WO2014118045A1 - Flowmeter - Google Patents
Flowmeter Download PDFInfo
- Publication number
- WO2014118045A1 WO2014118045A1 PCT/EP2014/051199 EP2014051199W WO2014118045A1 WO 2014118045 A1 WO2014118045 A1 WO 2014118045A1 EP 2014051199 W EP2014051199 W EP 2014051199W WO 2014118045 A1 WO2014118045 A1 WO 2014118045A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- piston
- inflow
- outflow
- pressure
- positive displacement
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Ceased
Links
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01F—MEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
- G01F15/00—Details of, or accessories for, apparatus of groups G01F1/00 - G01F13/00 insofar as such details or appliances are not adapted to particular types of such apparatus
- G01F15/005—Valves
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01F—MEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
- G01F15/00—Details of, or accessories for, apparatus of groups G01F1/00 - G01F13/00 insofar as such details or appliances are not adapted to particular types of such apparatus
- G01F15/02—Compensating or correcting for variations in pressure, density or temperature
- G01F15/026—Compensating or correcting for variations in pressure, density or temperature using means to maintain zero differential pressure across the motor
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01F—MEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
- G01F3/00—Measuring the volume flow of fluids or fluent solid material wherein the fluid passes through the meter in successive and more or less isolated quantities, the meter being driven by the flow
- G01F3/02—Measuring the volume flow of fluids or fluent solid material wherein the fluid passes through the meter in successive and more or less isolated quantities, the meter being driven by the flow with measuring chambers which expand or contract during measurement
- G01F3/04—Measuring the volume flow of fluids or fluent solid material wherein the fluid passes through the meter in successive and more or less isolated quantities, the meter being driven by the flow with measuring chambers which expand or contract during measurement having rigid movable walls
- G01F3/06—Measuring the volume flow of fluids or fluent solid material wherein the fluid passes through the meter in successive and more or less isolated quantities, the meter being driven by the flow with measuring chambers which expand or contract during measurement having rigid movable walls comprising members rotating in a fluid-tight or substantially fluid-tight manner in a housing
- G01F3/10—Geared or lobed impeller meters
Definitions
- the invention relates to a flow meter, with a Verdrängertowner, which is connected in parallel in a bypass line, a pressure difference transducer, wherein a rotatably connected to the Verdrängerperhapser engine depending on a differential pressure determined by Druckdifferenz- differential pressure between inflow and outflow of Verdrängerexcellenters for continuous differential pressure compensation is controlled, wherein the pressure difference sensor has a freely movable in a cylinder region of the bypass line piston, which determined by a differential pressure occurring deflection is determined and used to drive the motor of the positive displacement, and wherein the bypass line has a bypass channel, which at downstream on a Maximalhub stop abutting piston releases a connection between inflow and outflow side.
- Such measuring devices are known for example from EP1644707B1, DE1798808B or GB2185785A and have as central assemblies on a trained example as a gear counter VerdrängerGreater and a freely movable in a cylinder region of the bypass line parallel piston as Druckdifferenz- on.
- Liquid medium is fed from the inflow side coming through the positive displacement in the direction downstream side, with a variable in its speed servomotor drives the positive displacement.
- the inlet-side space of the cylinder region of the pressure difference sensor is connected to the inlet of the displacement counter and the drain-side space of this cylinder region to the downstream side of the positive displacement.
- Bypass line parallel to the positive displacement also have a bypass channel, which connects at a maximum stroke stopper piston between Zu- and
- the present invention has the object to simplify the aforementioned hydraulic recirculation of the piston of the pressure difference in its central position without having to use additional springs or the like on the piston or in the cylinder chamber, which requires a certain overhead and makes the meter more susceptible to interference.
- a non-return valve is arranged, which prevents the return flow from outflow to inflow side. So now if the piston of the pressure difference pickup rests against its maximum stroke stop and thereby opens the bypass channel, opens by the flowing fluid and the non-return valve, whereby a relatively unobstructed flow through the bypass line can be done.
- the backstop which is preferably designed as a resilient or in the end against the free flow direction kinked check valve can, and closes and on the outflow side end face of the piston in the associated cylinder area building pressure or the force acting thereon on the piston becomes larger and eventually the piston shifts so far towards the center position that the bypass line is closed again.
- the freely movable piston can again serve for the compensation of the differential pressure between inflow and outflow of the positive displacement.
- At least the downstream end face of the piston and / or the associated Maximai stroke stop in the cylinder area is reduced in a preferred embodiment of the invention over the other piston or cylinder diameter, which simplifies the initial release of the piston away from the stop in the middle position with small differential pressures or supported.
- the invention will be explained in more detail in the Fogenden with reference to the embodiments schematically illustrated in the drawing. 1 shows a schematic sketch to explain the mode of operation of a flowmeter according to the invention, and FIG. 2 shows a detail of the pressure difference sensor of a flowmeter according to the invention in axial section through the piston axis.
- the flow meter according to FIG. 1 has a positive displacement meter 1, which can be designed, for example, as a known gear meter and to which a pressure difference sensor 3 is connected in parallel in a bypass line 2.
- a rotatably connected to the positive displacement meter 1 motor M is driven depending on a differential pressure detected at the pressure differential 2 between inflow and outflow (4, 5) of the positive displacement 1 for continuous differential pressure compensation.
- the Differenzteilaufillon 3 has a freely movable in a cylinder region 6 of the bypass line 2 piston 7, which determined by a differential pressure occurring deflection is determined and used to control the motor M of the displacement counter 1.
- the deflection (-x / + x) of the piston 7 from its central position as shown is measured in a manner not shown here by known sensors or monitored - for example by means of optical sensors, Hall sensors or the like.
- FIG. 2 In order to allow rinsing, especially at restart or at high flow rates or large pressure differences between inflow and outflow 4, 5 of Verdrängeraciers 1 for safety reasons, an overflow via the pressure difference transducer 3 is shown in FIG. 2 in the bypass line 2, a bypass channel 8 is provided, which releases a connection between inflow and outflow sides 4, 5 at the downstream end of a maximum stroke stop 9.
- a bore 10 in the wall of the cylinder portion 6 is released by the piston 7 and shortly before the piston 7 rests as shown in FIG. 2 on the stop 9.
- a non-return valve 1 1 formed z., As a resilient check valve 12 or as shown with a slight kink, whereby the (open) flap on closing the flow is closed more securely), which in the illustrated in Fig. 1 Position is funkionslos, since the bypass line 2 is blocked by the piston anyway.
- the pressure on the inflow side 4 is higher than on the outflow side 5, medium will flow through the bore 10 into the bypass channel 8 (in the case of an open non-return flap 12, not shown) and from there to the outflow side 5.
- the corresponding end face of the piston (or the associated maximum stroke stop 9 in the cylinder area 6) has a reduced diameter compared to the other piston or cylinder diameter. which provides an initially larger attack surface for the actuating pressure.
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Fluid Mechanics (AREA)
- Measuring Volume Flow (AREA)
- Engineering & Computer Science (AREA)
- General Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
Abstract
Description
Durchflussmessgerät Flowmeter
Die Erfindung betrifft ein Durchflussmessgerät, mit einem Verdrängerzähler, dem in einer Umgehungsleitung ein Druckdifferenz-Aufnehmer parallel geschaltet ist, wobei ein mit dem Verdrängerzähler drehverbundener Motor abhängig von einem vom Druckdifferenz- Aufnehmer festgestellten Differenzdruck zwischen Zu- und Abströmseite des Verdrängerzählers zum stetigen Differenzdruck-Ausgleich angesteuert ist, wobei der Druckdifferenz-Aufnehmer einen in einem Zylinderbereich der Umgehungsleitung frei beweglichen Kolben aufweist, dessen von einem auftretenden Differenzdruck bedingte Auslenkung ermittelt und zur Ansteuerung des Motors des Verdrängerzählers verwendet wird, und wobei die Umgehungsleitung einen Bypasskanal aufweist, der bei abströmseitig an einem Maximalhub-Anschlag anliegendem Kolben eine Verbindung zwischen Zu- und Abströmseite freigibt. The invention relates to a flow meter, with a Verdrängerzähler, which is connected in parallel in a bypass line, a pressure difference transducer, wherein a rotatably connected to the Verdrängerzähler engine depending on a differential pressure determined by Druckdifferenz- differential pressure between inflow and outflow of Verdrängerzählers for continuous differential pressure compensation is controlled, wherein the pressure difference sensor has a freely movable in a cylinder region of the bypass line piston, which determined by a differential pressure occurring deflection is determined and used to drive the motor of the positive displacement, and wherein the bypass line has a bypass channel, which at downstream on a Maximalhub stop abutting piston releases a connection between inflow and outflow side.
Derartige Messgeräte sind beispielsweise aus EP1644707B1 , DE1798808B oder auch GB2185785A bekannt und weisen als zentrale Baugruppen einen beispielsweise als Zahnradzähler ausgebildeten Verdrängerzähler sowie einen in einem Zylinderbereich der parallel geschalteten Umgehungsleitung frei beweglichen Kolben als Druckdifferenz- Aufnehmer auf. Flüssiges Medium wird von der Zuströmseite kommend durch den Verdrängerzähler in Richtung Abströmseite geschleust, wobei ein in seiner Drehzahl steuerbarer Servomotor den Verdrängerzähler antreibt. Parallel zum Verdrängerzähler ist der zulaufseitige Raum des Zylinderbereichs des Druckdifferenz-Aufnehmers mit dem Zulauf des Verdrängerzählers und der ablaufseitige Raum dieses Zylinderbereichs mit der Abströmseite des Verdrängerzählers verbunden. Mittels einer Regelelektronik wird getrachtet, den Kolben des Druckdifferenz-Aufnehmers durch Differenzdruckausgleich immer in seiner Nullstellung zu positionieren. Jede Durchflussänderung bewirkt eine Auslenkung des Kolbens, welche sofort mittels einer Drehzahlanpassung des Motors des Verdrängerzählers korrigiert wird, womit die Drehzahl dieses Motors unmittelbar proportional dem überwachten Durchfluss ist. Es können damit auch minimale Durchflüsse bzw. Durchflussänderungen sehr genau bestimmt werden, wie dies beispielsweise für die Kraftstoffverbrauchsmessung an Prüfständen für Brennkraftmaschinen sehr wesentlich ist. Such measuring devices are known for example from EP1644707B1, DE1798808B or GB2185785A and have as central assemblies on a trained example as a gear counter Verdrängerzähler and a freely movable in a cylinder region of the bypass line parallel piston as Druckdifferenz- on. Liquid medium is fed from the inflow side coming through the positive displacement in the direction downstream side, with a variable in its speed servomotor drives the positive displacement. Parallel to the displacement meter, the inlet-side space of the cylinder region of the pressure difference sensor is connected to the inlet of the displacement counter and the drain-side space of this cylinder region to the downstream side of the positive displacement. By means of a control electronics is sought to position the piston of the differential pressure transducer by differential pressure compensation always in its zero position. Each flow change causes a displacement of the piston, which is corrected immediately by means of a speed adaptation of the motor of the displacement counter, whereby the speed of this motor is directly proportional to the monitored flow. It can also very minimal flows or flow changes are determined very precisely, as is very essential, for example, for the fuel consumption measurement of test benches for internal combustion engines.
Um bei kurzzeitig übergroßen Volumenströmen bzw. großen Druckanstiegen, bedingt beispielsweise durch einen Ausfall der Pumpe oder einer Blockade im System, ein zusätzliches Abströmen über den Druckdifferenz-Aufnehmer zu ermöglichen, kann dieIn order to allow for short-term excessively large volume flows or large pressure increases, for example due to a failure of the pump or a blockage in the system, an additional outflow via the pressure difference transducer, the
Umgehungsleitung parallel zum Verdrängerzähler auch einen Bypasskanal aufweisen, der bei an einem Maximal-Hubanschlag anliegendem Kolben eine Verbindung zwischen Zu- undBypass line parallel to the positive displacement also have a bypass channel, which connects at a maximum stroke stopper piston between Zu- and
Abströmseite freigibt. Auch speziell bei Neustart, wenn das Gerät gespült werden soll (also von Luft befreit wird) wird der Kolben bis zum Anschlag ausgelenkt. Sobald aber der Kolben Outflow side releases. Especially when restarting, when the device is to be rinsed (ie freed of air), the piston is deflected to the stop. But as soon as the piston
l an diesem Anschlag anliegt, wird er vom Systemdruck auch weiterhin an diesem Anschlag gehalten, sodass zur neuerlichen Rückführung in die Mittellage ein wiederum erfolgter Druckausgleich nicht genügt, sondern zusätzliche Maßnahmen getroffen werden müssen. Bekannt ist in diesem Zusammenhang die Anordnung einer Feder am mit der Stirnseite des Kolbens zusammenwirkenden Anschlag, welche bei Druckausgleich zwischen Zu- und Abströmseite den Kolben jedenfalls anfänglich vom Anschlag wegdrückt und damit, nachdem der Bypasskanal wieder abgeschlossen ist, die hydraulische Rückführung in die Mittellage wieder sicherstellt. l is applied to this stop, he will continue to be held by the system pressure on this stop, so that for renewed return to the middle position in turn a successful pressure equalization is not enough, but additional measures must be taken. It is known in this context, the arrangement of a spring on cooperating with the end face of the piston stop, which at least initially pushes the piston at pressure equalization between inflow and outflow side of the stop and thus, after the bypass channel is completed again, the hydraulic return to the center position again ensures.
Ausgehend von den genannten bekannten Geräten stellt sich die vorliegende Erfindung die Aufgabe, das angesprochene hydraulische Rückführen des Kolbens des Druckdifferenz- Aufnehmers in seine Mittellage zu vereinfachen, ohne zusätzliche Federn oder dergleichen am Kolben oder im Zylinderraum verwenden zu müssen, was einen gewissen Mehraufwand erfordert und das Messgerät störungsanfälliger macht. Based on the above-mentioned known devices, the present invention has the object to simplify the aforementioned hydraulic recirculation of the piston of the pressure difference in its central position without having to use additional springs or the like on the piston or in the cylinder chamber, which requires a certain overhead and makes the meter more susceptible to interference.
Diese Aufgabe wird gemäß der vorliegenden Erfindung bei einem Messgerät der eingangs genannten Art dadurch gelöst, dass im Bypasskanal eine Rückschlagsperre angeordnet ist, welche den Rückfluss von Abström- zu Zuströmseite unterbindet. Wenn nun also der Kolben des Druckdifferenz-Aufnehmers an seinem Maximalhub-Anschlag anliegt und dabei den Bypasskanal öffnet, so öffnet durch das strömende Fluid auch die Rückschlagsperre, womit eine relativ ungehinderte Durchströmung über die Umgehungsleitung erfolgen kann. Wenn der Druck auf der Abströmseite wieder größer wird, so wird bei Erreichen des Druckniveaus der Zuströmseite jeder weitere Durchfluss in Richtung Abströmseite über den Druckdifferenz- Aufnehmer aufhören, womit die Rückschlagsperre, die bevorzugt als federnde oder im Endbereich entgegen der freien Durchströmrichtung abgeknickte Rückschlagklappe ausgebildet sein kann, schließt und der sich auf der abströmseitigen Stirnfläche des Kolbens im zugehörigen Zylinderbereich aufbauende Druck bzw. die damit auf den Kolben wirkende Kraft größer wird und schließlich den Kolben so weit in Richtung Mittellage verschiebt, dass die Bypassleitung wieder geschlossen wird. Dann kann der frei bewegliche Kolben wieder für die Ausregelung des Differenzdruckes zwischen Zu- und Abströmseite des Verdrängerzählers dienen. This object is achieved according to the present invention in a measuring device of the type mentioned above in that in the bypass channel, a non-return valve is arranged, which prevents the return flow from outflow to inflow side. So now if the piston of the pressure difference pickup rests against its maximum stroke stop and thereby opens the bypass channel, opens by the flowing fluid and the non-return valve, whereby a relatively unobstructed flow through the bypass line can be done. When the pressure on the outflow side becomes larger again, upon reaching the pressure level of the inflow side, any further flow towards the outflow side will cease via the pressure difference transducer, whereby the backstop, which is preferably designed as a resilient or in the end against the free flow direction kinked check valve can, and closes and on the outflow side end face of the piston in the associated cylinder area building pressure or the force acting thereon on the piston becomes larger and eventually the piston shifts so far towards the center position that the bypass line is closed again. Then the freely movable piston can again serve for the compensation of the differential pressure between inflow and outflow of the positive displacement.
Zumindest die abströmseitige Stirnseite des Kolbens und/oder der zugehörige Maximai- Hubanschlag im Zylinderbereich ist in bevorzugter Ausgestaltung der Erfindung gegenüber dem sonstigen Kolben- bzw. Zylinderdurchmesser verkleinert, was das anfängliche Lösen des Kolbens vom Anschlag weg in Richtung Mittelposition bei kleinen Differenzdrucken vereinfacht bzw. unterstützt. Die Erfindung wird im Fogenden anhand der in der Zeichnung schematisch dargestellten Ausführungsbeispiele näher erläutert. Fig. 1 zeigt dabei eine schematische Skizze zur Erläuterung der Funktionsweise eines erfindungsgemäßen Durchflussmessgerätes und Fig. 2 zeigt ein Detail des Druckdifferenz-Aufnehmers eines erfindungsgemäßen Durchflussmessgerätes im Axialschnitt durch die Kolbenachse. At least the downstream end face of the piston and / or the associated Maximai stroke stop in the cylinder area is reduced in a preferred embodiment of the invention over the other piston or cylinder diameter, which simplifies the initial release of the piston away from the stop in the middle position with small differential pressures or supported. The invention will be explained in more detail in the Fogenden with reference to the embodiments schematically illustrated in the drawing. 1 shows a schematic sketch to explain the mode of operation of a flowmeter according to the invention, and FIG. 2 shows a detail of the pressure difference sensor of a flowmeter according to the invention in axial section through the piston axis.
Das Durchflussmessgerät gemäß Fig. 1 weist einen Verdrängerzähler 1 auf, der beispielsweise als bekannter Zahnradzähler ausgeführt sein kann und dem in einer Umgehungsleitung 2 ein Druckdifferenz-Aufnehmer 3 parallel geschaltet ist. Ein mit dem Verdrängerzähler 1 drehverbundener Motor M wird abhängig von einem am Druckdifferenz- Aufnehmer 2 festgestellten Differenzdruck zwischen Zu- und Abströmseite (4, 5) des Verdrängerzählers 1 zum stetigen Differenzdruckausgleich angesteuert. Der Differenzdruckaufnehmer 3 weist einen in einem Zylinderbereich 6 der Umgehungsleitung 2 frei beweglichen Kolben 7 auf, dessen von einem auftretenden Differenzdruck bedingte Auslenkung ermittelt und zur Ansteuerung des Motors M des Verdrängerzählers 1 verwendet wird. Die Auslenkung (-x/+x) des Kolbens 7 aus seiner Mittellage gemäß Darstellung wird auf hier nicht weiter abgebildete Weise durch bekannte Sensorik gemessen bzw. überwacht - beispielsweise mittels optischer Sensoren, Hallsensoren oder dergleichen. The flow meter according to FIG. 1 has a positive displacement meter 1, which can be designed, for example, as a known gear meter and to which a pressure difference sensor 3 is connected in parallel in a bypass line 2. A rotatably connected to the positive displacement meter 1 motor M is driven depending on a differential pressure detected at the pressure differential 2 between inflow and outflow (4, 5) of the positive displacement 1 for continuous differential pressure compensation. The Differenzdruckaufnehmer 3 has a freely movable in a cylinder region 6 of the bypass line 2 piston 7, which determined by a differential pressure occurring deflection is determined and used to control the motor M of the displacement counter 1. The deflection (-x / + x) of the piston 7 from its central position as shown is measured in a manner not shown here by known sensors or monitored - for example by means of optical sensors, Hall sensors or the like.
Um nun ein Spülen vor allem bei Neustart bzw. bei großen Durchflussraten bzw. großen Druckdifferenzen zwischen Zu- und Abströmseite 4, 5 des Verdrängerzählers 1 aus Sicherheitsgründen auch ein Überströmen über den Druckdifferenz-Aufnehmer 3 zu ermöglichen, ist gemäß Fig. 2 in der Umgehungsleitung 2 ein Bypasskanal 8 vorgesehen, der bei abstromseitig an einem Maximalhub-Anschlag 9 anliegendem Kolben 7 eine Verbindung zwischen Zu- und Abströmseite 4, 5 freigibt. Dabei wird vom Kolben 7 eine Bohrung 10 in der Wand des Zylinderbereichs 6 freigegeben und zwar kurz bevor der Kolben 7 gemäß Fig. 2 am Anschlag 9 anliegt. In diesem Bypasskanal 8 ist eine Rückschlagsperre 1 1 (ausgebildet z. B. als federnde Rückschlagklappe 12 oder wie dargestellt mit leichtem Knick, wodurch die (offene) Klappe bei Umkehrung der Strömung sicherer geschlossen wird) angeordnet, welche in der in Fig. 1 dargestellten Stellung funkionslos ist, da die Umgehungsleitung 2 durch den Kolben sowieso gesperrt ist. Solange der Druck auf der Zuströmseite 4 höher ist als auf der Abströmseite 5, wird Medium durch die Bohrung 10 in den Bypasskanal 8 (bei nicht dargestellter geöffneter Rückschlagklappe 12) und von dort zur Abströmseite 5 fließen. Wenn der Druck zu- und abstromseitig wieder gleich wird, bleibt der Kolben 7 vorerst am Anschlag 9 und würde sich (ohne Rückschlagsperre 1 1 ) auch von dort nur schwer wieder wegbewegen, da die Kolbenfläche auf der gegenüberliegenden freien Seite jedenfalls größer ist als die freie Kolbenfläche auf der Seite des Anschlags 9. Erst die geschlossene Rückschlagklappe 12 ermöglicht den Aufbau eines entsprechenden Drucks auf der anschlagseitigen Stirnseite des Kolbens und damit eine Bewegung desselben in Richtung Mittelposition bis die Bohrung 10 und damit der Bypasskanal 8 durch den Kolben 7 wieder verschlossen ist. Die Klappe hat einen leichten Knick, welcher hilft, die Klappe bei Rückströmung von ihrer geöffneten Stellung wieder loszulösen. Daher ist eine Feder hier nicht notwendig. Sogar, wenn die Klappe kopfüber eingebaut ist (Schwerkraft möchte die Klappe offen halten), kann diese aufgrund dieses Knicks sehr früh schließen. In order to allow rinsing, especially at restart or at high flow rates or large pressure differences between inflow and outflow 4, 5 of Verdrängerzählers 1 for safety reasons, an overflow via the pressure difference transducer 3 is shown in FIG. 2 in the bypass line 2, a bypass channel 8 is provided, which releases a connection between inflow and outflow sides 4, 5 at the downstream end of a maximum stroke stop 9. In this case, a bore 10 in the wall of the cylinder portion 6 is released by the piston 7 and shortly before the piston 7 rests as shown in FIG. 2 on the stop 9. In this bypass channel 8 is a non-return valve 1 1 (formed z., As a resilient check valve 12 or as shown with a slight kink, whereby the (open) flap on closing the flow is closed more securely), which in the illustrated in Fig. 1 Position is funkionslos, since the bypass line 2 is blocked by the piston anyway. As long as the pressure on the inflow side 4 is higher than on the outflow side 5, medium will flow through the bore 10 into the bypass channel 8 (in the case of an open non-return flap 12, not shown) and from there to the outflow side 5. When the pressure on and downstream side is equal again, the piston 7 remains for the time being at the stop 9 and would be difficult to move away (without a backlash 1 1) from there, since the piston surface on the opposite free side in any case is greater than the free Piston surface on the side of the stop 9. Only the closed check valve 12 allows the construction of a corresponding pressure on the stop-side end face of the piston and thus a movement thereof in the direction of the central position until the bore 10 and thus the bypass channel 8 is closed again by the piston 7. The flap has a slight kink which helps to release the flap on its return from its open position. Therefore, a spring is not necessary here. Even if the flap is installed upside down (gravity wants to keep the flap open), it may close very early due to this kink.
Um den Kolben 7 anfänglich leichter druckbedingt vom Maximalhub-Anschlag 9 lösen zu können, weist die entsprechende Stirnseite des Kolbens (oder wie hier dargestellt der zugehörige Maximal-Hubanschlag 9 im Zylinderbereich 6) einen gegenüber dem sonstigen Kolben-bzw.Zylinderdurchmesser verkleinerten Durchmesser auf, was eine anfänglich größere Angriffsfläche für den Betätigungsdruck bereitstellt. In order to be able to release the piston 7 initially from the maximum stroke stop 9 more easily due to pressure, the corresponding end face of the piston (or the associated maximum stroke stop 9 in the cylinder area 6) has a reduced diameter compared to the other piston or cylinder diameter. which provides an initially larger attack surface for the actuating pressure.
Claims
Priority Applications (5)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN201480006676.XA CN104956191B (en) | 2013-01-30 | 2014-01-22 | Flow measurement equipment |
| KR1020157021400A KR102047579B1 (en) | 2013-01-30 | 2014-01-22 | Flowmeter |
| JP2015554133A JP6205431B2 (en) | 2013-01-30 | 2014-01-22 | Flowmeter |
| US14/764,303 US9746364B2 (en) | 2013-01-30 | 2014-01-22 | Flowmeter having pressure difference sensor in parallel with displacement meter |
| EP14701346.0A EP2951541A1 (en) | 2013-01-30 | 2014-01-22 | Flowmeter |
Applications Claiming Priority (2)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| ATA50063/2013 | 2013-01-30 | ||
| ATA50063/2013A AT512027B1 (en) | 2013-01-30 | 2013-01-30 | Flowmeter |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| WO2014118045A1 true WO2014118045A1 (en) | 2014-08-07 |
Family
ID=48222571
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| PCT/EP2014/051199 Ceased WO2014118045A1 (en) | 2013-01-30 | 2014-01-22 | Flowmeter |
Country Status (7)
| Country | Link |
|---|---|
| US (1) | US9746364B2 (en) |
| EP (1) | EP2951541A1 (en) |
| JP (1) | JP6205431B2 (en) |
| KR (1) | KR102047579B1 (en) |
| CN (1) | CN104956191B (en) |
| AT (1) | AT512027B1 (en) |
| WO (1) | WO2014118045A1 (en) |
Cited By (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| EP3073228A1 (en) * | 2015-03-24 | 2016-09-28 | AVL List GmbH | System for measuring time-resolved throughflow processes of fluids |
| WO2017046206A1 (en) | 2015-09-15 | 2017-03-23 | Avl List Gmbh | Flushable device for measuring flow processes of fluids |
| WO2017046209A1 (en) * | 2015-09-15 | 2017-03-23 | Avl List Gmbh | Bidirectionally flow-impinged device for measuring flow processes of fluids |
| AT517817A1 (en) * | 2015-09-15 | 2017-04-15 | Avl List Gmbh | Device with split pot motor for measuring flow processes of measuring fluids |
Families Citing this family (8)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| AT512619B1 (en) * | 2013-06-26 | 2015-02-15 | Avl List Gmbh | Flowmeter |
| GB201506070D0 (en) * | 2015-04-10 | 2015-05-27 | Hartridge Ltd | Flow meter |
| CN105784019B (en) * | 2016-05-30 | 2019-03-08 | 贵州大学 | Double piston symmetrical damping flow sensor probe and detection method |
| CN107515028B (en) * | 2016-06-17 | 2024-06-11 | 上海尤顺汽车技术有限公司 | Non-reflux rotary flowmeter |
| US10126152B1 (en) | 2017-07-25 | 2018-11-13 | Ecolab Usa Inc. | Fluid flow meter with linearization |
| US10260923B2 (en) * | 2017-07-25 | 2019-04-16 | Ecolab Usa Inc. | Fluid flow meter with normalized output |
| US12054924B2 (en) | 2020-05-28 | 2024-08-06 | Zurn Water, Llc | Smart and connected backflow preventer assembly |
| CN115406799B (en) * | 2022-08-12 | 2025-03-25 | 长沙理工大学 | Grouting sleeve grouting fullness detection device, detection system and detection method |
Citations (5)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| DE3019534C1 (en) * | 1980-05-22 | 1981-10-15 | Joachim Ihlemann System Elektr | Device for determining the amount of a fluid flowing through a line, in particular a liquid |
| DD253674A1 (en) * | 1986-11-19 | 1988-01-27 | Verkehrswesen Forsch Inst | AUTOMATIC OPENING FOR VOLUME ELEMENTS |
| JPS63148831U (en) * | 1987-03-20 | 1988-09-30 | ||
| WO2007143770A2 (en) * | 2006-06-13 | 2007-12-21 | Avl List Gmbh | Damping device for an oscillating component |
| US20080184792A1 (en) * | 2005-06-16 | 2008-08-07 | Parris Earl H | Check valve module for flow meters with fluid hammer relief |
Family Cites Families (14)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| GB931092A (en) * | 1958-10-03 | 1963-07-10 | Dowty Rotol Ltd | Improvements in or relating to liquid metering arrangements |
| DE1798080C2 (en) * | 1968-08-19 | 1974-05-16 | Pierburg Luftfahrtgeraete Union Gmbh, 4040 Neuss | Electronically controlled flow meter and metering device |
| DE2728250A1 (en) * | 1977-06-23 | 1979-01-04 | Pierburg Luftfahrtgeraete | FLOW METER AND DOSING DEVICE |
| JPS5988624A (en) * | 1982-10-14 | 1984-05-22 | ロ−ベルト・ボツシユ・ゲゼルシヤフト・ミツト・ベシユレンクテル・ハフツング | Measuring device for quantity of injection |
| GB2185785B (en) * | 1986-01-25 | 1989-11-01 | Ford Motor Co | Liquid flow meter |
| EP0244976A1 (en) * | 1986-04-21 | 1987-11-11 | Vickers Systems Limited | Flow sensor |
| JPS63148831A (en) | 1986-12-09 | 1988-06-21 | 株式会社日立製作所 | Controller of stational reactive power compensator |
| JPH01110023A (en) * | 1987-10-21 | 1989-04-26 | Mitsubishi Electric Corp | Multi-system power receiving equipment |
| JPH0678925B2 (en) * | 1987-11-26 | 1994-10-05 | 東京瓦斯株式会社 | Backflow prevention device for integrating flowmeter |
| JPH02124430A (en) * | 1988-11-02 | 1990-05-11 | Ono Sokki Co Ltd | Pressure difference compensation type flow rate measuring equipment |
| US6629411B2 (en) * | 2001-05-09 | 2003-10-07 | Valeo Electrical Systems, Inc. | Dual displacement motor control |
| DE10331228B3 (en) | 2003-07-10 | 2005-01-27 | Pierburg Instruments Gmbh | Device for measuring time-resolved volumetric flow processes |
| JP4183096B2 (en) * | 2007-02-05 | 2008-11-19 | 株式会社オーバル | Path structure related to flow of fluid to be measured and differential pressure detection in servo volumetric flowmeter |
| JP4246237B2 (en) * | 2007-02-05 | 2009-04-02 | 株式会社オーバル | Pump unit type servo type volumetric flow meter |
-
2013
- 2013-01-30 AT ATA50063/2013A patent/AT512027B1/en not_active IP Right Cessation
-
2014
- 2014-01-22 WO PCT/EP2014/051199 patent/WO2014118045A1/en not_active Ceased
- 2014-01-22 JP JP2015554133A patent/JP6205431B2/en not_active Expired - Fee Related
- 2014-01-22 US US14/764,303 patent/US9746364B2/en not_active Expired - Fee Related
- 2014-01-22 EP EP14701346.0A patent/EP2951541A1/en not_active Withdrawn
- 2014-01-22 KR KR1020157021400A patent/KR102047579B1/en not_active Expired - Fee Related
- 2014-01-22 CN CN201480006676.XA patent/CN104956191B/en not_active Expired - Fee Related
Patent Citations (5)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| DE3019534C1 (en) * | 1980-05-22 | 1981-10-15 | Joachim Ihlemann System Elektr | Device for determining the amount of a fluid flowing through a line, in particular a liquid |
| DD253674A1 (en) * | 1986-11-19 | 1988-01-27 | Verkehrswesen Forsch Inst | AUTOMATIC OPENING FOR VOLUME ELEMENTS |
| JPS63148831U (en) * | 1987-03-20 | 1988-09-30 | ||
| US20080184792A1 (en) * | 2005-06-16 | 2008-08-07 | Parris Earl H | Check valve module for flow meters with fluid hammer relief |
| WO2007143770A2 (en) * | 2006-06-13 | 2007-12-21 | Avl List Gmbh | Damping device for an oscillating component |
Cited By (12)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| EP3073228A1 (en) * | 2015-03-24 | 2016-09-28 | AVL List GmbH | System for measuring time-resolved throughflow processes of fluids |
| US10094378B2 (en) | 2015-03-24 | 2018-10-09 | Avl List Gmbh | System for measuring temporally resolved through-flow processes of fluids |
| WO2017046206A1 (en) | 2015-09-15 | 2017-03-23 | Avl List Gmbh | Flushable device for measuring flow processes of fluids |
| WO2017046209A1 (en) * | 2015-09-15 | 2017-03-23 | Avl List Gmbh | Bidirectionally flow-impinged device for measuring flow processes of fluids |
| AT517817A1 (en) * | 2015-09-15 | 2017-04-15 | Avl List Gmbh | Device with split pot motor for measuring flow processes of measuring fluids |
| AT517817B1 (en) * | 2015-09-15 | 2017-08-15 | Avl List Gmbh | Device with split pot motor for measuring flow processes of measuring fluids |
| KR20180043256A (en) * | 2015-09-15 | 2018-04-27 | 아페엘 리스트 게엠바흐 | Flushable device for measuring fluid flow processes |
| CN108138765A (en) * | 2015-09-15 | 2018-06-08 | Avl列表有限责任公司 | The equipment of the process of circulation that stream is measured for measurement with impervious machine |
| JP2018527513A (en) * | 2015-09-15 | 2018-09-20 | アーファウエル リスト ゲゼルシャフト ミット ベシュレンクテル ハフツング | A flushable device for measuring fluid flow-through processes. |
| KR101988812B1 (en) | 2015-09-15 | 2019-06-12 | 아페엘 리스트 게엠바흐 | Flushable device for measuring fluid flow processes |
| US10584704B2 (en) | 2015-09-15 | 2020-03-10 | Avl List Gmbh | Flushable device for measuring flow processes of fluids |
| US10634138B2 (en) | 2015-09-15 | 2020-04-28 | Avl List Gmbh | Bidirectionally flow-impinged device for measuring flow processes of fluids |
Also Published As
| Publication number | Publication date |
|---|---|
| JP2016504602A (en) | 2016-02-12 |
| AT512027B1 (en) | 2014-04-15 |
| US20150369646A1 (en) | 2015-12-24 |
| KR20150110579A (en) | 2015-10-02 |
| AT512027A2 (en) | 2013-04-15 |
| US9746364B2 (en) | 2017-08-29 |
| JP6205431B2 (en) | 2017-09-27 |
| KR102047579B1 (en) | 2019-11-21 |
| EP2951541A1 (en) | 2015-12-09 |
| AT512027A3 (en) | 2014-02-15 |
| CN104956191A (en) | 2015-09-30 |
| CN104956191B (en) | 2018-03-06 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| AT512027B1 (en) | Flowmeter | |
| DE102008045524B4 (en) | Method for the autonomous control of a chemical injection system for oil and gas wells | |
| DE102009013853B4 (en) | Fault-tolerant chemical injection system for oil and gas wells, as well as dosing bodies and pistons | |
| DE102018201515A1 (en) | Autonomous chemical injection system for oil and gas wells | |
| DE202008003055U1 (en) | Pressure reducer filter Arrangement with leakage protection | |
| AT512619A2 (en) | Flowmeter | |
| DE102013222603A1 (en) | Method for detecting an error in the opening behavior of an injector | |
| DE102013109410A1 (en) | Method for determining a physical quantity in a positive displacement pump | |
| DE102014206442A1 (en) | Method and device for operating a pressure accumulator, in particular for common rail injection systems in motor vehicle technology | |
| DE102012222823A1 (en) | Piston fuel pump | |
| DE102013008781A1 (en) | Method for operating an ultrasonic flow meter and ultrasonic flow meter | |
| WO2004029472A1 (en) | Method and device for determining the point of engagement of a hydraulically actuated clutch | |
| EP1943452B1 (en) | Piston arrangement, in particular for metering valves | |
| DE102011115650A1 (en) | Method for diagnosing the state of a hydrostatic displacement machine and hydraulic arrangement with hydrostatic displacement machine | |
| WO2011113659A1 (en) | Method and device for evaluating an injection member | |
| DE102014211334B3 (en) | Method for characterizing a hydraulic coupling element of a piezo injector | |
| DE102013109412A1 (en) | Method for improving metering profiles of positive displacement pumps | |
| EP2087334B1 (en) | Pressure sensor with integrated test device and method for testing such a sensor | |
| DE102019101632A1 (en) | Drive device | |
| WO2017093031A1 (en) | Method for determining a viscosity of a fuel | |
| DE3439153C2 (en) | Piston with seal arrangement of a flow rate tester | |
| DE102006019543A1 (en) | Plate check valve with lateral outflow and control edge | |
| EP3748156B1 (en) | Valve insert for a dosing pump | |
| DE102015224650A1 (en) | Method and system for determining system variables of an axial piston machine | |
| DE102004014434B3 (en) | Volume flow limiter, especially for a motor vehicle fuel pump, has a pressure return line connected to the narrow part of a venturi mounted in the outlet from the flow limiter and connected to the counter-pressure chamber |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| 121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 14701346 Country of ref document: EP Kind code of ref document: A1 |
|
| WWE | Wipo information: entry into national phase |
Ref document number: 2014701346 Country of ref document: EP |
|
| ENP | Entry into the national phase |
Ref document number: 2015554133 Country of ref document: JP Kind code of ref document: A |
|
| WWE | Wipo information: entry into national phase |
Ref document number: 14764303 Country of ref document: US |
|
| NENP | Non-entry into the national phase |
Ref country code: DE |
|
| ENP | Entry into the national phase |
Ref document number: 20157021400 Country of ref document: KR Kind code of ref document: A |