WO2014117393A1 - Resource mapping method and base station - Google Patents

Resource mapping method and base station Download PDF

Info

Publication number
WO2014117393A1
WO2014117393A1 PCT/CN2013/071280 CN2013071280W WO2014117393A1 WO 2014117393 A1 WO2014117393 A1 WO 2014117393A1 CN 2013071280 W CN2013071280 W CN 2013071280W WO 2014117393 A1 WO2014117393 A1 WO 2014117393A1
Authority
WO
WIPO (PCT)
Prior art keywords
cyclic
displacement value
cyclic displacement
particle group
sequence numbers
Prior art date
Application number
PCT/CN2013/071280
Other languages
French (fr)
Chinese (zh)
Inventor
张健
莫斯利·蒂姆
王轶
张翼
周华
Original Assignee
富士通株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士通株式会社 filed Critical 富士通株式会社
Priority to PCT/CN2013/071280 priority Critical patent/WO2014117393A1/en
Publication of WO2014117393A1 publication Critical patent/WO2014117393A1/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0014Three-dimensional division
    • H04L5/0016Time-frequency-code
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • H04L5/0051Allocation of pilot signals, i.e. of signals known to the receiver of dedicated pilots, i.e. pilots destined for a single user or terminal

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

Embodiments of the present invention provide a resource mapping method and a base station. A cyclic shift value is selected by the base station for an orthogonal frequency division multiplexing (OFDM) symbol in which a channel state information-reference signal (CSI-RS) can occurs, and a cyclic shift is performed on a sequence number of an enhanced Resource Element (RE) group in the OFDM symbol according to the cyclic shift value, each enhanced Control Channel Element (eCCE) can be ensured to have nearly same number of RE in resource mapping, and the difference on downlink control information (DCI) transmission performance is reduced.

Description

资源映射方法以及基站 技术领域  Resource mapping method and base station
本发明涉及一种通信领域, 特别涉及一种增强型物理下行控制信道的资源映射 方法以及基站。 背景技术 为适应异构网、 多点协作、 载波聚合等新场景需求, 控制信道在 LTE-A中进行 了增强,成为增强型物理下行控制信道(EPDCCH, Enhanced Physical Downlink Control Channel )。  The present invention relates to the field of communications, and in particular, to a resource mapping method and a base station of an enhanced physical downlink control channel. The control channel is enhanced in LTE-A to meet the requirements of a new scenario such as a heterogeneous network, a multi-point cooperation, and a carrier aggregation, and is an Enhanced Physical Downlink Control Channel (EPDCCH).
目前版本的 3GPP el.l l 标准中, 对于 EPDCCH 的资源映射做出如下规定: EPDCCH在物理下行共享信道 (PDSCH, Physical Downlink Shared Channel) 区域传 输; 将用于 EPDCCH传输的物理资源块对 (PRB pair) 划分为 16个增强型资源粒子 组 (eREG, enhanced Resource Element Group), 每个增强型控制信道粒子 (eCCE, enhanced Control Channel Element)由 4个或 8个 eREG构成, 即每个 PRB pair包含 4 个或 2个 eCCE;在一个 PRB pair内, eREG顺序映射至不包含解调参考信号(DM-RS) 的所有资源粒子 (RE, Resource Element) 资源。  In the current version of the 3GPP el.ll standard, the resource mapping of the EPDCCH is as follows: EPDCCH is transmitted in a Physical Downlink Shared Channel (PDSCH) area; a physical resource block pair (PRB pair) to be used for EPDCCH transmission Each of the enhanced control channel elements (eCCEs) consists of four or eight eREGs, that is, each PRB pair contains 4, which is divided into 16 enhanced resource element groups (eREGs). Or 2 eCCEs; within a PRB pair, the eREG sequence is mapped to all resource element (RE, Resource Element) resources that do not contain demodulation reference signals (DM-RS).
图 1给出了常规循环前缀(CP, Cyclic Prefix)子帧中,每个 eCCE包含 4个 eREG 情况下的 eREG资源映射示意。图 2给出了扩展 CP子帧中,每个 eCCE包含 8个 eREG 情况下的 eREG 资源映射示意。 图中所有序号为 x 的 RE 构成 eREGx , 其中 e {0,l,2,...,15}。  Figure 1 shows the eREG resource mapping in the case of a regular cyclic prefix (CP, Cyclic Prefix) sub-frame with 4 eREGs per eCCE. Figure 2 shows the mapping of eREG resources in the case of an eCCE with 8 eREGs in an extended CP subframe. All REs with the sequence number x in the figure constitute eREGx , where e {0,l,2,...,15}.
资源映射应尽可能保证各个 eCCE拥有相同数目的 RE,否则将造成不同下行控 制信息 (DCI, Downlink Control Information) 传输性能上的差异。 理想情况下, 图 1 中各个 eCCE尺寸 (即包含的 RE数目) 分别为 36、 36、 36、 36。  The resource mapping should ensure that each eCCE has the same number of REs as much as possible. Otherwise, the difference in transmission performance between different downlink control information (DCI, Downlink Control Information) will be caused. Ideally, each eCCE size (ie, the number of REs included) in Figure 1 is 36, 36, 36, 36, respectively.
但是, 发明人发现在现有方案中, 某些情况下 (例如参考信号的出现) 将打破 这一平衡, 资源映射不能保证各个 eCCE拥有相同数目的 RE。  However, the inventors have found that in existing solutions, in some cases (e.g., the presence of a reference signal) this balance will be broken, and resource mapping does not guarantee that each eCCE has the same number of REs.
应该注意,上面对技术背景的介绍只是为了方便对本发明的技术方案进行清楚、 完整的说明, 并方便本领域技术人员的理解而阐述的。不能仅仅因为这些方案在本发 明的背景技术部分进行了阐述而认为上述技术方案为本领域技术人员所公知。 发明内容  It should be noted that the above description of the technical background is only for the purpose of facilitating a clear and complete description of the technical solutions of the present invention, and is convenient for understanding by those skilled in the art. The above technical solutions are not considered to be well known to those skilled in the art simply because these solutions are set forth in the background section of the present invention. Summary of the invention
本发明实施例提供一种资源映射方法以及基站, 目的在于保证资源映射时各个 eCCE拥有几乎相同数目的 RE, 降低 DCI传输性能上的差异。  The embodiments of the present invention provide a resource mapping method and a base station, and the purpose is to ensure that each eCCE has almost the same number of REs when resource mapping is performed, and the difference in DCI transmission performance is reduced.
根据本发明实施例的一方面, 提供一种资源映射方法, 应用于增强型物理下行控 制信道, 所述方法包括: According to an aspect of the embodiments of the present invention, a resource mapping method is provided, which is applied to enhanced physical downlink control. Channel, the method includes:
基站对于常规循环前缀子帧中序号为 5、 6的 OFDM符号内的增强型资源粒子组 序号, 分别选择循环位移值为 {2, 3}、 {3, 2}、 {3, 4}或者 {4, 3};  The base station selects a cyclic shift value of {2, 3}, {3, 2}, {3, 4} or { for the enhanced resource particle group number in the OFDM symbol with sequence numbers 5 and 6 in the regular cyclic prefix subframe. 4, 3};
在每个物理资源块对内,将顺序编号的增强型资源粒子组序号映射到除解调参考 信号外的资源粒子上, 并根据所述循环位移值对所述常规循环前缀子帧 OFDM符号 内的增强型资源粒子组序号进行循环位移。  And mapping, in each physical resource block pair, the sequentially numbered enhanced resource particle group number to the resource particle except the demodulation reference signal, and according to the cyclic shift value, the OFDM symbol in the regular cyclic prefix subframe The enhanced resource particle group number is cyclically shifted.
根据本发明实施例的另一方面, 提供一种资源映射方法, 应用于增强型物理下行 控制信道, 所述方法包括:  According to another aspect of the present invention, a resource mapping method is provided, which is applied to an enhanced physical downlink control channel, where the method includes:
基站对于常规循环前缀子帧中序号为 12、 13的 OFDM符号内的增强型资源粒子 组序号, 分别选择循环位移值为 {2, 3}、 {3, 2}、 {3, 4}或者 {4, 3};  The base station selects a cyclic shift value of {2, 3}, {3, 2}, {3, 4} or { for the enhanced resource particle group number in the OFDM symbol with sequence numbers 12 and 13 in the regular cyclic prefix subframe. 4, 3};
在每个物理资源块对内,将顺序编号的增强型资源粒子组序号映射到除解调参考 信号外的资源粒子, 并根据所述循环位移值对所述常规循环前缀子帧 OFDM符号内 的增强型资源粒子组序号进行循环位移。  And mapping, within each physical resource block pair, the sequentially numbered enhanced resource particle group number to resource particles other than the demodulation reference signal, and according to the cyclic shift value, the OFDM symbol in the regular cyclic prefix subframe The enhanced resource particle group number is cyclically shifted.
根据本发明实施例的另一方面, 提供一种资源映射方法, 应用于增强型物理下行 控制信道, 所述方法包括:  According to another aspect of the present invention, a resource mapping method is provided, which is applied to an enhanced physical downlink control channel, where the method includes:
基站对于常规循环前缀子帧中序号为 9、 10的 OFDM符号内的增强型资源粒子 组序号, 分别选择第一循环位移值和第二循环位移值; 所述第一循环位移值和所述第 二循环位移值之差的绝对值为 0到 12之间的奇数;  The base station selects a first cyclic shift value and a second cyclic shift value respectively for the enhanced resource particle group number in the OFDM symbol with sequence numbers 9 and 10 in the regular cyclic prefix subframe; the first cyclic shift value and the first The absolute value of the difference between the two cyclic displacement values is an odd number between 0 and 12;
在每个物理资源块对内,将顺序编号的增强型资源粒子组序号映射到除解调参考 信号外的资源粒子, 并根据所述循环位移值对所述常规循环前缀子帧 OFDM符号内 的增强型资源粒子组序号进行循环位移。  And mapping, within each physical resource block pair, the sequentially numbered enhanced resource particle group number to resource particles other than the demodulation reference signal, and according to the cyclic shift value, the OFDM symbol in the regular cyclic prefix subframe The enhanced resource particle group number is cyclically shifted.
根据本发明实施例的另一方面, 提供一种资源映射方法, 应用于增强型物理下行 控制信道, 所述方法包括:  According to another aspect of the present invention, a resource mapping method is provided, which is applied to an enhanced physical downlink control channel, where the method includes:
基站对于常规循环前缀子帧中序号为 8、 10的 OFDM符号内的增强型资源粒子 组序号, 分别选择第三循环位移值和第二循环位移值; 所述第三循环位移值和所述第 二循环位移值之差的绝对值为 0到 12之间的奇数;  The base station selects a third cyclic shift value and a second cyclic shift value respectively for the enhanced resource particle group number in the OFDM symbol with sequence numbers 8 and 10 in the regular cyclic prefix subframe; the third cyclic shift value and the first The absolute value of the difference between the two cyclic displacement values is an odd number between 0 and 12;
在每个物理资源块对内,将顺序编号的增强型资源粒子组序号映射到除解调参考 信号外的资源粒子, 并根据所述循环位移值对所述常规循环前缀子帧 OFDM符号内 的增强型资源粒子组序号进行循环位移。  And mapping, within each physical resource block pair, the sequentially numbered enhanced resource particle group number to resource particles other than the demodulation reference signal, and according to the cyclic shift value, the OFDM symbol in the regular cyclic prefix subframe The enhanced resource particle group number is cyclically shifted.
根据本发明实施例的另一方面, 提供一种资源映射方法, 应用于增强型物理下行 控制信道, 所述方法包括:  According to another aspect of the present invention, a resource mapping method is provided, which is applied to an enhanced physical downlink control channel, where the method includes:
基站对于扩展循环前缀子帧中序号为 4、 5的 OFDM符号内的增强型资源粒子组 序号, 分别选择第四循环位移值和第五循环位移值; 所述第四循环位移值和所述第五 循环位移值之差的绝对值为 0到 12之间的奇数;  The base station selects a fourth cyclic shift value and a fifth cyclic shift value respectively for the enhanced resource particle group number in the OFDM symbol with sequence numbers 4 and 5 in the extended cyclic prefix subframe; the fourth cyclic shift value and the first The absolute value of the difference between the five cyclic displacement values is an odd number between 0 and 12;
在每个物理资源块对内,将顺序编号的增强型资源粒子组序号映射到除解调参考 信号外的资源粒子, 并根据所述循环位移值对所述扩展循环前缀子帧 OFDM符号内 的增强型资源粒子组序号进行循环位移。 In each physical resource block pair, the sequentially numbered enhanced resource particle group number is mapped to the demodulation reference And a resource particle outside the signal, and cyclically shifting the sequence of the enhanced resource particle group in the OFDM symbol of the extended cyclic prefix subframe according to the cyclic shift value.
根据本发明实施例的另一方面, 提供一种资源映射方法, 应用于增强型物理下行 控制信道, 所述方法包括:  According to another aspect of the present invention, a resource mapping method is provided, which is applied to an enhanced physical downlink control channel, where the method includes:
基站对于扩展循环前缀子帧中序号为 7、 8的 OFDM符号内的增强型资源粒子组 序号, 分别选择第六循环位移值和第七循环位移值; 所述第六循环位移值和所述第七 循环位移值之差的绝对值为 0到 12之间的奇数;  The base station selects a sixth cyclic shift value and a seventh cyclic shift value respectively for the enhanced resource particle group number in the OFDM symbol with sequence numbers 7 and 8 in the extended cyclic prefix subframe; the sixth cyclic shift value and the first The absolute value of the difference between the seven cyclic displacement values is an odd number between 0 and 12;
在每个物理资源块对内,将顺序编号的增强型资源粒子组序号映射到除解调参考 信号外的资源粒子, 并根据所述循环位移值对所述扩展循环前缀子帧 OFDM符号内 的增强型资源粒子组序号进行循环位移。  And mapping, within each physical resource block pair, the sequentially numbered enhanced resource particle group number to resource particles other than the demodulation reference signal, and according to the cyclic shift value, the extended cyclic prefix subframe within the OFDM symbol The enhanced resource particle group number is cyclically shifted.
根据本发明实施例的另一方面, 提供一种资源映射方法, 应用于增强型物理下行 控制信道, 所述方法包括:  According to another aspect of the present invention, a resource mapping method is provided, which is applied to an enhanced physical downlink control channel, where the method includes:
基站对于扩展循环前缀子帧中序号为 10、 11的 OFDM符号内的增强型资源粒子 组序号, 分别选择第八循环位移值和第九循环位移值; 所述第八循环位移值和所述第 九循环位移值之差的绝对值为 0到 12之间的奇数;  The base station selects an eighth cyclic shift value and a ninth cyclic shift value respectively for the enhanced resource particle group number in the OFDM symbol with sequence numbers 10 and 11 in the extended cyclic prefix subframe; the eighth cyclic shift value and the first The absolute value of the difference between the nine cyclic displacement values is an odd number between 0 and 12;
在每个物理资源块对内,将顺序编号的增强型资源粒子组序号映射到除解调参考 信号外的资源粒子, 并根据所述循环位移值对所述扩展循环前缀子帧 OFDM符号内 的增强型资源粒子组序号进行循环位移。  And mapping, within each physical resource block pair, the sequentially numbered enhanced resource particle group number to resource particles other than the demodulation reference signal, and according to the cyclic shift value, the extended cyclic prefix subframe within the OFDM symbol The enhanced resource particle group number is cyclically shifted.
根据本发明实施例的另一方面, 提供一种基站, 所述基站包括:  According to another aspect of the embodiments of the present invention, a base station is provided, where the base station includes:
选择单元, 对于常规循环前缀子帧中序号为 5、 6的 OFDM符号内的增强型资源 粒子组序号, 分别选择循环位移值为 {2, 3}、 {3, 2}、 {3, 4}或者 {4, 3}; 或者, 对 于所述常规循环前缀子帧中序号为 12、13的 OFDM符号内的增强型资源粒子组序号, 分别选择循环位移值为 {2, 3}、 {3, 2}、 {3, 4}或者 {4, 3}; 或者, 对于所述常规循 环前缀子帧中序号为 9、 10的 OFDM符号内的增强型资源粒子组序号, 分别选择第 一循环位移值和第二循环位移值;所述第一循环位移值和所述第二循环位移值之差的 绝对值为 0到 12之间的奇数; 或者, 对于所述常规循环前缀子帧中序号为 8、 10的 OFDM 符号内的增强型资源粒子组序号, 分别选择第三循环位移值和第二循环位移 值;所述第三循环位移值和所述第二循环位移值之差的绝对值为 0到 12之间的奇数; 映射单元, 在每个物理资源块对内, 将顺序编号的增强型资源粒子组序号映射到 除解调参考信号外的资源粒子, 并根据所述循环位移值对所述常规循环前缀子帧 OFDM符号内的增强型资源粒子组序号进行循环位移。  The selection unit selects the cyclic displacement values {2, 3}, {3, 2}, {3, 4} for the enhanced resource particle group numbers in the OFDM symbols with sequence numbers 5 and 6 in the regular cyclic prefix subframe. Or {4, 3}; or, for the enhanced resource particle group number in the OFDM symbol with sequence numbers 12 and 13 in the regular cyclic prefix subframe, respectively, the cyclic displacement values are selected as {2, 3}, {3, 2}, {3, 4} or {4, 3}; or, for the enhanced resource particle group number in the OFDM symbol with sequence numbers 9, 10 in the regular cyclic prefix subframe, respectively selecting the first cyclic shift value And a second cyclic displacement value; an absolute value of the difference between the first cyclic displacement value and the second cyclic displacement value is an odd number between 0 and 12; or, for the conventional cyclic prefix subframe, the serial number is 8 The enhanced resource particle group number in the OFDM symbol of 10, respectively selecting the third cyclic shift value and the second cyclic shift value; the absolute value of the difference between the third cyclic shift value and the second cyclic shift value is 0. Odd to between 12; mapping unit, in each Within the physical resource block pair, the sequentially numbered enhanced resource particle group number is mapped to resource particles other than the demodulation reference signal, and the enhanced type in the OFDM symbol of the regular cyclic prefix subframe according to the cyclic shift value The resource particle group number is cyclically shifted.
根据本发明实施例的另一方面, 提供一种基站, 所述基站包括:  According to another aspect of the embodiments of the present invention, a base station is provided, where the base station includes:
选择单元, 对于扩展循环前缀子帧中序号为 4、 5的 OFDM符号内的增强型资源 粒子组序号, 分别选择第四循环位移值和第五循环位移值; 所述第四循环位移值和所 述第五循环位移值之差的绝对值为 0到 12之间的奇数; 或者, 对于所述扩展循环前 缀子帧中序号为 7、 8的 OFDM符号内的增强型资源粒子组序号, 分别选择第六循环 位移值和第七循环位移值;所述第六循环位移值和所述第七循环位移值之差的绝对值 为 0到 12之间的奇数; 或者, 对于所述扩展循环前缀子帧中序号为 10、 11的 OFDM 符号内的增强型资源粒子组序号, 分别选择第八循环位移值和第九循环位移值; 所述 第八循环位移值和所述第九循环位移值之差的绝对值为 0到 12之间的奇数。 a selecting unit, for selecting an enhanced resource particle group number in the OFDM symbol with sequence numbers 4 and 5 in the extended cyclic prefix subframe, respectively selecting a fourth cyclic shift value and a fifth cyclic shift value; the fourth cyclic shift value and the The absolute value of the difference between the fifth cyclic displacement values is an odd number between 0 and 12; or, before the expansion cycle An enhanced resource particle group number in an OFDM symbol with sequence numbers 7 and 8 in the suffix frame, respectively selecting a sixth cyclic shift value and a seventh cyclic shift value; the sixth cyclic shift value and the seventh cyclic shift value The absolute value of the difference is an odd number between 0 and 12; or, for the enhanced resource particle group number in the OFDM symbol with sequence numbers 10 and 11 in the extended cyclic prefix subframe, the eighth cyclic shift value is selected and a ninth cyclic displacement value; an absolute value of a difference between the eighth cyclic displacement value and the ninth cyclic displacement value is an odd number between 0 and 12.
映射单元, 在每个物理资源块对内, 将顺序编号的增强型资源粒子组序号映射到 除解调参考信号外的资源粒子, 并根据所述循环位移值对所述扩展循环前缀子帧 OFDM符号内的增强型资源粒子组序号进行循环位移。  a mapping unit, in each physical resource block pair, mapping the sequentially numbered enhanced resource particle group number to resource particles other than the demodulation reference signal, and performing the extended cyclic prefix subframe OFDM according to the cyclic shift value The enhanced resource particle group number within the symbol is cyclically shifted.
根据本发明实施例的另一方面, 提供一种通信系统, 所述通信系统包括如上所述 的基站。  According to another aspect of an embodiment of the present invention, a communication system is provided, the communication system comprising a base station as described above.
根据本发明实施例的又一个方面, 提供一种计算机可读程序, 其中当在基站中执 行所述程序时, 所述程序使得计算机在所述基站中执行如上所述的资源映射方法。  According to still another aspect of an embodiment of the present invention, a computer readable program is provided, wherein when the program is executed in a base station, the program causes a computer to perform a resource mapping method as described above in the base station.
根据本发明实施例的又一个方面, 提供一种存储有计算机可读程序的存储介质, 其中所述计算机可读程序使得计算机在基站中执行如上所述的资源映射方法。  According to still another aspect of an embodiment of the present invention, a storage medium storing a computer readable program, wherein the computer readable program causes a computer to perform a resource mapping method as described above in a base station.
本发明实施例的有益效果在于,通过对可能出现 CSI-RS的 OFDM符号选择循环 位移值, 根据循环位移值对 OFDM符号内的增强型资源粒子组序号进行循环位移, 可以保证资源映射时各个 eCCE拥有几乎相同数目的 RE, 减少 DCI传输性能上的差 参照后文的说明和附图, 详细公开了本发明的特定实施方式, 指明了本发明的 原理可以被采用的方式。 应该理解, 本发明的实施方式在范围上并不因而受到限制。 在所附权利要求的精神和条款的范围内, 本发明的实施方式包括许多改变、修改和等 同。  The beneficial effects of the embodiments of the present invention are: by selecting a cyclic shift value for an OFDM symbol in which a CSI-RS may occur, cyclically shifting the sequence of the enhanced resource particle group in the OFDM symbol according to the cyclic shift value, thereby ensuring each eCCE during resource mapping. Having almost the same number of REs, reducing the difference in DCI transmission performance Referring to the following description and the accompanying drawings, specific embodiments of the invention are disclosed in detail, and the manner in which the principles of the invention may be employed. It should be understood that the embodiments of the invention are not limited in scope. The embodiments of the present invention include many variations, modifications, and equivalents within the scope of the spirit and scope of the appended claims.
针对一种实施方式描述和 /或示出的特征可以以相同或类似的方式在一个或更 多个其它实施方式中使用, 与其它实施方式中的特征相组合, 或替代其它实施方式中 的特征。  Features described and/or illustrated with respect to one embodiment may be used in the same or similar manner in one or more other embodiments, in combination with, or in place of, features in other embodiments. .
应该强调, 术语"包括 /包含"在本文使用时指特征、 整件、 步骤或组件的存在, 但并不排除一个或更多个其它特征、 整件、 步骤或组件的存在或附加。 附图说明  It should be emphasized that the term "comprising" or "comprising" is used to mean the presence of a feature, component, step or component, but does not exclude the presence or addition of one or more other features, components, steps or components. DRAWINGS
参照以下的附图可以更好地理解本发明的很多方面。 附图中的部件不是成比例 绘制的, 而只是为了示出本发明的原理。 为了便于示出和描述本发明的一些部分, 附 图中对应部分可能被放大或缩小。  Many aspects of the invention can be better understood with reference to the following drawings. The components in the figures are not drawn to scale, but only to illustrate the principles of the invention. In order to facilitate the illustration and description of some parts of the invention, the corresponding parts in the drawings may be enlarged or reduced.
在本发明的一个附图或一种实施方式中描述的元素和特征可以与一个或更多个 其它附图或实施方式中示出的元素和特征相结合。 此外, 在附图中, 类似的标号表示 几个附图中对应的部件, 并可用于指示多于一种实施方式中使用的对应部件。 图 1是现有技术中常规 CP子帧的一示意图; Elements and features described in one of the figures or one embodiment of the invention may be combined with elements and features illustrated in one or more other figures or embodiments. In the accompanying drawings, like reference numerals refer to the 1 is a schematic diagram of a conventional CP subframe in the prior art;
图 2是现有技术中扩展 CP子帧的一示意图;  2 is a schematic diagram of an extended CP subframe in the prior art;
图 3是一种 4端口 CSI-RS配置下对 eREG映射造成影响的示例图;  FIG. 3 is a diagram showing an example of an impact on eREG mapping in a 4-port CSI-RS configuration;
图 4是现有技术中使用循环位移的一示意图;  Figure 4 is a schematic diagram of the use of cyclic displacement in the prior art;
图 5是本发明实施例 1的资源映射方法的一流程图;  FIG. 5 is a flowchart of a resource mapping method according to Embodiment 1 of the present invention; FIG.
图 6是本发明实施例 1的进行循环位移后的 eREG位置的一示意图; 图 7是本发明实施例 1的资源映射方法的另一流程图;  6 is a schematic diagram of an eREG position after performing cyclic shift according to Embodiment 1 of the present invention; FIG. 7 is another flowchart of a resource mapping method according to Embodiment 1 of the present invention;
图 8是本发明实施例 1的资源映射方法的另一流程图;  8 is another flowchart of a resource mapping method according to Embodiment 1 of the present invention;
图 9是本发明实施例 1的进行循环位移后的 eREG位置的另一示意图; 图 10是帧结构类型 2的常规 CP子帧中 CSI-RS位置的示意图;  FIG. 9 is another schematic diagram of the eREG position after cyclic shift according to Embodiment 1 of the present invention; FIG. 10 is a schematic diagram of a CSI-RS position in a conventional CP subframe of frame structure type 2;
图 11是本发明实施例 1的资源映射方法的另一流程图;  11 is another flowchart of a resource mapping method according to Embodiment 1 of the present invention;
图 12是本发明实施例 1的进行循环位移后的 eREG位置的另一示意图; 图 13是本发明实施例 1的进行条件组合之后的 eREG位置的一示意图; 图 14是本发明实施例 2的资源映射方法的一流程图;  FIG. 12 is another schematic diagram of the position of the eREG after cyclic shifting according to Embodiment 1 of the present invention; FIG. 13 is a schematic diagram of the position of the eREG after conditional combination according to Embodiment 1 of the present invention; FIG. 14 is a schematic diagram of the position of the eREG after the conditional combination of Embodiment 1 of the present invention; A flow chart of a resource mapping method;
图 15是本发明实施例 2的资源映射方法的另一流程图;  15 is another flowchart of a resource mapping method according to Embodiment 2 of the present invention;
图 16是本发明实施例 2的资源映射方法的另一流程图;  16 is another flowchart of a resource mapping method according to Embodiment 2 of the present invention;
图 17是本发明实施例 2的进行条件组合之后的 eREG位置的一示意图; 图 18是本发明实施例 3的基站的一构成示意图。 具体实施方式  Figure 17 is a schematic diagram showing the position of the eREG after the conditional combination of the embodiment 2 of the present invention; and Figure 18 is a block diagram showing the structure of the base station according to the third embodiment of the present invention. detailed description
参照附图, 通过下面的说明书, 本发明的前述以及其它特征将变得明显。 在说 明书和附图中, 具体公开了本发明的特定实施方式, 其表明了其中可以采用本发明的 原则的部分实施方式, 应了解的是, 本发明不限于所描述的实施方式, 相反, 本发明 包括落入所附权利要求的范围内的全部修改、 变型以及等同物。  The foregoing and other features of the invention will be apparent from the The specific embodiments of the present invention are disclosed in the specification and the drawings, which are illustrated in the embodiments of the invention The invention includes all modifications, variations and equivalents falling within the scope of the appended claims.
在一些情况下, 例如信道状态信息参考信号 (CSI-RS, Channel State Information In some cases, such as channel state information reference signals (CSI-RS, Channel State Information)
Reference Symbol) 出现的情况下, 资源映射可能不能保证各个 eCCE拥有相同数目 的 RE。 In the case of a Reference Symbol, resource mapping may not guarantee that each eCCE has the same number of REs.
图 3是一种 4-port CSI-RS配置下对 eREG映射造成影响的示例图。 如图 3所示, 常规 CP子帧中出现了 4端口 CSI-RS (4-port CSI-RS), 由于 CSI-RS占用的 RE不能 够被 EPDCCH使用, 因此 eCCEO到 eCCE3的尺寸变为 36、 34、 36、 34, 从而使得 eCCE尺寸不平衡。  Figure 3 is a diagram showing an example of the impact on eREG mapping in a 4-port CSI-RS configuration. As shown in FIG. 3, a 4-port CSI-RS (4-port CSI-RS) appears in a regular CP subframe. Since the RE occupied by the CSI-RS cannot be used by the EPDCCH, the size of the eCCEO to eCCE3 becomes 36. 34, 36, 34, thus making the eCCE size unbalanced.
为尽可能获得相对均衡的 eCCE尺寸, 在当前 eREG/eCCE划分基础上, 可以对 每个 OFDM符号引入循环位移。 例如, 令循环位移值 (cyclic shift) 等于 OFDM符 号的序号。  In order to obtain a relatively balanced eCCE size as much as possible, a cyclic shift can be introduced for each OFDM symbol based on the current eREG/eCCE partition. For example, let the cyclic shift equal the number of the OFDM symbol.
图 4是现有技术中使用循环位移的一示意图。如图 4所示, 这里循环位移的取值 范围为 0~11。 该方法能够保证被每个 2-port CSI- S所使用的 RE均来自 2个不同的 eCCE, 因而能够在一定程度上缓解 eCCE尺寸不平衡问题。 然而对于 4-port CSI-RS 配置, 仍存在 eCCE不平衡。 例如图 4所示, 在该 4-port CSI-RS配置下, eCCEO至 lj eCCE3所包含的 RE数目依次为 36、 34、 34、 36, 因此仍存在优化空间。 Figure 4 is a schematic illustration of the use of cyclic displacement in the prior art. As shown in Figure 4, the value of the cyclic displacement here The range is 0~11. The method can ensure that the REs used by each 2-port CSI-S are from two different eCCEs, so that the eCCE size imbalance problem can be alleviated to some extent. However, for 4-port CSI-RS configurations, there is still an eCCE imbalance. For example, as shown in FIG. 4, in the 4-port CSI-RS configuration, the number of REs included in eCCEO to lj eCCE3 is 36, 34, 34, 36 in order, so there is still room for optimization.
值得注意的是, 以上仅通过常规 CP子帧对目前存在的问题进行了举例说明, 对 于扩展 CP子帧也存在类似的问题。 以下对本发明进行详细说明, 无论 2-port CSI-RS 还是 4-port CSI-RS等, 本发明均可以保证各个 eCCE拥有相同数目的 RE。 实施例 1  It is worth noting that the above existing problems are only exemplified by conventional CP subframes, and similar problems exist for extended CP subframes. The present invention will be described in detail below. Regardless of the 2-port CSI-RS or the 4-port CSI-RS, the present invention can ensure that each eCCE has the same number of REs. Example 1
本发明实施例提供一种资源映射方法, 应用于 EPDCCH的资源映射。 本发明实 施例以常规 CP子帧为例, 对本发明的资源映射方法进行详细说明。  The embodiment of the invention provides a resource mapping method, which is applied to resource mapping of an EPDCCH. The embodiment of the present invention uses a conventional CP subframe as an example to describe the resource mapping method of the present invention in detail.
图 5是本发明实施例的资源映射方法的一流程图, 如图 5所示, 所述方法包括: 步骤 501, 基站对于常规循环前缀子帧中序号为 5、 6的 OFDM符号内的增强型 资源粒子组序号, 分别选择循环位移值为 {2, 3} 或者 {3, 2}、 或者 {3, 4}、 或者 {4, 3};  FIG. 5 is a flowchart of a resource mapping method according to an embodiment of the present invention. As shown in FIG. 5, the method includes: Step 501: An enhanced type in an OFDM symbol with sequence numbers 5 and 6 in a regular cyclic prefix subframe. Resource particle group number, select the cyclic displacement value as {2, 3} or {3, 2}, or {3, 4}, or {4, 3} respectively;
步骤 502, 在每个物理资源块对内, 将顺序编号的增强型资源粒子组序号映射到 除解调参考信号外的资源粒子, 然后根据循环位移值对常规循环前缀子帧 OFDM符 号内的增强型资源粒子组序号进行循环位移。  Step 502: In each physical resource block pair, map the sequentially numbered enhanced resource particle group number to the resource particle except the demodulation reference signal, and then perform enhancement on the regular cyclic prefix subframe OFDM symbol according to the cyclic shift value. The type of the resource particle group is cyclically shifted.
在本实施例中, 在每个物理资源块对内, 可以将所有顺序编号的增强型资源粒子 组序号, 按照先频后时的顺序映射到除 DM-RS外的资源粒子。 对于常规 CP子帧中 的 OFDM符号序号, 可以从 0至 13, 分为 14列, 每列包括 12个 RE。对于序号为 5、 6的 OFDM符号内的资源粒子, 一部分被 DMRS占用。具体内容可以参考现有技术。  In this embodiment, in each physical resource block pair, all sequentially numbered enhanced resource particle group numbers may be mapped to resource particles other than the DM-RS in the order of the prior frequency. For the OFDM symbol number in a regular CP subframe, it can be divided into 14 columns from 0 to 13, and each column includes 12 REs. For resource particles in OFDM symbols with sequence numbers 5 and 6, a portion is occupied by the DMRS. The specific content can refer to the prior art.
在本实施例中, 对于序号为 5、 6的 OFDM符号, 可以分别选择循环位移值。 选 择的循环位移值可以为 {2, 3} 或者 {3, 2}、 或者 {3, 4}、 或者 {4, 3}。 例如, 序号 为 5的 OFDM符号内的增强型资源粒子组序号选择循环位移值为 2, 则序号为 6的 OFDM符号内的增强型资源粒子组序号可以选择循环位移值为 3; 或者, 序号为 5的 OFDM符号内的增强型资源粒子组序号选择循环位移值为 4, 则序号为 6的 OFDM 符号内的增强型资源粒子组序号可以选择循环位移值为 3。  In this embodiment, for OFDM symbols of sequence numbers 5 and 6, the cyclic shift values can be selected separately. The selected cyclic shift value can be {2, 3} or {3, 2}, or {3, 4}, or {4, 3}. For example, if the enhanced resource particle group number in the OFDM symbol with sequence number 5 selects a cyclic shift value of 2, the enhanced resource particle group number in the OFDM symbol with sequence number 6 may select a cyclic shift value of 3; or, the sequence number is The enhanced resource particle group number selection within the OFDM symbol of 5 selects a cyclic shift value of 4, and the enhanced resource particle group number in the OFDM symbol with sequence number 6 can select a cyclic shift value of 3.
在本实施例中,基站可以根据选择的循环位移值,对常规 CP子帧某些 OFDM符 号内的增强型资源粒子组序号进行循环位移。其中,对于序号为 5、 6的 OFDM符号, 可用资源粒子是除 DMRS 占用资源粒子之外的其他资源粒子。 增强型资源粒子组序 号映射到可用资源粒子,之后根据选择的循环位移值对增强型资源粒子组序号进行循 环位移。  In this embodiment, the base station may cyclically shift the sequence number of the enhanced resource particle group in some OFDM symbols of the regular CP subframe according to the selected cyclic shift value. Wherein, for the OFDM symbols with sequence numbers 5 and 6, the available resource particles are resource particles other than the DMRS occupying resource particles. The enhanced resource particle group number is mapped to the available resource particles, and then the enhanced resource particle group number is cyclically shifted according to the selected cyclic displacement value.
并且, 对于其他 OFDM符号内的增强型资源粒子组序号可以采用现有的循环位 移值, 此处不再赘述。 然后, 按照位移后所确定的 eREG位置进行 EPDCCH的资源 映射。 关于可用资源粒子、 循环位移以及资源映射的具体内容可以参考现有技术。 图 6是本发明实施例的进行循环位移后的 eREG位置示意图,简单起见仅示出了 序号为 5、 6的 OFDM符号内的可用资源粒子, 而没有示出 DMRS占用的资源粒子。 如图 6所示, 方框示出了 CSI-RS可能的位置。 Moreover, the existing cyclic shift value may be used for the enhanced resource particle group sequence number in other OFDM symbols, and details are not described herein again. Then, the EPDCCH resource is performed according to the determined eREG position after the displacement. Mapping. Specific details regarding available resource particles, cyclic shifts, and resource mapping can be found in the prior art. FIG. 6 is a schematic diagram of the eREG position after cyclic shift according to an embodiment of the present invention. For simplicity, only the available resource particles in the OFDM symbols with sequence numbers 5 and 6 are shown, and the resource particles occupied by the DMRS are not shown. As shown in Figure 6, the box shows the possible locations of the CSI-RS.
如图 6所示, (A) 情况下, 序号为 5的 OFDM符号选择循环位移值为 2, 序号 为 6的 OFDM符号选择循环位移值为 3。 (B) 情况下, 序号为 5的 OFDM符号选择 循环位移值为 3, 序号为 6的 OFDM符号选择循环位移值为 2。 (C)情况下, 序号为 5的 OFDM符号选择循环位移值为 3, 序号为 6的 OFDM符号选择循环位移值为 4。 (D) 情况下, 序号为 5的 OFDM符号选择循环位移值为 4, 序号为 6的 OFDM符 号选择循环位移值为 3。  As shown in Fig. 6, in the case of (A), the OFDM symbol of sequence number 5 has a cyclic shift value of 2, and the OFDM symbol of sequence number 6 has a cyclic shift value of 3. (B) In the case, the OFDM symbol number 5 has a cyclic shift value of 3, and the OFDM symbol number 6 has a cyclic shift value of 2. In the case of (C), the OFDM symbol number 5 has a cyclic shift value of 3, and the OFDM symbol number 6 has a cyclic shift value of 4. (D) In the case, the OFDM symbol with sequence number 5 has a cyclic shift value of 4, and the OFDM symbol with sequence number 6 has a cyclic shift value of 3.
上述方法与图 4所示方法不同在于,图 4中被 4-port CSI-RS使用的 4个 RE仅来 自 2个不同的 eCCE (eCCEl、 eCCE2), 而图 5的方法可以满足每个 4-port CSI-RS 占用来自 4个不同 eCCE的 RE。 因此, 对于 PRB pair包含 4个 eCCE的配置, 在选 择循环位移时, 本发明综合考虑了 4-port CSI-RS情况对 eCCE尺寸的影响。  The above method differs from the method shown in FIG. 4 in that the four REs used by the 4-port CSI-RS in FIG. 4 are only from two different eCCEs (eCCEl, eCCE2), and the method of FIG. 5 can satisfy each 4- The port CSI-RS occupies REs from 4 different eCCEs. Therefore, for a configuration in which the PRB pair includes four eCCEs, the present invention comprehensively considers the influence of the 4-port CSI-RS condition on the eCCE size when selecting the cyclic shift.
图 7是本发明实施例的资源映射方法的另一流程图,如图 7所示,所述方法包括: 步骤 701, 基站对于常规循环前缀子帧中序号为 12、 13的 OFDM符号内的增强 型资源粒子组序号, 分别选择循环位移值为 {2, 3} 或者 {3, 2}、 或者 {3, 4}、 或者 {4, 3};  FIG. 7 is another flowchart of a resource mapping method according to an embodiment of the present invention. As shown in FIG. 7, the method includes: Step 701: A base station enhances an OFDM symbol with sequence numbers 12 and 13 in a regular cyclic prefix subframe. Type resource particle group number, select the cyclic displacement value as {2, 3} or {3, 2}, or {3, 4}, or {4, 3} respectively;
步骤 702, 在每个物理资源块对内, 将顺序编号的增强型资源粒子组序号映射到 除解调参考信号外的资源粒子, 然后根据循环位移值对常规循环前缀子帧 OFDM符 号内的增强型资源粒子组序号进行循环位移。  Step 702: In each physical resource block pair, map the sequentially numbered enhanced resource particle group sequence number to resource particles other than the demodulation reference signal, and then perform enhancement on the regular cyclic prefix subframe OFDM symbol according to the cyclic shift value. The type of the resource particle group is cyclically shifted.
在本实施方式中, 在每个物理资源块对内, 可以将所有顺序编号的增强型资源粒 子组序号, 按照先频后时的顺序映射到除 DM-RS外的资源粒子。 与图 5所示方法类 似, 对于序号为 12、 13的 OFDM符号, 也可以分别选择循环位移值为 {2, 3} 或者 {3, 2}、 或者 {3, 4}、 或者 {4, 3}。  In the present embodiment, in each physical resource block pair, all sequentially numbered enhanced resource particle group numbers may be mapped to resource particles other than the DM-RS in the order of the pre-frequency. Similar to the method shown in FIG. 5, for OFDM symbols of sequence numbers 12 and 13, it is also possible to select a cyclic shift value of {2, 3} or {3, 2}, or {3, 4}, or {4, 3, respectively. }.
图 8是本发明实施例的资源映射方法的另一流程图,如图 8所示,所述方法包括: 步骤 801,基站对于常规循环前缀子帧中序号为 9、 10的的 OFDM符号内的增强 型资源粒子组序号, 分别选择第一循环位移值和第二循环位移值; 其中第一循环位移 值和第二循环位移值之差的绝对值为 0到 12之间的奇数;  FIG. 8 is another flowchart of the resource mapping method according to the embodiment of the present invention. As shown in FIG. 8, the method includes: Step 801: The base station is in an OFDM symbol with sequence numbers 9 and 10 in a regular cyclic prefix subframe. An enhanced resource particle group number, respectively selecting a first cyclic displacement value and a second cyclic displacement value; wherein an absolute value of a difference between the first cyclic displacement value and the second cyclic displacement value is an odd number between 0 and 12;
步骤 802, 在每个物理资源块对内, 将顺序编号的增强型资源粒子组序号映射到 除解调参考信号外的资源粒子, 然后根据循环位移值对常规循环前缀子帧 OFDM符 号内的增强型资源粒子组序号进行循环位移。  Step 802: In each physical resource block pair, map the sequentially numbered enhanced resource particle group number to resource particles other than the demodulation reference signal, and then perform enhancement on the regular cyclic prefix subframe OFDM symbol according to the cyclic shift value. The type of the resource particle group is cyclically shifted.
在本实施方式中, 在每个物理资源块对内, 可以将所有顺序编号的增强型资源粒 子组序号, 按照先频后时的顺序映射到除 DM-RS外的资源粒子。 假设序号为 9、 10 的 OFDM符号所使用的循环位移分别为 x、 y, 则 x、 y之间的差值绝对值为集合 {1, 3, 5, 7, 9, 11}中的元素, 即循环位移的差值绝对值为 0~12 范围内的奇数。 例如 x=0, y=5; 或者 x=2, y=9等等。 In this embodiment, in each physical resource block pair, all sequentially numbered enhanced resource particle group numbers may be mapped to resource particles other than the DM-RS in the order of the pre-frequency. Assuming that the cyclic displacements used by the OFDM symbols with the sequence numbers of 9, 10 are x and y, respectively, the absolute difference between x and y is the set {1, The elements in 3, 5, 7, 9, 11}, that is, the absolute difference of the cyclic displacement is an odd number in the range of 0~12. For example, x=0, y=5 ; or x=2, y=9, and so on.
图 9是本发明实施例的进行循环位移后的 eREG位置的另一示意图,其中为简单 起见,仅示出了序号为 9、 10的 OFDM符号内的可用资源粒子。图 9给出了序号为 9、 10的 OFDM符号内 eREG序号的循环位移示例。如图 9所示,序号为 9、 10的 OFDM 符号所使用的循环位移值可以分别为 0、 1; 或者为 0、 3; 或者为 0、 5; 或者为 0、 7; 或者为 0、 9; 或者为 0、 11。 值得注意的是, 图 9仅示意性给出了循环位移的情况, 但本发明不限于此。  Figure 9 is another schematic diagram of the eREG position after cyclic shifting in accordance with an embodiment of the present invention, wherein for simplicity, only available resource particles within the OFDM symbols of sequence numbers 9, 10 are shown. Figure 9 shows an example of the cyclic shift of the eREG sequence number in the OFDM symbol with sequence numbers 9, 10. As shown in FIG. 9, the cyclic shift values used by the OFDM symbols of sequence numbers 9, 10 may be 0, 1 respectively; or 0, 3; or 0, 5; or 0, 7; or 0, 9 ; or 0, 11. It is to be noted that Fig. 9 only schematically shows the case of the cyclic displacement, but the invention is not limited thereto.
在本实施例中, 以上考虑的 CSI-RS适用于帧结构类型 1和帧结构类型 2。 图 10 是帧结构类型 2的常规 CP子帧中 CSI-RS位置的示意图, 对于仅用于帧结构类型 2 的 CSI-RS, —种可能的 CSI-RS位置如图 10所示。 如图 10所示, 如果循环位移按照 OFDM符号序号来确定, 则由图 10中可以看到, 该 4-port CSI-RS占用的 RE仅来自 2个不同的 eCCE, 因而未达到理想效果。  In the present embodiment, the CSI-RS considered above is applicable to the frame structure type 1 and the frame structure type 2. 10 is a schematic diagram of CSI-RS locations in a regular CP subframe of frame structure type 2, and for a CSI-RS only for frame structure type 2, a possible CSI-RS location is shown in FIG. As shown in FIG. 10, if the cyclic shift is determined according to the OFDM symbol number, it can be seen from FIG. 10 that the RE occupied by the 4-port CSI-RS is only from two different eCCEs, and thus the ideal effect is not achieved.
图 11是本发明实施例的资源映射方法的另一流程图, 如图 11所示, 所述方法包 括:  FIG. 11 is another flowchart of a resource mapping method according to an embodiment of the present invention. As shown in FIG. 11, the method includes:
步骤 1101,基站对于常规循环前缀子帧中序号为 8、 10的 OFDM符号内的 eREG 序号, 分别选择第三循环位移值和第二循环位移值; 其中第三循环位移值和第二循环 位移值之差的绝对值为 0到 12之间的奇数;  Step 1101: The base station selects a third cyclic shift value and a second cyclic shift value for the eREG sequence numbers in the OFDM symbols with sequence numbers 8 and 10 in the regular cyclic prefix subframe, where the third cyclic shift value and the second cyclic shift value are respectively selected. The absolute value of the difference is an odd number between 0 and 12.
步骤 1102, 在每个物理资源块对内, 将顺序编号的增强型资源粒子组序号映射 到除解调参考信号外的资源粒子, 然后根据循环位移值对常规循环前缀子帧 OFDM 符号内的增强型资源粒子组序号进行循环位移。  Step 1102: In each physical resource block pair, map the sequentially numbered enhanced resource particle group number to resource particles other than the demodulation reference signal, and then perform enhancement on the regular cyclic prefix subframe OFDM symbol according to the cyclic shift value. The type of the resource particle group is cyclically shifted.
在本实施方式中, 在每个物理资源块对内, 可以将所有顺序编号的增强型资源粒 子组序号, 按照先频后时的顺序映射到除 DM-RS外的资源粒子。 为适应仅用于帧结 构类型 2的 CSI-RS情况, 还可以增加如下条件: 假设 OFDM符号 8、 10所使用的循 环位移为2、 y, 则2、 y之间的差值绝对值为集合 {1, 3, 5, 7, 9, 11}中的元素。 In this embodiment, in each physical resource block pair, all sequentially numbered enhanced resource particle group numbers may be mapped to resource particles other than the DM-RS in the order of the pre-frequency. To adapt to the CSI-RS case only for frame structure type 2, the following conditions can also be added: Assuming that the cyclic displacement used by the OFDM symbols 8, 10 is 2, y, the absolute value of the difference between 2 and y is a set. Elements in {1, 3, 5, 7, 9, 11}.
图 12是本发明实施例的进行循环位移后的 eREG位置的另一示意图,如图 12所 示的 eCCE映射, 对 CSI-RS可能出现的 OFDM符号 (符号 8、 10) 分别使用循环位 移 3、 0, 即满足图 11所述的条件。  FIG. 12 is another schematic diagram of the eREG position after cyclic shift according to an embodiment of the present invention. As shown in FIG. 12, the eCCE mapping may use a cyclic shift of 3 for each OFDM symbol (symbols 8, 10) that may occur in the CSI-RS. 0, that is, the condition described in FIG. 11 is satisfied.
如图 12所示, 任何 4-port CSI-RS所占用的 RE均来自于 4个不同的 eCCE, 因 此采用上述条件进行约束, 能够达到平衡 eCCE尺寸的效果。  As shown in Figure 12, the REs occupied by any 4-port CSI-RS are derived from 4 different eCCEs, so the above conditions are used to constrain the eCCE size.
值得注意的是, 以上仅分别对 OFDM符号序号为 5、 6, 或者 12、 13, 或者 9、 10, 或者 8、 10的 eREG序号的循环位移进行了说明。 在具体实施时, 也可以结合其 中的几种或者全部情况进行循环位移, 对于其他 OFDM符号的 eREG序号可以采用 现有技术, 可以根据实际情况确定具体的实施方式。  It should be noted that the above only describes the cyclic shift of the eREG sequence number of the OFDM symbol number 5, 6, or 12, 13, or 9, 10, or 8, 10 respectively. In a specific implementation, the cyclic shift may be performed in combination with several or all of the cases. For the eREG sequence number of other OFDM symbols, the prior art may be used, and a specific implementation manner may be determined according to actual conditions.
图 13是本发明实施例的进行条件组合之后的 eREG位置的一示意图。如图 13所 示, 对于 CSI-RS可能出现的 OFDM符号 (5、 6、 12、 13、 8、 9、 10), 循环位移选 择满足图 5、 7、 8、 11中的条件。 FIG. 13 is a schematic diagram of an eREG position after conditional combination according to an embodiment of the present invention. As shown in Figure 13 It is shown that for OFDM symbols (5, 6, 12, 13, 8, 9, 10) that may occur in CSI-RS, the cyclic shift selection satisfies the conditions in Figs. 5, 7, 8, and 11.
即, 如图 5中的条件所述, 序号为 5的 OFDM符号选择循环位移值为 3, 序号为 That is, as described in the condition of FIG. 5, the OFDM symbol number 5 has a cyclic shift value of 3, and the sequence number is
6的 OFDM符号选择循环位移值为 2。 如图 7中的条件所述, 序号为 12的 OFDM符 号选择循环位移值为 2, 序号为 13的 OFDM符号选择循环位移值为 3。 如图 8中的 条件所述, 序号为 9的 OFDM符号选择循环位移值为 1, 序号为 10的 OFDM符号选 择循环位移值为 0, 二者之间的差的绝对值为 1。 如图 11中的条件所述, 序号为 8的The OFDM symbol selection of 6 has a cyclic shift value of 2. As shown in the condition in Fig. 7, the OFDM symbol numbered 12 has a cyclic shift value of 2, and the OFDM symbol number 13 has a cyclic shift value of 3. As described in the condition of Fig. 8, the OFDM symbol with sequence number 9 has a cyclic shift value of 1, and the OFDM symbol with sequence number 10 has a cyclic shift value of 0, and the absolute value of the difference between the two is 1. As described in the conditions in Figure 11, the serial number is 8.
OFDM符号选择循环位移值为 3, 序号为 10的 OFDM符号选择循环位移值为 0, 二 者之间的差的绝对值为 3。 The OFDM symbol selection cyclic shift value is 3, the OFDM symbol numbered 10 has a cyclic shift value of 0, and the absolute value of the difference between the two is 3.
如图 13所示, 对于无 CSI-RS出现的 OFDM符号 (例如 0、 1、 2、 3、 4、 11 ) 对应的资源粒子, 仍然可以按照循环位移等于 OFDM符号序号进行选取。 对于序号 为 7的 OFDM符号, 如图 13所示, 可以选择循环位移值为 8。  As shown in FIG. 13, the resource particles corresponding to the OFDM symbols (for example, 0, 1, 2, 3, 4, 11) in which no CSI-RS occurs may still be selected according to the cyclic shift equal to the OFDM symbol number. For the OFDM symbol with sequence number 7, as shown in Figure 13, the cyclic shift value can be chosen to be 8.
值得注意的是, 以上仅以 4-port CSI-RS为例对本发明进行了说明, 对于 2-port It is worth noting that the above description is only given by taking 4-port CSI-RS as an example, for 2-port
CSI-RS等本发明仍然适用。 对于每个 PRB pair包含 2个 eCCE的配置, 本发明也依 然适用。 The present invention is still applicable to CSI-RS and the like. For a configuration in which each PRB pair contains 2 eCCEs, the present invention is also applicable.
由此, 对于满足图 5、 7、 8、 11中条件的资源映射方式, 能够保证: 2-port CSI-RS 所用 RE来自 2个不同的 eCCE; 4-port CSI-RS所用 RE来自 4个不同的 eCCE; 8-port CSI-RS所用 RE来自 4个不同的 eCCE。 从而能够获得尽可能均匀的 eCCE尺寸。  Therefore, for the resource mapping method that satisfies the conditions in FIG. 5, 7, 8, and 11, it can be guaranteed that: the RE used in the 2-port CSI-RS is from two different eCCEs; the RE used in the 4-port CSI-RS is from four different The eCCE; 8-port CSI-RS uses RE from 4 different eCCEs. This makes it possible to obtain an eCCE size that is as uniform as possible.
由上述实施例可知, 通过对可能出现 CSI-RS的 OFDM符号选择循环位移值, 根 据循环位移值对 eREG序号进行循环位移, 可以保证资源映射时各个 eCCE拥有几乎 相同数目的 RE, 降低 DCI传输性能上的差异。 实施例 2  It can be seen from the foregoing embodiment that by selecting a cyclic shift value for an OFDM symbol in which a CSI-RS may occur, cyclic shifting the eREG sequence according to the cyclic shift value ensures that each eCCE has almost the same number of REs during resource mapping, thereby reducing DCI transmission performance. The difference. Example 2
本发明实施例提供一种资源映射方法, 应用于 EPDCCH的资源映射。 本发明实 施例以扩展 CP子帧为例, 对本发明的资源映射方法进行详细说明, 与实施例 1相同 的内容不再赘述。  The embodiment of the invention provides a resource mapping method, which is applied to resource mapping of an EPDCCH. The resource mapping method of the present invention is described in detail in the embodiment of the present invention by using the extended CP subframe as an example, and the same content as the first embodiment will not be described again.
图 14是本发明实施例的资源映射方法的一流程图, 如图 14所示, 该方法包括: 步骤 1401, 基站对于扩展循环前缀子帧中序号为 4、 5的 OFDM符号内的 eREG 序号, 分别选择第四循环位移值和第五循环位移值; 其中第四循环位移值和第五循环 位移值之差的绝对值为 0到 12之间的奇数;  FIG. 14 is a flowchart of a resource mapping method according to an embodiment of the present invention. As shown in FIG. 14, the method includes: Step 1401: For an eREG sequence number in an OFDM symbol with sequence numbers 4 and 5 in an extended cyclic prefix subframe, Selecting a fourth cyclic displacement value and a fifth cyclic displacement value respectively; wherein an absolute value of a difference between the fourth cyclic displacement value and the fifth cyclic displacement value is an odd number between 0 and 12;
步骤 1402, 在每个物理资源块对内, 将顺序编号的增强型资源粒子组序号映射 到除解调参考信号外的资源粒子, 然后根据循环位移值对扩展循环前缀子帧 OFDM 符号内的增强型资源粒子组序号进行循环位移。  Step 1402: In each physical resource block pair, map the sequentially numbered enhanced resource particle group number to resource particles other than the demodulation reference signal, and then perform enhancement on the extended cyclic prefix subframe OFDM symbol according to the cyclic shift value. The type of the resource particle group is cyclically shifted.
图 15是本发明实施例的资源映射方法的另一流程图,如图 15所示,该方法包括: 步骤 1501, 基站对于扩展循环前缀子帧中序号为 7、 8的 OFDM符号内的 eREG 序号, 分别选择第六循环位移值和第七循环位移值; 其中第六循环位移值和第七循环 位移值之差的绝对值为 0到 12之间的奇数; FIG. 15 is another flowchart of a resource mapping method according to an embodiment of the present invention. As shown in FIG. 15, the method includes: Step 1501: A base station selects an eREG in an OFDM symbol with sequence numbers 7 and 8 in an extended cyclic prefix subframe. a serial number, a sixth cyclic displacement value and a seventh cyclic displacement value are respectively selected; wherein an absolute value of a difference between the sixth cyclic displacement value and the seventh cyclic displacement value is an odd number between 0 and 12;
步骤 1502, 在每个物理资源块对内, 将顺序编号的增强型资源粒子组序号映射 到除解调参考信号外的资源粒子, 然后根据循环位移值对扩展循环前缀子帧 OFDM 符号内的增强型资源粒子组序号进行循环位移。  Step 1502: In each physical resource block pair, map the sequentially numbered enhanced resource particle group number to resource particles other than the demodulation reference signal, and then perform enhancement on the extended cyclic prefix subframe OFDM symbol according to the cyclic shift value. The type of the resource particle group is cyclically shifted.
图 16是本发明实施例的资源映射方法的另一流程图,如图 16所示,该方法包括: 步骤 1601,基站对于扩展循环前缀子帧中序号为 10、11的 OFDM符号内的 eREG 序号, 分别选择第八循环位移值和第九循环位移值; 其中第八循环位移值和第九循环 位移值之差的绝对值为 0到 12之间的奇数;  FIG. 16 is another flowchart of the resource mapping method according to the embodiment of the present invention. As shown in FIG. 16, the method includes: Step 1601: The base station selects an eREG sequence number in an OFDM symbol with sequence numbers 10 and 11 in an extended cyclic prefix subframe. And selecting an eighth cyclic displacement value and a ninth cyclic displacement value respectively; wherein an absolute value of a difference between the eighth cyclic displacement value and the ninth cyclic displacement value is an odd number between 0 and 12;
步骤 1602, 在每个物理资源块对内, 将顺序编号的增强型资源粒子组序号映射 到除解调参考信号外的资源粒子, 然后根据循环位移值对扩展循环前缀子帧 OFDM 符号内的增强型资源粒子组序号进行循环位移。  Step 1602: In each physical resource block pair, map the sequentially numbered enhanced resource particle group number to the resource particle except the demodulation reference signal, and then perform enhancement on the extended cyclic prefix subframe OFDM symbol according to the cyclic shift value. The type of the resource particle group is cyclically shifted.
在本实施例中, 在步骤 1402、 步骤 1502或步骤 1602中, 在每个物理资源块对 内, 可以将所有顺序编号的增强型资源粒子组序号, 按照先频后时的顺序映射到除 DM-RS外的资源粒子。  In this embodiment, in step 1402, step 1502 or step 1602, in each physical resource block pair, all sequentially numbered enhanced resource particle group numbers may be mapped to the DM in the order of the prior frequency. - Resource particles outside the RS.
在本实施例中, 对于扩展 CP, 由于每个 PRB pair仅包含 2个 eCCE, 只要满足 任何 CSI-RS配置均使用来自 2个不同 eCCE的 RE资源即可。 对于适用于帧结构类 型 1和帧结构类型 2的 CSI-RS, 其可能出现的 OFDM符号为 4、 5、 10、 11; 对于仅 适用于帧结构类型 2的 CSI-RS, 其可能出现的 OFDM符号为 7、 8。 因此, 满足图 14、 15或 16中的条件, 可以保证资源映射时各个 eCCE拥有相同数目的 RE。  In this embodiment, for the extended CP, since each PRB pair contains only two eCCEs, RE resources from two different eCCEs can be used as long as any CSI-RS configuration is satisfied. For CSI-RSs applicable to Frame Structure Type 1 and Frame Structure Type 2, the possible OFDM symbols are 4, 5, 10, 11; for CSI-RS only applicable to Frame Structure Type 2, its possible OFDM The symbols are 7, 8. Therefore, satisfying the conditions in Fig. 14, 15 or 16, it is guaranteed that each eCCE has the same number of REs when the resource is mapped.
值得注意的是, 以上仅分别对序号为 4、 5, 或者 7、 8, 或者 10、 11 的 OFDM 符号内 eREG序号的循环位移进行了说明。在具体实施时, 也可以结合其中的几种或 者全部情况进行循环位移, 对于其他 OFDM符号的 eREG序号可以采用现有技术, 可以根据实际情况确定具体的实施方式。  It is worth noting that the above only describes the cyclic shift of the eREG sequence number in the OFDM symbol with sequence numbers 4, 5, or 7, 8, or 10, 11. In a specific implementation, cyclic shifts may be performed in combination with several or all of them. For the eREG sequence numbers of other OFDM symbols, the prior art may be used, and specific implementation manners may be determined according to actual conditions.
图 17是本发明实施例的进行条件组合之后的资源粒子的一示意图。如图 17所示, 对于 CSI-RS可能出现的 OFDM符号 (4、 5、 7、 8、 10、 11 ), 循环位移选择满足图 14、 15、 16中的条件。  17 is a schematic diagram of resource particles after conditional combination according to an embodiment of the present invention. As shown in Fig. 17, for the OFDM symbols (4, 5, 7, 8, 10, 11) that may appear in the CSI-RS, the cyclic shift selection satisfies the conditions in Figs. 14, 15, and 16.
由上述实施例可知, 通过对可能出现 CSI-RS的 OFDM符号选择循环位移值, 根 据循环位移值对 eREG序号进行循环位移, 可以保证资源映射时各个 eCCE拥有几乎 相同数目的 RE, 降低 DCI传输性能上的差异。 实施例 3  It can be seen from the foregoing embodiment that by selecting a cyclic shift value for an OFDM symbol in which a CSI-RS may occur, cyclic shifting the eREG sequence according to the cyclic shift value ensures that each eCCE has almost the same number of REs during resource mapping, thereby reducing DCI transmission performance. The difference. Example 3
本发明实施例提供一种基站, 对应于实施例 1或 2所述的方法, 相同的内容不再 赘述。  The embodiment of the present invention provides a base station, which corresponds to the method described in Embodiment 1 or 2, and the same content is not described again.
图 18是本发明实施例的基站的一构成示意图, 如图 18所示, 该基站 1800包括: 选择单元 1801和映射单元 1802。 基站 1800的其他部分可以参考现有技术。 FIG. 18 is a schematic structural diagram of a base station according to an embodiment of the present invention. As shown in FIG. 18, the base station 1800 includes: The unit 1801 and the mapping unit 1802 are selected. Other parts of the base station 1800 can refer to the prior art.
在一个实施方式中, 对于常规 CP子帧, 选择单元 1801对于常规 CP子帧中序号 为 5、 6的 OFDM符号内的 eREG序号, 分别选择循环位移值为 {2, 3}、 {3, 2}、 {3, 4}或者 {4, 3};  In an embodiment, for a regular CP subframe, the selecting unit 1801 selects cyclic shift values of {2, 3}, {3, 2 for the eREG sequence numbers in the OFDM symbols of sequence numbers 5 and 6 in the regular CP subframe, respectively. }, {3, 4} or {4, 3};
或者, 对于常规 CP子帧中序号为 12、 13的 OFDM符号内的 eREG序号, 分别 选择循环位移值为 {2, 3}、 {3, 2}、 {3, 4}或者 {4, 3};  Or, for the eREG sequence numbers in the OFDM symbols with sequence numbers 12 and 13 in the regular CP subframe, respectively, the cyclic shift values are selected as {2, 3}, {3, 2}, {3, 4}, or {4, 3}. ;
或者, 对于常规 CP子帧中序号为 9、 10的 OFDM符号内的 eREG序号, 分别选 择第一循环位移值和第二循环位移值;其中第一循环位移值和第二循环位移值之差的 绝对值为 0到 12之间的奇数;  Or, for the eREG sequence number in the OFDM symbol with sequence numbers 9 and 10 in the regular CP subframe, respectively selecting the first cyclic shift value and the second cyclic shift value; wherein the difference between the first cyclic shift value and the second cyclic shift value is The absolute value is an odd number between 0 and 12;
或者, 对于常规 CP子帧中序号为 8、 10的 OFDM符号内的 eREG序号, 分别选 择第三循环位移值和第二循环位移值;其中第三循环位移值和第二循环位移值之差的 绝对值为 0到 12之间的奇数;  Or, for the eREG sequence number in the OFDM symbol with the sequence number of 8, 10 in the regular CP subframe, the third cyclic shift value and the second cyclic shift value are respectively selected; wherein the difference between the third cyclic shift value and the second cyclic shift value is The absolute value is an odd number between 0 and 12;
映射单元 1802在每个物理资源块对内, 所有顺序编号的增强型资源粒子组序号 按照先频后时的顺序映射到除解调参考信号外的资源粒子,然后根据循环位移值对常 规 CP子帧 OFDM符号内的增强型资源粒子组序号进行循环位移。  The mapping unit 1802 maps, in each physical resource block pair, all sequentially numbered enhanced resource particle group numbers to the resource particles except the demodulation reference signal in the order of the first frequency and then the regular CP according to the cyclic displacement value. The enhanced resource particle group number within the frame OFDM symbol is cyclically shifted.
在另一个实施方式中, 对于扩展 CP子帧, 选择单元 1801对于扩展 CP子帧中序 号为 4、 5的 OFDM符号内的 eREG序号, 分别选择第四循环位移值和第五循环位移 值; 其中第四循环位移值和第五循环位移值之差的绝对值为 0到 12之间的奇数; 或者, 对于扩展 CP子帧中序号为 7、 8的 OFDM符号内的 eREG序号, 分别选 择第六循环位移值和第七循环位移值;其中第六循环位移值和第七循环位移值之差的 绝对值为 0到 12之间的奇数;  In another embodiment, for the extended CP subframe, the selecting unit 1801 selects a fourth cyclic shift value and a fifth cyclic shift value respectively for the eREG sequence numbers in the OFDM symbols of sequence numbers 4 and 5 in the extended CP subframe; The absolute value of the difference between the fourth cyclic shift value and the fifth cyclic shift value is an odd number between 0 and 12; or, for the eREG sequence number in the OFDM symbol of sequence number 7, 8 in the extended CP subframe, respectively, the sixth is selected. a cyclic displacement value and a seventh cyclic displacement value; wherein an absolute value of a difference between the sixth cyclic displacement value and the seventh cyclic displacement value is an odd number between 0 and 12;
或者, 对于扩展 CP子帧中序号为 10、 11的 OFDM符号内的 eREG序号, 分别 选择第八循环位移值和第九循环位移值;其中第八循环位移值和所述第九循环位移值 之差的绝对值为 0到 12之间的奇数。  Or, for the eREG sequence numbers in the OFDM symbols with sequence numbers 10 and 11 in the extended CP subframe, respectively selecting an eighth cyclic shift value and a ninth cyclic shift value; wherein the eighth cyclic shift value and the ninth cyclic shift value are The absolute value of the difference is an odd number between 0 and 12.
映射单元 1802在每个物理资源块对内, 所有顺序编号的增强型资源粒子组序号 按照先频后时的顺序映射到除解调参考信号外的资源粒子,然后根据循环位移值对扩 展 CP子帧 OFDM符号内的增强型资源粒子组序号进行循环位移。  The mapping unit 1802 maps, in each physical resource block pair, all sequentially numbered enhanced resource particle group numbers to resource particles other than the demodulation reference signal in the order of the first frequency, and then expands the CP according to the cyclic displacement value. The enhanced resource particle group number within the frame OFDM symbol is cyclically shifted.
由上述实施例可知, 通过对可能出现 CSI-RS的 OFDM符号选择循环位移值, 根 据循环位移值对各 OFDM符号内的 eREG序号进行循环位移, 可以保证资源映射时 各个 eCCE拥有几乎相同数目的 RE, 降低 DCI传输性能上的差异。  It can be seen from the foregoing embodiment that by selecting a cyclic shift value for an OFDM symbol in which a CSI-RS may occur, cyclic shifting of the eREG sequence in each OFDM symbol according to the cyclic shift value ensures that each eCCE has almost the same number of REs during resource mapping. , reduce the difference in DCI transmission performance.
本发明实施例还提供一种通信系统, 该通信系统包括如实施例 3所述的基站。 本发明实施例还提供一种计算机可读程序, 其中当在基站中执行所述程序时, 所 述程序使得计算机在所述基站中执行如上面实施例 1或 2所述的资源映射方法。  The embodiment of the present invention further provides a communication system, which includes the base station as described in Embodiment 3. The embodiment of the present invention further provides a computer readable program, wherein when the program is executed in a base station, the program causes a computer to execute the resource mapping method as described in Embodiment 1 or 2 above in the base station.
本发明实施例还提供一种存储有计算机可读程序的存储介质,其中所述计算机可 读程序使得计算机在基站中执行如上面实施例 1或 2所述的资源映射方法。 本发明以上的装置和方法可以由硬件实现, 也可以由硬件结合软件实现。本发明 涉及这样的计算机可读程序, 当该程序被逻辑部件所执行时, 能够使该逻辑部件实现 上文所述的装置或构成部件, 或使该逻辑部件实现上文所述的各种方法或步骤。本发 明还涉及用于存储以上程序的存储介质, 如硬盘、 磁盘、 光盘、 DVD、 flash存储器 等。 An embodiment of the present invention further provides a storage medium storing a computer readable program, wherein the computer readable program causes a computer to perform a resource mapping method as described in Embodiment 1 or 2 above in a base station. The above apparatus and method of the present invention may be implemented by hardware, or may be implemented by hardware in combination with software. The present invention relates to a computer readable program that, when executed by a logic component, enables the logic component to implement the apparatus or components described above, or to cause the logic component to implement the various methods described above Or steps. The present invention also relates to a storage medium for storing the above program, such as a hard disk, a magnetic disk, an optical disk, a DVD, a flash memory, or the like.
针对附图中描述的功能方框中的一个或多个和 /或功能方框的一个或多个组合, 可以实现为用于执行本申请所描述功能的通用处理器、 数字信号处理器 (DSP)、 专 用集成电路 (ASIC)、 现场可编程门阵列 (FPGA) 或者其它可编程逻辑器件、 分立 门或者晶体管逻辑器件、分立硬件组件或者其任意适当组合。针对附图描述的功能方 框中的一个或多个和 /或功能方框的一个或多个组合, 还可以实现为计算设备的组合, 例如, DSP和微处理器的组合、 多个微处理器、 与 DSP通信结合的一个或多个微处 理器或者任何其它这种配置。  One or more of the functional blocks described in the figures and/or one or more combinations of functional blocks may be implemented as a general purpose processor, digital signal processor (DSP) for performing the functions described herein. An application specific integrated circuit (ASIC), field programmable gate array (FPGA) or other programmable logic device, discrete gate or transistor logic device, discrete hardware component, or any suitable combination thereof. One or more of the functional blocks described with respect to the figures and/or one or more combinations of functional blocks may also be implemented as a combination of computing devices, eg, a combination of a DSP and a microprocessor, multiple microprocessors One or more microprocessors in conjunction with DSP communication or any other such configuration.
以上结合具体的实施方式对本发明进行了描述, 但本领域技术人员应该清楚, 这 些描述都是示例性的, 并不是对本发明保护范围的限制。本领域技术人员可以根据本 发明的精神和原理对本发明做出各种变型和修改,这些变型和修改也在本发明的范围 内。  The present invention has been described in connection with the specific embodiments thereof, and it should be understood by those skilled in the art that these descriptions are not intended to limit the scope of the invention. A person skilled in the art can make various modifications and changes to the invention in accordance with the spirit and the principles of the invention, which are also within the scope of the invention.

Claims

权利要求书 claims
1、 一种资源映射方法, 应用于增强型物理下行控制信道, 所述方法包括: 基站对于常规循环前缀子帧中序号为 5、 6的 OFDM符号内的增强型资源粒子组 序号, 分别选择循环位移值为 {2, 3}、 {3, 2}、 {3, 4}或者 {4, 3}; 1. A resource mapping method, applied to the enhanced physical downlink control channel. The method includes: The base station selects cyclically selected enhanced resource particle group sequence numbers in OFDM symbols with sequence numbers 5 and 6 in the conventional cyclic prefix subframe. The displacement value is {2, 3}, {3, 2}, {3, 4} or {4, 3};
在每个物理资源块对内,将顺序编号的增强型资源粒子组序号映射到除解调参考 信号外的资源粒子上, 并根据所述循环位移值对所述常规循环前缀子帧 OFDM符号 内的增强型资源粒子组序号进行循环位移。 Within each physical resource block pair, the sequentially numbered enhanced resource element group sequence number is mapped to the resource elements except the demodulation reference signal, and the regular cyclic prefix subframe OFDM symbol is mapped according to the cyclic displacement value. The enhanced resource particle group sequence number is cyclically displaced.
2、 根据权利要求 1所述的方法, 其中, 所述方法还包括: 2. The method according to claim 1, wherein the method further includes:
所述基站对于所述常规循环前缀子帧中序号为 12、 13的 OFDM符号内的增强型 资源粒子组序号, 分别选择循环位移值为 {2, 3}、 {3, 2}、 {3, 4}或者 {4, 3}。 The base station selects cyclic displacement values of {2, 3}, {3, 2}, and {3, respectively, for the enhanced resource particle group sequence numbers in the OFDM symbols with sequence numbers 12 and 13 in the conventional cyclic prefix subframe. 4} or {4, 3}.
3、 根据权利要求 1或 2所述的方法, 其中, 所述方法还包括: 3. The method according to claim 1 or 2, wherein the method further includes:
所述基站对于所述常规循环前缀子帧中序号为 9、 10的 OFDM符号内的增强型 资源粒子组序号, 分别选择第一循环位移值和第二循环位移值; 所述第一循环位移值 和所述第二循环位移值之差的绝对值为 0到 12之间的奇数。 The base station selects a first cyclic displacement value and a second cyclic displacement value respectively for the enhanced resource particle group sequence numbers in the OFDM symbols with serial numbers 9 and 10 in the regular cyclic prefix subframe; the first cyclic displacement value The absolute value of the difference from the second cyclic displacement value is an odd number between 0 and 12.
4、 根据权利要求 1或 2所述的方法, 其中, 所述方法还包括: 4. The method according to claim 1 or 2, wherein the method further includes:
所述基站对于所述常规循环前缀子帧中序号为 8、 10的 OFDM符号内的增强型 资源粒子组序号, 分别选择第三循环位移值和第二循环位移值; 所述第三循环位移值 和所述第二循环位移值之差的绝对值为 0到 12之间的奇数。 The base station selects a third cyclic displacement value and a second cyclic displacement value respectively for the enhanced resource particle group sequence numbers in the OFDM symbols with serial numbers 8 and 10 in the regular cyclic prefix subframe; the third cyclic displacement value The absolute value of the difference from the second cyclic displacement value is an odd number between 0 and 12.
5、 根据权利要求 3所述的方法, 其中, 所述方法还包括: 5. The method according to claim 3, wherein the method further includes:
所述基站对于所述常规循环前缀子帧中序号为 8的 OFDM符号内的增强型资源 粒子组序号, 选择第三循环位移值; 所述第三循环位移值和所述第二循环位移值之差 的绝对值为 0到 12之间的奇数。 The base station selects a third cyclic displacement value for the enhanced resource particle group sequence number in the OFDM symbol with sequence number 8 in the regular cyclic prefix subframe; the third cyclic displacement value and the second cyclic displacement value The absolute value of the difference is an odd number between 0 and 12.
6、 一种资源映射方法, 应用于增强型物理下行控制信道, 所述方法包括: 基站对于常规循环前缀子帧中序号为 12、 13的 OFDM符号内的增强型资源粒子 组序号, 分别选择循环位移值为 {2, 3}、 {3, 2}、 {3, 4}或者 {4, 3}; 6. A resource mapping method, applied to the enhanced physical downlink control channel, the method includes: the base station selects cyclically respectively for the enhanced resource particle group sequence numbers in the OFDM symbols with sequence numbers 12 and 13 in the conventional cyclic prefix subframe. The displacement value is {2, 3}, {3, 2}, {3, 4} or {4, 3};
在每个物理资源块对内,将顺序编号的增强型资源粒子组序号映射到除解调参考 信号外的资源粒子, 并根据所述循环位移值对所述常规循环前缀子帧 OFDM符号内 的增强型资源粒子组序号进行循环位移。 Within each physical resource block pair, the sequentially numbered enhanced resource element group sequence number is mapped to the resource element except the demodulation reference signal, and the cyclic prefix subframe OFDM symbol within the regular cyclic prefix subframe is mapped according to the cyclic displacement value. The sequence number of the enhanced resource particle group undergoes cyclic displacement.
7、 根据权利要求 6所述的方法, 其中, 所述方法还包括: 7. The method according to claim 6, wherein the method further includes:
所述基站对于所述常规循环前缀子帧中序号为 5、 6的 OFDM符号内的增强型资 源粒子组序号, 分别选择循环位移值为 {2, 3}、 {3, 2}、 {3, 4}或者 {4, 3}。 The base station selects cyclic displacement values of {2, 3}, {3, 2}, and {3, respectively, for the enhanced resource particle group sequence numbers in the OFDM symbols with sequence numbers 5 and 6 in the conventional cyclic prefix subframe. 4} or {4, 3}.
8、 根据权利要求 6或 7所述的方法, 其中, 所述方法还包括: 8. The method according to claim 6 or 7, wherein the method further includes:
所述基站对于所述常规循环前缀子帧中序号为 9、 10的 OFDM符号内的增强型 资源粒子组序号, 分别选择第一循环位移值和第二循环位移值; 所述第一循环位移值 和所述第二循环位移值之差的绝对值为 0到 12之间的奇数。 The base station selects a first cyclic displacement value and a second cyclic displacement value respectively for the enhanced resource particle group sequence numbers in the OFDM symbols with serial numbers 9 and 10 in the regular cyclic prefix subframe; the first cyclic displacement value The absolute value of the difference from the second cyclic displacement value is an odd number between 0 and 12.
9、 根据权利要求 6或 7所述的方法, 其中, 所述方法还包括: 9. The method according to claim 6 or 7, wherein the method further includes:
所述基站对于所述常规循环前缀子帧中序号为 8、 10的 OFDM符号内的增强型 资源粒子组序号, 分别选择第三循环位移值和第二循环位移值; 所述第三循环位移值 和所述第二循环位移值之差的绝对值为 0到 12之间的奇数。 The base station selects a third cyclic displacement value and a second cyclic displacement value respectively for the enhanced resource particle group sequence numbers in the OFDM symbols with serial numbers 8 and 10 in the regular cyclic prefix subframe; the third cyclic displacement value The absolute value of the difference from the second cyclic displacement value is an odd number between 0 and 12.
10、 根据权利要求 8所述的方法, 其中, 所述方法还包括: 10. The method according to claim 8, wherein the method further includes:
所述基站对于所述常规循环前缀子帧中序号为 8的 OFDM符号内的增强型资源 粒子组序号, 选择第三循环位移值; 所述第三循环位移值和所述第二循环位移值之差 的绝对值为 0到 12之间的奇数。 The base station selects a third cyclic displacement value for the enhanced resource particle group sequence number in the OFDM symbol with sequence number 8 in the regular cyclic prefix subframe; the third cyclic displacement value and the second cyclic displacement value The absolute value of the difference is an odd number between 0 and 12.
11、 一种资源映射方法, 应用于增强型物理下行控制信道, 所述方法包括: 基站对于常规循环前缀子帧中序号为 9、 10的 OFDM符号内的增强型资源粒子 组序号, 分别选择第一循环位移值和第二循环位移值; 所述第一循环位移值和所述第 二循环位移值之差的绝对值为 0到 12之间的奇数; 11. A resource mapping method, applied to the enhanced physical downlink control channel, the method includes: the base station selects the enhanced resource particle group sequence numbers in the OFDM symbols with sequence numbers 9 and 10 in the conventional cyclic prefix subframe, respectively. a cyclic displacement value and a second cyclic displacement value; the absolute value of the difference between the first cyclic displacement value and the second cyclic displacement value is an odd number between 0 and 12;
在每个物理资源块对内,将顺序编号的增强型资源粒子组序号映射到除解调参考 信号外的资源粒子, 并根据所述循环位移值对所述常规循环前缀子帧 OFDM符号内 的增强型资源粒子组序号进行循环位移。 Within each physical resource block pair, the sequentially numbered enhanced resource element group sequence number is mapped to the resource element except the demodulation reference signal, and the cyclic prefix subframe OFDM symbol within the regular cyclic prefix subframe is mapped according to the cyclic displacement value. The sequence number of the enhanced resource particle group undergoes cyclic displacement.
12、 根据权利要求 11所述的方法, 其中, 所述方法还包括: 12. The method according to claim 11, wherein the method further includes:
所述基站对于所述常规循环前缀子帧中序号为 12、 13的 OFDM符号内的增强型 资源粒子组序号, 分别选择循环位移值为 {2, 3}、 {3, 2}、 {3, 4}或者 {4, 3}。 The base station selects cyclic displacement values of {2, 3}, {3, 2}, and {3, respectively, for the enhanced resource particle group sequence numbers in the OFDM symbols with sequence numbers 12 and 13 in the conventional cyclic prefix subframe. 4} or {4, 3}.
13、 根据权利要求 11或 12所述的方法, 其中, 所述方法还包括: 13. The method according to claim 11 or 12, wherein the method further includes:
所述基站对于所述常规循环前缀子帧中序号为 5、 6的 OFDM符号内的增强型资 源粒子组序号, 分别选择循环位移值为 {2, 3}、 {3, 2}、 {3, 4}或者 {4, 3}。 The base station selects cyclic displacement values of {2, 3}, {3, 2}, and {3, respectively, for the enhanced resource particle group sequence numbers in the OFDM symbols with sequence numbers 5 and 6 in the conventional cyclic prefix subframe. 4} or {4, 3}.
14、 根据权利要求 11或 12所述的方法, 其中, 所述方法还包括: 14. The method according to claim 11 or 12, wherein the method further includes:
所述基站对于所述常规循环前缀子帧中序号为 8的 OFDM符号内的增强型资源 粒子组序号, 选择第三循环位移值; 所述第三循环位移值和所述第二循环位移值之差 的绝对值为 0到 12之间的奇数。 The base station selects a third cyclic displacement value for the enhanced resource particle group sequence number in the OFDM symbol with sequence number 8 in the regular cyclic prefix subframe; the third cyclic displacement value and the second cyclic displacement value The absolute value of the difference is an odd number between 0 and 12.
15、 根据权利要求 13所述的方法, 其中, 所述方法还包括: 15. The method according to claim 13, wherein the method further includes:
所述基站对于所述常规循环前缀子帧中序号为 8的 OFDM符号内的增强型资源 粒子组序号, 选择第三循环位移值; 所述第三循环位移值和所述第二循环位移值之差 的绝对值为 0到 12之间的奇数。 The base station selects a third cyclic displacement value for the enhanced resource particle group sequence number in the OFDM symbol with sequence number 8 in the regular cyclic prefix subframe; the third cyclic displacement value and the second cyclic displacement value The absolute value of the difference is an odd number between 0 and 12.
16、 一种资源映射方法, 应用于增强型物理下行控制信道, 所述方法包括: 基站对于常规循环前缀子帧中序号为 8、 10的 OFDM符号内的增强型资源粒子 组序号, 分别选择第三循环位移值和第二循环位移值; 所述第三循环位移值和所述第 二循环位移值之差的绝对值为 0到 12之间的奇数; 16. A resource mapping method, applied to the enhanced physical downlink control channel, the method includes: the base station selects the enhanced resource particle group sequence numbers in the OFDM symbols with sequence numbers 8 and 10 in the conventional cyclic prefix subframe, respectively. The third cyclic displacement value and the second cyclic displacement value; the absolute value of the difference between the third cyclic displacement value and the second cyclic displacement value is an odd number between 0 and 12;
在每个物理资源块对内,将顺序编号的增强型资源粒子组序号映射到除解调参考 信号外的资源粒子, 并根据所述循环位移值对所述常规循环前缀子帧 OFDM符号内 的增强型资源粒子组序号进行循环位移。 Within each physical resource block pair, map the sequentially numbered enhanced resource particle group sequence number to the demodulation reference Resource elements outside the signal, and perform cyclic displacement on the enhanced resource element group sequence number in the regular cyclic prefix subframe OFDM symbol according to the cyclic displacement value.
17、 根据权利要求 16所述的方法, 其中, 所述方法还包括: 17. The method according to claim 16, wherein the method further includes:
所述基站对于所述常规循环前缀子帧中序号为 12、 13的 OFDM符号内的增强型 资源粒子组序号, 分别选择循环位移值为 {2, 3}、 {3, 2}、 {3, 4}或者 {4, 3}。 The base station selects cyclic displacement values of {2, 3}, {3, 2}, and {3, respectively, for the enhanced resource particle group sequence numbers in the OFDM symbols with sequence numbers 12 and 13 in the conventional cyclic prefix subframe. 4} or {4, 3}.
18、 根据权利要求 16或 17所述的方法, 其中, 所述方法还包括: 18. The method according to claim 16 or 17, wherein the method further includes:
所述基站对于所述常规循环前缀子帧中序号为 5、 6的 OFDM符号内的增强型资 源粒子组序号, 分别选择循环位移值为 {2, 3}、 {3, 2}、 {3, 4}或者 {4, 3}。 The base station selects cyclic displacement values of {2, 3}, {3, 2}, and {3, respectively, for the enhanced resource particle group sequence numbers in the OFDM symbols with sequence numbers 5 and 6 in the conventional cyclic prefix subframe. 4} or {4, 3}.
19、 根据权利要求 16或 17所述的方法, 其中, 所述方法还包括: 19. The method according to claim 16 or 17, wherein the method further includes:
所述基站对于所述常规循环前缀子帧中序号为 9的 OFDM符号内的增强型资源 粒子组序号, 选择第一循环位移值; 所述第一循环位移值和所述第二循环位移值之差 的绝对值为 0到 12之间的奇数。 The base station selects a first cyclic displacement value for the enhanced resource particle group sequence number in the OFDM symbol with sequence number 9 in the regular cyclic prefix subframe; the first cyclic displacement value and the second cyclic displacement value The absolute value of the difference is an odd number between 0 and 12.
20、 根据权利要求 18所述的方法, 其中, 所述方法还包括: 20. The method according to claim 18, wherein the method further includes:
所述基站对于所述常规循环前缀子帧中序号为 9的 OFDM符号内的增强型资源 粒子组序号, 选择第一循环位移值; 所述第一循环位移值和所述第二循环位移值之差 的绝对值为 0到 12之间的奇数。 The base station selects a first cyclic displacement value for the enhanced resource particle group sequence number in the OFDM symbol with a sequence number of 9 in the regular cyclic prefix subframe; the first cyclic displacement value and the second cyclic displacement value The absolute value of the difference is an odd number between 0 and 12.
21、 一种资源映射方法, 应用于增强型物理下行控制信道, 所述方法包括: 基站对于扩展循环前缀子帧中序号为 4、 5的 OFDM符号内的增强型资源粒子组 序号, 分别选择第四循环位移值和第五循环位移值; 所述第四循环位移值和所述第五 循环位移值之差的绝对值为 0到 12之间的奇数; 21. A resource mapping method, applied to the enhanced physical downlink control channel, the method includes: the base station selects the enhanced resource particle group sequence numbers in the OFDM symbols with sequence numbers 4 and 5 in the extended cyclic prefix subframe, respectively. The fourth cyclic displacement value and the fifth cyclic displacement value; the absolute value of the difference between the fourth cyclic displacement value and the fifth cyclic displacement value is an odd number between 0 and 12;
在每个物理资源块对内,将顺序编号的增强型资源粒子组序号映射到除解调参考 信号外的资源粒子, 并根据所述循环位移值对所述扩展循环前缀子帧 OFDM符号内 的增强型资源粒子组序号进行循环位移。 Within each physical resource block pair, the sequentially numbered enhanced resource element group sequence numbers are mapped to resource elements other than the demodulation reference signal, and the elements within the extended cyclic prefix subframe OFDM symbol are mapped according to the cyclic displacement value. The sequence number of the enhanced resource particle group undergoes cyclic displacement.
22、 根据权利要求 21所述的方法, 其中, 所述方法还包括: 22. The method according to claim 21, wherein the method further includes:
所述基站对于所述扩展循环前缀子帧中序号为 7、 8的 OFDM符号内的增强型资 源粒子组序号, 分别选择第六循环位移值和第七循环位移值; 所述第六循环位移值和 所述第七循环位移值之差的绝对值为 0到 12之间的奇数。 The base station selects a sixth cyclic displacement value and a seventh cyclic displacement value respectively for the enhanced resource particle group sequence numbers in the OFDM symbols with serial numbers 7 and 8 in the extended cyclic prefix subframe; the sixth cyclic displacement value The absolute value of the difference from the seventh cyclic displacement value is an odd number between 0 and 12.
23、 根据权利要求 21或 22所述的方法, 其中, 所述方法还包括: 23. The method according to claim 21 or 22, wherein the method further includes:
所述基站对于所述扩展循环前缀子帧中序号为 10、 11的 OFDM符号内的增强型 资源粒子组序号, 分别选择第八循环位移值和第九循环位移值; 所述第八循环位移值 和所述第九循环位移值之差的绝对值为 0到 12之间的奇数。 The base station selects an eighth cyclic displacement value and a ninth cyclic displacement value respectively for the enhanced resource particle group sequence numbers in the OFDM symbols with serial numbers 10 and 11 in the extended cyclic prefix subframe; the eighth cyclic displacement value The absolute value of the difference from the ninth cyclic displacement value is an odd number between 0 and 12.
24、 一种资源映射方法, 应用于增强型物理下行控制信道, 所述方法包括: 基站对于扩展循环前缀子帧中序号为 7、 8的 OFDM符号内的增强型资源粒子组 序号, 分别选择第六循环位移值和第七循环位移值; 所述第六循环位移值和所述第七 循环位移值之差的绝对值为 0到 12之间的奇数; 在每个物理资源块对内,将顺序编号的增强型资源粒子组序号映射到除解调参考 信号外的资源粒子, 并根据所述循环位移值对所述扩展循环前缀子帧 OFDM符号内 的增强型资源粒子组序号进行循环位移。 24. A resource mapping method, applied to the enhanced physical downlink control channel, the method includes: the base station selects the enhanced resource particle group sequence numbers in the OFDM symbols with sequence numbers 7 and 8 in the extended cyclic prefix subframe, respectively. Sixth cycle displacement value and seventh cycle displacement value; The absolute value of the difference between the sixth cycle displacement value and the seventh cycle displacement value is an odd number between 0 and 12; Within each physical resource block pair, the sequentially numbered enhanced resource element group sequence numbers are mapped to resource elements other than the demodulation reference signal, and the elements within the extended cyclic prefix subframe OFDM symbol are mapped according to the cyclic displacement value. The sequence number of the enhanced resource particle group undergoes cyclic displacement.
25、 根据权利要求 24所述的方法, 其中, 所述方法还包括: 25. The method according to claim 24, wherein the method further includes:
所述基站对于所述扩展循环前缀子帧中序号为 4、 5的 OFDM符号内的增强型资 源粒子组序号, 分别选择第四循环位移值和第五循环位移值; 所述第四循环位移值和 所述第五循环位移值之差的绝对值为 0到 12之间的奇数。 The base station selects a fourth cyclic displacement value and a fifth cyclic displacement value respectively for the enhanced resource particle group sequence numbers in the OFDM symbols with sequence numbers 4 and 5 in the extended cyclic prefix subframe; the fourth cyclic displacement value The absolute value of the difference from the fifth cyclic displacement value is an odd number between 0 and 12.
26、 根据权利要求 24或 25所述的方法, 其中, 所述方法还包括: 26. The method according to claim 24 or 25, wherein the method further includes:
所述基站对于所述扩展循环前缀子帧中序号为 10、 11的 OFDM符号内的增强型 资源粒子组序号, 分别选择第八循环位移值和第九循环位移值; 所述第八循环位移值 和所述第九循环位移值之差的绝对值为 0到 12之间的奇数。 The base station selects an eighth cyclic displacement value and a ninth cyclic displacement value respectively for the enhanced resource particle group sequence numbers in the OFDM symbols with serial numbers 10 and 11 in the extended cyclic prefix subframe; the eighth cyclic displacement value The absolute value of the difference from the ninth cyclic displacement value is an odd number between 0 and 12.
27、 一种资源映射方法, 应用于增强型物理下行控制信道, 所述方法包括: 基站对于扩展循环前缀子帧中序号为 10、 11的 OFDM符号内的增强型资源粒子 组序号, 分别选择第八循环位移值和第九循环位移值; 所述第八循环位移值和所述第 九循环位移值之差的绝对值为 0到 12之间的奇数; 27. A resource mapping method, applied to the enhanced physical downlink control channel, the method includes: the base station selects the enhanced resource particle group sequence numbers in the OFDM symbols with sequence numbers 10 and 11 in the extended cyclic prefix subframe respectively. The eighth cyclic displacement value and the ninth cyclic displacement value; the absolute value of the difference between the eighth cyclic displacement value and the ninth cyclic displacement value is an odd number between 0 and 12;
在每个物理资源块对内,将顺序编号的增强型资源粒子组序号映射到除解调参考 信号外的资源粒子, 并根据所述循环位移值对所述扩展循环前缀子帧 OFDM符号内 的增强型资源粒子组序号进行循环位移。 Within each physical resource block pair, the sequentially numbered enhanced resource element group sequence numbers are mapped to resource elements other than the demodulation reference signal, and the elements within the extended cyclic prefix subframe OFDM symbol are mapped according to the cyclic displacement value. The sequence number of the enhanced resource particle group undergoes cyclic displacement.
28、 根据权利要求 27所述的方法, 其中, 所述方法还包括: 28. The method according to claim 27, wherein the method further includes:
所述基站对于所述扩展循环前缀子帧中序号为 7、 8的 OFDM符号内的增强型资 源粒子组序号, 分别选择第六循环位移值和第七循环位移值; 所述第六循环位移值和 所述第七循环位移值之差的绝对值为 0到 12之间的奇数。 The base station selects a sixth cyclic displacement value and a seventh cyclic displacement value respectively for the enhanced resource particle group sequence numbers in the OFDM symbols with sequence numbers 7 and 8 in the extended cyclic prefix subframe; the sixth cyclic displacement value The absolute value of the difference from the seventh cyclic displacement value is an odd number between 0 and 12.
29、 根据权利要求 27或 28所述的方法, 其中, 所述方法还包括: 29. The method according to claim 27 or 28, wherein the method further includes:
所述基站对于所述扩展循环前缀子帧中序号为 4、 5的 OFDM符号内的增强型资 源粒子组序号, 分别选择第四循环位移值和第五循环位移值; 所述第四循环位移值和 所述第五循环位移值之差的绝对值为 0到 12之间的奇数。 The base station selects a fourth cyclic displacement value and a fifth cyclic displacement value respectively for the enhanced resource particle group sequence numbers in the OFDM symbols with sequence numbers 4 and 5 in the extended cyclic prefix subframe; the fourth cyclic displacement value The absolute value of the difference from the fifth cyclic displacement value is an odd number between 0 and 12.
30、 一种基站, 所述基站包括: 30. A base station, the base station includes:
选择单元, 对于常规循环前缀子帧中序号为 5、 6的 OFDM符号内的增强型资源 粒子组序号, 分别选择循环位移值为 {2, 3}、 {3, 2}、 {3, 4}或者 {4, 3}; 或者, 对 于所述常规循环前缀子帧中序号为 12、13的 OFDM符号内的增强型资源粒子组序号, 分别选择循环位移值为 {2, 3}、 {3, 2}、 {3, 4}或者 {4, 3}; 或者, 对于所述常规循 环前缀子帧中序号为 9、 10的 OFDM符号内的增强型资源粒子组序号, 分别选择第 一循环位移值和第二循环位移值;所述第一循环位移值和所述第二循环位移值之差的 绝对值为 0到 12之间的奇数; 或者, 对于所述常规循环前缀子帧中序号为 8、 10的 OFDM 符号内的增强型资源粒子组序号, 分别选择第三循环位移值和第二循环位移 值;所述第三循环位移值和所述第二循环位移值之差的绝对值为 0到 12之间的奇数; 映射单元, 在每个物理资源块对内, 将顺序编号的增强型资源粒子组序号映射到 除解调参考信号外的资源粒子, 并根据所述循环位移值对所述常规循环前缀子帧 OFDM符号内的增强型资源粒子组序号进行循环位移。 The selection unit selects the cyclic displacement values of {2, 3}, {3, 2}, and {3, 4} for the enhanced resource particle group sequence numbers in OFDM symbols with sequence numbers 5 and 6 in the conventional cyclic prefix subframe, respectively. Or {4, 3}; Or, for the enhanced resource particle group sequence numbers in the OFDM symbols with sequence numbers 12 and 13 in the regular cyclic prefix subframe, select the cyclic displacement values to be {2, 3} and {3, respectively. 2}, {3, 4} or {4, 3}; or, for the enhanced resource particle group sequence numbers in the OFDM symbols with sequence numbers 9 and 10 in the conventional cyclic prefix subframe, select the first cyclic displacement value respectively and a second cyclic displacement value; the absolute value of the difference between the first cyclic displacement value and the second cyclic displacement value is an odd number between 0 and 12; or, for the sequence number in the regular cyclic prefix subframe is 8 , the enhanced resource particle group sequence number within the OFDM symbol of 10, select the third cyclic displacement value and the second cyclic displacement respectively. value; the absolute value of the difference between the third cyclic displacement value and the second cyclic displacement value is an odd number between 0 and 12; the mapping unit, within each physical resource block pair, sequentially numbered enhanced resources The particle group sequence number is mapped to resource particles other than the demodulation reference signal, and the enhanced resource particle group sequence number within the conventional cyclic prefix subframe OFDM symbol is cyclically shifted according to the cyclic shift value.
31、 一种基站, 所述基站包括: 31. A base station, the base station includes:
选择单元, 对于扩展循环前缀子帧中序号为 4、 5的 OFDM符号内的增强型资源 粒子组序号, 分别选择第四循环位移值和第五循环位移值; 所述第四循环位移值和所 述第五循环位移值之差的绝对值为 0到 12之间的奇数; 或者, 对于所述扩展循环前 缀子帧中序号为 7、 8的 OFDM符号内的增强型资源粒子组序号, 分别选择第六循环 位移值和第七循环位移值;所述第六循环位移值和所述第七循环位移值之差的绝对值 为 0到 12之间的奇数; 或者, 对于所述扩展循环前缀子帧中序号为 10、 11的 OFDM 符号内的增强型资源粒子组序号, 分别选择第八循环位移值和第九循环位移值; 所述 第八循环位移值和所述第九循环位移值之差的绝对值为 0到 12之间的奇数。 The selection unit selects the fourth cyclic displacement value and the fifth cyclic displacement value respectively for the enhanced resource particle group sequence numbers in the OFDM symbols with serial numbers 4 and 5 in the extended cyclic prefix subframe; the fourth cyclic displacement value and the The absolute value of the difference between the fifth cyclic displacement values is an odd number between 0 and 12; or, for the enhanced resource element group sequence numbers in the OFDM symbols with sequence numbers 7 and 8 in the extended cyclic prefix subframe, select respectively The sixth cyclic displacement value and the seventh cyclic displacement value; the absolute value of the difference between the sixth cyclic displacement value and the seventh cyclic displacement value is an odd number between 0 and 12; or, for the extended cyclic prefix sub The enhanced resource particle group sequence numbers in the OFDM symbols with serial numbers 10 and 11 in the frame select the eighth cyclic displacement value and the ninth cyclic displacement value respectively; the difference between the eighth cyclic displacement value and the ninth cyclic displacement value The absolute value of is an odd number between 0 and 12.
映射单元, 在每个物理资源块对内, 将顺序编号的增强型资源粒子组序号映射到 除解调参考信号外的资源粒子, 并根据所述循环位移值对所述扩展循环前缀子帧 OFDM符号内的增强型资源粒子组序号进行循环位移。 A mapping unit, within each physical resource block pair, maps the sequentially numbered enhanced resource element group sequence number to resource elements other than the demodulation reference signal, and maps the extended cyclic prefix subframe OFDM according to the cyclic displacement value. The sequence number of the enhanced resource particle group within the symbol is cyclically displaced.
32、 一种通信系统, 所述通信系统包括如权利要求 30或 31所述的基站。 32. A communication system, the communication system comprising the base station according to claim 30 or 31.
33、 一种计算机可读程序, 其中当在基站中执行所述程序时, 所述程序使得计算 机在所述基站中执行如权利要求 1至 29中任一项所述的资源映射方法。 33. A computer-readable program, wherein when the program is executed in a base station, the program causes the computer to execute the resource mapping method according to any one of claims 1 to 29 in the base station.
34、一种存储有计算机可读程序的存储介质, 其中所述计算机可读程序使得计算 机在基站中执行如权利要求 1至 29中任一项所述的资源映射方法。 34. A storage medium storing a computer-readable program, wherein the computer-readable program causes a computer to execute the resource mapping method according to any one of claims 1 to 29 in a base station.
PCT/CN2013/071280 2013-02-01 2013-02-01 Resource mapping method and base station WO2014117393A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2013/071280 WO2014117393A1 (en) 2013-02-01 2013-02-01 Resource mapping method and base station

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2013/071280 WO2014117393A1 (en) 2013-02-01 2013-02-01 Resource mapping method and base station

Publications (1)

Publication Number Publication Date
WO2014117393A1 true WO2014117393A1 (en) 2014-08-07

Family

ID=51261443

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/071280 WO2014117393A1 (en) 2013-02-01 2013-02-01 Resource mapping method and base station

Country Status (1)

Country Link
WO (1) WO2014117393A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101247382A (en) * 2008-03-25 2008-08-20 中兴通讯股份有限公司 Distributed transmission resource mapping method and apparatus based on OFDM system
CN101911577A (en) * 2007-10-29 2010-12-08 爱立信电话股份有限公司 Control channel formulation in OFDM systems
CN102511191A (en) * 2009-10-02 2012-06-20 松下电器产业株式会社 Wireless communication apparatus and wireless communication method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101911577A (en) * 2007-10-29 2010-12-08 爱立信电话股份有限公司 Control channel formulation in OFDM systems
CN101247382A (en) * 2008-03-25 2008-08-20 中兴通讯股份有限公司 Distributed transmission resource mapping method and apparatus based on OFDM system
CN102511191A (en) * 2009-10-02 2012-06-20 松下电器产业株式会社 Wireless communication apparatus and wireless communication method

Similar Documents

Publication Publication Date Title
JP6320370B2 (en) Downlink control information transmission method, detection method, base station, and user equipment
JP2015508956A5 (en)
WO2014019286A1 (en) Control channel transmission method and device
WO2013185316A1 (en) Determining method and device of uplink control channel resources
JP6093440B2 (en) Control channel transmission method and apparatus
WO2014019285A1 (en) Transmission and receiving methods of control channel, base station and user equipment
WO2016029455A1 (en) Resource allocation method and device
JP6538832B2 (en) Method and apparatus for preventing message collision
WO2014019343A1 (en) Control signaling transmission and detection methods, base station, and terminal
WO2013139307A1 (en) E-pdcch transmitting and receiving method and device
WO2014019276A1 (en) Method, apparatus and system for transmitting control information
CN111034292B (en) Resource definition
TW201417606A (en) Method of configuring ECCE for EPDCCH
CN107409026B (en) CSI-RS transmission method and base station
WO2014183472A1 (en) Transmission method and device of ephich
JP6893241B2 (en) Signal transmission method, network equipment and terminal equipment
CN106559193B (en) The method and apparatus that DMRS signal is handled in a wireless communication system
WO2014117393A1 (en) Resource mapping method and base station
WO2014015519A1 (en) Control channel transmission method, device, and apparatus
EP3515024A1 (en) Method of transmitting control channel, network device and terminal device
US9444608B2 (en) Control channel transmission method and apparatus to implement transmission of ePDCCHs through an eREG in a unit physical resource block
WO2014019144A1 (en) Transmission method for control channel, base station, and terminal
CN109586871B (en) CSI-RS transmission method and device
JP6630821B2 (en) Method and apparatus for transmitting channel state information reference signal CSI-RS
WO2018171347A1 (en) Method and device for processing demodulation pilot frequency and storage medium

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13873574

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13873574

Country of ref document: EP

Kind code of ref document: A1