WO2014119118A1 - Wireless circuit - Google Patents

Wireless circuit Download PDF

Info

Publication number
WO2014119118A1
WO2014119118A1 PCT/JP2013/082357 JP2013082357W WO2014119118A1 WO 2014119118 A1 WO2014119118 A1 WO 2014119118A1 JP 2013082357 W JP2013082357 W JP 2013082357W WO 2014119118 A1 WO2014119118 A1 WO 2014119118A1
Authority
WO
WIPO (PCT)
Prior art keywords
antenna
band
transmission
transmission signals
antenna tuner
Prior art date
Application number
PCT/JP2013/082357
Other languages
French (fr)
Japanese (ja)
Inventor
和彦 池畑
宏貴 柏木
正盛 徳田
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Publication of WO2014119118A1 publication Critical patent/WO2014119118A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/02Transmitters
    • H04B1/04Circuits
    • H04B1/0458Arrangements for matching and coupling between power amplifier and antenna or between amplifying stages
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/005Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission adapting radio receivers, transmitters andtransceivers for operation on two or more bands, i.e. frequency ranges
    • H04B1/0053Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission adapting radio receivers, transmitters andtransceivers for operation on two or more bands, i.e. frequency ranges with common antenna for more than one band

Definitions

  • the present invention relates to a radio circuit.
  • Patent Document 1 an automatic matching circuit has been developed that automatically matches the output impedance on the signal source side and the input impedance on the load side to increase transmission efficiency.
  • Patent Document 1 a traveling wave component signal traveling from a signal source to a load and a reflected wave component signal from the load are detected, and a phase difference between the reflected wave component signal and the traveling wave component signal is set as a reference. Detect and determine whether the phase difference has an advance or delay component of a predetermined angle, and based on the determination result, a variable capacitor located on the signal source side and a variable capacitor located on the load side in the ⁇ match circuit The output impedance and the input impedance are matched by increasing or decreasing the capacitance.
  • Japanese Patent Publication Japanese Patent Laid-Open No. 2010-87845 (published on April 15, 2010) Japanese Patent Gazette “Special Publication 2008-507942 Publication (March 13, 2008)”
  • the antenna characteristics of one band when transmitting a plurality of transmission signals having different frequency bands at the same time, if the antenna characteristics of one band are improved, the antenna characteristics of the other band may be deteriorated. Therefore, when the antenna characteristic of one band is greatly improved and the antenna characteristic of the other band is deteriorated to be smaller than the degree of improvement of the antenna characteristic of the one band, the overall antenna characteristic is improved, but sufficient There was a problem that the antenna characteristics could not be obtained.
  • the present invention has been made in view of the above problems, and has as its main object to provide a technique for further improving antenna characteristics when transmitting a plurality of transmission signals having different frequency bands at the same time.
  • a radio circuit is a radio circuit connected to an antenna, which simultaneously outputs a plurality of transmission signals having different frequency bands on one transmission line.
  • An output unit, and a plurality of variable matching means that are provided for each frequency band corresponding to each of the plurality of transmission signals and independently adjust impedance matching with the antenna in each frequency band. It is a feature.
  • FIG. 1 is a block diagram illustrating a schematic configuration of a wireless circuit according to a first embodiment of the present invention. It is a block which shows schematic structure of the radio
  • the radio circuit is a radio circuit (transmission system radio circuit) for processing a transmission signal, and can be incorporated in a radio apparatus.
  • the radio circuit 1 is connected to an antenna 10 as shown in FIG. 1, and includes a radio FEM (Front End Module) (transmission signal output unit) 11, a signal extraction unit 12, and a calculation unit. (Calculation means) 13, a control unit 14, a memory 15, an antenna tuner 16 and a determination unit 17 are provided.
  • the control unit 14 includes an antenna tuner control unit (control unit) 141.
  • the antenna tuner 16 includes a low band antenna tuner (variable matching means) 161 and a high band antenna tuner (variable matching means) 162.
  • the wireless FEM 11 includes an RFIC and an antenna switch duplexer.
  • the wireless FEM 11 outputs a plurality of transmission signals having different frequency bands simultaneously through one transmission line, and each transmission signal is supplied to the signal extraction unit 12.
  • the wireless FEM 11 is configured to simultaneously output transmission signals of two frequency bands, a low band and a high band, but the present invention is not limited to this.
  • the signal extraction unit 12 extracts the traveling wave of the transmission signal transmitted via the antenna 10 and the reflected wave of the transmission signal reflected from the antenna 10. Specifically, the signal extraction unit 12 is connected between the wireless FEM 11 and the antenna tuner 16, extracts a traveling wave and a reflected wave of the transmission signal, and the traveling wave and the reflected wave are input to the calculation unit 13. As shown in FIG.
  • the signal extraction unit 12 is realized by, for example, a coupler and a detector.
  • the calculation unit 13 calculates a value (evaluation value) for evaluating the matching of the antenna 10 in the transmission signal based on the traveling wave and the reflected wave input from the signal extraction unit 12. Specifically, the calculation unit 13 calculates the VSWR (Voltage Standing Wave Ratio) of the transmission signal, the transmission power level, and the like. In addition, the item (evaluation value) calculated in order for the calculation part 13 to evaluate a transmission signal is not limited to this.
  • the control unit 14 comprehensively controls various configurations of the wireless circuit 1.
  • the control unit 14 includes an antenna tuner control unit 141 that controls the antenna tuner 16.
  • the antenna tuner control unit 141 is based on the evaluation value of the transmission signal calculated by the calculation unit 13 and the setting information of the variable capacitance element of the antenna tuner 16 recorded in the memory 15.
  • the antenna tuner 16 is controlled so that impedance matching with 10 is improved.
  • the information recorded in the memory 15 is not limited to this. Since the evaluation value (for example, VSWR) of the transmission signal calculated by the calculation unit 13 can be used as an index of antenna matching, the matching of the antenna 10 in each of the plurality of transmission signals is improved according to the evaluation value.
  • the antenna tuner control unit 141 controls the variable capacitance element of the antenna tuner 16, whereby the characteristics of the antenna 10 can be improved.
  • the antenna 10 is connected to an antenna tuner 16 that adjusts impedance matching with the antenna 10.
  • the antenna tuner 16 is provided for each frequency band corresponding to each of a plurality of transmission signals, and has a plurality of band tuners (variable matching means) that independently adjust impedance matching with the antenna 10 in each frequency band. ing.
  • the antenna tuner 16 includes a low-band antenna tuner 161 that adjusts impedance matching with the antenna 10 for a low-band transmission signal, and an antenna 10 for a high-band transmission signal. And a high-band antenna tuner 162 that adjusts impedance matching with each other.
  • the antenna tuner 16 is composed of a variable capacitance element.
  • the variable capacitance element may be one that mechanically changes the capacitance of the capacitor, such as MEMS (Micro Electro Mechanical Systems), or may be a varicap diode such as a BST type, or a switch.
  • the matching may be switched by switching the path.
  • the antenna tuner 16 can adjust impedance matching with the antenna 10 by using such a variable capacitance element.
  • the configuration of the antenna tuner 16 is not limited to this, as long as the impedance matching with the antenna 10 can be adjusted.
  • the determination unit 17 determines whether to continue or end the alignment adjustment based on the evaluation value calculated by the calculation unit 13. For example, when the VSWR in a specific frequency band or the whole is equal to or lower than a predetermined value, the determination unit 17 determines that the matching adjustment is finished. The determination unit 17 transmits the determination result to the control unit 14.
  • Step L1 The signal extraction unit 12 extracts a traveling wave and a reflected wave of the transmission signal output from the wireless FEM 11.
  • Step L2 The calculation unit 13 calculates an evaluation value (for example, VSWR, transmission power level, etc.) based on the traveling wave and the reflected wave extracted by the signal extraction unit 12.
  • Step L3 Based on the evaluation value of the transmission signal calculated by the calculation unit 13 and the setting information of the variable capacitance element of the antenna tuner 16 recorded in the memory 15, the low-band antenna tuner 161 is used. Consistency adjustment is performed. At this time, since only the low-band tuner is used, even if the tuner operates, the high-band impedance hardly changes.
  • Step L4 The signal extraction unit 12 extracts the traveling wave and the reflected wave of the transmission signal after the alignment adjustment.
  • Step L5 The calculation unit 13 calculates an evaluation value based on the traveling wave and the reflected wave extracted by the signal extraction unit 12.
  • Step L6 The determination unit 17 determines whether to continue or end the alignment adjustment. If it is determined to continue, the process returns to step L3. If it is determined to end, the low-band matching adjustment is terminated and the high-band matching adjustment is performed.
  • the low band matching adjustment is performed. Thereby, the characteristics of the antenna 10 can be improved in a low band.
  • Step H1 and H2 The same processing as in steps L1 and L2 described above is performed.
  • Step H3 Based on the evaluation value of the transmission signal calculated by the calculation unit 13 and the setting information of the variable capacitance element of the antenna tuner 16 recorded in the memory 15, the high band antenna tuner 162 is used. Consistency adjustment is performed. At this time, since only the high-band tuner is used, the low-band impedance hardly changes even if the tuner operates.
  • Steps H4 and H5 The same processing as in steps L4 and L5 described above is performed.
  • Step H6 The determination unit 17 determines whether to continue or end the alignment adjustment. If it is determined to continue, the process returns to step H3. If it is determined to end, the high-band matching adjustment ends.
  • steps H1 to H6 are performed after the low band matching adjustment (steps L1 to L6).
  • steps L1 to L6 may be performed after steps H1 to H6.
  • the low-band antenna tuner 161 and the high-band antenna tuner 162 provided for each frequency band corresponding to each of a plurality of transmission signals are simultaneously transmitted from the transmission signal output unit.
  • the impedance matching with the antenna 10 in the frequency band corresponding to each of the low-band antenna tuner 161 and the high-band antenna tuner 162 can be independently adjusted for a plurality of output transmission signals.
  • the radio circuit 1 can suitably adjust the impedance matching with the antenna 10 in each frequency band. Therefore, the radio circuit 1 can further improve the antenna characteristics when transmitting a plurality of transmission signals having different frequency bands at the same time.
  • the radio circuit 2 is connected to an antenna 20, and includes a radio FEM 11, a signal extraction unit 12, a calculation unit 13, a control unit 14, a memory 15, and an antenna tuner 26. And a determination unit 17.
  • the antenna 20 includes a low-band antenna (antenna element) 201 that operates in a low band and a high-band antenna (antenna element) 202 that operates in a high band.
  • the low-band antenna 201 and the high-band antenna 202 are connected in series to the low-band antenna tuner 161 and the high-band antenna tuner 162, respectively.
  • the antenna tuner 26 includes a low band antenna tuner 161, a high band antenna tuner 162, a filter 263, and a filter 264.
  • the transmission signal output from the wireless FEM 11 through one (one system) transmission line (feed line) is divided into two parts and input through different transmission lines. is doing.
  • the filter 263 is disposed between the wireless FEM 11 and the low band antenna tuner 161, and the filter 264 is disposed between the wireless FEM 11 and the high band antenna tuner 162.
  • the filter 263 and the filter 264 are, for example, bandpass filters, and are configured to transmit only a specific frequency band among a plurality of transmission signals. Specifically, the filter 263 passes only the low band, and the filter 264 passes only the high band of the transmission signal. In other words, when the antenna tuner for the low band operates, the influence on the antenna on the high band side is blocked by the filter for the high band side and does not affect the antenna impedance on the high band side. It is configured to be able to operate independently only for the band.
  • the low-band antenna tuner 161 is a transmission signal that has passed through the filter 263, and the transmission signal in the frequency band corresponding to the low-band antenna tuner 161 is The impedance matching with the low band antenna 201 can be adjusted.
  • the high-band antenna tuner 162 applies the high-band antenna 202 to the transmission signal that has passed through the filter 264 and has a frequency band corresponding to the high-band antenna tuner 162.
  • impedance matching can be adjusted. That is, each of the low-band antenna tuner 161 and the high-band antenna tuner 162 does not adjust impedance matching with the antenna 20 in a frequency band other than the corresponding frequency band. Antenna characteristics when transmitting transmission signals simultaneously can be improved.
  • the antenna tuner 26 includes the filter 263 and the filter 264 has been described.
  • the antenna tuner 26 may not include the filter 263 and the filter 264.
  • FIG. 2 it is possible to input the transmission signals to the low-band antenna tuner 161 and the high-band antenna tuner 162 through different transmission lines and to take a sufficient distance from the branch. Since the influence of the change can be sufficiently reduced, even if the filter 263 and the filter 264 are not provided, for example, the impedance with the low-band antenna 201 performed by the low-band antenna tuner 161 The effect of the matching adjustment on the impedance matching adjustment with the high band antenna 202 performed by the high band antenna tuner 162 can be reduced.
  • the radio circuit 3 is configured to include an antenna tuner 36 instead of the antenna tuner 26 with respect to the radio circuit 2 of the second embodiment.
  • the antenna tuner 36 the transmission signal that has passed through the filter 263 is input to the low band antenna 201 and the low band antenna tuner 161, and the transmission signal that has passed through the filter 264 is the high band antenna 202 and the high band antenna. It is configured to input to the tuner 162.
  • the low band antenna tuner 161 and the high band antenna tuner 162 are each connected to the ground.
  • the wireless circuit 4 is configured to include an antenna tuner 46 instead of the antenna tuner 26 with respect to the wireless circuit 2 of the second embodiment.
  • the antenna tuner 46 has a configuration in which transmission signals output from the wireless FEM 11 through one transmission line are input to the low-band antenna 201, the high-band antenna 202, the filter 263, and the filter 264 through different transmission lines. is there.
  • the transmission signals that have passed through the filter 263 and the filter 264 are input to the low band antenna tuner 161 and the high band antenna tuner 162, respectively.
  • the low band antenna tuner 161 and the high band antenna tuner 162 are each connected to the ground.
  • the radio circuit 5 is connected to the antenna 10, and the radio FEM 11, the signal extraction unit 12, the calculation unit 13, the control unit 14, the memory 15, and the antenna tuner 56. And a determination unit 17.
  • the antenna tuner 56 includes a low band antenna tuner 161, a high band antenna tuner 162, a filter 263, and a filter 264.
  • the antenna tuner 56 has a configuration in which a transmission signal output from the wireless FEM 11 through one transmission line (feeding line) is input to the antenna 10, the filter 263, and the filter 264.
  • the transmission signals that have passed through the filter 263 and the filter 264 are input to the low band antenna tuner 161 and the high band antenna tuner 162, respectively.
  • the low band antenna tuner 161 and the high band antenna tuner 162 are each connected to the ground.
  • the wireless circuit 6 is configured to include an antenna tuner 66 instead of the antenna tuner 56 with respect to the wireless circuit 5 of the fifth embodiment.
  • the antenna tuner 66 includes a low band antenna tuner 161, a high band antenna tuner 162, a filter 263, a filter 264, a filter 665, and a filter 666.
  • the filter 665 and the filter 666 have the same configuration as the filter 263 and the filter 264, respectively, and thus description thereof is omitted.
  • the low-band antenna tuner 161 and the high-band antenna tuner 162 of the antenna tuner 66 are divided into two transmission signals output from the wireless FEM 11 through one (one system) transmission line (feed line). Input on the transmission line.
  • the antenna tuner 66 combines the transmission signal output from the low-band antenna tuner 161 and passed through the filter 665 with the transmission signal output from the high-band antenna tuner 162 and passed through the filter 666. Output to.
  • the combined transmission signal is input to the antenna 10.
  • the antenna 10 in Embodiment 5 and Embodiment 6 described above may be configured to include a plurality of antenna elements that operate in each frequency band, like the antenna 20.
  • FIG. 7 is a diagram illustrating an example of the low-band antenna tuner 161 according to the first to sixth embodiments.
  • the low-band antenna tuner 161 uses at least one of a variable inductor and a variable capacitor.
  • the variable capacitor is used in series (series), and the variable inductor is used in shunt (parallel). ing. This can be expressed by 1 / (2 ⁇ ⁇ frequency ⁇ L) where L is the inductance of the variable inductor, and the variable capacitor is expressed by 1 / (2 ⁇ ⁇ frequency ⁇ C) where C is the capacitance. This is because the impedance matching with the antenna can be greatly adjusted when the frequency is low.
  • FIG. 8 is a diagram illustrating an example of the high band antenna tuner 162 according to the first to sixth embodiments.
  • a variable inductor and a variable capacitor is used for the high-band antenna tuner 162.
  • the variable capacitor is used as a shunt and the variable inductor is used as a series. This can be expressed as 2 ⁇ ⁇ frequency ⁇ C, where C is the capacitance of the variable capacitor, and can be expressed as 2 ⁇ ⁇ frequency ⁇ L, where L is the inductance of the variable inductor. This is because impedance matching with the antenna can be greatly adjusted.
  • the control blocks (particularly the calculation unit 13 and the control unit 14) of the radio circuits 1 to 6 may be realized by a logic circuit (hardware) formed in an integrated circuit (IC chip) or the like, or a CPU (Central Processing Unit). ) May be implemented by software.
  • the radio circuits 1 to 6 include a CPU that executes instructions of a program that is software that implements each function, and a ROM (Read Only Memory) in which the program and various data are recorded so as to be readable by the computer (or CPU). ) Or a storage device (these are referred to as “recording media”), a RAM (Random Access Memory) that expands the program, and the like.
  • recording media a “non-temporary tangible medium” such as a tape, a disk, a card, a semiconductor memory, a programmable logic circuit, or the like can be used.
  • the program may be supplied to the computer via an arbitrary transmission medium (such as a communication network or a broadcast wave) that can transmit the program.
  • a transmission medium such as a communication network or a broadcast wave
  • the present invention can also be realized in the form of a data signal embedded in a carrier wave in which the program is embodied by electronic transmission.
  • a radio circuit according to aspect 1 of the present invention is a radio circuit connected to an antenna, and a transmission signal output unit (radio FEM 11) that simultaneously outputs a plurality of transmission signals having different frequency bands on one transmission line;
  • a plurality of variable matching means (low band antenna tuner 161, high band antenna tuner) provided for each frequency band corresponding to each of a plurality of transmission signals and independently adjusting impedance matching with the antenna in each frequency band. 162).
  • each of the plurality of variable matching means provided for each frequency band corresponding to each of the plurality of transmission signals includes a plurality of transmission signals having different frequency bands output simultaneously from the transmission signal output unit.
  • the impedance matching with the antenna is independently adjusted for the transmission signal in the frequency band corresponding to the variable matching means.
  • wireless circuit can adjust suitably impedance matching with an antenna in each frequency band. Therefore, the radio circuit can further improve the antenna characteristics when transmitting a plurality of transmission signals having different frequency bands at the same time.
  • the wireless circuit according to aspect 2 of the present invention is the wireless circuit according to aspect 1, in which the calculation means (calculation unit 13) that calculates an evaluation value for evaluating impedance matching with the antenna in each of the plurality of transmission signals, and the calculation Control means (antenna tuner control unit 141) for controlling the plurality of variable matching means so that impedance matching with the antenna in each of the plurality of transmission signals is improved according to each evaluation value calculated by the means; Are preferably provided.
  • the calculation unit calculates an evaluation value for evaluating impedance matching with the antenna in each of a plurality of transmission signals
  • the control unit calculates the evaluation value calculated by the calculation unit. Accordingly, the plurality of variable matching means are controlled so that impedance matching with the antenna in each of the plurality of transmission signals is improved.
  • the radio circuit can more suitably improve the antenna characteristics when transmitting a plurality of transmission signals having different frequency bands at the same time.
  • a wireless circuit according to aspect 3 of the present invention is the wireless circuit according to aspect 1 or 2, wherein the antenna is provided with a plurality of antenna elements (low band antenna 201, provided for each frequency band corresponding to each of the plurality of transmission signals. High-band antenna 202), and each antenna element operates in a corresponding frequency band and is connected to the variable matching means for adjusting impedance matching with the antenna in the frequency band. It may be.
  • an antenna element that operates in a frequency band corresponding to each of a plurality of transmission signals is connected to the variable matching means that adjusts impedance matching with the antenna in each frequency band.
  • each of the plurality of variable matching means adjusts impedance matching with an antenna element operating in a frequency band corresponding to the variable matching means.
  • wireless circuit can improve more suitably the antenna characteristic at the time of transmitting simultaneously the several transmission signal from which a frequency band differs.
  • the wireless circuit according to aspect 4 of the present invention is the wireless circuit according to aspect 3, in which each variable matching unit is connected in series between the antenna element operating in the frequency band corresponding to the variable matching unit and the transmission signal output unit.
  • a connected configuration may be used.
  • each of the plurality of variable matching means adjusts impedance matching with an antenna element connected in series to the variable matching means.
  • wireless circuit can improve more suitably the antenna characteristic at the time of transmitting simultaneously the several transmission signal from which a frequency band differs.
  • the wireless circuit according to aspect 5 of the present invention is the wireless circuit according to aspects 1 to 4, wherein the wireless circuit is individually connected to each of the plurality of variable matching units between the transmission signal output unit and each of the plurality of variable matching units.
  • a configuration in which only a signal is allowed to pass may be used.
  • each of the plurality of filters arranged to be individually connected to each of the variable matching means is connected to the filter among the plurality of transmission signals output by the transmission signal output unit. Only the transmission signal in the frequency band corresponding to the variable matching means is passed.
  • each of the plurality of variable matching means can more suitably adjust the impedance matching with the antenna in the frequency band corresponding to the variable matching means.
  • a wireless circuit according to aspect 6 of the present invention is the wireless circuit according to aspect 3, in which each variable matching unit branches from a transmission line that inputs the transmission signal to the antenna element that operates in a frequency band corresponding to the variable matching unit. It may be configured on a line connected to the ground.
  • each of the plurality of variable matching means adjusts impedance matching with the antenna element connected to the transmission line input to the variable matching means.
  • wireless circuit can improve more suitably the antenna characteristic at the time of transmitting simultaneously the several transmission signal from which a frequency band differs.
  • the wireless circuit according to aspect 7 of the present invention is the wireless circuit according to aspect 1 or 2, wherein each of the plurality of variable matching units branches from a transmission line that inputs a transmission signal to the antenna and is connected to the ground. Each may be configured.
  • a radio circuit according to an eighth aspect of the present invention is the wireless circuit according to the fifth aspect, wherein the plurality of radio circuits are individually connected between the antenna and each of the plurality of variable matching means.
  • Each of the plurality of filters may be configured to pass only a transmission signal in a frequency band corresponding to the variable matching means connected to the filter.
  • the radio circuits 1 to 6 may be realized by a computer.
  • the radio circuits 1 to 6 are operated as computers provided in the radio circuits 1 to 6.
  • the control programs for the radio circuits 1 to 6 realized by the above and the computer-readable recording medium on which the control programs are recorded also fall within the scope of the present invention.
  • the present invention can be used in the field of manufacturing wireless devices.
  • Wireless circuit 10
  • Antenna 11
  • Wireless FEM Transmission signal output unit
  • signal extraction part 13
  • calculation part 14
  • Control Unit 141
  • Antenna Tuner Control Unit Control Unit 15
  • Memory 16
  • Antenna tuner 161
  • Low band antenna tuner 162
  • High-band antenna tuner 17
  • Judgment unit 20
  • Antenna 201
  • Low band antenna (antenna element)
  • High band antenna (antenna element) 26, 36, 46, 56

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Transmitters (AREA)

Abstract

A wireless circuit (1) is provided with the following: a wireless front-end module (FEM) (11) that simultaneously outputs a plurality of transmission signals along one transmission line, said transmission signals having different frequency bands; and a low-frequency antenna tuner (161) and high-frequency antenna tuner (162) that are provided per frequency band, corresponding respectively to the plurality of transmission signals, and independently adjust impedance matching with an antenna (10) for the respective frequency bands.

Description

無線回路Wireless circuit
 本発明は、無線回路に関するものである。 The present invention relates to a radio circuit.
 近年、信号源側の出力インピーダンスと負荷側の入力インピーダンスとを自動的に整合して伝送効率を上げる自動整合回路が開発されている(特許文献1)。特許文献1には、信号源から負荷へ向かう進行波成分の信号と負荷からの反射波成分の信号とを検出すると共に、進行波成分の信号を基準に反射波成分の信号との位相差を検出し、当該位相差が所定角度の進みまたは遅れ成分を有するか否かを判定し、判定結果に基づき、πマッチ回路における信号源側に位置する可変のコンデンサと負荷側に位置する可変のコンデンサとの容量を増減して出力インピーダンスおよび入力インピーダンスを整合することが記載されている。 Recently, an automatic matching circuit has been developed that automatically matches the output impedance on the signal source side and the input impedance on the load side to increase transmission efficiency (Patent Document 1). In Patent Document 1, a traveling wave component signal traveling from a signal source to a load and a reflected wave component signal from the load are detected, and a phase difference between the reflected wave component signal and the traveling wave component signal is set as a reference. Detect and determine whether the phase difference has an advance or delay component of a predetermined angle, and based on the determination result, a variable capacitor located on the signal source side and a variable capacitor located on the load side in the π match circuit The output impedance and the input impedance are matched by increasing or decreasing the capacitance.
日本国公開特許公報「特開2010-87845号公報(2010年4月15日公開)」Japanese Patent Publication “Japanese Patent Laid-Open No. 2010-87845” (published on April 15, 2010) 日本国公表特許公報「特表2008-507942号公報(2008年3月13日公表)」Japanese Patent Gazette “Special Publication 2008-507942 Publication (March 13, 2008)”
 しかしながら、上述のような従来技術では、周波数帯域が異なる複数の送信信号を同時に送信するとき、一方の帯域のアンテナ特性を改善すると、他方の帯域のアンテナ特性が劣化してしまう場合がある。したがって、一方の帯域のアンテナ特性が大きく改善し、他方の帯域のアンテナ特性が上記一方の帯域のアンテナ特性の改善度合いよりも小さく劣化した場合、全体のアンテナ特性が改善しているものの、十分なアンテナ特性を得られないという問題があった。 However, in the conventional technology as described above, when transmitting a plurality of transmission signals having different frequency bands at the same time, if the antenna characteristics of one band are improved, the antenna characteristics of the other band may be deteriorated. Therefore, when the antenna characteristic of one band is greatly improved and the antenna characteristic of the other band is deteriorated to be smaller than the degree of improvement of the antenna characteristic of the one band, the overall antenna characteristic is improved, but sufficient There was a problem that the antenna characteristics could not be obtained.
 本発明は上記課題に鑑みてなされたものであり、周波数帯域が異なる複数の送信信号を同時に送信する際のアンテナ特性をより改善するための技術を提供することを主たる目的とする。 The present invention has been made in view of the above problems, and has as its main object to provide a technique for further improving antenna characteristics when transmitting a plurality of transmission signals having different frequency bands at the same time.
 上記の課題を解決するために、本発明の一態様に係る無線回路は、アンテナに接続された無線回路であって、周波数帯域が異なる複数の送信信号を1つの送信ラインで同時に出力する送信信号出力部と、上記複数の送信信号の各々に対応する周波数帯域毎に設けられ、各周波数帯域における上記アンテナとのインピーダンス整合をそれぞれ独立に調整する複数の可変整合手段と、を備えていることを特徴としている。 In order to solve the above problems, a radio circuit according to one embodiment of the present invention is a radio circuit connected to an antenna, which simultaneously outputs a plurality of transmission signals having different frequency bands on one transmission line. An output unit, and a plurality of variable matching means that are provided for each frequency band corresponding to each of the plurality of transmission signals and independently adjust impedance matching with the antenna in each frequency band. It is a feature.
 本発明の一態様によれば、周波数帯域が異なる複数の送信信号を同時に送信する際のアンテナ特性をより改善するための技術を提供することができる。 According to an aspect of the present invention, it is possible to provide a technique for further improving antenna characteristics when transmitting a plurality of transmission signals having different frequency bands at the same time.
本発明の実施形態1に係る無線回路の概略構成を示すブロックである。1 is a block diagram illustrating a schematic configuration of a wireless circuit according to a first embodiment of the present invention. 本発明の実施形態2に係る無線回路の概略構成を示すブロックである。It is a block which shows schematic structure of the radio | wireless circuit which concerns on Embodiment 2 of this invention. 本発明の実施形態3に係る無線回路の概略構成を示すブロックである。It is a block which shows schematic structure of the radio | wireless circuit which concerns on Embodiment 3 of this invention. 本発明の実施形態4に係る無線回路の概略構成を示すブロックである。It is a block which shows schematic structure of the radio | wireless circuit which concerns on Embodiment 4 of this invention. 本発明の実施形態5に係る無線回路の概略構成を示すブロックである。It is a block which shows schematic structure of the radio | wireless circuit which concerns on Embodiment 5 of this invention. 本発明の実施形態6に係る無線回路の概略構成を示すブロックである。It is a block which shows schematic structure of the radio | wireless circuit which concerns on Embodiment 6 of this invention. 本発明に係る低帯域用アンテナチューナの一例を示す図である。It is a figure which shows an example of the antenna tuner for low bands which concerns on this invention. 本発明に係る高帯域用アンテナチューナの一例を示す図である。It is a figure which shows an example of the antenna tuner for high bands which concerns on this invention.
 〔実施形態1〕
 以下、本発明の実施の形態について、詳細に説明する。以下では、本発明の実施の形態に係る無線回路について説明する。当該無線回路は、送信信号を処理するための無線回路(送信系無線回路)であり、無線装置に組み込まれ得る。
[Embodiment 1]
Hereinafter, embodiments of the present invention will be described in detail. Hereinafter, a radio circuit according to an embodiment of the present invention will be described. The radio circuit is a radio circuit (transmission system radio circuit) for processing a transmission signal, and can be incorporated in a radio apparatus.
 本発明の一実施形態において、無線回路1は、図1に示すように、アンテナ10に接続されており、無線FEM(Front End Module)(送信信号出力部)11、信号取出し部12、算出部(算出手段)13、制御部14、メモリ15、アンテナチューナ16および判断部17を備えている。制御部14は、アンテナチューナ制御部(制御手段)141を備えている。アンテナチューナ16は、低帯域用アンテナチューナ(可変整合手段)161と高帯域用アンテナチューナ(可変整合手段)162とを備えている。 In one embodiment of the present invention, the radio circuit 1 is connected to an antenna 10 as shown in FIG. 1, and includes a radio FEM (Front End Module) (transmission signal output unit) 11, a signal extraction unit 12, and a calculation unit. (Calculation means) 13, a control unit 14, a memory 15, an antenna tuner 16 and a determination unit 17 are provided. The control unit 14 includes an antenna tuner control unit (control unit) 141. The antenna tuner 16 includes a low band antenna tuner (variable matching means) 161 and a high band antenna tuner (variable matching means) 162.
 無線FEM11は、RFICおよびアンテナスイッチデュプレクサ等から構成される。無線FEM11は、周波数帯域が異なる複数の送信信号を1つの送信ラインで同時に出力するようになっており、各送信信号は、信号取出し部12に供給される。本明細書において、無線FEM11は、低帯域および高帯域の2つの周波数帯域の送信信号を同時に出力する構成であるとするが、本発明はこれに限定されるものではない。 The wireless FEM 11 includes an RFIC and an antenna switch duplexer. The wireless FEM 11 outputs a plurality of transmission signals having different frequency bands simultaneously through one transmission line, and each transmission signal is supplied to the signal extraction unit 12. In this specification, the wireless FEM 11 is configured to simultaneously output transmission signals of two frequency bands, a low band and a high band, but the present invention is not limited to this.
 信号取出し部12は、アンテナ10を介して送信する送信信号の進行波およびアンテナ10から反射された該送信信号の反射波を取り出す。具体的には、信号取出し部12は、無線FEM11とアンテナチューナ16との間に接続されており、送信信号の進行波および反射波を取り出し、当該進行波および反射波が算出部13に入力されるように、算出部13に接続されている。信号取出し部12は、例えば、カプラ及び検波器などによって実現される。 The signal extraction unit 12 extracts the traveling wave of the transmission signal transmitted via the antenna 10 and the reflected wave of the transmission signal reflected from the antenna 10. Specifically, the signal extraction unit 12 is connected between the wireless FEM 11 and the antenna tuner 16, extracts a traveling wave and a reflected wave of the transmission signal, and the traveling wave and the reflected wave are input to the calculation unit 13. As shown in FIG. The signal extraction unit 12 is realized by, for example, a coupler and a detector.
 算出部13は、信号取出し部12から入力された進行波および反射波を基に、送信信号におけるアンテナ10の整合を評価する値(評価値)を算出する。具体的には、算出部13は、送信信号のVSWR(Voltage Standing Wave Ratio:電圧定在波比)、送信電力レベルなどを算出する。なお、算出部13が送信信号を評価するために算出する項目(評価値)はこれに限定されるものではない。 The calculation unit 13 calculates a value (evaluation value) for evaluating the matching of the antenna 10 in the transmission signal based on the traveling wave and the reflected wave input from the signal extraction unit 12. Specifically, the calculation unit 13 calculates the VSWR (Voltage Standing Wave Ratio) of the transmission signal, the transmission power level, and the like. In addition, the item (evaluation value) calculated in order for the calculation part 13 to evaluate a transmission signal is not limited to this.
 制御部14は、無線回路1の各種構成を統括的に制御するものである。制御部14は、アンテナチューナ16を制御するアンテナチューナ制御部141を備えている。アンテナチューナ制御部141は、算出部13が算出した送信信号の評価値と、メモリ15に記録されているアンテナチューナ16の可変容量素子の設定情報とに基づいて、複数の送信信号の各々におけるアンテナ10とのインピーダンス整合が改善するように、アンテナチューナ16を制御する。なお、メモリ15に記録されている情報は、これに限定されるものではない。算出部13が算出した送信信号の評価値(例えば、VSWR)は、アンテナ整合の指標として使用することができるため、当該評価値に応じて、複数の送信信号の各々におけるアンテナ10の整合が改善するように、アンテナチューナ制御部141がアンテナチューナ16の可変容量素子を制御することにより、アンテナ10の特性を改善することができる。 The control unit 14 comprehensively controls various configurations of the wireless circuit 1. The control unit 14 includes an antenna tuner control unit 141 that controls the antenna tuner 16. The antenna tuner control unit 141 is based on the evaluation value of the transmission signal calculated by the calculation unit 13 and the setting information of the variable capacitance element of the antenna tuner 16 recorded in the memory 15. The antenna tuner 16 is controlled so that impedance matching with 10 is improved. The information recorded in the memory 15 is not limited to this. Since the evaluation value (for example, VSWR) of the transmission signal calculated by the calculation unit 13 can be used as an index of antenna matching, the matching of the antenna 10 in each of the plurality of transmission signals is improved according to the evaluation value. As described above, the antenna tuner control unit 141 controls the variable capacitance element of the antenna tuner 16, whereby the characteristics of the antenna 10 can be improved.
 アンテナ10には、アンテナ10とのインピーダンス整合を調整するアンテナチューナ16が接続されている。アンテナチューナ16は、複数の送信信号の各々に対応する周波数帯域毎に設けられ、各周波数帯域におけるアンテナ10とのインピーダンス整合をそれぞれ独立に調整する複数の帯域用チューナ(可変整合手段)を有している。本実施形態では、図1に示すように、アンテナチューナ16は、低帯域の送信信号に対しアンテナ10とのインピーダンス整合を調整する低帯域用アンテナチューナ161と、高帯域の送信信号に対しアンテナ10とのインピーダンス整合を調整する高帯域用アンテナチューナ162と、を有している。 The antenna 10 is connected to an antenna tuner 16 that adjusts impedance matching with the antenna 10. The antenna tuner 16 is provided for each frequency band corresponding to each of a plurality of transmission signals, and has a plurality of band tuners (variable matching means) that independently adjust impedance matching with the antenna 10 in each frequency band. ing. In this embodiment, as shown in FIG. 1, the antenna tuner 16 includes a low-band antenna tuner 161 that adjusts impedance matching with the antenna 10 for a low-band transmission signal, and an antenna 10 for a high-band transmission signal. And a high-band antenna tuner 162 that adjusts impedance matching with each other.
 また、アンテナチューナ16は、可変容量素子により構成されている。可変容量素子は、MEMS(Micro Electro Mechanical Systems)のように、機械的にコンデンサの容量を変えるものであってもよいし、例えば、BST形のようなバリキャップダイオードであってもよいし、スイッチによってパスを切り替えることにより整合を切り替えるものであってもよい。アンテナチューナ16はこのような可変容量素子によって、アンテナ10とのインピーダンス整合を調整することができる。但し、アンテナチューナ16の構成はこれに限定されず、アンテナ10とのインピーダンス整合を調整可能になっていればよい。 The antenna tuner 16 is composed of a variable capacitance element. The variable capacitance element may be one that mechanically changes the capacitance of the capacitor, such as MEMS (Micro Electro Mechanical Systems), or may be a varicap diode such as a BST type, or a switch. The matching may be switched by switching the path. The antenna tuner 16 can adjust impedance matching with the antenna 10 by using such a variable capacitance element. However, the configuration of the antenna tuner 16 is not limited to this, as long as the impedance matching with the antenna 10 can be adjusted.
 判断部17は、算出部13が算出した評価値に基づいて、整合調整を継続するか、終了するかを判断する。判断部17は、例えば、特定の周波数帯域または全体におけるVSWRが所定の値以下である場合、整合調整を終了すると判断する。判断部17は、判断結果を制御部14に送信する。 The determination unit 17 determines whether to continue or end the alignment adjustment based on the evaluation value calculated by the calculation unit 13. For example, when the VSWR in a specific frequency band or the whole is equal to or lower than a predetermined value, the determination unit 17 determines that the matching adjustment is finished. The determination unit 17 transmits the determination result to the control unit 14.
 (無線回路1の動作)
 次に無線回路1の動作について説明する。まず、無線FEM11から同時に低帯域と高帯域の送信信号が送信されている状態での整合調整について、最初に低帯域、次に高帯域の順に整合調整する場合について説明する。整合調整は、以下のステップL1~L6によって行われる。
ステップL1:信号取出し部12が、無線FEM11から出力された送信信号の進行波および反射波を取り出す。
ステップL2:算出部13が、信号取出し部12が取り出した進行波および反射波を基に、評価値(例えば、VSWR、送信電力レベル等)を算出する。
ステップL3:算出部13が算出した送信信号の評価値と、メモリ15に記録されているアンテナチューナ16の可変容量素子の設定情報とに基づいて、低帯域用アンテナチューナ161を用いて、低帯域についての整合調整を行う。このとき、低帯域用のチューナのみを用いていているため、チューナが動作しても高帯域のインピーダンスはほとんど変化しない。
ステップL4:信号取出し部12が、整合調整後の送信信号の進行波および反射波を取り出す。
ステップL5:算出部13が、信号取出し部12が取り出した進行波および反射波を基に、評価値を算出する。
ステップL6:判断部17が、整合調整を継続するか終了するかを判断し、継続すると判断された場合、ステップL3に戻る。終了すると判断された場合、低帯域の整合調整を終了し、高帯域の整合調整を行う。
(Operation of the radio circuit 1)
Next, the operation of the wireless circuit 1 will be described. First, a description will be given of a case where matching adjustment is performed in a state in which low-band and high-band transmission signals are simultaneously transmitted from the wireless FEM 11, in the case of matching adjustment in the order of low band first and then high band. The alignment adjustment is performed by the following steps L1 to L6.
Step L1: The signal extraction unit 12 extracts a traveling wave and a reflected wave of the transmission signal output from the wireless FEM 11.
Step L2: The calculation unit 13 calculates an evaluation value (for example, VSWR, transmission power level, etc.) based on the traveling wave and the reflected wave extracted by the signal extraction unit 12.
Step L3: Based on the evaluation value of the transmission signal calculated by the calculation unit 13 and the setting information of the variable capacitance element of the antenna tuner 16 recorded in the memory 15, the low-band antenna tuner 161 is used. Consistency adjustment is performed. At this time, since only the low-band tuner is used, even if the tuner operates, the high-band impedance hardly changes.
Step L4: The signal extraction unit 12 extracts the traveling wave and the reflected wave of the transmission signal after the alignment adjustment.
Step L5: The calculation unit 13 calculates an evaluation value based on the traveling wave and the reflected wave extracted by the signal extraction unit 12.
Step L6: The determination unit 17 determines whether to continue or end the alignment adjustment. If it is determined to continue, the process returns to step L3. If it is determined to end, the low-band matching adjustment is terminated and the high-band matching adjustment is performed.
 上記ステップL1~L6を行うことにより、低帯域の整合調整が行われる。これにより、低帯域において、アンテナ10の特性を改善することができる。 By performing the above steps L1 to L6, the low band matching adjustment is performed. Thereby, the characteristics of the antenna 10 can be improved in a low band.
 次に、無線FEM11から同時に出力された送信信号のうち、周波数帯域が高帯域の送信信号についての整合調整は、以下のステップH1~H6によって行われる。
ステップH1、H2:上述したステップL1、L2と同様の処理を行う。
ステップH3:算出部13が算出した送信信号の評価値と、メモリ15に記録されているアンテナチューナ16の可変容量素子の設定情報とに基づいて、高帯域用アンテナチューナ162を用いて、高帯域についての整合調整を行う。このとき、高帯域用のチューナのみを用いていているため、チューナが動作しても低帯域のインピーダンスはほとんど変化しない。ステップH4、H5:上述したステップL4、L5と同様の処理を行う。
ステップH6:判断部17が、整合調整を継続するか終了するかを判断し、継続すると判断された場合、ステップH3に戻る。終了すると判断された場合、高帯域の整合調整を終了する。
Next, of the transmission signals simultaneously output from the wireless FEM 11, matching adjustment is performed for the transmission signals having a high frequency band in the following steps H1 to H6.
Steps H1 and H2: The same processing as in steps L1 and L2 described above is performed.
Step H3: Based on the evaluation value of the transmission signal calculated by the calculation unit 13 and the setting information of the variable capacitance element of the antenna tuner 16 recorded in the memory 15, the high band antenna tuner 162 is used. Consistency adjustment is performed. At this time, since only the high-band tuner is used, the low-band impedance hardly changes even if the tuner operates. Steps H4 and H5: The same processing as in steps L4 and L5 described above is performed.
Step H6: The determination unit 17 determines whether to continue or end the alignment adjustment. If it is determined to continue, the process returns to step H3. If it is determined to end, the high-band matching adjustment ends.
 上記ステップH1~H6を行うことにより、高帯域の整合調整が行われる。これにより、高帯域において、アンテナ10の特性を改善することができる。 By performing the above steps H1 to H6, high band matching adjustment is performed. Thereby, the characteristics of the antenna 10 can be improved in a high band.
 なお、本実施形態においては、低帯域の整合調整(ステップL1~L6)後、高帯域の整合調整(ステップH1~H6)が行われることについて説明を行ったが、本発明はこれに限定されるものではない。ステップL1~L6は、ステップH1~H6の後に行われてもよい。 In the present embodiment, it has been described that the high band matching adjustment (steps H1 to H6) is performed after the low band matching adjustment (steps L1 to L6). However, the present invention is not limited to this. It is not something. Steps L1 to L6 may be performed after steps H1 to H6.
 このように、本実施形態における無線回路1において、複数の送信信号の各々に対応する周波数帯域毎に設けられた低帯域用アンテナチューナ161および高帯域用アンテナチューナ162は、送信信号出力部から同時に出力された複数の送信信号に対し、低帯域用アンテナチューナ161および高帯域用アンテナチューナ162のそれぞれに対応する周波数帯域におけるアンテナ10とのインピーダンス整合をそれぞれ独立に調整することができる。これにより、無線回路1は、各周波数帯域において、アンテナ10とのインピーダンス整合を好適に調整することができる。したがって、無線回路1は、周波数帯域が異なる複数の送信信号を同時に送信する際のアンテナ特性をより改善することができる。 As described above, in the wireless circuit 1 according to the present embodiment, the low-band antenna tuner 161 and the high-band antenna tuner 162 provided for each frequency band corresponding to each of a plurality of transmission signals are simultaneously transmitted from the transmission signal output unit. The impedance matching with the antenna 10 in the frequency band corresponding to each of the low-band antenna tuner 161 and the high-band antenna tuner 162 can be independently adjusted for a plurality of output transmission signals. Thereby, the radio circuit 1 can suitably adjust the impedance matching with the antenna 10 in each frequency band. Therefore, the radio circuit 1 can further improve the antenna characteristics when transmitting a plurality of transmission signals having different frequency bands at the same time.
 〔実施形態2〕
 本発明の他の実施形態について、詳細に説明する。なお、説明の便宜上、前記実施形態にて説明した部材と同じ機能を有する部材については、同じ符号を付記し、その説明を省略する。
[Embodiment 2]
Another embodiment of the present invention will be described in detail. For convenience of explanation, members having the same functions as those described in the embodiment are given the same reference numerals, and descriptions thereof are omitted.
 本発明の一実施形態において、図2に示すように、無線回路2は、アンテナ20に接続されており、無線FEM11、信号取出し部12、算出部13、制御部14、メモリ15、アンテナチューナ26および判断部17を備えている。アンテナ20は、低帯域で動作する低帯域用アンテナ(アンテナエレメント)201と、高帯域で動作する高帯域用アンテナ(アンテナエレメント)202とを備えている。低帯域用アンテナ201および高帯域用アンテナ202は、低帯域用アンテナチューナ161および高帯域用アンテナチューナ162に、それぞれ直列に接続されている。 In one embodiment of the present invention, as shown in FIG. 2, the radio circuit 2 is connected to an antenna 20, and includes a radio FEM 11, a signal extraction unit 12, a calculation unit 13, a control unit 14, a memory 15, and an antenna tuner 26. And a determination unit 17. The antenna 20 includes a low-band antenna (antenna element) 201 that operates in a low band and a high-band antenna (antenna element) 202 that operates in a high band. The low-band antenna 201 and the high-band antenna 202 are connected in series to the low-band antenna tuner 161 and the high-band antenna tuner 162, respectively.
 アンテナチューナ26は、低帯域用アンテナチューナ161、高帯域用アンテナチューナ162、フィルタ263およびフィルタ264を備えている。低帯域用アンテナチューナ161および高帯域用アンテナチューナ162には、無線FEM11から1つ(1系統)の送信ライン(給電線路)で出力された送信信号が二股に分かれて、それぞれ異なる送信ラインで入力している。フィルタ263は、無線FEM11と低帯域用アンテナチューナ161との間に配置されており、フィルタ264は、無線FEM11と高帯域用アンテナチューナ162との間に配置されている。 The antenna tuner 26 includes a low band antenna tuner 161, a high band antenna tuner 162, a filter 263, and a filter 264. In the low band antenna tuner 161 and the high band antenna tuner 162, the transmission signal output from the wireless FEM 11 through one (one system) transmission line (feed line) is divided into two parts and input through different transmission lines. is doing. The filter 263 is disposed between the wireless FEM 11 and the low band antenna tuner 161, and the filter 264 is disposed between the wireless FEM 11 and the high band antenna tuner 162.
 フィルタ263およびフィルタ264は、例えば、バンドパスフィルタであり、複数の送信信号のうち、特定の周波数帯域のみが透過されるように構成されている。具体的には、フィルタ263は、低帯域のみを通過させ、フィルタ264は、送信信号のうち高帯域のみを通過させる。つまり、低帯域用のアンテナチューナが動作した場合、高帯域側のアンテナへの影響が高帯域用のフィルタにより遮断され、高帯域側のアンテナインピーダンスに影響を及ぼさないので、低帯域用チューナは低帯域についてのみ独立に動作することができる構成になっている。 The filter 263 and the filter 264 are, for example, bandpass filters, and are configured to transmit only a specific frequency band among a plurality of transmission signals. Specifically, the filter 263 passes only the low band, and the filter 264 passes only the high band of the transmission signal. In other words, when the antenna tuner for the low band operates, the influence on the antenna on the high band side is blocked by the filter for the high band side and does not affect the antenna impedance on the high band side. It is configured to be able to operate independently only for the band.
 これにより、上述した実施形態1におけるステップL3において、低帯域用アンテナチューナ161は、フィルタ263を通過した送信信号であって、当該低帯域用アンテナチューナ161に対応する周波数帯域の送信信号に対して、低帯域用アンテナ201とのインピーダンス整合を調整することができる。同様に、ステップH3において、高帯域用アンテナチューナ162は、フィルタ264を通過した送信信号であって、当該高帯域用アンテナチューナ162に対応する周波数帯域の送信信号に対して、高帯域用アンテナ202とのインピーダンス整合を調整することができる。つまり、低帯域用アンテナチューナ161および高帯域用アンテナチューナ162は、それぞれ、対応する周波数帯域以外の周波数帯域において、アンテナ20とのインピーダンス整合を調整しないため、より好適に、周波数帯域が異なる複数の送信信号を同時に送信する際のアンテナ特性を改善することができる。 Thereby, in step L3 in the first embodiment described above, the low-band antenna tuner 161 is a transmission signal that has passed through the filter 263, and the transmission signal in the frequency band corresponding to the low-band antenna tuner 161 is The impedance matching with the low band antenna 201 can be adjusted. Similarly, in step H3, the high-band antenna tuner 162 applies the high-band antenna 202 to the transmission signal that has passed through the filter 264 and has a frequency band corresponding to the high-band antenna tuner 162. And impedance matching can be adjusted. That is, each of the low-band antenna tuner 161 and the high-band antenna tuner 162 does not adjust impedance matching with the antenna 20 in a frequency band other than the corresponding frequency band. Antenna characteristics when transmitting transmission signals simultaneously can be improved.
 なお、本実施形態では、アンテナチューナ26がフィルタ263およびフィルタ264を備える構成について説明を行ったが、アンテナチューナ26は、フィルタ263およびフィルタ264を備えていなくてもよい。図2に示すように、低帯域用アンテナチューナ161および高帯域用アンテナチューナ162には、送信信号それぞれ異なる送信ラインで入力していることと、分岐から十分の距離をとることとが可能ならば、影響を変化の影響を十分に小さくすることができるため、フィルタ263およびフィルタ264が備えられていない場合であっても、例えば、低帯域用アンテナチューナ161が行う低帯域用アンテナ201とのインピーダンス整合調整が、高帯域用アンテナチューナ162が行う高帯域用アンテナ202とのインピーダンス整合調整に及ぼす影響を小さくすることができる。 In the present embodiment, the configuration in which the antenna tuner 26 includes the filter 263 and the filter 264 has been described. However, the antenna tuner 26 may not include the filter 263 and the filter 264. As shown in FIG. 2, it is possible to input the transmission signals to the low-band antenna tuner 161 and the high-band antenna tuner 162 through different transmission lines and to take a sufficient distance from the branch. Since the influence of the change can be sufficiently reduced, even if the filter 263 and the filter 264 are not provided, for example, the impedance with the low-band antenna 201 performed by the low-band antenna tuner 161 The effect of the matching adjustment on the impedance matching adjustment with the high band antenna 202 performed by the high band antenna tuner 162 can be reduced.
 〔実施形態3〕
 本発明の他の実施形態について、詳細に説明する。なお、説明の便宜上、前記実施形態にて説明した部材と同じ機能を有する部材については、同じ符号を付記し、その説明を省略する。
[Embodiment 3]
Another embodiment of the present invention will be described in detail. For convenience of explanation, members having the same functions as those described in the embodiment are given the same reference numerals, and descriptions thereof are omitted.
 図3に示すように、本実施形態に係る無線回路3は、実施形態2の無線回路2に対し、アンテナチューナ26の代わりにアンテナチューナ36を備える構成である。アンテナチューナ36では、フィルタ263を通過した送信信号が、低帯域用アンテナ201と低帯域用アンテナチューナ161とに入力し、フィルタ264を通過した送信信号が、高帯域用アンテナ202と高帯域用アンテナチューナ162とに入力する構成となっている。また、低帯域用アンテナチューナ161および高帯域用アンテナチューナ162は、それぞれ、グランドに接続している。 As shown in FIG. 3, the radio circuit 3 according to the present embodiment is configured to include an antenna tuner 36 instead of the antenna tuner 26 with respect to the radio circuit 2 of the second embodiment. In the antenna tuner 36, the transmission signal that has passed through the filter 263 is input to the low band antenna 201 and the low band antenna tuner 161, and the transmission signal that has passed through the filter 264 is the high band antenna 202 and the high band antenna. It is configured to input to the tuner 162. The low band antenna tuner 161 and the high band antenna tuner 162 are each connected to the ground.
 このような構成であっても、上述した実施形態2と同等の動作をすることができるため、より好適に、周波数帯域が異なる複数の送信信号を同時に送信する際のアンテナ特性を改善することができる。 Even with such a configuration, it is possible to perform an operation equivalent to that of the above-described second embodiment, and thus it is possible to improve antenna characteristics when transmitting a plurality of transmission signals having different frequency bands at the same time. it can.
 〔実施形態4〕
 本発明の他の実施形態について、詳細に説明する。なお、説明の便宜上、前記実施形態にて説明した部材と同じ機能を有する部材については、同じ符号を付記し、その説明を省略する。
[Embodiment 4]
Another embodiment of the present invention will be described in detail. For convenience of explanation, members having the same functions as those described in the embodiment are given the same reference numerals, and descriptions thereof are omitted.
 図4に示すように、本実施形態に係る無線回路4は、実施形態2の無線回路2に対し、アンテナチューナ26の代わりにアンテナチューナ46を備える構成である。 As shown in FIG. 4, the wireless circuit 4 according to the present embodiment is configured to include an antenna tuner 46 instead of the antenna tuner 26 with respect to the wireless circuit 2 of the second embodiment.
 アンテナチューナ46では、無線FEM11から1つの送信ラインで出力された送信信号が、それぞれ異なる送信ラインで、低帯域用アンテナ201、高帯域用アンテナ202、フィルタ263およびフィルタ264に入力している構成である。フィルタ263およびフィルタ264を通過した送信信号は、それぞれ、低帯域用アンテナチューナ161および高帯域用アンテナチューナ162に入力する。低帯域用アンテナチューナ161および高帯域用アンテナチューナ162は、それぞれ、グランドに接続している。 The antenna tuner 46 has a configuration in which transmission signals output from the wireless FEM 11 through one transmission line are input to the low-band antenna 201, the high-band antenna 202, the filter 263, and the filter 264 through different transmission lines. is there. The transmission signals that have passed through the filter 263 and the filter 264 are input to the low band antenna tuner 161 and the high band antenna tuner 162, respectively. The low band antenna tuner 161 and the high band antenna tuner 162 are each connected to the ground.
 このような構成であっても、上述した実施形態2と同等の動作をすることができるため、より好適に、周波数帯域が異なる複数の送信信号を同時に送信する際のアンテナ特性を改善することができる。 Even with such a configuration, it is possible to perform an operation equivalent to that of the above-described second embodiment, and thus it is possible to improve antenna characteristics when transmitting a plurality of transmission signals having different frequency bands at the same time. it can.
 〔実施形態5〕
 本発明の他の実施形態について、詳細に説明する。なお、説明の便宜上、前記実施形態にて説明した部材と同じ機能を有する部材については、同じ符号を付記し、その説明を省略する。
[Embodiment 5]
Another embodiment of the present invention will be described in detail. For convenience of explanation, members having the same functions as those described in the embodiment are given the same reference numerals, and descriptions thereof are omitted.
 本発明の一実施形態において、図5に示すように、無線回路5は、アンテナ10に接続されており、無線FEM11、信号取出し部12、算出部13、制御部14、メモリ15、アンテナチューナ56および判断部17を備えている。アンテナチューナ56は、低帯域用アンテナチューナ161、高帯域用アンテナチューナ162、フィルタ263およびフィルタ264を備えている。 In an embodiment of the present invention, as shown in FIG. 5, the radio circuit 5 is connected to the antenna 10, and the radio FEM 11, the signal extraction unit 12, the calculation unit 13, the control unit 14, the memory 15, and the antenna tuner 56. And a determination unit 17. The antenna tuner 56 includes a low band antenna tuner 161, a high band antenna tuner 162, a filter 263, and a filter 264.
 アンテナチューナ56では、無線FEM11から1つの送信ライン(給電線路)で出力された送信信号が、アンテナ10、フィルタ263およびフィルタ264に入力している構成である。フィルタ263およびフィルタ264を通過した送信信号は、それぞれ、低帯域用アンテナチューナ161および高帯域用アンテナチューナ162に入力する。低帯域用アンテナチューナ161および高帯域用アンテナチューナ162は、それぞれ、グランドに接続している。 The antenna tuner 56 has a configuration in which a transmission signal output from the wireless FEM 11 through one transmission line (feeding line) is input to the antenna 10, the filter 263, and the filter 264. The transmission signals that have passed through the filter 263 and the filter 264 are input to the low band antenna tuner 161 and the high band antenna tuner 162, respectively. The low band antenna tuner 161 and the high band antenna tuner 162 are each connected to the ground.
 このような構成であっても、より好適に、周波数帯域が異なる複数の送信信号を同時に送信する際のアンテナ特性を改善することができる。 Even with such a configuration, it is possible to more preferably improve the antenna characteristics when transmitting a plurality of transmission signals having different frequency bands at the same time.
 〔実施形態6〕
 本発明の他の実施形態について、詳細に説明する。なお、説明の便宜上、前記実施形態にて説明した部材と同じ機能を有する部材については、同じ符号を付記し、その説明を省略する。
[Embodiment 6]
Another embodiment of the present invention will be described in detail. For convenience of explanation, members having the same functions as those described in the embodiment are given the same reference numerals, and descriptions thereof are omitted.
 図6に示すように、本実施形態に係る無線回路6は、実施形態5の無線回路5に対し、アンテナチューナ56の代わりにアンテナチューナ66を備える構成である。アンテナチューナ66は、低帯域用アンテナチューナ161、高帯域用アンテナチューナ162、フィルタ263、フィルタ264、フィルタ665およびフィルタ666を備えている。フィルタ665およびフィルタ666は、それぞれ、フィルタ263およびフィルタ264と同様の構成であるため、説明を省略する。 As shown in FIG. 6, the wireless circuit 6 according to the present embodiment is configured to include an antenna tuner 66 instead of the antenna tuner 56 with respect to the wireless circuit 5 of the fifth embodiment. The antenna tuner 66 includes a low band antenna tuner 161, a high band antenna tuner 162, a filter 263, a filter 264, a filter 665, and a filter 666. The filter 665 and the filter 666 have the same configuration as the filter 263 and the filter 264, respectively, and thus description thereof is omitted.
 アンテナチューナ66の低帯域用アンテナチューナ161および高帯域用アンテナチューナ162には、無線FEM11から1つ(1系統)の送信ライン(給電線路)で出力された送信信号が二股に分かれて、それぞれ異なる送信ラインで入力している。アンテナチューナ66は、低帯域用アンテナチューナ161から出力され、フィルタ665を通過させた送信信号と、高帯域用アンテナチューナ162から出力され、フィルタ666を通過させた送信信号とを結合し、アンテナ10に出力する。結合された送信信号はアンテナ10に入力する。 The low-band antenna tuner 161 and the high-band antenna tuner 162 of the antenna tuner 66 are divided into two transmission signals output from the wireless FEM 11 through one (one system) transmission line (feed line). Input on the transmission line. The antenna tuner 66 combines the transmission signal output from the low-band antenna tuner 161 and passed through the filter 665 with the transmission signal output from the high-band antenna tuner 162 and passed through the filter 666. Output to. The combined transmission signal is input to the antenna 10.
 上記構成によれば、さらに、周波数帯域が異なる複数の送信信号を同時に送信する際のアンテナ特性を改善することができる。 According to the above configuration, it is possible to further improve the antenna characteristics when transmitting a plurality of transmission signals having different frequency bands at the same time.
 なお、上述した実施形態5および実施形態6におけるアンテナ10は、アンテナ20のように、各周波数帯域で動作する複数のアンテナエレメントを備える構成であってもよい。 In addition, the antenna 10 in Embodiment 5 and Embodiment 6 described above may be configured to include a plurality of antenna elements that operate in each frequency band, like the antenna 20.
 〔低帯域用アンテナチューナ161および高帯域用アンテナチューナ162の具体例〕
 次に、本発明に係る低帯域用アンテナチューナ161および高帯域用アンテナチューナ162の具体例について説明する。なお、説明の便宜上、前記実施形態にて説明した部材と同じ機能を有する部材については、同じ符号を付記し、その説明を省略する。
[Specific Examples of Low Band Antenna Tuner 161 and High Band Antenna Tuner 162]
Next, specific examples of the low-band antenna tuner 161 and the high-band antenna tuner 162 according to the present invention will be described. For convenience of explanation, members having the same functions as those described in the embodiment are given the same reference numerals, and descriptions thereof are omitted.
 図7は、実施形態1~6に係る低帯域用アンテナチューナ161の一例を示す図である。図7に示すように、低帯域用アンテナチューナ161には可変インダクタもしくは可変キャパシタの少なくともどちらか一方が使われており、可変キャパシタはシリーズ(直列)に、可変インダクタはシャント(並列)で使われている。これは、当該可変インダクタのインダクタンスをLとすると、1/(2π×周波数×L)で表すことができ、当該可変キャパシタはキャパシタンスをCとすると、1/(2π×周波数×C)によってあらわすことができるため、周波数が低いとき、アンテナとのインピーダンス整合を大きく調整することができるからである。 FIG. 7 is a diagram illustrating an example of the low-band antenna tuner 161 according to the first to sixth embodiments. As shown in FIG. 7, the low-band antenna tuner 161 uses at least one of a variable inductor and a variable capacitor. The variable capacitor is used in series (series), and the variable inductor is used in shunt (parallel). ing. This can be expressed by 1 / (2π × frequency × L) where L is the inductance of the variable inductor, and the variable capacitor is expressed by 1 / (2π × frequency × C) where C is the capacitance. This is because the impedance matching with the antenna can be greatly adjusted when the frequency is low.
 次に、高帯域用アンテナチューナ162の具体例について説明する。図8は、実施形態1~6に係る高帯域用アンテナチューナ162の一例を示す図である。図8に示すように、高帯域用アンテナチューナ162には可変インダクタもしくは可変キャパシタの少なくともどちらか一方が使われており、可変キャパシタはシャントに、可変インダクタはシリーズに使われている。これは、当該可変キャパシタのキャパシタンスをCとすると、2π×周波数×Cで表すことができ、当該可変インダクタのインダクタンスをLとすると、2π×周波数×Lであらわすことができるため、周波数が高いとき、アンテナとのインピーダンス整合を大きく調整することができるからである。 Next, a specific example of the high band antenna tuner 162 will be described. FIG. 8 is a diagram illustrating an example of the high band antenna tuner 162 according to the first to sixth embodiments. As shown in FIG. 8, at least one of a variable inductor and a variable capacitor is used for the high-band antenna tuner 162. The variable capacitor is used as a shunt and the variable inductor is used as a series. This can be expressed as 2π × frequency × C, where C is the capacitance of the variable capacitor, and can be expressed as 2π × frequency × L, where L is the inductance of the variable inductor. This is because impedance matching with the antenna can be greatly adjusted.
 〔ソフトウェアによる実現例〕
 無線回路1~6の制御ブロック(特に算出部13および制御部14)は、集積回路(ICチップ)等に形成された論理回路(ハードウェア)によって実現してもよいし、CPU(Central Processing Unit)を用いてソフトウェアによって実現してもよい。
[Example of software implementation]
The control blocks (particularly the calculation unit 13 and the control unit 14) of the radio circuits 1 to 6 may be realized by a logic circuit (hardware) formed in an integrated circuit (IC chip) or the like, or a CPU (Central Processing Unit). ) May be implemented by software.
 後者の場合、無線回路1~6は、各機能を実現するソフトウェアであるプログラムの命令を実行するCPU、上記プログラムおよび各種データがコンピュータ(またはCPU)で読み取り可能に記録されたROM(Read Only Memory)または記憶装置(これらを「記録媒体」と称する)、上記プログラムを展開するRAM(Random Access Memory)などを備えている。そして、コンピュータ(またはCPU)が上記プログラムを上記記録媒体から読み取って実行することにより、本発明の目的が達成される。上記記録媒体としては、「一時的でない有形の媒体」、例えば、テープ、ディスク、カード、半導体メモリ、プログラマブルな論理回路などを用いることができる。また、上記プログラムは、該プログラムを伝送可能な任意の伝送媒体(通信ネットワークや放送波等)を介して上記コンピュータに供給されてもよい。なお、本発明は、上記プログラムが電子的な伝送によって具現化された、搬送波に埋め込まれたデータ信号の形態でも実現され得る。 In the latter case, the radio circuits 1 to 6 include a CPU that executes instructions of a program that is software that implements each function, and a ROM (Read Only Memory) in which the program and various data are recorded so as to be readable by the computer (or CPU). ) Or a storage device (these are referred to as “recording media”), a RAM (Random Access Memory) that expands the program, and the like. And the objective of this invention is achieved when a computer (or CPU) reads the said program from the said recording medium and runs it. As the recording medium, a “non-temporary tangible medium” such as a tape, a disk, a card, a semiconductor memory, a programmable logic circuit, or the like can be used. The program may be supplied to the computer via an arbitrary transmission medium (such as a communication network or a broadcast wave) that can transmit the program. The present invention can also be realized in the form of a data signal embedded in a carrier wave in which the program is embodied by electronic transmission.
 〔まとめ〕
 本発明の態様1に係る無線回路は、アンテナに接続された無線回路であって、周波数帯域が異なる複数の送信信号を1つの送信ラインで同時に出力する送信信号出力部(無線FEM11)と、上記複数の送信信号の各々に対応する周波数帯域毎に設けられ、各周波数帯域における上記アンテナとのインピーダンス整合をそれぞれ独立に調整する複数の可変整合手段(低帯域用アンテナチューナ161、高帯域用アンテナチューナ162)と、を備えていることを特徴としている。
[Summary]
A radio circuit according to aspect 1 of the present invention is a radio circuit connected to an antenna, and a transmission signal output unit (radio FEM 11) that simultaneously outputs a plurality of transmission signals having different frequency bands on one transmission line; A plurality of variable matching means (low band antenna tuner 161, high band antenna tuner) provided for each frequency band corresponding to each of a plurality of transmission signals and independently adjusting impedance matching with the antenna in each frequency band. 162).
 上記の構成によれば、複数の送信信号の各々に対応する周波数帯域毎に設けられた複数の可変整合手段の各々は、送信信号出力部から同時に出力された周波数帯域が異なる複数の送信信号のうち、当該可変整合手段に対応する周波数帯域の送信信号に対し、アンテナとのインピーダンス整合をそれぞれ独立に調整する。これにより、上記無線回路は、各周波数帯域において、アンテナとのインピーダンス整合を好適に調整することができる。したがって、上記無線回路は、周波数帯域が異なる複数の送信信号を同時に送信する際のアンテナ特性をより改善することができる。 According to the above configuration, each of the plurality of variable matching means provided for each frequency band corresponding to each of the plurality of transmission signals includes a plurality of transmission signals having different frequency bands output simultaneously from the transmission signal output unit. Among them, the impedance matching with the antenna is independently adjusted for the transmission signal in the frequency band corresponding to the variable matching means. Thereby, the said radio | wireless circuit can adjust suitably impedance matching with an antenna in each frequency band. Therefore, the radio circuit can further improve the antenna characteristics when transmitting a plurality of transmission signals having different frequency bands at the same time.
 本発明の態様2に係る無線回路は、上記態様1において、上記複数の送信信号の各々における上記アンテナとのインピーダンス整合を評価する評価値をそれぞれ算出する算出手段(算出部13)と、上記算出手段が算出した各評価値に応じて、上記複数の送信信号の各々における上記アンテナとのインピーダンス整合が改善するように、上記複数の可変整合手段を制御する制御手段(アンテナチューナ制御部141)と、を備えていることが好ましい。 The wireless circuit according to aspect 2 of the present invention is the wireless circuit according to aspect 1, in which the calculation means (calculation unit 13) that calculates an evaluation value for evaluating impedance matching with the antenna in each of the plurality of transmission signals, and the calculation Control means (antenna tuner control unit 141) for controlling the plurality of variable matching means so that impedance matching with the antenna in each of the plurality of transmission signals is improved according to each evaluation value calculated by the means; Are preferably provided.
 上記の構成によれば、上記算出手段は、複数の送信信号の各々における上記アンテナとのインピーダンス整合を評価する評価値をそれぞれ算出し、上記制御手段は、上記算出手段が算出した各評価値に応じて、上記複数の送信信号の各々における上記アンテナとのインピーダンス整合が改善するように、上記複数の可変整合手段を制御する。 According to the above configuration, the calculation unit calculates an evaluation value for evaluating impedance matching with the antenna in each of a plurality of transmission signals, and the control unit calculates the evaluation value calculated by the calculation unit. Accordingly, the plurality of variable matching means are controlled so that impedance matching with the antenna in each of the plurality of transmission signals is improved.
 したがって、上記無線回路は、周波数帯域が異なる複数の送信信号を同時に送信する際のアンテナ特性をより好適に改善することができる。 Therefore, the radio circuit can more suitably improve the antenna characteristics when transmitting a plurality of transmission signals having different frequency bands at the same time.
 本発明の態様3に係る無線回路は、上記態様1または2において、上記アンテナが、上記複数の送信信号の各々に対応する周波数帯域毎に設けられた複数のアンテナエレメント(低帯域用アンテナ201、高帯域用アンテナ202)を備えており、各アンテナエレメントは、それぞれ、対応する周波数帯域で動作するとともに、当該周波数帯域における上記アンテナとのインピーダンス整合を調整する上記可変整合手段に接続されている構成であってもよい。 A wireless circuit according to aspect 3 of the present invention is the wireless circuit according to aspect 1 or 2, wherein the antenna is provided with a plurality of antenna elements (low band antenna 201, provided for each frequency band corresponding to each of the plurality of transmission signals. High-band antenna 202), and each antenna element operates in a corresponding frequency band and is connected to the variable matching means for adjusting impedance matching with the antenna in the frequency band. It may be.
 上記の構成によれば、複数の送信信号の各々に対応する周波数帯域で動作するアンテナエレメントが、各周波数帯域における上記アンテナとのインピーダンス整合を調整する上記可変整合手段に接続されている。したがって、上記複数の可変整合手段は、それぞれ、当該可変整合手段対応する周波数帯域で動作するアンテナエレメントとのインピーダンス整合を調整する。これにより、上記無線回路は、周波数帯域が異なる複数の送信信号を同時に送信する際のアンテナ特性をより好適に改善することができる。 According to the above configuration, an antenna element that operates in a frequency band corresponding to each of a plurality of transmission signals is connected to the variable matching means that adjusts impedance matching with the antenna in each frequency band. Accordingly, each of the plurality of variable matching means adjusts impedance matching with an antenna element operating in a frequency band corresponding to the variable matching means. Thereby, the said radio | wireless circuit can improve more suitably the antenna characteristic at the time of transmitting simultaneously the several transmission signal from which a frequency band differs.
 本発明の態様4に係る無線回路は、上記態様3において、各可変整合手段が、当該可変整合手段に対応する周波数帯域で動作する上記アンテナエレメントと上記送信信号出力部との間に、直列に接続されている構成であってもよい。 The wireless circuit according to aspect 4 of the present invention is the wireless circuit according to aspect 3, in which each variable matching unit is connected in series between the antenna element operating in the frequency band corresponding to the variable matching unit and the transmission signal output unit. A connected configuration may be used.
 上記の構成によれば、上記複数の可変整合手段のそれぞれは、当該可変整合手段に直列に接続されたアンテナエレメントとのインピーダンス整合を調整する。これにより、上記無線回路は、周波数帯域が異なる複数の送信信号を同時に送信する際のアンテナ特性をより好適に改善することができる。 According to the above configuration, each of the plurality of variable matching means adjusts impedance matching with an antenna element connected in series to the variable matching means. Thereby, the said radio | wireless circuit can improve more suitably the antenna characteristic at the time of transmitting simultaneously the several transmission signal from which a frequency band differs.
 本発明の態様5に係る無線回路は、上記態様1から4において、上記送信信号出力部と上記複数の可変整合手段の各々との間に、上記複数の可変整合手段の各々に対し個々に接続するように配置された複数のフィルタを備え、上記複数のフィルタの各々は、上記送信信号出力部が出力した複数の送信信号のうち、当該フィルタに接続する可変整合手段に対応する周波数帯域の送信信号のみを通過させる構成であってもよい。 The wireless circuit according to aspect 5 of the present invention is the wireless circuit according to aspects 1 to 4, wherein the wireless circuit is individually connected to each of the plurality of variable matching units between the transmission signal output unit and each of the plurality of variable matching units. A plurality of filters arranged so that each of the plurality of filters transmits a frequency band corresponding to a variable matching means connected to the filter among the plurality of transmission signals output from the transmission signal output unit. A configuration in which only a signal is allowed to pass may be used.
 上記の構成によれば、上記可変整合手段の各々に対し個々に接続するように配置された複数のフィルタの各々は、上記送信信号出力部が出力した複数の送信信号のうち、当該フィルタに接続する可変整合手段に対応する周波数帯域の送信信号のみを通過させる。これにより、上記複数の可変整合手段の各々は、当該可変整合手段に対応する周波数帯域において、アンテナとのインピーダンス整合をより好適に調整することができる。 According to the above configuration, each of the plurality of filters arranged to be individually connected to each of the variable matching means is connected to the filter among the plurality of transmission signals output by the transmission signal output unit. Only the transmission signal in the frequency band corresponding to the variable matching means is passed. As a result, each of the plurality of variable matching means can more suitably adjust the impedance matching with the antenna in the frequency band corresponding to the variable matching means.
 本発明の態様6に係る無線回路は、上記態様3において、各可変整合手段が、当該可変整合手段に対応する周波数帯域で動作する上記アンテナエレメントに上記送信信号を入力する送信ラインから分岐し、グランドに接続するライン上に構成されている構成であってもよい。 A wireless circuit according to aspect 6 of the present invention is the wireless circuit according to aspect 3, in which each variable matching unit branches from a transmission line that inputs the transmission signal to the antenna element that operates in a frequency band corresponding to the variable matching unit. It may be configured on a line connected to the ground.
 上記の構成によれば、上記複数の可変整合手段のそれぞれは、当該可変整合手段に入力する送信ラインに接続されたアンテナエレメントとのインピーダンス整合を調整する。これにより、上記無線回路は、周波数帯域が異なる複数の送信信号を同時に送信する際のアンテナ特性をより好適に改善することができる。 According to the above configuration, each of the plurality of variable matching means adjusts impedance matching with the antenna element connected to the transmission line input to the variable matching means. Thereby, the said radio | wireless circuit can improve more suitably the antenna characteristic at the time of transmitting simultaneously the several transmission signal from which a frequency band differs.
 本発明の態様7に係る無線回路は、上記態様1または2において、複数の可変整合手段の各々が、上記アンテナに送信信号を入力する送信ラインから分岐し、グランドに接続する複数のライン上にそれぞれ構成されている構成であってもよい。 The wireless circuit according to aspect 7 of the present invention is the wireless circuit according to aspect 1 or 2, wherein each of the plurality of variable matching units branches from a transmission line that inputs a transmission signal to the antenna and is connected to the ground. Each may be configured.
 本発明の態様8に係る無線回路は、上記態様5において、上記アンテナと上記複数の可変整合手段の各々との間に、上記可変整合手段の各々に対し個々に接続するように配置された複数のフィルタを備え、上記複数のフィルタの各々は、当該フィルタに接続する可変整合手段に対応する周波数帯域の送信信号のみを通過させる構成であってもよい。 A radio circuit according to an eighth aspect of the present invention is the wireless circuit according to the fifth aspect, wherein the plurality of radio circuits are individually connected between the antenna and each of the plurality of variable matching means. Each of the plurality of filters may be configured to pass only a transmission signal in a frequency band corresponding to the variable matching means connected to the filter.
 上記構成によれば、さらに、周波数帯域が異なる複数の送信信号を同時に送信する際のアンテナ特性を改善することができる。 According to the above configuration, it is possible to further improve the antenna characteristics when transmitting a plurality of transmission signals having different frequency bands at the same time.
 本発明の各態様に係る無線回路1~6は、コンピュータによって実現してもよく、この場合には、コンピュータを無線回路1~6が備える各手段として動作させることにより無線回路1~6をコンピュータにて実現させる無線回路1~6の制御プログラム、およびそれを記録したコンピュータ読み取り可能な記録媒体も、本発明の範疇に入る。 The radio circuits 1 to 6 according to each aspect of the present invention may be realized by a computer. In this case, the radio circuits 1 to 6 are operated as computers provided in the radio circuits 1 to 6. The control programs for the radio circuits 1 to 6 realized by the above and the computer-readable recording medium on which the control programs are recorded also fall within the scope of the present invention.
 本発明は上述した各実施形態に限定されるものではなく、請求項に示した範囲で種々の変更が可能であり、異なる実施形態にそれぞれ開示された技術的手段を適宜組み合わせて得られる実施形態についても本発明の技術的範囲に含まれる。さらに、各実施形態にそれぞれ開示された技術的手段を組み合わせることにより、新しい技術的特徴を形成することができる。 The present invention is not limited to the above-described embodiments, and various modifications are possible within the scope shown in the claims, and embodiments obtained by appropriately combining technical means disclosed in different embodiments. Is also included in the technical scope of the present invention. Furthermore, a new technical feature can be formed by combining the technical means disclosed in each embodiment.
 本発明は、無線装置の製造分野において利用することができる。 The present invention can be used in the field of manufacturing wireless devices.
 1~6 無線回路
 10 アンテナ
 11 無線FEM(送信信号出力部)
 12 信号取出し部
 13 算出部(算出手段)
 14 制御部
 141 アンテナチューナ制御部(制御手段)
 15 メモリ
 16 アンテナチューナ
 161 低帯域用アンテナチューナ(可変整合手段)
 162 高帯域用アンテナチューナ(可変整合手段)
 17 判断部
 20 アンテナ
 201 低帯域用アンテナ(アンテナエレメント)
 202 高帯域用アンテナ(アンテナエレメント)
 26、36、46、56 アンテナチューナ
 263 フィルタ
 264 フィルタ
 66 アンテナチューナ
 665 フィルタ
 666 フィルタ
1 to 6 Wireless circuit 10 Antenna 11 Wireless FEM (Transmission signal output unit)
12 signal extraction part 13 calculation part (calculation means)
14 Control Unit 141 Antenna Tuner Control Unit (Control Unit)
15 Memory 16 Antenna tuner 161 Low band antenna tuner (variable matching means)
162 High-band antenna tuner (variable matching means)
17 Judgment unit 20 Antenna 201 Low band antenna (antenna element)
202 High band antenna (antenna element)
26, 36, 46, 56 Antenna tuner 263 filter 264 filter 66 antenna tuner 665 filter 666 filter

Claims (5)

  1.  アンテナに接続された無線回路であって、
     周波数帯域が異なる複数の送信信号を1つの送信ラインで同時に出力する送信信号出力部と、
     上記複数の送信信号の各々に対応する周波数帯域毎に設けられ、各周波数帯域における上記アンテナとのインピーダンス整合をそれぞれ独立に調整する複数の可変整合手段と、を備えていることを特徴とする無線回路。
    A radio circuit connected to an antenna,
    A transmission signal output unit for simultaneously outputting a plurality of transmission signals having different frequency bands on one transmission line;
    A plurality of variable matching means provided for each frequency band corresponding to each of the plurality of transmission signals and independently adjusting impedance matching with the antenna in each frequency band; circuit.
  2.  上記複数の送信信号の各々における上記アンテナとのインピーダンス整合を評価する評価値をそれぞれ算出する算出手段と、
     上記算出手段が算出した各評価値に応じて、上記複数の送信信号の各々における上記アンテナとのインピーダンス整合が改善するように、上記複数の可変整合手段を制御する制御手段と、を備えていることを特徴とする請求項1に記載の無線回路。
    Calculating means for calculating an evaluation value for evaluating impedance matching with the antenna in each of the plurality of transmission signals;
    Control means for controlling the plurality of variable matching means so that impedance matching with the antenna in each of the plurality of transmission signals is improved according to each evaluation value calculated by the calculation means. The radio circuit according to claim 1.
  3.  上記アンテナは、上記複数の送信信号の各々に対応する周波数帯域毎に設けられた複数のアンテナエレメントを備えており、
     各アンテナエレメントは、それぞれ、対応する周波数帯域で動作するとともに、当該周波数帯域における上記アンテナとのインピーダンス整合を調整する上記可変整合手段に接続されていることを特徴とする請求項1または2に記載の無線回路。
    The antenna includes a plurality of antenna elements provided for each frequency band corresponding to each of the plurality of transmission signals,
    3. Each antenna element operates in a corresponding frequency band and is connected to the variable matching means for adjusting impedance matching with the antenna in the frequency band. Wireless circuit.
  4.  各可変整合手段は、当該可変整合手段に対応する周波数帯域で動作する上記アンテナエレメントと上記送信信号出力部との間に、直列に接続されている、ことを特徴とする請求項3に記載の無線回路。 The variable matching means is connected in series between the antenna element operating in a frequency band corresponding to the variable matching means and the transmission signal output unit. Wireless circuit.
  5.  上記送信信号出力部と上記複数の可変整合手段の各々との間に、上記複数の可変整合手段の各々に対し個々に接続するように配置された複数のフィルタを備え、
     上記複数のフィルタの各々は、上記送信信号出力部が出力した複数の送信信号のうち、当該フィルタに接続する可変整合手段に対応する周波数帯域の送信信号のみを通過させる、ことを特徴とする請求項1から4の何れか1項に記載の無線回路。
    A plurality of filters arranged to be individually connected to each of the plurality of variable matching means between the transmission signal output unit and each of the plurality of variable matching means,
    Each of the plurality of filters passes only a transmission signal in a frequency band corresponding to a variable matching unit connected to the filter among the plurality of transmission signals output from the transmission signal output unit. Item 5. The wireless circuit according to any one of Items 1 to 4.
PCT/JP2013/082357 2013-02-04 2013-12-02 Wireless circuit WO2014119118A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-019923 2013-02-04
JP2013019923A JP6055329B2 (en) 2013-02-04 2013-02-04 Radio circuit

Publications (1)

Publication Number Publication Date
WO2014119118A1 true WO2014119118A1 (en) 2014-08-07

Family

ID=51261848

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/082357 WO2014119118A1 (en) 2013-02-04 2013-12-02 Wireless circuit

Country Status (2)

Country Link
JP (1) JP6055329B2 (en)
WO (1) WO2014119118A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170272108A1 (en) * 2016-03-21 2017-09-21 Qualcomm Incorporated Modem adaptive antenna tuning (maat)
US11304071B2 (en) 2018-09-24 2022-04-12 Qualcomm Incorporated Radio control based on operational performance feedback

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000114996A (en) * 1998-10-08 2000-04-21 Toshiba Corp Radio transmitting device
JP2012191438A (en) * 2011-03-10 2012-10-04 Fujitsu Ltd Distribution circuit, transmitting phased array antenna circuit, combination circuit and receiving phased array antenna circuit

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000114996A (en) * 1998-10-08 2000-04-21 Toshiba Corp Radio transmitting device
JP2012191438A (en) * 2011-03-10 2012-10-04 Fujitsu Ltd Distribution circuit, transmitting phased array antenna circuit, combination circuit and receiving phased array antenna circuit

Also Published As

Publication number Publication date
JP2014154893A (en) 2014-08-25
JP6055329B2 (en) 2016-12-27

Similar Documents

Publication Publication Date Title
US11854728B2 (en) Tunable inductor arrangement, transceiver, method and computer program
US9866244B2 (en) Electromagnetic couplers for multi-frequency power detection
US9614269B2 (en) RF coupler with adjustable termination impedance
US9960747B2 (en) Integrated filter and directional coupler assemblies
KR20150118052A (en) Circuits and methods related to radio-frequency receivers having carrier aggregation
US10283252B2 (en) Tunable inductor arrangement, transceiver, method and computer program
US10110194B2 (en) Variable filter circuit, RF front end circuit and communication device
US10009048B2 (en) High-frequency circuit and transmission and reception circuit using high-frequency circuit
US10009000B2 (en) RFID reader antenna port isolation
US20180097540A1 (en) High-frequency front-end circuit
US10707906B2 (en) Radio frequency transmission circuit, circuit matching method and computer storage medium
US7965532B2 (en) Enhanced performance memory systems and methods
JP6055329B2 (en) Radio circuit
US9973166B2 (en) Phase shift circuit
US10148239B1 (en) Circuit with co-matching topology for transmitting and receiving RF signals
JP2011097320A (en) Transmitter, and detection circuit sharing method therein
KR102264255B1 (en) Rf module
WO2017029777A1 (en) Antenna apparatus, and method for transmitting and receiving signal
KR20140009740A (en) Apparatus for resonance frequency in antenna
WO2017065002A1 (en) Antenna structure and antenna device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13873897

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13873897

Country of ref document: EP

Kind code of ref document: A1