WO2014118194A2 - Catalyst comprising mixed oxides of the elements aluminium, zinc and manganese and the use thereof in dehydrogenation - Google Patents

Catalyst comprising mixed oxides of the elements aluminium, zinc and manganese and the use thereof in dehydrogenation Download PDF

Info

Publication number
WO2014118194A2
WO2014118194A2 PCT/EP2014/051653 EP2014051653W WO2014118194A2 WO 2014118194 A2 WO2014118194 A2 WO 2014118194A2 EP 2014051653 W EP2014051653 W EP 2014051653W WO 2014118194 A2 WO2014118194 A2 WO 2014118194A2
Authority
WO
WIPO (PCT)
Prior art keywords
solid
dehydrogenation
zinc
manganese
catalyst
Prior art date
Application number
PCT/EP2014/051653
Other languages
French (fr)
Other versions
WO2014118194A3 (en
Inventor
Antoine Fecant
Isabelle CZEKAJEWSKI
Delphine Bazer-Bachi
Original Assignee
IFP Energies Nouvelles
Compagnie Generale Des Etablissements Michelin
Michelin Recherche Et Technique S.A.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IFP Energies Nouvelles, Compagnie Generale Des Etablissements Michelin, Michelin Recherche Et Technique S.A. filed Critical IFP Energies Nouvelles
Publication of WO2014118194A2 publication Critical patent/WO2014118194A2/en
Publication of WO2014118194A3 publication Critical patent/WO2014118194A3/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/005Spinels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/32Manganese, technetium or rhenium
    • B01J23/34Manganese
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/61Surface area
    • B01J35/61310-100 m2/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/61Surface area
    • B01J35/615100-500 m2/g
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G45/00Compounds of manganese
    • C01G45/006Compounds containing, besides manganese, two or more other elements, with the exception of oxygen or hydrogen
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G45/00Compounds of manganese
    • C01G45/12Manganates manganites or permanganates
    • C01G45/1221Manganates or manganites with a manganese oxidation state of Mn(III), Mn(IV) or mixtures thereof
    • C01G45/1235Manganates or manganites with a manganese oxidation state of Mn(III), Mn(IV) or mixtures thereof of the type [Mn2O4]2-, e.g. Li2Mn2O4, Li2[MxMn2-x]O4
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G9/00Compounds of zinc
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C5/00Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms
    • C07C5/32Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms by dehydrogenation with formation of free hydrogen
    • C07C5/327Formation of non-aromatic carbon-to-carbon double bonds only
    • C07C5/333Catalytic processes
    • C07C5/3332Catalytic processes with metal oxides or metal sulfides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/50Solid solutions
    • C01P2002/52Solid solutions containing elements as dopants
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/50Solid solutions
    • C01P2002/52Solid solutions containing elements as dopants
    • C01P2002/54Solid solutions containing elements as dopants one element only
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/12Surface area
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2521/00Catalysts comprising the elements, oxides or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium or hafnium
    • C07C2521/02Boron or aluminium; Oxides or hydroxides thereof
    • C07C2521/04Alumina
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2523/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00
    • C07C2523/06Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of zinc, cadmium or mercury
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2523/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00
    • C07C2523/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • C07C2523/32Manganese, technetium or rhenium
    • C07C2523/34Manganese

Definitions

  • the present invention relates to a novel crystallized solid comprising mixed oxides of aluminum, zinc and manganese elements and to its preparation process and its use as a hydrocarbon dehydrogenation reaction catalyst.
  • Mixed oxides are homogeneous solid phases containing one or more types of metal cations with different degrees of oxidation.
  • the nature of the cations and the composition of the mixed oxides cause variations in the physicochemical properties such as the crystallographic structure and the specific surface, thus inducing significant changes in the electrochemical behavior of these solids.
  • the dehydrogenation process makes it possible to convert the saturated or monounsaturated compounds of the petroleum fractions to the corresponding alkenes or polyunsaturated compounds while avoiding parasitic reactions such as cracking or skeletal isomerization.
  • group VIII according to the CAS classification corresponds to the metals of columns 8, 9 and 10 according to the new IUPAC classification.
  • the catalysts for dehydrogenation of hydrocarbon compounds are generally based on metal oxides of groups VIB and VIII of the periodic table of elements, in particular based on iron or chromium oxides.
  • the active phase of the catalysts is in the form of particles deposited on a support which may be a refractory oxide in the form of beads, extrudates, trilobes or in forms having other geometries.
  • the metal content, the size and the nature of the particles of the metal oxide active phase, as well as the textural and structural properties of the support are among the criteria that have an importance on the performance of the catalysts.
  • FIRE I LLE OF REM PLACEM ENT (RULE 26)
  • the present invention aims to provide a new solid useful as a catalyst having improved catalytic performance compared to the catalysts of the prior art.
  • a prior art patent, US 6,369,000 discloses a method of manufacturing a catalyst support based in particular on zinc aluminate, iron and / or manganese.
  • Another prior art patent, US 4,049,743, discloses a method of removing acetylenic contaminants in hydrocarbons using a zinc aluminate catalyst promoted with copper, manganese and a rare earth element.
  • No. 3,626,021 discloses a process for the dehydrogenation of aliphatic hydrocarbons of 5 to 10 carbon atoms, using a catalyst consisting essentially of chromium, an alkali metal oxide and zinc aluminate in its true spinel form.
  • US Patent 3,948,808 discloses a catalyst based on zinc aluminate, promoted with at most 20% by weight of an active metal for the initiation of oxidative reactions.
  • the catalysts disclosed have a low specific surface area (between 6 and 35 m 2 / g), which makes it possible to temper their acidity and to reduce the parasitic cracking reactions.
  • Patent applications FR 2,655,878 and WO 2013/091822 disclose catalytic compositions of Zn 1 type. y Mn y AI 2 0 4, that is to say in which the manganese is substituted for zinc.
  • EP 0,963,788 discloses a mixed oxide-based catalyst containing manganese, at least one element selected from As, Sb, S, Se, Te, F, Cl, Br, I, Nb, Ta, W, Re and Cu and not containing the aluminum element for the oxidative dehydrogenation of alkanes.
  • US patent application 201 1/0301392 proposes a platinum catalyst on an oxide support for the dehydrogenation of alkanes in particular.
  • US patent application 2010/0280300 discloses a process for preparing a manganese ferrite catalyst for the production of 1,3-butadiene.
  • the catalyst supports or the catalysts according to the prior art differ from the catalysts according to the present invention by the nature, structure and properties textural phases. It is known to those skilled in the art that a high specific surface is sought in the field of catalysis to obtain high performance. However, in the case of aluminates, or zinc aluminates, the increase in specific surface area goes hand in hand with an increase in acidity, which catalyzes the parasitic cracking reactions, to the detriment of the selectivity towards the dehydrogenation reaction. . In the catalyst according to the invention, manganese is substituted for aluminum.
  • the catalyst according to the invention has a high specific surface area, while having a moderate acidity compared to zinc aluminates or aluminates of the same specific surface area, or even of lower specific surface area.
  • the invention relates to a novel crystalline solid comprising mixed oxides of aluminum, zinc and manganese elements and its use as a hydrocarbon dehydrogenation reaction catalyst.
  • the solid has an X-ray diffraction pattern comprising at least the lines corresponding to the inter-reticular distances and relative intensities as follows:
  • the invention relates to a novel crystallized solid comprising mixed oxides of aluminum, zinc and manganese elements.
  • the solid has an X-ray diffraction pattern including at least the lines corresponding to the inter-reticular distances and relative intensities as follows:
  • the solid according to the invention has the formula ⁇ 2 ⁇ 2 ( ⁇ - ⁇ ) ⁇ 4 with x ranging from 0.01 to 0.30, preferably from 0.02 to 0.2.
  • the solid according to the invention also has a BET specific surface area of between 80 m 2 / g and 240 m 2 / g, preferably between 130 and 190 m 2 / g.
  • BET specific surface area means a specific surface area measured by the method Brunauer, Emmett, Teller, as defined in S. Brunauer, P. H. Emmett, E. Teller, J. Am. Chem. Soc., 1938, 60 (2), pp. 309-319.
  • the solid may also advantageously contain a Group IA element, preferably chosen from Li, Na and K, preferably K.
  • the solid according to the invention is advantageously in the form of beads, trilobates, extrudates, pellets or irregular and non-spherical agglomerates whose specific shape may result from a crushing step. Very advantageously, said solid is in the form of beads or extrudates. Even more advantageously, said catalyst is in the form of extrudates.
  • the solid is prepared by kneading one or more compounds of zinc and hydrated alumina in the presence of a peptising agent (mineral or organic acid).
  • a peptising agent mineral or organic acid
  • zinc oxides can be used in the manufacture of the solid according to the invention.
  • the zinc compounds used are chosen from commercial zinc oxides or prepared by any other synthetic route.
  • the alumina precursor used has the general formula Al 2 O 3 , nH 2 O.
  • alumina hydrates such as hydrargilite, gibbsite, bayerite, boehmite or pseudo-boehmite and amorphous or essentially amorphous alumina gels.
  • a mixture of these products under any combination may be used as well.
  • the dehydrated forms of these compounds which consist of transition alumina and which comprise at least one of the phases taken from the group: rho, khi, eta, gamma, kappa, theta and delta, which are different essentially by the organization of their crystalline structure.
  • the aluminate in the case where the aluminate is introduced directly during the shaping, it can be prepared by conventional methods known to those skilled in the art, such as co-precipitation of aluminum precursors and zinc , hydrothermal synthesis, the sol-gel route, the impregnation of zinc precursors on alumina or boehmite.
  • the solid according to the invention can be prepared by extrusion kneading in two ways (denoted A and B) and by impregnation of an aluminum support in a way C.
  • the method of preparing the carrier used in the present invention comprises at least the following steps (Route A):
  • A1 premixing the powders (zinc oxide and boehmite, or else zinc oxide, aluminate and boehmite, or else aluminate alone or aluminate and boehmite, or aluminate and ZnO) by rotating the arms of a mixer
  • A2 kneading the powders in the presence of at least one peptising agent (mineral or organic acid) and a liquid (water, preferably, but alcohols such as ethanol may be advantageously used) and optionally a soluble precursor of zinc,
  • at least one peptising agent mineral or organic acid
  • a liquid water, preferably, but alcohols such as ethanol may be advantageously used
  • A4) heat treatment comprising at least:
  • the zinc precursor optionally used (step A2) is a soluble salt in aqueous solution: it may advantageously be chosen from nitrates, carbonates, hydroxides and sulphates. A zinc acetate may also be used.
  • the mixture of Zn and Al precursors is produced by mixing, batchwise or continuously.
  • a kneader preferably equipped with Z-arms, or cams, or in any other type of mixer such as for example a planetary mixer may be used.
  • Another mode of preparation (route B) of the solid used in the present invention comprises the following steps:
  • step B2 adding at least one zinc oxide, or at least one zinc oxide and an aluminate or aluminate to the paste obtained in step B1) and mixing the mixture obtained,
  • step B4.1 a drying step of the extrudates obtained in step B3)
  • the solid used in the present invention may be in the form of powder, extrudates, beads or pellets.
  • the mixing step can be coupled with the shaping by extrusion in the same equipment.
  • the extrusion of the mixture also called “kneaded paste” can be carried out either by extruding directly end of continuous mixer type bi-screw for example, or by connecting one or more batch kneaders to an extruder.
  • the geometry of the die, which confers their shape to the extrudates can be chosen from the well-known sectors of the art. They can thus be, for example, cylindrical, multilobed, fluted or slotted.
  • the extrudates are dried at 40.degree.-50.degree. C., preferably at 70.degree. To 120.degree. C., and then calcined at 300.degree. To 1100.degree. C., preferably 350.degree.-800.degree.
  • the mass ratio Al 2 O 3 / ZnO is preferably between 80/20 and 30/70.
  • the peptizing agent is chosen from hydrochloric acid, sulfuric acid, nitric acid, acetic acid and formic acid.
  • the solids can be obtained by dry impregnation of a solution containing the element Zn on an aluminum support. In this case, we proceed in several steps:
  • the zinc precursor used in the preparation of the impregnating solution (step C1) is a soluble salt in aqueous solution: it may advantageously be chosen from nitrates, carbonates, hydroxides or sulphates. A zinc acetate may also be used. The concentration of zinc precursor is adjusted according to the target Zn / Al ratio for the preparation of the aluminate support.
  • step C2) the solution prepared during step C1) is brought into contact with the aluminic support.
  • the volume of solution corresponds to the porous volume of support.
  • the aluminum support may be in any form known to those skilled in the art, such as, for example, beads, extrudates, pellets, granules, powder.
  • a support consisting of gamma-alumina will preferably be used, but supports comprising alumina hydrates such as hydrargilite, gibbsite, bayerite, boehmite or pseudo-bohmite and alumina gels may advantageously be selected. amorphous or essentially amorphous.
  • the extrudates are dried at 40.degree.-50.degree. C., preferably at 70.degree. C. and then calcined at 300.degree. To 1100.degree. C., preferably 350.degree.-800.degree. It may optionally proceed to successive impregnations, for example, to achieve the highest ratio Zn / AI, by repeating the sequence described above.
  • stage 1 The solid resulting from stage 1 is dry-impregnated with an active phase precursor in solution.
  • a solution of manganese precursor is prepared. Any compound containing the manganese element may be used.
  • the precursor will be manganese nitrate, manganese carbonate, manganese acetate, manganese acetylacetonate, manganese bromide, manganese chloride, manganese fluoride, manganese formate, manganese manganese iodide, manganese sulfate.
  • the manganese precursor is manganese nitrate or manganese carbonate.
  • the concentration of the aqueous solution of the manganese precursor is adjusted according to the desired stoichiometry of the final crystallized solid.
  • the preparation of the aqueous metal precursor solution is preferably carried out at room temperature.
  • the aqueous solution obtained in step P1) is brought into contact with the solid obtained in step 1.
  • the volume of solution corresponds to the pore volume of the impregnated solid.
  • the dry impregnation is preferably carried out dropwise, that is to say that the solution is impregnated dropwise on the support.
  • the impregnation is preferably carried out at room temperature.
  • the impregnated solid is generally dried in order to eliminate all or part of the water introduced during the impregnation, preferably at a temperature of between 50 and 250 ° C., more preferably between 70 ° C. and 200 ° C. .
  • the drying is carried out in air, or in an inert atmosphere (nitrogen for example).
  • the solid is then calcined, generally under air, preferably at a hourly volume velocity (VVH) of between 100 and 5000 h -1 , the hourly space velocity being defined as the ratio of the flow rate of charge at 25 ⁇ ⁇ , 1 atm
  • VVH hourly volume velocity
  • the calcination temperature is generally between 250 ° C. and 900 ° C., preferably between about 350 ° C. and about 800 ° C.
  • the calcination time is generally between 0.5 hours and 5 hours.
  • the calcination step can be carried out by temperature step up to the defined maximum set temperature.
  • one or more members of Group IA of the periodic table of elements may be added, preferably by dry impregnation of an aqueous precursor solution.
  • the precursor is a soluble salt in aqueous solution which is selected from the group consisting of a halide, an oxide, a carbonate, a hydroxide, a nitrate and a sulfate.
  • the element is potassium
  • the precursor is preferably a potassium carbonate.
  • the drying steps P3) and P4) are then repeated.
  • the catalyst is prepared in several impregnations.
  • the sequences may be as follows:
  • Impregnation n ° 1 Drying - Calcination - Impregnation n ° 2 - Drying - Calcination - Impregnation n ° 3 - Drying - Calcination
  • the invention also relates to the use of the solid obtained from the catalyst preparation processes described in the present invention.
  • the measurement of the positions, relative intensities and widths of the diffracted lines was determined by complete modeling of the diffractograms using symmetrical pseudo-Voigt type analytical functions with a Gaussian-Lorentzian ratio set at 0.5. These functions are symmetrical for all lines.
  • the solids according to the invention have a diffractogram obtained by X-ray diffraction comprising lines corresponding to the inter-reticular distances and the relative intensities:
  • the solid according to the invention can be used as a catalyst in processes involving transformation of organic compounds.
  • the solid according to the invention can be used in processes for the dehydrogenation of aliphatic, naphthenic or olefinic compounds. This dehydrogenation process can be carried out in the presence of oxygen or not.
  • the operating conditions generally used for these reactions are as follows: a temperature of between 0 ° C. and 700 ° C., preferably of between 400 ° C. and 680 ° C., a pressure of between 0.1 and 5 bar absolute, preferably between 0 ° C. and 2 and 2 bar absolute, a hourly volume velocity (VVH) in hydrocarbon feedstock of between 1 and 1000 h -1 , preferably between 125 and 500 h -1 .
  • VVH hourly volume velocity
  • the ratio molar steam on charge is between 1 and 50, preferably between 8 and 20.
  • oxygen is present, the molar ratio oxygen on charge is between 0.1 and 5, preferably between 0.2 and 1 5.
  • the implementation of the solid according to the invention and the conditions of its use must be adapted by the user to the reaction and the technology used.
  • the solids according to the invention are used for the oxidative and non-oxidative dehydrogenation reactions of linear C 4 olefins, preferably non-oxidizing, ie in the absence of oxygen.
  • Hydrocarbon conversion processes such as steam cracking or catalytic cracking are operated at high temperatures and produce a wide variety of unsaturated molecules such as ethylene, propene, linear butenes, isobutene, pentenes and unsaturated compounds containing up to about 15 carbon atoms.
  • unsaturated molecules such as ethylene, propene, linear butenes, isobutene, pentenes and unsaturated compounds containing up to about 15 carbon atoms.
  • the unsaturated molecules must comply with very strict purity constraints.
  • the monounsaturated and polyunsaturated compounds used in the preparation of polymers have a high added value.
  • direct dehydrogenation methods for saturated or monounsaturated molecules are developed to access these products more specifically.
  • unsaturated compounds derived from the dehydration of ex-biomass products can be used.
  • the gasoline cut (7 to 10 carbons) may have the following average composition: of the order of 60% by weight of paraffins, of the order of 30% by weight of naphthenes and of the order of 10% weight in aromatics.
  • the reforming process makes it possible to dehydrogenate cyclohexane to benzene.
  • Ethylbenzene produced by alkylation of benzene, can also be catalytically dehydrogenated to give predominantly styrene. This route is the preferred route for obtaining styrene because the steamcracker gasoline sections contain only 3 to 5% by weight of styrene.
  • a crude C4 cut obtained from a refinery may have the following average composition: 35% by weight of isobutane, 20% by weight of n-butane, 14% by weight of isobutene, 30% by weight of n-butenes and about 1% by weight distributed between C3 and C5.
  • the dehydrogenation of butanes and / or butenes to butadiene is suitable for the production of butadiene.
  • the dehydrogenation process is advantageous for obtaining monounsaturated or polyunsaturated products that are not very present in steam cracker cuts.
  • the non-oxidizing dehydrogenation is carried out in the gas phase, in the presence of water vapor or not, preferably in the presence of water vapor.
  • a reaction in the presence of water vapor makes it possible to limit the endothermicity of the reaction and to increase the cycle time of the catalysts by limiting the formation of coke.
  • low pressures are preferred for thermodynamic reasons since they allow for higher conversions at equal temperatures.
  • the dilution with water vapor also makes it possible to lower the partial pressure of saturated or monounsaturated compounds to be dehydrogenated.
  • the pressure is generally between 0.2 and 0.4 bar absolute
  • the temperature between 600 and 620 q C
  • the hourly volume velocity (VVH) is between 270 and 330 h -1 , preferably between 290 and 310 h -1 .
  • VVH hourly volume velocity
  • the pressure is generally between 1, 5 and 2 bar absolute
  • the temperature between 600 and 700 ° C
  • the hourly volume velocity (VVH) is between 125 of 500 h "1
  • the steam / (saturated or monounsaturated compounds to be dehydrogenated) molar ratio between 8 and 20.
  • Example 1 Solid A (according to the invention)
  • the solid is extruded with a die 3 mm in diameter and subjected to heat treatment at 650 " ⁇ for 2 hours.
  • the specific surface area of the A1 solid is 165 m 2 .g -1 .
  • X-ray diffraction detects zinc oxide ZnO and a zinc aluminate phase.
  • an aqueous solution of manganese nitrate Mn (NO 3 ) 2 is prepared by dilution of 10.6 g of manganese nitrate tetrahydrate (Aldrich) in demineralized water.
  • the total volume of the aqueous solution prepared corresponds to the pore volume of the support.
  • the solid obtained is dried under air at 120 ° C. and then calcined for 2 hours at 650 ° C. under a flow of air with a flow rate of 1 Lh -1 (g of catalyst) "1 .
  • This solid is impregnated in the same way a second time to result in catalyst A.
  • the specific surface of the solid is 164 m 2 .g ".
  • an aqueous solution of manganese nitrate Mn (NO 3 ) 2 is prepared by diluting 11.8 g of manganese nitrate tetrahydrate (Aldrich) in demineralised water.
  • the total volume of the aqueous solution prepared corresponds to the pore volume of the support.
  • the solid obtained is dried under air at 120 ° C. and then calcined for 2 hours at 650 ° C. under a flow of air with a flow rate of 1 Lh -1 (g of catalyst) "1 .
  • the surface area of the solid B is 159 m 2
  • the DRX signature of solid B is as follows:
  • Solid C (not in accordance with the invention) is a chromium and potassium oxide-based solid supported on a gamma-alumina. This solid is known for its use as a catalyst for the non-oxidative dehydrogenation of butene.
  • an aqueous solution of chromium nitrate Cr (NO 3 ) 3 is prepared by dilution of 34.2 g of chromium nitrate nonahydrate (Aldrich) in demineralized water.
  • the total volume of the prepared aqueous solution corresponds to the pore volume of a commercial alumina support of 140 m 2 .g "1 and the total pore volume ml.g 1".
  • the alumina support is in the form of a ball having a diameter of between 2 and 4 mm.
  • This solid is then impregnated dry with an aqueous solution in which 1.69 g of K 2 CO 3 (Aldrich) were dissolved in 86 ml of demineralized water.
  • the solid C obtained contains 8% by weight of Cr metal (12% by weight in Cr 2 0 3 form ), and 1% K relative to the weight of the dry catalyst.
  • the BET specific surface area of the solid C is 124 m 2 ⁇ g -1 .
  • the solids are used as catalysts and are subjected to a dehydrogenation test of 1-butene in 1,3-butadiene in a 20 mm diameter fixed bed reactor.
  • the volume of the catalytic bed is 10 cc diluted at a ratio of 1/3 with silicon carbide with a particle size of 1.5 mm.
  • a preheating zone at the inlet of the reactor makes it possible to obtain a uniform temperature.
  • a stream of nitrogen and steam water is injected until the set point is reached.
  • the beginning of the test phase starts when the nitrogen flow is replaced by the flow of 1-butene (Air Liquide 99%).
  • the 1-butene VVH is set at 200 h -1 , a flow rate of 2 NL ⁇ h -1 controlled by a mass flow meter.
  • the volume ratio H 2 0/1 -Butene is set at 20.
  • the pressure is maintained at 1 barg and the temperature of the catalytic bed is 650 ° C.
  • the gas is analyzed by gas chromatography. The first analysis is performed 5 minutes after the start of the test, then every 20 minutes.
  • Solids A and B have a higher specific surface area than the non-compliant C solid. It could therefore be expected that they have a higher acidity, which would lead to improved conversion, but a lower selectivity, the cracking reactions being catalyzed by the acidity of the catalysts. However, the selectivity of the catalysts A and B is greater than that of the non-compliant catalyst C.
  • the presence of Mn and the specific properties of the catalyst according to the invention therefore make it possible in particular to moderate the acidity of the catalyst obtained for a given specific surface, making it possible to obtain higher performances than the catalysts of the state of the art for a given specific surface area.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Catalysts (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

A novel crystalline solid is described comprising mixed oxides of the elements aluminium, zinc and manganese, and having an X-ray diffraction diagram comprising at least the lines which correspond to the following lattice spacings and relative intensities see table (I). Said solid having the formula ZnMn2xAl2(1‑x)O4 with x being between 0.01 and 0.30 and a BET specific surface area of between 80 and 240 m2/g.

Description

CATALYSEUR COMPRENANT DES OXYDES MIXTES DES ÉLÉMENTS ALUMINIUM, ZINC ET MANGANÈSE ET SON UTILISATION EN DESHYDROGENATION  CATALYST COMPRISING MIXED OXIDES OF ALUMINUM, ZINC AND MANGANESE ELEMENTS AND ITS USE IN DEHYDROGENATION
La présente invention se rapporte à un nouveau solide cristallisé comprenant des oxydes mixtes des éléments aluminium, zinc et manganèse et à son procédé de préparation ainsi que sa mise en œuvre en tant que catalyseur de réaction de déshydrogénation d'hydrocarbures.  The present invention relates to a novel crystallized solid comprising mixed oxides of aluminum, zinc and manganese elements and to its preparation process and its use as a hydrocarbon dehydrogenation reaction catalyst.
Les oxydes mixtes sont des phases solides homogènes comportant un ou plusieurs types de cations métalliques à différents degrés d'oxydation. La nature des cations et la composition des oxydes mixtes entraînent des variations des propriétés physico-chimiques telles que la structure cristallographiques et la surface spécifique, induisant ainsi des modifications importantes du comportement électrochimique de ces solides. Mixed oxides are homogeneous solid phases containing one or more types of metal cations with different degrees of oxidation. The nature of the cations and the composition of the mixed oxides cause variations in the physicochemical properties such as the crystallographic structure and the specific surface, thus inducing significant changes in the electrochemical behavior of these solids.
Le procédé de déshydrogénation permet de transformer les composés saturés ou monoinsaturés des coupes pétrolières vers les alcènes ou composés polyinsaturés correspondants en évitant les réactions parasites telles que le craquage ou l'isomérisation squelettale. The dehydrogenation process makes it possible to convert the saturated or monounsaturated compounds of the petroleum fractions to the corresponding alkenes or polyunsaturated compounds while avoiding parasitic reactions such as cracking or skeletal isomerization.
L'emploi du solide en tant que catalyseur d'un procédé de déshydrogénation de composés hydrocarbonés saturés ou monoinsaturés présents dans les coupes d'hydrocarbures, permet d'atteindre des performances améliorées par rapport à l'emploi de catalyseurs de l'art antérieur. The use of the solid as a catalyst for a dehydrogenation process of saturated or monounsaturated hydrocarbon compounds present in the hydrocarbon cuts makes it possible to achieve improved performances compared with the use of catalysts of the prior art.
Dans la suite, les groupes d'éléments chimiques sont donnés selon la classification CAS (CRC Handbook of Chemistry and Physics, éditeur CRC press, rédacteur en chef D.R. Lide , 81ème édition, 2000-2001 ). Par exemple, le groupe VIII selon la classification CAS correspond aux métaux des colonnes 8, 9 et 10 selon la nouvelle classification IUPAC. In the following, groups of chemical elements are given according to the CAS classification (CRC Handbook of Chemistry and Physics, publisher CRC Press, editor in chief D.R. Lide, 81st edition, 2000-2001). For example, group VIII according to the CAS classification corresponds to the metals of columns 8, 9 and 10 according to the new IUPAC classification.
ART ANTERIEUR PRIOR ART
Les catalyseurs de déshydrogénation de composés hydrocarbonés sont généralement à base d'oxydes métalliques des groupes VIB et VIII de la classification périodique des éléments, notamment à base d'oxydes de fer ou de chrome. La phase active des catalyseurs se présente sous la forme de particules déposées sur un support qui peut être un oxyde réfractaire sous forme de billes, d'extrudés, de trilobés ou sous des formes présentant d'autres géométries. La teneur en métal, la taille et la nature des particules de la phase active d'oxyde métallique, ainsi que les propriétés texturales et structurales du support font partie des critères qui ont une importance sur la performance des catalyseurs. The catalysts for dehydrogenation of hydrocarbon compounds are generally based on metal oxides of groups VIB and VIII of the periodic table of elements, in particular based on iron or chromium oxides. The active phase of the catalysts is in the form of particles deposited on a support which may be a refractory oxide in the form of beads, extrudates, trilobes or in forms having other geometries. The metal content, the size and the nature of the particles of the metal oxide active phase, as well as the textural and structural properties of the support are among the criteria that have an importance on the performance of the catalysts.
FEU I LLE DE REM PLACEM ENT (RÈG LE 26) La présente invention vise à proposer un nouveau solide utile en tant que catalyseur présentant des performances catalytiques améliorées par rapport aux catalyseurs de l'art antérieur. Un brevet de l'art antérieur, US 6,369,000, présente un procédé de fabrication d'un support de catalyseur à base notamment d'aluminate de zinc, de fer et/ou de manganèse. Un autre brevet de l'art antérieur, US 4,049,743, présente un procédé d'élimination de contaminants acétyléniques dans des hydrocarbures en utilisant un catalyseur à base d'aluminate de zinc promu avec du cuivre, du manganèse et un élément compris dans les terres rares. Il est également connu du brevet US 4,310,717 de mettre en œuvre un catalyseur à base d'oxyde de manganèse sur alumine pour des réactions de déshydrogénation oxydante. FIRE I LLE OF REM PLACEM ENT (RULE 26) The present invention aims to provide a new solid useful as a catalyst having improved catalytic performance compared to the catalysts of the prior art. A prior art patent, US 6,369,000, discloses a method of manufacturing a catalyst support based in particular on zinc aluminate, iron and / or manganese. Another prior art patent, US 4,049,743, discloses a method of removing acetylenic contaminants in hydrocarbons using a zinc aluminate catalyst promoted with copper, manganese and a rare earth element. . It is also known from US Pat. No. 4,310,717 to use a catalyst based on manganese oxide on alumina for oxidative dehydrogenation reactions.
Le brevet US 3,626,021 présente un procédé de déshydrogénation d'hydrocarbures aliphatiques de 5 à 10 atomes de carbones mettant en œuvre un catalyseur composé essentiellement de chrome, d'un oxyde de métal alcalin et d'aluminate de zinc dans sa forme spinelle vraie. No. 3,626,021 discloses a process for the dehydrogenation of aliphatic hydrocarbons of 5 to 10 carbon atoms, using a catalyst consisting essentially of chromium, an alkali metal oxide and zinc aluminate in its true spinel form.
Le brevet US 3,948,808 divulgue un catalyseur à base d'aluminate de zinc, promu avec au plus 20% poids d'un métal actif pour l'initiation des réactions oxydantes. Les catalyseurs divulgués ont une faible surface spécifique (entre 6 et 35 m2/g), ce qui permet de tempérer leur acidité et de réduire les réactions parasites de craquage. US Patent 3,948,808 discloses a catalyst based on zinc aluminate, promoted with at most 20% by weight of an active metal for the initiation of oxidative reactions. The catalysts disclosed have a low specific surface area (between 6 and 35 m 2 / g), which makes it possible to temper their acidity and to reduce the parasitic cracking reactions.
Les demandes de brevet FR 2 655 878 et WO 2013/091822 divulguent des compositions catalytiques de type Zn1.yMnyAI204, c'est-à-dire dans lesquelles le manganèse se substitue au zinc. Patent applications FR 2,655,878 and WO 2013/091822 disclose catalytic compositions of Zn 1 type. y Mn y AI 2 0 4, that is to say in which the manganese is substituted for zinc.
Le brevet EP 0,963,788 révèle un catalyseur à base d'oxyde mixte contenant du manganèse, au moins un élément choisi parmi As, Sb, S, Se, Te, F, Cl, Br, I, Nb, Ta, W, Re et Cu et ne contenant pas l'élément aluminium pour la déshydrogénation oxydante d'alcanes. EP 0,963,788 discloses a mixed oxide-based catalyst containing manganese, at least one element selected from As, Sb, S, Se, Te, F, Cl, Br, I, Nb, Ta, W, Re and Cu and not containing the aluminum element for the oxidative dehydrogenation of alkanes.
La demande de brevet US 201 1/0301392 propose un catalyseur à base de platine sur support oxyde pour la déshydrogénation d'alcanes notamment. La demande de brevet US 2010/0280300 présente un procédé de préparation d'un catalyseur à base de ferrite de manganèse pour la production de 1 ,3-butadiène. US patent application 201 1/0301392 proposes a platinum catalyst on an oxide support for the dehydrogenation of alkanes in particular. US patent application 2010/0280300 discloses a process for preparing a manganese ferrite catalyst for the production of 1,3-butadiene.
Cependant, les supports de catalyseur ou les catalyseurs selon l'art antérieur diffèrent des catalyseurs selon la présente invention par la nature, la structure et les propriétés texturales des phases. Il est connu de l'homme du métier qu'une surface spécifique élevée est recherchée dans le domaine de la catalyse pour obtenir des performances élevées. Or, dans le cas des aluminates, ou des aluminates de zinc, l'augmentation de la surface spécifique va de pair avec une augmentation de l'acidité, laquelle catalyse les réactions parasites de craquage, au détriment de la sélectivité vers la réaction de déshydrogénation. Dans le catalyseur selon l'invention, le manganèse se substitue à l'aluminium. Le catalyseur selon l'invention présente une surface spécifique élevée, tout en ayant une acidité modérée par rapport aux aluminates ou aluminates de zinc de même surface spécifique, voire de surface spécifique inférieure. However, the catalyst supports or the catalysts according to the prior art differ from the catalysts according to the present invention by the nature, structure and properties textural phases. It is known to those skilled in the art that a high specific surface is sought in the field of catalysis to obtain high performance. However, in the case of aluminates, or zinc aluminates, the increase in specific surface area goes hand in hand with an increase in acidity, which catalyzes the parasitic cracking reactions, to the detriment of the selectivity towards the dehydrogenation reaction. . In the catalyst according to the invention, manganese is substituted for aluminum. The catalyst according to the invention has a high specific surface area, while having a moderate acidity compared to zinc aluminates or aluminates of the same specific surface area, or even of lower specific surface area.
RÉSUMÉ DE L'INVENTION SUMMARY OF THE INVENTION
L'invention concerne un nouveau solide cristallisé comprenant des oxydes mixtes des éléments aluminium, zinc et manganèse ainsi que sa mise en œuvre en tant que catalyseur de réaction de déshydrogénation d'hydrocarbures. Le solide présente un diagramme de diffraction des rayons X comprenant au moins les raies qui correspondent aux distances inter-réticulaires et aux intensités relatives suivantes :  The invention relates to a novel crystalline solid comprising mixed oxides of aluminum, zinc and manganese elements and its use as a hydrocarbon dehydrogenation reaction catalyst. The solid has an X-ray diffraction pattern comprising at least the lines corresponding to the inter-reticular distances and relative intensities as follows:
Figure imgf000005_0001
Figure imgf000005_0001
DESCRIPTION DÉTAILLÉE DE L'INVENTION DETAILED DESCRIPTION OF THE INVENTION
L'invention concerne un nouveau solide cristallisé comprenant des oxydes mixtes des éléments aluminium, zinc et manganèse. Le solide présente un diagramme de diffraction des rayons X comprenant au moins les raies qui correspondent aux distances inter réticulaires et aux intensités relatives suivantes :
Figure imgf000006_0001
The invention relates to a novel crystallized solid comprising mixed oxides of aluminum, zinc and manganese elements. The solid has an X-ray diffraction pattern including at least the lines corresponding to the inter-reticular distances and relative intensities as follows:
Figure imgf000006_0001
Le solide selon l'invention a pour formule ΖηΜη2χΑΙ2(ΐ-χ)θ4 avec x compris entre 0,01 et 0,30, de préférence entre 0,02 et 0,2. Le solide selon l'invention présente également une surface spécifique BET comprise entre 80 m2/g et 240 m2/g, de préférence comprise entre 130 et 190 m2/g. The solid according to the invention has the formula ΖηΜη 2 χΑΙ 2 (ΐ-χ) θ4 with x ranging from 0.01 to 0.30, preferably from 0.02 to 0.2. The solid according to the invention also has a BET specific surface area of between 80 m 2 / g and 240 m 2 / g, preferably between 130 and 190 m 2 / g.
Par surface spécifique BET, on entend une surface spécifique mesurée par la méthode Brunauer, Emmett, Teller, telle que définie dans S. Brunauer, P. H. Emmett, E. Teller, J. Am. Chem. Soc, 1938, 60 (2), pp 309-319. BET specific surface area means a specific surface area measured by the method Brunauer, Emmett, Teller, as defined in S. Brunauer, P. H. Emmett, E. Teller, J. Am. Chem. Soc., 1938, 60 (2), pp. 309-319.
Le solide peut également avantageusement contenir un élément du groupe IA, de préférence choisi parmi Li, Na et K, de manière préférée K. Le solide selon l'invention se présente avantageusement sous forme de billes, de trilobés, d'extrudés, de pastilles, ou d'agglomérats irréguliers et non sphériques dont la forme spécifique peut résulter d'une étape de concassage. De manière très avantageuse, ledit solide se présente sous forme de billes ou d'extrudés. De manière encore plus avantageuse, ledit catalyseur se présente sous forme d'extrudés. The solid may also advantageously contain a Group IA element, preferably chosen from Li, Na and K, preferably K. The solid according to the invention is advantageously in the form of beads, trilobates, extrudates, pellets or irregular and non-spherical agglomerates whose specific shape may result from a crushing step. Very advantageously, said solid is in the form of beads or extrudates. Even more advantageously, said catalyst is in the form of extrudates.
PRÉPARATION DES SOLIDES : ÉTAPE 1 SOLID PREPARATION: STEP 1
Préparation par malaxage extrusion  Preparation by extrusion kneading
Le solide est préparé par malaxage d'un ou plusieurs composés du zinc et d'alumine hydratée en présence d'un agent peptisant (acide minéral ou organique).  The solid is prepared by kneading one or more compounds of zinc and hydrated alumina in the presence of a peptising agent (mineral or organic acid).
Sources d'oxyde de zinc, d'alumine, d'aluminate, et de précurseurs du zinc De nombreuses méthodes de préparation d'oxyde de zinc sont décrites dans la littérature : procédé indirect, encore appelé procédé français, le procédé direct, également appelé procédé américain, ou encore, par déshydratation d'hydroxyde de zinc obtenu par précipitation, par décomposition des différents précurseurs du zinc, qu'ils soient commerciaux ou obtenus par une précipitation préliminaire. Sources of zinc oxide, alumina, aluminate, and zinc precursors Numerous methods for the preparation of zinc oxide are described in the literature: indirect process, also known as the French method, the direct process, also known as the American method, or else by dehydration of zinc hydroxide obtained by precipitation, by decomposition of different precursors of zinc, whether commercial or obtained by a preliminary precipitation.
Les oxydes de zinc commerciaux peuvent être mis en œuvre dans la fabrication du solide selon l'invention. Les composés du zinc utilisés sont choisis parmi les oxydes de zinc commerciaux ou préparés selon toute autre voie de synthèse. Commercial zinc oxides can be used in the manufacture of the solid according to the invention. The zinc compounds used are chosen from commercial zinc oxides or prepared by any other synthetic route.
Le précurseur d'alumine utilisé répond à la formule générale Al203, nH20. On peut en particulier utiliser des hydrates d'alumine tels que l'hydrargilite, la gibbsite, la bayerite, la boehmite ou la pseudo bœhmite et les gels d'alumine amorphe ou essentiellement amorphes. Un mélange de ces produits sous quelque combinaison que ce soit peut être également utilisé. On peut également mettre en œuvre les formes déshydratées de ces composés qui sont constitués d'alumine de transition et qui comportent au moins une des phases prises dans le groupe : rhô, khi, êta, gamma, kappa, thêta et delta, qui se différencient essentiellement par l'organisation de leur structure cristalline. Dans le cas où l'aluminate est introduit directement lors de la mise en forme, celui-ci peut être préparé par les méthodes classiques connues de l'homme du métier, comme par exemple la co-précipitation de précurseurs d'aluminium et de zinc, la synthèse hydrothermale, la voie sol-gel, l'imprégnation de précurseurs de zinc sur alumine ou boehmite. The alumina precursor used has the general formula Al 2 O 3 , nH 2 O. In particular, it is possible to use alumina hydrates such as hydrargilite, gibbsite, bayerite, boehmite or pseudo-boehmite and amorphous or essentially amorphous alumina gels. A mixture of these products under any combination may be used as well. It is also possible to use the dehydrated forms of these compounds which consist of transition alumina and which comprise at least one of the phases taken from the group: rho, khi, eta, gamma, kappa, theta and delta, which are different essentially by the organization of their crystalline structure. In the case where the aluminate is introduced directly during the shaping, it can be prepared by conventional methods known to those skilled in the art, such as co-precipitation of aluminum precursors and zinc , hydrothermal synthesis, the sol-gel route, the impregnation of zinc precursors on alumina or boehmite.
Le solide selon l'invention peut être préparé par malaxage extrusion selon deux voies (notées A et B) et par imprégnation d'un support aluminique selon une voie C. The solid according to the invention can be prepared by extrusion kneading in two ways (denoted A and B) and by impregnation of an aluminum support in a way C.
Le procédé de préparation du support utilisé dans la présente invention comprend au moins les étapes suivantes (voie A) : The method of preparing the carrier used in the present invention comprises at least the following steps (Route A):
A1 ) pré-mélange des poudres (oxyde de zinc et bœhmite, ou bien oxyde de zinc, aluminate et boehmite, ou encore aluminate seul ou aluminate et boehmite, ou aluminate et ZnO) par mise en rotation des bras d'un malaxeur  A1) premixing the powders (zinc oxide and boehmite, or else zinc oxide, aluminate and boehmite, or else aluminate alone or aluminate and boehmite, or aluminate and ZnO) by rotating the arms of a mixer
A2) malaxage des poudres en présence d'au moins un agent peptisant (acide minéral ou organique) et d'un liquide (eau, préférentiellement, mais des alcools comme l'éthanol peuvent être avantageusement utilisés) et optionnellement un précurseur soluble du zinc,  A2) kneading the powders in the presence of at least one peptising agent (mineral or organic acid) and a liquid (water, preferably, but alcohols such as ethanol may be advantageously used) and optionally a soluble precursor of zinc,
A3) extrusion de la pâte obtenue après malaxage (suivie optionnellement d'une étape de sphéronisation si on souhaite obtenir des billes) A4) traitement thermique comprenant au moins : A3) extrusion of the paste obtained after kneading (optionally followed by a spheronization step if it is desired to obtain balls) A4) heat treatment comprising at least:
A4.1 ) une étape de séchage des extrudés obtenus lors de l'étape A3) A4.2) une calcination sous air  A4.1) a step of drying the extrudates obtained in step A3) A4.2) calcination in air
A5) éventuellement un broyage en vue d'une mise en forme différente de l'extrudé obtenu à l'issue des précédentes étapes.  A5) optionally grinding for a different shaping of the extrudate obtained at the end of the previous steps.
Le précurseur de zinc, utilisé optionnellement (étape A2) est un sel soluble en solution aqueuse : il pourra être choisi avantageusement parmi les nitrates, carbonates, hydroxydes, et les sulfates. On pourra également avoir recours à un acétate de zinc. The zinc precursor optionally used (step A2) is a soluble salt in aqueous solution: it may advantageously be chosen from nitrates, carbonates, hydroxides and sulphates. A zinc acetate may also be used.
De préférence, le mélange des précurseurs de Zn et Al est réalisé par malaxage, en batch ou en continu. Dans le cas où cette étape est réalisée en batch, un malaxeur de préférence équipé de bras en Z, ou à cames, ou dans tout autre type de mélangeur tel que par exemple un mélangeur planétaire peut être utilisé. Preferably, the mixture of Zn and Al precursors is produced by mixing, batchwise or continuously. In the case where this step is performed in batch, a kneader preferably equipped with Z-arms, or cams, or in any other type of mixer such as for example a planetary mixer may be used.
Un autre mode de préparation (voie B) du solide utilisé dans la présente invention comprend les étapes suivantes : Another mode of preparation (route B) of the solid used in the present invention comprises the following steps:
B1 ) peptisation de la boehmite en présence d'au moins un agent peptisant de type acide minéral ou organique  B1) peptization of boehmite in the presence of at least one peptising agent of mineral or organic acid type
B2) ajout d'au moins un oxyde de zinc, ou d'au moins un oxyde de zinc et d'un aluminate ou d'un aluminate à la pâte obtenue à l'étape B1 ) et malaxage du mélange obtenu,  B2) adding at least one zinc oxide, or at least one zinc oxide and an aluminate or aluminate to the paste obtained in step B1) and mixing the mixture obtained,
B3) extrusion de la pâte obtenue après malaxage (suivie optionnellement d'une étape de sphéronisation si on souhaite obtenir des billes)  B3) extrusion of the paste obtained after kneading (optionally followed by a spheronization step if it is desired to obtain beads)
B4) traitement thermique comprenant au moins :  B4) heat treatment comprising at least:
B4.1 ) une étape de séchage des extrudés obtenus à l'étape B3)  B4.1) a drying step of the extrudates obtained in step B3)
B4.2) une calcination sous air  B4.2) calcination under air
B5) éventuellement un broyage en vue d'une mise en forme différente de l'extrudé obtenu à l'issue des précédentes étapes.  B5) optionally grinding for a different shaping of the extrudate obtained at the end of the previous steps.
Le solide utilisé dans la présente invention peut être sous forme de poudre, d'extrudés, de billes ou de pastilles. The solid used in the present invention may be in the form of powder, extrudates, beads or pellets.
Dans le cas où ledit procédé de préparation est mis en œuvre en continu, l'étape de mélange peut être couplée avec la mise en forme par l'extrusion dans un même équipement. Selon cette mise en œuvre, l'extrusion du mélange nommé aussi "pâte malaxée" peut être réalisée soit en extrudant directement en bout de malaxeur continu de type bi-vis par exemple, soit en reliant un ou plusieurs malaxeurs batch à une extrudeuse. La géométrie de la filière, qui confère leur forme aux extrudés, peut être choisie parmi les filières bien connues de l'Homme du métier. Elles peuvent ainsi être par exemple, de forme cylindrique, multilobée, cannelée ou à fentes. Les extrudés sont séchés entre 40 et ~\ 50 °C, de préférence entre 70 et 120°C, puis calcinés entre 300 et 1 100 "C, de préférence entre 350 et 800 °C. In the case where said method of preparation is implemented continuously, the mixing step can be coupled with the shaping by extrusion in the same equipment. According to this implementation, the extrusion of the mixture also called "kneaded paste" can be carried out either by extruding directly end of continuous mixer type bi-screw for example, or by connecting one or more batch kneaders to an extruder. The geometry of the die, which confers their shape to the extrudates, can be chosen from the well-known sectors of the art. They can thus be, for example, cylindrical, multilobed, fluted or slotted. The extrudates are dried at 40.degree.-50.degree. C., preferably at 70.degree. To 120.degree. C., and then calcined at 300.degree. To 1100.degree. C., preferably 350.degree.-800.degree.
Le rapport massique AI203/ZnO est de préférence compris entre 80/20 et 30/70. De manière préférée, l'agent peptisant est choisi parmi l'acide chlorhydrique, l'acide sulfurique, l'acide nitrique, l'acide acétique et l'acide formique. The mass ratio Al 2 O 3 / ZnO is preferably between 80/20 and 30/70. Preferably, the peptizing agent is chosen from hydrochloric acid, sulfuric acid, nitric acid, acetic acid and formic acid.
Imprégnation d'un précurseur de Zn sur support aluminique Impregnation of a Zn precursor on aluminum support
Selon un autre mode de préparation (voie C), les solides peuvent être obtenus par imprégnation à sec d'une solution contenant l'élément Zn sur un support aluminique. On procède, dans ce cas, en plusieurs étapes :  According to another method of preparation (channel C), the solids can be obtained by dry impregnation of a solution containing the element Zn on an aluminum support. In this case, we proceed in several steps:
C1 ) préparation d'une solution du précurseur de Zn  C1) preparation of a solution of the Zn precursor
C2) imprégnation de la solution sur le support aluminique  C2) Impregnation of the solution on the aluminum support
C3) séchage du support  C3) drying of the support
C4) calcination  C4) calcination
De préférence, le précurseur de zinc, utilisé dans la préparation de la solution d'imprégnation (étape C1 ) est un sel soluble en solution aqueuse : il pourra être choisi avantageusement parmi les nitrates, carbonates, hydroxydes, ou sulfates. On pourra également avoir recours à un acétate de zinc. La concentration en précurseur de zinc est ajustée en fonction du ratio Zn/AI visé pour la préparation du support aluminate. Preferably, the zinc precursor used in the preparation of the impregnating solution (step C1) is a soluble salt in aqueous solution: it may advantageously be chosen from nitrates, carbonates, hydroxides or sulphates. A zinc acetate may also be used. The concentration of zinc precursor is adjusted according to the target Zn / Al ratio for the preparation of the aluminate support.
Lors de l'étape C2) la solution préparée lors de l'étape C1 ) est mise en contact avec le support aluminique. Le volume de solution correspond au volume poreux de support. During step C2) the solution prepared during step C1) is brought into contact with the aluminic support. The volume of solution corresponds to the porous volume of support.
Le support aluminique peut se présenter sous toute forme connue de l'homme du métier, comme, par exemple, billes, extrudés, pastilles, granules, poudre. The aluminum support may be in any form known to those skilled in the art, such as, for example, beads, extrudates, pellets, granules, powder.
On utilisera de façon préférée un support constitué d'alumine gamma, mais on pourra avantageusement sélectionner des supports comprenant des hydrates d'alumine tels que l'hydrargilite, la gibbsite, la bayerite, la boehmite ou la pseudo bœhmite et les gels d'alumine amorphe ou essentiellement amorphes. A support consisting of gamma-alumina will preferably be used, but supports comprising alumina hydrates such as hydrargilite, gibbsite, bayerite, boehmite or pseudo-bohmite and alumina gels may advantageously be selected. amorphous or essentially amorphous.
Les extrudés sont séchés entre 40 et ~\ 5Q°C, de préférence entre 70 et ~\ 2Q °C, puis calcinés entre 300 et 1 100 °C, de préférence entre 350 et 800 °C. On pourra éventuellement procéder à des imprégnations successives par exemple, pour atteindre les ratio Zn/AI les plus élevés, en répétant la séquence décrite précédemment. PRÉPARATION DES SOLIDES : ÉTAPE 2 The extrudates are dried at 40.degree.-50.degree. C., preferably at 70.degree. C. and then calcined at 300.degree. To 1100.degree. C., preferably 350.degree.-800.degree. It may optionally proceed to successive impregnations, for example, to achieve the highest ratio Zn / AI, by repeating the sequence described above. SOLID PREPARATION: STEP 2
Le solide issu de l'étape 1 est imprégné à sec par un précurseur de phase active en solution.  The solid resulting from stage 1 is dry-impregnated with an active phase precursor in solution.
P1) Préparation d'une solution comprenant le précurseur P1) Preparation of a solution comprising the precursor
On prépare une solution de précurseur de manganèse. Tout composé contenant l'élément manganèse pourra être employé. De manière préféré le précurseur sera le nitrate de manganèse, le carbonate de manganèse, l'acétate de manganèse, l'acétylacétonate de manganèse, le bromure de manganèse, le chlorure de manganèse, le fluorure de manganèse, le formate de manganèse, l'iodure de manganèse, le sulfate de manganèse. De manière préféré, le précurseur de manganèse est le nitrate de manganèse ou le carbonate de manganèse.  A solution of manganese precursor is prepared. Any compound containing the manganese element may be used. Preferably the precursor will be manganese nitrate, manganese carbonate, manganese acetate, manganese acetylacetonate, manganese bromide, manganese chloride, manganese fluoride, manganese formate, manganese manganese iodide, manganese sulfate. Preferably, the manganese precursor is manganese nitrate or manganese carbonate.
La concentration de la solution aqueuse du précurseur de manganèse est ajustée selon la stœchiométrie désirée du solide cristallisé final. La préparation de la solution aqueuse de précurseur métallique s'effectue de préférence à température ambiante.  The concentration of the aqueous solution of the manganese precursor is adjusted according to the desired stoichiometry of the final crystallized solid. The preparation of the aqueous metal precursor solution is preferably carried out at room temperature.
P2) Imprégnation de la solution P2) Impregnation of the solution
On met en contact la solution aqueuse obtenue à l'étape P1 ) avec le solide obtenu à l'étape 1. Le volume de solution correspond au volume poreux du solide imprégné. L'imprégnation à sec est de préférence réalisée goutte à goutte, c'est-à-dire que la solution est imprégnée goutte à goutte sur le support. L'imprégnation se fait de manière préférée à température ambiante.  The aqueous solution obtained in step P1) is brought into contact with the solid obtained in step 1. The volume of solution corresponds to the pore volume of the impregnated solid. The dry impregnation is preferably carried out dropwise, that is to say that the solution is impregnated dropwise on the support. The impregnation is preferably carried out at room temperature.
P3) Séchage du solide P3) Drying of the solid
Le solide imprégné est généralement séché afin d'éliminer toute ou une partie de l'eau introduite lors de l'imprégnation, de préférence à une température comprise entre 50 et 250 °C, de manière plus préférée entre 70 °C et 200 °C. Le séchage est effectué sous air, ou sous atmosphère inerte (azote par exemple). P4) Calcination du solide  The impregnated solid is generally dried in order to eliminate all or part of the water introduced during the impregnation, preferably at a temperature of between 50 and 250 ° C., more preferably between 70 ° C. and 200 ° C. . The drying is carried out in air, or in an inert atmosphere (nitrogen for example). P4) Calcination of the solid
Le solide est ensuite calciné, généralement sous air, de préférence à une vitesse volumique horaire (VVH) comprise entre 100 et 5000 h"1, la vitesse volumique horaire étant définie comme le rapport du débit volumique de charge à 25 <Ό, 1 atm sur le volume de catalyseur. La température de calcination est généralement comprise entre 250 °C et 900 °C, de préférence comprise entre environ 350 °C et environ 800 °C. La durée de calcination est généralement comprise entre 0,5 heures et 5 heures. L'étape de calcination peut-être opérée par palier de température, jusqu'à la température de consigne maximale définie. The solid is then calcined, generally under air, preferably at a hourly volume velocity (VVH) of between 100 and 5000 h -1 , the hourly space velocity being defined as the ratio of the flow rate of charge at 25 < Ό, 1 atm The calcination temperature is generally between 250 ° C. and 900 ° C., preferably between about 350 ° C. and about 800 ° C. The calcination time is generally between 0.5 hours and 5 hours. The calcination step can be carried out by temperature step up to the defined maximum set temperature.
P5) Dépôt éventuel d'un élément du groupe IA P5) Possible deposit of a group IA element
Éventuellement, un ou plusieurs éléments du groupe IA du tableau périodique des éléments, de préférence choisi parmi Li, Na et K, et de manière préférée K, peuvent être ajoutés, de préférence par imprégnation à sec d'une solution aqueuse de précurseur. De préférence, le précurseur est un sel soluble en solution aqueuse qui est choisi dans le groupe constitué par un halogénure, un oxyde, un carbonate, un hydroxyde, un nitrate et un sulfate. Lorsque l'élément est le potassium, le précurseur est de manière préférée un carbonate de potassium.  Optionally, one or more members of Group IA of the periodic table of elements, preferably selected from Li, Na and K, and preferably K, may be added, preferably by dry impregnation of an aqueous precursor solution. Preferably, the precursor is a soluble salt in aqueous solution which is selected from the group consisting of a halide, an oxide, a carbonate, a hydroxide, a nitrate and a sulfate. When the element is potassium, the precursor is preferably a potassium carbonate.
Les étapes P3) de séchage et P4) de calcination sont alors répétées. Selon une variante de préparation du solide, le catalyseur est préparé en plusieurs imprégnations. Pour les solides préparés en trois imprégnations, les enchaînements peuvent être les suivants : The drying steps P3) and P4) are then repeated. According to a variant of preparation of the solid, the catalyst is prepared in several impregnations. For solids prepared in three impregnations, the sequences may be as follows:
- Imprégnation n °1 - Séchage - Calcination - Imprégnation n °2 - Séchage - Calcination - Imprégnation n °3 - Séchage - Calcination  - Impregnation n ° 1 - Drying - Calcination - Impregnation n ° 2 - Drying - Calcination - Impregnation n ° 3 - Drying - Calcination
L'invention concerne aussi l'utilisation du solide obtenu à partir des procédés de préparation de catalyseur décrits dans la présente invention. The invention also relates to the use of the solid obtained from the catalyst preparation processes described in the present invention.
CARACTÉRISATION DU SUPPORT CHARACTERIZATION OF THE SUPPORT
Les diagrammes des différents solides cités dans ce document ont été enregistrés sur un diffractomètre (X'PERT'Pro de PANalytical) en géométrie Bragg-Brentano, équipé d'un tube de cuivre (1 ,54 Â), d'un compteur proportionnel et de fentes à ouverture variable en fonction de 2Θ. La surface d'échantillon irradiée était de 10x10mm, le pas d'échantillonnage de 0,05°2Θ, le temps par pas de 5 à 15s.  The diagrams of the various solids cited in this document were recorded on a diffractometer (X'PERT'Pro PANalytical) in Bragg-Brentano geometry, equipped with a copper tube (1, 54A), a proportional counter and slots with variable opening according to 2Θ. The irradiated sample area was 10x10mm, the sampling rate 0.05 ° 2Θ, the time in increments of 5-15s.
Après enregistrement, les intensités ont été corrigées et transformées en intensités à volume irradié constant.  After recording, the intensities were corrected and converted to constant irradiated volume intensities.
La mesure des positions, intensités relatives et largeurs des raies diffractées ont été déterminées par modélisation complète des diffractogrammes à l'aide de fonctions analytiques de type pseudo-Voigt symétriques, de rapport Gaussienne-Lorentzienne fixé à 0,5. Ces fonctions sont symétriques pour toutes les raies.  The measurement of the positions, relative intensities and widths of the diffracted lines was determined by complete modeling of the diffractograms using symmetrical pseudo-Voigt type analytical functions with a Gaussian-Lorentzian ratio set at 0.5. These functions are symmetrical for all lines.
Les positions et les intensités ont été affinées pour ajuster les profils calculés aux raies expérimentales.  Positions and intensities were refined to adjust the calculated profiles to the experimental lines.
Les paramètres affinés des raies calculées qualifient les raies expérimentales :  The refined parameters of the calculated lines qualify the experimental lines:
o positions (distances interréticulaires)  o positions (interticular distances)
o intensité Un fond de diffusion linéaire a été ajusté en même temps que les profils de raies. Les intensités relatives reportées ici sont exprimées en pourcentage de la hauteur de la raie la plus intense, au dessus du fond de diffusion. o intensity A linear diffusion background was adjusted at the same time as the line profiles. The relative intensities reported here are expressed as a percentage of the height of the most intense line, above the scattering background.
Pour les solides selon l'invention, ils présentent un diffractogramme obtenu par diffraction des rayons X comprenant des raies qui correspondent aux distances interréticulaires et aux intensités relatives : For the solids according to the invention, they have a diffractogram obtained by X-ray diffraction comprising lines corresponding to the inter-reticular distances and the relative intensities:
Figure imgf000012_0001
Figure imgf000012_0001
Seules les raies dont l'intensité relative est supérieure ou égale à 1% sont considérées. Only lines with a relative intensity greater than or equal to 1% are considered.
Dans tout le texte, les distances interréticulaires sont données avec une précision relative de 0,5% notée +/- 5.10"3d. Throughout the text, inter-reticular distances are given with a relative accuracy of 0.5% noted +/- 5.10 "3 d.
UTILISATION DU SOLIDE SELON L'INVENTION USE OF THE SOLID ACCORDING TO THE INVENTION
Le solide selon l'invention peut être utilisé en tant que catalyseur dans les procédés faisant intervenir une transformation de composés organiques. Ainsi, le solide selon l'invention peut être utilisé dans les procédés de déshydrogénation de composés aliphatiques, naphténiques ou oléfiniques. Ce procédé de déshydrogénation peut être réalisé en présence d'oxygène ou non.  The solid according to the invention can be used as a catalyst in processes involving transformation of organic compounds. Thus, the solid according to the invention can be used in processes for the dehydrogenation of aliphatic, naphthenic or olefinic compounds. This dehydrogenation process can be carried out in the presence of oxygen or not.
Les conditions opératoires généralement utilisées pour ces réactions sont les suivantes : une température comprise entre 0°C et 700°C, de préférence entre 400 et 680 °C, une pression comprise entre 0,1 et 5 bar absolu, de préférence entre 0,2 et 2 bar absolu, une vitesse volumique horaire (V.V.H.) en charge hydrocarbure comprise entre 1 et 1000 h"1 , de préférence entre 125 et 500 h"1. Lorsque de la vapeur d'eau est présente, le rapport molaire vapeur d'eau sur charge est compris entre 1 et 50, de préférence entre 8 et 20. Lorsque de l'oxygène est présent, le rapport molaire oxygène sur charge est compris entre 0,1 et 5, de préférence entre 0.2 et 1 ,5. La mise en œuvre du solide selon l'invention et les conditions de son utilisation doivent être adaptées par l'utilisateur à la réaction et à la technologie utilisée. The operating conditions generally used for these reactions are as follows: a temperature of between 0 ° C. and 700 ° C., preferably of between 400 ° C. and 680 ° C., a pressure of between 0.1 and 5 bar absolute, preferably between 0 ° C. and 2 and 2 bar absolute, a hourly volume velocity (VVH) in hydrocarbon feedstock of between 1 and 1000 h -1 , preferably between 125 and 500 h -1 . When water vapor is present, the ratio molar steam on charge is between 1 and 50, preferably between 8 and 20. When oxygen is present, the molar ratio oxygen on charge is between 0.1 and 5, preferably between 0.2 and 1 5. The implementation of the solid according to the invention and the conditions of its use must be adapted by the user to the reaction and the technology used.
Selon une application préférée, les solides selon l'invention sont mis en œuvre pour les réactions de déshydrogénation oxydante et non oxydante d'oléfines linéaire en C4, de préférence non oxydante, c'est à dire en l'absence d'oxygène. According to a preferred application, the solids according to the invention are used for the oxidative and non-oxidative dehydrogenation reactions of linear C 4 olefins, preferably non-oxidizing, ie in the absence of oxygen.
Les procédés de conversion des hydrocarbures tels que le vapocraquage ou le craquage catalytique sont opérés à haute température et produisent une grande variété de molécules insaturées telles que l'éthylène, le propène, les butènes linéaires, l'isobutène, les pentènes ainsi que des molécules insaturées contenant jusqu'à environ 15 atomes de carbone. Pour permettre l'utilisation de ces différentes coupes dans les procédés de pétrochimie tels que les unités de polymérisation, les molécules insaturées doivent respecter des contraintes de pureté très strictes. Ainsi, les composés monoinsaturés et polyinsaturés entrant dans la préparation de polymères sont à forte valeur ajoutée. De ce fait, des méthodes de déshydrogénation directe des molécules saturées ou monoinsaturées sont développées pour accéder plus spécifiquement à ces produits. Sur le même principe, des composés insaturés issus de la déshydratation de produits ex-biomasse peuvent être utilisés. Hydrocarbon conversion processes such as steam cracking or catalytic cracking are operated at high temperatures and produce a wide variety of unsaturated molecules such as ethylene, propene, linear butenes, isobutene, pentenes and unsaturated compounds containing up to about 15 carbon atoms. To allow the use of these different sections in petrochemical processes such as polymerization units, the unsaturated molecules must comply with very strict purity constraints. Thus, the monounsaturated and polyunsaturated compounds used in the preparation of polymers have a high added value. As a result, direct dehydrogenation methods for saturated or monounsaturated molecules are developed to access these products more specifically. On the same principle, unsaturated compounds derived from the dehydration of ex-biomass products can be used.
Ainsi, par exemple, la coupe essence (7 à 10 carbones) peut avoir la composition moyenne suivante : de l'ordre de 60% poids en paraffines, de l'ordre de 30% poids en naphtènes et de l'ordre de 10% poids en aromatiques. Le procédé de reformage permet de déshydrogéner le cyclohexane en benzène. Thus, for example, the gasoline cut (7 to 10 carbons) may have the following average composition: of the order of 60% by weight of paraffins, of the order of 30% by weight of naphthenes and of the order of 10% weight in aromatics. The reforming process makes it possible to dehydrogenate cyclohexane to benzene.
L'éthylbenzène, produit par alkylation du benzène, peut être lui aussi déshydrogéné de façon catalytique pour donner majoritairement du styrène. Cette voie est la voie préférentielle d'obtention du styrène car les coupes essences du vapocraqueur contiennent uniquement 3 à 5 % poids de styrène. Ethylbenzene, produced by alkylation of benzene, can also be catalytically dehydrogenated to give predominantly styrene. This route is the preferred route for obtaining styrene because the steamcracker gasoline sections contain only 3 to 5% by weight of styrene.
Les vapocraqueurs utilisant comme charge l'éthane produisent uniquement 1 à 2 % poids de butadiène relativement à la capacité de production en éthylène. Or une coupe C4 brute issue d'une raffinerie peut avoir la composition moyenne suivante : 35 % poids en isobutane, 20 % poids en n-butane, 14 % poids en isobutène, 30 % poids en n-butènes et environ 1 % poids répartis entre des C3 et des C5. Là encore la déshydrogénation des butanes et/ou des butènes en butadiène est appropriée pour la production de butadiène. Steam crackers using ethane feed produce only 1 to 2% by weight of butadiene relative to the ethylene production capacity. However, a crude C4 cut obtained from a refinery may have the following average composition: 35% by weight of isobutane, 20% by weight of n-butane, 14% by weight of isobutene, 30% by weight of n-butenes and about 1% by weight distributed between C3 and C5. Here again the dehydrogenation of butanes and / or butenes to butadiene is suitable for the production of butadiene.
Ainsi, le procédé de déshydrogénation est intéressant pour obtenir des produits monoinsaturés ou polyinsaturés peu présents dans les coupes du vapocraqueurs. Thus, the dehydrogenation process is advantageous for obtaining monounsaturated or polyunsaturated products that are not very present in steam cracker cuts.
La déshydrogénation non-oxydante est réalisée en phase gaz, en présence de vapeur d'eau ou non, de préférence en présence de vapeur d'eau. En effet, une réaction en présence de vapeur d'eau permet de limiter l'endothermicité de la réaction et d'augmenter la durée de cycle des catalyseurs en limitant la formation de coke. De plus, des pressions faibles sont préférées pour des raisons thermodynamiques puisqu'elles permettent des conversions plus fortes à températures égales. Dans ce cas, la dilution à la vapeur d'eau permet aussi d'abaisser la pression partielle en composés saturés ou monoinsaturés à déshydrogéner. The non-oxidizing dehydrogenation is carried out in the gas phase, in the presence of water vapor or not, preferably in the presence of water vapor. Indeed, a reaction in the presence of water vapor makes it possible to limit the endothermicity of the reaction and to increase the cycle time of the catalysts by limiting the formation of coke. In addition, low pressures are preferred for thermodynamic reasons since they allow for higher conversions at equal temperatures. In this case, the dilution with water vapor also makes it possible to lower the partial pressure of saturated or monounsaturated compounds to be dehydrogenated.
Pour une réaction de déshydrogénation sans dilution par de la vapeur d'eau, la pression est généralement comprise entre 0,2 et 0,4 bar absolu, la température entre 600 et 620 qC et la vitesse volumique horaire (V.V.H) est comprise entre 270 et 330 h"1 , préférentiellement entre 290 et 310 h"1. For a dehydrogenation reaction without dilution by steam, the pressure is generally between 0.2 and 0.4 bar absolute, the temperature between 600 and 620 q C and the hourly volume velocity (VVH) is between 270 and 330 h -1 , preferably between 290 and 310 h -1 .
La vitesse volumique horaire (VVH) est le débit de charge en m3/h mesuré à 25°C et à pression atmosphérique divisé par le volume de catalyseur. The hourly volume velocity (VVH) is the feed rate in m 3 / h measured at 25 ° C and at atmospheric pressure divided by the volume of catalyst.
Pour une réaction de déshydrogénation avec une dilution à la vapeur, la pression est généralement comprise entre 1 ,5 et 2 bar absolu, la température entre 600 et 700°C, la vitesse volumique horaire (V.V.H) est entre 125 de 500 h"1 et le ratio molaire vapeur/(composés saturés ou monoinsaturés à déshydrogéner) entre 8 et 20. For a dehydrogenation reaction with a dilution with steam, the pressure is generally between 1, 5 and 2 bar absolute, the temperature between 600 and 700 ° C, the hourly volume velocity (VVH) is between 125 of 500 h "1 and the steam / (saturated or monounsaturated compounds to be dehydrogenated) molar ratio between 8 and 20.
EXEMPLES Les exemples suivants illustrent l'invention sans en limiter la portée. EXAMPLES The following examples illustrate the invention without limiting its scope.
Exemple 1 : Solide A (selon l'invention) Example 1: Solid A (according to the invention)
Le solide A1 est préparé par malaxage d'une boehmite et d'oxyde de zinc en présence de 4% d'acide nitrique en solution dans de l'eau, de façon à obtenir une composition du matériau dont l'analyse élémentaire est 24% poids Zn et 34% poids Al, soit un ratio molaire Zn/AI=0.29 et un rapport massique AI203/ZnO de 68/32 calculé d'après le rapport molaire Zn/AI. Le solide est extrudé avec une filière de 3 mm de diamètre et soumis à un traitement thermique à 650 "Ό pendant 2h. The A1 solid is prepared by mixing a boehmite and zinc oxide in the presence of 4% nitric acid in solution in water, so as to obtain a composition of the material whose elemental analysis is 24%. weight Zn and 34% weight Al, ie a molar ratio Zn / Al = 0.29 and an Al 2 O 3 / ZnO mass ratio of 68/32 calculated from the molar ratio Zn / Al. The solid is extruded with a die 3 mm in diameter and subjected to heat treatment at 650 "Ό for 2 hours.
La surface spécifique du solide A1 est de 165 m2.g"1. The specific surface area of the A1 solid is 165 m 2 .g -1 .
Par diffraction des rayons X, on détecte de l'oxyde de zinc ZnO et une phase aluminate de zinc. X-ray diffraction detects zinc oxide ZnO and a zinc aluminate phase.
Afin de préparer 50g de solide A, une solution aqueuse de nitrate de manganèse Mn(N03)2 est préparée par dilution de 10,6 g de nitrate de manganèse tetrahydraté (AIdrich) dans de l'eau déminéralisée. Le volume total de la solution aqueuse préparé correspond au volume poreux du support. In order to prepare 50 g of solid A, an aqueous solution of manganese nitrate Mn (NO 3 ) 2 is prepared by dilution of 10.6 g of manganese nitrate tetrahydrate (Aldrich) in demineralized water. The total volume of the aqueous solution prepared corresponds to the pore volume of the support.
Cette solution est ensuite imprégnée sur 44,2g du solide A1 sec et de volume poreux 0,6 ml/g. This solution is then impregnated on 44.2 g of solid A1 dry and pore volume 0.6 ml / g.
Le solide obtenu est séché sous air à 120°C, puis est calciné pendant 2 heures à 650 °C sous un flux d'air avec un débit de 1 L.h"1.(g de catalyseur)"1. The solid obtained is dried under air at 120 ° C. and then calcined for 2 hours at 650 ° C. under a flow of air with a flow rate of 1 Lh -1 (g of catalyst) "1 .
Ce solide est imprégné de la même manière une deuxième fois pour aboutir au catalyseur A. This solid is impregnated in the same way a second time to result in catalyst A.
Le solide A obtenu contient 24,9% poids de Al et 7,1 % poids de Mn par rapport à la masse du catalyseur sec, soit la composition molaire suivante ZnMn2xAl2(i-x)04 avec x=0,12 et un rapport molaire Mn/AI, égal à 0,14 calculé à partir des teneurs massique. The solid A obtained contains 24.9% by weight of Al and 7.1% by weight of Mn relative to the dry catalyst mass, ie the following molar composition ZnMn 2x Al 2 ( ix) 0 4 with x = 0.12 and a molar ratio Mn / Al, equal to 0.14 calculated from the mass contents.
La surface spécifique du solide A est de 164 m2.g" . The specific surface of the solid is 164 m 2 .g ".
La signature DRX du solide A est la suivante :  The DRX signature of solid A is:
Distances distances
interréticulaires Intensités relatives l/lo  Interticular Intensities relative l / lo
d (10 0 m) (en %) d (10 0 m) (in%)
+/- 5.10"3d +/- 5.10 "3 d
4,87 10  4,87 10
3,03 23  3.03 23
2,86 51  2.86 51
2,70 34
Figure imgf000016_0001
2.70 34
Figure imgf000016_0001
Exemple 2 : Solide B (selon l'invention) Example 2: Solid B (according to the invention)
Afin de préparer 50g de solide B, une solution aqueuse de nitrate de manganèse Mn(N03)2 est préparée par dilution de 1 1 ,8 g de nitrate de manganèse tetrahydraté (AIdrich) dans de l'eau déminéralisée. Le volume total de la solution aqueuse préparé correspond au volume poreux du support. In order to prepare 50 g of solid B, an aqueous solution of manganese nitrate Mn (NO 3 ) 2 is prepared by diluting 11.8 g of manganese nitrate tetrahydrate (Aldrich) in demineralised water. The total volume of the aqueous solution prepared corresponds to the pore volume of the support.
Cette solution est ensuite imprégnée sur 46,8 du solide A1 de l'exemple 1 sec et de volume poreux 0,6 ml/g. This solution is then impregnated on 46.8 of solid A1 of Example 1 dry and with a pore volume of 0.6 ml / g.
Le solide obtenu est séché sous air à 120°C, puis est calciné pendant 2 heures à 650 °C sous un flux d'air avec un débit de 1 L.h"1.(g de catalyseur)"1. The solid obtained is dried under air at 120 ° C. and then calcined for 2 hours at 650 ° C. under a flow of air with a flow rate of 1 Lh -1 (g of catalyst) "1 .
Le solide B obtenu contient 26,8% poids de Al et 4,2% poids de Mn par rapport à la masse du catalyseur sec, soit la composition molaire suivante ΖηΜη2χΑΙ2(ΐ -χ)θ4 avec x=0,07 et un rapport molaire Mn/AI égal à 0,077 calculé à partir des teneurs massique. The solid B obtained contains 26.8% by weight of Al and 4.2% by weight of Mn relative to the dry catalyst mass, ie the following molar composition ΖηΜη 2 χΑΙ 2 (ΐ -χ) θ4 with x = 0.07 and a molar ratio Mn / Al equal to 0.077 calculated from the mass contents.
La surface spécifique du solide B est de 159 m2 The surface area of the solid B is 159 m 2
La signature DRX du solide B est la suivante :  The DRX signature of solid B is as follows:
Figure imgf000016_0002
Figure imgf000017_0001
Figure imgf000016_0002
Figure imgf000017_0001
Exemple 3 : Catalyseur C (mise en œuvre non-conforme à l'invention) Example 3 Catalyst C (implementation not in accordance with the invention)
Le solide C (non conforme à l'invention) est un solide à base d'oxyde de chrome et de potassium supporté sur une alumine gamma. Ce solide est connu pour son utilisation en tant que catalyseur de la déshydrogénation non oxydante du butène.  Solid C (not in accordance with the invention) is a chromium and potassium oxide-based solid supported on a gamma-alumina. This solid is known for its use as a catalyst for the non-oxidative dehydrogenation of butene.
Afin de préparer 100g de solide, une solution aqueuse de nitrate de chrome Cr(N03)3 est préparée par dilution de 34,2 g de nitrate de chrome nonahydraté (AIdrich) dans de l'eau déminéralisée. Le volume total de la solution aqueuse préparé correspond au volume poreux d'un support alumine commercial de 140 m2.g"1 et de volume poreux total 1 mL.g" . Le support alumine est sous forme de bille de diamètre compris entre 2 et 4 mm. In order to prepare 100 g of solid, an aqueous solution of chromium nitrate Cr (NO 3 ) 3 is prepared by dilution of 34.2 g of chromium nitrate nonahydrate (Aldrich) in demineralized water. The total volume of the prepared aqueous solution corresponds to the pore volume of a commercial alumina support of 140 m 2 .g "1 and the total pore volume ml.g 1". The alumina support is in the form of a ball having a diameter of between 2 and 4 mm.
Cette solution est ensuite imprégnée sur 90,1 g du support alumine. Le solide obtenu est séché sous air à 120 "Ό, puis est calciné pendant 2 heures àThis solution is then impregnated on 90.1 g of the alumina support. The solid obtained is dried under air at 120 ° C. and then calcined for 2 hours at
650 °C sous un flux d'air avec un débit de 1 L.h"1.(g de catalyseur)"1. 650 ° C under a flow of air with a flow rate of 1 Lh -1 (g of catalyst) "1 .
Ce solide est ensuite imprégné à sec avec une solution aqueuse dans laquelle 1 ,69 g de K2C03 (AIdrich) ont été dissouts dans 86 mL d'eau déminéralisée. This solid is then impregnated dry with an aqueous solution in which 1.69 g of K 2 CO 3 (Aldrich) were dissolved in 86 ml of demineralized water.
Le solide C obtenu contient 8% poids de Cr métal (12% poids sous forme Cr203), et 1% K par rapport à la masse du catalyseur sec. The solid C obtained contains 8% by weight of Cr metal (12% by weight in Cr 2 0 3 form ), and 1% K relative to the weight of the dry catalyst.
La surface spécifique BET du solide C est de 124 m2.g"1. The BET specific surface area of the solid C is 124 m 2 · g -1 .
Exemple 4 : Test catalytique en déshydrogénation du 1 -Butène. Example 4 Catalytic Test in Dehydrogenation of 1-Butene.
Les solides sont employés en tant que catalyseurs et sont soumis à un test de déshydrogénation de 1 -butène en 1 ,3-butadiène dans un réacteur lit fixe de diamètre 20mm. Le volume du lit catalytique est de 10 ce dilué à un ratio 1/3 avec du carbure de silicium de granulométrie 1 ,5 mm. Une zone de préchauffe à l'entrée du réacteur permet d'obtenir une température uniforme. Lors de la mise en température du réacteur, un flux d'azote et d'eau vapeur est injecté jusqu'à atteindre la consigne. Le début de la phase de test démarre lorsque le flux d'azote est remplacé par le flux de 1 -Butène (Air Liquide 99%). The solids are used as catalysts and are subjected to a dehydrogenation test of 1-butene in 1,3-butadiene in a 20 mm diameter fixed bed reactor. The volume of the catalytic bed is 10 cc diluted at a ratio of 1/3 with silicon carbide with a particle size of 1.5 mm. A preheating zone at the inlet of the reactor makes it possible to obtain a uniform temperature. When the reactor is heated, a stream of nitrogen and steam water is injected until the set point is reached. The beginning of the test phase starts when the nitrogen flow is replaced by the flow of 1-butene (Air Liquide 99%).
La VVH en 1 -butène est fixée à 200 h"1 , soit un débit de 2 NL.h"1 contrôlé par un débitmètre massique. Le ratio volumique H20/1 -Butène est fixé à 20. La pression est maintenue à 1 barg et la température du lit catalytique est de 650 °C. The 1-butene VVH is set at 200 h -1 , a flow rate of 2 NL · h -1 controlled by a mass flow meter. The volume ratio H 2 0/1 -Butene is set at 20. The pressure is maintained at 1 barg and the temperature of the catalytic bed is 650 ° C.
Après séparation des hydrocarbures et de la vapeur d'eau à température et pression ambiante, le gaz est analysé en chromatographie gazeuse. La première analyse est effectuée 5 minutes après le début du test, puis toutes les 20 minutes. After separation of the hydrocarbons and the steam at room temperature and pressure, the gas is analyzed by gas chromatography. The first analysis is performed 5 minutes after the start of the test, then every 20 minutes.
Par la première analyse des effluents à t = 5 minutes, on calcule la conversion du 1 - butène et la sélectivité en 1 ,3-butadiène (en pourcentage). Les résultats obtenus pour les solides A, B et C sont reportés dans le tableau 1. By the first analysis of the effluents at t = 5 minutes, the conversion of 1-butene and the selectivity to 1,3-butadiene (in percentage) are calculated. The results obtained for solids A, B and C are reported in Table 1.
Figure imgf000018_0001
Figure imgf000018_0001
Tableau 1 : Conversions en 1 -Butène et sélectivité en 1 ,3-Butadiène  Table 1: Conversions in 1-Butene and Selectivity in 1,3-Butadiene
Les solides A et B ont une surface spécifique plus élevée que le solide C non-conforme. On pourrait donc s'attendre à ce qu'ils aient une acidité plus élevée, ce qui aboutirait à une conversion améliorée, mais une sélectivité plus faible, les réactions de craquage étant catalysées par l'acidité des catalyseurs. Or, la sélectivité des catalyseurs A et B est plus importante que celle du catalyseur C non-conforme. La présence de Mn et les propriétés spécifiques du catalyseur selon l'invention permettent donc en particulier de modérer l'acidité du catalyseur obtenu pour une surface spécifique donnée, permettant d'obtenir des performances supérieures aux catalyseurs de l'état de la technique pour une surface spécifique donnée. Solids A and B have a higher specific surface area than the non-compliant C solid. It could therefore be expected that they have a higher acidity, which would lead to improved conversion, but a lower selectivity, the cracking reactions being catalyzed by the acidity of the catalysts. However, the selectivity of the catalysts A and B is greater than that of the non-compliant catalyst C. The presence of Mn and the specific properties of the catalyst according to the invention therefore make it possible in particular to moderate the acidity of the catalyst obtained for a given specific surface, making it possible to obtain higher performances than the catalysts of the state of the art for a given specific surface area.

Claims

REVENDICATIONS
Solide cristallisé comprenant des oxydes mixtes des éléments aluminium, zinc et manganèse, et présentant un diagramme de diffraction des rayons X comprenant au moins les raies qui correspondent aux distances inter réticulaires et aux intensités relatives suivantes : Crystalline solid comprising mixed oxides of aluminum, zinc and manganese elements and having an X-ray diffraction pattern comprising at least the lines corresponding to the inter-reticular distances and the relative intensities as follows:
Figure imgf000019_0001
ledit solide ayant pour formule ΖηΜη2χΑΐ2(ΐ -χ)04 avec x compris entre 0,01 et 0,30 et une surface spécifique BET comprise entre 80 et 240 m2/g.
Figure imgf000019_0001
said solid having the formula ΖηΜη 2 χΑΐ2 (ΐ -χ ) 0 4 with x between 0.01 and 0.30 and a BET specific surface area of between 80 and 240 m 2 / g.
Solide selon la revendication 1 tel que x est compris entre 0,02 et 0,2. The solid of claim 1 wherein x is from 0.02 to 0.2.
Solide selon l'une des revendications précédente tel qu'il contient un élément du groupe IA. Solid according to one of the preceding claims as it contains a group IA element.
Solide selon la revendication 3 tel que ledit élément du groupe IA est choisi parmi Li, Na et K The solid of claim 3 wherein said element of group IA is selected from Li, Na and K
Catalyseur selon l'une des revendications précédentes tel qu'il se présente sous forme de billes, de trilobés, d'extrudés, de pastilles, ou d'agglomérats irréguliers et non sphériques dont la forme spécifique peut résulter d'une étape de concassage Catalyst according to one of the preceding claims as it is in the form of balls, trilobés, extrusions, pellets, or irregular agglomerates and non-spherical whose specific shape can result from a crushing step
6. Utilisation du solide selon l'une des revendications 1 à 5 pour la déshydrogénation de composés aliphatiques, naphténiques ou oléfiniques, opérant à une température comprise entre 0 °C et 700 °C, à une pression comprise entre 0,1 et 5 bar absolu, à une V.V.H. en charge hydrocarbure comprise entre 1 et 1000 h-1 et, lorsque de la vapeur d'eau est présente, avec un rapport molaire vapeur d'eau sur charge compris entre 1 et 50. 7. Utilisation selon la revendication 6, opérée en présence de vapeur d'eau, avec une pression comprise entre 1 ,5 et 2 bar absolu, une température comprise entre 600 et 700°C, une V.V.H entre 125 de 500 h-1 et un ratio molaire vapeu recomposés saturés ou monoinsaturés à déshydrogéner) entre 8 et 20 8. Utilisation selon la revendication 6, opérée sans dilution par de la vapeur d'eau, avec une pression comprise entre 0,2 et 0,4 bar absolu, une température comprise entre 600 et 620 <C et une V.V.H comprise entre 270 et 330 h-1. 6. Use of the solid according to one of claims 1 to 5 for the dehydrogenation of aliphatic compounds, naphthenic or olefinic, operating at a temperature between 0 ° C and 700 ° C at a pressure between 0.1 and 5 bar absolute, at a VVH in hydrocarbon feedstock of between 1 and 1000 h-1 and, when water vapor is present, with a molar ratio of steam to feed of between 1 and 50. 7. Use according to claim 6, operated in presence of water vapor, with a pressure of between 1.5 and 2 bar absolute, a temperature between 600 and 700 ° C, a VVH between 125 of 500 h-1 and a molar ratio of vapor recomposed saturated or monounsaturated to dehydrogenate ) between 8 and 20 8. Use according to claim 6, carried out without dilution by steam, with a pressure between 0.2 and 0.4 bar absolute, a temperature between 600 and 620 < C and a VVH between 270 and 330 h-1.
9. Utilisation selon l'une des revendications 6 à 8 tel que lorsque de l'oxygène est présent, le rapport molaire oxygène sur charge est compris entre 0,1 et 5. 9. Use according to one of claims 6 to 8 such that when oxygen is present, the molar ratio oxygen on charge is between 0.1 and 5.
10. Utilisation selon l'une des revendications 6 à 8 tel que ladite déshydrogénation est une déshydrogénation non oxydante d'oléfines linéaire en C4. 10. Use according to one of claims 6 to 8 such that said dehydrogenation is a non-oxidizing dehydrogenation linear olefins C4.
PCT/EP2014/051653 2013-01-29 2014-01-28 Catalyst comprising mixed oxides of the elements aluminium, zinc and manganese and the use thereof in dehydrogenation WO2014118194A2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1350743 2013-01-29
FR1350743 2013-01-29

Publications (2)

Publication Number Publication Date
WO2014118194A2 true WO2014118194A2 (en) 2014-08-07
WO2014118194A3 WO2014118194A3 (en) 2015-03-05

Family

ID=48140026

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2014/051653 WO2014118194A2 (en) 2013-01-29 2014-01-28 Catalyst comprising mixed oxides of the elements aluminium, zinc and manganese and the use thereof in dehydrogenation

Country Status (1)

Country Link
WO (1) WO2014118194A2 (en)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3626021A (en) 1968-07-01 1971-12-07 Atlantic Richfield Co Dehydrogenation of aliphatics over alkali metal oxide-chromia-zinc aluminate spinel catalyst
US3948808A (en) 1973-03-02 1976-04-06 Phillips Petroleum Company Zinc aluminate catalyst compositions
US4049743A (en) 1976-07-07 1977-09-20 Phillips Petroleum Company Selective oxidation of acetylenes
US4310717A (en) 1980-05-13 1982-01-12 Phillips Petroleum Company Oxidative dehydrogenation and catalyst
FR2655878A1 (en) 1989-12-20 1991-06-21 Gaz De France Oxidation catalysts and combustion process employing such catalysts
EP0963788A2 (en) 1998-05-18 1999-12-15 Nippon Shokubai Co., Ltd Manganese-containing catalyst for lower alkane oxidative dehydrogenation and a process for producing olefins
US6369000B1 (en) 1999-09-17 2002-04-09 Phillips Petroleum Company Process for producing a metal aluminate catalyst support
US20100280300A1 (en) 2007-12-12 2010-11-04 Sk Energy Co., Ltd Mixed manganese ferrite catalysts, method of preparing thereof and method of preparing 1,3-butadiene using thereof
US20110301392A1 (en) 2008-12-18 2011-12-08 Uhde Gmbh Variation of tin impregnation of a catalyst for alkane dehydrogenation
WO2013091822A1 (en) 2011-12-22 2013-06-27 Saudi Basic Industries Corporation Zinc and/or manganese aluminate catalyst useful for alkane dehdyrogenation

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3626021A (en) 1968-07-01 1971-12-07 Atlantic Richfield Co Dehydrogenation of aliphatics over alkali metal oxide-chromia-zinc aluminate spinel catalyst
US3948808A (en) 1973-03-02 1976-04-06 Phillips Petroleum Company Zinc aluminate catalyst compositions
US4049743A (en) 1976-07-07 1977-09-20 Phillips Petroleum Company Selective oxidation of acetylenes
US4310717A (en) 1980-05-13 1982-01-12 Phillips Petroleum Company Oxidative dehydrogenation and catalyst
FR2655878A1 (en) 1989-12-20 1991-06-21 Gaz De France Oxidation catalysts and combustion process employing such catalysts
EP0963788A2 (en) 1998-05-18 1999-12-15 Nippon Shokubai Co., Ltd Manganese-containing catalyst for lower alkane oxidative dehydrogenation and a process for producing olefins
US6369000B1 (en) 1999-09-17 2002-04-09 Phillips Petroleum Company Process for producing a metal aluminate catalyst support
US20100280300A1 (en) 2007-12-12 2010-11-04 Sk Energy Co., Ltd Mixed manganese ferrite catalysts, method of preparing thereof and method of preparing 1,3-butadiene using thereof
US20110301392A1 (en) 2008-12-18 2011-12-08 Uhde Gmbh Variation of tin impregnation of a catalyst for alkane dehydrogenation
WO2013091822A1 (en) 2011-12-22 2013-06-27 Saudi Basic Industries Corporation Zinc and/or manganese aluminate catalyst useful for alkane dehdyrogenation

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
D.R. LIDE: "CRC Handbook of Chemistry and Physics", 2000, CRC PRESS
S. BRUNAUER; P.H. EMMETT; E. TELLER, J. AM. CHEM. SOC., vol. 60, no. 2, 1938, pages 309 - 319

Also Published As

Publication number Publication date
WO2014118194A3 (en) 2015-03-05

Similar Documents

Publication Publication Date Title
EP2249963B1 (en) Selective hydrogenation catalyst and method for preparing same
TWI574942B (en) Catalyst for metathesis of ethylene and 2-butene and/or double bond isomerization
EP3191221B1 (en) Mesoporous nickel-based catalyst and use thereof for hydrocarbon hydrogenation
EP3154685B1 (en) Mesoporous and macroporous nickel-based catalyst having a median diameter of macropores from 50 to 200 nm and use thereof for hydrocarbon hydrogenation
EP2083002B1 (en) Method for oligomerising olefins using a catalyst based on silica-alumina
EP3154684B1 (en) Mesoporous and macroporous nickel-based catalyst having a median diameter of macropores greater than 200 nm and use thereof for hydrocarbon hydrogenation
EP3740309B1 (en) Process for preparation of a specific catalyst for selective hydrogenation and hydrogenation of aromatic compounds by kneading
EP3154686A1 (en) Mesoporous and macroporous catalyst made from nickel obtained by comulling and having a macroporous median diameter greater than 300 nm and use of same in hydrocarbon hydrogenation
WO2015189193A1 (en) Mesoporous and macroporous catalyst with an active phase of nickel obtained by comulling and having a macroporous median diameter of between 50 and 300 nm and use of same in hydrocarbon hydrogenation
WO2015055380A1 (en) Selective hydrogenation method using a catalyst containing copper and at least one metal selected from nickel or cobalt
EP2135670B1 (en) A selective hydrogenation catalyst
FR3099387A1 (en) CATALYST INCLUDING AN ACTIVE PHASE OF NICKEL DISTRIBUTED IN CRUST
WO2014096628A1 (en) Chromium oxide-based catalyst and use thereof for the dehydrogenation of hydrocarbons
WO2014118194A2 (en) Catalyst comprising mixed oxides of the elements aluminium, zinc and manganese and the use thereof in dehydrogenation
FR3022802B1 (en) ALPHA ALUMINUM IRON OXIDE CATALYST AND ITS IMPLEMENTATION IN A PROCESS FOR THE DEHYDROGENATION OF MONOINSATURE HYDROCARBONS COMPRISING FROM 4 TO 5 CARBON ATOMS
FR2999954A1 (en) IRON OXIDE BASED CATALYST AND ITS USE IN DEHYDROGENATION
FR2999569A1 (en) NON-OXIDIZING DESYDROGENATION PROCESS USING A MANGANESE OXIDE CATALYST ON AN ALUMINUM SUPPORT
WO2024017703A1 (en) Method for preparing a catalyst containing an active nickel phase and a nickel-copper alloy
FR2999570A1 (en) NON-OXIDIZING DESYDROGENING PROCESS USING A CATALYST COMPRISING A MANGANESE OXIDE ON A SILICA CARRIER
FR3099389A1 (en) CATALYST INCLUDING AN ACTIVE PHASE OF NICKEL SULFUR DISTRIBUTED IN CRUST
FR3026317A1 (en) IRON OXIDE CATALYST ON ALPHA ALUMINUM SUPPORT AND ITS USE IN A PROCESS FOR THE DEHYDROGENATION OF MONOINSATURATED HYDROCARBONS
FR3110864A1 (en) PROCESS FOR PREPARING A CATALYST COMPRISING AN ACTIVE PHASE OF NICKEL DISTRIBUTED IN CRUST AND A NICKEL COPPER ALLOY
FR3068983A1 (en) SELECTIVE HYDROGENATION PROCESS USING A CATALYST OBTAINED BY IMPREGNATION COMPRISING A SPECIFIC SUPPORT
WO2019011566A1 (en) Selective hydrogenation method using a catalyst obtained by comulling comprising a specific support
FR3011846A1 (en) SELECTIVE HYDROGENATION PROCESS USING A CATALYST CONTAINING TIN AND AT LEAST ONE METAL SELECTED FROM IRON, MOLYBDENUM AND / OR COBALT

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14718331

Country of ref document: EP

Kind code of ref document: A2

122 Ep: pct application non-entry in european phase

Ref document number: 14718331

Country of ref document: EP

Kind code of ref document: A2