WO2014118875A1 - Switch device - Google Patents

Switch device Download PDF

Info

Publication number
WO2014118875A1
WO2014118875A1 PCT/JP2013/051842 JP2013051842W WO2014118875A1 WO 2014118875 A1 WO2014118875 A1 WO 2014118875A1 JP 2013051842 W JP2013051842 W JP 2013051842W WO 2014118875 A1 WO2014118875 A1 WO 2014118875A1
Authority
WO
WIPO (PCT)
Prior art keywords
linear motor
spring
thrust
magnetic pole
magnetic
Prior art date
Application number
PCT/JP2013/051842
Other languages
French (fr)
Japanese (ja)
Inventor
康明 青山
小村 昭義
一 浦井
勝彦 白石
陽一 大下
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Priority to PCT/JP2013/051842 priority Critical patent/WO2014118875A1/en
Priority to JP2014559374A priority patent/JP5883516B2/en
Publication of WO2014118875A1 publication Critical patent/WO2014118875A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K41/00Propulsion systems in which a rigid body is moved along a path due to dynamo-electric interaction between the body and a magnetic field travelling along the path
    • H02K41/02Linear motors; Sectional motors
    • H02K41/03Synchronous motors; Motors moving step by step; Reluctance motors
    • H02K41/031Synchronous motors; Motors moving step by step; Reluctance motors of the permanent magnet type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H33/00High-tension or heavy-current switches with arc-extinguishing or arc-preventing means
    • H01H33/02Details
    • H01H33/28Power arrangements internal to the switch for operating the driving mechanism
    • H01H33/38Power arrangements internal to the switch for operating the driving mechanism using electromagnet
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K16/00Machines with more than one rotor or stator
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K7/00Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines

Definitions

  • the present invention relates to a switchgear and, for example, to a switchgear suitable for an operation device that performs an open / close operation of a breaker such as a gas circuit breaker to electrically cut off a high voltage.
  • power switchgears installed in substations and switchgears are circuit breakers that cut off current in the event of a short circuit in the power system, disconnectors that open and close the power system, and grounds that ground high-voltage conductors during inspections, etc. It has a switch.
  • the circuit breaker which is one of the switchgears, has a role of preventing accidents in the power system by promptly interrupting the accident current, and therefore development of a more reliable device is required.
  • a spring operating device that obtains an operating force by releasing the spring force accumulated in the operating spring, or an operating force that uses air pressure or hydraulic pressure is obtained.
  • Conventionally known pneumatic and hydraulic operating devices are known.
  • the spring operating device is excellent in low operating force, maintainability, and economy, and the pneumatic operating device is easy to handle and obtains high operating force.
  • the operating device is characterized by low noise and high operating force.
  • the elastic force of the spring is not necessarily constant, the positioning accuracy of the spring is low, and further, it is composed of many complicated parts.
  • the working fluid may leak due to expansion of the working fluid or damage to the sealing packing or the like depending on changes in ambient temperature.
  • the whole may not operate, and it is difficult to handle.
  • Patent Document 1 discloses a technique that describes this technique.
  • This Patent Document 1 describes an actuator structure that supplies a current to a linearly movable coil, and uses a magnetic field generated from a fixed cylindrical permanent magnet and an electron repulsive force due to the current density of the coil to A circuit breaker is described that linearly moves an insulating rod that leads to.
  • Patent Documents 2 and 3 magnetic pole teeth arranged on both sides of a permanent magnet via a gap, a core that continuously connects these magnetic pole teeth, and an armature winding wound around a plurality of magnetic pole teeth.
  • a drive device is described that includes an armature having a plurality of permanent magnet arrays arranged so that magnetic poles are alternately arranged.
  • Patent Document 4 describes a magnetic linear drive device that moves an open / close contact of a circuit breaker, and includes a first iron core having at least one magnetic gap that passes through a first coil that can be fed and is passed by a magnetic flux. And a movable contact having a first permanent magnet, wherein the first permanent magnet is supported by a compressed spring device (auxiliary device) and moved from a first terminal position.
  • a compressed spring device auxiliary device
  • the winding is an actuator in which the winding is movable, and in order to pass a large current, a winding with a large diameter is required, so the mass of the winding becomes large, Acceleration performance will decrease.
  • the winding itself is movable, it is necessary to supply a current to the winding serving as a movable body, and there is room for improvement in wiring handling and durability. From such various viewpoints, there is room for improvement in the reliability of Patent Document 1.
  • Patent Documents 2 and 3 are not intended to be used for a circuit breaker in the first place, and for a controller for a circuit breaker that requires high acceleration, the mass of the movable body is reduced. The reduction is not considered at all.
  • the magnetic linear drive device described in Patent Document 4 has a structure in which a yoke is attached to the movable armature, the mass of the yoke is added to the mass of the movable part, and the responsiveness is lowered and cut off. Time may increase.
  • the relationship between the current flowing through the first coil and the thrust acting on the movable armature changes depending on the position of the movable armature and the first iron core, making it difficult to control the thrust and generating vibration when the movable armature moves. Resulting in.
  • the magnetic resistance of the magnetic circuit changes greatly, which may cause vibrations, etc.
  • the present invention has been made in view of the above points, and the object of the present invention is to reduce the mass of the operating device and realize high acceleration operation as well as to improve reliability.
  • the object is to provide a switchgear.
  • the opening / closing device of the present invention includes a stationary contact and a blocking portion including a movable contact that contacts or separates from the fixed contact, and a drive for operating the movable contact.
  • a linear motor that generates a force, and a thrust generation source that assists the linear motor in thrusting or decelerating or accelerating / decelerating the contact or opening of the blocking portion It is characterized by.
  • the mass of the operating device can be reduced and high acceleration operation can be realized, and there is an effect that the reliability can be improved.
  • FIG. 3 is a perspective view showing a state in which the linear motor of FIG. 2 is cut in the YZ plane. It is a figure explaining the needle
  • FIG. 3 shows the path
  • FIG. 10 is a cross-sectional view showing the linear motor of FIG. 9 in a YZ plane. It is a perspective view of the near motor which shows the example which added the spring and the hook to the structure of FIG. FIG.
  • FIG. 12 is a perspective view showing a cross section of the linear motor shown in FIG. 11 in the YZ plane. It is sectional drawing which shows the closing state of the circuit breaker which is Example 2 of the switchgear of this invention. It is sectional drawing which shows the opening state of the circuit breaker which is Example 2 of the switchgear of this invention.
  • the linear motor employ
  • FIG. 15 is a perspective view showing a cross section of the linear motor shown in FIG. 14 in the YZ plane.
  • adopted for the opening / closing apparatus of this invention it is a perspective view of the linear motor which shows the example which has arrange
  • FIG. 12 is a characteristic diagram showing a relationship between time and displacement when the hook is removed in the example shown in FIG. 11.
  • FIG. 3 is a cross-sectional view showing a cross section of the armature of the linear motor shown in FIG. 2 in the XY plane.
  • FIG. 1 (a) and 1 (b) show a gas circuit breaker that is Embodiment 1 of the switchgear of the present invention.
  • FIG. 1A shows a closed state of the gas circuit breaker
  • FIG. 1B shows an opened state of the gas circuit breaker.
  • the gas circuit breaker according to the present embodiment is roughly divided into a breaker (A) for breaking the accident current and an operation part (B) for operating the breaker (A).
  • the blocking part (A) is fixed in an airtight metal container 1 filled with gas (for example, SF6 gas, air, etc.) and supported by an insulating support spacer 2 provided at the end of the airtight metal container 1.
  • Gas for example, SF6 gas, air, etc.
  • Side contact 3 movable side contact 4 that is disposed opposite to the fixed side contact 3 and contacts (closes) or opens (opens) the fixed side contact 3, and this movable side contact A nozzle 5 which is provided at the tip of the child 4 and which extinguishes the arc generated between the stationary contact 3 and the movable contact 4 by opening the arc by blowing an arc extinguishing gas to the operating portion (B) side.
  • An insulating support cylinder 7 which is connected so as to cover the insulating rod 81 connected to the movable contact 4 and a main circuit conductor which is connected to the movable contact 4 and forms a part of the main circuit And a high voltage conductor 8.
  • blocking part (A) moves the movable side contactor 4 through the operating force from the operation part (B), and is electrically opened and closed, thereby supplying current (closing) and blocking (opening). Is done.
  • a current transformer 51 serving as a current detector for detecting a current flowing through the high voltage conductor 8 is provided around the high voltage conductor 8, and an operation unit (B An insulating rod 81 connected to the) side is arranged.
  • the operation unit (B) includes an operation device case 61 provided adjacent to the sealed metal container 1, a linear motor (operation device) 100 installed in the operation device case 61, and an operation device case 61.
  • the linear motor 100 is accelerated or decelerated or accelerated or decelerated when the stationary contact 3 and the movable contact 4 of the blocking portion (A) are in contact with or separated from each other, thrust is applied to the linear motor 100.
  • a spring 90 that is an auxiliary thrust generation source, a mover 27 that is arranged inside the linear motor 100 and operates linearly inside the linear motor 100, and one end of the mover 27 and the spring 90 are fixed by bolts or the like.
  • the movable portion 23 is generally configured.
  • the movable part 23 is connected with the insulating rod 81 of the interruption
  • the movement (axial movement) of the rod 81 is allowed, and the airtightness in the sealed metal container 1 is maintained).
  • the insulating rod 81 is connected to the movable electrode 6, and the blocking portion (A) is operated through the operation of the linear motor 100 and the spring 90 that assists the linear motor 100 with thrust through the movable element 27 fixed to the movable portion 23.
  • the movable electrode 6 can be operated.
  • an amplifier 71 is connected to the linear motor 100, and the amplifier 71 is connected to the control unit 72.
  • the amplifier 71 receives a command from the control unit 72 and supplies a current corresponding to the command to the linear motor 100.
  • the current value detected by the current transformer 51 is input to the control unit 72, and the current value supplied to the linear motor 100 is controlled according to this current value, and the movable electrode 6 is moved via the movable element 27 and the movable part 23. Controls the position and speed.
  • the spring 90 is disposed in the operation device case 61, and this spring 90 is connected to the movable element 27 of the linear motor 100 via the movable portion 23.
  • the linear motor 100 When operating the linear motor 100, it is possible to supply the force by the thrust of the linear motor 100 and the thrust of the spring 90. Compared to the case of the single thrust of the linear motor 100, the capacity of the linear motor 100, the amplifier 71, etc. Can be reduced. Further, the position and speed can be controlled by the linear motor 100, and the reliability of current interruption is improved as compared with the conventional spring type actuator.
  • the linear motor 100 in FIGS. 2 to 8 is an example of a three-phase driving linear motor. Note that the linear motor 100 is not limited to three-phase driving, and for example, two-phase driving or a multi-phase configuration of four or more phases is possible.
  • the linear motor 100 three armatures 101 having windings 41 arranged at positions facing the permanent magnets 21 are arranged in the traveling direction (Z direction) of the permanent magnets 21.
  • a plurality of permanent magnets 21 are arranged in the Z direction and are arranged so that the magnetization directions 25 are alternated.
  • a first magnetic pole tooth 11 and a second magnetic pole tooth 12 are arranged so as to sandwich the permanent magnet 21 from above and below, and the magnetic flux is formed by connecting the first magnetic pole tooth 11 and the second magnetic pole tooth 12 with a magnetic body 13. Form the path.
  • a winding 41 is wound around each of the first magnetic pole teeth 11 and the second magnetic pole teeth 12.
  • the permanent magnet 21 is fixed to a ladder-like movable member 28, and the permanent magnet 21 and the movable member 28 constitute a movable element 27.
  • the mover 27 is maintained in a positional relationship with the armature 101 by a support mechanism (not shown).
  • a support mechanism for example, linear guides, roller bearings, cam followers, thrust bearings, and the like are preferable, but the present invention is not limited to this as long as the distance between the permanent magnet 21 and the first magnetic pole teeth 11 and the second magnetic pole teeth 12 can be maintained.
  • an attractive force (force in the Y direction) is generated between the permanent magnet 21 and the first magnetic pole teeth 11 and the second magnetic pole teeth 12.
  • the permanent magnet 21 and the first magnetic pole teeth 11 are the same.
  • the attraction force generated in the magnetic pole teeth 11 and the attraction force generated in the permanent magnet 21 and the second magnetic pole teeth 12 are generated with each other, and the forces are canceled out to reduce the attraction force.
  • the mechanism for holding the mover 27 can be simplified, and the mass of the movable body including the mover 27 can be reduced.
  • the mass of the movable body can be reduced, high acceleration driving and high response driving can be realized.
  • the armature 101 and the permanent magnet 21 are driven in the Z direction relatively, the armature 101 is fixed, and the mover 27 including the permanent magnet 21 moves in the Z direction.
  • the force generated is a relative force generated between the two.
  • a magnetic field is generated by passing a current through the winding 41, and a thrust according to the relative position of the armature 101 and the permanent magnet 21 can be generated.
  • linear motor 100 of the present embodiment forms two different magnetic paths through which the magnetic fluxes 91 and 92 generated by the windings 41a and 41b pass, as shown in FIGS.
  • one of two different magnetic paths through which the magnetic fluxes 91 and 92 generated by the windings 41a and 41b pass is that the magnetic flux 91a generated by the winding 41a is the first magnetic pole teeth 11a, This is a first path that passes through the magnetic body 13a and the magnetic body 13c and reaches the second magnetic pole tooth 12a.
  • the other path is that the magnetic flux 92a generated by the winding 41a and the winding 41b is converted into the first magnetic pole tooth 11a, the magnetic body 13a, the first magnetic pole tooth 11b, and the second magnetic pole tooth 12b.
  • the magnetic flux 91 from the windings 41 a and 41 b is changed from the magnetic body 13 to the first magnetic pole tooth 11, from the first magnetic pole tooth 11 to the second magnetic pole tooth 12, and second.
  • the other magnetic path is a direction in which the magnetic flux 92 from the windings 41a and 41b is orthogonal to the first path (the traveling direction of the permanent magnet 21). (Z direction)) and the second path to the magnetic pole teeth adjacent to the moving direction of the mover 27.
  • the second path through which the magnetic flux 92 passes is, as shown in FIG. 6, wound between the first magnetic pole teeth 11 on the upper side of the armature 101 adjacent to the moving direction of the mover 27.
  • Magnetic flux 92 from the wires 41a and 41b flows through the magnetic body 13 and flows to the second magnetic pole teeth 12 on the lower side of the armature 101, and the magnetic flux passes between the second magnetic pole teeth 12 on the lower side.
  • 92 becomes a circulation path which flows through the magnetic body 13.
  • the magnitude and direction of the thrust can be adjusted.
  • the operation control of the mover 27 is performed by supplying current from the amplifier 71 to the linear motor 100 according to the case where the opening command and the closing command are input to the control unit 72, and driving the mover 27 by the linear motor 100. This can be done by converting to force.
  • the linear motor 100 and the spring 90 drive the movable electrode 6 through the movable portion 23 and the insulating rod 81. That is, in FIG. 1A, the movable electrode 6 is in a closed state, and when driving from this state to the open state in FIG. 1B, the linear motor 100 drives through the movable element 27.
  • the movable electrode 6 can be opened by assisting the force with the tensile force (thrust) of the spring 90. Further, in order to change from the open state of FIG. 1B to the closed state of FIG. 1A, a compressive force in which the spring 90 is compressed by a driving force through the mover 27 by the linear motor 100.
  • the movable electrode 6 can be brought into a non-polar state by assisting the thrust generated by releasing.
  • the mass of the operation device can be reduced and the high acceleration operation can be realized without increasing the size of the operation device.
  • the spring 90 assists the thrust by releasing the compression force when driving from the closed state to the open state, and assists the tensile force when driving from the open state to the closed state. It doesn't matter.
  • the position of the movable element 27 is detected by a position detection device (not shown), and the thrust of the spring 90 is estimated by the control unit 72 based on the detected position information, so that the thrust of the linear motor 100 is controlled.
  • the magnetic pole teeth of the three armatures 101 are arranged such that six magnetic pole teeth of the armature 101 are aligned with respect to five permanent magnets 21 aligned in the Z direction.
  • the vibration can be reduced by shifting the magnetic pole teeth of the armature 101 in the Z direction with respect to the permanent magnet 21.
  • the structure in which the permanent magnet 21 is sandwiched between the first magnetic pole teeth 11 and the second magnetic pole teeth 12 can reduce the blurring of the mover 27.
  • the galling may lead to malfunctions of shut-off and throwing in, and the metal foreign matter may lead to an insulation accident due to a decrease in insulation performance. Moreover, the amount of SF6 gas inside the gas circuit breaker due to seal deformation leaking to the outside can be reduced.
  • the mass of the operating device can be reduced, and high acceleration operation can be realized, as well as the effect of improving the reliability.
  • the present embodiment shown in the figure is an example in which the permanent magnet 21 of the linear motor 100 is configured in two upper and lower stages.
  • the linear motor 100 of the present embodiment will be described for the case of three-phase driving.
  • three armatures 101 are arranged in the Z direction so as to sandwich the rows of the upper and lower permanent magnets 21.
  • the 1st magnetic pole tooth 11 and the 2nd magnetic pole tooth 12 are arrange
  • the windings 41a and 41b are wound so that the magnetic flux 26 created by the winding 41b is opposite to the magnetic flux direction 26 created by the winding 41a arranged in the Y direction.
  • FIGS. 11 and 12 show examples of linear motors in which the linear motor 100 shown in FIGS. 9 to 10 and the spring 90 are combined.
  • metal fittings 30 are attached to both ends of the linear motor 100 in the axial direction.
  • Two metal-shaped movable portions 23 having a cylindrical shape are attached to the metal fitting 30, and a spring 90 is disposed between the two movable portions 23.
  • the movable part 23 of the linear motor 100 includes a permanent magnet 21, a movable member 28, and reinforcing members 31 and 32 that reinforce the Z direction and the X direction of the movable member 28.
  • the movable part 23 of the linear motor 100 is disposed inside the spring 90.
  • the rigidity is improved by increasing the secondary moment of section of the movable portion 23 by adding the reinforcing member 31 and by connecting the two-stage movable element 27 by the reinforcing member 32. As a result, since the deformation and buckling of the mover 27 can be suppressed, the reliability is further improved.
  • a hook 29 is provided to hold the spring 90 in a compressed state.
  • the hook 29 is fixed to one of the movable parts 23 and is engaged with the other movable part 23 in a compressed state of the spring 90, and the compression of the spring 90 is released by releasing the engagement. It is. Thereby, even when there is no current supply to the linear motor 100, the position of the movable part 23 and the spring 90 can be held. In addition, by manually removing the hook 29, the movable portion 23 can be moved by the thrust of the spring 90.
  • FIG. 13 (a) and FIG. 13 (b) show a gas circuit breaker that employs the linear motor 100 described above.
  • the gas circuit breaker employing the above-described linear motor 100 is arranged in two stages so that the movable element 27 can move the linear motor 100 with respect to one insulating rod 81, and the movable portion 23. Both are connected via A spring 90 is disposed between the linear motor 100 and the movable portion 23 so as to surround the two-stage movable element 27.
  • the present embodiment shown in the figure is an example in which a spring 90 is disposed between the upper and lower movable elements 27. That is, the spring 90 is positioned by the positioning shaft 36 between the metal fitting 30 and the reinforcing member 32 and between the upper and lower two-stage movable element 27. One end of the hook 29 is fixed to the metal fitting 30 and the other end is engaged with the reinforcing member 32 in a state where the spring 90 is compressed, and the compression of the spring 90 is released by releasing this engagement. It has become.
  • the positioning shaft 36 is installed inside the spring 90, the bearing 35 can be attached to the reinforcing member 32, and the movement and vibration of the mover 27 can be suppressed.
  • a scale 39 is attached to the side surface of the reinforcing member 31, a scale signal of the scale 39 is read by the position detector 34, and this is read as position information of the linear motor 100 by the amplifier 71 and the control unit 72. introduce.
  • the position detector 34 reads the position information of the linear motor 100 by the amplifier 71 and the control unit 72. introduce.
  • an error may occur when reading the position signal. Therefore, as shown in FIG. 13, by installing the positioning shaft 36 and the like, blurring of the mover 27 can be reduced, and the reading error can be reduced.
  • this embodiment is an example in which springs 90 are provided on both sides of the linear motor 100 in the axial direction.
  • the metal fittings 30 are attached to both ends of the linear motor 100 in the axial direction, and two columnar movable parts 23 having a cylindrical shape are attached to the metal fitting 30.
  • the spring 90 is disposed between the two movable parts 23.
  • the same effects as those of the second embodiment can be obtained, and the operating range of the spring 90 can be adjusted by providing a mechanical or electrical mechanism, It is also possible to operate as a brake force of the mover 27 by arranging the spring 90.
  • FIG. 17 (a) shows the thrust characteristics of the spring 90.
  • the thrust characteristic of the spring 90 changes depending on the displacement.
  • the thrust during compression of the spring 90 is FS.
  • a thrust is obtained in the range of the region 601 in FIG.
  • the thrust of the linear motor 100 is shown in FIG. Since the linear motor 100 can change the direction of the thrust by changing the sign of the current, the thrust can be controlled in the range of ⁇ FL (region 603) to FL (region 602). If the positive direction of displacement is the opening direction of the gas circuit breaker, an acceleration force is obtained in the region 602 and a braking force is obtained in the region 603 at the time of opening.
  • the thrust characteristics combining the spring 90 and the linear motor 100 are as shown in FIG.
  • the thrust characteristics obtained by the spring 90 and the linear motor 100 are in the range of the region 604.
  • a motor for compressing the spring is separately required.
  • the compression of the spring 90 is performed by the linear motor 100. It becomes possible. Further, a mechanism for changing the rotation operation of the motor to a spring compression operation is not necessary, and the reliability can be improved and the size can be reduced by reducing the number of parts.
  • FIG. 16 An example of the relationship between the time and displacement of the gas circuit breaker is shown in FIG.
  • the gas circuit breaker moves from P0 to P2 from the start of operation to t2. Therefore, acceleration is required in the first half of the time, and deceleration operation is required in the second half. Therefore, by changing the operating range of the spring 90 and the thrust of the linear motor 100 between the first half of the time and the second half of the time, a stroke suitable for the gas circuit breaker can be obtained.
  • the linear motor 100 according to the fourth embodiment shown in FIG. 16 the spring 90 installed on the left side is operated as an acceleration spring, and the spring 90 installed on the right side is operated as a deceleration spring, whereby the capacity of the linear motor 100 and the spring 90 is increased. Low capacity.
  • FIG. 19A, 19B and 19C show thrust patterns of the linear motor 100 and the spring breaker.
  • FIG. 19A shows a thrust pattern using an acceleration spring and a linear motor
  • FIG. 19B shows a thrust pattern using an acceleration spring, a deceleration spring, and a linear motor.
  • the thrust FS1 of the spring 90 obtained from the energy of the spring 90 (region 601) and the linear motor 100 obtained from the energy of the linear motor 100 (region 602). It moves using the thrust FL1.
  • the vehicle is decelerated using the thrust FL2 of the linear motor 100 using the energy (region 605) obtained by regeneration of the linear motor 100.
  • the speed at which the displacement is 0 is set to 0
  • the acceleration is performed up to the displacement X1
  • the deceleration is started in the region exceeding the displacement X1
  • the operation is stopped at the displacement X2. Assuming that the effects of motor loss, friction, etc.
  • the energy used for acceleration (sum of region 601 and region 602) and the energy used for deceleration (region 605) are equal.
  • X1 X2
  • the energy required for acceleration and deceleration is equal, so that there is no action of the spring 90 during deceleration, so the deceleration energy supplied by the linear motor 100 increases, and the linear motor 100
  • the capacity increases and FL1 ⁇ FL2. Since the capacity of the linear motor 100 is determined by thrust, the capacity is determined by the larger of FL1 or FL2.
  • the operation of the gas circuit breaker may require acceleration in the region of more than half of the total displacement.
  • X1> X2 and it is necessary to increase the thrust (FL2 + FS2) during deceleration compared to the thrust (FL1 + FS1) during acceleration.
  • the thrust FL1 of the linear motor 100 during acceleration and the thrust FL2 of the linear motor 100 during deceleration can be designed to be equivalent, and the capacity of the linear motor 100 can be reduced. It becomes.
  • the capacity of the linear motor 100 during acceleration and deceleration can be set appropriately.
  • Fig. 19 (c) shows the thrust pattern when the acceleration spring is applied in the early stage of acceleration.
  • the range in which the spring 90 acts can be changed as necessary.
  • FIG. 20 (a) and FIG. 20 (b) show a fifth embodiment of the present invention.
  • the description of the portions having the same functions as those of the configurations denoted by the same reference numerals as those described in the first embodiment is omitted.
  • a hydraulic cylinder 37 is used in place of the spring described in the above-described embodiment. That is, the piston 38 of the hydraulic cylinder 37 is connected to the movable part 23.
  • Other configurations are the same as those in FIGS. 1A and 1B.
  • the thrust generation source for assisting acceleration and deceleration of the movable portion 23 is not limited to the spring 90 and the hydraulic cylinder 37, and the acceleration / deceleration of the movable portion 23 is supplemented by the linear motor 100 and other thrust generation sources. By doing so, the same effect can be obtained.
  • Example 6 of the present invention will be described with reference to FIGS.
  • the description of the portions having the same functions as those of the configurations denoted by the same reference numerals as those described in the first embodiment is omitted.
  • the second embodiment includes a linear motor 100, a spring 90 that assists thrust during acceleration / deceleration, and a hook 29 that holds the compression force of the spring 90.
  • the compression force of the spring is held by a hook, and a strong hook is required according to the compression force of the spring. At the same time, the hook is damaged by the force and friction when removing the hook. To do.
  • the linear motor 100 when the hook 29 is removed, the linear motor 100 is operated in the direction opposite to the acceleration direction and the hook force is loosened, so that the force on the hook 29 can be reduced.
  • FIG. 21 shows the relationship between time and displacement when the hook 29 is removed.
  • the movement from the position of the displacement P0 to P1 in the direction opposite to the movement direction the hook force is loosened, the hook 29 is removed, and the movement to P2 causes damage to the hook 29 due to force and friction.
  • or Example 6 of this invention has the thrust generation source which assists the linear motor 100 and acceleration / deceleration, and the linear motor 100 controls thrust freely within a stroke. Because of this, the stroke characteristics of the gas circuit breaker can be controlled. Thereby, the arc which generate
  • the point of action of the thrust generated by the mover 27 or the point of action of the resultant force of the thrust and the point of thrust of the spring 90 that assists the thrust when the mover 27 is accelerated, decelerated, or accelerated / decelerated. And is on the same axis. This will be described below.
  • the mover 27 of the linear motor 100 has a one-stage configuration, the axis on which the thrust of the linear motor 100 acts is (c), and the thrust of the spring 90 acts.
  • the shaft to be operated is (A)
  • the thrust of the linear motor 100 and the thrust of the spring 90 are made equal, the resultant force of the thrust of the linear motor 100 and the thrust of the spring 90 is intermediate.
  • the shaft on which the resultant force acts is slightly shifted, but considering that the linear motor 100 compresses the spring 90 (the thrust of the linear motor 100 ⁇ the thrust of the spring 90), the two are almost the same. .
  • FIG. 13A is an example in which the axis (v) on which the resultant force of the two-stage movable element 27 acts and the axis (f) on which the movable electrode 6 moves are arranged on the same axis.
  • the shafts that generate the resultant force on the plurality of thrust generation sources on the same axis as the axis on which the movable electrode 6 moves, it is possible to reduce wear and burden on the link portion and the seal portion.
  • FIG. 22 shows a view of the armature 101 of the linear motor 100 shown in FIG.
  • the support mechanism is simplified, and the lightweight movable portion 23 can be configured.
  • the movable part 23 is lightweight, there are advantages such as high acceleration driving and high responsiveness.
  • the mover 27 is lightweight, the permanent magnet 21 is stabilized at the center of the first magnetic pole tooth 11 and the second magnetic pole tooth 12 by the attractive force of the permanent magnet 21. For this reason, the distance between the position detection device 34 and the scale 39 shown in FIG. 14 can be kept substantially constant. Furthermore, a stable attraction force can be obtained by flowing a current through the winding 41 in the d-axis phase so as to coincide with the position of the permanent magnet 21, and the position of the permanent magnet 21 can be stabilized.
  • this invention is not limited to the above-mentioned Example, Various modifications are included.
  • the above-described embodiments have been described in detail for easy understanding of the present invention, and are not necessarily limited to those having all the configurations described.
  • a part of the configuration of one embodiment can be replaced with the configuration of another embodiment, and the configuration of another embodiment can be added to the configuration of one embodiment.
  • Position detecting device 35 ... Bearing, 36 ... Positioning shaft, 37 ... Hydraulic pressure Cylinder, 38 ... Piston, 39 ... Scale, 41, 41a, 41b ... Winding, 51 ... Current transformer, 61 ... Actuator case, 62 ... Linear seal part, 71 ... Amplifier, 72 ... Control unit, 81 ... Insulating rod 90, springs 91, 91a, 2, 92a ... magnetic flux, 100 ... linear motor, 101 ... armature, 601 ... spring thrust area, 602 ... linear motor thrust area, 603 ... linear motor thrust (negative area), 604 ... operator 605 ... negative thrust (brake force, hoisting force) region, 606 ... thrust force region by brake spring, (A) ... shut-off part, (B) ... operation part.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Power Engineering (AREA)
  • Driving Mechanisms And Operating Circuits Of Arc-Extinguishing High-Tension Switches (AREA)

Abstract

The present invention provides a switch device whereby reduction of a mass of an actuator is effected and it is possible to implement a rapid acceleration operation, as well as to effect improved reliability. A switch device according to the present invention comprises: an interruption part formed from a fixed contact and a mobile contact which either contacts or separates from the fixed contact; a linear motor which generates drive force for the mobile contact to operate; and a thrust generation source which supplies additional thrust to the linear motor when the linear motor accelerates, decelerates, or accelerates and decelerates, in the contact or separation of the interruption part.

Description

開閉装置Switchgear
 本発明は開閉装置に係り、例えば、ガス遮断器等の遮断部の開閉操作を行う操作器が電動で動作されて高電圧を遮断するものに好適な開閉装置に関する。 The present invention relates to a switchgear and, for example, to a switchgear suitable for an operation device that performs an open / close operation of a breaker such as a gas circuit breaker to electrically cut off a high voltage.
 一般に、変電所や開閉所に設けられる電力用の開閉装置は、電力系統の短絡事故時に電流を遮断する遮断器、電力系統の開閉を行う断路器、点検時などに高電圧導体を接地する接地開閉器を具備している。その開閉装置の1つである遮断器は、速やかに事故電流を遮断することにより、電力系統の事故の波及を防止する役割を持つため、より信頼性の高い装置の開発が要請されている。 In general, power switchgears installed in substations and switchgears are circuit breakers that cut off current in the event of a short circuit in the power system, disconnectors that open and close the power system, and grounds that ground high-voltage conductors during inspections, etc. It has a switch. The circuit breaker, which is one of the switchgears, has a role of preventing accidents in the power system by promptly interrupting the accident current, and therefore development of a more reliable device is required.
 このような遮断器を操作する操作器として、操作ばねに蓄勢したばね力を解放することにより操作力を得るようにしたばね操作器、或いは空気圧や油圧を利用して操作力を得るようにした空気圧操作器や油圧操作器が、従来から知られている。 As an operating device for operating such a circuit breaker, a spring operating device that obtains an operating force by releasing the spring force accumulated in the operating spring, or an operating force that uses air pressure or hydraulic pressure is obtained. Conventionally known pneumatic and hydraulic operating devices are known.
 そして、これら各操作器について言及すると、ばね操作器は低操作力、保守性、経済性に優れており、また、空気圧操作器は取扱いが容易であると共に高い操作力が得られ、更に、油圧操作器は低騒音で高い操作力が得られるという特徴がある。 As for each of these operating devices, the spring operating device is excellent in low operating force, maintainability, and economy, and the pneumatic operating device is easy to handle and obtains high operating force. The operating device is characterized by low noise and high operating force.
 ところが、ばね操作器による操作では、ばねの弾性力が必ずしも一定でないこと、ばねの位置決め精度が低いこと、更には、複雑で多くの部品から成り立つこと等から動作に対する信頼性について改善の余地がある。また、油圧や空気圧を利用する空気圧操作器や油圧操作器では、周囲の温度変化によっては作動流体が膨張したり、或いは密封用のパッキン等が破損することなどのより、作動流体が漏れるおそれがあり、更には、部品の1つでも不具合や故障があると全体が動作しなくなる可能性もあり、取り扱いが難しいと言う側面もある。 However, in the operation by the spring operation device, there is room for improvement in the reliability of the operation because the elastic force of the spring is not necessarily constant, the positioning accuracy of the spring is low, and further, it is composed of many complicated parts. . In addition, in a pneumatic operating device or hydraulic operating device that uses hydraulic pressure or air pressure, the working fluid may leak due to expansion of the working fluid or damage to the sealing packing or the like depending on changes in ambient temperature. Furthermore, there is an aspect that even if one of the parts has a defect or a failure, the whole may not operate, and it is difficult to handle.
 このような点を改善する方式として、電気の力により操作力を生み出す技術があり、この技術について記載されたものとして、例えば、特許文献1がある。この特許文献1には、直線移動可能なコイルに電流を供給するアクチュエータ構造が記載され、固定された円筒形状の永久磁石から発生する磁界とコイルの電流密度による電子反発力を利用して、コイルに繋がる絶縁ロッドを直線運動させる遮断器が記載されている。 As a method for improving such a point, there is a technique for generating an operation force by the power of electricity. For example, Patent Document 1 discloses a technique that describes this technique. This Patent Document 1 describes an actuator structure that supplies a current to a linearly movable coil, and uses a magnetic field generated from a fixed cylindrical permanent magnet and an electron repulsive force due to the current density of the coil to A circuit breaker is described that linearly moves an insulating rod that leads to.
 一方、特許文献2及び3には、永久磁石の両側に空隙を介して配置された磁極歯と、これらの磁極歯を連続につなぐコアと、複数の磁極歯に巻かれた電機子巻線を有する電機子と、磁極が交互になるように配置された永久磁石列とからなる駆動装置が記載されている。 On the other hand, in Patent Documents 2 and 3, magnetic pole teeth arranged on both sides of a permanent magnet via a gap, a core that continuously connects these magnetic pole teeth, and an armature winding wound around a plurality of magnetic pole teeth. A drive device is described that includes an armature having a plurality of permanent magnet arrays arranged so that magnetic poles are alternately arranged.
 更に、特許文献4には、遮断器の開閉接触子を動かす磁気式リニア駆動装置について記載され、給電可能な第1コイルを貫通し磁束によって通過される少なくとも1つの磁気空隙を有する第1鉄心と、第1永久磁石を有する可動接触子とを備え、前記第1永久磁石は、圧縮されたばね装置(補助装置)で支援されて第1終端位置から移動することが記載されている。 Further, Patent Document 4 describes a magnetic linear drive device that moves an open / close contact of a circuit breaker, and includes a first iron core having at least one magnetic gap that passes through a first coil that can be fed and is passed by a magnetic flux. And a movable contact having a first permanent magnet, wherein the first permanent magnet is supported by a compressed spring device (auxiliary device) and moved from a first terminal position.
特表2007-523475号公報Special Table 2007-523475 特開2010-141978号公報JP 2010-141978 A 特開2010-239724号公報JP 2010-239724 A 特表2005-520517号公報JP 2005-520517 A
 ところで、高加速が要求される遮断器向けのアクチュエータにおいては、可動体の質量を低減する必要がある。 By the way, in an actuator for a circuit breaker that requires high acceleration, it is necessary to reduce the mass of the movable body.
 しかしながら、特許文献1に記載されたアクチュエータ構造では、巻線が可動するアクチュエータとなっており、大電流を流すためには径の大きい巻線が必要になるため、巻線の質量が大きくなり、加速度性能が低下してしまう。その他、巻線自体が可動するため、可動体となる巻線に電流を供給する必要があり、配線の取り回しや耐久性に改善の余地がある。この様な種々観点から、特許文献1の信頼性には改善の余地がある。 However, in the actuator structure described in Patent Document 1, the winding is an actuator in which the winding is movable, and in order to pass a large current, a winding with a large diameter is required, so the mass of the winding becomes large, Acceleration performance will decrease. In addition, since the winding itself is movable, it is necessary to supply a current to the winding serving as a movable body, and there is room for improvement in wiring handling and durability. From such various viewpoints, there is room for improvement in the reliability of Patent Document 1.
 また、特許文献2及び3に記載された内容は、そもそも遮断器に用いることを意図されているものではなく、高加速が要求される遮断器向けの操作器のために、可動体の質量を低減することは、全く考慮されていないものである。 In addition, the contents described in Patent Documents 2 and 3 are not intended to be used for a circuit breaker in the first place, and for a controller for a circuit breaker that requires high acceleration, the mass of the movable body is reduced. The reduction is not considered at all.
 更に、特許文献4に記載されている磁気式リニア駆動装置は、可動接極子に継鉄が取付けられている構造のため、可動部分の質量に継鉄の質量が加わり、応答性が低下し遮断時間が増大する恐れがある。また、可動接極子と第1鉄心の位置によって第1コイルに流す電流と可動接極子に働く推力の関係が変化し、推力の制御が難しくなると共に、可動接極子が移動する際に振動が発生してしまう。更に、継鉄が第1鉄心の空隙の縁に接している位置の場合と接していない位置の場合とでは、磁気回路の磁気抵抗が大きく変わるため、振動などの原因になる恐れがあり、信頼性に乏しいものとなる
 本発明は上述の点に鑑みなされたもので、その目的とするところは、操作器の質量の低減が図れて高加速操作が実現できることは勿論、信頼性の向上が図れる開閉装置を提供することにある。
Furthermore, since the magnetic linear drive device described in Patent Document 4 has a structure in which a yoke is attached to the movable armature, the mass of the yoke is added to the mass of the movable part, and the responsiveness is lowered and cut off. Time may increase. In addition, the relationship between the current flowing through the first coil and the thrust acting on the movable armature changes depending on the position of the movable armature and the first iron core, making it difficult to control the thrust and generating vibration when the movable armature moves. Resulting in. Furthermore, depending on whether the yoke is in contact with the edge of the gap in the 1st iron core or not in contact, the magnetic resistance of the magnetic circuit changes greatly, which may cause vibrations, etc. The present invention has been made in view of the above points, and the object of the present invention is to reduce the mass of the operating device and realize high acceleration operation as well as to improve reliability. The object is to provide a switchgear.
 本発明の開閉装置は、上記目的を達成するために、固定接触子及び該固定接触子に対して接触または開離する可動接触子からなる遮断部と、前記可動接触子が動作するための駆動力を発生させるリニアモータと、前記遮断部の接触または開離時における前記リニアモータの加速時または減速時、或いは加減速時に、該リニアモータに推力を補助する推力発生源とを備えていることを特徴とする。 In order to achieve the above object, the opening / closing device of the present invention includes a stationary contact and a blocking portion including a movable contact that contacts or separates from the fixed contact, and a drive for operating the movable contact. A linear motor that generates a force, and a thrust generation source that assists the linear motor in thrusting or decelerating or accelerating / decelerating the contact or opening of the blocking portion It is characterized by.
 本発明によれば、操作器の質量の低減が図れて高加速操作が実現できることは勿論、信頼性の向上が図れる効果がある。 According to the present invention, the mass of the operating device can be reduced and high acceleration operation can be realized, and there is an effect that the reliability can be improved.
本発明の開閉装置の実施例1である遮断器の閉極状態を示す断面図である。It is sectional drawing which shows the closing state of the circuit breaker which is Example 1 of the switchgear of this invention. 本発明の開閉装置の実施例1である遮断器の開極状態を示す断面図である。It is sectional drawing which shows the open circuit state of the circuit breaker which is Example 1 of the switchgear of this invention. 本発明の開閉装置の実施例1に採用されるリニアモータの構成を示す斜視図である。It is a perspective view which shows the structure of the linear motor employ | adopted as Example 1 of the switchgear of this invention. 図2のリニアモータをY-Z平面で断面した状態を示す斜視図である。FIG. 3 is a perspective view showing a state in which the linear motor of FIG. 2 is cut in the YZ plane. 図2に示したリニアモータの可動子を説明する図である。It is a figure explaining the needle | mover of the linear motor shown in FIG. 本発明の開閉装置の実施例1に採用されるリニアモータの第1の磁束の経路と第2の磁束の経路を示す図2に相当する図である。It is a figure equivalent to FIG. 2 which shows the path | route of the 1st magnetic flux of the linear motor employ | adopted as Example 1 of the switchgear of this invention, and the path | route of a 2nd magnetic flux. 本発明の開閉装置の実施例1に採用されるリニアモータの第1の磁束の経路と第2の磁束の経路を示す図3に相当する図である。It is a figure equivalent to FIG. 3 which shows the path | route of the 1st magnetic flux of the linear motor employ | adopted as Example 1 of the switchgear of this invention, and the path | route of a 2nd magnetic flux. 図5を矢印P方向から見た図である。It is the figure which looked at FIG. 5 from the arrow P direction. 図6を矢印Q方向から見た図である。It is the figure which looked at FIG. 6 from the arrow Q direction. 本発明の開閉装置に採用されるリニアモータの他の構成を示す斜視図である。It is a perspective view which shows the other structure of the linear motor employ | adopted as the opening / closing apparatus of this invention. 図9のリニアモータをY-Z平で断面して示す断面図である。FIG. 10 is a cross-sectional view showing the linear motor of FIG. 9 in a YZ plane. 図9の構成にばねとフックを付加した例を示すニアモータの斜視図である。It is a perspective view of the near motor which shows the example which added the spring and the hook to the structure of FIG. 図11に示したリニアモータをY-Z平面で断面して示す斜視図である。FIG. 12 is a perspective view showing a cross section of the linear motor shown in FIG. 11 in the YZ plane. 本発明の開閉装置の実施例2である遮断器の閉極状態を示す断面図である。It is sectional drawing which shows the closing state of the circuit breaker which is Example 2 of the switchgear of this invention. 本発明の開閉装置の実施例2である遮断器の開極状態を示す断面図である。It is sectional drawing which shows the opening state of the circuit breaker which is Example 2 of the switchgear of this invention. 本発明の開閉装置に採用されるリニアモータの構成おいて、可動子間にばねを配置すると共に、ばねとフックを付加した例を示すリニアモータの斜視図である。In the structure of the linear motor employ | adopted for the opening / closing apparatus of this invention, while arrange | positioning a spring between movable elements, it is a perspective view of the linear motor which shows the example which added the spring and the hook. 図14に示したリニアモータをY-Z平面で断面して示す斜視図である。FIG. 15 is a perspective view showing a cross section of the linear motor shown in FIG. 14 in the YZ plane. 本発明の開閉装置に採用されるリニアモータの構成おいて、リニアモータの両側にばねを配置した例を示すリニアモータの斜視図である。In the structure of the linear motor employ | adopted for the opening / closing apparatus of this invention, it is a perspective view of the linear motor which shows the example which has arrange | positioned the spring on both sides of the linear motor. 本発明の開閉装置の例である遮断器の動作パターンであり、ばねの推力特性を示す図である。It is an operation | movement pattern of the circuit breaker which is an example of the switchgear of this invention, and is a figure which shows the thrust characteristic of a spring. 本発明の開閉装置に採用されるリニアモータの推力特性を示す図である。It is a figure which shows the thrust characteristic of the linear motor employ | adopted as the opening / closing apparatus of this invention. 上記のばねの推力特性とリニアモータの推力特性を合わせた特性を示す図である。It is a figure which shows the characteristic which match | combined the thrust characteristic of said spring, and the thrust characteristic of a linear motor. 図17(c)からばねを変位0までに圧縮するためのばねの推力とリニアモータの推力の関係を示す図である。It is a figure which shows the relationship between the thrust of the spring for compressing a spring by the displacement 0 from FIG.17 (c), and the thrust of a linear motor. 遮断器の時間と変位の関係の例を示す特性図である。It is a characteristic view which shows the example of the relationship between the time of a circuit breaker, and a displacement. 本発明に採用されるリニアモータとばねの推力パターン例であり、加速ばねとリニアモータを用いた推力パターンを示す図である。It is an example of the thrust pattern of the linear motor and spring employ | adopted for this invention, and is a figure which shows the thrust pattern using an acceleration spring and a linear motor. 本発明に採用される加速ばねと減速ばね及びリニアモータを用いた推力パターンを示す図である。It is a figure which shows the thrust pattern using the acceleration spring, the deceleration spring, and linear motor which are employ | adopted for this invention. 本発明に採用されるリニアモータにおいて加速初期に加速ばねを作用させた場合に推力パターンを示す図である。It is a figure which shows a thrust pattern when an acceleration spring is made to act in the acceleration initial stage in the linear motor employ | adopted for this invention. 本発明に採用されるリニアモータの推力発生源として油圧シリンダを用いた遮断器の閉極状態を示す断面図である。It is sectional drawing which shows the closing state of the circuit breaker which used the hydraulic cylinder as a thrust generation source of the linear motor employ | adopted for this invention. 本発明に採用されるリニアモータの推力発生源として油圧シリンダを用いた遮断器の開極状態を示す断面図である。It is sectional drawing which shows the opening state of the circuit breaker which used the hydraulic cylinder as a thrust generation source of the linear motor employ | adopted for this invention. 図11に示した例において、フックを外す際の時間と変位の関係を示す特性図である。FIG. 12 is a characteristic diagram showing a relationship between time and displacement when the hook is removed in the example shown in FIG. 11. 図2に示したリニアモータの電機子をX-Y平面で断面して示す断面図である。FIG. 3 is a cross-sectional view showing a cross section of the armature of the linear motor shown in FIG. 2 in the XY plane.
 以下、図示した実施例に基づいて本発明の開閉装置を説明する。なお、各実施例において、同一構成部品には同符号を使用する Hereinafter, the switchgear of the present invention will be described based on the illustrated embodiment. In each embodiment, the same symbol is used for the same component.
 図1(a)及び図1(b)に、本発明の開閉装置の実施例1であるガス遮断器を示す。図1(a)はガス遮断器の閉極状態、図1(b)はガス遮断器の開極状態である。 1 (a) and 1 (b) show a gas circuit breaker that is Embodiment 1 of the switchgear of the present invention. FIG. 1A shows a closed state of the gas circuit breaker, and FIG. 1B shows an opened state of the gas circuit breaker.
 該図に示す如く、本実施例のガス遮断器は、事故電流を遮断するための遮断部(A)と、この遮断部(A)を操作するための操作部(B)とに大別される。 As shown in the figure, the gas circuit breaker according to the present embodiment is roughly divided into a breaker (A) for breaking the accident current and an operation part (B) for operating the breaker (A). The
 遮断部(A)は、内部にガス(例えば、SF6ガス、空気等)を充填させた密閉金属容器1内に、密閉金属容器1の端部に設けられた絶縁支持スペーサ2に支持された固定側接触子3と、この固定側接触子3と対向配置され、該固定側接触子3に対して接触(閉極)または開離(開極)する可動側接触子4と、この可動側接触子4の先端に設けられ、開極時に固定側接触子3と可動側接触子4の間に発生するアークに消弧性ガスを吹き付けて消弧するノズル5と、操作部(B)側に接続されると共に、可動側接触子4に接続される絶縁ロッド81を覆うように配置されている絶縁支持筒7と、可動側接触子4に接続され主回路の一部を構成する主回路導体となる高電圧導体8とから概略構成されている。 The blocking part (A) is fixed in an airtight metal container 1 filled with gas (for example, SF6 gas, air, etc.) and supported by an insulating support spacer 2 provided at the end of the airtight metal container 1. Side contact 3, movable side contact 4 that is disposed opposite to the fixed side contact 3 and contacts (closes) or opens (opens) the fixed side contact 3, and this movable side contact A nozzle 5 which is provided at the tip of the child 4 and which extinguishes the arc generated between the stationary contact 3 and the movable contact 4 by opening the arc by blowing an arc extinguishing gas to the operating portion (B) side. An insulating support cylinder 7 which is connected so as to cover the insulating rod 81 connected to the movable contact 4 and a main circuit conductor which is connected to the movable contact 4 and forms a part of the main circuit And a high voltage conductor 8.
 そして、遮断部(A)は、操作部(B)からの操作力を通じて可動側接触子4を移動させて電気的に開閉されることにより、電流の投入(閉極)及び遮断(開極)が行われるものである。また、高電圧導体8の周囲には、高電圧導体8に流れる電流を検出するための電流検出器として働く変流器51が設けられており、絶縁支持筒7内には、操作部(B)側に接続される絶縁ロッド81が配置されている。 And the interruption | blocking part (A) moves the movable side contactor 4 through the operating force from the operation part (B), and is electrically opened and closed, thereby supplying current (closing) and blocking (opening). Is done. Further, a current transformer 51 serving as a current detector for detecting a current flowing through the high voltage conductor 8 is provided around the high voltage conductor 8, and an operation unit (B An insulating rod 81 connected to the) side is arranged.
 一方、操作部(B)は、密閉金属容器1に隣接して設けられた操作器ケース61と、この操作器ケース61内に設置されたリニアモータ(操作器)100と、操作器ケース61内に設置され、遮断部(A)の固定側接触子3と可動側接触子4の接触または開離時におけるリニアモータ100の加速時または減速時、或いは加減速時に、該リニアモータ100に推力を補助する推力発生源であるばね90と、リニアモータ100の内部に配置され、該リニアモータ100の内部を直線稼動する可動子27と、この可動子27とばね90の一端がボルト等により固定されている可動部23とから概略構成されている。 On the other hand, the operation unit (B) includes an operation device case 61 provided adjacent to the sealed metal container 1, a linear motor (operation device) 100 installed in the operation device case 61, and an operation device case 61. When the linear motor 100 is accelerated or decelerated or accelerated or decelerated when the stationary contact 3 and the movable contact 4 of the blocking portion (A) are in contact with or separated from each other, thrust is applied to the linear motor 100. A spring 90 that is an auxiliary thrust generation source, a mover 27 that is arranged inside the linear motor 100 and operates linearly inside the linear motor 100, and one end of the mover 27 and the spring 90 are fixed by bolts or the like. The movable portion 23 is generally configured.
 そして、可動部23は、密閉金属容器1を気密に保ったまま駆動できる様に設けられる直線シール部62を通じて遮断部(A)の絶縁ロッド81に連結されている(直線シール部62は、絶縁ロッド81の動作(軸方向移動)は許容し、密閉金属容器1内の気密は保つものである)。この絶縁ロッド81は、可動電極6に連結されており、可動部23に固定されている可動子27を介してリニアモータ100及びリニアモータ100に推力を補助するばね90の動作を通じて遮断部(A)における可動電極6を動作させることが可能になる。 And the movable part 23 is connected with the insulating rod 81 of the interruption | blocking part (A) through the linear seal part 62 provided so that it can drive, keeping the airtight metal container 1 airtight (the linear seal part 62 is insulated). The movement (axial movement) of the rod 81 is allowed, and the airtightness in the sealed metal container 1 is maintained). The insulating rod 81 is connected to the movable electrode 6, and the blocking portion (A) is operated through the operation of the linear motor 100 and the spring 90 that assists the linear motor 100 with thrust through the movable element 27 fixed to the movable portion 23. The movable electrode 6 can be operated.
 また、リニアモータ100にはアンプ71が接続され、そのアンプ71には制御ユニット72に接続されている。アンプ71は、制御ユニット72からの指令を受け、その指令に応じた電流をリニアモータ100に供給している。制御ユニット72には、変流器51で検出した電流値が入力され、この電流値に応じてリニアモータ100に供給する電流値がコントロールされ、可動子27及び可動部23を介して可動電極6の位置や速度をコントロールしている。 Further, an amplifier 71 is connected to the linear motor 100, and the amplifier 71 is connected to the control unit 72. The amplifier 71 receives a command from the control unit 72 and supplies a current corresponding to the command to the linear motor 100. The current value detected by the current transformer 51 is input to the control unit 72, and the current value supplied to the linear motor 100 is controlled according to this current value, and the movable electrode 6 is moved via the movable element 27 and the movable part 23. Controls the position and speed.
 更に、上述した如く、操作器ケース61内にはばね90が配置されており、このばね90が、可動部23を介してリニアモータ100の可動子27と連結されていることから、可動電極6を動作させる際に、リニアモータ100の推力及びばね90の推力による力を供給することが可能になり、リニアモータ100の単独の推力の場合に比較して、リニアモータ100、アンプ71などの容量を小さくできる。また、リニアモータ100により位置や速度の制御が可能になり、従来のばね式操作器に比べると電流遮断の信頼性が向上する。 Further, as described above, the spring 90 is disposed in the operation device case 61, and this spring 90 is connected to the movable element 27 of the linear motor 100 via the movable portion 23. When operating the linear motor 100, it is possible to supply the force by the thrust of the linear motor 100 and the thrust of the spring 90. Compared to the case of the single thrust of the linear motor 100, the capacity of the linear motor 100, the amplifier 71, etc. Can be reduced. Further, the position and speed can be controlled by the linear motor 100, and the reliability of current interruption is improved as compared with the conventional spring type actuator.
 次に、リニアモータ100の構造について、図2乃至図8を用いて説明する。図2乃至図8のリニアモータ100は、3相駆動のリニアモータの一例である。なお、リニアモータ100は、3相駆動に限定されるわけではなく、例えば、2相駆動や4相以上の多相での構成も可能である。 Next, the structure of the linear motor 100 will be described with reference to FIGS. The linear motor 100 in FIGS. 2 to 8 is an example of a three-phase driving linear motor. Note that the linear motor 100 is not limited to three-phase driving, and for example, two-phase driving or a multi-phase configuration of four or more phases is possible.
 該図に示す如く、リニアモータ100は、永久磁石21に対向する位置に巻線41を配置した電機子101が、永久磁石21の進行方向(Z方向)に3個配置されている。図3に示す如く、永久磁石21は、Z方向に複数並べられ、磁化方向25が交互になるように配置されている。また、永久磁石21を上下から挟み込むように第1の磁極歯11と、第2の磁極歯12が配置され、この第1の磁極歯11と第2の磁極歯12を磁性体13でつなぎ磁束の経路を形成している。また、第1の磁極歯11と第2の磁極歯12のそれぞれには、巻線41が巻かれている。 As shown in the figure, in the linear motor 100, three armatures 101 having windings 41 arranged at positions facing the permanent magnets 21 are arranged in the traveling direction (Z direction) of the permanent magnets 21. As shown in FIG. 3, a plurality of permanent magnets 21 are arranged in the Z direction and are arranged so that the magnetization directions 25 are alternated. A first magnetic pole tooth 11 and a second magnetic pole tooth 12 are arranged so as to sandwich the permanent magnet 21 from above and below, and the magnetic flux is formed by connecting the first magnetic pole tooth 11 and the second magnetic pole tooth 12 with a magnetic body 13. Form the path. A winding 41 is wound around each of the first magnetic pole teeth 11 and the second magnetic pole teeth 12.
 図4に示す如く、永久磁石21は、はしご状の可動部材28に固定され、この永久磁石21と可動部材28とで可動子27を構成している。可動子27は、図示しない支持機構にて電機子101との位置関係が保たれている。例えば、リニアガイド、ローラベアリング、カムフォロア、スラストベアリングなどが好ましいが、永久磁石21と第1の磁極歯11及び第2の磁極歯12との間隔が保てれば、これに限定されるものでもない。また、図1に示した操作器ケース61や密封金属容器1に、支持機構を設けることも可能である。 As shown in FIG. 4, the permanent magnet 21 is fixed to a ladder-like movable member 28, and the permanent magnet 21 and the movable member 28 constitute a movable element 27. The mover 27 is maintained in a positional relationship with the armature 101 by a support mechanism (not shown). For example, linear guides, roller bearings, cam followers, thrust bearings, and the like are preferable, but the present invention is not limited to this as long as the distance between the permanent magnet 21 and the first magnetic pole teeth 11 and the second magnetic pole teeth 12 can be maintained. Moreover, it is also possible to provide a support mechanism in the operation device case 61 and the sealed metal container 1 shown in FIG.
 通常、永久磁石21と第1の磁極歯11及び第2の磁極歯12の間には吸引力(Y方向の力)が発生するが、本実施例の構成においては、永久磁石21と第1の磁極歯11に発生する吸引力と、永久磁石21と第2の磁極歯12に発生する吸引力とが互いに発生し、これらで力が相殺されることから吸引力が小さくなる。 Usually, an attractive force (force in the Y direction) is generated between the permanent magnet 21 and the first magnetic pole teeth 11 and the second magnetic pole teeth 12. However, in the configuration of this embodiment, the permanent magnet 21 and the first magnetic pole teeth 11 are the same. The attraction force generated in the magnetic pole teeth 11 and the attraction force generated in the permanent magnet 21 and the second magnetic pole teeth 12 are generated with each other, and the forces are canceled out to reduce the attraction force.
 そのため、可動子27を保持するための機構が簡素化でき、可動子27を含む可動体の質量を低減できる。また、可動体の質量を低減できるため、高加速度駆動や高応答駆動を実現することが可能になる。更に、電機子101と永久磁石21が相対的にZ方向に駆動するため、電機子101を固定することにより永久磁石21を含む可動子27がZ方向へ移動する。反対に、可動子27を固定し、電機子101をZ方向に移動させることも可能である。この場合には、可動子27と電機子101が逆転することになる。あくまでも発生する力は両者の間で生じる相対的な力である。 Therefore, the mechanism for holding the mover 27 can be simplified, and the mass of the movable body including the mover 27 can be reduced. In addition, since the mass of the movable body can be reduced, high acceleration driving and high response driving can be realized. Further, since the armature 101 and the permanent magnet 21 are driven in the Z direction relatively, the armature 101 is fixed, and the mover 27 including the permanent magnet 21 moves in the Z direction. On the other hand, it is possible to fix the mover 27 and move the armature 101 in the Z direction. In this case, the mover 27 and the armature 101 are reversed. The force generated is a relative force generated between the two.
 リニアモータ100の駆動に際しては、巻線41に電流を流すことにより磁界が発生し、電機子101と永久磁石21の相対位置に応じた推力を発生することが可能になる。 When driving the linear motor 100, a magnetic field is generated by passing a current through the winding 41, and a thrust according to the relative position of the armature 101 and the permanent magnet 21 can be generated.
 また、本実施例のリニアモータ100は、図5乃至図8に示すように、巻線41a及び41bによって発生する磁束91及び92が通る2つの異なる磁路を形成している。 Further, the linear motor 100 of the present embodiment forms two different magnetic paths through which the magnetic fluxes 91 and 92 generated by the windings 41a and 41b pass, as shown in FIGS.
 即ち、巻線41a及び41bによって発生する磁束91及び92が通る2つの異なる磁路のうち1つは、図7に示す如く、巻線41aにより生じた磁束91aが、第1の磁極歯11a、磁性体13a、磁性体13cを通り、第2の磁極歯12aに至る第1の経路である。もう1つの経路は、図7に示す如く、巻線41aと巻線41bにより生じた磁束92aが、第1の磁極歯11a、磁性体13a、第1の磁極歯11b、第2の磁極歯12b、磁性体13cを通り、第2の磁極歯12aに至る第2の経路である。つまり、2つの異なる磁路の1つは、巻線41a及び41bからの磁束91が、磁性体13から第1の磁極歯11、第1の磁極歯11から第2の磁極歯12、第2の磁極歯12から磁性体13に至る第1の経路であり、もう1つの磁路は、巻線41a及び41bからの磁束92が、第1の通路と直交する方向(永久磁石21の進行方向(Z方向))で、かつ、可動子27の進行方向に隣接する磁極歯に至る第2の経路である。 That is, as shown in FIG. 7, one of two different magnetic paths through which the magnetic fluxes 91 and 92 generated by the windings 41a and 41b pass is that the magnetic flux 91a generated by the winding 41a is the first magnetic pole teeth 11a, This is a first path that passes through the magnetic body 13a and the magnetic body 13c and reaches the second magnetic pole tooth 12a. As shown in FIG. 7, the other path is that the magnetic flux 92a generated by the winding 41a and the winding 41b is converted into the first magnetic pole tooth 11a, the magnetic body 13a, the first magnetic pole tooth 11b, and the second magnetic pole tooth 12b. This is a second path that passes through the magnetic body 13c and reaches the second magnetic pole teeth 12a. That is, in one of the two different magnetic paths, the magnetic flux 91 from the windings 41 a and 41 b is changed from the magnetic body 13 to the first magnetic pole tooth 11, from the first magnetic pole tooth 11 to the second magnetic pole tooth 12, and second. The other magnetic path is a direction in which the magnetic flux 92 from the windings 41a and 41b is orthogonal to the first path (the traveling direction of the permanent magnet 21). (Z direction)) and the second path to the magnetic pole teeth adjacent to the moving direction of the mover 27.
 上記した磁束92が通る第2の経路は、詳述すれば、図6に示す如く、可動子27の進行方向に隣接する電機子101の上側の各々の第1の磁極歯11間を、巻線41a及び41bからの磁束92が磁性体13を介して流れ、それが電機子101の下側の第2の磁極歯12に流れ、下側の各々の第2の磁極歯12間を、磁束92が磁性体13を介して流れる循環経路となる。 More specifically, the second path through which the magnetic flux 92 passes is, as shown in FIG. 6, wound between the first magnetic pole teeth 11 on the upper side of the armature 101 adjacent to the moving direction of the mover 27. Magnetic flux 92 from the wires 41a and 41b flows through the magnetic body 13 and flows to the second magnetic pole teeth 12 on the lower side of the armature 101, and the magnetic flux passes between the second magnetic pole teeth 12 on the lower side. 92 becomes a circulation path which flows through the magnetic body 13.
 このように構成することにより、巻線41a及び41bからの磁束が第1及び第2の経路を通ることになり、磁束の経路の断面積が増加し、効率的に推力を発生することができる。 With this configuration, the magnetic flux from the windings 41a and 41b passes through the first and second paths, the cross-sectional area of the path of the magnetic flux increases, and thrust can be generated efficiently. .
 また、電機子101と永久磁石21の位置関係及び注入する電流の位相や大きさを制御することにより、推力の大きさ及び方向の調整が可能になる。可動子27の動作制御は、開極指令及び閉極指令が制御ユニット72に入力された場合に応じて、アンプ71からリニアモータ100に電流を供給し、リニアモータ100での可動子27の駆動力に変換することで行うことができる。 Also, by controlling the positional relationship between the armature 101 and the permanent magnet 21 and the phase and magnitude of the injected current, the magnitude and direction of the thrust can be adjusted. The operation control of the mover 27 is performed by supplying current from the amplifier 71 to the linear motor 100 according to the case where the opening command and the closing command are input to the control unit 72, and driving the mover 27 by the linear motor 100. This can be done by converting to force.
 図1(a)及び図1(b)に示すように、リニアモータ100とばね90は、可動部23と絶縁ロッド81を介して可動電極6を駆動する。即ち、図1(a)は、可動電極6は閉極状態であり、この状態から図1(b)の開極状態に駆動する際には、リニアモータ100による可動子27を介しての駆動力に、ばね90の引張力(推力)を補助することで可動電極6を開極状態にすることができる。また、図1(b)の開極状態から図1(a)の閉極状態にするには、リニアモータ100による可動子27を介しての駆動力に、ばね90が圧縮されている圧縮力を解放することによる推力を補助することで可動電極6を非極状態にすることができる。 1A and 1B, the linear motor 100 and the spring 90 drive the movable electrode 6 through the movable portion 23 and the insulating rod 81. That is, in FIG. 1A, the movable electrode 6 is in a closed state, and when driving from this state to the open state in FIG. 1B, the linear motor 100 drives through the movable element 27. The movable electrode 6 can be opened by assisting the force with the tensile force (thrust) of the spring 90. Further, in order to change from the open state of FIG. 1B to the closed state of FIG. 1A, a compressive force in which the spring 90 is compressed by a driving force through the mover 27 by the linear motor 100. The movable electrode 6 can be brought into a non-polar state by assisting the thrust generated by releasing.
 このようにすることにより、ガス遮断器の高加速操作を行うために、操作器を大型化することなく、操作器の質量の低減が図れて高加速操作が実現できる。 By doing in this way, in order to perform the high acceleration operation of the gas circuit breaker, the mass of the operation device can be reduced and the high acceleration operation can be realized without increasing the size of the operation device.
 なお、ばね90は、閉極状態から開極状態に駆動する際に、圧縮力を解放することによる推力を補助し、開極状態から閉極状態に駆動する際に、引張力を補助することでも構わない。 The spring 90 assists the thrust by releasing the compression force when driving from the closed state to the open state, and assists the tensile force when driving from the open state to the closed state. It doesn't matter.
 また、可動子27の位置は、図示しない位置検出装置により検出され、検出した位置情報により制御ユニット72にてばね90の推力を推定し、リニアモータ100の推力をコントロールするようにしている。 Further, the position of the movable element 27 is detected by a position detection device (not shown), and the thrust of the spring 90 is estimated by the control unit 72 based on the detected position information, so that the thrust of the linear motor 100 is controlled.
 図3に示すように、3つの電機子101の磁極歯は、Z方向に並んだ永久磁石21の5個分に対し、電機子101の磁極歯が6個並ぶ配置になっている。このように、永久磁石21に対し、電機子101の磁極歯をZ方向にずらすことにより、振動の低減が可能になる。更に、永久磁石21を第1の磁極歯11と第2の磁極歯12で挟み込む構造により、可動子27のブレが低減できる。 As shown in FIG. 3, the magnetic pole teeth of the three armatures 101 are arranged such that six magnetic pole teeth of the armature 101 are aligned with respect to five permanent magnets 21 aligned in the Z direction. As described above, the vibration can be reduced by shifting the magnetic pole teeth of the armature 101 in the Z direction with respect to the permanent magnet 21. Further, the structure in which the permanent magnet 21 is sandwiched between the first magnetic pole teeth 11 and the second magnetic pole teeth 12 can reduce the blurring of the mover 27.
 これらにより、直線駆動させても駆動方向(Z方向)と垂直方向(X方向及びY方向)のブレや振動が極めて小さくなる。即ち、ガス遮断器に適用する上では、操作力を伝える可動子が直線シール部62を通過しても、直線シール部62の変形が小さいために、シール部における機械的な負担が小さくなる。これは、駆動に伴う直線シール部62の摺動動作不具合だけでなく、可動側接触子4の傾きを防止することにもつながるので、接触摺動部のかじりや電極からの微小金属異物が発生しにくい構造となる。かじりは遮断や投入の動作不良に結びつく可能性があり、金属異物は絶縁性能低下による絶縁事故に結びつく可能性がある。また、シール変形に伴うガス遮断器内部のSF6ガスが外部へ漏洩する量を低減できる。 Therefore, even if linear driving is performed, vibration and vibration in the driving direction (Z direction) and the vertical direction (X direction and Y direction) become extremely small. That is, when applied to a gas circuit breaker, even if a mover that transmits an operating force passes through the straight seal portion 62, the deformation of the straight seal portion 62 is small, so that the mechanical burden on the seal portion is reduced. This leads to not only the sliding operation failure of the linear seal portion 62 due to driving but also the prevention of the tilt of the movable contact 4, so that the contact sliding portion is galling and minute metallic foreign matter from the electrode is generated. It becomes a structure difficult to do. The galling may lead to malfunctions of shut-off and throwing in, and the metal foreign matter may lead to an insulation accident due to a decrease in insulation performance. Moreover, the amount of SF6 gas inside the gas circuit breaker due to seal deformation leaking to the outside can be reduced.
 このように、本実施例の構成によれば、操作器の質量の低減が図れて高加速操作が実現できることは勿論、信頼性の向上が図れる効果がある。 As described above, according to the configuration of the present embodiment, the mass of the operating device can be reduced, and high acceleration operation can be realized, as well as the effect of improving the reliability.
 図9乃至図13(a)及び図13(b)に、本発明の開閉装置の実施例2であるガス遮断器を示す。本実施例においては、既に説明した実施例1に示された同一の符号を付された構成と同一の機能を有する部分については、説明を省略する。 9 to 13 (a) and 13 (b) show a gas circuit breaker that is Embodiment 2 of the switchgear of the present invention. In the present embodiment, the description of the portions having the same functions as those of the configurations denoted by the same reference numerals as those described in the first embodiment is omitted.
 該図に示す本実施例は、リニアモータ100の永久磁石21を上下2段に構成した例である。本実施例のリニアモータ100は3相駆動の場合について説明する。 The present embodiment shown in the figure is an example in which the permanent magnet 21 of the linear motor 100 is configured in two upper and lower stages. The linear motor 100 of the present embodiment will be described for the case of three-phase driving.
 図9乃至図13(a)及び図13(b)に示す如く、本実施例のリニアモータ100は、電機子101をZ方向に3つ並べ、上下2段の永久磁石21の列を挟み込むように第1の磁極歯11と第2の磁極歯12を配置している。Y方向に並んだ巻線41aの作る磁束方向26に対し、巻線41bの作る磁束26は逆になるように巻線41a及び41bが巻かれている。 As shown in FIGS. 9 to 13A and 13B, in the linear motor 100 of this embodiment, three armatures 101 are arranged in the Z direction so as to sandwich the rows of the upper and lower permanent magnets 21. The 1st magnetic pole tooth 11 and the 2nd magnetic pole tooth 12 are arrange | positioned. The windings 41a and 41b are wound so that the magnetic flux 26 created by the winding 41b is opposite to the magnetic flux direction 26 created by the winding 41a arranged in the Y direction.
 図9乃至図10に示したリニアモータ100と、ばね90を組み合わせたリニアモータの例を図11及び図12に示す。 FIGS. 11 and 12 show examples of linear motors in which the linear motor 100 shown in FIGS. 9 to 10 and the spring 90 are combined.
 該図に示す如く、本実施例では、リニアモータ100部の軸方向両端に金具30が取り付けられている。この金具30には、円柱形を成した2枚のお盆状の可動部23が取り付けられており、2枚の可動部23の間にばね90が配置されている。リニアモータ100の可動部23は、永久磁石21と可動部材28及び可動部材28のZ方向とX方向を補強する補強部材31、32で構成されている。 As shown in the figure, in this embodiment, metal fittings 30 are attached to both ends of the linear motor 100 in the axial direction. Two metal-shaped movable portions 23 having a cylindrical shape are attached to the metal fitting 30, and a spring 90 is disposed between the two movable portions 23. The movable part 23 of the linear motor 100 includes a permanent magnet 21, a movable member 28, and reinforcing members 31 and 32 that reinforce the Z direction and the X direction of the movable member 28.
 また、リニアモータ100の可動部23は、ばね90の内側に配置され、例えば、リニアモータ100の可動部23とばね90を同軸上に配置することで、ブレや振動を低減できるため信頼性が向上する。更に、補強部材31の追加による可動部23の断面二次モーメントの増加や、補強部材32による2段の可動子27の連結により剛性が向上する。この結果、可動子27の変形や座屈が抑制できるためさらに信頼性が向上する。 In addition, the movable part 23 of the linear motor 100 is disposed inside the spring 90. For example, by arranging the movable part 23 of the linear motor 100 and the spring 90 on the same axis, vibration and vibration can be reduced, so that reliability is improved. improves. Furthermore, the rigidity is improved by increasing the secondary moment of section of the movable portion 23 by adding the reinforcing member 31 and by connecting the two-stage movable element 27 by the reinforcing member 32. As a result, since the deformation and buckling of the mover 27 can be suppressed, the reliability is further improved.
 更に、可動部23の中央に位置決め穴33を設け、この位置決め穴33に軸や軸受けを配置することで、可動部23のブレや振動を低減が可能となる。 Furthermore, by providing a positioning hole 33 in the center of the movable portion 23 and arranging a shaft and a bearing in the positioning hole 33, it is possible to reduce the shake and vibration of the movable portion 23.
 また、ばね90を圧縮した状態で保持するためフック29が設けられている。このフック29は、可動部23の一方に固定され、他方の可動部23にばね90が圧縮された状態で係合されて、この係合が解かれることでばね90の圧縮が開放されるものである。これにより、リニアモータ100への電流供給がない場合でも、可動部23やばね90の位置を保持できる。なお、手動でフック29を外すことにより、ばね90の推力で可動部23を動かすことが可能になる。 Also, a hook 29 is provided to hold the spring 90 in a compressed state. The hook 29 is fixed to one of the movable parts 23 and is engaged with the other movable part 23 in a compressed state of the spring 90, and the compression of the spring 90 is released by releasing the engagement. It is. Thereby, even when there is no current supply to the linear motor 100, the position of the movable part 23 and the spring 90 can be held. In addition, by manually removing the hook 29, the movable portion 23 can be moved by the thrust of the spring 90.
 上述したリニアモータ100を採用したガス遮断器を、図13(a)及び図13(b)に示す。 FIG. 13 (a) and FIG. 13 (b) show a gas circuit breaker that employs the linear motor 100 described above.
 該図に示す如く、上述したリニアモータ100を採用したガス遮断器は、絶縁ロッド81が1本に対して、可動子27がリニアモータ100を移動可能なように2段配置され、可動部23を介して両者が接続されている。そして、リニアモータ100と可動部23の間に、2段の可動子27を囲むようにばね90が配置されている。 As shown in the figure, the gas circuit breaker employing the above-described linear motor 100 is arranged in two stages so that the movable element 27 can move the linear motor 100 with respect to one insulating rod 81, and the movable portion 23. Both are connected via A spring 90 is disposed between the linear motor 100 and the movable portion 23 so as to surround the two-stage movable element 27.
 このような本実施例の構成であっても、実施例1と同様な効果が得られることは勿論、例えば、絶縁ロッド81の動作軸に対し、可動子27を対称に配置することにより、モーメントを低減することが可能となり、絶縁ロッド81の動作が安定する。 Even in the configuration of the present embodiment, the same effects as those of the first embodiment can be obtained. For example, by arranging the movable element 27 symmetrically with respect to the operating axis of the insulating rod 81, the moment Can be reduced, and the operation of the insulating rod 81 is stabilized.
 図14及び図15に本発明の実施例3を示す。本実施例においては、既に説明した実施例1及び2に示された同一の符号を付された構成と同一の機能を有する部分については、説明を省略する。 14 and 15 show a third embodiment of the present invention. In the present embodiment, the description of the portions having the same functions as those of the configurations denoted by the same reference numerals as those described in the first and second embodiments is omitted.
 該図に示す本実施例は、ばね90を上下2段の可動子27間に配置した例である。即ち、金具30と補強部材32の間で、かつ、上下2段の可動子27の間にばね90が位置決め軸36により位置決めされて設置されている。金具30には、フック29の一端が固定され、他端が補強部材32にばね90が圧縮された状態で係合されて、この係合が解かれることでばね90の圧縮が開放されるようになっている。 The present embodiment shown in the figure is an example in which a spring 90 is disposed between the upper and lower movable elements 27. That is, the spring 90 is positioned by the positioning shaft 36 between the metal fitting 30 and the reinforcing member 32 and between the upper and lower two-stage movable element 27. One end of the hook 29 is fixed to the metal fitting 30 and the other end is engaged with the reinforcing member 32 in a state where the spring 90 is compressed, and the compression of the spring 90 is released by releasing this engagement. It has become.
 このような本実施例の構成であっても、実施例2と同様な効果が得られることは勿論、ばね90に異物が挟まる可能性が少なくなり、ばね90に異物が挟まることによる不具合が防止できる。更に、ばね90の内部に位置決め軸36が設置され、補強部材32に軸受35を取り付けることが可能になり、可動子27のブレ及び振動を抑制することができる。 Even with this configuration of the present embodiment, the same effects as in the second embodiment can be obtained, and the possibility that foreign matter is caught in the spring 90 is reduced, and problems due to foreign matter caught in the spring 90 are prevented. it can. Further, the positioning shaft 36 is installed inside the spring 90, the bearing 35 can be attached to the reinforcing member 32, and the movement and vibration of the mover 27 can be suppressed.
 また、図14に示す如く、補強部材31の側面にスケール39を取り付け、このスケール39の目盛の信号を位置検出器34で読み取り、これをアンプ71及び制御ユニット72にリニアモータ100の位置情報として伝達する。この際、スケール39と位置検出装置34の間隔が変化すると、位置信号を読み取る際にエラーが生じる場合がある。そこで、図13に示すたように、位置決め軸36等を設置することにより、可動子27のブレを低減することができ、読み取りエラーを低減できる効果もある。 Further, as shown in FIG. 14, a scale 39 is attached to the side surface of the reinforcing member 31, a scale signal of the scale 39 is read by the position detector 34, and this is read as position information of the linear motor 100 by the amplifier 71 and the control unit 72. introduce. At this time, if the distance between the scale 39 and the position detection device 34 changes, an error may occur when reading the position signal. Therefore, as shown in FIG. 13, by installing the positioning shaft 36 and the like, blurring of the mover 27 can be reduced, and the reading error can be reduced.
 図16及び図17(a)乃至図17(d)に本発明の実施例4を示す。本実施例においては、既に説明した実施例1及び2に示された同一の符号を付された構成と同一の機能を有する部分については、説明を省略する。 16 and 17 (a) to 17 (d) show a fourth embodiment of the present invention. In the present embodiment, the description of the portions having the same functions as those of the configurations denoted by the same reference numerals as those described in the first and second embodiments is omitted.
 図16に示す如く、本実施例は、リニアモータ100の軸方向両側にばね90を設けた例である。即ち、リニアモータ100部の軸方向両端に金具30が取り付けられ、この金具30には、円柱形を成した2枚のお盆状の可動部23が取り付けられており、リニアモータ100の軸方向両側において、2枚の可動部23の間にばね90が配置されている。 As shown in FIG. 16, this embodiment is an example in which springs 90 are provided on both sides of the linear motor 100 in the axial direction. In other words, the metal fittings 30 are attached to both ends of the linear motor 100 in the axial direction, and two columnar movable parts 23 having a cylindrical shape are attached to the metal fitting 30. The spring 90 is disposed between the two movable parts 23.
 このような本実施例の構成であっても、実施例2と同様な効果が得られることは勿論、機械的または電気的な機構を設けることで、ばね90の動作範囲を調整したり、複数のばね90を配置して可動子27のブレーキ力として動作することも可能である。 Even in the configuration of the present embodiment, the same effects as those of the second embodiment can be obtained, and the operating range of the spring 90 can be adjusted by providing a mechanical or electrical mechanism, It is also possible to operate as a brake force of the mover 27 by arranging the spring 90.
 図17(a)、図17(b)、図17(c)及び図17(d)を用いて、本実施例におけるガス遮断器の動作パターンの例について説明する。該図は全て横軸が可動電極の変位、縦軸は推力を示す。 17A, 17B, 17C, and 17D, an example of an operation pattern of the gas circuit breaker in the present embodiment will be described. In all the drawings, the horizontal axis represents the displacement of the movable electrode, and the vertical axis represents the thrust.
 図17(a)は、ばね90による推力特性を示す。ばね90は変位によって推力特性が変化する。ばね90の圧縮時の推力をFSとする。ばね90を動作させた場合、図17(a)の領域601の範囲で推力が得られる。 FIG. 17 (a) shows the thrust characteristics of the spring 90. FIG. The thrust characteristic of the spring 90 changes depending on the displacement. The thrust during compression of the spring 90 is FS. When the spring 90 is operated, a thrust is obtained in the range of the region 601 in FIG.
 リニアモータ100の推力を図17(b)に示す。リニアモータ100は、電流の符号を変えることにより推力の向きを変えることが可能であるため、-FL(領域603)からFL(領域602)の範囲で推力をコントロールできる。変位の正方向をガス遮断器の開極方向とすれば、開極時に領域602では加速力が、領域603ではブレーキ力が得られる。ばね90とリニアモータ100を合わせた推力特性は、図17(c)となる。ばね90とリニアモータ100により得られる推力特性は、領域604の範囲となる。 The thrust of the linear motor 100 is shown in FIG. Since the linear motor 100 can change the direction of the thrust by changing the sign of the current, the thrust can be controlled in the range of −FL (region 603) to FL (region 602). If the positive direction of displacement is the opening direction of the gas circuit breaker, an acceleration force is obtained in the region 602 and a braking force is obtained in the region 603 at the time of opening. The thrust characteristics combining the spring 90 and the linear motor 100 are as shown in FIG. The thrust characteristics obtained by the spring 90 and the linear motor 100 are in the range of the region 604.
 変位の正方向をガス遮断器の開極方向とした場合は、図17(d)に示すように、開極時には領域605のブレーキ力が動作する。一方、変位の負方向(閉極方向)へ移動するときには、ばね90の圧縮動作が必要となるため、領域605の加速力が得られることになる。従って、ばね90を変位0まで圧縮するためには、FL>FSとする必要がある。 When the positive direction of displacement is the opening direction of the gas circuit breaker, as shown in FIG. 17 (d), the braking force in the region 605 operates during opening. On the other hand, when moving in the negative direction of displacement (closed direction), the compression operation of the spring 90 is required, so that the acceleration force in the region 605 is obtained. Therefore, in order to compress the spring 90 to zero displacement, it is necessary to satisfy FL> FS.
 また、従来のばね式の操作器においては、ばねを圧縮するモータが別途必要であるが、本実施例のリニアモータ100とばね90の操作器においては、ばね90の圧縮をリニアモータ100で行うことが可能となる。また、モータの回転動作を、ばね圧縮動作に変化する機構が不要になり、部品点数削減による信頼性向上、小型化が可能となる。 In addition, in the conventional spring type operation device, a motor for compressing the spring is separately required. However, in the linear motor 100 and the operation device of the spring 90 in this embodiment, the compression of the spring 90 is performed by the linear motor 100. It becomes possible. Further, a mechanism for changing the rotation operation of the motor to a spring compression operation is not necessary, and the reliability can be improved and the size can be reduced by reducing the number of parts.
 ガス遮断器の時間と変位の関係の例を図18に示す。該図に示す如く、ガス遮断器は、動作開始からt2までにP0からP2に移動する。従って、時間の前半は加速、後半は減速動作が必要となる。そこで、ばね90の動作範囲とリニアモータ100の推力を時間の前半と時間の後半で変えることにより、ガス遮断器に適したストロークを得ることが可能となる。例えば、図16に示した実施例4のリニアモータ100において、左側に設置されたばね90を加速ばね、右側に設置されたばね90を減速ばねとして動作させることで、リニアモータ100及びばね90の容量を低容量にできる。 An example of the relationship between the time and displacement of the gas circuit breaker is shown in FIG. As shown in the figure, the gas circuit breaker moves from P0 to P2 from the start of operation to t2. Therefore, acceleration is required in the first half of the time, and deceleration operation is required in the second half. Therefore, by changing the operating range of the spring 90 and the thrust of the linear motor 100 between the first half of the time and the second half of the time, a stroke suitable for the gas circuit breaker can be obtained. For example, in the linear motor 100 according to the fourth embodiment shown in FIG. 16, the spring 90 installed on the left side is operated as an acceleration spring, and the spring 90 installed on the right side is operated as a deceleration spring, whereby the capacity of the linear motor 100 and the spring 90 is increased. Low capacity.
 リニアモータ100とばね遮断器の推力パターンを図19(a)、図19(b)及び図19(c)に示す。図19(a)に加速ばねとリニアモータを用いた推力パターンを、図19(b)に加速ばねと減速ばねとリニアモータを用いた推力パターンを示す。 19A, 19B and 19C show thrust patterns of the linear motor 100 and the spring breaker. FIG. 19A shows a thrust pattern using an acceleration spring and a linear motor, and FIG. 19B shows a thrust pattern using an acceleration spring, a deceleration spring, and a linear motor.
 図19(a)において、変位0から変位X1の範囲では、ばね90のエネルギ(領域601)から得られるばね90の推力FS1と、リニアモータ100のエネルギ(領域602)から得られるリニアモータ100の推力FL1を利用して移動する。変位X1から変位X2の範囲では、リニアモータ100の回生で得られるエネルギ(領域605)を利用したリニアモータ100の推力FL2を利用して減速する。例えば、変位0のおける速度を0とし、変位X1まで加速し、変位X1を超えた領域で減速を開始し、変位X2で停止したとする。モータの損失や摩擦などの影響は無視すると仮定すると、加速に利用したエネルギ(領域601と領域602の和)と減速に利用したエネルギ(領域605)は等しくなる。例えば、X1=X2の場合において、加速と減速に必要なエネルギは同等となるため、減速時はばね90の作用がないため、リニアモータ100により供給される減速エネルギが大きくなり、リニアモータ100の容量が大きくなり、FL1<FL2となる。リニアモータ100の容量は推力で決まるため、FL1またはFL2の大きい方で容量が決まる。 In FIG. 19A, in the range of displacement 0 to displacement X1, the thrust FS1 of the spring 90 obtained from the energy of the spring 90 (region 601) and the linear motor 100 obtained from the energy of the linear motor 100 (region 602). It moves using the thrust FL1. In the range from the displacement X1 to the displacement X2, the vehicle is decelerated using the thrust FL2 of the linear motor 100 using the energy (region 605) obtained by regeneration of the linear motor 100. For example, it is assumed that the speed at which the displacement is 0 is set to 0, the acceleration is performed up to the displacement X1, the deceleration is started in the region exceeding the displacement X1, and the operation is stopped at the displacement X2. Assuming that the effects of motor loss, friction, etc. are ignored, the energy used for acceleration (sum of region 601 and region 602) and the energy used for deceleration (region 605) are equal. For example, in the case of X1 = X2, the energy required for acceleration and deceleration is equal, so that there is no action of the spring 90 during deceleration, so the deceleration energy supplied by the linear motor 100 increases, and the linear motor 100 The capacity increases and FL1 <FL2. Since the capacity of the linear motor 100 is determined by thrust, the capacity is determined by the larger of FL1 or FL2.
 そこで、図19(b)に示すように、変位X1からX2の間作用する減速ばねを用いることで、加速時の推力FL1と減速時のブレーキ力FL2を同等にすることが可能になり、リニアモータ100の容量を低減できる。 Therefore, as shown in FIG. 19 (b), by using a deceleration spring that acts between the displacements X1 and X2, it becomes possible to equalize the thrust FL1 during acceleration and the braking force FL2 during deceleration. The capacity of the motor 100 can be reduced.
 更に、ガス遮断器の動作上、全変位の半分以上の領域で加速を必要とする場合がある。このとき、X1>X2となり、加速時の推力(FL1+FS1)に比べ減速時の推力(FL2+FS2)を大きくする必要がある。変位0からX1までばね(1)の推力FS1とリニアモータ100の推力FL1で加速し、変位X1からX2までばね(2)の推力FS2とリニアモータ100の推力FL2を用いて移動した場合、減速時に作用するばね(2)を設けることで、加速時のリニアモータ100の推力FL1と減速時のリニアモータ100の推力FL2を同等に設計することが可能になり、リニアモータ100の容量低減が可能となる。X1>X2において、FS1<FS2とすることにより、加速時と減速時のリニアモータ100の容量を適切に設定可能となる。 Furthermore, the operation of the gas circuit breaker may require acceleration in the region of more than half of the total displacement. At this time, X1> X2, and it is necessary to increase the thrust (FL2 + FS2) during deceleration compared to the thrust (FL1 + FS1) during acceleration. When displacement 0 to X1 is accelerated by the thrust FS1 of the spring (1) and the thrust FL1 of the linear motor 100, and the movement from the displacement X1 to X2 using the thrust FS2 of the spring (2) and the thrust FL2 of the linear motor 100 is decelerated. By providing the spring (2) that acts sometimes, the thrust FL1 of the linear motor 100 during acceleration and the thrust FL2 of the linear motor 100 during deceleration can be designed to be equivalent, and the capacity of the linear motor 100 can be reduced. It becomes. By setting FS1 <FS2 in X1> X2, the capacity of the linear motor 100 during acceleration and deceleration can be set appropriately.
 加速初期に加速ばねを作用させた場合の推力パターンを図19(c)に示す。例えば、必要に応じてばね90の作用する範囲を変えることも可能であり、加速前半と加速後半の推力特性を大きく変えた場合、加速初期にばね90とリニアモータ100、加速後半にリニアモータ100の推力で加速することで、速度の立ち上がりを早くすることが可能となる。 Fig. 19 (c) shows the thrust pattern when the acceleration spring is applied in the early stage of acceleration. For example, the range in which the spring 90 acts can be changed as necessary. When the thrust characteristics of the first half of acceleration and the second half of acceleration are greatly changed, the spring 90 and the linear motor 100 in the early stage of acceleration, and the linear motor 100 in the second half of acceleration. By accelerating with this thrust, it becomes possible to speed up the speed.
 このように、ばね90の動作範囲を変えることにより、ガス遮断器の動作に適したストローク特性を実現することも可能である。 Thus, by changing the operating range of the spring 90, it is possible to realize stroke characteristics suitable for the operation of the gas circuit breaker.
 図20(a)及び図20(b)に本発明の実施例5を示す。本実施例においては、既に説明した実施例1に示された同一の符号を付された構成と同一の機能を有する部分については、説明を省略する。 FIG. 20 (a) and FIG. 20 (b) show a fifth embodiment of the present invention. In the present embodiment, the description of the portions having the same functions as those of the configurations denoted by the same reference numerals as those described in the first embodiment is omitted.
 該図に示す本実施例では、上述した実施例で説明したばねに代えて油圧シリンダ37を用いたものである。即ち、可動部23に油圧シリンダ37のピストン38を接続している。他の構成は、図1(a)及び図1(b)と同様である。 In this embodiment shown in the figure, a hydraulic cylinder 37 is used in place of the spring described in the above-described embodiment. That is, the piston 38 of the hydraulic cylinder 37 is connected to the movable part 23. Other configurations are the same as those in FIGS. 1A and 1B.
 このような本実施例の構成であっても、実施例1と同様な効果が得られる。なお、可動部23の加速及び減速を補助する推力発生源としては、ばね90や油圧シリンダ37に限られるものではなく、可動部23の加減速をリニアモータ100と、その他の推力発生源により補助することでも同等の効果が得られる。 Even with this configuration of the present embodiment, the same effects as those of the first embodiment can be obtained. The thrust generation source for assisting acceleration and deceleration of the movable portion 23 is not limited to the spring 90 and the hydraulic cylinder 37, and the acceleration / deceleration of the movable portion 23 is supplemented by the linear motor 100 and other thrust generation sources. By doing so, the same effect can be obtained.
 図21及び図11を用いて本発明の実施例6について説明する。本実施例においては、既に説明した実施例1に示された同一の符号を付された構成と同一の機能を有する部分については、説明を省略する。 Example 6 of the present invention will be described with reference to FIGS. In the present embodiment, the description of the portions having the same functions as those of the configurations denoted by the same reference numerals as those described in the first embodiment is omitted.
 図11に示す如く、実施例2では、リニアモータ100と加減速時の推力を補助するばね90とばね90の圧縮力を保持するフック29を備えている。従来のばね遮断器においては、ばねの圧縮力をフックで保持しており、ばねの圧縮力に応じて強固なフックが必要になると同時に、フックを外す際の力や摩擦によりフックの損傷が発生する。 As shown in FIG. 11, the second embodiment includes a linear motor 100, a spring 90 that assists thrust during acceleration / deceleration, and a hook 29 that holds the compression force of the spring 90. In a conventional spring breaker, the compression force of the spring is held by a hook, and a strong hook is required according to the compression force of the spring. At the same time, the hook is damaged by the force and friction when removing the hook. To do.
 本実施例の構成においては、フック29を外す際に加速方向と逆方向にリニアモータ100を動作させ、フック力を緩めることでフック29への力を低減できる。 In the configuration of this embodiment, when the hook 29 is removed, the linear motor 100 is operated in the direction opposite to the acceleration direction and the hook force is loosened, so that the force on the hook 29 can be reduced.
 フック29を外す際の時間と変位の関係を図21に示す。該図に示す如く、変位P0の位置から移動方向と逆の方向のP1へ移動し、フック力を緩めたのちフック29を外し、P2へ移動することにより、フック29への力や摩擦による損傷を大きく低減できる。また、P1の位置でフック力を0にし、リニアモータ100の推力や各部の摩擦力やリニアモータ100のディテント力などで保持することも可能である。これによりフック29の摩擦や破損の頻度が低減し、ガス遮断器の信頼性が向上する。 21 shows the relationship between time and displacement when the hook 29 is removed. As shown in the figure, the movement from the position of the displacement P0 to P1 in the direction opposite to the movement direction, the hook force is loosened, the hook 29 is removed, and the movement to P2 causes damage to the hook 29 due to force and friction. Can be greatly reduced. It is also possible to set the hook force to 0 at the position P1 and hold it by the thrust of the linear motor 100, the frictional force of each part, the detent force of the linear motor 100, or the like. This reduces the frequency of friction and breakage of the hook 29 and improves the reliability of the gas circuit breaker.
 なお、本発明の実施例1乃至実施例6に示した構成は、リニアモータ100と加減速を補助する推力発生源を有しており、リニアモータ100は、ストローク内にて推力を自由に制御できるため、ガス遮断器のストローク特性をコントロールできる。これにより、可動電極や遮断部の電極に発生するアークを抑制でき、ガス遮断器の信頼性向上につながる。 In addition, the structure shown in Example 1 thru | or Example 6 of this invention has the thrust generation source which assists the linear motor 100 and acceleration / deceleration, and the linear motor 100 controls thrust freely within a stroke. Because of this, the stroke characteristics of the gas circuit breaker can be controlled. Thereby, the arc which generate | occur | produces in a movable electrode or the electrode of a interruption | blocking part can be suppressed, and it leads to the reliability improvement of a gas circuit breaker.
 また、上述した実施例において、可動子27によって生じる推力の作用点または推力の合力の作用点と、可動子27の加速時または減速時、或いは加減速時に推力を補助するばね90の推力作用点とが同軸上にあることに意味がある。これについて、以下に説明する。 In the above-described embodiment, the point of action of the thrust generated by the mover 27 or the point of action of the resultant force of the thrust, and the point of thrust of the spring 90 that assists the thrust when the mover 27 is accelerated, decelerated, or accelerated / decelerated. And is on the same axis. This will be described below.
 図1(b)に示したばね90とリニアモータ100の組み合わせにおいて、リニアモータ100の可動子27は1段構成で、リニアモータ100の推力が作用する軸を(ウ)、ばね90の推力が作用する軸を(イ)とした場合、リニアモータ100の推力とばね90の推力を同等にすれば、リニアモータ100の推力とばね90の推力の合力は中間になる。また、推力差があれば合力の作用する軸は若干ずれるが、リニアモータ100がばね90を圧縮をする(リニアモータ100の推力≒ばね90の推力)ことを考えると、両者はほぼ同等となる。そこで、ばね90とリニアモータ100の合力の作用軸(ア)と可動電極6の移動する軸(エ)を同軸上に配置することで、リンク部やシール部の摩耗、負担を軽減できる。 In the combination of the spring 90 and the linear motor 100 shown in FIG. 1B, the mover 27 of the linear motor 100 has a one-stage configuration, the axis on which the thrust of the linear motor 100 acts is (c), and the thrust of the spring 90 acts. Assuming that the shaft to be operated is (A), if the thrust of the linear motor 100 and the thrust of the spring 90 are made equal, the resultant force of the thrust of the linear motor 100 and the thrust of the spring 90 is intermediate. Further, if there is a thrust difference, the shaft on which the resultant force acts is slightly shifted, but considering that the linear motor 100 compresses the spring 90 (the thrust of the linear motor 100≈the thrust of the spring 90), the two are almost the same. . Therefore, by arranging the acting axis (A) of the resultant force of the spring 90 and the linear motor 100 and the axis (d) on which the movable electrode 6 moves on the same axis, it is possible to reduce wear and burden on the link part and the seal part.
 図13(a)は、同様に2段の可動子27の合力が作用する軸(オ)と可動電極6の移動する軸(カ)を同軸上に配置した例である。このように、複数の推力発生源に対し、それらの合力の発生する軸を可動電極6の移動する軸と同軸上に配置することで、リンク部やシール部の摩耗、負担を軽減できる。 FIG. 13A is an example in which the axis (v) on which the resultant force of the two-stage movable element 27 acts and the axis (f) on which the movable electrode 6 moves are arranged on the same axis. As described above, by arranging the shafts that generate the resultant force on the plurality of thrust generation sources on the same axis as the axis on which the movable electrode 6 moves, it is possible to reduce wear and burden on the link portion and the seal portion.
 図12は、ばね90の推力が発生する軸(ク)と複数の可動子27の合力が発生する軸(キ)が同軸であり、ばね90とリニアモータ100の推力が同等でない場合においても、リンク部やシール部の摩耗、負担を軽減できる効果がある。 In FIG. 12, even when the axis (g) where the thrust of the spring 90 is generated and the axis (g) where the resultant force of the plurality of movers 27 is generated are coaxial, the thrust of the spring 90 and the linear motor 100 is not equivalent. This has the effect of reducing the wear and load on the link and seal.
 本発明に用いたリニアモータ100について、以下に、追加の説明を記載する。例えば、図2に示したリニアモータ100の電機子101をXY断面で切り取った図を図22に示す。 The following is an additional description of the linear motor 100 used in the present invention. For example, FIG. 22 shows a view of the armature 101 of the linear motor 100 shown in FIG.
 該図に示す如く、永久磁石21を第1の磁極歯11と第2の磁極歯12で挟み込むように配置することで、第1の磁極歯11、第2の磁極歯12と永久磁石21との吸引力を低減できるため、支持機構が簡素になり軽量な可動部23を構成できる。また、可動部23が軽量なため、高加速駆動や応答性が高いといった利点がある。更に、本発明においては、可動子27が軽量なため、永久磁石21の吸引力により第1の磁極歯11、第2の磁極歯12の中央にて永久磁石21が安定する。このため、図14に示した位置検出装置34とスケール39との間隔も略一定に保つことが可能となる。更に、永久磁石21の位置に一致するようにd軸の位相において、巻線41に電流を流すことにより安定した吸引力が得られ永久磁石21の位置を安定させることができる。 As shown in the figure, by arranging the permanent magnet 21 so as to be sandwiched between the first magnetic pole tooth 11 and the second magnetic pole tooth 12, the first magnetic pole tooth 11, the second magnetic pole tooth 12, and the permanent magnet 21 Since the suction force can be reduced, the support mechanism is simplified, and the lightweight movable portion 23 can be configured. Moreover, since the movable part 23 is lightweight, there are advantages such as high acceleration driving and high responsiveness. Furthermore, in the present invention, since the mover 27 is lightweight, the permanent magnet 21 is stabilized at the center of the first magnetic pole tooth 11 and the second magnetic pole tooth 12 by the attractive force of the permanent magnet 21. For this reason, the distance between the position detection device 34 and the scale 39 shown in FIG. 14 can be kept substantially constant. Furthermore, a stable attraction force can be obtained by flowing a current through the winding 41 in the d-axis phase so as to coincide with the position of the permanent magnet 21, and the position of the permanent magnet 21 can be stabilized.
 なお、本発明は上記した実施例に限定されるものではなく、様々な変形例が含まれる。例えば、上記した実施例は本発明を分かり易く説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。また、ある実施例の構成の一部を他の実施例の構成を置き換えることが可能であり、また、ある実施例の構成に他の実施例の構成を加えることも可能である。また、各実施例の構成の一部について、他の構成の追加・削除・置換をすることが可能である。 In addition, this invention is not limited to the above-mentioned Example, Various modifications are included. For example, the above-described embodiments have been described in detail for easy understanding of the present invention, and are not necessarily limited to those having all the configurations described. Further, a part of the configuration of one embodiment can be replaced with the configuration of another embodiment, and the configuration of another embodiment can be added to the configuration of one embodiment. Further, it is possible to add, delete, and replace other configurations for a part of the configuration of each embodiment.
 1…密閉金属容器、2…絶縁支持スペーサ、3…固定側接触子、4…可動側接触子、5…ノズル、6…可動電極、7…絶縁支持筒、8…高電圧導体、11、11a、11b…第1の磁極歯、12、12a、12b…第2の磁極歯、13、13a、13b、13c…磁性体、21…永久磁石、23…可動部、25…磁化方向、26…磁束方向、27…可動子、28…可動部材、29…フック、30…金具、31、32…補強部材、33…位置決め穴、34…位置検出装置、35…軸受、36…位置決め軸、37…油圧シリンダ、38…ピストン、39…スケール、41、41a、41b…巻線、51…変流器、61…操作器ケース、62…直線シール部、71…アンプ、72…制御ユニット、81…絶縁ロッド、90…ばね、91、91a、92、92a…磁束、100…リニアモータ、101…電機子、601…ばねの推力の領域、602…リニアモータの推力の領域、603…リニアモータの推力(負側の領域)、604…操作器の推力の領域、605…負の推力(ブレーキ力、巻上力)の領域、606…ブレーキばねによる推力の領域、(A)…遮断部、(B)…操作部。 DESCRIPTION OF SYMBOLS 1 ... Sealed metal container, 2 ... Insulation support spacer, 3 ... Fixed side contactor, 4 ... Movable side contactor, 5 ... Nozzle, 6 ... Movable electrode, 7 ... Insulation support cylinder, 8 ... High voltage conductor, 11, 11a , 11b: first magnetic pole teeth, 12, 12a, 12b ... second magnetic pole teeth, 13, 13a, 13b, 13c ... magnetic bodies, 21 ... permanent magnets, 23 ... movable parts, 25 ... magnetization directions, 26 ... magnetic fluxes Direction, 27: Movable element, 28: Movable member, 29 ... Hook, 30 ... Metal fitting, 31, 32 ... Reinforcing member, 33 ... Positioning hole, 34 ... Position detecting device, 35 ... Bearing, 36 ... Positioning shaft, 37 ... Hydraulic pressure Cylinder, 38 ... Piston, 39 ... Scale, 41, 41a, 41b ... Winding, 51 ... Current transformer, 61 ... Actuator case, 62 ... Linear seal part, 71 ... Amplifier, 72 ... Control unit, 81 ... Insulating rod 90, springs 91, 91a, 2, 92a ... magnetic flux, 100 ... linear motor, 101 ... armature, 601 ... spring thrust area, 602 ... linear motor thrust area, 603 ... linear motor thrust (negative area), 604 ... operator 605 ... negative thrust (brake force, hoisting force) region, 606 ... thrust force region by brake spring, (A) ... shut-off part, (B) ... operation part.

Claims (15)

  1.  固定接触子及び該固定接触子に対して接触または開離する可動接触子からなる遮断部と、前記可動接触子が動作するための駆動力を発生させるリニアモータと、前記遮断部の接触または開離時における前記リニアモータの加速時または減速時、或いは加減速時に、該リニアモータに推力を補助する推力発生源とを備えていることを特徴とする開閉装置。 A blocking portion comprising a fixed contact and a movable contact that contacts or separates from the fixed contact, a linear motor that generates a driving force for operating the movable contact, and a contact or opening of the blocking portion. An opening / closing device comprising: a thrust generation source for assisting thrust to the linear motor at the time of acceleration or deceleration of the linear motor at the time of separation or acceleration / deceleration.
  2.  請求項1に記載の開閉装置において、
     前記リニアモータは、永久磁石または磁性材を磁化方向を反転させつつ複数個並べて形成された可動子と、前記永久磁石または磁性材を上下から挟み込むように配置された第1の磁極歯及び第2の磁極歯、該第1の磁極歯と第2の磁極歯をつなぎ磁束の経路を形成する磁性体、前記第1の磁極歯と第2の磁極歯にそれぞれ配置された巻線から成る電機子とを備えていることを特徴とする開閉装置。
    The switchgear according to claim 1,
    The linear motor includes a mover formed by arranging a plurality of permanent magnets or magnetic materials while reversing the magnetization direction, and first and second magnetic pole teeth arranged so as to sandwich the permanent magnets or magnetic materials from above and below. Magnetic pole teeth, a magnetic material connecting the first magnetic pole teeth and the second magnetic pole teeth to form a magnetic flux path, and armatures comprising windings respectively disposed on the first magnetic pole teeth and the second magnetic pole teeth And a switchgear characterized by comprising:
  3.  請求項2に記載の開閉装置において、
     前記第1の磁極歯及び第2の磁極歯は、前記可動子若しくは電機子の進行方向に少なくとも2つ並設されていると共に、両者が前記磁性体で連結され、かつ、前記巻線からの磁束が通る少なくとも2つの異なる磁路が形成されることを特徴とする開閉装置。
    The switchgear according to claim 2, wherein
    At least two of the first magnetic pole teeth and the second magnetic pole teeth are juxtaposed in the moving direction of the mover or armature, and both are connected by the magnetic body, and from the winding A switchgear characterized in that at least two different magnetic paths through which magnetic flux passes are formed.
  4.  請求項3に記載の開閉装置において、
     前記巻線からの磁束が通る少なくとも2つの異なる磁路は、前記巻線からの磁束が、前記磁性体から前記第1の磁極歯、該第1の磁極歯から前記第2の磁極歯、該第2の磁極歯から前記磁性体に至る第1の経路と、該第1の経路と直交する方向で、かつ、前記それぞれの電機子内で前記可動子若しくは電機子の進行方向に隣接する前記第1の磁極歯から第2の磁極歯に至る第2の経路とから成ることを特徴とする開閉装置。
    The switchgear according to claim 3, wherein
    At least two different magnetic paths through which the magnetic flux from the winding passes are such that the magnetic flux from the winding is from the magnetic body to the first magnetic pole tooth, from the first magnetic pole tooth to the second magnetic pole tooth, A first path from the second magnetic pole tooth to the magnetic body; a direction orthogonal to the first path; and the adjacent armature or armature in the direction of travel of the armature And a second path from the first magnetic pole tooth to the second magnetic pole tooth.
  5.  請求項1に記載の開閉装置において、
     前記遮断部は容器内に収納され、かつ、前記リニアモータは前記容器と隣接配置されたケース内に設置されていると共に、前記リニアモータの可動子が、前記容器内の可動接触子と絶縁ロッドを介して接続されていることを特徴とする開閉装置。
    The switchgear according to claim 1,
    The blocking portion is housed in a container, and the linear motor is installed in a case disposed adjacent to the container, and the mover of the linear motor is connected to the movable contact in the container and an insulating rod. Opening and closing device characterized by being connected via.
  6.  請求項1に記載の開閉装置において、
     前記可動接触子に接続されて主回路の一部を構成する主回路導体の周囲に配置され、該主回路導体を流れる電流を検出する電流検出器と、該電流検出器で検出した電流値が入力され、該電流値に応じて前記リニアモータに供給する電流値を制御する制御ユニットと、該制御ユニットからの指令を受け、該指令に応じた電流を前記リニアモータに供給するアンプとを備えていることを特徴とする開閉装置。
    The switchgear according to claim 1,
    A current detector connected to the movable contact and arranged around a main circuit conductor constituting a part of the main circuit, and detecting a current flowing through the main circuit conductor, and a current value detected by the current detector A control unit that controls a current value supplied to the linear motor in accordance with the current value; and an amplifier that receives a command from the control unit and supplies a current according to the command to the linear motor. Opening and closing device characterized by that.
  7.  請求項1に記載の開閉装置において、
     前記推力発生源は、ばね或いは油圧シリンダから成ることを特徴とする開閉装置。
    The switchgear according to claim 1,
    The opening / closing apparatus characterized in that the thrust generation source comprises a spring or a hydraulic cylinder.
  8.  請求項7に記載の開閉装置において、
     前記ばねは、前記可動接触子と接続されている可動部を介して前記リニアモータの可動子と連結され、該ばねの圧縮力若しくは引張力を前記リニアモータに推力として補助することを特徴とする開閉装置。
    The switchgear according to claim 7,
    The spring is connected to a movable element of the linear motor through a movable part connected to the movable contact, and assists the compression force or tensile force of the spring as a thrust to the linear motor. Switchgear.
  9.  固定接触子及び該固定接触子に対して接触または開離する可動接触子からなる遮断部と、前記可動接触子が動作するための駆動力を発生させるリニアモータと、前記遮断部の接触または開離時における前記リニアモータの加速時または減速時、或いは加減速時に、該リニアモータに推力を補助する推力発生源とを備え、
     前記リニアモータは、永久磁石または磁性材を磁化方向を反転させつつ複数個並べて形成され、上下に少なくとも2段配置された可動子と、該それぞれの可動子の前記永久磁石または磁性材を上下から挟み込むように配置された第1の磁極歯及び第2の磁極歯、該第1の磁極歯と第2の磁極歯をつなぎ磁束の経路を形成する磁性体、前記第1の磁極歯と第2の磁極歯にそれぞれ配置された巻線から成る電機子とから成り、かつ、前記推力発生源は、前記リニアモータの軸方向端部に前記可動子を覆うように配置されたばねから成ることを特徴とする開閉装置。
    A blocking part comprising a fixed contact and a movable contact that contacts or separates from the fixed contact; a linear motor that generates a driving force for operating the movable contact; and a contact or opening of the blocking part. A thrust generation source for assisting thrust to the linear motor at the time of acceleration or deceleration or acceleration / deceleration of the linear motor at the time of separation;
    The linear motor is formed by arranging a plurality of permanent magnets or magnetic materials while reversing the magnetization direction, and at least two stages of upper and lower movers, and the permanent magnets or magnetic materials of the respective movers from above and below. A first magnetic pole tooth and a second magnetic pole tooth arranged so as to be sandwiched, a magnetic body connecting the first magnetic pole tooth and the second magnetic pole tooth to form a magnetic flux path, the first magnetic pole tooth and the second magnetic pole tooth Each of the magnetic pole teeth of the linear motor includes an armature formed of a winding, and the thrust generation source includes a spring disposed at an axial end of the linear motor so as to cover the mover. Opening and closing device.
  10.  請求項9に記載の開閉装置において、
     前記リニアモータの端部の軸方向に2つの可動部を設けると共に、該2つの可動部の間に前記ばねを配置し、かつ、それぞれの前記可動部の一方に固定され、他方の前記可動部に前記ばねが圧縮された状態で係合されて、この係合が解かれることで前記ばねの圧縮が開放されるフック部材を備えていることを特徴とする開閉装置。
    The switchgear according to claim 9,
    Two movable parts are provided in the axial direction of the end of the linear motor, the spring is disposed between the two movable parts, and the other movable part is fixed to one of the movable parts. An opening / closing apparatus comprising a hook member that is engaged with the spring in a compressed state and that releases the compression when the engagement is released.
  11.  請求項9に記載の開閉装置において、
     前記ばねは、上下に2段配置された前記可動子の間に設置されていることを特徴とする開閉装置。
    The switchgear according to claim 9,
    The opening and closing device characterized in that the spring is installed between the movable elements arranged in two stages in the vertical direction.
  12.  請求項9に記載の開閉装置において、
     前記ばねは、加速時に推力を補助するばねと、減速時に推力を補助するばねとが、前記リニアモータの軸方向両端部に、前記可動子を覆うように配置されていることを特徴とする開閉装置。
    The switchgear according to claim 9,
    The spring is characterized in that a spring for assisting thrust during acceleration and a spring for assisting thrust during deceleration are arranged at both ends in the axial direction of the linear motor so as to cover the mover. apparatus.
  13.  請求項9に記載の開閉装置において、
     前記ばねを圧縮する推力FSと、前記リニアモータの推力FLとが、FL>FSとなるようにしたことを特徴とする開閉装置。
    The switchgear according to claim 9,
    An opening / closing apparatus characterized in that a thrust FS for compressing the spring and a thrust FL of the linear motor satisfy FL> FS.
  14.  請求項9に記載の開閉装置において、
     前記可動子によって生じる推力の作用点または推力の合力の作用点と、前記可動子の加速時または減速時、或いは加減速時に推力を補助する前記ばねの推力作用点とが同軸上にあることを特徴とする開閉装置。
    The switchgear according to claim 9,
    The point of action of the thrust generated by the mover or the point of action of the resultant force of the thrust and the point of action of the spring that assists the thrust during acceleration or deceleration or acceleration / deceleration of the mover are coaxial. Opening and closing device characterized.
  15.  請求項12に記載の開閉装置において、
     加速時に推力を補助する前記ばねの推力FS1と、減速時に推力を補助する前記ばねの推力FS2とが、FS1<FS2となるようにしたことを特徴とする開閉装置。
    The switchgear according to claim 12,
    An opening / closing device characterized in that the spring thrust FS1 for assisting thrust during acceleration and the spring thrust FS2 for assisting thrust during deceleration satisfy FS1 <FS2.
PCT/JP2013/051842 2013-01-29 2013-01-29 Switch device WO2014118875A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2013/051842 WO2014118875A1 (en) 2013-01-29 2013-01-29 Switch device
JP2014559374A JP5883516B2 (en) 2013-01-29 2013-01-29 Switchgear

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2013/051842 WO2014118875A1 (en) 2013-01-29 2013-01-29 Switch device

Publications (1)

Publication Number Publication Date
WO2014118875A1 true WO2014118875A1 (en) 2014-08-07

Family

ID=51261624

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/051842 WO2014118875A1 (en) 2013-01-29 2013-01-29 Switch device

Country Status (2)

Country Link
JP (1) JP5883516B2 (en)
WO (1) WO2014118875A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102015218443A1 (en) 2015-09-25 2017-03-30 Siemens Aktiengesellschaft Drive and method for driving a circuit breaker
JP2017147800A (en) * 2016-02-16 2017-08-24 株式会社日立製作所 Linear motor and shutoff device
JPWO2016132465A1 (en) * 2015-02-18 2017-08-31 株式会社日立製作所 Linear motor

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0589755A (en) * 1991-09-26 1993-04-09 Toshiba Corp Compressed gas breaker
JP2004509435A (en) * 2000-09-18 2004-03-25 エービービー エービー Switching device
JP2005287185A (en) * 2004-03-30 2005-10-13 Hitachi Ltd Linear motor
JP2006087178A (en) * 2004-09-15 2006-03-30 Yaskawa Electric Corp Method and device for controlling linear motor
JP2006520517A (en) * 2003-02-26 2006-09-07 シーメンス アクチエンゲゼルシヤフト Magnetic linear drive
WO2010067837A1 (en) * 2008-12-10 2010-06-17 株式会社日立製作所 Thrust generation mechanism, drive device, xy stage, and xyz stage
WO2010103575A1 (en) * 2009-03-13 2010-09-16 株式会社日立製作所 Linear motor

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19815538A1 (en) * 1998-03-31 1999-10-07 Siemens Ag Drive devices for interrupter units of switching devices for energy supply and distribution

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0589755A (en) * 1991-09-26 1993-04-09 Toshiba Corp Compressed gas breaker
JP2004509435A (en) * 2000-09-18 2004-03-25 エービービー エービー Switching device
JP2006520517A (en) * 2003-02-26 2006-09-07 シーメンス アクチエンゲゼルシヤフト Magnetic linear drive
JP2005287185A (en) * 2004-03-30 2005-10-13 Hitachi Ltd Linear motor
JP2006087178A (en) * 2004-09-15 2006-03-30 Yaskawa Electric Corp Method and device for controlling linear motor
WO2010067837A1 (en) * 2008-12-10 2010-06-17 株式会社日立製作所 Thrust generation mechanism, drive device, xy stage, and xyz stage
WO2010103575A1 (en) * 2009-03-13 2010-09-16 株式会社日立製作所 Linear motor

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2016132465A1 (en) * 2015-02-18 2017-08-31 株式会社日立製作所 Linear motor
DE102015218443A1 (en) 2015-09-25 2017-03-30 Siemens Aktiengesellschaft Drive and method for driving a circuit breaker
JP2017147800A (en) * 2016-02-16 2017-08-24 株式会社日立製作所 Linear motor and shutoff device

Also Published As

Publication number Publication date
JP5883516B2 (en) 2016-03-15
JPWO2014118875A1 (en) 2017-01-26

Similar Documents

Publication Publication Date Title
JP5775966B2 (en) Gas circuit breaker
US9520699B2 (en) Switchgear
US9035729B2 (en) Gas circuit breaker provided with parallel capacitor
JP6053173B2 (en) Switchgear
JP6012713B2 (en) Circuit breaker and circuit breaker operating method
JP5883516B2 (en) Switchgear
RU2322724C2 (en) Electromagnetic operating mechanism
JP6373776B2 (en) Switchgear
JP2019186162A (en) Electromagnetic operation device for switch, and high speed input device, vacuum circuit breaker, and switchgear using the same
US20140144883A1 (en) Gas Circuit Breaker
US20140146433A1 (en) Three-Phase Circuit-Breaker
JP6272324B2 (en) Gas circuit breaker
JP6122127B2 (en) Opening and closing device and opening and closing method thereof
JP2017208316A (en) Electromagnetic operation device for circuit breaker
JP7353220B2 (en) Electromagnetic operated switchgear
JP6186432B2 (en) Operation method of puffer type gas circuit breaker
WO2015072003A1 (en) Gas circuit breaker
JP2016115504A (en) Gas circuit breaker
KR20200022073A (en) Electro magnetic force driving device
KR20200022072A (en) Electro magnetic force driving device
JP2016021293A (en) Gas circuit breaker

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13873812

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014559374

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13873812

Country of ref document: EP

Kind code of ref document: A1