WO2014119185A1 - Method for producing acetaldehyde - Google Patents

Method for producing acetaldehyde Download PDF

Info

Publication number
WO2014119185A1
WO2014119185A1 PCT/JP2013/084504 JP2013084504W WO2014119185A1 WO 2014119185 A1 WO2014119185 A1 WO 2014119185A1 JP 2013084504 W JP2013084504 W JP 2013084504W WO 2014119185 A1 WO2014119185 A1 WO 2014119185A1
Authority
WO
WIPO (PCT)
Prior art keywords
acetaldehyde
acetic acid
absorption
containing solvent
condensate
Prior art date
Application number
PCT/JP2013/084504
Other languages
French (fr)
Japanese (ja)
Inventor
齋藤玲
Original Assignee
株式会社ダイセル
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ダイセル filed Critical 株式会社ダイセル
Publication of WO2014119185A1 publication Critical patent/WO2014119185A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C45/00Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds
    • C07C45/51Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by pyrolysis, rearrangement or decomposition

Definitions

  • the present invention relates to a method for producing acetaldehyde from acetic acid.
  • This application claims the priority of Japanese Patent Application No. 2013-015470 for which it applied to Japan on January 30, 2013, and uses the content here.
  • Patent Document 1 discloses a hydrogenation step of acetic acid in which acetic acid is hydrogenated to produce acetaldehyde and other products, acetaldehyde using a solvent containing acetic acid from a partial gaseous product containing acetaldehyde obtained in the above step.
  • An acetaldehyde-absorbing solution obtained in the above step, subjected to distillation to separate acetaldehyde from unreacted acetic acid and other products, an unreacted product obtained in the above step A method for producing acetaldehyde is disclosed which comprises subjecting a mixture of acetic acid and other products to azeotropic distillation to separate acetic acid from other products.
  • an object of the present invention is to provide a method for industrially efficiently producing acetaldehyde from acetic acid while reducing energy consumption.
  • the present inventor has previously condensed a gaseous reaction product containing acetaldehyde obtained by the hydrogenation reaction of acetic acid to some extent by a condenser, and then absorbed uncondensed gas into an absorption tower.
  • a gaseous reaction product containing acetaldehyde obtained by the hydrogenation reaction of acetic acid to some extent by a condenser
  • absorbed uncondensed gas into an absorption tower.
  • the present invention is a method for producing acetaldehyde from acetic acid, in which a gaseous reaction product obtained by hydrogenating acetic acid is supplied to a condenser to obtain a condensate and an uncondensed gas (A).
  • the absorption step (B) in which the non-condensable gas obtained in the condensation step (A) is brought into contact with an acetic acid-containing solvent to absorb acetaldehyde in the non-condensed gas into the acetic acid-containing solvent, and obtained in the condensation step (A).
  • a method for producing acetaldehyde is provided.
  • the charging position of the acetaldehyde absorbing liquid obtained in the absorption step (B) to the distillation column is the charging position of the condensate obtained in the condensation step (A). It is preferable that it is on the tower bottom side.
  • a method for producing acetaldehyde from acetic acid comprising a condensation step (A) in which a gaseous reaction product obtained by hydrogenating acetic acid is supplied to a condenser to obtain a condensate and an uncondensed gas, the condensation An absorption step (B) in which the uncondensed gas obtained in the step (A) is brought into contact with an acetic acid-containing solvent to absorb acetaldehyde in the uncondensed gas into the acetic acid-containing solvent, and the condensate obtained in the condensing step (A) And an acetaldehyde purification step (C) for separating the acetaldehyde from unconverted acetic acid and by-product water by distillation of the acetaldehyde-absorbing solution obtained in the absorption step (B).
  • a method for producing acetaldehyde (2) As an acetic acid-containing solvent used in the absorption step (B), a mixed solution containing unconverted acetic acid and by-product water separated in the acetaldehyde purification step (C) is used. Production method. (3) In the acetaldehyde purification step (C), the charging position of the acetaldehyde absorption liquid obtained in the absorption step (B) to the distillation column is the charging of the condensate obtained in the condensation step (A) to the distillation column.
  • a gaseous reaction product containing acetaldehyde obtained from the reaction system is supplied to a condenser in advance to condense a part of acetaldehyde, so that it is used to absorb acetaldehyde in an absorption step.
  • the amount of acetic acid-containing solvent can be reduced, and accordingly, the distillation load in the acetaldehyde purification process can be greatly reduced. For this reason, acetaldehyde can be industrially efficiently produced from acetic acid without using much energy.
  • FIG. 1 It is a schematic flowchart which shows an example of the manufacturing method of the acetaldehyde of this invention.
  • 3 is a schematic flow diagram showing a method for producing acetaldehyde shown in Comparative Example 1.
  • FIG. 1 It is a schematic flowchart which shows an example of the manufacturing method of the acetaldehyde of this invention.
  • 3 is a schematic flow diagram showing a method for producing acetaldehyde shown in Comparative Example 1.
  • the production method of the present invention is a method for producing acetaldehyde from acetic acid, which comprises supplying a gaseous reaction product obtained by hydrogenating acetic acid to a condenser to obtain a condensate and an uncondensed gas (A ), An absorption step (B) in which the uncondensed gas obtained in the condensation step (A) is brought into contact with an acetic acid-containing solvent to absorb acetaldehyde in the uncondensed gas into the acetic acid-containing solvent, and obtained in the condensation step (A).
  • the condensed liquid obtained and the acetaldehyde absorbing liquid obtained in the absorption step (B) are subjected to distillation to at least include an acetaldehyde purification step (C) for separating acetaldehyde from unconverted acetic acid and by-product water. .
  • condensation step (A) In the condensation step (A), a gaseous reaction product obtained by hydrogenating acetic acid is supplied to a condenser to obtain a condensed liquid and an uncondensed gas.
  • Hydrogenation of acetic acid can be performed by a known method. For example, acetic acid is reacted with hydrogen in the presence of a catalyst. When acetic acid and hydrogen are reacted, acetaldehyde and water are produced. Usually, by-products such as ethanol, acetone, and ethyl acetate are by-produced.
  • the catalyst is not particularly limited as long as it generates acetaldehyde by hydrogenation of acetic acid.
  • metal oxides such as iron oxide, germanium oxide, tin oxide, vanadium oxide, and zinc oxide can be used. .
  • noble metals such as palladium and platinum
  • the amount of the precious metal added is, for example, about 0.5 to 90% by weight with respect to the whole catalyst.
  • a preferable catalyst is iron oxide to which a noble metal such as palladium or platinum is added.
  • the catalyst Before the catalyst is used for hydrogenation of acetic acid, the catalyst may be subjected to a reduction treatment by, for example, contacting with hydrogen in advance. The reduction treatment is performed, for example, under conditions of 50 to 500 ° C. and 0.1 to 5 MPa.
  • the reaction temperature is, for example, 250 to 400 ° C, preferably 270 to 350 ° C. If the reaction temperature is too low, by-products such as ethanol increase, and if the reaction temperature is too high, by-products such as acetone increase, and in either case, the selectivity for acetaldehyde tends to decrease.
  • the reaction pressure may be normal pressure, reduced pressure, or increased pressure, but is generally in the range of 0.1 to 10 MPa, preferably 0.1 to 3 MPa.
  • the conversion rate of acetic acid in the reactor is desirably 50% or less (for example, 5 to 50%).
  • by-products ethanol, ethyl acetate, etc.
  • Gaseous reaction product mainly composed of unconverted acetic acid, unconverted hydrogen, acetaldehyde generated by reaction, water, and other products (ethanol, ethyl acetate, acetone, etc.) by reaction of acetic acid and hydrogen Is obtained.
  • the gaseous reaction product thus obtained is not immediately supplied to the absorption tower, but before that, it is supplied to a condenser to obtain a condensed liquid and an uncondensed gas.
  • the amount of acetaldehyde supplied to the next absorption step (B) can be reduced, and thus the amount of acetic acid-containing solvent used for acetaldehyde absorption in the absorption step (B) can be reduced.
  • the load on the distillation column in the acetaldehyde purification step (C) is reduced. Therefore, the energy consumption of the entire purification system can be reduced.
  • the condenser is not particularly limited, and a condenser generally used for gas condensation can be used.
  • the condensation temperature in the condenser is, for example, 0 to 50 ° C., preferably 0 to 20 ° C.
  • the pressure in the condenser is not particularly limited, but is usually 0.1 to 10 MPa, preferably 0.1 to 3 MPa.
  • the pressure in the condenser is preferably the same or nearly the same as the reaction pressure.
  • condensation step (A) a condensate mainly composed of unconverted acetic acid, acetaldehyde and water (usually including other products such as ethanol) and an uncondensed gas mainly composed of hydrogen and acetaldehyde are obtained. .
  • absorption step (B) In the absorption step (B), the non-condensed gas obtained in the condensation step (A) is brought into contact with the acetic acid-containing solvent to absorb the acetaldehyde in the non-condensed gas into the acetic acid-containing solvent. This step is usually performed by supplying the uncondensed gas obtained in the condensation step (A) and the acetic acid-containing solvent to the absorption tower and bringing them into contact with each other in the absorption tower.
  • the acetic acid-containing solvent a mixed solution containing acetic acid and water separated in the acetaldehyde purification step (C) described later can be used.
  • the mixed liquid containing acetic acid and water is obtained, for example, as a bottom liquid from the bottom of the distillation column (acetaldehyde purification column).
  • the acetic acid content in the acetic acid-containing solvent is, for example, 50 to 90% by weight, preferably 60 to 80% by weight.
  • the number of stages (theoretical stage number) of the absorption tower is, for example, 3 to 30, preferably 5 to 20.
  • an acetaldehyde absorption liquid (usually including other products such as ethanol) mainly composed of acetaldehyde, acetic acid and water and an unabsorbed gas mainly composed of hydrogen are obtained.
  • the recovered hydrogen can be recycled to the reaction system.
  • acetaldehyde purification step (C) In the acetaldehyde purification step (C), the condensate obtained in the condensation step (A) and the acetaldehyde absorption solution obtained in the absorption step (B) are subjected to distillation to obtain acetaldehyde, unconverted acetic acid and Separated from by-product water (usually containing other products such as ethanol).
  • the pressure at the top of the distillation column is usually 0.1 to 0.5 MPa, preferably 0.15 to 0.3 MPa, and the gauge pressure is usually 0.0 to 0.4 MPaG, preferably 0.05. ⁇ 0.2 MPaG.
  • the condensate obtained in the condensation step (A) and the acetaldehyde absorbent obtained in the absorption step (B) are preheated to the boiling point or near the boiling point at the distillation pressure by the condensate heater and the absorber heater, respectively.
  • the heated condensate and absorption liquid are preferably supplied to the distillation column.
  • the heat source for this heating it is preferable to use the bottoms from the acetaldehyde purification step (C).
  • the condensate obtained in the condensation step (A) and the acetaldehyde absorption solution obtained in the absorption step (B) may be charged in the same position (stage) of the distillation column, It is preferable to charge at a position (stage) suitable for the composition.
  • the charging position (stage) of the acetaldehyde absorbing liquid obtained in the absorption step (B) having a relatively low acetaldehyde content is used in the condensation step (A) in which the acetaldehyde content is relatively high. It is set to the tower bottom side from the charging position (stage) of the obtained condensate. As described above, since the charging position (stage) of the condensed liquid and the acetaldehyde absorbing liquid can be set to the optimum position (stage), acetaldehyde can be efficiently separated and purified without using extra energy.
  • the number of plates (theoretical plate number) of the distillation column is, for example, 10 to 50, preferably 15 to 35. For example, if a distillation column having about 22 theoretical plates is used, high purity acetaldehyde can be obtained.
  • the condenser (condenser) of the distillation column is the first stage, the 14th stage of the condensate charging position from the top, and the absorption liquid charging position from the top.
  • the 17th stage is preferable.
  • the product acetaldehyde is obtained from the top of the distillation column by the acetaldehyde purification step (C).
  • a mixed solution of acetic acid and water (usually further containing other components such as ethanol) is obtained from the bottom of the distillation column.
  • a part of the mixed solution of acetic acid and water obtained from the bottom of the distillation column (usually including other components such as ethanol) can be used as an acetic acid-containing solvent in the absorption step (B) as described above.
  • the remainder of the mixture is fed to an acetic acid recovery system where acetic acid is recovered.
  • the mixed solution of acetic acid and water obtained from the bottom of the distillation column (usually including other components such as ethanol), other than the one supplied to the absorption step (B) as the recycle absorbent
  • the mixed liquid can be separated and recovered by introducing it into an acetic acid recovery system.
  • a known method for separating and recovering acetic acid from an aqueous acetic acid solution containing water and acetic acid can be employed. For example, by azeotropic distillation using a solvent that is azeotropic with water and immiscible with water, such as ethyl acetate, acetic acid is removed from the bottom of the column, and a mixture of water and an azeotropic solvent from the top of the column (usually other Product). The acetic acid separated and recovered can be recycled to the reaction system. Water and the azeotropic solvent can be separated by, for example, liquid separation. The separated azeotropic solvent can be refluxed into the distillation column.
  • FIG. 1 is a schematic flow diagram showing an example of the method for producing acetaldehyde of the present invention.
  • the reaction product gas obtained by hydrogenating acetic acid in the reactor A is supplied to the heat exchanger B through the reaction product gas line 1, cooled there, and further cooled through the reaction product gas line 2.
  • C is supplied.
  • the gas that has not been condensed in the condenser C is supplied to the absorption tower D through the uncondensed gas line 3, and the condensed condensate is led to the condensate heater E through the condensate line 4 and is heated here. It is supplied to an acetaldehyde purification tower (distillation tower) G through the condensate charging line 5.
  • the non-condensed gas supplied through the non-condensed gas line 3 comes into contact with the acetic acid-containing solvent supplied through the recycled absorbent liquid line 11.
  • Acetaldehyde in the uncondensed gas is absorbed by the acetic acid-containing solvent, and the obtained acetaldehyde absorption liquid is led to the absorption liquid heater F through the acetaldehyde absorption liquid line 7 and heated there, and then the acetaldehyde absorption liquid charging line 8 is supplied to an acetaldehyde purification tower (distillation tower) G.
  • the preparation position of the acetaldehyde absorption liquid preparation line 8 is closer to the bottom of the column than the preparation position of the condensate preparation line 5.
  • acetaldehyde is condensed by the condenser I and obtained as a product from the product acetaldehyde line 9.
  • the bottom liquid of the distillation column G is withdrawn through the refining tower bottom liquid line 10, and a part thereof is led to the recycle absorbent cooler K through the recycle absorbent liquid line 12, cooled here, and then recycled recycle liquid. It is supplied to the absorption tower D through the line 11.
  • the remainder of the bottoms extracted from the bottom of the distillation column G is sent to the acetic acid recovery system J through the acetic acid recovery system supply line 13.
  • symbol H is a reboiler.
  • the hydrogen gas that has not been absorbed by the acetic acid-containing solvent supplied through the recycle absorbent line 11 is led to the compressor L through the recovered hydrogen line 6 and pressurized, and then the heat exchanger B is passed through.
  • a charge hydrogen line 14 and a charge acetic acid line 15 are connected to the recovered hydrogen line 6 up to the reactor A, and new hydrogen and acetic acid are supplied through these lines.
  • heat can be effectively used by exchanging heat between the recycled absorbent cooler K and the condensate heater E and / or the absorbent heater F.
  • Example 1 Acetaldehyde was produced according to the flow shown in FIG.
  • the reaction temperature was 300 ° C.
  • the pressure in the condenser C is 17 bar (1.7 MPa), and the reaction product gas is cooled to 5 ° C.
  • the number of theoretical plates of the absorption tower D is 10.
  • the condensate heater E and the absorption liquid heater F the condensate and the absorption liquid are heated to the saturation temperature (boiling point) of the tower top pressure 0.13 MPaG (gauge pressure) of the distillation column G, respectively.
  • the number of theoretical columns of the distillation column G is 22, and the column top pressure is 0.13 MPaG (gauge pressure) as described above.
  • the feed position of the condensate feed line 5 to the distillation column G is the 14th stage from the top, and the feed position of the absorption liquid feed line 8 to the distillation column G is the 17th stage from the top.
  • the recycle absorbent cooler K the recycle absorbent was cooled to 20 ° C. Table 1 shows the results of the purification system (material balance, etc.).
  • the ratio (recycle rate) of the recycle absorption liquid with respect to the extraction amount of the bottom liquid (bottom liquid) of the distillation column G is 80%.
  • Example 1 Acetaldehyde was produced by the flow shown in FIG.
  • the flow shown in FIG. 2 is different from the flow shown in FIG. 1 in that it does not include the condenser C and the devices and lines related thereto.
  • the conditions for acetic acid hydrogenation are the same as in Example 1.
  • the number of theoretical plates of the absorption tower D is 10 as in Example 1.
  • the absorption liquid heater F the absorption liquid is heated to the saturation temperature (boiling point) of the top pressure of the distillation column G of 0.13 MPaG (gauge pressure).
  • the number of theoretical columns of the distillation column G is 22, and the column top pressure is 0.13 MPaG (gauge pressure) as described above.
  • the charging position of the absorption liquid charging line 8 to the distillation column G is the 15th stage from the top.
  • the recycle absorbent cooler K the recycle absorbent was cooled to 20 ° C.
  • Table 2 shows the results of the purification system (material balance, etc.).
  • the ratio (recycling rate) of the recycled absorbent to the amount of the bottom liquid (bottom liquid) extracted from the distillation column G is 90%.
  • Table 3 shows a comparison between Example 1 and Comparative Example 1.
  • the purification system charge composition is the composition of the fluid flowing through the reaction product gas line 1 in FIGS. 1 and 2. Comparing the total energy consumption in the condensate heater, absorption liquid heater, and distillation column reboiler, it is 7.14 Mcal / h in Comparative Example 1, whereas it is 6.61 Mcal / h in Example 1. It can be seen that providing the condenser C can reduce energy by about 9%.
  • the amount of the acetic acid-containing solvent used for absorbing acetaldehyde in the absorption step can be reduced, and accordingly, the distillation load in the acetaldehyde purification step can be greatly reduced. For this reason, acetaldehyde can be industrially efficiently produced from acetic acid without using much energy.

Abstract

The purpose of the present invention is to provide a method for producing acetaldehyde from acetic acid in an industrially efficient manner and with reduced energy consumption. The method for producing acetaldehyde from acetic acid according to the present invention is a method for producing acetaldehyde from acetic acid, and is characterized by comprising at least: (A) a condensation step of supplying a gaseous reaction product produced by hydrogenating acetic acid into a condenser to produce a condensed solution and an uncondensed gas; (B) an absorption step of bringing the uncondensed gas produced in the condensation step (A) into contact with an acetic-acid-containing solvent to cause acetaldehyde contained in the uncondensed gas to be absorbed in the acetic-acid-containing solvent; and (C) an acetaldehyde purification step of subjecting the condensed solution produced in the condensation step (A) and an acetaldehyde-absorbed solution produced in the absorption step (B) to distillation to separate acetaldehyde from unconverted acetic acid and water that is a byproduct.

Description

アセトアルデヒドの製造方法Method for producing acetaldehyde
 本発明は、酢酸からアセトアルデヒドを製造する方法に関する。本願は、2013年1月30日に日本に出願した特願2013-015470の優先権を主張し、その内容をここに援用する。 The present invention relates to a method for producing acetaldehyde from acetic acid. This application claims the priority of Japanese Patent Application No. 2013-015470 for which it applied to Japan on January 30, 2013, and uses the content here.
 酢酸の水素化によりアセトアルデヒドを製造する方法が知られている。特許文献1には、酢酸を水素化してアセトアルデヒド及び他の生成物を製造する酢酸の水素化工程、前記工程で得られたアセトアルデヒドを含む部分的ガス状生成物から酢酸を含む溶媒を用いてアセトアルデヒドを吸収する吸収工程、前記工程で得られたアセトアルデヒド吸収液を蒸留に付して、アセトアルデヒドと未反応の酢酸及び他の生成物とを分離するアセトアルデヒド精製工程、前記工程で得られた未反応の酢酸及び他の生成物との混合物を共沸蒸留に付して、酢酸と他の生成物とを分離する工程を有するアセトアルデヒドの製造方法が開示されている。 A method for producing acetaldehyde by hydrogenation of acetic acid is known. Patent Document 1 discloses a hydrogenation step of acetic acid in which acetic acid is hydrogenated to produce acetaldehyde and other products, acetaldehyde using a solvent containing acetic acid from a partial gaseous product containing acetaldehyde obtained in the above step. An acetaldehyde-absorbing solution obtained in the above step, subjected to distillation to separate acetaldehyde from unreacted acetic acid and other products, an unreacted product obtained in the above step A method for producing acetaldehyde is disclosed which comprises subjecting a mixture of acetic acid and other products to azeotropic distillation to separate acetic acid from other products.
特許第4094737号公報Japanese Patent No. 4094737
 しかしながら、特許文献1に記載された方法では、前記アセトアルデヒドを吸収する工程において吸収塔の負荷が大きく、それに伴ってアセトアルデヒドを蒸留分離する際のエネルギー消費が非常に多いという問題がある。
 したがって、本発明の目的は、酢酸からアセトアルデヒドをエネルギー消費を低減しつつ工業的に効率よく製造する方法を提供することにある。
However, in the method described in Patent Document 1, there is a problem that the load on the absorption tower is large in the step of absorbing acetaldehyde, and accordingly, energy consumption when distilling and separating acetaldehyde is very large.
Therefore, an object of the present invention is to provide a method for industrially efficiently producing acetaldehyde from acetic acid while reducing energy consumption.
 本発明者は、上記課題を解決するため鋭意検討した結果、酢酸の水素化反応で得られたアセトアルデヒドを含むガス状反応生成物を予め凝縮器によってある程度凝縮させた後に、未凝縮ガスを吸収塔に導くと、吸収塔で用いる酢酸含有溶媒の量を低減でき、それに伴ってアセトアルデヒド精製塔での負荷を大きく低減できることを見出し、本発明を完成した。 As a result of intensive studies to solve the above problems, the present inventor has previously condensed a gaseous reaction product containing acetaldehyde obtained by the hydrogenation reaction of acetic acid to some extent by a condenser, and then absorbed uncondensed gas into an absorption tower. As a result, it was found that the amount of acetic acid-containing solvent used in the absorption tower can be reduced, and accordingly, the load on the acetaldehyde purification tower can be greatly reduced, and the present invention has been completed.
 すなわち、本発明は、酢酸からアセトアルデヒドを製造する方法であって、酢酸を水素化して得られるガス状反応生成物を凝縮器に供給して凝縮液と未凝縮ガスとを得る凝縮工程(A)、前記凝縮工程(A)で得られた未凝縮ガスを酢酸含有溶媒と接触させて未凝縮ガス中のアセトアルデヒドを酢酸含有溶媒に吸収させる吸収工程(B)、前記凝縮工程(A)で得られた凝縮液と前記吸収工程(B)で得られたアセトアルデヒド吸収液とを蒸留に付して、アセトアルデヒドと未転化の酢酸及び副生した水とを分離するアセトアルデヒド精製工程(C)を少なくとも備えることを特徴とするアセトアルデヒドの製造方法を提供する。 That is, the present invention is a method for producing acetaldehyde from acetic acid, in which a gaseous reaction product obtained by hydrogenating acetic acid is supplied to a condenser to obtain a condensate and an uncondensed gas (A). The absorption step (B) in which the non-condensable gas obtained in the condensation step (A) is brought into contact with an acetic acid-containing solvent to absorb acetaldehyde in the non-condensed gas into the acetic acid-containing solvent, and obtained in the condensation step (A). At least an acetaldehyde purification step (C) for subjecting the condensed liquid and the acetaldehyde absorption solution obtained in the absorption step (B) to distillation to separate acetaldehyde from unconverted acetic acid and by-product water. A method for producing acetaldehyde is provided.
 この製造方法においては、前記吸収工程(B)で用いる酢酸含有溶媒として、前記アセトアルデヒド精製工程(C)で分離された未転化の酢酸及び副生した水を含む混合液を用いることが好ましい。 In this production method, it is preferable to use a mixed solution containing unconverted acetic acid and by-product water separated in the acetaldehyde purification step (C) as the acetic acid-containing solvent used in the absorption step (B).
 また、前記アセトアルデヒド精製工程(C)において、吸収工程(B)で得られたアセトアルデヒド吸収液の蒸留塔への仕込み位置が、凝縮工程(A)で得られた凝縮液の蒸留塔への仕込み位置よりも塔底側であることが好ましい。 In the acetaldehyde purification step (C), the charging position of the acetaldehyde absorbing liquid obtained in the absorption step (B) to the distillation column is the charging position of the condensate obtained in the condensation step (A). It is preferable that it is on the tower bottom side.
 すなわち、本発明は以下に関する。
(1)酢酸からアセトアルデヒドを製造する方法であって、酢酸を水素化して得られるガス状反応生成物を凝縮器に供給して凝縮液と未凝縮ガスとを得る凝縮工程(A)、前記凝縮工程(A)で得られた未凝縮ガスを酢酸含有溶媒と接触させて未凝縮ガス中のアセトアルデヒドを酢酸含有溶媒に吸収させる吸収工程(B)、前記凝縮工程(A)で得られた凝縮液と前記吸収工程(B)で得られたアセトアルデヒド吸収液とを蒸留に付して、アセトアルデヒドと未転化の酢酸及び副生した水とを分離するアセトアルデヒド精製工程(C)を少なくとも備えることを特徴とするアセトアルデヒドの製造方法。
(2)前記吸収工程(B)で用いる酢酸含有溶媒として、前記アセトアルデヒド精製工程(C)で分離された未転化の酢酸及び副生した水を含む混合液を用いる(1)に記載のアセトアルデヒドの製造方法。
(3)前記アセトアルデヒド精製工程(C)において、吸収工程(B)で得られたアセトアルデヒド吸収液の蒸留塔への仕込み位置が、凝縮工程(A)で得られた凝縮液の蒸留塔への仕込み位置よりも塔底側である(1)又は(2)記載のアセトアルデヒドの製造方法。
(4)前記凝縮工程(A)において、凝縮器での凝縮温度が0~50℃である(1)~(3)のいずれか1つに記載のアセトアルデヒドの製造方法。
(5)前記凝縮工程において、凝縮器における圧力が0.1~10MPaである(1)~(4)のいずれか1つに記載のアセトアルデヒドの製造方法。
(6)前記吸収工程(B)において、酢酸含有溶媒中の酢酸の含有量が50~90重量%である(1)~(5)のいずれか1つに記載のアセトアルデヒドの製造方法。
(7)前記吸収工程(B)において、吸収塔に供給される酢酸含有溶媒と未凝縮ガスとの比(重量比)が、前者/後者=0.1~20である(1)~(6)のいずれか1つに記載のアセトアルデヒドの製造方法。
(8)前記アセトアルデヒド精製工程(C)において、蒸留塔における塔頂圧力が0.1~0.5MPaである(1)~(7)のいずれか1つに記載のアセトアルデヒドの製造方法。
That is, the present invention relates to the following.
(1) A method for producing acetaldehyde from acetic acid, comprising a condensation step (A) in which a gaseous reaction product obtained by hydrogenating acetic acid is supplied to a condenser to obtain a condensate and an uncondensed gas, the condensation An absorption step (B) in which the uncondensed gas obtained in the step (A) is brought into contact with an acetic acid-containing solvent to absorb acetaldehyde in the uncondensed gas into the acetic acid-containing solvent, and the condensate obtained in the condensing step (A) And an acetaldehyde purification step (C) for separating the acetaldehyde from unconverted acetic acid and by-product water by distillation of the acetaldehyde-absorbing solution obtained in the absorption step (B). A method for producing acetaldehyde.
(2) As an acetic acid-containing solvent used in the absorption step (B), a mixed solution containing unconverted acetic acid and by-product water separated in the acetaldehyde purification step (C) is used. Production method.
(3) In the acetaldehyde purification step (C), the charging position of the acetaldehyde absorption liquid obtained in the absorption step (B) to the distillation column is the charging of the condensate obtained in the condensation step (A) to the distillation column. The method for producing acetaldehyde according to (1) or (2), which is on the tower bottom side from the position.
(4) The method for producing acetaldehyde according to any one of (1) to (3), wherein the condensation temperature in the condenser is 0 to 50 ° C. in the condensation step (A).
(5) The method for producing acetaldehyde according to any one of (1) to (4), wherein the pressure in the condenser is 0.1 to 10 MPa in the condensation step.
(6) The method for producing acetaldehyde according to any one of (1) to (5), wherein in the absorption step (B), the content of acetic acid in the acetic acid-containing solvent is 50 to 90% by weight.
(7) In the absorption step (B), the ratio (weight ratio) between the acetic acid-containing solvent and the uncondensed gas supplied to the absorption tower is the former / the latter = 0.1-20 (1)-(6 ) A method for producing acetaldehyde according to any one of the above.
(8) The method for producing acetaldehyde according to any one of (1) to (7), wherein in the acetaldehyde purification step (C), the top pressure in the distillation column is 0.1 to 0.5 MPa.
 本発明の製造方法によれば、反応系から得られるアセトアルデヒドを含むガス状反応生成物を予め凝縮器に供給してアセトアルデヒドの一部を凝縮させるので、吸収工程でアセトアルデヒドを吸収するために用いられる酢酸含有溶媒の量を低減でき、これに伴いアセトアルデヒド精製工程での蒸留負荷を大幅に低減できる。このため、酢酸からアセトアルデヒドを多大なエネルギーを使うことなく工業的に効率よく製造できる。 According to the production method of the present invention, a gaseous reaction product containing acetaldehyde obtained from the reaction system is supplied to a condenser in advance to condense a part of acetaldehyde, so that it is used to absorb acetaldehyde in an absorption step. The amount of acetic acid-containing solvent can be reduced, and accordingly, the distillation load in the acetaldehyde purification process can be greatly reduced. For this reason, acetaldehyde can be industrially efficiently produced from acetic acid without using much energy.
本発明のアセトアルデヒドの製造方法の一例を示す概略フロー図である。It is a schematic flowchart which shows an example of the manufacturing method of the acetaldehyde of this invention. 比較例1に示したアセトアルデヒドの製造方法を示す概略フロー図である。3 is a schematic flow diagram showing a method for producing acetaldehyde shown in Comparative Example 1. FIG.
 本発明の製造方法は、酢酸からアセトアルデヒドを製造する方法であって、酢酸を水素化して得られるガス状反応生成物を凝縮器に供給して凝縮液と未凝縮ガスとを得る凝縮工程(A)、前記凝縮工程(A)で得られた未凝縮ガスを酢酸含有溶媒と接触させて未凝縮ガス中のアセトアルデヒドを酢酸含有溶媒に吸収させる吸収工程(B)、前記凝縮工程(A)で得られた凝縮液と前記吸収工程(B)で得られたアセトアルデヒド吸収液とを蒸留に付して、アセトアルデヒドと未転化の酢酸及び副生した水とを分離するアセトアルデヒド精製工程(C)を少なくとも備える。 The production method of the present invention is a method for producing acetaldehyde from acetic acid, which comprises supplying a gaseous reaction product obtained by hydrogenating acetic acid to a condenser to obtain a condensate and an uncondensed gas (A ), An absorption step (B) in which the uncondensed gas obtained in the condensation step (A) is brought into contact with an acetic acid-containing solvent to absorb acetaldehyde in the uncondensed gas into the acetic acid-containing solvent, and obtained in the condensation step (A). The condensed liquid obtained and the acetaldehyde absorbing liquid obtained in the absorption step (B) are subjected to distillation to at least include an acetaldehyde purification step (C) for separating acetaldehyde from unconverted acetic acid and by-product water. .
 以下、必要に応じて図面を参照しつつ、本発明の製造方法について説明する。 Hereinafter, the manufacturing method of the present invention will be described with reference to the drawings as necessary.
 [凝縮工程(A)]
 凝縮工程(A)では、酢酸を水素化して得られるガス状反応生成物を凝縮器に供給して凝縮液と未凝縮ガスとを得る。
[Condensation step (A)]
In the condensation step (A), a gaseous reaction product obtained by hydrogenating acetic acid is supplied to a condenser to obtain a condensed liquid and an uncondensed gas.
 酢酸の水素化は公知の方法で行うことができる。例えば、酢酸を触媒の存在下で水素と反応させる。酢酸と水素を反応させるとアセトアルデヒドと水が生成する。また、通常、エタノール、アセトン、酢酸エチルなどの副生成物が副生する。 Hydrogenation of acetic acid can be performed by a known method. For example, acetic acid is reacted with hydrogen in the presence of a catalyst. When acetic acid and hydrogen are reacted, acetaldehyde and water are produced. Usually, by-products such as ethanol, acetone, and ethyl acetate are by-produced.
 前記触媒としては、酢酸の水素化によりアセトアルデヒドを生成させるものであれば特に限定されず、例えば、酸化鉄、酸化ゲルマニウム、酸化スズ、酸化バナジウム、酸化亜鉛等の金属酸化物などを用いることができる。また、これらの金属酸化物に、パラジウム、白金等の貴金属を添加したものを触媒として用いてもよい。この場合の貴金属の添加量は触媒全体に対して、例えば0.5~90重量%程度である。中でも、好ましい触媒は、パラジウム、白金等の貴金属を添加した酸化鉄である。触媒は、酢酸の水素化に用いる前に、予め、例えば水素と接触させることにより還元処理を施してもよい。還元処理は、例えば、50~500℃、0.1~5MPaの条件で行われる。 The catalyst is not particularly limited as long as it generates acetaldehyde by hydrogenation of acetic acid. For example, metal oxides such as iron oxide, germanium oxide, tin oxide, vanadium oxide, and zinc oxide can be used. . Moreover, you may use what added noble metals, such as palladium and platinum, to these metal oxides as a catalyst. In this case, the amount of the precious metal added is, for example, about 0.5 to 90% by weight with respect to the whole catalyst. Among these, a preferable catalyst is iron oxide to which a noble metal such as palladium or platinum is added. Before the catalyst is used for hydrogenation of acetic acid, the catalyst may be subjected to a reduction treatment by, for example, contacting with hydrogen in advance. The reduction treatment is performed, for example, under conditions of 50 to 500 ° C. and 0.1 to 5 MPa.
 反応温度は、例えば250~400℃、好ましくは270~350℃である。反応温度が低すぎるとエタノール等の副生が増大し、反応温度が高すぎるとアセトン等の副生が増大し、いずれの場合もアセトアルデヒドの選択率が低下しやすくなる。反応圧力は、常圧、減圧、加圧下のいずれであってもよいが、一般に、0.1~10MPa、好ましくは0.1~3MPaの範囲である。 The reaction temperature is, for example, 250 to 400 ° C, preferably 270 to 350 ° C. If the reaction temperature is too low, by-products such as ethanol increase, and if the reaction temperature is too high, by-products such as acetone increase, and in either case, the selectivity for acetaldehyde tends to decrease. The reaction pressure may be normal pressure, reduced pressure, or increased pressure, but is generally in the range of 0.1 to 10 MPa, preferably 0.1 to 3 MPa.
 反応器への水素と酢酸の供給比(モル比)は、一般に、水素/酢酸=0.5~50、好ましくは、水素:酢酸=2~25である。 The supply ratio (molar ratio) of hydrogen and acetic acid to the reactor is generally hydrogen / acetic acid = 0.5 to 50, preferably hydrogen: acetic acid = 2 to 25.
 反応器における酢酸の転化率は50%以下(例えば5~50%)であることが望ましい。酢酸の転化率が50%を超えると、副生物(エタノール、酢酸エチル等)が生成しやすくなり、アセトアルデヒドの選択率が低下する。したがって、反応器における滞留時間、水素の空間速度を、上記酢酸の転化率が50%以下となるように調整することが望ましい。 The conversion rate of acetic acid in the reactor is desirably 50% or less (for example, 5 to 50%). When the conversion rate of acetic acid exceeds 50%, by-products (ethanol, ethyl acetate, etc.) are likely to be generated, and the selectivity of acetaldehyde is reduced. Therefore, it is desirable to adjust the residence time in the reactor and the space velocity of hydrogen so that the conversion rate of the acetic acid is 50% or less.
 酢酸と水素との反応により、主に、未転化の酢酸、未転化の水素、反応で生成したアセトアルデヒド、水、及びその他の生成物(エタノール、酢酸エチル、アセトン等)からなるガス状反応生成物が得られる。 Gaseous reaction product mainly composed of unconverted acetic acid, unconverted hydrogen, acetaldehyde generated by reaction, water, and other products (ethanol, ethyl acetate, acetone, etc.) by reaction of acetic acid and hydrogen Is obtained.
 本発明では、こうして得られるガス状反応生成物を直ちに吸収塔に供給するのではなく、その前に、凝縮器に供給して凝縮液と未凝縮ガスとを得る。この凝縮工程を設けることにより、次の吸収工程(B)に供給されるアセトアルデヒドの量を低減でき、したがって吸収工程(B)でアセトアルデヒド吸収のために用いられる酢酸含有溶媒の量を減らすことができる。そして、それに伴い、アセトアルデヒド精製工程(C)での蒸留塔の負荷が軽減される。よって、精製系全体のエネルギー消費量を低減することができる。 In the present invention, the gaseous reaction product thus obtained is not immediately supplied to the absorption tower, but before that, it is supplied to a condenser to obtain a condensed liquid and an uncondensed gas. By providing this condensation step, the amount of acetaldehyde supplied to the next absorption step (B) can be reduced, and thus the amount of acetic acid-containing solvent used for acetaldehyde absorption in the absorption step (B) can be reduced. . Accordingly, the load on the distillation column in the acetaldehyde purification step (C) is reduced. Therefore, the energy consumption of the entire purification system can be reduced.
 凝縮器としては特に限定されず、一般にガスの凝縮に用いられる凝縮器を使用できる。凝縮器での凝縮温度は、例えば、0~50℃、好ましくは0~20℃である。凝縮器における圧力は、特に制限はないが、通常、0.1~10MPa、好ましくは0.1~3MPaである。凝縮器における圧力は、反応圧力と同じか、ほぼ同じであるのが好ましい。 The condenser is not particularly limited, and a condenser generally used for gas condensation can be used. The condensation temperature in the condenser is, for example, 0 to 50 ° C., preferably 0 to 20 ° C. The pressure in the condenser is not particularly limited, but is usually 0.1 to 10 MPa, preferably 0.1 to 3 MPa. The pressure in the condenser is preferably the same or nearly the same as the reaction pressure.
 この凝縮工程(A)により、主に未転化の酢酸、アセトアルデヒド及び水からなる凝縮液(通常、エタノール等のその他の生成物を含む)と、主に水素及びアセトアルデヒドからなる未凝縮ガスが得られる。 By this condensation step (A), a condensate mainly composed of unconverted acetic acid, acetaldehyde and water (usually including other products such as ethanol) and an uncondensed gas mainly composed of hydrogen and acetaldehyde are obtained. .
 [吸収工程(B)]
 吸収工程(B)では、前記凝縮工程(A)で得られた未凝縮ガスを酢酸含有溶媒と接触させて未凝縮ガス中のアセトアルデヒドを酢酸含有溶媒に吸収させる。この工程は、通常、前記凝縮工程(A)で得られた未凝縮ガスと酢酸含有溶媒とを吸収塔に供給し、吸収塔内で両者を接触させることにより行われる。
[Absorption step (B)]
In the absorption step (B), the non-condensed gas obtained in the condensation step (A) is brought into contact with the acetic acid-containing solvent to absorb the acetaldehyde in the non-condensed gas into the acetic acid-containing solvent. This step is usually performed by supplying the uncondensed gas obtained in the condensation step (A) and the acetic acid-containing solvent to the absorption tower and bringing them into contact with each other in the absorption tower.
 前記酢酸含有溶媒として、後述するアセトアルデヒド精製工程(C)で分離された酢酸と水を含む混合液を用いることができる。該酢酸と水を含む混合液は、アセトアルデヒド精製工程(C)において、蒸留塔(アセトアルデヒド精製塔)の底部から例えば缶出液として得られる。 As the acetic acid-containing solvent, a mixed solution containing acetic acid and water separated in the acetaldehyde purification step (C) described later can be used. In the acetaldehyde purification step (C), the mixed liquid containing acetic acid and water is obtained, for example, as a bottom liquid from the bottom of the distillation column (acetaldehyde purification column).
 酢酸含有溶媒中の酢酸の含有量は、例えば、50~90重量%、好ましくは60~80重量%である。吸収塔に供給される酢酸含有溶媒と未凝縮ガスとの比(重量比)は、例えば、前者/後者=0.1~20であり、好ましくは前者/後者=1~10である。吸収塔の段数(理論段数)は、例えば3~30、好ましくは5~20である。 The acetic acid content in the acetic acid-containing solvent is, for example, 50 to 90% by weight, preferably 60 to 80% by weight. The ratio (weight ratio) between the acetic acid-containing solvent and the uncondensed gas supplied to the absorption tower is, for example, the former / the latter = 0.1 to 20, and preferably the former / the latter = 1 to 10. The number of stages (theoretical stage number) of the absorption tower is, for example, 3 to 30, preferably 5 to 20.
 この吸収工程(B)により、主に、アセトアルデヒド、酢酸、水からなるアセトアルデヒド吸収液(通常、エタノール等のその他の生成物を含む)と、主に水素からなる未吸収ガスとが得られる。回収された水素は反応系にリサイクルできる。 By this absorption step (B), an acetaldehyde absorption liquid (usually including other products such as ethanol) mainly composed of acetaldehyde, acetic acid and water and an unabsorbed gas mainly composed of hydrogen are obtained. The recovered hydrogen can be recycled to the reaction system.
 [アセトアルデヒド精製工程(C)]
 アセトアルデヒド精製工程(C)では、前記凝縮工程(A)で得られた凝縮液と前記吸収工程(B)で得られたアセトアルデヒド吸収液とを蒸留に付して、アセトアルデヒドと、未転化の酢酸及び副生した水(通常、さらにエタノール等のその他の生成物を含む)とを分離する。
[Acetaldehyde purification step (C)]
In the acetaldehyde purification step (C), the condensate obtained in the condensation step (A) and the acetaldehyde absorption solution obtained in the absorption step (B) are subjected to distillation to obtain acetaldehyde, unconverted acetic acid and Separated from by-product water (usually containing other products such as ethanol).
 蒸留塔における塔頂圧力は、通常、0.1~0.5MPa、好ましくは0.15~0.3MPaであり、ゲージ圧としては、通常、0.0~0.4MPaG、好ましくは0.05~0.2MPaGである。 The pressure at the top of the distillation column is usually 0.1 to 0.5 MPa, preferably 0.15 to 0.3 MPa, and the gauge pressure is usually 0.0 to 0.4 MPaG, preferably 0.05. ~ 0.2 MPaG.
 凝縮工程(A)で得られた凝縮液、吸収工程(B)で得られたアセトアルデヒド吸収液は、それぞれ、凝縮液加熱器、吸収液加熱器により、蒸留圧力での沸点又は沸点近傍まで予め加熱し、その加熱した凝縮液、吸収液を蒸留塔に供給するのが好ましい。この加熱のための熱源としては、アセトアルデヒド精製工程(C)からの缶出液を用いることが好ましい。 The condensate obtained in the condensation step (A) and the acetaldehyde absorbent obtained in the absorption step (B) are preheated to the boiling point or near the boiling point at the distillation pressure by the condensate heater and the absorber heater, respectively. The heated condensate and absorption liquid are preferably supplied to the distillation column. As the heat source for this heating, it is preferable to use the bottoms from the acetaldehyde purification step (C).
 凝縮工程(A)で得られた凝縮液と前記吸収工程(B)で得られたアセトアルデヒド吸収液を蒸留塔に供給する際、両者を蒸留塔の同じ位置(段)に仕込んでもよいが、それぞれの組成にあった位置(段)に仕込むのが好ましい。 When supplying the condensate obtained in the condensation step (A) and the acetaldehyde absorption solution obtained in the absorption step (B) to the distillation column, they may be charged in the same position (stage) of the distillation column, It is preferable to charge at a position (stage) suitable for the composition.
 本発明の好ましい態様では、アセトアルデヒド含量が相対的に少ない前記吸収工程(B)で得られたアセトアルデヒド吸収液の仕込み位置(段)を、前記アセトアルデヒド含量が相対的に多い前記凝縮工程(A)で得られた凝縮液の仕込み位置(段)よりも塔底側とする。このように、凝縮液及びアセトアルデヒド吸収液の仕込み位置(段)を最適位置(段)に設定できることにより、余分なエネルギーを使うことなく、効率よくアセトアルデヒドを分離精製できる。 In a preferred embodiment of the present invention, the charging position (stage) of the acetaldehyde absorbing liquid obtained in the absorption step (B) having a relatively low acetaldehyde content is used in the condensation step (A) in which the acetaldehyde content is relatively high. It is set to the tower bottom side from the charging position (stage) of the obtained condensate. As described above, since the charging position (stage) of the condensed liquid and the acetaldehyde absorbing liquid can be set to the optimum position (stage), acetaldehyde can be efficiently separated and purified without using extra energy.
 蒸留塔の段数(理論段数)は、例えば10~50、好ましくは15~35である。例えば、理論段数22段程度の蒸留塔を用いれば、高純度のアセトアルデヒドを得ることができる。蒸留塔の理論段数を22段とした場合、例えば、蒸留塔の凝縮器(コンデンサー)を1段目として、前記凝縮液の仕込み位置を上から14段目、前記吸収液の仕込み位置を上から17段目とするのが好ましい。 The number of plates (theoretical plate number) of the distillation column is, for example, 10 to 50, preferably 15 to 35. For example, if a distillation column having about 22 theoretical plates is used, high purity acetaldehyde can be obtained. When the number of theoretical stages of the distillation column is 22, for example, the condenser (condenser) of the distillation column is the first stage, the 14th stage of the condensate charging position from the top, and the absorption liquid charging position from the top. The 17th stage is preferable.
 アセトアルデヒド精製工程(C)により、蒸留塔の塔頂から製品アセトアルデヒドが得られる。また、蒸留塔の塔底から、酢酸及び水の混合液(通常、さらにエタノール等のその他の成分を含む)が得られる。 The product acetaldehyde is obtained from the top of the distillation column by the acetaldehyde purification step (C). In addition, a mixed solution of acetic acid and water (usually further containing other components such as ethanol) is obtained from the bottom of the distillation column.
 蒸留塔の塔底から得られる酢酸及び水の混合液(通常、さらにエタノール等のその他の成分を含む)の一部は、前述したように、前記吸収工程(B)における酢酸含有溶媒として使用できる。上記混合物の残りは酢酸回収系に供給され、そこで酢酸が回収される。 A part of the mixed solution of acetic acid and water obtained from the bottom of the distillation column (usually including other components such as ethanol) can be used as an acetic acid-containing solvent in the absorption step (B) as described above. . The remainder of the mixture is fed to an acetic acid recovery system where acetic acid is recovered.
 塔底から得られる酢酸及び水の混合液(通常、さらにエタノール等のその他の成分を含む)の量に対する、吸収工程(B)に供給されるリサイクル吸収液の量の比率(リサイクル率)は、例えば80%程度であり、凝縮工程(A)を設けない場合(通常、90%程度)と比較して大幅に低減できる。これは、吸収塔に供給されるアセトアルデヒド量が少ないため、吸収塔に供給すべき酢酸含有溶媒の量を低減できることによるものである。 The ratio (recycling rate) of the amount of the recycled absorbent supplied to the absorption step (B) with respect to the amount of the mixture of acetic acid and water obtained from the bottom of the column (usually including other components such as ethanol) For example, it is about 80%, which can be greatly reduced as compared with the case where the condensation step (A) is not provided (usually about 90%). This is because the amount of acetic acid-containing solvent to be supplied to the absorption tower can be reduced because the amount of acetaldehyde supplied to the absorption tower is small.
 前述したように、蒸留塔の塔底から得られる酢酸及び水の混合液(通常、さらにエタノール等のその他の成分を含む)のうち、リサイクル吸収液として吸収工程(B)に供給されるもの以外の混合液は、酢酸回収系に導くことにより、酢酸を分離回収できる。 As described above, among the mixed solution of acetic acid and water obtained from the bottom of the distillation column (usually including other components such as ethanol), other than the one supplied to the absorption step (B) as the recycle absorbent The mixed liquid can be separated and recovered by introducing it into an acetic acid recovery system.
 酢酸の分離回収は、水及び酢酸を含む酢酸水溶液から酢酸を分離回収する公知の方法を採用できる。例えば、水と共沸し且つ水と混和しない溶媒、例えば酢酸エチルを用いて共沸蒸留することにより、塔底から酢酸を、塔頂から水と共沸溶媒との混合液(通常、その他の生成物を含む)を得ることができる。分離回収した酢酸は反応系にリサイクルできる。水と共沸溶媒は例えば分液により分離できる。分離した共沸溶媒は蒸留塔内に還流させることができる。 For the separation and recovery of acetic acid, a known method for separating and recovering acetic acid from an aqueous acetic acid solution containing water and acetic acid can be employed. For example, by azeotropic distillation using a solvent that is azeotropic with water and immiscible with water, such as ethyl acetate, acetic acid is removed from the bottom of the column, and a mixture of water and an azeotropic solvent from the top of the column (usually other Product). The acetic acid separated and recovered can be recycled to the reaction system. Water and the azeotropic solvent can be separated by, for example, liquid separation. The separated azeotropic solvent can be refluxed into the distillation column.
 図1は、本発明のアセトアルデヒドの製造方法の一例を示す概略フロー図である。この例では、反応器Aにおいて酢酸を水素化して得られる反応生成ガスは、反応生成ガスライン1を通じて熱交換器Bに供給され、そこで冷却された後、さらに、反応生成ガスライン2を通じて凝縮器Cに供給される。凝縮器Cで凝縮しなかったガスは、未凝縮ガスライン3を通じて吸収塔Dに供給され、凝縮した凝縮液は凝縮液ライン4を通じて凝縮液加熱器Eに導かれ、ここで加熱された後、凝縮液仕込ライン5を通じてアセトアルデヒド精製塔(蒸留塔)Gに供される。 FIG. 1 is a schematic flow diagram showing an example of the method for producing acetaldehyde of the present invention. In this example, the reaction product gas obtained by hydrogenating acetic acid in the reactor A is supplied to the heat exchanger B through the reaction product gas line 1, cooled there, and further cooled through the reaction product gas line 2. C is supplied. The gas that has not been condensed in the condenser C is supplied to the absorption tower D through the uncondensed gas line 3, and the condensed condensate is led to the condensate heater E through the condensate line 4 and is heated here. It is supplied to an acetaldehyde purification tower (distillation tower) G through the condensate charging line 5.
 吸収塔Dでは、未凝縮ガスライン3を通じて供給される未凝縮ガスは、リサイクル吸収液ライン11を通じて供給される酢酸含有溶媒と接触する。未凝縮ガス中のアセトアルデヒドは前記酢酸含有溶媒に吸収され、得られたアセトアルデヒド吸収液は、アセトアルデヒド吸収液ライン7を通じて吸収液加熱器Fに導かれ、ここで加熱された後、アセトアルデヒド吸収液仕込ライン8を通じてアセトアルデヒド精製塔(蒸留塔)Gに供される。アセトアルデヒド吸収液仕込ライン8の仕込み位置は、前記凝縮液仕込ライン5の仕込み位置よりも塔底側である。 In the absorption tower D, the non-condensed gas supplied through the non-condensed gas line 3 comes into contact with the acetic acid-containing solvent supplied through the recycled absorbent liquid line 11. Acetaldehyde in the uncondensed gas is absorbed by the acetic acid-containing solvent, and the obtained acetaldehyde absorption liquid is led to the absorption liquid heater F through the acetaldehyde absorption liquid line 7 and heated there, and then the acetaldehyde absorption liquid charging line 8 is supplied to an acetaldehyde purification tower (distillation tower) G. The preparation position of the acetaldehyde absorption liquid preparation line 8 is closer to the bottom of the column than the preparation position of the condensate preparation line 5.
 蒸留塔Gの塔頂部では、アセトアルデヒドがコンデンサーIによって凝縮され、製品アセトアルデヒドライン9より、製品として得られる。蒸留塔Gの塔底液は、精製塔缶出液ライン10を通じて抜き取られ、その一部はリサイクル吸収液ライン12を通じてリサイクル吸収液冷却器Kに導かれ、ここで冷却された後、リサイクル吸収液ライン11を通じて吸収塔Dに供給される。蒸留塔Gの塔底から抜き取られた缶出液の残りは、酢酸回収系供給ライン13を通じて酢酸回収系Jに送られる。なお、符号Hはリボイラーである。 At the top of the distillation column G, acetaldehyde is condensed by the condenser I and obtained as a product from the product acetaldehyde line 9. The bottom liquid of the distillation column G is withdrawn through the refining tower bottom liquid line 10, and a part thereof is led to the recycle absorbent cooler K through the recycle absorbent liquid line 12, cooled here, and then recycled recycle liquid. It is supplied to the absorption tower D through the line 11. The remainder of the bottoms extracted from the bottom of the distillation column G is sent to the acetic acid recovery system J through the acetic acid recovery system supply line 13. In addition, the code | symbol H is a reboiler.
 前記吸収塔Dにおいて、リサイクル吸収液ライン11を通じて供給される酢酸含有溶媒に吸収されなかった水素ガスは、回収水素ライン6を通じて圧縮機Lに導かれ、加圧された後、熱交換器Bを経由して、反応器Aに供給される。回収水素ライン6には、反応器Aに至るまでの間に、チャージ水素ライン14及びチャージ酢酸ライン15が接続されており、これらのラインを通じて、新しい水素及び酢酸が供給される。 In the absorption tower D, the hydrogen gas that has not been absorbed by the acetic acid-containing solvent supplied through the recycle absorbent line 11 is led to the compressor L through the recovered hydrogen line 6 and pressurized, and then the heat exchanger B is passed through. To be fed to the reactor A. A charge hydrogen line 14 and a charge acetic acid line 15 are connected to the recovered hydrogen line 6 up to the reactor A, and new hydrogen and acetic acid are supplied through these lines.
 なお、リサイクル吸収液冷却器Kと凝縮液加熱器E及び/又は吸収液加熱器Fとで熱交換を行い、熱を有効利用することもできる。 It should be noted that heat can be effectively used by exchanging heat between the recycled absorbent cooler K and the condensate heater E and / or the absorbent heater F.
 以下に、実施例に基づいて本発明をより詳細に説明するが、本発明はこれらの実施例により限定されるものではない。 Hereinafter, the present invention will be described in more detail based on examples, but the present invention is not limited to these examples.
 実施例1
 図1に示されるフローによりアセトアルデヒドを製造した。
 なお、酢酸の水素化は、パラジウムを40重量%含有する酸化鉄触媒を用い、水素/酢酸仕込モル比(水素/酢酸)=7、ガス空間速度3530、反応圧17.2bar(1.72MPa)、反応温度300℃の条件で行った。
 精製系において、凝縮器Cの圧力は17bar(1.7MPa)であり、反応生成ガスを5℃まで冷却している。吸収塔Dの理論段数は10段である。凝縮液加熱器E及び吸収液加熱器Fでは、それぞれ、凝縮液及び吸収液を、蒸留塔Gの塔頂圧力0.13MPaG(ゲージ圧)の飽和温度(沸点)まで加熱している。蒸留塔Gの理論段数は22段であり、塔頂圧力は上記のとおり0.13MPaG(ゲージ圧)である。凝縮液仕込ライン5の蒸留塔Gへの仕込み位置は上から14段目、吸収液仕込ライン8の蒸留塔Gへの仕込み位置は上から17段目である。リサイクル吸収液冷却器Kでは、リサイクル吸収液を20℃まで冷却した。
 精製系の結果(物質収支等)を表1に示す。なお、蒸留塔Gの塔底液(缶出液)抜取り量に対するリサイクル吸収液の割合(リサイクル率)は80%である。
Example 1
Acetaldehyde was produced according to the flow shown in FIG.
The hydrogenation of acetic acid uses an iron oxide catalyst containing 40% by weight of palladium, hydrogen / acetic acid charged molar ratio (hydrogen / acetic acid) = 7, gas space velocity 3530, reaction pressure 17.2 bar (1.72 MPa). The reaction temperature was 300 ° C.
In the purification system, the pressure in the condenser C is 17 bar (1.7 MPa), and the reaction product gas is cooled to 5 ° C. The number of theoretical plates of the absorption tower D is 10. In the condensate heater E and the absorption liquid heater F, the condensate and the absorption liquid are heated to the saturation temperature (boiling point) of the tower top pressure 0.13 MPaG (gauge pressure) of the distillation column G, respectively. The number of theoretical columns of the distillation column G is 22, and the column top pressure is 0.13 MPaG (gauge pressure) as described above. The feed position of the condensate feed line 5 to the distillation column G is the 14th stage from the top, and the feed position of the absorption liquid feed line 8 to the distillation column G is the 17th stage from the top. In the recycle absorbent cooler K, the recycle absorbent was cooled to 20 ° C.
Table 1 shows the results of the purification system (material balance, etc.). In addition, the ratio (recycle rate) of the recycle absorption liquid with respect to the extraction amount of the bottom liquid (bottom liquid) of the distillation column G is 80%.
 比較例1
 図2に示されるフローによりアセトアルデヒドを製造した。図2に示すフローは、凝縮器C及びこれに関わる装置、ラインを備えていない点で、図1に示されるフローと相違する。
 なお、酢酸の水素化の条件は実施例1と同じである。
 精製系において、吸収塔Dの理論段数は実施例1と同じく10段である。吸収液加熱器Fでは、吸収液を蒸留塔Gの塔頂圧力0.13MPaG(ゲージ圧)の飽和温度(沸点)まで加熱している。蒸留塔Gの理論段数は22段であり、塔頂圧力は上記のとおり0.13MPaG(ゲージ圧)である。吸収液仕込ライン8の蒸留塔Gへの仕込み位置は上から15段目である。リサイクル吸収液冷却器Kでは、リサイクル吸収液を20℃まで冷却した。
 精製系の結果(物質収支等)を表2に示す。蒸留塔Gの塔底液(缶出液)抜取り量に対するリサイクル吸収液の割合(リサイクル率)は90%である。
Comparative Example 1
Acetaldehyde was produced by the flow shown in FIG. The flow shown in FIG. 2 is different from the flow shown in FIG. 1 in that it does not include the condenser C and the devices and lines related thereto.
The conditions for acetic acid hydrogenation are the same as in Example 1.
In the purification system, the number of theoretical plates of the absorption tower D is 10 as in Example 1. In the absorption liquid heater F, the absorption liquid is heated to the saturation temperature (boiling point) of the top pressure of the distillation column G of 0.13 MPaG (gauge pressure). The number of theoretical columns of the distillation column G is 22, and the column top pressure is 0.13 MPaG (gauge pressure) as described above. The charging position of the absorption liquid charging line 8 to the distillation column G is the 15th stage from the top. In the recycle absorbent cooler K, the recycle absorbent was cooled to 20 ° C.
Table 2 shows the results of the purification system (material balance, etc.). The ratio (recycling rate) of the recycled absorbent to the amount of the bottom liquid (bottom liquid) extracted from the distillation column G is 90%.
 表1及び2における英語表記、略号の意義は以下の通りである。
 Temperature:温度
 Pressure:圧力
 Vapor Frac:蒸気の割合
 Mole Flow:モル流量
 Mass Flow:質量流量
 Volume Flow:体積流量
 Mass Frac:質量分率
 AD:アセトアルデヒド
 AT:アセトン
 ETOH:エタノール
 AE:酢酸エチル
 AC:酢酸
The meanings of English notations and abbreviations in Tables 1 and 2 are as follows.
Temperature: Temperature Pressure: Pressure Vapor Frac: Ratio of steam Mole Flow: Molar flow Mass Flow: Mass flow Volume Flow: Volume flow Mass Frac: Mass fraction AD: Acetaldehyde AT: Acetone ETOH: Ethanol AE: Ethyl acetate AC: Acetic acid
 実施例1と比較例1との対比を表3に示す。表3において、精製系仕込組成とは、図1及び図2における反応生成ガスライン1を流れる流体の組成である。凝縮液加熱器、吸収液加熱器及び蒸留塔リボイラーでの全消費エネルギー量を比較すると、比較例1では7.14Mcal/hであるのに対し、実施例1では6.61Mcal/hであり、凝縮器Cを設けることにより約9%エネルギーを低減できることが分かる。 Table 3 shows a comparison between Example 1 and Comparative Example 1. In Table 3, the purification system charge composition is the composition of the fluid flowing through the reaction product gas line 1 in FIGS. 1 and 2. Comparing the total energy consumption in the condensate heater, absorption liquid heater, and distillation column reboiler, it is 7.14 Mcal / h in Comparative Example 1, whereas it is 6.61 Mcal / h in Example 1. It can be seen that providing the condenser C can reduce energy by about 9%.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 本発明の製造方法によれば、吸収工程においてアセトアルデヒドを吸収するために用いられる酢酸含有溶媒の量を低減でき、これに伴いアセトアルデヒド精製工程での蒸留負荷を大幅に低減できる。このため、酢酸からアセトアルデヒドを多大なエネルギーを使うことなく工業的に効率よく製造できる。 According to the production method of the present invention, the amount of the acetic acid-containing solvent used for absorbing acetaldehyde in the absorption step can be reduced, and accordingly, the distillation load in the acetaldehyde purification step can be greatly reduced. For this reason, acetaldehyde can be industrially efficiently produced from acetic acid without using much energy.
 A  反応器
 B  熱交換器
 C  凝縮器
 D  吸収塔
 E  凝縮液加熱器
 F  吸収液加熱器
 G  アセトアルデヒド精製塔(蒸留塔)
 H  リボイラー
 I  コンデンサー
 J  酢酸回収系
 K  リサイクル吸収液冷却器
 L  圧縮機
 1  反応生成ガスライン
 2  冷却後の反応生成ガスライン
 3  未凝縮ガスライン
 4  凝縮液ライン
 5  凝縮液仕込ライン
 6  回収水素ライン
 7  アセトアルデヒド吸収液ライン
 8  アセトアルデヒド吸収液仕込ライン
 9  製品アセトアルデヒドライン
 10 精製塔缶出液ライン
 11 冷却後のリサイクル吸収液ライン
 12 リサイクル吸収液ライン
 13 酢酸回収系供給ライン
 14 チャージ水素ライン
 15 チャージ酢酸ライン
A Reactor B Heat exchanger C Condenser D Absorption tower E Condensate heater F Absorption liquid heater G Acetaldehyde purification tower (distillation tower)
H Reboiler I Condenser J Acetic acid recovery system K Recycled absorption liquid cooler L Compressor 1 Reaction product gas line 2 Reaction product gas line after cooling 3 Uncondensed gas line 4 Condensate line 5 Condensate charging line 6 Recovered hydrogen line 7 Acetaldehyde Absorption liquid line 8 Acetaldehyde absorption liquid preparation line 9 Product acetaldehyde line 10 Purification tower bottom discharge line 11 Recycled absorption liquid line after cooling 12 Recycled absorption liquid line 13 Acetic acid recovery system supply line 14 Charge hydrogen line 15 Charge acetic acid line

Claims (3)

  1.  酢酸からアセトアルデヒドを製造する方法であって、酢酸を水素化して得られるガス状反応生成物を凝縮器に供給して凝縮液と未凝縮ガスとを得る凝縮工程(A)、前記凝縮工程(A)で得られた未凝縮ガスを酢酸含有溶媒と接触させて未凝縮ガス中のアセトアルデヒドを酢酸含有溶媒に吸収させる吸収工程(B)、前記凝縮工程(A)で得られた凝縮液と前記吸収工程(B)で得られたアセトアルデヒド吸収液とを蒸留に付して、アセトアルデヒドと未転化の酢酸及び副生した水とを分離するアセトアルデヒド精製工程(C)を少なくとも備えることを特徴とするアセトアルデヒドの製造方法。 A method for producing acetaldehyde from acetic acid, comprising a condensation step (A) in which a gaseous reaction product obtained by hydrogenating acetic acid is supplied to a condenser to obtain a condensate and an uncondensed gas, the condensation step (A The absorption step (B) in which the non-condensable gas obtained in step 1) is brought into contact with the acetic acid-containing solvent to absorb the acetaldehyde in the non-condensed gas into the acetic acid-containing solvent, and the condensate obtained in the condensation step (A) The acetaldehyde absorption liquid obtained in the step (B) is subjected to distillation to at least an acetaldehyde purification step (C) for separating acetaldehyde from unconverted acetic acid and by-product water. Production method.
  2.  前記吸収工程(B)で用いる酢酸含有溶媒として、前記アセトアルデヒド精製工程(C)で分離された未転化の酢酸及び副生した水を含む混合液を用いる請求項1記載のアセトアルデヒドの製造方法。 The method for producing acetaldehyde according to claim 1, wherein as the acetic acid-containing solvent used in the absorption step (B), a mixed solution containing unconverted acetic acid and by-product water separated in the acetaldehyde purification step (C) is used.
  3.  前記アセトアルデヒド精製工程(C)において、吸収工程(B)で得られたアセトアルデヒド吸収液の蒸留塔への仕込み位置が、凝縮工程(A)で得られた凝縮液の蒸留塔への仕込み位置よりも塔底側である請求項1又は2記載のアセトアルデヒドの製造方法。 In the acetaldehyde purification step (C), the charging position of the acetaldehyde absorbing liquid obtained in the absorption step (B) to the distillation column is more than the charging position of the condensate obtained in the condensation step (A) to the distillation column. The method for producing acetaldehyde according to claim 1 or 2, which is on the column bottom side.
PCT/JP2013/084504 2013-01-30 2013-12-24 Method for producing acetaldehyde WO2014119185A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013015470 2013-01-30
JP2013-015470 2013-01-30

Publications (1)

Publication Number Publication Date
WO2014119185A1 true WO2014119185A1 (en) 2014-08-07

Family

ID=51261909

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/084504 WO2014119185A1 (en) 2013-01-30 2013-12-24 Method for producing acetaldehyde

Country Status (2)

Country Link
TW (1) TW201439052A (en)
WO (1) WO2014119185A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015020039A1 (en) * 2013-08-08 2015-02-12 株式会社ダイセル Acetaldehyde production method
WO2015156061A1 (en) * 2014-04-10 2015-10-15 株式会社ダイセル Method for producing acetaldehyde
WO2016051987A1 (en) * 2014-10-03 2016-04-07 株式会社ダイセル Processes for producing acetaldehyde
JP2017225915A (en) * 2016-06-21 2017-12-28 株式会社ダイセル Catalyst, method of manufacturing catalyst and method of manufacturing aldehydes
JP2023524712A (en) * 2020-12-03 2023-06-13 エルジー・ケム・リミテッド Method for producing acrylic acid
JP2023525235A (en) * 2020-12-03 2023-06-15 エルジー・ケム・リミテッド Method for producing acrylic acid

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56164126A (en) * 1980-05-19 1981-12-17 Kuraray Co Ltd Preparation of acetaldehyde and acetic acid
JPS5791943A (en) * 1980-10-06 1982-06-08 Halcon Sd Group Inc Manufacture of acetaldehyde
JPH11322658A (en) * 1998-04-30 1999-11-24 Eastman Chem Co Production of acetaldehyde from acetic acid and catalyst to be used therefor
JP2011529494A (en) * 2008-07-31 2011-12-08 セラニーズ・インターナショナル・コーポレーション Direct and selective production of acetaldehyde from acetic acid using supported metal catalysts

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56164126A (en) * 1980-05-19 1981-12-17 Kuraray Co Ltd Preparation of acetaldehyde and acetic acid
JPS5791943A (en) * 1980-10-06 1982-06-08 Halcon Sd Group Inc Manufacture of acetaldehyde
JPH11322658A (en) * 1998-04-30 1999-11-24 Eastman Chem Co Production of acetaldehyde from acetic acid and catalyst to be used therefor
JP2011529494A (en) * 2008-07-31 2011-12-08 セラニーズ・インターナショナル・コーポレーション Direct and selective production of acetaldehyde from acetic acid using supported metal catalysts

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015020039A1 (en) * 2013-08-08 2015-02-12 株式会社ダイセル Acetaldehyde production method
WO2015156061A1 (en) * 2014-04-10 2015-10-15 株式会社ダイセル Method for producing acetaldehyde
WO2016051987A1 (en) * 2014-10-03 2016-04-07 株式会社ダイセル Processes for producing acetaldehyde
JPWO2016051987A1 (en) * 2014-10-03 2017-07-13 株式会社ダイセル Method for producing acetaldehyde
JP2017225915A (en) * 2016-06-21 2017-12-28 株式会社ダイセル Catalyst, method of manufacturing catalyst and method of manufacturing aldehydes
JP2023524712A (en) * 2020-12-03 2023-06-13 エルジー・ケム・リミテッド Method for producing acrylic acid
JP2023525235A (en) * 2020-12-03 2023-06-15 エルジー・ケム・リミテッド Method for producing acrylic acid
JP7460256B2 (en) 2020-12-03 2024-04-02 エルジー・ケム・リミテッド Method for producing acrylic acid

Also Published As

Publication number Publication date
TW201439052A (en) 2014-10-16

Similar Documents

Publication Publication Date Title
WO2014119185A1 (en) Method for producing acetaldehyde
US8101805B2 (en) Low pressure one-step gas-phase process for production of methyl isobutyl ketone
EP2981528B1 (en) Process for the preparation of 2,5-furan-dicarboxylic acid
JP5411288B2 (en) Method for producing vinyl acetate
WO2014001461A1 (en) Process for the production of a mixture comprising cyclohexanone and cyclohexanol from phenol
US8710269B2 (en) DMAPN having a low DGN content and a process for preparing DMAPA having a low DGN content
JP2016029039A (en) Method and device for circulation processing and purification of propylene
EP2980081B1 (en) Method for producing ethylene oxide
US20110087047A1 (en) Vinyl acetate production process
CN107987038B (en) Epoxidation process material separation system and epoxidation process material separation method
JP6062527B2 (en) Purification method of aniline from gas phase hydrogenation
US20160176796A1 (en) Acetaldehyde production method
DE3508371A1 (en) METHOD FOR PURIFYING CHLORINE HYDROGEN FROM A 1,2-DICHLORETHANE PYROLYSIS
US20110137075A1 (en) Vinyl acetate production process
EA025632B1 (en) Process for the production of a mixture comprising cyclohexanol and cyclohexanone
CN104151137A (en) High pressure and normal pressure double-tower rectification method used for separating n-butanol and MIBK azeotrope
EP3395787B1 (en) Method and apparatus for energy-saving simultaneous production of styrene and alpha-methylstyrene
EP2888218B1 (en) Process for production of dme from crude methanol
JP4960546B2 (en) Purification of crude pyrrolidine
JP4356342B2 (en) Purification method of ethylene glycol
CN103476738B (en) The production of aromatic carboxylic acid
WO2013083512A1 (en) Process for the production of a mixture comprising cyclohexanol and cyclohexanone
EP4219434A1 (en) Preparation method and production device for propylene
CN109020926B (en) Method for separating and purifying propylene oxide from propylene gas-phase epoxidation product
CN112390713A (en) Acetaldehyde recovery method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13873551

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13873551

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP