WO2014117622A1 - Methods and apparatuses for sending data and receiving data - Google Patents

Methods and apparatuses for sending data and receiving data Download PDF

Info

Publication number
WO2014117622A1
WO2014117622A1 PCT/CN2013/091113 CN2013091113W WO2014117622A1 WO 2014117622 A1 WO2014117622 A1 WO 2014117622A1 CN 2013091113 W CN2013091113 W CN 2013091113W WO 2014117622 A1 WO2014117622 A1 WO 2014117622A1
Authority
WO
WIPO (PCT)
Prior art keywords
data
random sequence
data frame
length
unique
Prior art date
Application number
PCT/CN2013/091113
Other languages
French (fr)
Chinese (zh)
Inventor
张昌明
肖振宇
刘颖
郁光辉
金德鹏
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2014117622A1 publication Critical patent/WO2014117622A1/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0078Avoidance of errors by organising the transmitted data in a format specifically designed to deal with errors, e.g. location
    • H04L1/0083Formatting with frames or packets; Protocol or part of protocol for error control

Definitions

  • the receiving end can know the length and content of the UW in the data frame by using blind detection.
  • a data transmitting apparatus is also provided, which is configured to implement the above-described embodiments and preferred embodiments, and has not been described again.
  • the term "unit” or “module” may implement a combination of software and/or hardware of a predetermined function.
  • the apparatus described in the following embodiments is preferably implemented in software, hardware, or a combination of software and hardware, is also possible and conceivable.
  • 4 is a block diagram showing a preferred structure of a data transmitting apparatus according to an embodiment of the present invention. As shown in FIG. 4, the method includes: a packaging unit 402 and a transmitting unit 404. The structure will be described below.
  • the encapsulating unit 402 is configured to encapsulate the data to be sent to obtain one or more data frames, where the data frame includes: DATA and UW arranged in phase, wherein the UW is composed of one or more repeated pseudo-random sequences;
  • Unit 404 coupled to encapsulation unit 402, is configured to transmit the one or more data frames.
  • the encapsulating unit 402 is further configured to determine, according to system requirements, whether a CP of a pseudo-random sequence needs to be added before one or more repeated pseudo-random sequences in the UW, wherein at most one CP is added to one UW. .
  • the data transmitting method and the data transmitting apparatus may be configured to transmit signals to the connected E-band communication physical layer.
  • the data sending method and device provided by the embodiments of the present invention are suitably configured as a connection-oriented transmission environment, and can implement fast capture and synchronization.
  • the methods and apparatus of the embodiments of the present invention for acquisition, frequency offset estimation, noise power estimation, channel estimation, and the like can be implemented in any UW, and the schemes provided in the background art can be implemented only in the header.
  • the data sending method and apparatus provided by the embodiments of the present invention facilitate step-by-step implementation of frequency offset extraction.
  • UW has the same pseudo-random sequence inside, and these same pseudo-random sequences are close, even at large Phase aliasing will not occur when the frequency is off, so the initial frequency offset can be extracted by comparison when the signal is received.
  • the UW of each BLK is exactly the same, and the two UWs are far apart, under the fine frequency offset. It is also possible to produce significant phase deviations. Therefore, after the initial frequency offset correction, the residual frequency offset can be extracted using the UW between the BLKs.
  • the data transmitting method and apparatus provided by the embodiments of the present invention can also facilitate the estimation of the noise power, and the simple noise power estimation also needs two identical sequences, and is compared in the received signal.
  • the number of segments of the random sequence (ie, the number of repetitions n) can be configured to different but uniform values, for example: the number of repetitions can be 2, 3, 4, etc., and the random sequence can also be PN, Golay, Zadoff-Chu, etc.
  • the length of the random sequence can also be configured according to the actual situation.
  • the length of the DATA part and the modulation method can also be configured as needed.
  • the parameters of the specific configuration can be configured according to the configuration in Table 1: Table 1
  • Preferred Embodiment 3 As shown in Fig. 7, in the preferred embodiment, three data frames are included, each of which contains T BLKs.
  • the UW of the first data frame is composed of two PN sequences plus CP
  • the UW of the second data frame is composed of three ZC sequences
  • the UW of the third data frame is composed of three Ga32 (Golay sequence) plus CP.
  • the parameters of the specific configuration can be configured according to the configuration in Table 3:

Abstract

Disclosed are methods and apparatuses for sending data and receiving data. The method for sending data comprises: encapsulating to-be-sent data to obtain one or more data frames, the foregoing data frames comprising a data information block and a special word arranged in a spaced manner and the foregoing special word being formed by one or more repeated pseudo random sequence; and sending the foregoing one or more data frames. By means of the present invention, the technical problem is solved that a data sending method in a related technology cannot be used in a connection-oriented communications scenario, and technical effects of functions such as rapid capture, carrier synchronization, channel estimation, data protection and phase tracking are achieved.

Description

数据发送、 数据接收方法和装置  Data transmission, data receiving method and device
技术领域 本发明涉及通信领域, 具体而言, 涉及一种数据发送、 数据接收方法和装置。 背景技术 E-band包含了两个无信道化的频段: 71-76 GHz及 81-86 GHz。 与其它频段相比,TECHNICAL FIELD The present invention relates to the field of communications, and in particular to a data transmission and data receiving method and apparatus. BACKGROUND OF THE INVENTION E-band contains two unchannelized frequency bands: 71-76 GHz and 81-86 GHz. Compared with other frequency bands,
E-band频段具有非常显著的优势, 主要表现在以下两个方面: The E-band band has a very significant advantage, mainly in the following two aspects:
1 ) 频带宽度达 10GHz, 这几乎是各种低频移动通信服务整个频带的近 50倍, 且 大大高于应用广泛的微波频段。 如此宽的频段使得全新一代的无线高速率传输具有实 现的可能性。 2) 通常在较低频率的微波频段频谱都会进行非常细致的再划分, 如在美国 FCC 将每一个微波波段都划分成为一系列不超过 50MHz的子频段,这种细致的划分最终限 制了信道的数据通量。然而, E-band被分为两个 5GHz频段之后就没有进一步划分, 5 GHz的带宽是最大微波波段的近 100倍, 且高于 60GHz和 90GHz频段, 因此 E-band 信号可以承载更多的数据。 E-band的传输信道主要是有视距模式 (Line of Sight, 简称为 LOS), 多径现象并 不明显, 所以不需要通过正交频分复用 (Orthogonal Frequency Division Multiplexing, 简称为 OFDM)等多载波方式来克服码间干扰; 另一方面, E-band通信频谱资源十分 丰富, 也不需要采用多载波调制来提高频谱利用率。 因此, 与多载波制式相比, 单载 波制式更适合于 E-band通信。 不过, 目前国际及国内对于 E-band均没有形成完整的 通信方案, 也没有相关背景对相应物理层信号发送方式进行设计。对于 60GHz毫米波 通信, 国际上及国内正掀起系统设计和方案研究的热潮。 E-band与 60GHz频段间隔较 近, 且均属于毫米波通信范畴。 下面以 IEEE 802.11ad标准组提出的单载波 60GHz物 理层信号发送方式作为背景技术进行简单介绍。单载波 60GHz毫米波通信的物理层信 号发送方式如图 1所示。 图 1中的结构是针对突发包通信环境进行设计的。 短训练序列域 (Short Training1) The bandwidth is up to 10 GHz, which is almost 50 times that of the entire frequency band of various low-frequency mobile communication services, and is much higher than the widely used microwave band. This wide frequency band makes it possible to implement a new generation of wireless high-rate transmission. 2) The spectrum in the microwave frequency band of the lower frequency is usually very finely re-divided. For example, in the US FCC, each microwave band is divided into a series of sub-bands not exceeding 50MHz. This detailed division ultimately limits the channel. Data throughput. However, E-band is not further divided after being divided into two 5GHz bands. The bandwidth of 5 GHz is nearly 100 times that of the maximum microwave band and higher than the 60 GHz and 90 GHz bands, so E-band signals can carry more data. . The transmission channel of the E-band is mainly Line of Sight (LOS). The multipath phenomenon is not obvious. Therefore, Orthogonal Frequency Division Multiplexing (OFDM) is not required. Multi-carrier mode to overcome inter-symbol interference; on the other hand, E-band communication spectrum resources are very rich, and multi-carrier modulation is not needed to improve spectrum utilization. Therefore, the single carrier mode is more suitable for E-band communication than the multi-carrier system. However, at present, there is no complete communication scheme for E-band at home and abroad, and there is no relevant background to design the corresponding physical layer signal transmission method. For 60 GHz millimeter wave communication, the international and domestic industry is setting off a wave of system design and solution research. The E-band is closer to the 60 GHz band and belongs to the millimeter wave communication category. The single-carrier 60 GHz physical layer signal transmission method proposed by the IEEE 802.11ad standard group is briefly introduced as a background art. The physical layer signal transmission method of single-carrier 60 GHz millimeter wave communication is shown in Fig. 1. The structure in Figure 1 is designed for burst packet communication environments. Short training sequence field (Short Training)
Field, 简称为 STF)将用于包到达检测、 AGC、 频偏估计、 时钟同步, 由 14个 Gal28 及 1个 -Gal28组成。 信道估计域 (Channel Estimation, 简称为 CE) 将用于信道响应 估计, 其由互补的 Golay序列 Gu512、 Gv512以及 Gvl28组成。 Header部分为数据包 的关键信息, 包括扰码器种子、 调制编码类型、 数据包长度、 数据包类型等。 数据块 (Block, 简称为 BLK) 由保护序列 (Guard Insertion, 简称为 GI)禾 B DATA组成, 其 中 DATA承载数据负载 (Payload)。 上述方案主要是针对突发包通信进行设计的,然而 E-band的通信环境将主要是一 种面向连接的应用,如果直接将图 1所示的物理层信号发送方式用于 E-band将会存在 较多的缺陷。 首先, 前导 (STF及 CE) 的处理至关重要, 如果前导部分数据出错, 后 面的整个数据包都无法正确接收, 同时这也无法实现系统的快速同步。其次, CE位于 BLK之前, 即信道估计在 Payload到达之前进行, 后面对 Payload部分均衡都信赖于 前导部分的信道估计结果, 如果信道出现时变, 均衡器将无法进行自适应调整。 正是 由于上述原因,导致上述相关技术中的数据发送方法无法应用于面向连接的通信场景。 针对上述的问题, 目前尚未提出有效的解决方案。 发明内容 本发明实施例提供了一种数据发送、 数据接收方法和装置, 以至少解决现有技术 中的数据发送方法无法应用于面向连接的通信场景的技术问题。 根据本发明实施例的一个方面, 提供了一种数据发送方法, 包括: 对待发送数据 进行封装得到一个或多个数据帧, 其中, 所述数据帧包括: 相间排列的数据信息块和 独特字, 其中, 所述独特字由一个或多个重复的伪随机序列构成; 发送所述一个或多 个数据帧。 优选地, 对待发送数据进行封装得到一个或多个数据帧还包括: 在所述独特字中 的所述一个或多个重复的伪随机序列之前添加循环前缀 (Cyclic prefix, 简称为 CP), 其中, 一个所述独特字中添加至多一个所述 CP。 优选地, 位于同一数据帧中的独特字的长度和内容是相同的, 位于不同数据帧的 中的独特字的长度和内容是相同的或者是不同的。 优选地,位于同一数据帧中的一个或多个数据信息块的长度和调制方式是相同的, 位于不同数据帧中的数据信息块的长度和调制方式是相同或者不同的。 优选地, 各个所述数据帧中数据信息块的长度和调制方式与位于该数据帧中的独 特字是一一对应的。 优选地, 所述伪随机序列包括以下至少之一: PN随机序列、 Golay随机序列、 ZC 随机序列。 优选地, 一个所述独特字和一个所述数据信息块组成一个数据块, 所述一个或多 个数据帧中的各个数据帧是由一个或多个所述数据块组成的。 优选地, 所述独特字用于实现以下至少之一的功能: 捕获、 载波同步、信道估计、 数据保护、 相位跟踪。 优选地, 应用于面向连接的 E-band通信物理层的信号发送。 根据本发明实施例的另一方面, 提供了一种数据接收方法, 包括: 接收数据帧, 其中, 所述数据帧包括: 相间排列的数据信息块和独特字, 其中, 所述独特字由一个 或多个重复的伪随机序列构成; 对所述数据帧进行解封装得到所述数据帧中携带的数 据。 优选地, 所述独特字中的所述一个或多个重复的伪随机序列之前还添加有循环前 缀 CP, 其中, 一个所述独特字中添加至多一个所述 CP。 优选地, 各个所述数据帧中数据信息块的长度和调制方式与位于该数据帧中的独 特字是一一对应的。 优选地, 所述伪随机序列包括以下至少之一: PN随机序列、 Golay随机序列、 ZC 随机序列。 优选地, 应用于面向连接的 E-band通信物理层的信号接收。 根据本发明实施例的另一方面, 提供了一种数据发送装置, 包括: 封装单元, 设 置为对待发送数据进行封装得到一个或多个数据帧, 其中, 所述数据帧包括: 相间排 列的数据信息块和独特字, 其中, 所述独特字由一个或多个重复的伪随机序列构成; 发送单元, 设置为发送所述一个或多个数据帧。 优选地, 所述独特字中的所述一个或多个重复的伪随机序列之前还添加有循环前 缀 CP, 其中, 一个所述独特字中添加至多一个所述 CP。 优选地, 各个所述数据帧中数据信息块的长度和调制方式与位于该数据帧中的独 特字是一一对应的。 优选地, 所述伪随机序列包括以下至少之一: PN随机序列、 Golay随机序列、 ZC 随机序列。 根据本发明实施例的另一方面, 提供了一种数据接收装置, 包括: 接收单元, 设 置为接收数据帧, 其中, 所述数据帧包括: 相间排列的的数据信息块和独特字, 其中, 所述独特字由一个或多个重复的伪随机序列构成; 解封装单元, 设置为对所述数据帧 进行解封装得到所述数据帧中携带的数据。 优选地, 所述独特字中的所述一个或多个重复的伪随机序列之前还添加有循环前 缀 CP, 其中, 一个所述独特字中添加至多一个所述 CP。 优选地, 各个所述数据帧中数据信息块的长度和调制方式与位于该数据帧中的独 特字是一一对应的。 优选地, 所述伪随机序列包括以下至少之一: PN随机序列、 Golay随机序列、 ZC 随机序列。 在本发明实施例中, 对待发送的数据进行封装最终得到独字字和数据信息相间排 列的数据帧, 然后发送该数据帧, 因该数据帧的组成格式是独特字和数据信息相间排 列从而解决了相关技术中的数据发送方法无法应用于面向连接的通信场景的技术问 题, 达到了实现快速捕获、 载波同步、 信道估计、 数据保护、 相位跟踪等功能的技术 效果。 附图说明 此处所说明的附图用来提供对本发明的进一步理解, 构成本申请的一部分, 本发 明的示意性实施例及其说明用于解释本发明, 并不构成对本发明的不当限定。 在附图 中- 图 1是根据相关技术的物理层信号发送方式的示意图; 图 2是根据本发明实施例的数据发送方法的一种优选流程图; 图 3是根据本发明实施例的物理层信号发送方式的一种优选示意图; 图 4是根据本发明实施例的数据发送装置的一种优选结构框图; 图 5是本发明的优选实施例 1的信号发送方式; 图 6是本发明的优选实施例 2的信号发送方式; 图 7是本发明的优选实施例 3的信号发送方式。 具体实施方式 下文中将参考附图并结合实施例来详细说明本发明。 需要说明的是, 在不冲突的 情况下, 本申请中的实施例及实施例中的特征可以相互组合。 本发明实施例提供了一种优选的数据发送方法, 如图 2所示, 该方法包括以下步 骤: 步骤 S202: 对待发送数据进行封装得到一个或多个数据帧, 其中, 上述数据帧包 括: 相间排列的数据信息块 (以下简称为 DATA)和独特字 (Unique Word, 以下简称 为 UW), 其中, 所述 UW由一个或多个重复的伪随机序列构成。 gp, UW由数段完全 相同的长度为 N的伪随机序列构成, 如图 3所示, δΡ, 位于同一 UW中的多个随机序 列是相同的, 优选地, 所谓的相同是内容和长度都是相同的。 步骤 S204: 发送所述一个或多个数据帧。 在上述优选实施方式中, 对待发送的数据进行封装最终得到 UW和 DATA相间排 列的数据帧, 然后发送该数据帧, 因该数据帧的组成格式是 UW和 DATA相间排列, 其中, UW采用了独特的重复的伪随机序列的设计从而解决了相关技术中的数据发送 方法无法应用于面向连接的通信场景的技术问题, 达到了实现快速捕获、 载波同步、 信道估计、 数据保护、 相位跟踪等功能的技术效果。 优选地, 本发明对应的帧结构如图 3 所示, 即相当于仅有背景技术中的数据块 (BLK)组成数据帧(即, 一个所述 UW和一个所述 DATA组成一个 BLK, 一个或多 个数据帧中的各个数据帧是由一个或多个所述 BLK组成的), 其中 UW用于实现相关 技术中捕获、 载波同步、 信道估计、 数据保护、 相位跟踪等功能, 例如, 可以用 UW 来取代实现短训练序列域 (STF)、 信道估计域 (CE)、 保护序列 (GI) 等的作用。 其中, UW中可以包含由数段完全相同的长度为 N的伪随机序列构成, 并根据需 要选择性地在 UW的头部添加长度为 M (M<N)的 CP, CP可以与伪随机序列序列的 后 M位完全相同。 此处 UW的作用主要有: (1 )通过数据匹配实现快速捕获; (2)较 为精确的频偏估计; (3 ) 相对准确的噪声功率估计, 也即为信噪比估计; (4) 信道估 计; (5 ) 在频域均衡时, 整个 UW还充当 BLK的循环前缀; (6) 定时同步及载波跟 踪。 通过这种方式克服了现有技术中的无法实现快速同步及实时信道估计的缺点, 解 决了现有技术中存在的频偏估计、 噪声功率估计及相位跟踪难以简单准确实现的技术 问题。 适用于面向连接的传输环境, 可以实现快速捕获及同步, 同时便于分步实现频 偏的提取, 便于噪声功率的估计, 可以实现更准确的相位跟踪。 DATA用于承载通信 负载, 可根据需要采用不同的调制编码方式。 在一个优选实施方式中, 还可以根据系统需求确定是否需要在 UW中的一个或多 个重复的伪随机序列之前添加伪随机序列的 CP。 在实际应用中, 是否添加 CP可以根 据信道状况等系统需求决定, 如果信道响应长度为 L, 需要满足 M+N-L>D, 其中, D 可以是可用于实现准确的频偏估计和噪声功率估计的余量。 优选的, 数据帧中 UW的长度和 DATA的长度需要进行合适的控制。 UW长度太 短, 势必会降低捕获、 同步等关键部分的性能; UW长度太长, 则系统传输的效率又 会降低。 因此, 选择 UW长度时需要在性能和效率上进行折衷, 此外, 在频域均衡中 为了方便快速傅立叶变换 (Fast Fourier Transform, 简称为 FFT) 或者是逆快速傅里叶 变换 (IFFT) 的实现, UW加 DATA的长度需设定为 2的整数次幂。 优选地, 上述 UW部分一般可以采用低阶调制, 以降低误码率并提高捕获、 同步 等关键模块的性能, 而 DATA部分可以采用不同的调制方式。 数据帧种类可分为单一 数据帧和多种数据帧组合发送。 上述 UW的长度及内容可以是变化的, 且不需要通知接收端, 接收端利用盲检测 即可知道这种变化。定义若干个 UW+DATA为数据帧,而一个 UW+DATA即一个 BLK 为一个单元, 在一个数据帧内, UW的内容及长度, DATA的长度及调制方式是一定 的, 而不同数据帧则可能发生变化。 优选地, UW中包含多个重复伪随机序列, 其中, 位于同一 UW中的伪随机序列 是相同的。 上述伪随机序列可以包括但不限于以下三种类型: PN随机序列、 Golay随 机序列、 ZC随机序列。 由上述内容可知, 位于同一数据帧中的一个或多个 UW的长度和内容是相同的, 然而, 位于不同数据帧中的 UW的长度和内容可以是不同的, 例如, 位于不同数据帧 中的 UW中的伪随机序列的类型是不同的, 或者重复的次数是不同的等等。 在一个优选实施方式中,位于同一数据帧中的 DATA的长度和调制方式是相同的, 而位于不同数据帧的中的 DATA的长度和内容可以是相同的也可以是是不同的。 为了实现每个数据帧中 DATA和 UW的对应,不同数据帧中的 DATA的长度和调 制方式的种类是固定的, 各个数据帧中 DATA的长度和调制方式与该数据帧中的 UW 是一一对应的。 在本实施例中还提供了一种数据接收方法, 包括: 接收数据帧, 其中, 所述数据 帧包括: 相相间排列的 DATA和 UW, 其中, UW由一个或多个重复的伪随机序列构 成; 对所述数据帧进行解封装得到所述数据帧中携带的数据。 相应的, 对应接收的数 据帧的格式如上述发送方法中数据帧的结构一致, 在此不再赘述。 优选地, 接收端利用盲检测即可知道数据帧中 UW的长度及内容。 在本实施例中还提供了一种数据发送装置, 该装置设置为实现上述实施例及优选 实施方式, 已经进行过说明的不再赘述。 如以下所使用的, 术语"单元"或者 "模块" 可以实现预定功能的软件和 /或硬件的组合。尽管以下实施例所描述的装置较佳地以软 件来实现, 但是硬件, 或者软件和硬件的组合的实现也是可能并被构想的。 图 4是根 据本发明实施例的数据发送装置的一种优选结构框图, 如图 4所示, 包括: 封装单元 402和发送单元 404, 下面对该结构进行说明。 封装单元 402, 设置为对待发送数据进行封装得到一个或多个数据帧, 其中, 所 述数据帧包括: 相间排列的 DATA和 UW, 其中, UW由一个或多个重复的伪随机序 列构成; 发送单元 404, 与封装单元 402耦合, 设置为发送所述一个或多个数据帧。 在一个优选实施方式中, 上述封装单元 402还设置为根据系统需求确定是否需要 在 UW中的一个或多个重复的伪随机序列之前添加伪随机序列的 CP,其中,一个 UW 中添加至多一个 CP。 在上述各个优选实施方式中, 上述数据发送方法和数据发送装置可以应设置为面 向连接的 E-band通信物理层的信号发送。 本发明实施例提供的数据发送方法和装置适设置为面向连接的传输环境, 可以实 现快速捕获及同步。 利用本发明实施例的方法和装置来捕获、 频偏估计、 噪声功率估 计以及信道估计等都可在任何 UW实现, 而背景技术中所提供的方案仅可以在包头才 可以得到实现。 优选的, 本发明实施例提供的数据发送方法和装置便于分步实现频偏的提取。 一 方面, UW 内部有相同的伪随机序列, 而这些相同的伪随机序列距离较近, 即使在大 频偏时都不会产生相位模糊, 因此在信号接收时可以通过比对提取初始频偏; 另一方 面, 各个 BLK的 UW是完全相同的, 而两段 UW相隔较远, 在微细频偏下也能产生 明显的相位偏差, 因此, 在初始频偏纠正后, 可以利用 BLK之间的 UW提取出残余 频偏。 本发明实施例提供的数据发送方法和装置还可以便于噪声功率的估计, 实现简单 的噪声功率估计也需两段相同的序列, 并在接收信号中进行比较得到。 然而, 如果两 段相同序列相隔较远, 它们的差异性不仅仅包含噪声信息, 也可能是由残余微小频偏、 相位噪声等造成,因此噪声功率提取并不准确。背景技术中两段 Gal28相隔长度为 128, 而本发明实施例的随机序列的长度可以比该长度小得多 (相应的 UW内部的两段随机 距离也小得多), 因此噪声功率的提取更加有效, 信噪比估计也更为准确。 可以实现更准确的相位跟踪, 在频域均衡时, 每个快 FFT窗口可以保证前后都至 少有一段相同的随机序列,这样在 IFFT后可在窗口前后都提取出一个相偏,然后通过 插值得到内部每个符号应该补偿的相位大小, 这可以较好地对抗残余载波偏差及相位 噪声的影响。 本发明还提供了几个优选实施方式来进一步对本发明进行解释, 但是值得注意的 是, 该优选实施例只是为了更好的描述本发明, 并不构成对本发明不当的限定。 优选实施方式 1 如图 5所示, 在本优选实施方式中, UW的长度及内容, DATA的长度及调制方 式都是不变的, 即, 只有一种数据帧结构, 而且在该数据帧的 UW中未添加 CP。 优选地, 随机序列的段数 (即重复数 n) 可以配置成不同但统一的值, 例如: 重 复数取 2、 3、 4等数值都可以, 随机序列也可采用 PN、 Golay、 Zadoff-Chu等任意形 式, 随机序列的长度也可以根据实际情况进行配置。 DATA部分的长度及调制方式也 可以按实际需要进行配置。 例如, 具体配置的参数可以按照表 1的配置方式进行: 表 1 Field, abbreviated as STF, will be used for packet arrival detection, AGC, frequency offset estimation, clock synchronization, and consists of 14 Gal28 and 1 -Gal28. The Channel Estimation (CE) will be used for channel response estimation, which consists of complementary Golay sequences Gu512, Gv512, and Gvl28. Header part is a packet Key information, including scrambler seed, modulation coding type, packet length, packet type, and so on. A block of data (Block, abbreviated as BLK) consists of a Guard Insertion (GI) and a B DATA, where DATA carries the data payload (Payload). The above scheme is mainly designed for burst packet communication. However, the communication environment of E-band will mainly be a connection-oriented application. If the physical layer signaling method shown in Figure 1 is directly used for E-band, There are many defects. First of all, the processing of the preamble (STF and CE) is very important. If the data of the leading part is wrong, the entire packet will not be received correctly, and this will not achieve fast synchronization of the system. Secondly, the CE is located before the BLK, that is, the channel estimation is performed before the Payload arrives. Later, the Payload partial equalization relies on the channel estimation result of the preamble. If the channel changes, the equalizer will not be adaptively adjusted. For the above reasons, the data transmission method in the above related art cannot be applied to a connection-oriented communication scenario. In response to the above problems, no effective solution has been proposed yet. SUMMARY OF THE INVENTION Embodiments of the present invention provide a data transmission and data receiving method and apparatus, to at least solve the technical problem that the data transmission method in the prior art cannot be applied to a connection-oriented communication scenario. According to an aspect of the embodiments of the present invention, a data sending method is provided, including: encapsulating a data to be sent to obtain one or more data frames, where the data frame includes: a data information block and a unique word arranged in an inter-phase manner, Wherein the unique word is composed of one or more repeated pseudo-random sequences; the one or more data frames are transmitted. Preferably, the encapsulating the data to be sent to obtain one or more data frames further comprises: adding a Cyclic Prefix (CP) to the one or more repeated pseudo-random sequences in the unique word, where Adding at most one of the CPs to one of the unique words. Preferably, the length and content of the unique words located in the same data frame are the same, and the length and content of the unique words located in different data frames are the same or different. Preferably, the length and modulation mode of one or more data information blocks located in the same data frame are the same, and the length and modulation mode of the data information blocks located in different data frames are the same or different. Preferably, the length and modulation mode of the data information block in each of the data frames are in one-to-one correspondence with the unique words located in the data frame. Preferably, the pseudo random sequence comprises at least one of the following: a PN random sequence, a Golay random sequence, and a ZC random sequence. Preferably, one of the unique words and one of the data information blocks constitute a data block, and each of the one or more data frames is composed of one or more of the data blocks. Preferably, the unique word is used to implement at least one of the following functions: acquisition, carrier synchronization, channel estimation, data protection, phase tracking. Preferably, it is applied to signal transmission of a connection-oriented E-band communication physical layer. According to another aspect of the embodiments of the present invention, a data receiving method is provided, including: receiving a data frame, where the data frame includes: a data information block and a unique word arranged in an inter-phase, wherein the unique word is Or a plurality of repeated pseudo-random sequences; decapsulating the data frame to obtain data carried in the data frame. Preferably, the one or more repeated pseudo-random sequences in the unique word are also preceded by a cyclic prefix CP, wherein at most one of the CPs is added to one of the unique words. Preferably, the length and modulation mode of the data information block in each of the data frames are in one-to-one correspondence with the unique words located in the data frame. Preferably, the pseudo random sequence comprises at least one of the following: a PN random sequence, a Golay random sequence, and a ZC random sequence. Preferably, it is applied to signal reception of a connection-oriented E-band communication physical layer. According to another aspect of the present invention, a data transmitting apparatus is provided, including: an encapsulating unit, configured to encapsulate one or more data frames to be sent, wherein the data frame includes: data arranged in phase An information block and a unique word, wherein the unique word is composed of one or more repeated pseudo-random sequences; and a transmitting unit configured to transmit the one or more data frames. Preferably, the one or more repeated pseudo-random sequences in the unique word are also preceded by a cyclic prefix CP, wherein at most one of the CPs is added to one of the unique words. Preferably, the length and modulation mode of the data information block in each of the data frames are in one-to-one correspondence with the unique words located in the data frame. Preferably, the pseudo random sequence comprises at least one of the following: a PN random sequence, a Golay random sequence, and a ZC random sequence. According to another aspect of the present invention, a data receiving apparatus is provided, including: a receiving unit, configured to receive a data frame, where the data frame includes: a data information block and a unique word arranged in an inter-phase, where The unique word is composed of one or more repeated pseudo-random sequences; a decapsulation unit is configured to decapsulate the data frame to obtain data carried in the data frame. Preferably, the one or more repeated pseudo-random sequences in the unique word are also preceded by a cyclic prefix CP, wherein at most one of the CPs is added to one of the unique words. Preferably, the length and modulation mode of the data information block in each of the data frames are in one-to-one correspondence with the unique words located in the data frame. Preferably, the pseudo random sequence comprises at least one of the following: a PN random sequence, a Golay random sequence, and a ZC random sequence. In the embodiment of the present invention, the data to be sent is encapsulated to finally obtain a data frame in which the unique word and the data information are arranged, and then the data frame is sent, because the format of the data frame is a unique word and the data information is arranged to solve the problem. The data transmission method in the related art cannot be applied to the technical problem of the connection-oriented communication scenario, and the technical effects of realizing functions such as fast acquisition, carrier synchronization, channel estimation, data protection, and phase tracking are achieved. BRIEF DESCRIPTION OF THE DRAWINGS The accompanying drawings, which are set to illustrate,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, 1 is a schematic diagram of a physical layer signal transmission manner according to the related art; FIG. 2 is a preferred flowchart of a data transmission method according to an embodiment of the present invention; FIG. 3 is a physical layer according to an embodiment of the present invention. FIG. 4 is a block diagram showing a preferred configuration of a data transmitting apparatus according to an embodiment of the present invention; FIG. 5 is a signal transmitting manner of a preferred embodiment 1 of the present invention; Figure 6 is a signal transmission method of a preferred embodiment 2 of the present invention; and Figure 7 is a signal transmission method of a preferred embodiment 3 of the present invention. BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, the present invention will be described in detail with reference to the accompanying drawings. It should be noted that the embodiments in the present application and the features in the embodiments may be combined with each other without conflict. An embodiment of the present invention provides a preferred data sending method. As shown in FIG. 2, the method includes the following steps: Step S202: Encapsulating a data to be sent to obtain one or more data frames, where the data frame includes: The arranged data information block (hereinafter referred to as DATA) and the unique word (Unique Word, hereinafter referred to as UW), wherein the UW is composed of one or more repeated pseudo-random sequences. Gp, UW is composed of several identical pseudo-random sequences of length N. As shown in Fig. 3, δΡ, a plurality of random sequences located in the same UW are the same. Preferably, the so-called same content and length are Are the same. Step S204: Send the one or more data frames. In the above preferred embodiment, the data to be transmitted is encapsulated to finally obtain a data frame arranged between the UW and the DATA, and then the data frame is transmitted, because the format of the data frame is UW and DATA, wherein the UW adopts a unique The design of the repeated pseudo-random sequence solves the technical problem that the data transmission method in the related art cannot be applied to the connection-oriented communication scenario, and achieves functions of fast acquisition, carrier synchronization, channel estimation, data protection, phase tracking, and the like. Technical effects. Preferably, the corresponding frame structure of the present invention is as shown in FIG. 3, that is, equivalent to only the data block (BLK) in the background art constitutes a data frame (ie, one UW and one DATA constitute one BLK, one or Each of the plurality of data frames is composed of one or more of the BLKs, wherein the UW is used to implement functions such as acquisition, carrier synchronization, channel estimation, data protection, phase tracking, etc. in the related art, for example, UW replaces the role of implementing short training sequence (STF), channel estimation domain (CE), guard sequence (GI), and so on. The UW may be composed of a plurality of pseudo-random sequences of the same length N, and optionally add a CP of length M (M<N) to the head of the UW as needed, and the CP may be combined with a pseudo-random sequence. The last M bits of the sequence are identical. Here, UW's main functions are: (1) fast acquisition by data matching; (2) more accurate frequency offset estimation; (3) relatively accurate noise power estimation, which is also SNR estimation; (4) channel Estimate; (5) In frequency domain equalization, the entire UW also acts as a cyclic prefix for BLK; (6) Timing synchronization and carrier tracking. In this way, the shortcomings of the prior art that cannot achieve fast synchronization and real-time channel estimation are overcome, and the technical problems that the frequency offset estimation, the noise power estimation and the phase tracking existing in the prior art are difficult to implement accurately and accurately are solved. It is suitable for connection-oriented transmission environment, which can realize fast capture and synchronization. At the same time, it is easy to realize frequency offset extraction step by step, which is convenient for noise power estimation and can achieve more accurate phase tracking. DATA is used to carry the communication load, and different modulation and coding methods can be used as needed. In a preferred embodiment, it may also be determined according to system requirements whether a CP of a pseudo-random sequence needs to be added before one or more repeated pseudo-random sequences in the UW. In practical applications, whether or not to add a CP can be determined according to system requirements such as channel conditions. If the channel response length is L, M+NL>D needs to be satisfied, where D can be used to achieve accurate frequency offset estimation and noise power estimation. margin. Preferably, the length of the UW and the length of the DATA in the data frame require appropriate control. The UW length is too short, which will inevitably reduce the performance of key parts such as capture and synchronization. If the UW length is too long, the system transmission efficiency will decrease. Therefore, the choice of UW length requires a compromise between performance and efficiency. In addition, in the frequency domain equalization, in order to facilitate the implementation of Fast Fourier Transform (FFT) or Inverse Fast Fourier Transform (IFFT), The length of the UW plus DATA needs to be set to an integer power of two. Preferably, the UW portion can generally adopt low-order modulation to reduce the bit error rate and improve the performance of key modules such as capture and synchronization, and the DATA portion can adopt different modulation modes. The data frame type can be divided into a single data frame and a plurality of data frame combinations. The length and content of the above UW can be changed, and there is no need to notify the receiving end, and the receiving end can know the change by blind detection. Define a number of UW+DATA as data frames, and a UW+DATA is a BLK as a unit. Within a data frame, the content and length of the UW, the length and modulation of the DATA are certain, and different data frames may A change has occurred. Preferably, the UW includes a plurality of repeated pseudo-random sequences, wherein the pseudo-random sequences located in the same UW are the same. The above pseudo-random sequence may include, but is not limited to, the following three types: a PN random sequence, a Golay random sequence, and a ZC random sequence. It can be seen from the above that the length and content of one or more UWs located in the same data frame are the same, however, the length and content of the UWs located in different data frames may be different, for example, located in different data frames. The types of pseudo-random sequences in the UW are different, or the number of repetitions is different, and so on. In a preferred embodiment, the length and modulation of the DATA located in the same data frame are the same, and the length and content of the DATA located in different data frames may be the same or different. In order to achieve the correspondence between DATA and UW in each data frame, the length of DATA and the type of modulation in different data frames are fixed, and the length and modulation mode of DATA in each data frame are one-by-one with UW in the data frame. corresponding. In this embodiment, a data receiving method is further provided, including: receiving a data frame, where the data frame includes: DATA and UW arranged in phase, wherein the UW is composed of one or more repeated pseudo-random sequences Decapsulating the data frame to obtain data carried in the data frame. Correspondingly, the format of the data frame corresponding to the received data is the same as the structure of the data frame in the foregoing sending method, and details are not described herein again. Preferably, the receiving end can know the length and content of the UW in the data frame by using blind detection. In this embodiment, a data transmitting apparatus is also provided, which is configured to implement the above-described embodiments and preferred embodiments, and has not been described again. As used hereinafter, the term "unit" or "module" may implement a combination of software and/or hardware of a predetermined function. Although the apparatus described in the following embodiments is preferably implemented in software, hardware, or a combination of software and hardware, is also possible and conceivable. 4 is a block diagram showing a preferred structure of a data transmitting apparatus according to an embodiment of the present invention. As shown in FIG. 4, the method includes: a packaging unit 402 and a transmitting unit 404. The structure will be described below. The encapsulating unit 402 is configured to encapsulate the data to be sent to obtain one or more data frames, where the data frame includes: DATA and UW arranged in phase, wherein the UW is composed of one or more repeated pseudo-random sequences; Unit 404, coupled to encapsulation unit 402, is configured to transmit the one or more data frames. In a preferred embodiment, the encapsulating unit 402 is further configured to determine, according to system requirements, whether a CP of a pseudo-random sequence needs to be added before one or more repeated pseudo-random sequences in the UW, wherein at most one CP is added to one UW. . In each of the above preferred embodiments, the data transmitting method and the data transmitting apparatus may be configured to transmit signals to the connected E-band communication physical layer. The data sending method and device provided by the embodiments of the present invention are suitably configured as a connection-oriented transmission environment, and can implement fast capture and synchronization. The methods and apparatus of the embodiments of the present invention for acquisition, frequency offset estimation, noise power estimation, channel estimation, and the like can be implemented in any UW, and the schemes provided in the background art can be implemented only in the header. Preferably, the data sending method and apparatus provided by the embodiments of the present invention facilitate step-by-step implementation of frequency offset extraction. On the one hand, UW has the same pseudo-random sequence inside, and these same pseudo-random sequences are close, even at large Phase aliasing will not occur when the frequency is off, so the initial frequency offset can be extracted by comparison when the signal is received. On the other hand, the UW of each BLK is exactly the same, and the two UWs are far apart, under the fine frequency offset. It is also possible to produce significant phase deviations. Therefore, after the initial frequency offset correction, the residual frequency offset can be extracted using the UW between the BLKs. The data transmitting method and apparatus provided by the embodiments of the present invention can also facilitate the estimation of the noise power, and the simple noise power estimation also needs two identical sequences, and is compared in the received signal. However, if the two sequences of the same sequence are far apart, their difference does not only include noise information, but also may be caused by residual small frequency offset, phase noise, etc., so the noise power extraction is not accurate. In the background, the length of the two segments of Gal28 is 128, and the length of the random sequence in the embodiment of the present invention can be much smaller than the length (the two random intervals within the corresponding UW are also much smaller), so the noise power is extracted more. Effective, signal-to-noise ratio estimates are also more accurate. More accurate phase tracking can be achieved. In the frequency domain equalization, each fast FFT window can guarantee at least one and the same random sequence before and after the IFFT, so that a phase offset can be extracted before and after the window after IFFT, and then obtained by interpolation. The internal phase of each symbol should be compensated for, which is better against the effects of residual carrier offset and phase noise. The invention is further described in the preferred embodiments of the invention, but it is intended that the preferred embodiments are not intended to limit the invention. Preferred Embodiment 1 As shown in FIG. 5, in the preferred embodiment, the length and content of the UW, the length of the DATA, and the modulation mode are all unchanged, that is, there is only one data frame structure, and the data frame is No CP is added to the UW. Preferably, the number of segments of the random sequence (ie, the number of repetitions n) can be configured to different but uniform values, for example: the number of repetitions can be 2, 3, 4, etc., and the random sequence can also be PN, Golay, Zadoff-Chu, etc. In any form, the length of the random sequence can also be configured according to the actual situation. The length of the DATA part and the modulation method can also be configured as needed. For example, the parameters of the specific configuration can be configured according to the configuration in Table 1: Table 1
Figure imgf000010_0001
因表 1中的 UW中的随机序列重复数 n为 4, 随机序列的尝试为 15, DATA长度 为 452, 4*15+452=512, 因此, 每个 BLK的长度就是 512, 正好是 2的整数次幂, 选 取这样的数据帧可以便于频域均衡时 FFT/IFFT的实现。 优选实例方式 2 如图 6所示, 在本优选实施方式中, UW的长度及内容, DATA的长度及调制方 式都是不变的, 即, 只有一种数据帧结构, 但在 UW头部添加了 CP。 同上述优选实施方式 1类似, 随机序列的段数 n也可以配置成不同但统一的值, 例如: 2、 3、 4等, 随机序列也可采用 PN、 Golay、 Zadoff-Chu等任意形式, 随机序 列的长度及 CP的长度也可以根据实际情况进行配置。 DATA部分的长度及调制方式也 可以按实际需要进行配置。 例如, 具体配置的参数可以按照表 2的配置方式进行: 表 2
Figure imgf000010_0001
Since the random sequence number n in the UW in Table 1 is 4, the random sequence attempt is 15, and the DATA length is 452, 4*15+452=512. Therefore, the length of each BLK is 512, which is exactly 2 Integer power, selecting such a data frame can facilitate the implementation of FFT/IFFT in frequency domain equalization. Preferred Embodiment 2 As shown in FIG. 6, in the preferred embodiment, the length and content of the UW, the length of the DATA, and the modulation mode are all unchanged, that is, there is only one data frame structure, but is added in the UW header. CP. Similar to the above preferred embodiment 1, the number of segments n of the random sequence can also be configured as different but uniform values, for example: 2, 3, 4, etc., the random sequence can also adopt any form such as PN, Golay, Zadoff-Chu, random sequence. The length and length of the CP can also be configured according to the actual situation. The length of the DATA part and the modulation method can also be configured as needed. For example, the parameters of the specific configuration can be configured according to the configuration in Table 2: Table 2
Figure imgf000011_0001
Figure imgf000011_0001
优选实施方式 3 如图 7所示,在本优选实施方式中,包含三种数据帧,每种数据帧包含 T个 BLK。 其中, 第一个数据帧的 UW由两段 PN序列加 CP构成, 第二个数据帧的 UW由三段 ZC序列构成, 第三个数据帧的 UW由三段 Ga32 (Golay序列)加 CP构成。 具体配置 的参数可以按照表 3的配置方式进行:  Preferred Embodiment 3 As shown in Fig. 7, in the preferred embodiment, three data frames are included, each of which contains T BLKs. The UW of the first data frame is composed of two PN sequences plus CP, the UW of the second data frame is composed of three ZC sequences, and the UW of the third data frame is composed of three Ga32 (Golay sequence) plus CP. . The parameters of the specific configuration can be configured according to the configuration in Table 3:
表 3 数据帧 1的 UW随机序列重复数 n 2 数据帧 1的 UW随机序列种类及长度 长度为 31的 PN序列 数据帧 1的 UW的 CP长度 18 数据帧 1的 DATA长度及调制方式 944, BPSK 数据帧 2的 UW随机序列重复数 n 3 数据帧 2的 UW随机序列种类及长度 长度为 20的 ZC序列 Table 3 UW random sequence repetition number of data frame 1 n 2 UW random sequence type of data frame 1 and CP length of length PN sequence data frame 1 UW of data frame 1 DATA length and modulation mode of data frame 1 944, BPSK UW random sequence repetition number of data frame 2 n 3 UW random sequence type of data frame 2 and ZC sequence of length 20
数据帧 2的 DATA长度及调制方式 964, QPSK 数据帧 3的 UW随机序列重复数 n 3 数据帧 3的 UW随机序列种类及长度 长度为 32的 Golay序列 数据帧 3的 UW的 CP长度 14 数据帧 3的 DATA长度及调制方式 1014, 16-QAM 在另外一个实施例中, 还提供了一种软件, 该软件用于执行上述实施例及优选实 施方式中描述的技术方案。 在另外一个实施例中, 还提供了一种存储介质, 该存储介质中存储有上述软件, 该存储介质包括但不限于: 光盘、 软盘、 硬盘、 可擦写存储器等。 从以上的描述中, 可以看出, 本发明实施例实现了如下技术效果: 对待发送的数 据进行封装最终得到 UW和 DATA相间排列的数据帧, 然后发送该数据帧, 因该数据 帧的组成格式是 UW和 DATA相间排列从而解决了相关技术中的数据发送方法无法应 用于面向连接的通信场景的技术问题, 达到了实现快速捕获、 载波同步、 信道估计、 数据保护、 相位跟踪等功能的技术效果。 显然, 本领域的技术人员应该明白, 上述的本发明的各模块或各步骤可以用通用 的计算装置来实现, 它们可以集中在单个的计算装置上, 或者分布在多个计算装置所 组成的网络上, 可选地, 它们可以用计算装置可执行的程序代码来实现, 从而, 可以 将它们存储在存储装置中由计算装置来执行, 并且在某些情况下, 可以以不同于此处 的顺序执行所示出或描述的步骤, 或者将它们分别制作成各个集成电路模块, 或者将 它们中的多个模块或步骤制作成单个集成电路模块来实现。 这样, 本发明不限制于任 何特定的硬件和软件结合。 以上所述仅为本发明的优选实施例而已, 并不用于限制本发明, 对于本领域的技 术人员来说, 本发明可以有各种更改和变化。 凡在本发明的精神和原则之内, 所作的 任何修改、 等同替换、 改进等, 均应包含在本发明的保护范围之内。 工业实用性 如上所述, 本发明实施例提供的一种数据发送、 数据接收方法和装置具有以 下有益效果: 对待发送的数据进行封装最终得到 UW和 DATA相间排列的数据帧, 然后发送该数据帧, 因该数据帧的组成格式是 UW和 DATA相间排列从而解决了相 关技术中的数据发送方法无法应用于面向连接的通信场景的技术问题, 达到了实现 快速捕获、 载波同步、 信道估计、 数据保护、 相位跟踪等功能的技术效果。 Data frame 2 DATA length and modulation mode 964, QPSK data frame 3 UW random sequence repetition number n 3 Data frame 3 UW random sequence type and length length 32 Golay sequence data frame 3 UW CP length 14 data frame 3 DATA Length and Modulation Mode 1014, 16-QAM In another embodiment, software is also provided for performing the technical solutions described in the above embodiments and preferred embodiments. In another embodiment, a storage medium is provided, the software being stored, including but not limited to: an optical disk, a floppy disk, a hard disk, a rewritable memory, and the like. From the above description, it can be seen that the embodiment of the present invention achieves the following technical effects: encapsulating the data to be transmitted, finally obtaining a data frame arranged between UW and DATA, and then transmitting the data frame, because the format of the data frame is UW and DATA are arranged to solve the technical problem that the data transmission method in the related art cannot be applied to the connection-oriented communication scenario, and the technical effects of realizing functions such as fast acquisition, carrier synchronization, channel estimation, data protection, and phase tracking are achieved. . Obviously, those skilled in the art should understand that the above modules or steps of the present invention can be implemented by a general-purpose computing device, which can be concentrated on a single computing device or distributed over a network composed of multiple computing devices. Alternatively, they may be implemented by program code executable by the computing device, such that they may be stored in the storage device by the computing device and, in some cases, may be different from the order herein. The steps shown or described are performed, or they are separately fabricated into individual integrated circuit modules, or a plurality of modules or steps are fabricated as a single integrated circuit module. Thus, the invention is not limited to any specific combination of hardware and software. The above is only the preferred embodiment of the present invention, and is not intended to limit the present invention, and various modifications and changes can be made to the present invention. Any modifications, equivalent substitutions, improvements, etc. made within the spirit and scope of the present invention are intended to be included within the scope of the present invention. Industrial Applicability As described above, a data transmission and data receiving method and apparatus provided by an embodiment of the present invention have the following beneficial effects: encapsulating data to be transmitted, finally obtaining a data frame in which UW and DATA are arranged, and then transmitting the data frame. Because the composition format of the data frame is UW and DATA interphase arrangement, the technical problem that the data transmission method in the related art cannot be applied to the connection-oriented communication scenario is solved, and the fast acquisition, carrier synchronization, channel estimation, and data protection are achieved. Technical effects of functions such as phase tracking.

Claims

权 利 要 求 书 Claim
1. 一种数据发送方法, 包括: A data transmission method, comprising:
对待发送数据进行封装得到一个或多个数据帧, 其中, 所述数据帧包括: 相间排列的数据信息块和独特字, 其中, 所述独特字由一个或多个重复的伪随 机序列构成;  Encapsulating the transmitted data to obtain one or more data frames, wherein the data frame comprises: a data information block and a unique word arranged in an inter-phase, wherein the unique word is composed of one or more repeated pseudo-random sequences;
发送所述一个或多个数据帧。  Sending the one or more data frames.
2. 根据权利要求 1所述的方法, 其中, 对待发送数据进行封装得到一个或多个数 据帧还包括: 2. The method according to claim 1, wherein the encapsulating the data to be sent to obtain one or more data frames further comprises:
在所述独特字中的所述一个或多个重复的伪随机序列之前添加循环前缀 CP, 其中, 一个所述独特字中添加至多一个所述 CP。  A cyclic prefix CP is added before the one or more repeated pseudo-random sequences in the unique word, wherein at most one of the CPs is added to one of the unique words.
3. 根据权利要求 1所述的方法, 其中, 位于同一数据帧中的独特字的长度和内容 是相同的,位于不同数据帧的中的独特字的长度和内容是相同的或者是不同的。 3. The method of claim 1, wherein the length and content of the unique words located in the same data frame are the same, and the length and content of the unique words located in the different data frames are the same or different.
4. 根据权利要求 1所述的方法, 其中, 位于同一数据帧中的一个或多个数据信息 块的长度和调制方式是相同的, 位于不同数据帧中的数据信息块的长度和调制 方式是相同或者不同的。 4. The method according to claim 1, wherein the length and modulation mode of one or more data information blocks located in the same data frame are the same, and the length and modulation mode of the data information block located in different data frames is Same or different.
5. 根据权利要求 1所述的方法, 其中, 各个所述数据帧中数据信息块的长度和调 制方式与位于该数据帧中的独特字是一一对应的。 The method according to claim 1, wherein the length and modulation manner of the data information block in each of the data frames are in one-to-one correspondence with the unique words located in the data frame.
6. 根据权利要求 1至 5中任一项所述的方法, 其中, 所述伪随机序列包括以下至 少之一: PN随机序列、 Golay随机序列、 ZC随机序列。 The method according to any one of claims 1 to 5, wherein the pseudo random sequence comprises at least one of the following: a PN random sequence, a Golay random sequence, and a ZC random sequence.
7. 根据权利要求 1至 5中任一项所述的方法, 其中, 一个所述独特字和一个所述 数据信息块组成一个数据块, 所述一个或多个数据帧中的各个数据帧是由一个 或多个所述数据块组成的。 The method according to any one of claims 1 to 5, wherein one of the unique words and one of the data information blocks constitute a data block, and each of the one or more data frames is Consists of one or more of the data blocks.
8. 根据权利要求 1至 5中任一项所述的方法, 其中, 所述独特字用于实现以下至 少之一的功能: 捕获、 载波同步、 信道估计、 数据保护、 相位跟踪。 The method according to any one of claims 1 to 5, wherein the unique word is used to implement at least one of the following functions: acquisition, carrier synchronization, channel estimation, data protection, phase tracking.
9. 根据权利要求 1至 5中任一项所述的方法, 其中, 应用于面向连接的 E-band通 信物理层的信号发送。 The method according to any one of claims 1 to 5, wherein the signalling is applied to a connection-oriented E-band communication physical layer.
10. 一种数据接收方法, 包括: 10. A method of receiving data, comprising:
接收数据帧, 其中, 所述数据帧包括: 相间排列的数据信息块和独特字, 其中, 所述独特字由一个或多个重复的伪随机序列构成;  Receiving a data frame, where the data frame includes: a data information block and a unique word arranged in an inter-phase, wherein the unique word is composed of one or more repeated pseudo-random sequences;
对所述数据帧进行解封装得到所述数据帧中携带的数据。  Decapsulating the data frame to obtain data carried in the data frame.
11. 根据权利要求 10所述的方法,其中,所述独特字中的所述一个或多个重复的伪 随机序列之前还添加有循环前缀 CP,其中, 一个所述独特字中添加至多一个所 述 CP。 11. The method of claim 10, wherein the one or more repeated pseudo-random sequences in the unique word are also preceded by a cyclic prefix CP, wherein one of the unique words is added to at most one Said CP.
12. 根据权利要求 10所述的方法,其中,各个所述数据帧中数据信息块的长度和调 制方式与位于该数据帧中的独特字是一一对应的。 12. The method of claim 10, wherein the length and modulation of the data information blocks in each of the data frames are in one-to-one correspondence with unique words located in the data frame.
13. 根据权利要求 10至 12中任一项所述的方法, 其中, 所述伪随机序列包括以下 至少之一: PN随机序列、 Golay随机序列、 ZC随机序列。 The method according to any one of claims 10 to 12, wherein the pseudo random sequence comprises at least one of the following: a PN random sequence, a Golay random sequence, and a ZC random sequence.
14. 根据权利要求 10至 12中任一项所述的装置, 其中, 应用于面向连接的 E-band 通信物理层的信号接收。 The apparatus according to any one of claims 10 to 12, wherein the signal is applied to a connection-oriented E-band communication physical layer.
15. 一种数据发送装置, 包括: 15. A data transmitting device, comprising:
封装单元, 设置为对待发送数据进行封装得到一个或多个数据帧, 其中, 所述数据帧包括: 相间排列的数据信息块和独特字, 其中, 所述独特字由一个 或多个重复的伪随机序列构成;  Encapsulating unit, configured to encapsulate the data to be sent to obtain one or more data frames, where the data frame comprises: a data information block and a unique word arranged in an inter-phase, wherein the unique word is composed of one or more repeated pseudo Random sequence composition;
发送单元, 设置为发送所述一个或多个数据帧。  a sending unit, configured to send the one or more data frames.
16. 根据权利要求 15所述的装置,其中,所述独特字中的所述一个或多个重复的伪 随机序列之前还添加有循环前缀 CP,其中, 一个所述独特字中添加至多一个所 述 CP。 16. The apparatus of claim 15, wherein the one or more repeated pseudo-random sequences of the unique words are also preceded by a cyclic prefix CP, wherein one of the unique words is added to at most one Said CP.
17. 根据权利要求 15所述的装置,其中,各个所述数据帧中数据信息块的长度和调 制方式与位于该数据帧中的独特字是一一对应的。 17. Apparatus according to claim 15 wherein the length and modulation of the blocks of data information in each of said data frames are in one-to-one correspondence with unique words located in the data frame.
18. 根据权利要求 15至 17中任一项所述的装置, 其中, 所述伪随机序列包括以下 至少之一: PN随机序列、 Golay随机序列、 ZC随机序列。 The apparatus according to any one of claims 15 to 17, wherein the pseudo random sequence comprises at least one of the following: a PN random sequence, a Golay random sequence, and a ZC random sequence.
19. 一种数据接收装置, 包括: 接收单元, 设置为接收数据帧, 其中, 所述数据帧包括: 相间排列的的数 据信息块和独特字, 其中, 所述独特字由一个或多个重复的伪随机序列构成; 解封装单元, 设置为对所述数据帧进行解封装得到所述数据帧中携带的数 据。 19. A data receiving device, comprising: a receiving unit, configured to receive a data frame, where the data frame includes: a data information block and a unique word arranged in an inter-phase, wherein the unique word is composed of one or more repeated pseudo-random sequences; a decapsulation unit, The data frame is set to decapsulate to obtain data carried in the data frame.
20. 根据权利要求 19所述的装置,其中,所述独特字中的所述一个或多个重复的伪 随机序列之前还添加有循环前缀 CP,其中, 一个所述独特字中添加至多一个所 述 CP。 20. The apparatus of claim 19, wherein the one or more repeated pseudo-random sequences in the unique word are also preceded by a cyclic prefix CP, wherein one of the unique words is added to at most one Said CP.
21. 根据权利要求 19所述的装置,其中,各个所述数据帧中数据信息块的长度和调 制方式与位于该数据帧中的独特字是一一对应的。 根据权利要求 19至 21中任一项所述的装置, 其中, 所述伪随机序列包括以下 至少之一: PN随机序列、 Golay随机序列、 ZC随机序列。 21. Apparatus according to claim 19 wherein the length and modulation of the blocks of data information in each of said data frames are in one-to-one correspondence with unique words located in the data frame. The apparatus according to any one of claims 19 to 21, wherein the pseudo random sequence comprises at least one of: a PN random sequence, a Golay random sequence, and a ZC random sequence.
PCT/CN2013/091113 2013-01-31 2013-12-31 Methods and apparatuses for sending data and receiving data WO2014117622A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201310038408.3A CN103973398A (en) 2013-01-31 2013-01-31 Methods and devices for transmitting and receiving data
CN201310038408.3 2013-01-31

Publications (1)

Publication Number Publication Date
WO2014117622A1 true WO2014117622A1 (en) 2014-08-07

Family

ID=51242477

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/091113 WO2014117622A1 (en) 2013-01-31 2013-12-31 Methods and apparatuses for sending data and receiving data

Country Status (2)

Country Link
CN (1) CN103973398A (en)
WO (1) WO2014117622A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104125635A (en) * 2014-08-13 2014-10-29 中国科学院上海微系统与信息技术研究所 Synchronizing method and device suitable for E waveband wireless communication
CN106888076B (en) * 2015-12-15 2020-08-25 中兴通讯股份有限公司 Method and device for realizing synchronization in beam training
CN108449296B (en) * 2018-02-07 2021-01-08 南京理工大学 Short-time burst communication carrier synchronization method based on signal positive and negative sequence cyclic splicing
CN113726696A (en) * 2021-08-30 2021-11-30 中国电子科技集团公司第五十四研究所 Low-interception single carrier frequency domain equalization method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008034292A1 (en) * 2006-09-18 2008-03-27 Ming Yang Efficient frame structure for digital satellite communication
CN101340231A (en) * 2008-08-29 2009-01-07 清华大学 Timing synchronization method and system
CN101409694A (en) * 2008-11-06 2009-04-15 北京韦加航通科技有限责任公司 Method and system for implementing single carrier frequency domain equilibrium
CN101578829A (en) * 2007-03-21 2009-11-11 中兴通讯股份有限公司 A channel estimation method

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2334020B1 (en) * 2007-03-30 2013-03-06 Sony Deutschland Gmbh Wireless communication system

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008034292A1 (en) * 2006-09-18 2008-03-27 Ming Yang Efficient frame structure for digital satellite communication
CN101578829A (en) * 2007-03-21 2009-11-11 中兴通讯股份有限公司 A channel estimation method
CN101340231A (en) * 2008-08-29 2009-01-07 清华大学 Timing synchronization method and system
CN101409694A (en) * 2008-11-06 2009-04-15 北京韦加航通科技有限责任公司 Method and system for implementing single carrier frequency domain equilibrium

Also Published As

Publication number Publication date
CN103973398A (en) 2014-08-06

Similar Documents

Publication Publication Date Title
TWI669925B (en) Apparatus and method for scrambling control field information for wireless communications
US20230275695A1 (en) Waveform based data integrity check and error correction
JP5543466B2 (en) Common mode and unified frame format
KR101883920B1 (en) Method, apparatus and non-transitory computer-readable storage medium for generating and transmitting a signal unit
JP6122154B2 (en) Pulse shaping orthogonal frequency division multiplexing
KR101460107B1 (en) Method and System for changing cyclic prefix length in wireless communication system
JP5048845B2 (en) Transmission timing adjustment method, continuous packet transmission method, and mobile station
KR101576172B1 (en) Signal unit including a field indicative of a zero-length payload
BR112017017157B1 (en) DEVICE AND METHOD FOR AUTO-DETECTION OF WLAN PACKETS USING STF
US8665907B2 (en) Method of constructing a frame by multiplexing subframes having different CP length
JP2014529969A (en) Improved fragmentation for long packets in low-speed wireless networks
JP2014060745A (en) Codes and preambles for single carrier transmission and ofdm transmission
CN104901777A (en) Physical layer architecture for terahertz wireless network
JP2018512827A (en) Support for additional decoding processing time in wireless LAN systems
WO2014117622A1 (en) Methods and apparatuses for sending data and receiving data
CN101119350A (en) OFDM system, fast synchronous method and sending terminal equipment
WO2013004149A1 (en) Data transmission method and apparatus
TW200922229A (en) Method and apparatus for sensing signaling parameters in a wireless communications network
WO2018166496A1 (en) Method, device and system for use in wireless communication
WO2012024913A1 (en) Method, apparatus and system for transmitting, receiving and delivering data
WO2012109928A1 (en) Method, device, and system for processing signal
WO2018000924A1 (en) Frame transmission method and apparatus
WO2022161224A1 (en) Data transmission method, data receiving method, and related device
EP4348951A1 (en) Multiple symbol shift configuration
TW202231040A (en) Secure long training field (ltf) transmit window signaling

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13873643

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13873643

Country of ref document: EP

Kind code of ref document: A1