にセット可能であり、記憶媒体48に含まれるプログラムが、記憶媒体48からドライブ装置43を介して補助記憶装置44にインストールされる。 Here, the coordinate input program installed in the computer main body is provided by a portable storage medium 48 such as a USB memory or a CD-ROM, for example. The storage medium 48 can be set in the drive device 43, and a program included in the storage medium 48 is installed from the storage medium 48 to the auxiliary storage device 44 via the drive device 43.
 補助記憶装置44は、ハードディスク等のストレージ手段であり、座標入力プログラムや、コンピュータに設けられた制御プログラム等を記憶し、必要に応じて入出力を行う。 The auxiliary storage device 44 is a storage means such as a hard disk, and stores a coordinate input program, a control program provided in the computer, etc., and performs input / output as necessary.
 メモリ装置45は、CPU46により補助記憶装置44から読み出されたプログラム等を格納する。メモリ装置45は、例えばROM(Read Only Memory)やRAM(Random Access Memory)等を用いる。 The memory device 45 stores a program read from the auxiliary storage device 44 by the CPU 46. The memory device 45 uses, for example, a ROM (Read Only Memory), a RAM (Random Access Memory), or the like.
 CPU46は、OS(Operating System)等の制御プログラム、及びメモリ装置45に格納されているプログラムに基づいて各種演算や各ハードウェア構成部とのデータの入出力等、コンピュータ全体の処理を制御する。なお、プログラム実行中の各種情報等は、補助記憶装置44から取得し、また実行結果等を格納する。 The CPU 46 controls processing of the entire computer such as various operations and data input / output with each hardware component based on a control program such as an OS (Operating System) and a program stored in the memory device 45. Various information during the execution of the program is acquired from the auxiliary storage device 44, and the execution result and the like are stored.
 ネットワーク接続装置47は、通信ネットワーク等と接続することにより、通信ネットワークに接続されている他の装置からプログラムを取得したり、プログラムを実行することで得られた実行結果等を他の装置に提供したりする。 The network connection device 47 obtains a program from another device connected to the communication network by connecting to the communication network or the like, and provides the execution result obtained by executing the program to the other device. To do.
 PC30は、上述したハードウェア構成を有することにより、本実施形態に係る各処理を実行することが可能となる。 The PC 30 can execute each process according to the present embodiment by having the above-described hardware configuration.
 <センサキャリブレーション(事前処理)>
 次に、上述した歪ゲージ23-1~23-4のセンサキャリブレーションについて説明する。図4A~4Cは、歪ゲージのセンサキャリブレーションを説明するための図である。
<Sensor calibration (pre-processing)>
Next, sensor calibration of the strain gauges 23-1 to 23-4 will be described. 4A to 4C are diagrams for explaining sensor calibration of a strain gauge.
 図4Aに示すように、それぞれが4つの歪ゲージ23-1~23-4のうち2つの歪ゲージ23を端部とする4つの辺により矩形が形成され、形成された矩形領域(すなわち補正対象領域)に対応させて矩形状のパネル22が設けられている。 As shown in FIG. 4A, each of the four strain gauges 23-1 to 23-4 has a rectangle formed by four sides having two strain gauges 23 as end portions, and the formed rectangular region (that is, a correction target) A rectangular panel 22 is provided corresponding to the region.
 図4Aの例では、パネル22の端部に歪ゲージ23が配置され、2つの歪ゲージ23を端部とする辺は、パネル22の辺に対応している。したがって、図4Aの例では、この矩形領域内のパネル22上の所定部分が押圧されると、パネル22上の座標を取得することが可能となる。なお、本実施形態においては、これに限定されるものではなく、矩形領域の形状とパネル22の形状が対応していなくても良い。 In the example of FIG. 4A, the strain gauges 23 are disposed at the end portions of the panel 22, and the sides having the two strain gauges 23 as the end portions correspond to the sides of the panel 22. Therefore, in the example of FIG. 4A, when a predetermined portion on the panel 22 in this rectangular area is pressed, the coordinates on the panel 22 can be acquired. In the present embodiment, the present invention is not limited to this, and the shape of the rectangular area may not correspond to the shape of the panel 22.
 事前処理では、矩形領域(すなわちパネル22)が、予め等間隔に設定された所定位置(図4Aの例では、マス目の角25ヶ所)で分割され、分割された位置に応じた座標値が設定されているものとする。すなわち、図4Aの例では、矩形領域(すなわちパネル22)が16分割され、例えば(x,y)=(0,0)~(4,4)が座標の各点として設定された例が示されている。 In the pre-processing, the rectangular area (that is, the panel 22) is divided at predetermined positions set at equal intervals in advance (in the example of FIG. 4A, 25 corners of the grid), and coordinate values corresponding to the divided positions are obtained. It is assumed that it is set. That is, the example of FIG. 4A shows an example in which the rectangular area (that is, the panel 22) is divided into 16, and (x, y) = (0, 0) to (4, 4), for example, are set as the coordinate points. Has been.
 出力割合取得手段34は、例えば出荷時やユーザからの指示等の所定のタイミングで、パネル22上に何も載せていない状態(例えば0g)で、歪ゲージ23-1~23-4から得られる出力値(ゼロ値データa0,n)を取得する(n:歪ゲージ23の番号1,2,3,4)。 The output ratio acquisition means 34 is obtained from the strain gauges 23-1 to 23-4 in a state where nothing is placed on the panel 22 (for example, 0 g) at a predetermined timing, for example, at the time of shipment or an instruction from the user. An output value (zero value data a 0, n ) is acquired (n: number 1, 2, 3, 4 of strain gauge 23).
 次に、出力割合取得手段34は、図4Bに示すように、パネル22上で、上述した等間隔に設定された座標各点(図4Bの例では上述したマス目の角25ヶ所)に所定の重り(例えば100g)の分銅を載せた状態で、歪ゲージ23-1~23-4から得られる出力値ccal,n(x,y)を取得する(x=0,1,2,3,4、y=0,1,2,3,4)。 Next, as shown in FIG. 4B, the output ratio acquisition means 34 is predetermined on the coordinate points set at the above-described equal intervals on the panel 22 (25 corners in the above-described square in the example of FIG. 4B). The output value c cal, n (x, y) obtained from the strain gauges 23-1 to 23-4 is obtained (x = 0, 1, 2, 3) with a weight of 100 g (for example, 100 g) placed thereon. , 4, y = 0, 1, 2, 3, 4).
 次に、出力割合取得手段34は、所定の重りを載せた状態の出力値ccal,n(x,y)からゼロ値データa0,nを差し引き、ゼロ値補正をした出力値dcal,n(x,y)を取得する。なお、ゼロ値補正をした出力値dcal,n(x,y)は、以下の式(1)を用いて求める。 Next, the output ratio acquisition unit 34 subtracts the zero value data a 0, n from the output value c cal, n (x, y) in a state where a predetermined weight is placed, and outputs an output value d cal, n (x, y) is acquired. The output value d cal, n (x, y) after zero value correction is obtained using the following equation (1).
Figure JPOXMLDOC01-appb-M000001
 次に、出力割合取得手段34は、上述のように設定された座標各点における歪ゲージ23-1~23-4のゼロ値補正をした出力値dcal,n(x,y)を合計して、合計出力値Dcal,n(x,y)を以下の式(2)を用いて取得する。
Figure JPOXMLDOC01-appb-M000001
Next, the output ratio acquisition means 34 sums up the output values d cal, n (x, y) obtained by correcting the zero values of the strain gauges 23-1 to 23-4 at the coordinate points set as described above. Thus, the total output value D cal, n (x, y) is obtained using the following equation (2).
 また、合計出力値Dcal,n(x,y)に対する歪ゲージ23-1~23-4それぞれの出力値dcal,n(x,y)の割合ecal,n(x,y)を以下の式(3)を用いて取得する。 The total output value D cal, n (x, y) strain gauges 23-1 to 23-4 each output value d cal for, n (x, y) ratio e cal of, n and (x, y) below It acquires using Formula (3) of these.
 上述したように、出力割合取得手段34は、設定された座標各点における歪ゲージ23-1~23-4の出力値の割合ecal,n(x,y)を、座標各点における歪ゲージ23-1~23-4それぞれの個別出力割合ecal,n(x,y)として取得する。 As described above, the output ratio acquisition unit 34 calculates the ratio e cal, n (x, y) of the output values of the strain gauges 23-1 to 23-4 at each set coordinate point to the strain gauge at each coordinate point. Obtained as individual output ratios e cal, n (x, y) of 23-1 to 23-4.
 なお、出力割合取得手段34は、各歪ゲージ23-1~23-4の個別出力割合ecal,n(x,y)の最大値と最小値との差が所定の値(例えば「100」)となるように、以下の式(4)を用いて校正値Valcal,n(x,y)を求めると良い。 The output ratio acquisition means 34 determines that the difference between the maximum value and the minimum value of the individual output ratios e cal, n (x, y) of the strain gauges 23-1 to 23-4 is a predetermined value (eg, “100”). ), The calibration value Val cal, n (x, y) may be obtained using the following equation (4).
 また、出力割合取得手段34は、校正値Valcal,n(x,y)を用いて、各歪ゲージ23-1~23-4の個別出力割合ecal,n(x,y)の最大値と最小値とがそれぞれ所定の値(例えば「100」、「0」)となるように、校正した値fcal,n(x,y)を以下の式(5)を用いて求める。 Further, the output ratio acquisition means 34 uses the calibration value Val cal, n (x, y), and the maximum value of the individual output ratios e cal, n (x, y) of the strain gauges 23-1 to 23-4. And calibrated values f cal, n (x, y) are obtained by using the following equation (5) so that the minimum value and the minimum value become predetermined values (for example, “100”, “0”).
Figure JPOXMLDOC01-appb-M000002
 上述のように、事前処理として、予め歪ゲージ23-1~23-4のセンサキャリブレーションを行い、歪ゲージ23-1~23-4の校正した値fcal,n(x,y)を用いて、矩形領域(補正対象領域)の座標を設定するための座標補正量を求めると良い。
Figure JPOXMLDOC01-appb-M000002
As described above, as pre-processing, sensor calibration of the strain gauges 23-1 to 23-4 is performed in advance, and the calibrated values f cal, n (x, y) of the strain gauges 23-1 to 23-4 are used. Thus, a coordinate correction amount for setting the coordinates of the rectangular area (correction target area) may be obtained.
 なお、以下の説明では、図4Cに示すように、歪ゲージ23-1及び23-2を端部とする辺を左辺とし、歪ゲージ23-2及び23-3を端部とする辺を下辺とする。また、歪ゲージ23-3及び23-4を端部とする辺を右辺とし、歪ゲージ23-4及び23-1を辺とする辺を上辺とし、以下の例では、この各辺により構成された矩形領域(すなわち補正対象領域)にパネル22を配置した例を用いて説明する。 In the following description, as shown in FIG. 4C, the side with the strain gauges 23-1 and 23-2 as the end is the left side, and the side with the strain gauges 23-2 and 23-3 as the end is the lower side. And Further, the side having the strain gauges 23-3 and 23-4 as the end portion is the right side, and the side having the strain gauges 23-4 and 23-1 as the side is the top side. A description will be given using an example in which the panel 22 is arranged in a rectangular area (that is, a correction target area).
 <座標補正量取得処理の流れ>
 次に、上述した事前処理で実行されるパネル22(すなわち補正対象領域)の座標を設定するための座標補正量取得処理について説明する。図5は、本実施形態に係る座標補正量取得処理の流れを示すフローチャートである。
<Flow of coordinate correction amount acquisition processing>
Next, a coordinate correction amount acquisition process for setting the coordinates of the panel 22 (that is, the correction target area) executed in the above-described pre-process will be described. FIG. 5 is a flowchart showing the flow of coordinate correction amount acquisition processing according to the present embodiment.
 図5に示すように、出力割合取得手段34は、まず出荷時やユーザからの指示等の所定のタイミングで、上述したセンサキャリブレーションを実行する。 As shown in FIG. 5, the output ratio acquisition means 34 first performs the above-described sensor calibration at a predetermined timing such as at the time of shipment or an instruction from the user.
 具体的には、出力割合取得手段34は、歪ゲージ23-1~23-4からゼロ値データa0,nを取得し(S10)、パネル22上で等間隔に設定された各座標地点(図4A~4Cの例では、上述したマス目の角25ヶ所)に所定の重り(例えば100g)を載せたときの出力値ccal,n(x,y)を取得し(S11)、各座標地点でゼロ値補正をした出力値dcal,n(x,y)を取得する(S12)。 Specifically, the output ratio acquisition means 34 acquires the zero value data a 0, n from the strain gauges 23-1 to 23-4 (S10), and each coordinate point set at equal intervals on the panel 22 (S10). 4A to 4C, an output value c cal, n (x, y) when a predetermined weight (for example, 100 g) is placed on the above-mentioned square corners 25) is acquired (S11), and each coordinate is obtained. An output value d cal, n (x, y) obtained by correcting the zero value at the point is acquired (S12).
 また、出力割合取得手段34は、各座標地点の合計出力値Dcal,n(x,y)を取得すると、各座標地点の合計出力値Dcal,n(x,y)に対する歪ゲージ23-1~23-4それぞれの出力値dcal,n(x,y)の割合である個別出力割合ecal,n(x,y)を取得する(S13)。 Further, when the output ratio acquisition means 34 acquires the total output value D cal, n (x, y) at each coordinate point, the strain gauge 23− for the total output value D cal, n (x, y) at each coordinate point. The individual output ratio e cal, n (x, y) , which is the ratio of the output values d cal, n (x, y) of 1 to 23-4 is acquired (S13).
 次に、出力割合取得手段34は、歪ゲージ23-1~23-4の個別出力割合ecal,n(x,y)のうち最大値と最小値とを求め、最大値と最小値との差が所定の値(例えば「100」)となるための校正値Valcal,nを求める(S14)。 Next, the output ratio acquisition means 34 obtains the maximum value and the minimum value among the individual output ratios e cal, n (x, y) of the strain gauges 23-1 to 23-4, and calculates the maximum value and the minimum value. A calibration value Val cal, n for the difference to be a predetermined value (for example, “100”) is obtained (S14).
 次に、出力割合取得手段34は、最大値と最小値とがそれぞれ所定の値(例えば「100」、「0」)となるよう、各歪ゲージ23-1~23-4の個別出力割合ecal,n(x,y)を、校正値Valcal,n(x,y)を用いて校正し、校正した値fcal,n(x,y)を取得する(S15)。 Next, the output ratio acquisition unit 34 sets the individual output ratios e of the strain gauges 23-1 to 23-4 so that the maximum value and the minimum value become predetermined values (for example, “100”, “0”), respectively. cal, n (x, y) is calibrated using the calibration value Val cal, n (x, y), and a calibrated value f cal, n (x, y) is obtained (S15).
 次に、各辺圧力取得手段35は、例えば各辺の所定位置(例えば上述した25ヶ所のうち、パネル22の外周と接する16ヶ所)での各辺に係る圧力の割合Ucal(x,y)、Bcal(x,y)、Lcal(x,y)、Rcal(x,y)を求める(S16)。例えば、各辺圧力取得手段35は、各辺に係る圧力の割合を、以下の式(6)を用いて取得する。 Next, each side pressure acquisition means 35, for example, the ratio U cal (x, y) of the pressure related to each side at a predetermined position of each side (for example, 16 positions in contact with the outer periphery of the panel 22 among the 25 positions described above). ), B cal (x, y), L cal (x, y), and R cal (x, y) are obtained (S16). For example, each side pressure acquisition means 35 acquires the ratio of the pressure concerning each side using the following formula (6).
Figure JPOXMLDOC01-appb-M000003
 例えば、座標(0,0)における上辺に係る割合を求める場合には、各辺圧力取得手段35は、Ucal(0,0)=fcal,4(0,0)/(fcal,1(0,0)+fcal,4(0,0))を用いる。同様に、座標(0,0)における下辺、左辺、右辺に係る圧力の割合についてもそれぞれ求める。
Figure JPOXMLDOC01-appb-M000003
For example, when calculating the ratio of the upper side at the coordinates (0, 0), each side pressure acquisition means 35 uses U cal (0,0) = f cal, 4 (0,0) / (f cal, 1 (0,0) + f cal, 4 (0,0)) is used. Similarly, the ratio of the pressure related to the lower side, the left side, and the right side at the coordinates (0, 0) is also obtained.
 次に、垂直水平方向圧力取得手段36は、上述した所定位置を押圧したときの各辺に係る圧力の割合を用いて、上述した所定位置(例えば25ヶ所のうち、パネル22の外周と接する16ヶ所)を押圧したときの垂直方向に係る圧力の割合Vcal(x,y)又は水平方向に係る圧力の割合Hcal(x,y)を求める(S17)。 Next, the vertical and horizontal direction pressure acquisition means 36 uses the ratio of the pressure relating to each side when the above-mentioned predetermined position is pressed, and touches the outer periphery of the panel 22 among the predetermined positions (for example, 25 locations). The pressure ratio V cal (x, y) in the vertical direction when pressing the position) or the pressure ratio H cal (x, y) in the horizontal direction is determined (S17).
 例えば、垂直水平方向圧力取得手段36は、垂直方向に係る圧力の割合Vcal(x,y)又は水平方向に係る圧力の割合Hcal(x,y)を、以下の式(7)を用いて取得する。 For example, the vertical / horizontal pressure acquisition unit 36 uses the following equation (7) for the pressure ratio V cal (x, y) in the vertical direction or the pressure ratio H cal (x, y) in the horizontal direction. Get.
Figure JPOXMLDOC01-appb-M000004
 次に、変位量取得手段37は、垂直方向に係る圧力の割合Vcal(x,y)又は水平方向に係る圧力の割合Hcal(x,y)を用いて、上述した所定位置(例えば25ヶ所のうち、パネル22の外周と接する16ヶ所)における各辺からの変位量WXcal(x,y)、WYcal(x,y)を、以下の式(8)を用いて取得する(S18)。
Figure JPOXMLDOC01-appb-M000004
Next, the displacement amount acquiring unit 37 uses the pressure ratio V cal (x, y) in the vertical direction or the pressure ratio H cal (x, y) in the horizontal direction to set the predetermined position (for example, 25 Displacement amounts WX cal (x, y) and WY cal (x, y) from the respective sides at 16 locations in contact with the outer periphery of the panel 22 are acquired using the following equation (8) (S18). ).
Figure JPOXMLDOC01-appb-M000005
 次に、各辺の変位量の平均値を、以下の式(9)を用いて取得する(S19)。
Figure JPOXMLDOC01-appb-M000005
Next, the average value of the displacement amount of each side is acquired using the following equation (9) (S19).
Figure JPOXMLDOC01-appb-M000006
 ここで、例えば左辺の場合には、例えば左辺の座標各点(0,1)、(0,2)、(0,3)、(0,4)における変位量から、左辺の変位量の平均値を取得する(Lcx=average(WXcal(0,y))。同様に、右辺、上辺、下辺の座標各点の変位量から、右辺、上辺、下辺の変位量の平均値を取得する。
Figure JPOXMLDOC01-appb-M000006
Here, for example, in the case of the left side, for example, the average of the amount of displacement on the left side is calculated from the amount of displacement at each coordinate point (0, 1), (0, 2), (0, 3), (0, 4) on the left side. (Lcx = average (WX cal (0, y)) Similarly, the average value of the displacement amounts of the right side, the upper side, and the lower side is obtained from the displacement amounts of the coordinate points of the right side, the upper side, and the lower side.
 次に、座標補正量取得手段38は、上述した矩形領域(すなわち補正対象領域)の座標を設定するための座標補正量を取得する(S20)。 Next, the coordinate correction amount acquisition means 38 acquires a coordinate correction amount for setting the coordinates of the rectangular area (that is, the correction target area) described above (S20).
 ここでは、座標補正量取得手段38は、例えば左辺の変位量の平均値Lcxを基準点calXvalとし、上辺の変位量の平均値Ucyを基準点calYvalとする。また、座標補正量取得手段38は、左辺の変位量の平均値Lcxと右辺の変位量の平均値Rcxとの差分を用いて、差分が所定の値(例えば「100」)となる分解能calXscaleを取得する。また、同様に、上辺の変位量の平均値Ucyと下辺の変位量の平均値Bcyとの差分を用いて、差分が所定の値(例えば「100」)となる分解能calYscaleを取得する。 Here, for example, the coordinate correction amount acquisition unit 38 sets the average value Lcx of the displacement amount on the left side as the reference point calXval and the average value Ucy of the displacement amount on the upper side as the reference point calYval. Further, the coordinate correction amount acquisition unit 38 uses the difference between the average value Lcx of the displacement amount on the left side and the average value Rcx of the displacement amount on the right side to obtain a resolution calXscale where the difference becomes a predetermined value (for example, “100”). get. Similarly, using the difference between the average value Ucy of the displacement amount on the upper side and the average value Bcy of the displacement amount on the lower side, a resolution calYscale where the difference becomes a predetermined value (for example, “100”) is acquired.
 なお、変位量判定手段37は、上述した座標補正量(基準点calXval、calXval、分解能calXscale、calYscale)を、例えば以下の式(10)を用いて取得する。 The displacement amount determination unit 37 acquires the above-described coordinate correction amounts (reference points calXval, calXval, resolution calXscale, calYscale) using, for example, the following equation (10).
Figure JPOXMLDOC01-appb-M000007
 上述したように、本実施形態では事前処理において補正対象領域の座標を設定するための座標補正量を取得しておく。また、取得した座標補正量は、例えば記憶手段33に記憶しておき、押圧位置判定処理において用いられる。なお、本実施形態において座標補正量の取得例はこれに限定されるものではない。
Figure JPOXMLDOC01-appb-M000007
As described above, in the present embodiment, a coordinate correction amount for setting the coordinates of the correction target region is acquired in advance processing. The acquired coordinate correction amount is stored in the storage means 33, for example, and used in the pressed position determination process. In the present embodiment, an example of acquiring the coordinate correction amount is not limited to this.
 <変位量取得式について>
 次に、上述した変位量を取得する際に用いる式(8)について説明する。図6は、変位量の取得に用いる式の考え方の一例を説明する図である。
<Displacement acquisition formula>
Next, Expression (8) used when acquiring the above-described displacement amount will be described. FIG. 6 is a diagram for explaining an example of a concept of an expression used for obtaining the displacement amount.
 図6に示すように、パネル22の任意の位置(例えば押圧位置A)を押したときの押圧位置における各辺からの変位量WX(すなわちX座標)の取得方法について説明する。ここでは、例えば上辺及び下辺のX方向(横方向)の荷重割合の比を加味したものとなる。 As shown in FIG. 6, a method for obtaining the displacement amount WX (that is, the X coordinate) from each side at the pressed position when an arbitrary position (for example, the pressed position A) of the panel 22 is pressed will be described. Here, for example, the ratio of the load ratio in the X direction (lateral direction) of the upper side and the lower side is taken into account.
 上述したように、上辺に係る圧力の割合を、
 Ucal=fcal,4/(fcal,1+fcal,4
 として表し、下辺に係る圧力の割合を、
 Bcal=fcal,3/(fcal,2+fcal,3
 として表すものとする。
As mentioned above, the ratio of pressure on the upper side is
U cal = f cal, 4 / (f cal, 1 + f cal, 4 )
And the ratio of the pressure on the lower side,
B cal = f cal, 3 / (f cal, 2 + f cal, 3 )
It shall be expressed as
 ここで、例えば、全体に対する上辺の重さの割合と、全体に対する下辺の重さの割合とをそれぞれ以下のように表すものとする。 Here, for example, the ratio of the weight of the upper side to the whole and the ratio of the weight of the lower side to the whole are respectively expressed as follows.
 例えば全体に対する上辺の重さの割合を、
 Vcal=fcal,1+fcal,4/(fcal,1+fcal,2+fcal,3+fcal,4
とする。上辺と下辺の重さの割合の合計を「1」とすると、下辺の重さの割合は、
 1-Vcal=fcal,2+cal,3/(fcal,1+fcal,2+fcal,3+fcal,4
 と表すことが可能である。なお、Vcalは、上述した垂直方向に係る圧力の割合として説明したものと同様の式である。
For example, the ratio of the weight of the upper side to the whole
V cal = f cal, 1 + f cal, 4 / (f cal, 1 + f cal, 2 + f cal, 3 + f cal, 4 )
And If the sum of the weight ratio of the upper side and the lower side is “1”, the weight ratio of the lower side is
1-V cal = f cal, 2 + f cal, 3 / (f cal, 1 + f cal, 2 + f cal, 3 + f cal, 4 )
Can be expressed as Note that V cal is an expression similar to that described as the ratio of the pressure in the vertical direction described above.
 ここで、押圧位置Aを押したときの上辺の点P(Ucal,0)に係る圧力を、fcal,1+fcal,4とし、下辺の点Q(Bcal,0)に係る圧力を、fcal,2+fcal,3とする。 Here, when the pressing position A is pressed, the pressure related to the upper side point P (U cal , 0) is set as f cal, 1 + f cal, 4, and the pressure related to the lower side point Q (B cal , 0) is set as , F cal, 2 + f cal, 3 .
 点Pと、点Qとの重心のX座標(すなわちWXのx座標)は、以下のように表すことが可能である。例えば質量m、nがあり、質点a、bの座標をそれぞれ(Xa,Ya)、(Xb,Yb)とすると、質点aとbとの重心の座標(X,Y)を求める式(すなわち質量mの質点aと、質量nの質点bとを内分する式)、例えばX=(n×Xa+m×Xb)/(m+n)、Y=(n×Ya+m×Yb)/(m+n)の式により、
 WX(x)=(Ucal×(fcal,2+fcal,3)+Bcal×(fcal,1+fcal,4)/(fcal,2+fcal,3+fcal,1+fcal,4
      =(Ucal×(fcal,2+fcal,3)/(fcal,2+fcal,3+fcal,1+fcal,4)+Bcal×(fcal,1+fcal,4)/(fcal,2+fcal,3+fcal,1+fcal,4
      =(Ucal×(1-Vcal)+Bcal×Vcal)・・・(11)
 同様に、押圧位置Aを押したときのWXのy座標は、以下のように示すことができる。
The X coordinate of the center of gravity of the point P and the point Q (that is, the x coordinate of WX) can be expressed as follows. For example, if there are masses m and n, and the coordinates of the mass points a and b are (Xa, Ya) and (Xb, Yb), respectively, an equation for obtaining the coordinates (X, Y) of the center of gravity of the mass points a and b (ie, mass) m = mass point a and mass n = mass point b), for example, X = (n × Xa + m × Xb) / (m + n), Y = (n × Ya + m × Yb) / (m + n) ,
WX (x) = (U cal × (f cal, 2 + f cal, 3 ) + B cal × (f cal, 1 + f cal, 4 ) / (f cal, 2 + f cal, 3 + f cal, 1 + f cal, 4 )
= (U cal × (f cal, 2 + f cal, 3 ) / (f cal, 2 + f cal, 3 + f cal, 1 + f cal, 4 ) + B cal × (f cal, 1 + f cal, 4 ) / (f cal, 2 + f cal, 3 + f cal, 1 + f cal, 4 )
= (U cal × (1−V cal ) + B cal × V cal ) (11)
Similarly, the y-coordinate of WX when the pressing position A is pressed can be expressed as follows.
 WX(y)=(0×(fcal,2+fcal,3)+1×(fcal,1+fcal,4)/(fcal,2+fcal,3+fcal,1+fcal,4
      =fcal,1+fcal,4/(fcal,2+fcal,3+fcal,1+fcal,4
      =Vcal
 上述したWX(x)とWX(y)とから、WX(x,y)は以下のように表せる。
WX (y) = (0 × (f cal, 2 + f cal, 3 ) + 1 × (f cal, 1 + f cal, 4 ) / (f cal, 2 + f cal, 3 + f cal, 1 + f cal, 4 )
= F cal, 1 + f cal, 4 / (f cal, 2 + f cal, 3 + f cal, 1 + f cal, 4 )
= V cal
From the above-described WX (x) and WX (y), WX (x, y) can be expressed as follows.
 WX(x,y)=(Ucal×(1-Vcal)+Bcal×Vcal,Vcal
 したがって、上辺、下辺の横方向の加重割合を加味した、押圧位置AのX座標は、Ucal×(1-Vcal)+Bcal×Vcalと表すことが可能である。
WX (x, y) = (U cal × (1−V cal ) + B cal × V cal , V cal )
Therefore, the X coordinate of the pressing position A, taking into account the horizontal weight ratios of the upper side and the lower side, can be expressed as U cal × (1−V cal ) + B cal × V cal .
 また、押圧位置Aを押したときの押圧位置Aにおける各辺からの変位量WY(すなわちY座標)の取得方法について説明する。ここでは、例えば右辺及び左辺のY方向(縦方向)の荷重割合の比を加味したものである。 Further, a method for obtaining the displacement amount WY (that is, the Y coordinate) from each side at the pressing position A when the pressing position A is pressed will be described. Here, for example, the ratio of the load ratio in the Y direction (vertical direction) of the right side and the left side is taken into account.
 上述したように、左辺に係る圧力の割合を、
 Lcal=fcal,2/(fcal,1+fcal,2
 として表し、右辺に係る圧力の割合を、
 Rcal=fcal,3/(fcal,3+fcal,4
 と表すものとする。
As described above, the ratio of the pressure on the left side is
L cal = f cal, 2 / (f cal, 1 + f cal, 2 )
And the ratio of pressure on the right side,
R cal = f cal, 3 / (f cal, 3 + f cal, 4 )
It shall be expressed as
 ここで、例えば、全体に対する左辺の重さの割合と、全体に対する右辺の重さの割合とをそれぞれ以下のように表すものとする。 Here, for example, the ratio of the weight of the left side to the whole and the ratio of the weight of the right side to the whole are respectively expressed as follows.
 例えば全体に対する左辺の重さの割合を、
 Hcal=fcal+fcal,2/(fcal,1+fcal,2+fcal,3+fcal,4
 とする。左辺と右辺の重さの割合の合計を「1」とすると、右辺の重さの割合は、
 1-Hcal=fcal,3+cal,4/(fcal,1+fcal,2+fcal,3+fcal,4
 と表すことが可能である。なお、Hcalは、上述した水平方向に係る圧力の割合として説明したものと同様の式である。
For example, the ratio of the weight of the left side to the whole
H cal = f cal , 1 + f cal, 2 / (f cal, 1 + f cal, 2 + f cal, 3 + f cal, 4 )
And If the total weight ratio of the left and right sides is “1”, the weight ratio of the right side is
1-H cal = f cal, 3 + f cal, 4 / (f cal, 1 + f cal, 2 + f cal, 3 + f cal, 4 )
Can be expressed as H cal is an expression similar to that described as the ratio of the pressure in the horizontal direction described above.
 ここで、押圧位置Aを押したときの左辺の点P'(0,Lcal)に係る圧力をfcal,1+fcal,4とし、右辺の点Q'(1,Rcal)に係る圧力をfcal,3+fcal,4とする。 Here, the pressure related to the point P ′ (0, L cal ) on the left side when the pressing position A is pressed is set to f cal, 1 + f cal, 4, and the pressure related to the point Q ′ (1, R cal ) on the right side. Is f cal, 3 + f cal, 4 .
 点P'と、点Q'との重心のY座標(すなわちWYのy座標)は、上述した質量mの質点aと、質量nの質点bを内分する内分する式により、以下のように表すことが可能である。 The Y-coordinate of the center of gravity between the point P ′ and the point Q ′ (that is, the y-coordinate of WY) is expressed as follows by using an internal dividing formula that internally divides the mass point a of the mass m and the mass point b of the mass n. Can be expressed as
 WY(y)=(Lcal×(fcal,3+fcal,4)+Rcal×(fcal,1+fcal,2)/(fcal,3+fcal,4+fcal,1+fcal,2
      =(Lcal×(fcal,3+fcal,4)/(fcal,3+fcal,4+fcal,1+fcal,2)+Rcal×(fcal,1+fcal,2)/(fcal,3+fcal,4+fcal,1+fcal,2
      =Lcal×(1-Hcal)+Rcal×Hcal
 同様に、押圧位置Aを押したの変位量WYのx座標は、以下のように示すことができる。
WY (y) = (L cal × (f cal, 3 + f cal, 4 ) + R cal × (f cal, 1 + f cal, 2 ) / (f cal, 3 + f cal, 4 + f cal, 1 + f cal, 2 )
= (L cal × (f cal, 3 + f cal, 4 ) / (f cal, 3 + f cal, 4 + f cal, 1 + f cal, 2 ) + R cal × (f cal, 1 + f cal, 2 ) / (f cal, 3 + fcal, 4 + fcal, 1 + fcal, 2 )
= L cal × (1-H cal ) + R cal × H cal )
Similarly, the x coordinate of the displacement amount WY of pressing the pressing position A can be expressed as follows.
 WY(x)=(0×(fcal,3+fcal,4)+1×(fcal,1+fcal,2)/(fcal,3+fcal,4+fcal,1+fcal,2
      =fcal,1+fcal,2/(fcal,3+fcal,4+fcal,1+fcal,2
      =Hcal
 上述したWY(x)とWY(y)とから、WY(x,y)は以下のように表せる。
WY (x) = (0 × (f cal, 3 + f cal, 4 ) + 1 × (f cal, 1 + f cal, 2 ) / (f cal, 3 + f cal, 4 + f cal, 1 + f cal, 2 )
= F cal, 1 + f cal, 2 / (f cal, 3 + f cal, 4 + f cal, 1 + f cal, 2 )
= H cal
From the above-described WY (x) and WY (y), WY (x, y) can be expressed as follows.
 WY(x,y)=(Hcal,Lcal×(1-Hcal)+Rcal×Hcal
 したがって、左辺、右辺の縦方向の加重割合を加味した、押圧位置AのY座標は、Lcal×(1-Hcal)+Rcal×Hcalと表すことが可能となる。
WY (x, y) = (H cal , L cal × (1−H cal ) + R cal × H cal )
Therefore, the Y coordinate of the pressing position A, taking into account the weighting ratios in the vertical direction of the left side and the right side, can be expressed as L cal × (1−H cal ) + R cal × H cal .
 なお、上述したWX,WYは、以下のように求めても良い。 In addition, you may obtain | require WX and WY mentioned above as follows.
 例えば、WXの場合、図6に示す上辺の左端を座標(x1,y1)、下辺の左端を座標(x1,y1+1)、上辺の右端を座標(x4,y4)、下辺の右端を座標(x4、y4+1)とする。 For example, in the case of WX, the left end of the upper side shown in FIG. 6 is coordinates (x1, y1), the left end of the lower side is coordinates (x1, y1 + 1), the right end of the upper side is coordinates (x4, y4), and the right end of the lower side is coordinates (x4). , Y4 + 1).
 ここで、上述した点Pの座標を(Px,Py)とし、上辺の座標(x1,y1)から点Pまでの圧力の割合をfcal,1/(fcal,1+fcal,4)とし、点Pから上辺の座標(x4,y4)までの圧力の割合をfcal,4/(fcal,1+fcal,4)とする。 Here, the coordinates of the point P described above are (Px, Py), and the ratio of the pressure from the upper side coordinates (x1, y1) to the point P is f cal, 1 / (f cal, 1 + f cal, 4 ). The ratio of the pressure from the point P to the upper side coordinates (x4, y4) is f cal, 4 / (f cal, 1 + f cal, 4 ).
 また、上述した点Qの座標を(Qx,Qy)とし、下辺の座標(x1,y1+1)から点Qまでの圧力の割合をfcal,2/(fcal,2+fcal,3)とし、点Qから下辺の座標(x4,y4+1)までの圧力の割合をfcal,4/(fcal,2+fcal,3)とする。 Further, the coordinates of the point Q described above are (Qx, Qy), the ratio of the pressure from the lower side coordinates (x1, y1 + 1) to the point Q is f cal, 2 / (f cal, 2 + f cal, 3 ), The ratio of the pressure from the point Q to the lower side coordinate (x4, y4 + 1) is defined as f cal, 4 / (f cal, 2 + f cal, 3 ).
 このとき、Px及びQxは以下のようにそれぞれ表すことが可能である。 At this time, Px and Qx can be expressed as follows.
 Px=x1+(x4-x1)×fcal,1/(fcal,1+fcal,4
 Qx=x1+(x4-x1)×fcal,2/(fcal,2+fcal,3
 したがって、WXは以下のように表すことが可能である。
Px = x1 + (x4−x1) × f cal, 1 / (f cal, 1 + f cal, 4 )
Qx = x1 + (x4−x1) × f cal, 2 / (f cal, 2 + f cal, 3 )
Therefore, WX can be expressed as:
 WX=Px×(fcal,2+fcal,3)/(fcal,1+fcal,2+fcal,3+fcal,4)+Qx×(fcal,1+fcal,4)/(fcal,1+fcal,2+fcal,3+fcal,4
   =Px×(1-V)+Qx×V・・・(12)
 上述した式(12)は、上述した式(11)と同等の意味を示すため、上述した手法によりWXと求めることも可能である。また、WYの場合についても上述したWXの場合と同様の手法で求めることが可能である。
WX = Px × (f cal, 2 + f cal, 3 ) / (f cal, 1 + f cal, 2 + f cal, 3 + f cal, 4 ) + Qx × (f cal, 1 + f cal, 4 ) / (f cal, 1 + f cal, 2 + f cal, 3 + f cal, 4 )
= Px × (1−V) + Qx × V (12)
Since the above equation (12) has the same meaning as the above equation (11), it is also possible to obtain WX by the method described above. Also, the case of WY can be obtained by the same method as the case of WX described above.
 <変位量取得式を説明する他の例>
 更に、上述した変位量を取得する際に用いる式(8)を他の方法で説明する。例えば、図6の例で、左辺から点PまでをP(x)とし、左辺から点QまでをQ(x)とし、左辺から押圧位置AまでをX(x)とする。
<Another example explaining the displacement acquisition formula>
Furthermore, Expression (8) used when acquiring the above-described displacement amount will be described by another method. For example, in the example of FIG. 6, the left side to the point P is P (x), the left side to the point Q is Q (x), and the left side to the pressed position A is X (x).
 また、点Pから下辺に垂直に下ろした線と、左辺から押圧位置Aを通過して右辺まで垂直に下ろした線とが交わる点から押圧位置Aまでをa(x)とする。また、上辺から押圧位置Aを通過して下辺まで垂直に下ろしたときに下辺と交わる点と点Qまでをb(x)とする。 Also, let a (x) be the point from the point where a line perpendicular to the lower side from the point P and a line passing through the pressing position A from the left side and perpendicular to the right side to the pressing position A. Further, b (x) is defined as a point that intersects the lower side when passing through the pressing position A from the upper side and descending vertically to the lower side and the point Q.
 このとき、押圧位置AのX座標は、以下の方法で表すことが可能である。 At this time, the X coordinate of the pressing position A can be expressed by the following method.
 a(x):V=b(x):(1-V)とすると、
 a(x)×(1-V)=b(x)×V
           =(Q(x)-P(x)-a(x))×V
           =Q(x)×V-P(x)×V-a(x)×V
 a(x)×(1-V)+a(x)×V=Q(x)×V-P(x)×V
 a(x)-(a(x)×V)+(a(x)×V)=Q(x)×V-P(x)×V
 a(x)=Q(x)×V-P(x)×V
 すなわち、X(x)=P(x)+a(x)
          =P(x)-P(x)×V+Q(x)×V
          =P(x)×(1-V)+Q(x)×V
 又は、a(x):V=(a(x)+b(x)):1
 a(x)=(a(x)×V)+(b(x)×V)
 a(x)-(a(x)×V)=b(x)×V
              =(Q(x)-P(x)-a(x))×V
              =Q(x)×V-P(x)×V
 すなわち、X(x)=P(x)+a(x)
          =P(x)-P(x)×V+Q(x)×V
          =P(x)×(1-V)+Q(x)×V・・・(13)
 となる。
If a (x): V = b (x) :( 1-V),
a (x) × (1−V) = b (x) × V
= (Q (x) −P (x) −a (x)) × V
= Q (x) × VP (x) × Va (x) × V
a (x) × (1−V) + a (x) × V = Q (x) × V−P (x) × V
a (x) − (a (x) × V) + (a (x) × V) = Q (x) × V−P (x) × V
a (x) = Q (x) × VP (x) × V
That is, X (x) = P (x) + a (x)
= P (x) -P (x) * V + Q (x) * V
= P (x) × (1-V) + Q (x) × V
Or, a (x): V = (a (x) + b (x)): 1
a (x) = (a (x) × V) + (b (x) × V)
a (x) − (a (x) × V) = b (x) × V
= (Q (x) −P (x) −a (x)) × V
= Q (x) x VP (x) x V
That is, X (x) = P (x) + a (x)
= P (x) -P (x) * V + Q (x) * V
= P (x) × (1−V) + Q (x) × V (13)
It becomes.
 上述した式(13)は、上述した式(11)、式(12)と同等の意味を示すため、上述した手法によりWXと求めることが可能である。また、WYの場合についても上述したWXの場合と同様の手法で求めることが可能である。 Since the above-described equation (13) has the same meaning as the above-described equations (11) and (12), it can be obtained as WX by the above-described method. Also, the case of WY can be obtained by the same method as the case of WX described above.
 本実施形態では、上述した変位量を取得する式を用いて、例えばユーザにより押圧されたときの押圧位置における各辺からの変位量WX、WYを求めることで、押圧位置を判定することが可能となる。 In the present embodiment, the pressing position can be determined by obtaining the displacement amounts WX and WY from each side at the pressing position when pressed by the user, for example, using the above-described equation for obtaining the displacement amount. It becomes.
 <押圧位置判定処理の流れ>
 次に、上述したパネル22(すなわち補正対象領域)がユーザにより押圧されたときの押圧位置判定処理について説明する。図7は、本実施形態に係る押圧位置判定処理の流れを示すフローチャートである。図7のS21~S26までの処理は、図5のS12~S13、S15~S18までの処理で用いた方法により実行される。
<Pressing position determination process flow>
Next, a pressing position determination process when the above-described panel 22 (that is, the correction target area) is pressed by the user will be described. FIG. 7 is a flowchart showing the flow of the pressed position determination process according to the present embodiment. The processing from S21 to S26 in FIG. 7 is executed by the method used in the processing from S12 to S13 and S15 to S18 in FIG.
 なお、図5の処理は矩形上での座標を設定するために、矩形上の所定位置(例えば等間隔で区切られた25カ所)に所定の重りを載せることで、所定位置を押圧したときの変位量を求めていくのに対し、図7の処理はユーザが押圧したときの4つの歪ゲージ23-1~23-4から得られる出力値に基づいて変位量を求める点で異なる。 The processing in FIG. 5 is performed when a predetermined position is pressed by placing predetermined weights at predetermined positions on the rectangle (for example, 25 places divided at equal intervals) in order to set coordinates on the rectangle. While the amount of displacement is obtained, the processing of FIG. 7 differs in that the amount of displacement is obtained based on output values obtained from the four strain gauges 23-1 to 23-4 when the user presses.
 図7に示すように、実際の計測時には、ユーザによる押圧を検知すると、出力割合取得手段34により、歪ゲージ23-1~23-4の出力値それぞれから、図5のS10の処理で取得したゼロ値データaを引いて、ゼロ値補正した出力値dcalを取得する(S21)。 As shown in FIG. 7, when a user's press is detected during actual measurement, the output ratio acquisition means 34 acquires the output values of the strain gauges 23-1 to 23-4 in the process of S10 of FIG. The zero value data a is subtracted to obtain the zero value corrected output value d cal (S21).
 次に、出力割合取得手段24は、S21の処理で取得した4つの出力値dcalから合計出力値Dcalを求め、合計出力値Dcalに対する歪ゲージ23-1~23-4のそれぞれの出力値の割合である個別出力割合ecalを取得する(S22)。 Next, the output ratio acquisition means 24 obtains the total output value D cal from the four output values d cal acquired in the process of S21, and outputs each of the strain gauges 23-1 to 23-4 with respect to the total output value D cal . An individual output ratio e cal which is a ratio of values is acquired (S22).
 次に、出力割合取得手段34は、歪ゲージ23-1~23-4の個別出力割合ecalのうち最大値と最小値とを求め、最大値と最小値とがそれぞれの所定の値(例えば「100」、「0」)となるように、上述した図5のS14の処理で求めた校正値Valcalを用いて校正し、校正した値fcalを取得する(S23)。 Next, the output ratio acquisition means 34 obtains the maximum value and the minimum value among the individual output ratios e cal of the strain gauges 23-1 to 23-4, and the maximum value and the minimum value are set to respective predetermined values (for example, (100), “0”) is calibrated using the calibration value Val cal obtained by the process of S14 of FIG. 5 described above, and a calibrated value f cal is obtained (S23).
 次に、各辺圧力取得手段35は、S23の処理で取得した4つの校正値Valcalを用いて、各辺に係る圧力の割合Ucal、Bcal、Lcal、Rcalを求める(S24)。 Next, each side pressure acquisition means 35 obtains the pressure ratios U cal , B cal , L cal , and R cal related to each side using the four calibration values Val cal acquired in the process of S23 (S24). .
 次に、垂直水平方向圧力取得手段36は、垂直方向に係る圧力の割合Vcal又は水平方向に係る圧力の割合Hcalを求める(S25)。 Next, the vertical / horizontal pressure acquisition unit 36 obtains the pressure ratio V cal in the vertical direction or the pressure ratio H cal in the horizontal direction (S25).
 次に、変位量取得手段37により、各辺からの変位量WXcal、WYcalを取得する(S26)。 Next, displacement amounts WX cal and WY cal from each side are obtained by the displacement amount obtaining unit 37 (S26).
 次に、押圧位置判定手段39は、図5の処理で予め取得した座標補正量(例えば、基準点calXval、calXval、分解能calXscale、calYscale)を用いて、S26の処理で取得した各辺からの変位量WXcal、WYcalを校正し、校正値Xp、Ypを求める(S27)。なお、押圧位置判定手段39は、校正値Xp、Ypを、例えば以下の式(14)を用いて取得すると良い。 Next, the pressing position determination unit 39 uses the coordinate correction amounts (for example, the reference points calXval, calXval, resolution calXscale, calYscale) acquired in advance in the process of FIG. 5 to determine the displacement from each side acquired in the process of S26. The amounts WX cal and WY cal are calibrated to obtain calibration values Xp and Yp (S27). The pressing position determination unit 39 may acquire the calibration values Xp and Yp using, for example, the following formula (14).
Figure JPOXMLDOC01-appb-M000008
 次に、押圧位置判定手段39は、校正値Xp、Ypをパネル22の中央座標からの変位とするため、所定の値(例えば対角線上を100分割した場合には、「50」)からの差分を求め、位置オフセット値calXposOffset、calYposOffsetを取得する(S28)。
Figure JPOXMLDOC01-appb-M000008
Next, the pressing position determination means 39 uses the difference from a predetermined value (for example, “50” when the diagonal line is divided into 100) in order to set the calibration values Xp and Yp as displacements from the center coordinates of the panel 22. The position offset values calXposOffset and calYposOffset are obtained (S28).
 なお、押圧位置判定手段39は、例えば位置オフセット値calXposOffset、calYposOffsetを以下の式(15)を用いて取得すると良い。 Note that the pressed position determination unit 39 may acquire, for example, the position offset values calXposOffset and calYposOffset using the following equation (15).
Figure JPOXMLDOC01-appb-M000009
 次に、位置オフセット値calXposOffset、calYposOffsetを加算することで、押圧位置としての座標Xpos、Yposを取得する(S29)。なお、押圧位置判定手段39は、座標Xpos、Yposを以下の式(16)により判定すると良い。
Figure JPOXMLDOC01-appb-M000009
Next, by adding the position offset values calXposOffset and calYposOffset, the coordinates Xpos and Ypos as the pressed positions are acquired (S29). Note that the pressed position determination means 39 may determine the coordinates Xpos and Ypos by the following equation (16).
Figure JPOXMLDOC01-appb-M000010
 このように、予め出荷時のセンサキャリブレーションで得られた座標を設定するための座標補正量を用いて、計測時におけるユーザにより押圧されたパネル22上の押圧位置を判定すると良い。
Figure JPOXMLDOC01-appb-M000010
As described above, it is preferable to determine the pressing position on the panel 22 pressed by the user at the time of measurement using the coordinate correction amount for setting the coordinates obtained by sensor calibration at the time of shipment in advance.
 上述したように、本実施形態によれば、パネル上の押圧位置を精度良く検出することが可能となる。 As described above, according to the present embodiment, it is possible to accurately detect the pressed position on the panel.
 以上、本発明の好ましい実施例について詳述したが、本発明に係る特定の実施形態に限定されるものではなく、特許請求の範囲に記載された本発明の要旨の範囲内において、種々の変形、変更が可能である。 The preferred embodiments of the present invention have been described in detail above. However, the present invention is not limited to the specific embodiments according to the present invention, and various modifications may be made within the scope of the gist of the present invention described in the claims. Can be changed.
 本願は2013年1月29日に出願した日本国特許出願第2013-014820号に基づきその優先権を主張するものであり、同日本国出願の全内容を参照することにより本願に援用する。 This application claims priority based on Japanese Patent Application No. 2013-014820 filed on January 29, 2013, and is incorporated herein by reference in its entirety.
10 座標入力装置
20 センサ部
21 筐体部
22 パネル
23 歪ゲージ
30 PC
31 入力手段
32 出力手段
33 記憶手段
34 出力割合取得手段
35 各辺圧力取得手段
36 垂直水平方向圧力取得手段
37 変位量取得手段
38 座標補正量取得手段
39 押圧位置判定手段
40 制御手段
41 入力装置
42 出力装置
43 ドライブ装置
44 補助記憶装置
45 メモリ装置
46 CPU
47 ネットワーク接続装置
48 記憶媒体
DESCRIPTION OF SYMBOLS 10 Coordinate input device 20 Sensor part 21 Case part 22 Panel 23 Strain gauge 30 PC
31 Input means 32 Output means 33 Storage means 34 Output ratio acquisition means 35 Each side pressure acquisition means 36 Vertical horizontal direction pressure acquisition means 37 Displacement amount acquisition means 38 Coordinate correction amount acquisition means 39 Pressed position determination means 40 Control means 41 Input device 42 Output device 43 Drive device 44 Auxiliary storage device 45 Memory device 46 CPU
47 Network connection device 48 Storage medium

Claims (21)

  1.  パネルの所定位置に配置された4つの圧力センサと、
     前記4つの圧力センサにより得られる出力値を合計し、前記圧力センサごとに、前記合計した出力値に対する前記圧力センサの出力値の割合をそれぞれ求め、求めた出力値の割合を、前記圧力センサごとの個別出力割合として取得する出力割合取得手段と、
     前記出力割合取得手段により得られた前記圧力センサごとの個別出力割合と予め取得した座標補正量とを用いて、前記パネルに対する押圧位置を判定する押圧位置判定手段とを有することを特徴とする座標入力装置。
    Four pressure sensors arranged at predetermined positions on the panel;
    The output values obtained by the four pressure sensors are summed, and the ratio of the output value of the pressure sensor to the summed output value is obtained for each pressure sensor, and the ratio of the obtained output value is determined for each pressure sensor. Output ratio acquisition means for acquiring as an individual output ratio,
    Coordinates having pressing position determination means for determining a pressing position with respect to the panel using the individual output ratio for each of the pressure sensors obtained by the output ratio acquisition means and the coordinate correction amount acquired in advance. Input device.
  2.  それぞれが前記4つの圧力センサのうち2つの圧力センサを端部とする4つの辺により矩形を形成し、各辺の両端に配置された2つの圧力センサの個別出力割合の合計に対する前記2つの圧力センサそれぞれの個別出力割合を用いて、前記矩形の各辺に係る圧力の割合をそれぞれ求める各辺圧力取得手段を有することを特徴とする請求項1に記載の座標入力装置。 The two pressures with respect to the total of the individual output ratios of the two pressure sensors, each of which forms a rectangle with four sides having the two pressure sensors as ends in the four pressure sensors. The coordinate input device according to claim 1, further comprising each side pressure acquisition unit that obtains a ratio of a pressure related to each side of the rectangle using an individual output ratio of each sensor.
  3.  前記各辺圧力取得手段により得られた前記矩形の上辺及び下辺、又は前記矩形の左辺及び右辺に係る圧力の割合を用いて、前記矩形の垂直方向又は水平方向に係る圧力の割合をそれぞれ求める垂直水平方向圧力取得手段を有することを特徴とする請求項2に記載の座標入力装置。 Using the ratios of pressures related to the upper and lower sides of the rectangle or the left and right sides of the rectangle obtained by the respective side pressure acquisition means, the verticals for determining the ratios of pressures related to the vertical direction or the horizontal direction of the rectangles, respectively. The coordinate input device according to claim 2, further comprising a horizontal pressure acquisition unit.
  4.  前記各辺に係る圧力の割合と、前記垂直水平方向圧力取得手段により得られた垂直方向又は水平方向に係る圧力の割合とを用いて、前記押圧位置の前記各辺からの変位量を取得する変位量取得手段を有することを特徴とする請求項3に記載の座標入力装置。 The amount of displacement of the pressing position from each side is acquired using the ratio of pressure related to each side and the ratio of pressure related to the vertical direction or horizontal direction obtained by the vertical and horizontal direction pressure acquisition means. The coordinate input device according to claim 3, further comprising a displacement amount acquisition unit.
  5.  前記変位量取得手段により得られた前記各辺上で予め設定された複数の押圧位置における前記各辺からの変位量の平均値を用いて、前記矩形上の座標を設定するための座標補正量を取得する座標補正量取得手段を有することを特徴とする請求項4に記載の座標入力装置。 A coordinate correction amount for setting coordinates on the rectangle using an average value of displacement amounts from the sides at a plurality of preset pressing positions obtained on the sides obtained by the displacement amount acquisition unit. 5. The coordinate input device according to claim 4, further comprising coordinate correction amount acquisition means for acquiring.
  6.  前記押圧位置判定手段は、
     前記変位量取得手段により得られた前記押圧位置の前記各辺からの変位量と、前記座標補正量取得手段により得られた座標補正量とを用いて、前記パネルを押圧したときの前記押圧位置を判定することを特徴とする請求項5に記載の座標入力装置。
    The pressing position determining means includes
    The pressing position when the panel is pressed using the displacement amount from each side of the pressing position obtained by the displacement amount obtaining unit and the coordinate correction amount obtained by the coordinate correction amount obtaining unit. The coordinate input device according to claim 5, wherein the coordinate input device is determined.
  7.  前記出力割合取得手段は、
     前記圧力センサの個別出力割合の最大値又は最小値が所定の値となるように、前記個別出力割合を調整することを特徴とする請求項1に記載の座標入力装置。
    The output ratio acquisition means includes
    The coordinate input device according to claim 1, wherein the individual output ratio is adjusted so that a maximum value or a minimum value of the individual output ratio of the pressure sensor becomes a predetermined value.
  8.  コンピュータにより実行される座標入力方法であって、
     パネルの所定位置に配置された4つの圧力センサにより得られる出力値を合計し、前記圧力センサごとに、前記合計した出力値に対する前記圧力センサの出力値の割合をそれぞれ求め、求めた出力値の割合を、前記圧力センサごとの個別出力割合として取得する出力割合取得手順と、
     前記出力割合取得手順により得られた前記圧力センサごとの個別出力割合と予め取得した座標補正量とを用いて、前記パネルに対する押圧位置を判定する押圧位置判定手順とを有することを特徴とする座標入力方法。
    A coordinate input method executed by a computer,
    The output values obtained by the four pressure sensors arranged at predetermined positions on the panel are summed up, and for each of the pressure sensors, the ratio of the output value of the pressure sensor to the summed output value is obtained, respectively. An output ratio acquisition procedure for acquiring a ratio as an individual output ratio for each pressure sensor;
    Coordinates having a pressing position determination procedure for determining a pressing position with respect to the panel using an individual output ratio for each of the pressure sensors obtained by the output ratio acquisition procedure and a coordinate correction amount acquired in advance. input method.
  9.  それぞれが前記4つの圧力センサのうち2つの圧力センサを端部とする4つの辺により矩形を形成し、各辺の両端に配置された2つの圧力センサの個別出力割合の合計に対する前記2つの圧力センサそれぞれの個別出力割合を用いて、前記矩形の各辺に係る圧力の割合をそれぞれ求める各辺圧力取得手順を有することを特徴とする請求項8に記載の座標入力方法。 The two pressures with respect to the total of the individual output ratios of the two pressure sensors, each of which forms a rectangle with four sides having the two pressure sensors as ends in the four pressure sensors. The coordinate input method according to claim 8, further comprising a side pressure acquisition procedure for respectively obtaining a pressure ratio for each side of the rectangle by using an individual output ratio of each sensor.
  10.  前記各辺圧力取得手順により得られた前記矩形の上辺及び下辺、又は前記矩形の左辺及び右辺に係る圧力の割合を用いて、前記矩形の垂直方向又は水平方向に係る圧力の割合をそれぞれ求める垂直水平方向圧力取得手順を有することを特徴とする請求項9に記載の座標入力方法。 Using the ratios of pressures related to the upper and lower sides of the rectangle or the left and right sides of the rectangle obtained by the respective side pressure acquisition procedures, the vertical ratios for obtaining the vertical and horizontal ratios of the rectangles are obtained. The coordinate input method according to claim 9, further comprising a horizontal pressure acquisition procedure.
  11.  前記各辺に係る圧力の割合と、前記垂直水平方向圧力取得手順により得られた垂直方向又は水平方向に係る圧力の割合とを用いて、前記押圧位置の前記各辺からの変位量を取得する変位量取得手順を有することを特徴とする請求項10に記載の座標入力方法。 The amount of displacement of the pressing position from each side is acquired using the ratio of pressure related to each side and the ratio of pressure related to the vertical direction or horizontal direction obtained by the vertical and horizontal direction pressure acquisition procedure. The coordinate input method according to claim 10, further comprising a displacement amount acquisition procedure.
  12.  前記変位量取得手順により得られた前記各辺上で予め設定された複数の押圧位置における変位量の平均値を用いて、前記矩形上の座標を設定するための座標補正量を取得する座標補正量取得手順を有することを特徴とする請求項11に記載の座標入力方法。 Coordinate correction for acquiring a coordinate correction amount for setting coordinates on the rectangle using an average value of displacement amounts at a plurality of preset pressing positions on each side obtained by the displacement amount acquisition procedure. The coordinate input method according to claim 11, further comprising a quantity acquisition procedure.
  13.  前記押圧位置判定手順は、
     前記変位量取得手順により得られた前記押圧位置の前記各辺からの変位量と、前記座標補正量取得手順により得られた座標補正量とを用いて、前記パネルを押圧したときの押圧位置を判定することを特徴とする請求項12に記載の座標入力方法。
    The pressing position determination procedure includes:
    Using the displacement amount from each side of the pressing position obtained by the displacement amount acquisition procedure and the coordinate correction amount obtained by the coordinate correction amount acquisition procedure, the pressing position when pressing the panel The coordinate input method according to claim 12, wherein the determination is performed.
  14.  前記出力割合取得手順は、
     前記圧力センサの個別出力割合の最大値又は最小値が所定の値となるように、前記個別出力割合を調整することを特徴とする請求項8に記載の座標入力方法。
    The output ratio acquisition procedure is:
    The coordinate input method according to claim 8, wherein the individual output ratio is adjusted so that a maximum value or a minimum value of the individual output ratio of the pressure sensor becomes a predetermined value.
  15.  座標入力方法をコンピュータに実行させるプログラムを格納した、コンピュータ読み取り可能な記憶媒体であって、前記座標入力方法は、
     パネルの所定位置に配置された4つの圧力センサにより得られる出力値を合計し、前記圧力センサごとに、前記合計した出力値に対する前記圧力センサの出力値の割合をそれぞれ求め、求めた出力値の割合を、前記圧力センサごとの個別出力割合として取得する出力割合取得手順と、
     前記出力割合取得手順により得られた前記圧力センサごとの個別出力割合と予め取得した座標補正量とを用いて、前記パネルに対する押圧位置を判定する押圧位置判定手順とを有することを特徴とする記憶媒体。
    A computer-readable storage medium storing a program for causing a computer to execute a coordinate input method, wherein the coordinate input method includes:
    The output values obtained by the four pressure sensors arranged at predetermined positions on the panel are summed up, and for each of the pressure sensors, the ratio of the output value of the pressure sensor to the summed output value is obtained, respectively. An output ratio acquisition procedure for acquiring a ratio as an individual output ratio for each pressure sensor;
    And a pressing position determination procedure for determining a pressing position with respect to the panel using the individual output ratio for each of the pressure sensors obtained by the output ratio acquisition procedure and the coordinate correction amount acquired in advance. Medium.
  16.  前記座標入力方法は、それぞれが前記4つの圧力センサのうち2つの圧力センサを端部とする4つの辺により矩形を形成し、各辺の両端に配置された2つの圧力センサの個別出力割合の合計に対する前記2つの圧力センサそれぞれの個別出力割合を用いて、前記矩形の各辺に係る圧力の割合をそれぞれ求める各辺圧力取得手順を有することを特徴とする請求項15に記載の記憶媒体。 In the coordinate input method, each of the four pressure sensors forms a rectangle with four sides having two pressure sensors as end portions, and the individual output ratios of the two pressure sensors arranged at both ends of each side. The storage medium according to claim 15, further comprising a side pressure acquisition procedure for respectively obtaining a ratio of pressure related to each side of the rectangle by using an individual output ratio of each of the two pressure sensors with respect to the total.
  17.  前記座標入力方法は、前記各辺圧力取得手順により得られた前記矩形の上辺及び下辺、又は前記矩形の左辺及び右辺に係る圧力の割合を用いて、前記矩形の垂直方向又は水平方向に係る圧力の割合をそれぞれ求める垂直水平方向圧力取得手順を有することを特徴とする請求項16に記載の記憶媒体。 The coordinate input method uses the ratio of the pressure related to the upper and lower sides of the rectangle or the left and right sides of the rectangle obtained by the respective side pressure acquisition procedure, and the pressure related to the vertical or horizontal direction of the rectangle. The storage medium according to claim 16, further comprising a vertical and horizontal direction pressure acquisition procedure for obtaining the ratio of each of the ratios.
  18.  前記座標入力方法は、前記各辺に係る圧力の割合と、前記垂直水平方向圧力取得手順により得られた垂直方向又は水平方向に係る圧力の割合とを用いて、前記押圧位置の前記各辺からの変位量を取得する変位量取得手順を有することを特徴とする請求項17に記載の記憶媒体。 The coordinate input method uses the ratio of the pressure related to each side and the ratio of the pressure related to the vertical direction or the horizontal direction obtained by the vertical and horizontal direction pressure acquisition procedure, from each side of the pressing position. The storage medium according to claim 17, further comprising a displacement amount acquisition procedure for acquiring a displacement amount.
  19.  前記座標入力方法は、前記変位量取得手順により得られた前記各辺上で予め設定された複数の押圧位置における変位量の平均値を用いて、前記矩形上の座標を設定するための座標補正量を取得する座標補正量取得手順を有することを特徴とする請求項18に記載の記憶媒体。 The coordinate input method uses coordinate correction for setting coordinates on the rectangle using an average value of displacement amounts at a plurality of preset pressing positions on the sides obtained by the displacement amount acquisition procedure. The storage medium according to claim 18, further comprising a coordinate correction amount acquisition procedure for acquiring the amount.
  20.  前記押圧位置判定手順は、
     前記変位量取得手順により得られた前記押圧位置の前記各辺からの変位量と、前記座標補正量取得手順により得られた座標補正量とを用いて、前記パネルを押圧したときの押圧位置を判定することを特徴とする請求項19に記載の記憶媒体。
    The pressing position determination procedure includes:
    Using the displacement amount from each side of the pressing position obtained by the displacement amount acquisition procedure and the coordinate correction amount obtained by the coordinate correction amount acquisition procedure, the pressing position when pressing the panel The storage medium according to claim 19, wherein the storage medium is determined.
  21.  前記出力割合取得手順は、
     前記圧力センサの個別出力割合の最大値又は最小値が所定の値となるように、前記個別出力割合を調整することを特徴とする請求項15に記載の記憶媒体。
    The output ratio acquisition procedure is:
    The storage medium according to claim 15, wherein the individual output ratio is adjusted so that a maximum value or a minimum value of the individual output ratio of the pressure sensor becomes a predetermined value.
PCT/JP2014/051579 2013-01-29 2014-01-24 Coordinate input device, coordinate input method, and storage medium WO2014119490A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013014820A JP5616987B2 (en) 2013-01-29 2013-01-29 Coordinate input device, coordinate input method, and coordinate input program
JP2013-014820 2013-01-29

Publications (1)

Publication Number Publication Date
WO2014119490A1 true WO2014119490A1 (en) 2014-08-07

Family

ID=51262205

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/051579 WO2014119490A1 (en) 2013-01-29 2014-01-24 Coordinate input device, coordinate input method, and storage medium

Country Status (3)

Country Link
JP (1) JP5616987B2 (en)
TW (1) TW201435680A (en)
WO (1) WO2014119490A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS616727A (en) * 1984-06-20 1986-01-13 Nec Home Electronics Ltd Position calibrating method for coordinate input device
JPS62172420A (en) * 1986-01-21 1987-07-29 インタ−ナショナル ビジネス マシ−ンズ コ−ポレ−ション Calibration of data input unit
JP2010225031A (en) * 2009-03-25 2010-10-07 Mitsubishi Electric Corp Coordinate input display
JP2012068836A (en) * 2010-09-22 2012-04-05 Denso Corp Touch position detection circuit of touch panel display

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS616727A (en) * 1984-06-20 1986-01-13 Nec Home Electronics Ltd Position calibrating method for coordinate input device
JPS62172420A (en) * 1986-01-21 1987-07-29 インタ−ナショナル ビジネス マシ−ンズ コ−ポレ−ション Calibration of data input unit
JP2010225031A (en) * 2009-03-25 2010-10-07 Mitsubishi Electric Corp Coordinate input display
JP2012068836A (en) * 2010-09-22 2012-04-05 Denso Corp Touch position detection circuit of touch panel display

Also Published As

Publication number Publication date
JP2014146198A (en) 2014-08-14
JP5616987B2 (en) 2014-10-29
TW201435680A (en) 2014-09-16

Similar Documents

Publication Publication Date Title
KR100803607B1 (en) Touch sensor unit and method for controlling sensitivity of the same
CN107466391B (en) Force sensitive touch sensor compensation
JP5821322B2 (en) Detection device, electronic device and robot
JP5810923B2 (en) Input device and touch position calculation method
EP2413221B1 (en) Coordinate input display device
US20140020961A1 (en) Portable electronic device having weighing function and electronic weighing system using same
KR20120086055A (en) Touch screen apparatus detecting pressure of touching and electronic apparatus having thereof
JP5898779B2 (en) INPUT DEVICE AND METHOD FOR DETECTING MULTI-POINT LOAD USING THE INPUT DEVICE
JP2006331109A5 (en)
JP5506982B1 (en) Touch input device, touch input correction method, and computer program
US20170234721A1 (en) Scale assembly
WO2019042004A1 (en) Weighting method and storage medium thereof
WO2014073586A1 (en) Touch panel system
JP3621091B1 (en) Center of gravity shaking inspection system and center of gravity shaking inspection program
WO2014119490A1 (en) Coordinate input device, coordinate input method, and storage medium
JP5487350B1 (en) Touch input device, input detection method, and computer program
US20140139434A1 (en) Input device, input system, information processing system, computer-readable storage medium having stored thereon information processing program, and information processing method
CN105843418A (en) Pointing device, keyboard assembly, and portable computer
JP5538596B1 (en) Touch input device, touch input device input detection method, and computer program
US20100328211A1 (en) Input device, terminal equipped with the same, and inputting method
JP2006312029A (en) Support device for gait training
KR101347180B1 (en) Touch panel based on pressing force
JP5124774B2 (en) Pointing device and control method thereof
CN110347235B (en) Electronic device and frequency reduction method thereof
JP5458196B2 (en) Application operation evaluation apparatus, application operation evaluation method, and application operation evaluation program

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14746883

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14746883

Country of ref document: EP

Kind code of ref document: A1