WO2014115873A1 - Vehicle electric braking device - Google Patents

Vehicle electric braking device Download PDF

Info

Publication number
WO2014115873A1
WO2014115873A1 PCT/JP2014/051685 JP2014051685W WO2014115873A1 WO 2014115873 A1 WO2014115873 A1 WO 2014115873A1 JP 2014051685 W JP2014051685 W JP 2014051685W WO 2014115873 A1 WO2014115873 A1 WO 2014115873A1
Authority
WO
WIPO (PCT)
Prior art keywords
guide
axis
fixed
guide member
electric motor
Prior art date
Application number
PCT/JP2014/051685
Other languages
French (fr)
Japanese (ja)
Inventor
安井 由行
真一郎 幽谷
博之 児玉
平田 聡
Original Assignee
株式会社アドヴィックス
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2013012492A external-priority patent/JP5907350B2/en
Priority claimed from JP2013012489A external-priority patent/JP5880875B2/en
Application filed by 株式会社アドヴィックス filed Critical 株式会社アドヴィックス
Publication of WO2014115873A1 publication Critical patent/WO2014115873A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D55/00Brakes with substantially-radial braking surfaces pressed together in axial direction, e.g. disc brakes
    • F16D55/02Brakes with substantially-radial braking surfaces pressed together in axial direction, e.g. disc brakes with axially-movable discs or pads pressed against axially-located rotating members
    • F16D55/22Brakes with substantially-radial braking surfaces pressed together in axial direction, e.g. disc brakes with axially-movable discs or pads pressed against axially-located rotating members by clamping an axially-located rotating disc between movable braking members, e.g. movable brake discs or brake pads
    • F16D55/224Brakes with substantially-radial braking surfaces pressed together in axial direction, e.g. disc brakes with axially-movable discs or pads pressed against axially-located rotating members by clamping an axially-located rotating disc between movable braking members, e.g. movable brake discs or brake pads with a common actuating member for the braking members
    • F16D55/225Brakes with substantially-radial braking surfaces pressed together in axial direction, e.g. disc brakes with axially-movable discs or pads pressed against axially-located rotating members by clamping an axially-located rotating disc between movable braking members, e.g. movable brake discs or brake pads with a common actuating member for the braking members the braking members being brake pads
    • F16D55/226Brakes with substantially-radial braking surfaces pressed together in axial direction, e.g. disc brakes with axially-movable discs or pads pressed against axially-located rotating members by clamping an axially-located rotating disc between movable braking members, e.g. movable brake discs or brake pads with a common actuating member for the braking members the braking members being brake pads in which the common actuating member is moved axially, e.g. floating caliper disc brakes
    • F16D55/2265Brakes with substantially-radial braking surfaces pressed together in axial direction, e.g. disc brakes with axially-movable discs or pads pressed against axially-located rotating members by clamping an axially-located rotating disc between movable braking members, e.g. movable brake discs or brake pads with a common actuating member for the braking members the braking members being brake pads in which the common actuating member is moved axially, e.g. floating caliper disc brakes the axial movement being guided by one or more pins engaging bores in the brake support or the brake housing
    • F16D55/227Brakes with substantially-radial braking surfaces pressed together in axial direction, e.g. disc brakes with axially-movable discs or pads pressed against axially-located rotating members by clamping an axially-located rotating disc between movable braking members, e.g. movable brake discs or brake pads with a common actuating member for the braking members the braking members being brake pads in which the common actuating member is moved axially, e.g. floating caliper disc brakes the axial movement being guided by one or more pins engaging bores in the brake support or the brake housing by two or more pins
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D65/00Parts or details
    • F16D65/14Actuating mechanisms for brakes; Means for initiating operation at a predetermined position
    • F16D65/16Actuating mechanisms for brakes; Means for initiating operation at a predetermined position arranged in or on the brake
    • F16D65/18Actuating mechanisms for brakes; Means for initiating operation at a predetermined position arranged in or on the brake adapted for drawing members together, e.g. for disc brakes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D2121/00Type of actuator operation force
    • F16D2121/18Electric or magnetic
    • F16D2121/24Electric or magnetic using motors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D2125/00Components of actuators
    • F16D2125/18Mechanical mechanisms
    • F16D2125/20Mechanical mechanisms converting rotation to linear movement or vice versa
    • F16D2125/34Mechanical mechanisms converting rotation to linear movement or vice versa acting in the direction of the axis of rotation
    • F16D2125/40Screw-and-nut
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D2125/00Components of actuators
    • F16D2125/18Mechanical mechanisms
    • F16D2125/44Mechanical mechanisms transmitting rotation
    • F16D2125/46Rotating members in mutual engagement
    • F16D2125/48Rotating members in mutual engagement with parallel stationary axes, e.g. spur gears

Definitions

  • the present invention relates to an electric braking device for a vehicle.
  • Patent Document 1 in a brake device that is electrically driven by a motor, a wiring control device and an actuator, a vehicle motion control device and a thrust sensor, and three bending cables that connect the vehicle motion control device and a wheel speed sensor are wired.
  • a communication circuit Installed on the wheel side, power is supplied to the drive control device through the two power lines from the vehicle body side, the braking force signal from the vehicle motion control device is received by multiplex communication, and the motor is driven to control the vehicle. It generates power ".
  • the casing installed on the wheel side is fixed to the housing on the side opposite to the disk rotor and the pad in the direction of the linear motion converted by the conversion mechanism, The drive control device is fixed inside the casing.
  • a drive control device including electronic components is installed on the wheel side.
  • the vibration of the vehicle body (on the spring) is reduced by a shock absorber or the like, but excessive vibration is input to the wheel (under the spring). .
  • electronic components are provided under the spring, it is necessary to consider vibrations for these electronic components.
  • the amplitude of the point P4 (the distance L4 from the support point P2 is longer than L3) is more likely to be amplified than the point P3 (the distance L3 from the support point P1).
  • the acceleration acting on each position is increased, so that an excessive inertial force acts on a member disposed in a place where vibration amplification is likely to occur.
  • the brake caliper is attached to a knuckle that supports the wheel via a mounting bracket.
  • the degree of vibration degree of vibration from the wheels
  • the fastening portion between the caliper and the mounting bracket is a support portion, which is the most advantageous point in terms of vibration. Amplification of vibration tends to occur when the support portion is separated.
  • the arrangement of members is optimized and vibration applied to these components is suppressed It is important that
  • the present invention has been made to cope with the above-described problems, and an object of the present invention is an electric braking device including an electric motor and a driving circuit on a wheel side, and an electronic component such as a driving circuit is preferable.
  • the electronic component can be improved in reliability against vibration from the road surface when the vehicle is traveling.
  • Another object of the present invention is to provide an electric braking device in which an electric motor is provided on the wheel side, and electric power is supplied to the electric motor via a connector.
  • the electric motor and the connector are suitably arranged, and the vehicle is running.
  • An object of the present invention is to provide an electric motor that can improve the reliability of an electric motor and a connector against vibration from a road surface.
  • the electric braking device for a vehicle presses the friction member (MSB) to the rotating member (KTB) fixed to the wheel (WHL) of the vehicle via the electric motor (MTR), thereby the wheel (WHL). To generate braking torque.
  • This device includes a mount member (MTB) fixed to a support member (NKL) that supports the wheel (WHL), and a first guide member having an axis (Jgd1) fixed to the mount member (MTB). (GD1) and an axis (Jgd2) parallel to the axis (Jgd1) of the first guide member (GD1) fixed to the mount member (MTB) at a position different from the first guide member (GD1). ) Having a second guide member (GD2) and an axial direction (ZH1) of the first and second guide members (GD1, GD2) supported by the first and second guide members (GD1, GD2). Or a caliper (CPR) that can move relative to the first and second guide members (GD1, GD2) in the ZH2), and the electric motor (MTR) includes the caliper (CR ) It is fixed to.
  • This device is characterized by switching elements (S1 to S4, Z1 to Z6) of a bridge circuit that drives the electric motor (MTR), and inductors (IND,) that reduce fluctuations in power supplied to the electric motor (MTR).
  • IND1, IND2) and at least one of capacitors (CND, CND1, CND2) are built in the caliper (CPR), and both end points (A) of the first guide member (GD1) in the axial direction , B), and a plane of a guide quadrangle (Mgd, quadrangle A-B-D-C) that is a quadrangle with four end points (C, D) in the axial direction of the second guide member (GD2).
  • ZV1 or ZV2 When viewed from the vertical direction (ZV1 or ZV2), it is located inside the guide square (Mgd).
  • the caliper can be attached to the mount member by the first and second guide members (slide pins) and slid along the first and second guide members.
  • the caliper is slid in parallel with respect to a guide quadrangle (rectangle A-B-D-C which is a guide surface) formed by both end points of each guide member (slide pin).
  • the position of the electronic component having a relatively large mass (the switching element constituting the bridge circuit, the inductor and the capacitor of the power fluctuation reduction circuit) is projected onto the guide surface in parallel projection (that is, in the guide space). Determined internally).
  • the electric braking apparatus has an axis (Jtk1) parallel to the axis (Jgd1) of the first guide member (GD1), which fixes the mount member (MTB) to the support member (NKL).
  • the first guide member (GD1) for fixing the mount member (MTB) to the support member (NKL) at a position different from the first fastening member (TK1) and the first fastening member (TK1).
  • a second fastening member (TK2) having an axis (Jtk2) parallel to the axis (Jgd1).
  • This device is characterized in that at least one of the switching elements (S1 to S4, Z1 to Z6), the inductors (IND, IND1, IND2), and the capacitors (CND, CND1, CND2) has the caliper ( CPR) and when viewed from the axial direction (ZH1 or ZH2) of the first guide member (GD1), the axis (Jgd1) of the first guide member (GD1), the second The positions of the axis (Jgd2) of the guide member (GD2), the axis (Jtk1) of the first fastening member (TK1), and the axis (Jtk2) of the second fastening member (TK2) are defined as four corners.
  • a fastening quadrangle (Mtk, quadrangle GHLK) that is a quadrangle having a plane perpendicular to the axis (Jgd1) of the first guide member (GD1).
  • Jgd1 the first guide member
  • the mount member is fixed to the support member by the first and second fastening members, and the caliper is attached to the mount member by the first and second guide members.
  • a fastening quadrangle perpendicular to the axis having four corners at each of the four axes (a quadrangle GHHL as a fastening surface).
  • K the less the vibration is amplified.
  • electronic components switching elements, inductors and capacitors of the power fluctuation reduction circuit
  • having a relatively large mass are arranged so as to be projected onto the fastening surface in parallel projection (that is, inside the fastening space).
  • the electric braking device includes a pressing force acquisition means (FBA) that acquires a pressing force (Fba) that is a force with which the friction member (MSB) presses the rotating member (KTB).
  • the pressing force acquisition means (FBA) is fixed to the caliper (CPR), and when viewed from a direction (ZV1 or ZV2) perpendicular to the plane of the guide square (Mgd), the guide square (Mgd ) Is preferably located inside.
  • the electric braking device includes a position acquisition means (MKA) for acquiring the position (Mka) of the electric motor.
  • the position acquisition means (MKA) is built in the electric motor, and when viewed from a direction (ZV1 or ZV2) perpendicular to the plane of the guide quadrangle (Mgd), It is preferable to be located at.
  • the position acquisition means (MKA) is preferably located inside the fastening square (Mtk) when viewed from the axial direction (ZH1 or ZH2) of the first guide member (GD1).
  • an acquisition means that acquires a state quantity is easily affected by vibrations such as noise.
  • an element vulnerable to vibration may be employed as part of the acquisition unit.
  • road surface vibration is less likely to be amplified as it is closer to the guide surface (guide square) and / or closer to the fastening surface (fastening square).
  • the position acquisition unit and the pressing force acquisition unit are arranged so as to be projected onto the guide surface in parallel projection (that is, inside the guide space).
  • the position acquisition means is arranged so as to be projected onto the fastening surface in parallel projection (that is, inside the fastening space). Therefore, with respect to the position acquisition means and the pressing force acquisition means, amplification of road surface vibration is suppressed, and the reliability of the position acquisition means and the pressing force acquisition means against vibration due to road surface unevenness during vehicle travel can be ensured. .
  • the apparatus includes a power source (BAT) installed in a vehicle body of the vehicle, wirings (PWL, SGL) for supplying electric power and a drive signal from the power source (BAT) to the electric motor (MTR), A connector (CNC) that relays wiring (PWL, SGL), a mounting member (MTB) that is fixed to a support member (NKL) that supports the wheel (WHL), and a fixing member that is fixed to the mounting member (MTB).
  • a first guide member (GD1) having an axis (Jgd1), and the first guide member (GD1) fixed to the mount member (MTB) at a position different from the first guide member (GD1).
  • a second guide member (GD2) having an axis (Jgd2) parallel to the axis (Jgd1) of the first and second guide members (GD1, GD2)
  • Comprising a guide member (GD1, GD2) the first in the axial direction (ZH1 or Zh2) of the second guide member (GD1, GD2) can move relative to the caliper (CPR), and.
  • the device is characterized in that the connector (CNC) is fixed to the surface of the caliper (CPR), and both end points (A, B) in the axial direction of the first guide member (GD1), and Vertical direction (ZV1) with respect to the plane of the guide quadrangle (Mgd, quadrangle ABCD) having four corners at both end points (C, D) in the axial direction of the second guide member (GD2) Or, when viewed from ZV2), it is located inside the guide square (Mgd).
  • the caliper can be attached to the mount member by the first and second guide members (slide pins) and slid along the first and second guide members.
  • the caliper is slid in parallel with respect to a guide quadrangle (rectangle A-B-D-C which is a guide surface) formed by both end points of each guide member (slide pin).
  • the electric braking apparatus has an axis (Jtk1) parallel to the axis (Jgd1) of the first guide member (GD1), which fixes the mount member (MTB) to the support member (NKL).
  • the first guide member (GD1) for fixing the mount member (MTB) to the support member (NKL) at a position different from the first fastening member (TK1) and the first fastening member (TK1).
  • a second fastening member (TK2) having an axis (Jtk2) parallel to the axis (Jgd1).
  • the mount member is fixed to the support member by the first and second fastening members, and the caliper is attached to the mount member by the first and second guide members.
  • a fastening quadrangle perpendicular to the axis having four corners at each of the four axes (a quadrangle GHHL as a fastening surface).
  • K the less the vibration is amplified.
  • the connector that relays power and signals is arranged so as to be projected onto the fastening surface in parallel projection (that is, inside the fastening space). As a result, the reliability of the connector against vibration (particularly in the direction of the wheel shaft) due to road surface unevenness during vehicle travel can be ensured.
  • the brush and commutator of an electric motor are arrange
  • the brush and the commutator of the electric motor are arranged so as to be projected onto the fastening surface in parallel projection (that is, inside the fastening space). For this reason, amplification of road surface vibration can be suppressed regarding a brush and a commutator.
  • FIG. 1 It is a schematic block diagram for demonstrating the mounting state to the vehicle of the electric braking device which concerns on embodiment of this invention. It is a whole block diagram of the braking means shown in FIG. 1, and a control means. It is a whole block diagram of a drive means in case a motor with a brush is employ
  • FIG. 1 shows a state where an electric braking device according to an embodiment of the present invention is mounted on a vehicle.
  • the electric braking device generates a wheel braking force by applying a braking torque to the wheel according to an operation amount of a braking operation member (for example, a brake pedal) of the driver, and decelerates the traveling vehicle.
  • a storage battery (battery) BAT supplies electric power to braking means (brake actuator) BRK and an electronic control unit ECU.
  • the BAT is provided (fixed) on the vehicle body BDY.
  • the BAT supplies power to the drive means (drive circuit) DRV that drives the electric motor MTR via the ECU and the power line PWL.
  • the electronic control unit ECU transmits a drive signal Imt to the drive circuit DRV via the signal line SGL based on the braking operation amount Bpa.
  • the ECU is provided (fixed) to the vehicle body BDY.
  • the drive circuit DRV is provided in the caliper CPR and includes a switching element (S1 and the like) and a noise reduction circuit. Based on the drive signal (target energization amount Imt) of the MTR transmitted from the ECU via the signal line SGL, the switching element is driven, and the rotational direction and rotational power of the MTR are controlled. Electric power for driving the MTR is supplied from the BAT to the DRV through the ECU and the power line PWL.
  • the signal line SGL and the power line PWL are collectively referred to as “wiring (wire harness)”.
  • power line communication in which the power line PWL is also used as a signal line (communication line) SGL may be employed.
  • the SGL is integrated into the PWL (ie, the SGL is omitted), and the Imt is superimposed on the PWL and transmitted to the DRV.
  • the power line communication is also referred to as power line communication (PLC) and is a communication system that performs high-speed data communication using the power supply wiring PWL.
  • the suspension arm (for example, upper arm UAM, lower arm LAM) has one side attached to the vehicle body BDY of the vehicle and the other side attached to a knuckle (corresponding to a support member) NKL.
  • the coil spring SPR and the shock absorber SHA are attached to a suspension arm or a knuckle NKL.
  • the wheel WHL is suspended from the vehicle body BDY by the coil spring SPR and the shock absorber SHA.
  • the suspension arm, SPR, NKL, and SHA are members constituting a known suspension device.
  • the hub bearing unit HBU is fixed to a support member (knuckle) NKL.
  • the wheel WHL is supported by a hub bearing in the hub bearing unit HBU.
  • a rotating member (brake disc) KTB is fixed to the wheel WHL, and the KTB is rotated integrally with the WHL (that is, the rotating shaft of the KTB and the rotating shaft of the WHL are coaxial).
  • the mounting bracket (corresponding to the mount member) MTB is fixed to the knuckle (corresponding to the support member) NKL by fastening members (for example, bolts) TK1 and TK2 (not shown).
  • the caliper CPR is attached to the mount member MTB via guide members GD1, GD2 (slide pins fastened to the MTB by pin bolts PB1, PB2 (not shown)).
  • the brake caliper CPR is a floating caliper and is configured to sandwich a rotating member (brake disc) KTB via two friction members (brake pads) MSB. Specifically, the slide pins GD1 and GD2 are fixed to the mount member MTB, and the pressing member PSN in the caliper CRP is slid by the electric motor MTR along the GD1 and GD2 toward the rotating member KTB.
  • a vehicle including this electric braking device includes a braking operation member BP, an electronic control unit ECU, a braking means (brake actuator) BRK, and a storage battery (battery) BAT.
  • control means (control algorithm) CTL for controlling the braking means BRK is programmed, and the BRK is controlled based on this.
  • the storage battery BAT is a power source that supplies power to the BRK, ECU, and the like.
  • the control means CTL includes a target pressing force calculation block FBT, an instruction energization amount calculation block IST, a pressing force feedback control block IPT, and an energization amount adjustment calculation block IMT.
  • the control means (control program) CTL is programmed in the electronic control unit ECU.
  • the target pressing force Fbt of each wheel WHL is calculated based on the braking operation amount Bpa and the preset target pressing force calculation characteristic (calculation map) CHfb.
  • Fbt is a target value of the pressing force, which is a force with which the friction member (brake pad) MSB presses the rotating member (brake disc) KTB in the electric braking means BRK.
  • the command energization amount Ist is calculated on the basis of preset calculation characteristics (calculation maps) CHs1 and CHs2 of the command energization amount and the target pressing force Fbt.
  • Ist is a target value of the energization amount to the electric motor MTR for driving the electric motor MTR of the electric braking means BRK and achieving the target pressing force Fbt.
  • the calculation map of Ist is composed of two characteristics CHs1 and CHs2 in consideration of the hysteresis of the electric braking means BRK.
  • the characteristic CHs1 corresponds to the case where the pressing force is increased, and the characteristic CHs2 corresponds to the case where the pressing force is decreased. Therefore, compared with the characteristic CHs2, the characteristic CHs1 is set to output a relatively large command energization amount Ist.
  • the energization amount is a state amount (variable) for controlling the output torque of the electric motor MTR. Since the electric motor MTR outputs a torque substantially proportional to the current, the current target value of the electric motor MTR can be used as the target value of the energization amount. Further, if the supply voltage to the electric motor MTR is increased, the current is increased as a result, so that the supply voltage value can be used as the target energization amount. Furthermore, since the supply voltage value can be adjusted by the duty ratio in pulse width modulation (PWM: Pulse Width Modulation), this duty ratio can be used as the energization amount.
  • PWM Pulse Width Modulation
  • the pressing force feedback energization amount Ipt is calculated based on the target pressing force (target value) Fbt and the actual pressing force (actual value) Fba.
  • the command energization amount Ist is calculated as a value corresponding to the target pressing force Fbt, but an error (steady error) occurs between the target pressing force Fbt and the actual pressing force Fba due to the efficiency variation of the electric braking means BRK.
  • the pressing force feedback energization amount Ipt is calculated based on a deviation (pressing force deviation) ⁇ Fb between the target pressing force Fbt and the actual pressing force Fba and a preset calculation characteristic (calculation map) CHp, and the above error is calculated. Decided to decrease.
  • the actual pressing force Fba is acquired (detected) by a pressing force acquisition unit FBA described later.
  • a target energization amount Imt that is a final target value for the electric motor MTR is calculated.
  • the command energization amount Ist is adjusted by the pressing force feedback energization amount Ipt, and the target energization amount Imt is calculated. Specifically, the feedback energization amount Ipt is added to the command energization amount Ist, and this is calculated as the final target energization amount Imt.
  • the brake means BRK includes a brake caliper (floating caliper) CPR, an electric motor (brush motor or brushless motor) MTR, a drive means (MTR drive circuit) DRV, a reduction gear GSK, a shaft member SFT, a screw member NJB, and a press.
  • the member (brake piston) PSN, position detection means MKA, energization amount acquisition means IMA, and pressing force acquisition means FBA are configured.
  • the braking means (brake actuator) BRK has two axes: an axis (rotation axis and motor axis) Jmt of the electric motor MTR and an axis (rotation axis and shaft axis) Jsf of the shaft member SFT. Configuration (ie, a biaxial configuration).
  • the motor shaft Jmt is provided with position acquisition means (rotation angle sensor) MKA and small-diameter gear SKH of the reduction gear GSK.
  • the shaft shaft Jsf is provided with a screw member NJB, a pressing member PSN, a pressing force acquisition means FBA, and a large-diameter gear DKH of the reduction gear GSK.
  • Each component (MTR, DRV, etc.) of the braking means BRK is provided in the caliper CPR.
  • the caliper CPR is slidably fixed to a mounting bracket (corresponding to a mount member) MTB.
  • the mount member MTB is attached to a knuckle (corresponding to a support member) NKL.
  • the MTR drive instruction value (target energization amount) Imt is sent from the electronic control unit ECU via the signal line SGL, and the drive power of the MTR is transmitted via the power line PWL.
  • a connector CNC is fixed on the surface of the caliper CPR, and Imt and electric power are taken into the drive circuit DRV through the connector CNC.
  • the electric motor MTR is driven by DRV to generate rotational power.
  • the output of the electric motor MTR (rotational power around the motor shaft Jmt) is transmitted to the shaft member SFT via the reduction gear GSK.
  • the rotational power (torque around the shaft axis Jsf) of the shaft member SFT is converted into linear power (thrust in the direction of the pressing axis Jps) by the screw member NJB, which is a motion converting member, and transmitted to the pressing member PSN.
  • the pressing member (brake piston) PSN is moved forward / backward toward the rotating member (brake disc) KTB.
  • the force (pressing force) Fba that the friction member (brake pad) MSB presses the rotating member KTB is adjusted.
  • a frictional force is generated between the friction member MSB and the rotating member KTB, and the braking force is adjusted to the wheel WHL, for example, the traveling vehicle is decelerated.
  • a conversion mechanism such as a ball ramp member, a rotary wedge member, a rack and pinion member, or the like may be employed as the conversion member for converting the rotational motion into the linear motion instead of the screw member NJB.
  • the brake caliper CPR is a floating caliper, and is configured to sandwich the rotating member (brake disc) KTB via the two friction members (brake pads) MSB.
  • the pressing member PSN is slid and moved forward or backward toward the rotating member KTB.
  • the keyway KYM is formed so as to extend in the direction of the rotation axis (shaft axis Jsf) of the shaft member SFT.
  • a motor with a brush or a brushless motor is adopted as the electric motor MTR.
  • the forward rotation direction corresponds to the direction in which the friction member MSB approaches the rotation member KTB (the direction in which the pressing force increases and the braking torque increases)
  • the reverse rotation direction corresponds to the friction member MSB.
  • the output of the electric motor MTR is determined based on the target energization amount Imt calculated by the control means CTL.
  • the electric motor MTR is driven in the forward rotation direction, and the sign of Imt is a negative sign (Imt ⁇ 0).
  • the electric motor MTR is driven in the reverse direction.
  • the rotational power of the electric motor MTR is determined based on the magnitude (absolute value) of the target energization amount Imt. That is, the larger the absolute value of the target energization amount Imt, the larger the output torque of the electric motor MTR, and the smaller the absolute value of the target energization amount Imt, the smaller the output torque.
  • Position acquisition means (for example, rotation angle sensor) MKA detects the position (for example, rotation angle) Mka of the rotor (rotor) of the electric motor MTR.
  • the position acquisition means MKA is provided inside the electric motor MTR and coaxially with the MTR (arranged on the motor shaft Jmt).
  • the driving means (electric circuit for driving the electric motor MTR) DRV controls the energization amount (finally the current value) to the electric motor MTR based on the target energization amount (target value) Imt.
  • the driving unit DRV includes a bridge circuit using a plurality of switching elements (power transistors such as MOS-FETs and IGBTs). These elements are driven based on the target energization amount Imt of the electric motor, and the output of the electric motor MTR is controlled. Specifically, the rotation direction and output torque of the electric motor MTR are adjusted by switching the energization / non-energization state of the switching element.
  • the drive circuit DRV is provided with noise reduction circuits (stabilization circuits) LPFp and LPFt for reducing voltage fluctuation and the like.
  • the noise reduction circuits LPFp and LPFt are so-called LC circuits, and are configured by a combination of an inductor (coil) IND and a capacitor (capacitor) CND.
  • the energization amount acquisition means (for example, current sensor) IMA acquires (detects) an actual energization amount (for example, current that actually flows through the electric motor MTR) Ima to the electric motor MTR.
  • the energization amount acquisition means IMA is provided in the electric motor drive circuit DRV.
  • a connector CNC is provided on the surface of the caliper CPR. Connected between the electronic control unit ECU (arranged in the vehicle body BDY) and the drive circuit DRV (arranged in the caliper CPR) via wiring (signal line SGL and power line PWL) relayed by the connector CNC. .
  • the signal line SGL transmits the target energization amount Imt from the ECU to the DRV via the connector CNC.
  • the power line PWL supplies power for driving the electric motor MTR from the ECU to the DRV via the connector CNC.
  • Reducer GSK reduces the rotational speed and outputs it to shaft member SFT in the power of electric motor MTR. That is, the rotational output (torque) of the MTR is increased according to the reduction ratio of the reduction gear GSK, and the rotational force (torque) of the shaft member SFT is obtained.
  • the GSK is composed of a small diameter gear SKH and a large diameter gear DKH.
  • a winding transmission mechanism such as a belt or a chain, or a friction transmission mechanism may be employed.
  • the shaft member SFT is a rotating shaft member and transmits the rotational power transmitted from the reduction gear GSK to the screw member NJB.
  • the screw member NJB is a conversion member that converts the rotational power of the shaft member SFT into linear power. That is, the screw member NJB is a rotation / linear motion conversion mechanism.
  • the screw member NJB includes a nut member NUT and a bolt member BLT.
  • the screw member NJB has reversibility (has reverse efficiency) and can transmit power in both directions. That is, when the braking torque is increased (when the pressing force Fba is increased), power is transmitted from the shaft member SFT to the pressing member PSN through the screw member NJB. Conversely, when the braking torque is reduced (when the pressing force Fba is reduced), power is transmitted from the pressing member PSN to the shaft member SFT via the screw member NJB (reverse efficiency is less than “0”). large).
  • the screw member NJB is configured by a sliding screw (such as a trapezoidal screw) that transmits power by “sliding”.
  • the nut member NUT is provided with a female screw (inner screw) MNJ.
  • the bolt member BLT is provided with a male screw (outer screw) ONJ and is screwed to the MNJ of the NUT.
  • the rotational power (torque) transmitted from the shaft member SFT is transmitted as linear power (thrust) of the pressing member PSN via the screw member NJB (ONJ and MNJ).
  • a rolling screw such as a ball screw
  • the screw member NJB may be employed for the screw member NJB.
  • the nut member NUTb and the bolt member BLTb are provided with ball grooves. Power is transmitted through a ball (steel ball) BAL fitted in the ball groove.
  • the reaction force (reaction) of the force (pressing force) Fba that the pressing member PSN presses the friction member MSB is acquired (detected).
  • a strain generating body is formed in the FBA, and the strain is detected by a strain detection element, and Fba is acquired.
  • a strain detection element a device using a change in electrical resistance (strain gauge), a device using ultrasonic waves, or the like can be used.
  • the FBA is provided between the shaft member SFT and the caliper CPR.
  • the FBA is fixed to the caliper CRP.
  • the detected pressing force Fba is an analog signal, converted into a digital signal via an analog / digital conversion means provided in the electronic control unit ECU, and input to the ECU.
  • FIG. 3 shows an example of driving means (driving circuit) DRV in the case where a motor with a brush (also simply referred to as a brush motor) is employed as the electric motor MTR.
  • a motor with a brush is also called a commutator motor.
  • a current flowing through an armature is rotated by a mechanical commutator (commutator) CMT and a brush BLC. It is switched according to the phase. That is, the commutator CMT and the brush BLC constitute a mechanical rotation switch, and the current to the winding circuit is alternately inverted.
  • the stator (stator) side is constituted by a permanent magnet
  • the rotor (rotor) side is constituted by a winding circuit (electromagnet).
  • the brush BLC is in contact with the commutator CMT so that electric power is supplied to the winding circuit (rotor).
  • the brush BLC is pressed against the commutator CMT by a spring (elastic body), and a current is commutated by rotating the CMT.
  • Position acquisition means MKA for detecting the rotor position Mka of the electric motor MTR is provided inside the electric motor MTR.
  • the MKA is disposed coaxially with the rotor and the commutator (that is, provided on the motor shaft Jmt).
  • the driving means DRV is an electric circuit that drives the electric motor MTR, and the pulse width modulation block PWM that performs pulse width modulation (PWM) based on the switching elements S1 to S4 and Imt, and the PWM are determined.
  • the switching control block SWT controls the energized state / non-energized state of S1 to S4 based on the duty ratio to be performed.
  • the brushed motor MTR is provided with a brush BLC and a commutator CMT.
  • DRV and MTR are provided on the wheel side and fixed to the CPR.
  • a drive signal and power are supplied to the drive circuit DRV from the ECU provided on the vehicle body side via the connector CNC through the signal line SGL and the power line PWL.
  • the switching elements S1 to S4 are elements that can turn on / off a part of the electric circuit, and for example, MOS-FETs can be used.
  • a bridge circuit in the forward direction and the reverse direction of the MTR is configured by S1 to S4.
  • the forward rotation direction of the MTR is a rotation direction in which the MSB is brought closer to the KTB, the braking torque is increased, and the deceleration of the traveling vehicle is increased.
  • the reverse rotation direction of the MTR is to pull the MSB away from the KTB. In the rotational direction, the braking torque is reduced and the deceleration of the running vehicle is reduced.
  • the switching control block SWT controls S1 and S4 to be in an energized state (ON state) and S2 and S3 to be in a non-energized state (OFF state).
  • S1 and S4 are controlled to be in a non-energized state (OFF state)
  • S2 and S3 are controlled to be in an energized state (ON state).
  • a heat sink heat sink
  • a metal plate for example, an aluminum plate having good heat conductivity can be fixed to S1 to S4.
  • the duty ratio of the pulse width (ratio of ON / OFF time) is determined based on the magnitude of Imt, and the MTR value is determined based on the sign of Imt (positive sign or negative sign).
  • the direction of rotation is determined.
  • the rotation direction of the MTR can be set such that the forward rotation direction is a positive (plus) value and the reverse rotation direction is a negative (minus) value. Since the final output voltage is determined by the input voltage (BAT voltage) and the duty ratio, the rotation direction and output torque of the MTR are controlled by DRV.
  • DRV is a filter circuit (LC circuit) for reducing noise (reducing power fluctuations) with a combination of at least one capacitor (capacitor) and at least one inductor (coil) in order to stabilize power supply.
  • LC filter Also referred to as LC filter).
  • the first and second capacitors CND1, CND2 and the inductor IND are combined to form a low-pass filter ( ⁇ -type filter) LPFp, and noise reduction can be performed.
  • the ⁇ -type low-pass filter LPFp is a so-called Chebyshev low-pass LC filter, which is a filter composed of two capacitors CND1 and CND2 parallel to the line and one series inductor.
  • an inductor is more expensive than a capacitor (capacitor), and therefore, by adopting LPFp, component costs are suppressed and good performance can be obtained.
  • a T-type low-pass filter LPFt described later can be adopted as the noise reduction filter instead of LPFp (see FIG. 4 described later).
  • FIG. 4 shows an example of drive means (drive circuit) DRV when the electric motor MTR is a brushless motor (three-phase brushless motor).
  • the brushless motor is also referred to as a non-commutator motor (brushless direct current motor).
  • current is commutated by an electronic circuit instead of the mechanical commutator CMT of the brushed motor.
  • the rotor (rotor) is a permanent magnet
  • the stator (stator) is a winding circuit (electromagnet).
  • the rotor rotation position Mka is detected, and the switching element is switched according to Mka. As a result, the supply current is commutated.
  • the rotor position Mka is detected by position acquisition means MKA provided inside the electric motor MTR.
  • the driving means DRV is an electric circuit that drives the MTR, and includes switching elements Z1 to Z6, a pulse width modulation block PWM that performs pulse width modulation based on Imt, and Z1 to
  • the switching control block SWT is configured to control the energization state / non-energization state of Z6.
  • DRV and MTR are provided on the wheel side and are fixed to the CPR.
  • a drive signal and power are supplied to the drive circuit DRV from the electronic control unit ECU provided on the vehicle body side via the connector CNC through the signal line SGL and the power line PWL.
  • the position acquisition means MKA acquires the rotor position (rotation angle) Mka of the MTR.
  • the switching elements Z1 to Z6 constituting the three-phase bridge circuit are controlled based on the actual position Mka.
  • the switching elements Z1 to Z6 sequentially switch the direction of the coil energization amount of the U-phase, V-phase, and W-phase (that is, the excitation direction) of the bridge circuit to drive the MTR.
  • the rotation direction (forward rotation or reverse rotation) of the brushless motor is determined by the relationship between the rotor and the excitation position.
  • the forward direction is a rotational direction in which the MSB and KTB are brought closer to each other, the braking torque is increased, and the deceleration of the running vehicle is increased.
  • This is the direction of rotation in which the brake torque is reduced and the deceleration of the running vehicle is reduced, away from the KTB.
  • a heat radiating plate (for example, an aluminum plate) is fixed to the switching elements Z1 to Z6 in order to radiate heat when a high output is required.
  • the duty ratio of the pulse width is determined based on the magnitude of Imt
  • the rotation direction of the MTR is determined based on the sign of Imt (the sign of the value). Then, based on the target energization amount Imt, the switching elements Z1 to Z6 are controlled by signals from the SWT, whereby the rotation direction and output torque of the MTR are controlled.
  • the DRV includes a filter circuit (LC circuit) for reducing noise (reducing power fluctuation) by combining at least one capacitor (capacitor) and at least one inductor (coil). And also referred to as an LC filter).
  • the capacitor CND and the first and second inductors IND1 and IND2 are combined to form a low-pass filter (T-type filter) LPFt, and noise reduction can be performed.
  • the T-type filter LPFt includes two series inductors IND1 and IND2 and one parallel capacitor CND.
  • DRV corresponds to the case where the brush motor shown in FIG. 3 and the ⁇ -type low-pass filter LPFp are employed.
  • the caliper CRP is attached to the mounting member (mounting bracket) MTB by the first and second guide members (slide pins) GD1 and GD2. Then, the caliper CPR is slid along the guide members GD1 and GD2 (sliding in the axial direction of GD1 and GD2).
  • the floating caliper having this configuration is referred to as a so-called reverse type (also called a reverse pin type).
  • a member having a large mass such as an electric motor MTR is provided on the wheel side.
  • vibration amplification can be suppressed because a member having a large mass can be disposed between the guide members.
  • the slide part by a guide member is not located in the outer periphery of a rotation member (brake disc) KTB, the radius of the rotation member KTB can be enlarged and the braking effect can be improved. For this reason, the brake actuator can be reduced in size as a whole.
  • the first and second guide members (slide pins, also referred to as sleeves) GD1 and GD2 are mounted on the mount member MTB fixed to the support member NKL by the first and second pin bolts PB1 and PB2, respectively. It is attached.
  • the caliper CPR can be slid in the axial directions Jgd1 and Jgd2 of the GD1 and GD2 by fitting with the first and second guide members GD1 and GD2 with a gap.
  • the CPR is provided with elongated holes (the inner diameter is larger than the outer diameter of GD1 and GD2) for fitting with GD1 and GD2, through which the first and second guide members GD1 and GD2 penetrate. is doing.
  • the first and second guide members GD1 and GD2 are cylindrical sleeves, and both ends of the GD1 and GD2 are pressed against the heads of the mount member MTB and the first and second pin bolts PB1 and PB2. Yes. That is, GD1 and GD2 are fastened to PB1 and PB2 to be fixed to the mount member MTB in a cantilever state. Therefore, the CPR can slide in the direction of the axis Jgd1 of GD1 and the axis Jgd2 of GD2 (parallel to Jgd1). In other words, the caliper CPR is attached to the mount member MTB in a slidable state by GD1 and GD2.
  • the electronic substrate KBN of the drive circuit DRV is fixed in the caliper CPR, and the switching elements S1 to S4, the first and second capacitors CND1, CND2, the inductor IND, and other electronic components (microprocessor, resistor) Are mounted (fixed).
  • the quadrangle (plane) A-B-D-C is "guide surface (guide (Rectangular) Mgd ”, and a space (square prism) perpendicular to the guide surface Mgd is referred to as a guide space Kgd.
  • the point A is an intersection between the axis Jgd1 of the first guide member GD1 and the surface where one end surface of the GD1 contacts the mount member MTB.
  • Point B is the intersection of Jgd1 and the surface where the other end surface of GD1 contacts the head of first pin bolt PB1.
  • the point C is an intersection of the axis Jgd2 of the second guide member GD2 and the surface where one end surface of the GD2 contacts the mount member MTB
  • the point D is Jgd2 and the other end surface of the GD2 is the first end surface. This is the intersection of the surface of the 2-pin bolt PB2 and the surface in contact with the head.
  • the switching elements S1 to S4 constitute an H bridge circuit for driving the electric motor MTR.
  • Capacitors CND1, CND2 and inductor (choke coil) IND constitute a stabilization circuit (power fluctuation reduction circuit) for supplying power to MTR.
  • S1 to S4, CND1, CND2, and IND are electronic components having a relatively large mass compared to other electronic components. For this reason, at least one of these electronic components is disposed inside the caliper CPR and in the guide space Kgd formed between the first guide member GD1 and the second guide member GD2. (Fixed).
  • the guide surface Mgd is a surface formed by mutually parallel guide members (slide pins) GD1 and GD2, and the caliper CPR is slid along the Mgd. From the viewpoint of road surface vibration, a place where GD1 and GD2 (that is, guide space Kgd) are difficult to amplify vibration (particularly vibration with respect to vibration perpendicular to the rotation axis (wheel axis) Jkt of rotating member KTB). It is. On the contrary, vibration amplification may become remarkable when it goes away from GD1 or GD2.
  • an electronic component (such as a switching element) having a relatively large mass is arranged so as to be projected onto the guide surface Mgd in parallel projection (that is, in the guide space Kgd).
  • the electronic component is placed in an advantageous place from the viewpoint of road surface vibration, and thus its reliability can be ensured.
  • the caliper CPR is fitted with the first and second guide members GD1 and GD2 and slides in the KTB axis Jkt direction, so that the axis GD1 and the axis Jgd2 of GD2 are required to be parallel.
  • an error is included in the degree of parallelism between Jgd1 and Jgd2 due to the relationship between CPR processing accuracy and mounting accuracy.
  • the plane is basically determined by three points, a master-slave relationship can be provided in the relationship between GD1 and GD2. For example, assuming that GD1 is “main” and GD2 is “sub”, the main guide member GD1 is set longer in the axial direction than the sub guide member GD2.
  • the gap between GD1 and CPR (the gap between the outer diameter and the hole diameter) can be set narrower than the gap between GD2 and CPR.
  • GD1 can be a cantilever structure with respect to MTB
  • GD2 can be a cantilever structure with respect to MTB.
  • the CRP is basically slid along the main guide member GD1. Then, the movement of the slide is assisted by the sub guide member GD2 so that the guide surface Mgd is formed. In this case, in MGD, the closer to the main guide member GD1, the more favorable the condition for vibration.
  • the at least one electronic component is disposed in proximity to the main guide member GD1.
  • the corresponding member is arranged on the side closer to the axis Jgd1 of the main guide member GD1 with respect to the axis Jsf of the shaft member (same as the axis Jps of the pressing member PSN).
  • a surface (rectangle A-B-F-E) that is a part of the guide surface Mgd (divided into two) and is close to GD1 (including GD1) is a main guide surface (main guide rectangle) Mgdm. Is done.
  • a space (square prism) perpendicular to the main guide surface Mgdm is defined as a main guide space Kgdm.
  • the switching elements S1 to S4 that form a bridge circuit which are electronic components having a relatively large mass, the first and second capacitors CND1, CND2, and the inductor (choke coil) IND that form a fluctuation reduction circuit of the supplied power At least one of them can be arranged inside the caliper CPR and in the main guide space Kgdm.
  • at least one of S1 to S4, CND1, CND2, and IND fixed inside the CPR when projected from a direction perpendicular to the guide surface Mgd (guide quadrangle ABCD-C).
  • One electronic component is projected onto the main guide surface Mgdm (main guide rectangle A-B-F-E).
  • the guide surface Mgd (square A-B-D-C) is divided into two parts (rectangle A-B-F-E) by the surface formed by the shaft axis Jkt and the shaft axis Jsf (pressing axis Jps).
  • Square E-F-D-C which is divided (divided) into a main guide surface Mgdm (a main guide quadrangle A-B-F-, which is the surface of the two parts including the main guide member GD1).
  • E) is a projection plane of the corresponding electronic component (S1 or the like).
  • the resistor (resistor) R, the small capacitor C, or the microprocessor MPC having a relatively small mass can be disposed in the caliper CPR by deviating from the above-described vibrationally advantageous spaces (Kgd, Kgdm).
  • vibrationally advantageous spaces Kgd, Kgdm.
  • prioritization in layout is performed based on the mass of electronic components, electronic components with large mass are preferentially arranged in a place advantageous for vibration, and electronic components with small mass are It is placed in a vacant place. For this reason, it is possible to suppress the vibration from being amplified with respect to the vibration caused by the road surface unevenness during traveling of the vehicle, and to improve the reliability of the braking means BRK.
  • the switching elements Z1 to Z6 constitute a three-phase bridge circuit for driving the MTR, and the capacitors CND,
  • the first and second inductors (choke coils) IND1 and IND2 constitute a stabilization circuit (power fluctuation reduction circuit) for supplying power to the MTR, but these are electronic components having a relatively large mass. . Therefore, at least one of these electronic components can be disposed inside the caliper CPR and in the guide space Kgd.
  • At least one of IND1 and IND2 may be disposed in the caliper CPR at a location overlapping the guide space Kgdm.
  • the main guide space Kgdm is the guide space Kgd on the side including the main guide member GD1 among the two guide spaces separated by the formation surface of Jkt and Jsf (Jps).
  • the condition that GD1 is the main guide member is that “GD1 is longer than GD2”, “the gap between GD1 and CPR is narrower than the gap between GD2 and CPR”, and “GD1 with respect to MTB. That is, at least one of the three conditions that “is a double-supported structure and GD2 is a cantilever structure” is satisfied.
  • collet-type floating calipers that have a structure in which a guide member (slide pin) is fixed to the caliper and slides in a mounting member (mounting bracket).
  • a guide member (slide pin) is fixed to the caliper and slides in a mounting member (mounting bracket).
  • the guide member is provided on the outer peripheral portion of the rotating member (brake disc)
  • the guide space Kgd overlaps with the rotating member MTB.
  • a reverse floating caliper in which the guide members GD1 and GD2 are located on the side surface of the rotating member KTB (that is, the guide space Kgd is formed on the side surface of the KTB) can be employed.
  • the connector CNC can be disposed (fixed) on the above-described space (guide spaces Kgd, Kgdm) that is advantageous in terms of vibration and on the surface of the caliper CPR.
  • the connector is a connector (relay member) that can be electrically connected to connect wiring in an electronic circuit, communication, or the like.
  • the wiring is connected by solder bonding or crimping, the wiring needs to be cut to make the reconnection difficult.
  • the connector is configured by fixing an electric signal and a metal terminal (contact pin) for transmitting electric power to a resin insulator (insulator) surrounding them.
  • a convex male connector and a concave female connector are used as a pair.
  • the drive signal and power of the electric motor are transmitted to the drive means DRV of the electric motor by the power supply line PWL, the signal line SGL, and the connector CNC that are close to each other.
  • the circuit board of the electronic control unit ECU fixed to the vehicle body and the circuit board KBN of the DRV fixed to the CPR are electrically and electronically connected via the connector CNC.
  • the electric motor drive signal Imt is generated inside the ECU and transmitted to the DRV via a signal line (for example, a communication bus line) SGL.
  • the electric power for driving the electric motor is supplied from the storage battery BAT to the electronic control unit ECU, and is supplied from the ECU to the drive circuit DRV through the power line PWL.
  • the fitting portion (the portion where the female connector and the male connector are fitted) and the joint portion between the wiring (power line PWL, signal line SGL) and the contact pin are easily affected by vibration.
  • the connector CNC can be arranged on the surface of the caliper CPR and in the guide space Kgd.
  • the guide surface Mgd guide quadrangle ABCD-C formed by the end points of the first and second guide members GD1, GD2
  • the connector CNC is projected onto the guide surface Mgd.
  • the connector CNC is the surface of the caliper CPR and overlaps the main guide space Kgdm. Can be placed in place.
  • the main guide space Kgdm is the guide space Kgd on the side including the main guide member GD1 among the two guide spaces separated by the formation surface of Jkt and Jsf (Jps).
  • the condition that GD1 is the main guide member is that “GD1 is longer than GD2”, “the gap between GD1 and CPR is narrower than the gap between GD2 and CPR”, and “GD1 with respect to MTB. That is, at least one of the three conditions that “is a double-supported structure and GD2 is a cantilever structure” is satisfied.
  • the connector CNC In the connector CNC, energization in the wiring is performed by contact of the contact pins (fitting of the male pin and the female pin), and this contact may be loosened by vibration. Furthermore, the power line PWL that supplies power requires a cross-sectional area that is necessary for flowing current, and thus requires a certain amount of wiring. For this reason, bending fatigue caused by bending due to vibration must be taken into consideration. As described above, since the connector CNC is fixed on the caliper CPR surface at a vibrationally advantageous place (for example, in Kgd), contact of the contact pin or wiring (particularly, thickness is required). The influence of vibration in the bending of the power line PWL) can be suppressed.
  • power line communication in which the power line PWL is used as the signal line SGL can be adopted.
  • an electric motor drive signal Imt is transmitted superimposed on the power line PWL.
  • the signal line SGL is omitted, and the wiring is only the power line PWL.
  • the wiring (PWL) is drawn into the DRV in the CPR through the CNC on the CPR surface.
  • FIG. 7 shows a caliper CPR, a mount member MTB, and a support member NKL that are attached by first and second guide members (slide pins) GD1 and GD2 and first and second fastening members (for example, bolts) TK1 and TK2.
  • first and second guide members silica pins
  • first and second fastening members for example, bolts
  • TK1 and TK2 first and second fastening members
  • the point K is the shaft (first fastening shaft) Jtk1 of the first fastening member (first fastening bolt) TK1
  • the point L is the shaft (second fastening shaft) Jtk2 of the second fastening member (second fastening bolt) TK2. It corresponds to.
  • a straight line HG connecting Jgd1 (point H) and Jgd2 (point G) corresponds to the guide surface Mgd.
  • the caliper CPR is fixed to the mount member MTB so as to be slidable.
  • the farther the caliper CPR is from the MTB in the wheel axis Jkt direction the greater the influence of vibration when the wheel is vibrated.
  • the single-axis configuration in which the electric motor, the speed reducer, the rotation / linear motion conversion member, and the brake piston are arranged in a row is not adopted because it becomes longer in the axial direction.
  • a two-axis configuration is adopted in which the electric motor MTR and the pressing member PSN are composed of two different shafts (motor shaft Jmt and pressing shaft Jps).
  • the shaft can be divided into two axes Jmt and Jsf (Jps) at the reduction gear GSK. Since the braking means BRK is composed of two different shafts (Jmt, Jsf) and the speed reducer GSK is provided between the shafts (between Jmt and Jsf), the inter-shaft distance djk (distance between Jmt and Jsf) ) Can be set longer. As a result, the reduction ratio of the reduction gear GSK is set large, and a small electric motor (high speed / low torque type) can be employed.
  • the mount member MTB is fixed to the support member (knuckle) NKL with a first fastening member (first fastening bolt) TK1 and a second fastening member (second fastening bolt) TK2.
  • first fastening bolt first fastening bolt
  • second fastening bolt second fastening bolt
  • a surface (referred to as a fastening surface Mtk) formed perpendicular to each axis is an advantageous place for road surface vibration.
  • the inside of the fastening surface Mtk is a region (space) in which vibration is not easily amplified. Note that Jkt, Jgd1, Jgd2, Jtk1, and Jtk2 are parallel to each other.
  • the axis Jps of the pressing member PSN (that is, the axis Jsf of the shaft member SFT) is arranged at the center of the plane (that is, Mgd) that connects the axis Jgd1 of GD1 and the axis Jgd2 of GD2. Since the PSN axis Jps (that is, the SFT axis Jsf) is arranged at the center of Jgd1 and Jgd2, the MSB can be uniformly pressed against the KTB. Then, the MTR is fixed to the CPR so that the rotation shaft (motor shaft) Jmt of the electric motor MTR is orthogonal to the fastening surface Mtk.
  • the brush BLC and the commutator CMT constituting the electric motor MTR are projected onto the fastening surface Mtk when viewed from the Jkt direction.
  • a position acquisition means (rotation angle detection means) MKA is arranged around the motor shaft Jmt. Therefore, when the position acquisition means MKA is seen from the Jkt direction, it is projected on the fastening surface Mtk.
  • the brush BLC of the electric motor MTR is slid and rotated while being pressed against a commutator (a rotary switch that periodically changes the direction of current) CMT by a spring (see FIG. 3).
  • a commutator a rotary switch that periodically changes the direction of current
  • the spring force is increased so that the brush BLC is not separated from the commutator CMT by vibration (a spring having a large spring constant is employed)
  • the sliding resistance is increased and the torque loss can be increased.
  • the positions of BLC and CMT are places where vibration amplification is difficult. Since road surface vibration while the vehicle is running may be concerned about reliability degradation and noise effects, the MKA can also be installed in a place where vibration amplification is difficult.
  • the axes of the fastening members TK2) Jtk2 are parallel to each other.
  • Jsf and the pressing axis Jps are coaxial.
  • Jgd1, Jgd2, and Jsf (Jps) are on the same plane (on the guide surface Mgd), and the distance between Jgd1 and Jsf (Jps) and the distance between Jgd2 and Jsf (Jps) are made equal. That is, Jsf (Jps) is at the center of Jgd1 and Jgd2.
  • the rotating shaft (motor shaft) Jmt of the electric motor is orthogonal to the fastening surface Mtk (included in a space perpendicular to the square GHLK) and is closer to Jkt than Jsf (Jps) (that is, the guide). (On the Jkt side with respect to the surface Mgd). Further, Jmt is arranged away from Jgd1 (or Jgd2) by a distance corresponding to at least the radius of MTR.
  • the distance between Jsf (Jps) and Jmt (interaxial distance djk) can be set as long as possible so as not to interfere with the pressing member PSN and the first guide member GD1.
  • the reduction ratio of the reduction gear GSK is set large, and the MTR can be downsized.
  • the circuit board KBN1 of the driving means DRV When viewed in the first guide axis Jgd1 direction (Jkt direction or the like), the circuit board KBN1 of the driving means DRV is projected into the fastening surface Mtk.
  • electronic components with relatively large mass switching elements S1 to S4, Z1 to Z6, capacitors CND in the voltage fluctuation reduction circuit mounted (fixed) on the substrate KBN1 of the drive circuit DRV. , CND1, CND2, and inductors IND, IND1, IND2, etc.
  • the connector CNC is projected into Mtk.
  • the rotation axis Jmt of the MTR is accommodated in a space projected on the fastening surface Mtk (referred to as a square pillar, the fastening space Ktk). Placed in.
  • the entire brake actuator is shortened in the axial direction, and substantially the entire MTR (particularly, the motor brush BLC and the motor commutator CMT) and the rotation angle acquisition means MKA are positioned inside the fastening space Ktk. .
  • the vibration influence from the road surface with respect to these components can be suppressed.
  • the electronic component such as IND
  • the connector CNC are also housed in the fastening space Ktk, the influence of vibration can be reduced and the reliability can be improved.
  • the fastening surface Mtk is divided (divided into two parts) by a plane formed by Jsf (that is, Jps) and Jkt (a plane including a straight line Sgh intersecting Jsf (Jps) and Jkt on Mtk).
  • the main fastening surface Mtkm is a portion on one side of the divided Mtk and is a quadrangle defined by a plane (straight line Sgh) including the main guide shaft Jgd1 (the shaft of the main guide member GD1).
  • G-M-N-K A set of straight lines (quadrangular prisms) perpendicular to the plane (main fastening surface) Mtkm is referred to as a main fastening space Ktkm.
  • the motor shaft Jmt is disposed within the main fastening surface Ktkm
  • the motor brush BLC, the motor commutator CMT, and the position acquisition means MKA can be disposed together within Ktkm.
  • at least one of switching elements (for example, S1 to S4) for driving the MTR, an inductor (coil) IND for suppressing voltage fluctuation, a capacitor (capacitor) CND, and the like is provided on the main fastening surface Ktkm.
  • a connector for wiring for supplying a drive signal and electric power from the electronic control unit ECU to the drive circuit DRV can be arranged in the main fastening surface Ktkm.
  • the Jmt fastening space Ktk (or the main fastening space Ktkm) Inward placement may be prioritized.
  • the substrate KBN2 of the drive circuit DRV can be disposed away from the fastening space Ktk and disposed on the opposite side of the wheel shaft Jkt with respect to the guide surface Mgd.
  • the electronic substrate KBN2 can be disposed on the side closer to the main guide member GD1 with respect to the formation surface (indicated by the line segment Sgh) of Jkt and Jps (Jsf). KBN2 can be placed at a location between Jps (Jsf) and Jgd1.
  • electronic components mounted on KBN2 capacitors CND, CND1, CND2 of a relatively large mass noise reduction circuit, inductors IND, IND1, IND2, and at least one of switching elements S1 to S4, Z1 to Z6
  • the connector CNC is disposed inside the fastening space Ktk on the opposite side to the main fastening space Ktkm.
  • the motor shaft Jmt is disposed inside the fastening space Ktk on the side opposite to the main fastening space Ktkm (Ktk on the side including GD2 separated by the formation surface of Jkt and Jps), and the capacitor CND of the noise reduction circuit, At least one of CND1, CND2, inductors IND, IND1, IND2, switching elements S1 to S4, Z1 to Z6, and connector CNC may be disposed in the main fastening space Ktkm.
  • the arrangement of each component depends on the priority for their vibration effects.
  • Some sensors include elements that are vulnerable to vibrations, and noise effects due to vibrations may also be a concern. For this reason, when viewed in the direction perpendicular to the guide surface Mgd, FBA and / or MKA are projected onto the guide surface Mgd (particularly, the guide surface Mgdm on the main guide member GD1 side when the guide member has a master-slave). Is done. That is, the positions of the FBA and MKA can be set inside the guide space Kgd (or the main guide space Kgdm). Since these are disposed in a place (space) that is advantageous in terms of vibration, the concern about road surface vibration during vehicle travel can be eliminated.
  • the motor brush BLC and the motor commutator CMT are disposed in the guide space Kgd (or the main guide space Kgdm), and their positions are , Projected onto the guide surface Mgd (or the main guide surface Mgdm).
  • the motor brush BLC slides while being pressed against the commutator CMT by a spring (elastic body).
  • a spring elastic body
  • the braking means BRK has a so-called two-axis configuration in which the rotation axis Jmt of the electric motor MTR that is a power source and the PSN axis (pressing axis Jps) that presses the MSB are configured as separate axes.
  • the rotational power of the MTR is decelerated, transmitted to the SFT, and further rotated / linearly converted by the NJB, and the PSN presses the MSB against the KTB. Therefore, the PSN axis Jps and the SFT rotation axis Jsf are the same axis.
  • the electric motor MTR is fixed to the floating caliper CPR.
  • the CPR includes a drive circuit DRV for driving the MTR (fixed inside).
  • a bridge circuit is formed by a switching element in order to drive the MTR.
  • a low-pass filter circuit is formed by an inductor and a capacitor in order to stabilize (variation reduction) the power supplied to the MTR.
  • the power to the drive circuit DRV and the drive signal for the electric motor MTR are supplied from the electronic control unit ECU fixed to the vehicle body through the connector CNC.
  • a position acquisition means for example, a rotation angle sensor
  • MKA is provided around the rotation axis (Jmt) of the electric motor MTR.
  • the actual position (rotation angle) Mka of the electric motor MTR is detected by the MKA.
  • the switching element is synchronized by Mka, and the MTR is driven.
  • the MTR is a motor with a brush
  • a mechanical commutator CMT and a brush BLC are provided.
  • a pressing force acquisition means for example, a thrust sensor
  • FBA for detecting a pressing force Fba that is a force by which the friction member MSB presses the rotating member KTB is provided.
  • FIG. 9 shows a guide surface Mgd (guide quadrangle ABCD-C) formed by the first and second guide members GD1 and GD2, and a guide space Kgd perpendicular to the plane.
  • each of the four corners of the quadrangle A-B-D-C (guide surface Mgd) is respectively the both ends (point A, point B) of the first guide member GD1 and the both ends (points) of the second guide member GD2.
  • C, point D point D
  • the point A is an intersection of the surface where one end surface of the GD1 is in contact with the mount member MTB and the axis (first guide axis) Jgd1 of the first guide member GD1
  • the point B is the point of the GD1.
  • the other end surface is an intersection of the surface that contacts the head of the first pin bolt PB1 and the first guide shaft Jgd1.
  • point C is the intersection of the surface of one end surface of GD2 that contacts the mount member MTB and the axis (second guide axis) Jgd2 of the second guide member GD2, and point D is the other point of GD2.
  • the end surface of the second pin bolt PB2 is a point of contact with the head and the second guide shaft Jgd2. Since the CPR is attached to the MTB by the GD1 and the GD2, the position closer to the Mgd is less susceptible to road surface uneven vibration during vehicle travel.
  • the road surface vibration is input in a random direction (arbitrary direction). In this case, the vibration effect in the direction indicated by the “ZA arrow” (direction perpendicular to the wheel axis Jkt) is particularly problematic. .
  • Kgd A place where the influence of vibration from the road surface during traveling of the vehicle (particularly, the ZA direction perpendicular to Jkt) can be suppressed is the guide space Kgd.
  • the components of BRK that require vibration resistance are provided inside Kgd. Since Kgd is an aggregate of straight lines perpendicular to Mgd, these components are projected onto Mgd when viewed from a direction perpendicular to Mgd.
  • the projection is to irradiate an object with parallel rays (projection lines) and project the shadow of the object on a plane. Therefore, when parallel projection (projection where the viewpoint exists at infinity) is performed on the components provided in Kgd, the guide surface Mgd is a projection surface (a vertical surface of the projection line).
  • arranged in the guide space Kgd (or Kgdm) means “guide surface Mgd when viewed from the direction (ZV1 or ZV2) perpendicular to the guide surface Mgd (or Mgdm)”. (Or be positioned inside (or Mgdm)) and “the guide surface Mgd (or Mgdm) becomes the projection surface”.
  • Components that require vibration resistance are relatively heavy in electronic components mounted (fixed) on a DRV circuit board KBN that is fixed in the CPR. Specifically, the switching elements of the drive bridge circuit of the MTR (particularly heavy when the heat sink is provided), the inductor and the capacitor of the power supply noise reduction circuit. Even with the same acceleration, if the mass is large, the inertial force is large. Further, since the electronic component is fixed to the circuit board at the conductor (conductive wire) portion, the inertial force is concentrated on this portion. Therefore, vibration resistance can be improved by arranging at least one of these electronic components fixed in the CPR inside the Kgd.
  • a component having a high demand for vibration resistance is a connector CNC fixed to the surface of the CPR.
  • Electric power is transmitted from the electronic control unit ECU to the drive circuit DRV of the electric motor MTR through the power line PWL, and a drive signal is transmitted through the signal line SGL (for example, a communication bus).
  • PWL and SGL are relayed by the connector CNC.
  • PWL and SGL are divided and joined by contact pins (fitting of concavo-convex pins) inside the CNC. When excessive vibration is applied, the contact pin may loosen.
  • a predetermined cross-sectional area is required, but flexibility with respect to vibration and fatigue strength are required.
  • At least one of the position acquisition means MKA and the pressing force acquisition means FBA can be arranged in the guide space Kgd.
  • the brush BLC portion and the commutator CMT portion of the electric motor MTR can be disposed in the guide space Kgd. This is because the BLC is pressed against the CMT by a spring (spring), and energization to the MTR is ensured.
  • Kgdm the guide space on the side close to the main member GD1 (main guide space)
  • the “master-slave relationship” of the guide member is “one side is longer than the other”, “one gap is narrower than the other in the fitting hole with the CPR”, and “one side is supported by both ends” "The other is cantilever support” means that at least one condition is satisfied.
  • Kgd is divided into two parts by a plane constituted by Jkt and Jsf.
  • the one including GD1 (the above-mentioned one side guide member) is the main guide space Kgdm. . That is, in Mgd, a space constituted by a set of straight lines perpendicular to the main guide surface Mgdm (main guide quadrangle A-B-F-E) that is separated by Jsf and includes GD1 is Kgdm. .
  • the CRP is slid along the main guide member GD1, and the movement of the slide is assisted by the sub guide member GD2.
  • the closer to the main guide member GD1 the more advantageous in terms of vibration. Therefore, the components requiring vibration resistance are arranged in Kgdm, and their projection surfaces are Mgdm.
  • FIG. 10 shows a fastening surface Mtk (fastening square GHLK) formed by the fastening members TK1 and TK2 and the guide members GD1 and GD2, and a fastening space Ktk perpendicular to the plane.
  • the fastening surface Mtk is perpendicular to each axis by the axis Jgd1 of the first guide member GD1, the axis Jgd2 of the second guide member GD2, the axis Jtk1 of the first fastening member TK1, and the axis Jtk2 of the second fastening member TK2.
  • Each point of the four corners of the quadrangle G-HL-K is a first guide member when assuming a plane (for example, the surface of the mount member MTB) perpendicular to the rotation axis (wheel axis) Jkt of the rotation member KTB.
  • the point of intersection of the GD1 axis (first guide axis) Jgd1 is the point G
  • the point of intersection of the second guide member GD2 (second guide axis) Jgd2 is the point H
  • the intersection with the axis (first fastening axis) Jtk1 corresponds to the point K
  • the intersection with the axis (second fastening axis) Jtk2 of the second fastening member (second fastening bolt) TK2 corresponds to the point L.
  • the rotation axis Jkt of the KTB, the axes Jgd1 and Jgd2 of the guide member, the axes Jtk1 and Jtk2 of the fastening member, the rotation axis Jmt of the electric motor, and the rotation axis Jsf of the shaft member are parallel to each other.
  • the axis (pressing direction) Jps of the pressing member is the same as Jsf. Therefore, these axes (such as Jkt) and the fastening surface Mtk are perpendicular.
  • a straight line HG connecting Jgd1 (point H) and Jgd2 (point G) corresponds to the guide surface Mgd.
  • the mount member MTB is attached to the support member (knuckle) NKL by the fastening members TK1 and TK2, and the caliper CPR is attached to the mount member MTB by the guide members GD1 and GD2.
  • the closer to the fastening surface Mtk the less likely to be affected by road surface vibration.
  • road surface vibration during vehicle travel is input in a random direction (arbitrary direction).
  • the vibration effect in the direction indicated by the “ZB arrow” (direction of the wheel axis Jkt) is particularly problematic. Is done.
  • Jps is placed in the middle of Jgd1 and Jgd2 so that the MSB can be pressed in the middle by the PSN. Since Jps and Jsf are on the same axis, Jsf is provided at the center of Jgd1 and Jgd2. And it arrange
  • a component of the braking means BRK that requires vibration resistance is provided inside the fastening space Ktk. Since the fastening space Ktk is a collection of straight lines perpendicular to the fastening surface Mtk, these components are projected onto the fastening surface Mtk when viewed from the direction perpendicular to the fastening surface Mtk (for example, the direction of Jgd1). Is done. As described above, the projection is to irradiate an object with parallel rays (projection lines) and project the shadow of the object on a plane.
  • the fastening surface Mtk is set as a projection surface (a vertical surface of the projection line). That is, “arranged in the fastening space Ktk (or Ktkm)” means “fastening surface Mtk (or Mtkm) when viewed from the direction (ZH1 or ZH2) of the axis Jgd1 of the first guide member GD1. ) ”And“ the fastening surface Mtk (or Mtkm) is the projection surface ”.
  • the components of the braking means BRK can be arranged inside the fastening space Ktk.
  • electronic components fixed in the caliper CPR at least one of relatively heavy components (a switching element of an MTR drive bridge circuit, an inductor of a power supply noise reduction circuit, and a capacitor) is connected to the fastening space Ktk.
  • a connector CNC fixed on the caliper CPR can be arranged inside the fastening space Ktk.
  • the detection means such as a sensor, at least one of the position acquisition means MKA and the pressing force acquisition means FBA may be disposed in the fastening space Ktk.
  • the BLC portion and the CMT portion of the MTR can be arranged in the Ktk.
  • the fastening space (main fastening space) Ktkm near the main member GD1 Inside, at least one of the above-mentioned components is arranged. Similarly to Kgd, Ktk is also divided into two by a plane constituted by Jkt and Jsf (Jps). Of these spaces, the one including the main guide member GD1 is the main fastening space Ktkm. Is done.
  • the fastening surface Mtk is separated by the formation surface of Jsf (Jps) and Jkt, and is perpendicular to the main fastening surface Mtkm (main fastening quadrangle G-M-N-K) including the main guide member GD1.
  • a space constituted by a set of straight lines is the main fastening space Ktkm.
  • the above-mentioned components requiring vibration resistance are arranged in the main fastening space Ktkm, and these projection surfaces can be the main fastening surface Mtkm.

Abstract

An electric braking device for a vehicle, wherein first and second guide members (GD1, GD2) are fixed parallel to each other, to a mount member (MTB) fixed to a support member supporting a wheel. A caliper (CPR) is supported by the first and second guide members (GD1, GD2) so as to be relatively movable in the axis line direction. An electric motor (MTR) is fixed to the caliper (CPR). Switching elements (S1-S4) for controlling the electric motor (MTR), an indicator (IND), and capacitors (CND1, CND2) are housed inside the caliper (CPR), and are positioned inside a guide quadrilateral (Mgd, quadrilateral A-B-C-D), when viewed from the vertical direction relative to the horizontal plane of the guide quadrilateral (Mgd), which has "as the four corners thereof both end points (A, B) of the first guide member GD1 and both end points (C, D) of the second guide member (GD2)." As a result, an electric braking device comprising an electric motor on the wheel side and a drive circuit therefor can be provided that has improved reliability of electronic components, such as a drive circuit, in relation to vibration during vehicle travel.

Description

車両の電動制動装置Electric braking device for vehicle
 本発明は、車両の電動制動装置に関する。 The present invention relates to an electric braking device for a vehicle.
 特許文献1では、「電気的にモータによって駆動されるブレーキ装置では、駆動制御装置とアクチュエータ、車両運動制御装置と推力センサ、車両運動制御装置と車輪速センサを接続する3本の屈曲ケーブルを配線しており、コスト面で無駄があることに因り、屈曲ケーブルのコストを低減し、安価なブレーキ装置を提供する」ことを目的として、「通信回路、制御回路、モータを駆動する駆動回路を備えた駆動制御装置を車輪側に設置し、車体側から2本の電力線によって駆動制御装置に電力供給し、多重通信によって車両運動制御装置からの制動力信号を受信して、モータを駆動して制動力を発生する。」ことが記載されている。更に、駆動制御装置の位置については、「車輪側に設置された筐体は、前記変換機構によって変換された直動運動の方向における前記ディスクロータ及び前記パッドと反対側の前記ハウジングに固定され、前記筐体の内部には前記駆動制御装置が固定される。」と記載されている。 In Patent Document 1, “in a brake device that is electrically driven by a motor, a wiring control device and an actuator, a vehicle motion control device and a thrust sensor, and three bending cables that connect the vehicle motion control device and a wheel speed sensor are wired. With the aim of reducing the cost of the bent cable and providing an inexpensive brake device due to waste in terms of cost, it is equipped with a communication circuit, a control circuit, and a drive circuit that drives the motor. Installed on the wheel side, power is supplied to the drive control device through the two power lines from the vehicle body side, the braking force signal from the vehicle motion control device is received by multiplex communication, and the motor is driven to control the vehicle. It generates power ". Further, regarding the position of the drive control device, “the casing installed on the wheel side is fixed to the housing on the side opposite to the disk rotor and the pad in the direction of the linear motion converted by the conversion mechanism, The drive control device is fixed inside the casing. "
 特許文献1に記載される装置では、電子部品を含む駆動制御装置が車輪側に設置されている。例えば、車両か走行している際に、路面段差を乗り越えるような場合、車体(ばね上)の振動はショックアブソーバ等によって緩和されるが、車輪(ばね下)には過大な振動が入力される。このため、ばね下に電子部品を備える場合には、これら電子部品に対する振動への配慮が必要となる。 In the device described in Patent Document 1, a drive control device including electronic components is installed on the wheel side. For example, when a vehicle is traveling, if the vehicle gets over a road step, the vibration of the vehicle body (on the spring) is reduced by a shock absorber or the like, but excessive vibration is input to the wheel (under the spring). . For this reason, when electronic components are provided under the spring, it is necessary to consider vibrations for these electronic components.
 以下、図11を参照しながら、車両が走行している際の路面凹凸に起因する振動に関する課題について説明する。梁Xが、部材Yに点P1、及び、P2で支持され、点P0から振幅Aの振動が入力される場合を想定する。支持点である点P1と点P2との間の振動については、この部分では両持ち梁を構成しているため、振幅は増幅され難い。一方、梁Xの端点である点P3、或いは、点P4では、片持ち梁を形成するため、振幅が増大され得る。また、支持点からの距離が長いほど、振幅の増加量は大きくなる。例えば、点P3(支持点P1からの距離L3)よりも、点P4(支持点P2からの距離L4は、L3よりも長い)の方が、振幅が増幅され易い。振幅が増幅された結果、夫々の位置に作用する加速度が増大されるため、振動増幅が生じ易い場所に配置される部材には、過大な慣性力が作用する。 Hereinafter, with reference to FIG. 11, problems related to vibration caused by road surface unevenness when the vehicle is traveling will be described. Assume that the beam X is supported by the member Y at points P1 and P2, and vibration with an amplitude A is input from the point P0. As for the vibration between the points P1 and P2 which are the support points, the amplitude is difficult to be amplified because this part forms a doubly supported beam. On the other hand, at the point P3 or the point P4 which is the end point of the beam X, the amplitude can be increased to form a cantilever beam. Further, the longer the distance from the support point, the larger the increase in amplitude. For example, the amplitude of the point P4 (the distance L4 from the support point P2 is longer than L3) is more likely to be amplified than the point P3 (the distance L3 from the support point P1). As a result of the amplitude being amplified, the acceleration acting on each position is increased, so that an excessive inertial force acts on a member disposed in a place where vibration amplification is likely to occur.
 一般に、ブレーキキャリパは、マウンティングブラケットを介して、車輪を支持するナックルに取り付けられる。車両走行中に車輪から路面凹凸に起因する振動が入力された場合には、キャリパにおける各々の位置で振動の程度(車輪から加振される度合)が異なり得る。具体的には、キャリパとマウンティングブラケットとの締結部分が支持部であり、振動的には最も有利な箇所である。支持部から離れると振動の増幅が生じ易くなる。電動制動装置のように、(車体側ではなく)車輪側に電子部品等(電気モータやコネクタ等)が備えられる装置では、部材の配置が適正化されて、これらの部品に加えられる振動が抑制されることが重要である。 Generally, the brake caliper is attached to a knuckle that supports the wheel via a mounting bracket. When vibration due to road surface unevenness is input from the wheels while the vehicle is running, the degree of vibration (degree of vibration from the wheels) may be different at each position in the caliper. Specifically, the fastening portion between the caliper and the mounting bracket is a support portion, which is the most advantageous point in terms of vibration. Amplification of vibration tends to occur when the support portion is separated. In devices with electronic components (electric motors, connectors, etc.) on the wheel side (not on the vehicle body side), such as an electric braking device, the arrangement of members is optimized and vibration applied to these components is suppressed It is important that
特許第4154883号公報Japanese Patent No. 4154833
 本発明は、上記問題に対処するためになされたものであり、その目的は、車輪側に電気モータ、及び、その駆動回路を備えた電動制動装置であって、駆動回路等の電子部品が好適に配置され、車両が走行している際の路面からの振動に対する前記電子部品の信頼性が向上され得るものを提供することにある。 The present invention has been made to cope with the above-described problems, and an object of the present invention is an electric braking device including an electric motor and a driving circuit on a wheel side, and an electronic component such as a driving circuit is preferable. The electronic component can be improved in reliability against vibration from the road surface when the vehicle is traveling.
 また、その目的は、車輪側に電気モータを備え、電気モータにコネクタを介して電力供給が行われる電動制動装置であって、電気モータ、及びコネクタが好適に配置され、車両が走行している際の路面からの振動に対する電気モータ、及びコネクタの信頼性が向上され得るものを提供することにある。 Another object of the present invention is to provide an electric braking device in which an electric motor is provided on the wheel side, and electric power is supplied to the electric motor via a connector. The electric motor and the connector are suitably arranged, and the vehicle is running. An object of the present invention is to provide an electric motor that can improve the reliability of an electric motor and a connector against vibration from a road surface.
 本発明に係る車両の電動制動装置は、車両の車輪(WHL)に固定された回転部材(KTB)に、電気モータ(MTR)を介して摩擦部材(MSB)を押圧し、前記車輪(WHL)に制動トルクを発生させる。 The electric braking device for a vehicle according to the present invention presses the friction member (MSB) to the rotating member (KTB) fixed to the wheel (WHL) of the vehicle via the electric motor (MTR), thereby the wheel (WHL). To generate braking torque.
 この装置は、前記車輪(WHL)を支持する支持部材(NKL)に固定されるマウント部材(MTB)と、前記マウント部材(MTB)に固定される、軸線(Jgd1)を有する第1のガイド部材(GD1)と、前記第1のガイド部材(GD1)とは異なる位置で前記マウント部材(MTB)に固定される、前記第1のガイド部材(GD1)の軸線(Jgd1)と平行な軸線(Jgd2)を有する第2のガイド部材(GD2)と、前記第1、第2のガイド部材(GD1、GD2)に支持され、前記第1、第2のガイド部材(GD1、GD2)の軸線方向(ZH1又はZH2)において前記第1、第2のガイド部材(GD1、GD2)に対して相対移動可能なキャリパ(CPR)と、を備え、前記電気モータ(MTR)が前記キャリパ(CRP)に固定される。 This device includes a mount member (MTB) fixed to a support member (NKL) that supports the wheel (WHL), and a first guide member having an axis (Jgd1) fixed to the mount member (MTB). (GD1) and an axis (Jgd2) parallel to the axis (Jgd1) of the first guide member (GD1) fixed to the mount member (MTB) at a position different from the first guide member (GD1). ) Having a second guide member (GD2) and an axial direction (ZH1) of the first and second guide members (GD1, GD2) supported by the first and second guide members (GD1, GD2). Or a caliper (CPR) that can move relative to the first and second guide members (GD1, GD2) in the ZH2), and the electric motor (MTR) includes the caliper (CR ) It is fixed to.
 この装置の特徴は、前記電気モータ(MTR)を駆動するブリッジ回路のスイッチング素子(S1~S4、Z1~Z6)、前記電気モータ(MTR)へ供給される電力の変動を低減するインダクタ(IND、IND1、IND2)、及び、コンデンサ(CND、CND1、CND2)のうちの少なくとも1つが、前記キャリパ(CPR)に内蔵され、且つ、前記第1のガイド部材(GD1)の軸線方向の両端点(A、B)、及び、前記第2のガイド部材(GD2)の軸線方向の両端点(C、D)を4隅とする四角形であるガイド四角形(Mgd、四角形A-B-D-C)の平面に対して垂直方向(ZV1又はZV2)から見たときに、前記ガイド四角形(Mgd)の内部に位置することにある。 This device is characterized by switching elements (S1 to S4, Z1 to Z6) of a bridge circuit that drives the electric motor (MTR), and inductors (IND,) that reduce fluctuations in power supplied to the electric motor (MTR). IND1, IND2) and at least one of capacitors (CND, CND1, CND2) are built in the caliper (CPR), and both end points (A) of the first guide member (GD1) in the axial direction , B), and a plane of a guide quadrangle (Mgd, quadrangle A-B-D-C) that is a quadrangle with four end points (C, D) in the axial direction of the second guide member (GD2). When viewed from the vertical direction (ZV1 or ZV2), it is located inside the guide square (Mgd).
 上記構成では、キャリパは、第1、第2ガイド部材(スライドピン)によってマウント部材に取り付けられ、第1、第2ガイド部材に沿ってスライドされ得る。換言すれば、キャリパは、それぞれのガイド部材(スライドピン)の両端点によって形成されるガイド四角形(ガイド面である四角形A-B-D-C)に対して、平行に摺動される。 In the above configuration, the caliper can be attached to the mount member by the first and second guide members (slide pins) and slid along the first and second guide members. In other words, the caliper is slid in parallel with respect to a guide quadrangle (rectangle A-B-D-C which is a guide surface) formed by both end points of each guide member (slide pin).
 ここで、路面振動(特に、車輪軸に垂直な方向の振動に対する振動)の観点からは、ガイド四角形(ガイド面Mgd)に近いほど、振動が増幅され難い。上記構成では、比較的質量の大きい電子部品(ブリッジ回路を構成するスイッチング素子、電力変動低減回路のインダクタ及びコンデンサ)の位置が、平行投影においてガイド面に投影されるように(即ち、ガイド空間の内部に)決定される。この結果、車両走行中の路面凹凸による振動(特に、車輪軸に垂直な方向)に対する前記電子部品の信頼性が確保され得る。 Here, from the viewpoint of road surface vibration (particularly vibration with respect to vibration in a direction perpendicular to the wheel axis), the closer to the guide quadrilateral (guide surface MGD), the less the vibration is amplified. In the above configuration, the position of the electronic component having a relatively large mass (the switching element constituting the bridge circuit, the inductor and the capacitor of the power fluctuation reduction circuit) is projected onto the guide surface in parallel projection (that is, in the guide space). Determined internally). As a result, it is possible to ensure the reliability of the electronic component against vibration (particularly in a direction perpendicular to the wheel axis) due to road surface unevenness during vehicle travel.
 上記本発明に係る電動制動装置では、前記マウント部材(MTB)を前記支持部材(NKL)に固定する、前記第1のガイド部材(GD1)の軸線(Jgd1)と平行な軸線(Jtk1)を有する第1の締結部材(TK1)と、前記第1の締結部材(TK1)とは異なる位置で前記マウント部材(MTB)を前記支持部材(NKL)に固定する、前記第1のガイド部材(GD1)の軸線(Jgd1)と平行な軸線(Jtk2)を有する第2の締結部材(TK2)と、が備えられる。 The electric braking apparatus according to the present invention has an axis (Jtk1) parallel to the axis (Jgd1) of the first guide member (GD1), which fixes the mount member (MTB) to the support member (NKL). The first guide member (GD1) for fixing the mount member (MTB) to the support member (NKL) at a position different from the first fastening member (TK1) and the first fastening member (TK1). A second fastening member (TK2) having an axis (Jtk2) parallel to the axis (Jgd1).
 この装置の特徴は、前記スイッチング素子(S1~S4、Z1~Z6)、前記インダクタ(IND、IND1、IND2)、及び、前記コンデンサ(CND、CND1、CND2)のうちの少なくとも1つが、前記キャリパ(CPR)に内蔵され、且つ、前記第1のガイド部材(GD1)の軸線方向(ZH1又はZH2)から見たときに、前記第1のガイド部材(GD1)の軸線(Jgd1)、前記第2のガイド部材(GD2)の軸線(Jgd2)、前記第1の締結部材(TK1)の軸線(Jtk1)、及び、前記第2の締結部材(TK2)の軸線(Jtk2)のそれぞれの位置を4隅とする、前記第1のガイド部材(GD1)の軸線(Jgd1)に垂直な平面を有する四角形である締結四角形(Mtk、四角形G-H-L-K)の内部に位置することにある、と記載することもできる。 This device is characterized in that at least one of the switching elements (S1 to S4, Z1 to Z6), the inductors (IND, IND1, IND2), and the capacitors (CND, CND1, CND2) has the caliper ( CPR) and when viewed from the axial direction (ZH1 or ZH2) of the first guide member (GD1), the axis (Jgd1) of the first guide member (GD1), the second The positions of the axis (Jgd2) of the guide member (GD2), the axis (Jtk1) of the first fastening member (TK1), and the axis (Jtk2) of the second fastening member (TK2) are defined as four corners. Positioned inside a fastening quadrangle (Mtk, quadrangle GHLK) that is a quadrangle having a plane perpendicular to the axis (Jgd1) of the first guide member (GD1). In Rukoto, and it can also be described.
 上記構成では、マウント部材は、第1、第2の締結部材によって、支持部材に固定され、キャリパは、第1、第2のガイド部材によって、マウント部材に取り付けられる。このため、路面振動(特に、車輪軸の方向)の観点からは、前記4つの軸線のそれぞれの位置を4隅とする前記軸線に垂直な締結四角形(締結面である四角形G-H-L-K)に近いほど、振動が増幅され難い。上記構成では、比較的質量の大きい電子部品(スイッチング素子、電力変動低減回路のインダクタ及びコンデンサ)が、平行投影において締結面に投影されるように(即ち、締結空間の内部に)配置される。この結果、車両走行中の路面凹凸による振動(特に、車輪軸の方向)に対する前記電子部品の信頼性が確保され得る。 In the above configuration, the mount member is fixed to the support member by the first and second fastening members, and the caliper is attached to the mount member by the first and second guide members. For this reason, from the viewpoint of road surface vibration (particularly in the direction of the wheel axis), a fastening quadrangle perpendicular to the axis having four corners at each of the four axes (a quadrangle GHHL as a fastening surface). The closer to K), the less the vibration is amplified. In the above configuration, electronic components (switching elements, inductors and capacitors of the power fluctuation reduction circuit) having a relatively large mass are arranged so as to be projected onto the fastening surface in parallel projection (that is, inside the fastening space). As a result, the reliability of the electronic component against vibration (particularly in the direction of the wheel shaft) due to road surface unevenness during vehicle travel can be ensured.
 上記本発明に係る電動制動装置では、前記摩擦部材(MSB)が前記回転部材(KTB)を押し付ける力である押圧力(Fba)を取得する押圧力取得手段(FBA)が備えられる。前記押圧力取得手段(FBA)は、前記キャリパ(CPR)に固定され、且つ、前記ガイド四角形(Mgd)の平面に対して垂直方向(ZV1又はZV2)から見たときに、前記ガイド四角形(Mgd)の内部に位置することが好ましい。 The electric braking device according to the present invention includes a pressing force acquisition means (FBA) that acquires a pressing force (Fba) that is a force with which the friction member (MSB) presses the rotating member (KTB). The pressing force acquisition means (FBA) is fixed to the caliper (CPR), and when viewed from a direction (ZV1 or ZV2) perpendicular to the plane of the guide square (Mgd), the guide square (Mgd ) Is preferably located inside.
 同様に、上記本発明に係る電動制動装置では、前記電気モータの位置(Mka)を取得する位置取得手段(MKA)が備えられる。前記位置取得手段(MKA)は、前記電気モータに内蔵され、且つ、前記ガイド四角形(Mgd)の平面に対して垂直方向(ZV1又はZV2)から見たときに、前記ガイド四角形(Mgd)の内部に位置することが好ましい。また、前記位置取得手段(MKA)は、前記第1のガイド部材(GD1)の軸線方向(ZH1又はZH2)から見たときに、前記締結四角形(Mtk)の内部に位置することが好ましい。 Similarly, the electric braking device according to the present invention includes a position acquisition means (MKA) for acquiring the position (Mka) of the electric motor. The position acquisition means (MKA) is built in the electric motor, and when viewed from a direction (ZV1 or ZV2) perpendicular to the plane of the guide quadrangle (Mgd), It is preferable to be located at. The position acquisition means (MKA) is preferably located inside the fastening square (Mtk) when viewed from the axial direction (ZH1 or ZH2) of the first guide member (GD1).
 一般に、状態量を取得する取得手段(センサ)は、ノイズ等、振動の影響を受け易い。加えて、取得手段の一部として、振動に脆弱な要素が採用される場合もあり得る。上述したように、ガイド面(ガイド四角形)に近いほど、及び/又は、締結面(締結四角形)に近いほど、路面振動が増幅され難い。上記構成によれば、位置取得手段、及び、押圧力取得手段が、平行投影においてガイド面に投影されるように(即ち、ガイド空間の内部に)配置される。或いは、位置取得手段が、平行投影において締結面に投影されるように(即ち、締結空間の内部に)配置される。従って、位置取得手段、及び、押圧力取得手段に関し、路面振動の増幅が抑制され、車両走行中の路面凹凸による振動に対する前記位置取得手段、及び、前記押圧力取得手段の信頼性が確保され得る。 Generally, an acquisition means (sensor) that acquires a state quantity is easily affected by vibrations such as noise. In addition, an element vulnerable to vibration may be employed as part of the acquisition unit. As described above, road surface vibration is less likely to be amplified as it is closer to the guide surface (guide square) and / or closer to the fastening surface (fastening square). According to the above configuration, the position acquisition unit and the pressing force acquisition unit are arranged so as to be projected onto the guide surface in parallel projection (that is, inside the guide space). Alternatively, the position acquisition means is arranged so as to be projected onto the fastening surface in parallel projection (that is, inside the fastening space). Therefore, with respect to the position acquisition means and the pressing force acquisition means, amplification of road surface vibration is suppressed, and the reliability of the position acquisition means and the pressing force acquisition means against vibration due to road surface unevenness during vehicle travel can be ensured. .
 また、この装置は、前記車両の車体に設置される電源(BAT)と、前記電源(BAT)から前記電気モータ(MTR)に、電力及び駆動信号を供給する配線(PWL、SGL)と、前記配線(PWL、SGL)を中継するコネクタ(CNC)と、前記車輪(WHL)を支持する支持部材(NKL)に固定されるマウント部材(MTB)と、前記マウント部材(MTB)に固定される、軸線(Jgd1)を有する第1のガイド部材(GD1)と、前記第1のガイド部材(GD1)とは異なる位置で前記マウント部材(MTB)に固定される、前記第1のガイド部材(GD1)の軸線(Jgd1)と平行な軸線(Jgd2)を有する第2のガイド部材(GD2)と、前記第1、第2のガイド部材(GD1、GD2)に支持され、前記第1、第2のガイド部材(GD1、GD2)の軸線方向(ZH1又はZH2)において前記第1、第2のガイド部材(GD1、GD2)に対して相対移動可能なキャリパ(CPR)と、を備える。 Further, the apparatus includes a power source (BAT) installed in a vehicle body of the vehicle, wirings (PWL, SGL) for supplying electric power and a drive signal from the power source (BAT) to the electric motor (MTR), A connector (CNC) that relays wiring (PWL, SGL), a mounting member (MTB) that is fixed to a support member (NKL) that supports the wheel (WHL), and a fixing member that is fixed to the mounting member (MTB). A first guide member (GD1) having an axis (Jgd1), and the first guide member (GD1) fixed to the mount member (MTB) at a position different from the first guide member (GD1). Supported by a second guide member (GD2) having an axis (Jgd2) parallel to the axis (Jgd1) of the first and second guide members (GD1, GD2), Comprising a guide member (GD1, GD2) the first in the axial direction (ZH1 or Zh2) of the second guide member (GD1, GD2) can move relative to the caliper (CPR), and.
 この装置の特徴は、前記コネクタ(CNC)が、前記キャリパ(CPR)の表面に固定され、且つ、前記第1のガイド部材(GD1)の軸線方向の両端点(A、B)、及び、前記第2のガイド部材(GD2)の軸線方向の両端点(C、D)を4隅とする四角形であるガイド四角形(Mgd、四角形A-B-D-C)の平面に対して垂直方向(ZV1又はZV2)から見たときに、前記ガイド四角形(Mgd)の内部に位置することにある。 The device is characterized in that the connector (CNC) is fixed to the surface of the caliper (CPR), and both end points (A, B) in the axial direction of the first guide member (GD1), and Vertical direction (ZV1) with respect to the plane of the guide quadrangle (Mgd, quadrangle ABCD) having four corners at both end points (C, D) in the axial direction of the second guide member (GD2) Or, when viewed from ZV2), it is located inside the guide square (Mgd).
 上記構成では、キャリパは、第1、第2ガイド部材(スライドピン)によってマウント部材に取り付けられ、第1、第2ガイド部材に沿ってスライドされ得る。換言すれば、キャリパは、それぞれのガイド部材(スライドピン)の両端点によって形成されるガイド四角形(ガイド面である四角形A-B-D-C)に対して、平行に摺動される。 In the above configuration, the caliper can be attached to the mount member by the first and second guide members (slide pins) and slid along the first and second guide members. In other words, the caliper is slid in parallel with respect to a guide quadrangle (rectangle A-B-D-C which is a guide surface) formed by both end points of each guide member (slide pin).
 ここで、路面振動(特に、車輪軸に垂直な方向の振動に対する振動)の観点からは、ガイド面に近いほど、振動が増幅され難い。上記構成では、電力及び信号を中継するコネクタの位置が、平行投影においてガイド面に投影されるように(即ち、ガイド空間の内部に)決定される。この結果、車両走行中の路面凹凸による振動(特に、車輪軸に垂直な方向)に対するコネクタの信頼性が確保され得る。 Here, from the viewpoint of road surface vibration (particularly vibration with respect to vibration in a direction perpendicular to the wheel axis), the closer to the guide surface, the less the vibration is amplified. In the above configuration, the position of the connector that relays the power and the signal is determined so as to be projected onto the guide surface in parallel projection (that is, inside the guide space). As a result, it is possible to ensure the reliability of the connector against vibration (particularly in the direction perpendicular to the wheel axis) due to road surface unevenness during vehicle travel.
 上記本発明に係る電動制動装置では、前記マウント部材(MTB)を前記支持部材(NKL)に固定する、前記第1のガイド部材(GD1)の軸線(Jgd1)と平行な軸線(Jtk1)を有する第1の締結部材(TK1)と、前記第1の締結部材(TK1)とは異なる位置で前記マウント部材(MTB)を前記支持部材(NKL)に固定する、前記第1のガイド部材(GD1)の軸線(Jgd1)と平行な軸線(Jtk2)を有する第2の締結部材(TK2)と、が備えられる。 The electric braking apparatus according to the present invention has an axis (Jtk1) parallel to the axis (Jgd1) of the first guide member (GD1), which fixes the mount member (MTB) to the support member (NKL). The first guide member (GD1) for fixing the mount member (MTB) to the support member (NKL) at a position different from the first fastening member (TK1) and the first fastening member (TK1). A second fastening member (TK2) having an axis (Jtk2) parallel to the axis (Jgd1).
 この装置の特徴は、前記コネクタ(CNC)が、前記キャリパ(CPR)の表面に固定され、且つ、前記第1のガイド部材(GD1)の軸線方向(ZH1又はZH2)から見たときに、前記第1のガイド部材(GD1)の軸線(Jgd1)、前記第2のガイド部材(GD2)の軸線(Jgd2)、前記第1の締結部材(TK1)の軸線(Jtk1)、及び、前記第2の締結部材(TK2)の軸線(Jtk2)のそれぞれの位置を4隅とする、前記第1のガイド部材(GD1)の軸線(Jgd1)に垂直な平面を有する四角形である締結四角形(Mtk、四角形G-H-L-K)の内部に位置することにある、と記載することもできる。 A feature of this apparatus is that when the connector (CNC) is fixed to the surface of the caliper (CPR) and viewed from the axial direction (ZH1 or ZH2) of the first guide member (GD1), An axis (Jgd1) of the first guide member (GD1), an axis (Jgd2) of the second guide member (GD2), an axis (Jtk1) of the first fastening member (TK1), and the second A fastening quadrangle (Mtk, quadrangle G), which is a quadrangle having a plane perpendicular to the axis (Jgd1) of the first guide member (GD1) with the four positions of the axis (Jtk2) of the fastening member (TK2). -H-L-K) can also be described as being located inside.
 上記構成では、マウント部材は、第1、第2の締結部材によって、支持部材に固定され、キャリパは、第1、第2のガイド部材によって、マウント部材に取り付けられる。このため、路面振動(特に、車輪軸の方向)の観点からは、前記4つの軸線のそれぞれの位置を4隅とする前記軸線に垂直な締結四角形(締結面である四角形G-H-L-K)に近いほど、振動が増幅され難い。上記構成では、電力及び信号を中継するコネクタが、平行投影において締結面に投影されるように(即ち、締結空間の内部に)配置される。この結果、車両走行中の路面凹凸による振動(特に、車輪軸の方向)に対するコネクタの信頼性が確保され得る。 In the above configuration, the mount member is fixed to the support member by the first and second fastening members, and the caliper is attached to the mount member by the first and second guide members. For this reason, from the viewpoint of road surface vibration (particularly in the direction of the wheel axis), a fastening quadrangle perpendicular to the axis having four corners at each of the four axes (a quadrangle GHHL as a fastening surface). The closer to K), the less the vibration is amplified. In the above configuration, the connector that relays power and signals is arranged so as to be projected onto the fastening surface in parallel projection (that is, inside the fastening space). As a result, the reliability of the connector against vibration (particularly in the direction of the wheel shaft) due to road surface unevenness during vehicle travel can be ensured.
 上記本発明に係る電動制動装置において、前記電気モータ(MTR)が前記キャリパ(CRP)に固定され、且つ、ブラシ(BLC)、及び、整流子(CMT)を有する場合、前記ブラシ(BLC)、及び、前記整流子(CMT)が、前記ガイド四角形(Mgd、四角形A-B-D-C)の平面に対して垂直方向(ZV1又はZV2)から見たときに、前記ガイド四角形の内部に位置することが好ましい。同様に、前記ブラシ(BLC)、及び、前記整流子(CMT)が、前記第1のガイド部材の軸線方向(ZH1又はZH2)から見たときに、前記締結四角形(Mtk、四角形G-H-L-K)の内部に位置することが好ましい。 In the electric braking device according to the present invention, when the electric motor (MTR) is fixed to the caliper (CRP) and has a brush (BLC) and a commutator (CMT), the brush (BLC), The commutator (CMT) is positioned inside the guide quadrangle when viewed from a direction (ZV1 or ZV2) perpendicular to the plane of the guide quadrangle (Mgd, quadrangle ABCD-C). It is preferable to do. Similarly, when the brush (BLC) and the commutator (CMT) are viewed from the axial direction (ZH1 or ZH2) of the first guide member, the fastening square (Mtk, square GH- L-K) is preferably located inside.
 電気モータとしてブラシ付モータが採用される場合、ブラシが整流子にばねによって押し付けられる。上述したように、ガイド面(ガイド四角形)に近いほど、及び/又は、締結面(締結四角形)に近いほど、路面振動が増幅され難い。上記構成によれば、電気モータのブラシ、及び、整流子が、平行投影においてガイド面に投影されるように(即ち、ガイド空間の内部に)配置される。或いは、電気モータのブラシ、及び、整流子が、平行投影において締結面に投影されるように(即ち、締結空間の内部に)配置される。このため、ブラシ及び整流子に関し、路面振動の増幅が抑制され得る。従って、車両走行中の路面凹凸による振動に対して、整流子にブラシを押し付ける力(即ち、押圧するためのスプリングのばね定数)を増大する必要がない。この結果、電気モータにおいて、ブラシの摩擦によるトルク損失が低減され得るため、ブレーキアクチュエータBRKの効率が向上され得る。 When a brush motor is used as the electric motor, the brush is pressed against the commutator by a spring. As described above, road surface vibration is less likely to be amplified as it is closer to the guide surface (guide square) and / or closer to the fastening surface (fastening square). According to the said structure, the brush and commutator of an electric motor are arrange | positioned so that it may project on a guide surface in parallel projection (namely, inside guide space). Alternatively, the brush and the commutator of the electric motor are arranged so as to be projected onto the fastening surface in parallel projection (that is, inside the fastening space). For this reason, amplification of road surface vibration can be suppressed regarding a brush and a commutator. Therefore, it is not necessary to increase the force for pressing the brush against the commutator (that is, the spring constant of the spring for pressing) against vibration caused by road surface unevenness during traveling of the vehicle. As a result, in the electric motor, torque loss due to brush friction can be reduced, so that the efficiency of the brake actuator BRK can be improved.
本発明の実施形態に係る電動制動装置の車両への搭載状態を説明するための概略構成図である。It is a schematic block diagram for demonstrating the mounting state to the vehicle of the electric braking device which concerns on embodiment of this invention. 図1に示した制動手段、及び、制御手段の全体構成図である。It is a whole block diagram of the braking means shown in FIG. 1, and a control means. 図1に示した電動モータとしてブラシ付モータが採用される場合の駆動手段の全体構成図である。It is a whole block diagram of a drive means in case a motor with a brush is employ | adopted as an electric motor shown in FIG. 図1に示した電動モータとしてブラシレスモータが採用される場合の駆動手段の全体構成図である。It is a whole block diagram of a drive means in case a brushless motor is employ | adopted as an electric motor shown in FIG. 図1に示したキャリパ内における電子部品の配置を説明するための図である。It is a figure for demonstrating arrangement | positioning of the electronic component in the caliper shown in FIG. 図1に示したキャリパに固定されるコネクタの位置を説明するための図である。It is a figure for demonstrating the position of the connector fixed to the caliper shown in FIG. ブレーキディスク、メインスライドピン、サブスライドピン、及びピストンのそれぞれの軸、並びに、電気モータの位置関係を説明するための図である。It is a figure for demonstrating the positional relationship of each axis | shaft of a brake disc, a main slide pin, a sub slide pin, and a piston, and an electric motor. 図1に示したキャリパ内におけるセンサ等の位置を説明するための図である。It is a figure for demonstrating the position of a sensor etc. in the caliper shown in FIG. ガイド部材(メインスライドピン、及び、サブスライドピン)で形成されるガイド面を説明するための図である。It is a figure for demonstrating the guide surface formed with a guide member (a main slide pin and a sub slide pin). ガイド部材(メインスライドピン、及び、サブスライドピン)、並びに、締結部材(第1ボルト、及び、第2ボルト)で形成される締結面を説明するための図である。It is a figure for demonstrating the fastening surface formed with a guide member (a main slide pin and a sub slide pin) and a fastening member (a 1st volt | bolt and a 2nd volt | bolt). 車両走行時の路面凹凸に起因する振動に関する課題を説明するための図である。It is a figure for demonstrating the subject regarding the vibration resulting from the road surface unevenness | corrugation at the time of vehicle travel.
 以下、本発明に係る車両の電動制動装置の実施形態について図面を参照しつつ説明する。 Hereinafter, embodiments of an electric braking device for a vehicle according to the present invention will be described with reference to the drawings.
<本発明の実施形態に係る電動制動装置を備えた車両の全体構成>
 図1は、本発明の実施形態に係る電動制動装置の車両への搭載状態を示す。電動制動装置は、運転者の制動操作部材(例えば、ブレーキペダル)の操作量に応じて、車輪に制動トルクを与えることによって車輪制動力を発生し、走行中の車両を減速する。図1において、蓄電池(バッテリ)BATは、制動手段(ブレーキアクチュエータ)BRK、及び、電子制御ユニットECUに電力を供給する。BATは、車体BDYに設けられる(固定される)。BATは、ECU、及び、電力線PWLを介して、電気モータMTRを駆動する駆動手段(駆動回路)DRVに電力を供給する。
<Overall Configuration of Vehicle with Electric Braking Device According to Embodiment of the Present Invention>
FIG. 1 shows a state where an electric braking device according to an embodiment of the present invention is mounted on a vehicle. The electric braking device generates a wheel braking force by applying a braking torque to the wheel according to an operation amount of a braking operation member (for example, a brake pedal) of the driver, and decelerates the traveling vehicle. In FIG. 1, a storage battery (battery) BAT supplies electric power to braking means (brake actuator) BRK and an electronic control unit ECU. The BAT is provided (fixed) on the vehicle body BDY. The BAT supplies power to the drive means (drive circuit) DRV that drives the electric motor MTR via the ECU and the power line PWL.
 電子制御ユニットECUは、制動操作量Bpaに基づいて、駆動回路DRVに駆動信号Imtを、信号線SGLを介して送信する。ECUは、車体BDYに設けられる(固定される)。駆動回路DRVは、キャリパCPR内に設けられ、スイッチング素子(S1等)、及び、ノイズ低減回路で構成される。ECUから信号線SGLを介して送信されるMTRの駆動信号(目標通電量Imt)に基づいて、スイッチング素子が駆動され、MTRの回転方向、及び、回転動力が制御される。MTRを駆動するための電力は、BATから、ECU及び電力線PWLを介して、DRVに供給される。信号線SGL、及び、電力線PWLを総称して「配線(ワイヤハーネス)」と称呼する。 The electronic control unit ECU transmits a drive signal Imt to the drive circuit DRV via the signal line SGL based on the braking operation amount Bpa. The ECU is provided (fixed) to the vehicle body BDY. The drive circuit DRV is provided in the caliper CPR and includes a switching element (S1 and the like) and a noise reduction circuit. Based on the drive signal (target energization amount Imt) of the MTR transmitted from the ECU via the signal line SGL, the switching element is driven, and the rotational direction and rotational power of the MTR are controlled. Electric power for driving the MTR is supplied from the BAT to the DRV through the ECU and the power line PWL. The signal line SGL and the power line PWL are collectively referred to as “wiring (wire harness)”.
 ここで、電力線PWLが、信号線(通信線)SGLとしても利用される電力線通信が採用され得る。この場合には、SGLはPWLに統合され(即ち、SGLが省略され)、ImtはPWLに重畳されて、DRVに送信される。ここで、電力線通信は、電力線搬送通信(PLC:Power Line Communication)とも称呼され、電源配線PWLを利用して高速なデータ通信を行う通信システムである。 Here, power line communication in which the power line PWL is also used as a signal line (communication line) SGL may be employed. In this case, the SGL is integrated into the PWL (ie, the SGL is omitted), and the Imt is superimposed on the PWL and transmitted to the DRV. Here, the power line communication is also referred to as power line communication (PLC) and is a communication system that performs high-speed data communication using the power supply wiring PWL.
 サスペンションアーム(例えば、アッパアームUAM、ロアアームLAM)は、一方側が、車両の車体BDYに取り付けられ、他方側がナックル(支持部材に相当)NKLに取り付けられている。コイルスプリングSPR、及び、ショックアブソーバSHAは、サスペンションアーム、又は、ナックルNKLに取り付けられている。コイルスプリングSPR、及び、ショックアブソーバSHAによって、車輪WHLは、車体BDYに懸架されている。サスペンションアーム、SPR、NKL、及び、SHAは、公知の懸架装置を構成する部材である。 The suspension arm (for example, upper arm UAM, lower arm LAM) has one side attached to the vehicle body BDY of the vehicle and the other side attached to a knuckle (corresponding to a support member) NKL. The coil spring SPR and the shock absorber SHA are attached to a suspension arm or a knuckle NKL. The wheel WHL is suspended from the vehicle body BDY by the coil spring SPR and the shock absorber SHA. The suspension arm, SPR, NKL, and SHA are members constituting a known suspension device.
 ハブベアリングユニットHBUは、支持部材(ナックル)NKLに固定される。ハブベアリングユニットHBU内のハブベアリングにて、車輪WHLが支持される。車輪WHLには、回転部材(ブレーキディスク)KTBが固定され、KTBはWHLと一体となって回転される(即ち、KTBの回転軸とWHLの回転軸は同軸である)。 The hub bearing unit HBU is fixed to a support member (knuckle) NKL. The wheel WHL is supported by a hub bearing in the hub bearing unit HBU. A rotating member (brake disc) KTB is fixed to the wheel WHL, and the KTB is rotated integrally with the WHL (that is, the rotating shaft of the KTB and the rotating shaft of the WHL are coaxial).
 マウンティングブラケット(マウント部材に相当)MTBは、ナックル(支持部材に相当)NKLに、締結部材(例えば、ボルト)TK1、TK2(図示せず)によって、固定されている。キャリパCPRが、ガイド部材GD1、GD2(ピン用ボルトPB1、PB2(図示せず)によってMTBに締め付けられているスライドピン)を介して、マウント部材MTBに取り付けられている。 The mounting bracket (corresponding to the mount member) MTB is fixed to the knuckle (corresponding to the support member) NKL by fastening members (for example, bolts) TK1 and TK2 (not shown). The caliper CPR is attached to the mount member MTB via guide members GD1, GD2 (slide pins fastened to the MTB by pin bolts PB1, PB2 (not shown)).
 ブレーキキャリパCPRは、浮動型キャリパであり、2つの摩擦部材(ブレーキパッド)MSBを介して、回転部材(ブレーキディスク)KTBを挟み込むように構成される。具体的には、スライドピンGD1、GD2がマウント部材MTBに固定され、GD1、GD2に沿って、キャリパCRP内の押圧部材PSNが回転部材KTBに向けて、電気モータMTRによってスライドされる。 The brake caliper CPR is a floating caliper and is configured to sandwich a rotating member (brake disc) KTB via two friction members (brake pads) MSB. Specifically, the slide pins GD1 and GD2 are fixed to the mount member MTB, and the pressing member PSN in the caliper CRP is slid by the electric motor MTR along the GD1 and GD2 toward the rotating member KTB.
 図2に示すように、この電動制動装置を備える車両には、制動操作部材BP、電子制御ユニットECU、制動手段(ブレーキアクチュエータ)BRK、及び、蓄電池(バッテリ)BATが備えられる。 As shown in FIG. 2, a vehicle including this electric braking device includes a braking operation member BP, an electronic control unit ECU, a braking means (brake actuator) BRK, and a storage battery (battery) BAT.
 制動操作部材(例えば、ブレーキペダル)BPは、運転者が車両を減速するために操作する部材である。BPの操作量に基づいて、制動手段(ブレーキアクチュエータ)BRKが、車輪WHLの制動トルクを調整し、車輪WHLに制動力が発生され、走行中の車両が減速される。 Brake operation member (for example, brake pedal) BP is a member that the driver operates to decelerate the vehicle. Based on the operation amount of BP, the braking means (brake actuator) BRK adjusts the braking torque of the wheel WHL, the braking force is generated on the wheel WHL, and the running vehicle is decelerated.
 制動操作部材BPには、制動操作量取得手段BPAが設けられる。制動操作量取得手段BPAによって、運転者による制動操作部材BPの操作量(制動操作量)Bpaが取得(検出)される。制動操作量取得手段BPAとして、マスタシリンダ(図示せず)の圧力を検出するセンサ(圧力センサ)、制動操作部材BPの操作力、及び/又は、変位量を検出するセンサ(ブレーキペダル踏力センサ、ブレーキペダルストロークセンサ)が採用される。従って、制動操作量Bpaは、マスタシリンダ圧、ブレーキペダル踏力、及び、ブレーキペダルストロークのうちの少なくとも何れか1つに基づいて演算される。制動操作量Bpaは、電子制御ユニットECUに入力される。なお、Bpaは、他の電子制御ユニットにて演算、又は、取得され、その演算値(信号)が通信バスを介して、ECUに送信され得る。 The braking operation member BP is provided with a braking operation amount acquisition means BPA. The operation amount (braking operation amount) Bpa of the braking operation member BP by the driver is acquired (detected) by the braking operation amount acquisition means BPA. As a braking operation amount acquisition means BPA, a sensor (pressure sensor) for detecting the pressure of a master cylinder (not shown), an operation force of the braking operation member BP, and / or a sensor for detecting a displacement amount (a brake pedal depression force sensor, Brake pedal stroke sensor) is adopted. Accordingly, the braking operation amount Bpa is calculated based on at least one of the master cylinder pressure, the brake pedal depression force, and the brake pedal stroke. The braking operation amount Bpa is input to the electronic control unit ECU. Bpa is calculated or acquired by another electronic control unit, and the calculated value (signal) can be transmitted to the ECU via the communication bus.
 電子制御ユニットECUは、その内部に制動手段BRKを制御するための制御手段(制御アルゴリズム)CTLがプログラムされており、これに基づいてBRKを制御する。蓄電池BATは、BRK、ECU等に電力を供給する電源である。 In the electronic control unit ECU, control means (control algorithm) CTL for controlling the braking means BRK is programmed, and the BRK is controlled based on this. The storage battery BAT is a power source that supplies power to the BRK, ECU, and the like.
〔制御手段CTL〕
 制御手段CTLは、目標押圧力演算ブロックFBT、指示通電量演算ブロックIST、押圧力フィードバック制御ブロックIPT、及び、通電量調整演算ブロックIMTにて構成される。制御手段(制御プログラム)CTLは、電子制御ユニットECU内にプログラムされている。
[Control means CTL]
The control means CTL includes a target pressing force calculation block FBT, an instruction energization amount calculation block IST, a pressing force feedback control block IPT, and an energization amount adjustment calculation block IMT. The control means (control program) CTL is programmed in the electronic control unit ECU.
 目標押圧力演算ブロックFBTでは、制動操作量Bpa、及び、予め設定された目標押圧力演算特性(演算マップ)CHfbに基づいて、各車輪WHLの目標押圧力Fbtが演算される。Fbtは、電動制動手段BRKにおいて、摩擦部材(ブレーキパッド)MSBが回転部材(ブレーキディスク)KTBを押す力である押圧力の目標値である。 In the target pressing force calculation block FBT, the target pressing force Fbt of each wheel WHL is calculated based on the braking operation amount Bpa and the preset target pressing force calculation characteristic (calculation map) CHfb. Fbt is a target value of the pressing force, which is a force with which the friction member (brake pad) MSB presses the rotating member (brake disc) KTB in the electric braking means BRK.
 指示通電量演算ブロックISTでは、予め設定された指示通電量の演算特性(演算マップ)CHs1、CHs2、及び、目標押圧力Fbtに基づいて、指示通電量Istが演算される。Istは、電動制動手段BRKの電気モータMTRを駆動し、目標押圧力Fbtを達成するための、電気モータMTRへの通電量の目標値である。Istの演算マップは、電動制動手段BRKのヒステリシスを考慮して、2つの特性CHs1、CHs2で構成される。特性CHs1は押圧力を増加する場合に対応し、特性CHs2は押圧力を減少する場合に対応する。そのため、特性CHs2に比較して、特性CHs1は相対的に大きい指示通電量Istを出力するように設定されている。 In the command energization amount calculation block IST, the command energization amount Ist is calculated on the basis of preset calculation characteristics (calculation maps) CHs1 and CHs2 of the command energization amount and the target pressing force Fbt. Ist is a target value of the energization amount to the electric motor MTR for driving the electric motor MTR of the electric braking means BRK and achieving the target pressing force Fbt. The calculation map of Ist is composed of two characteristics CHs1 and CHs2 in consideration of the hysteresis of the electric braking means BRK. The characteristic CHs1 corresponds to the case where the pressing force is increased, and the characteristic CHs2 corresponds to the case where the pressing force is decreased. Therefore, compared with the characteristic CHs2, the characteristic CHs1 is set to output a relatively large command energization amount Ist.
 ここで、通電量とは、電気モータMTRの出力トルクを制御するための状態量(変数)である。電気モータMTRは電流に概ね比例するトルクを出力するため、通電量の目標値として電気モータMTRの電流目標値が用いられ得る。また、電気モータMTRへの供給電圧を増加すれば、結果として電流が増加されるため、目標通電量として供給電圧値が用いられ得る。さらに、パルス幅変調(PWM:Pulse Width Modulation)におけるデューティ比によって供給電圧値が調整され得るため、このデューティ比が通電量として用いられ得る。 Here, the energization amount is a state amount (variable) for controlling the output torque of the electric motor MTR. Since the electric motor MTR outputs a torque substantially proportional to the current, the current target value of the electric motor MTR can be used as the target value of the energization amount. Further, if the supply voltage to the electric motor MTR is increased, the current is increased as a result, so that the supply voltage value can be used as the target energization amount. Furthermore, since the supply voltage value can be adjusted by the duty ratio in pulse width modulation (PWM: Pulse Width Modulation), this duty ratio can be used as the energization amount.
 押圧力フィードバック制御ブロックIPTでは、目標押圧力(目標値)Fbt、及び、実押圧力(実際値)Fbaに基づいて、押圧力フィードバック通電量Iptが演算される。指示通電量Istは目標押圧力Fbtに相当する値として演算されるが、電動制動手段BRKの効率変動により目標押圧力Fbtと実押圧力Fbaとの間に誤差(定常的な誤差)が生じる場合がある。押圧力フィードバック通電量Iptは、目標押圧力Fbtと実押圧力Fbaとの偏差(押圧力偏差)ΔFb、及び、予め設定される演算特性(演算マップ)CHpに基づいて演算され、上記の誤差を減少するように決定される。なお、実押圧力Fbaは、後述する押圧力取得手段FBAによって取得(検出)される。 In the pressing force feedback control block IPT, the pressing force feedback energization amount Ipt is calculated based on the target pressing force (target value) Fbt and the actual pressing force (actual value) Fba. The command energization amount Ist is calculated as a value corresponding to the target pressing force Fbt, but an error (steady error) occurs between the target pressing force Fbt and the actual pressing force Fba due to the efficiency variation of the electric braking means BRK. There is. The pressing force feedback energization amount Ipt is calculated based on a deviation (pressing force deviation) ΔFb between the target pressing force Fbt and the actual pressing force Fba and a preset calculation characteristic (calculation map) CHp, and the above error is calculated. Decided to decrease. The actual pressing force Fba is acquired (detected) by a pressing force acquisition unit FBA described later.
 通電量調整演算ブロックIMTでは、電気モータMTRへの最終的な目標値である目標通電量Imtが演算される。IMTでは、指示通電量Istが押圧力フィードバック通電量Iptによって調整され、目標通電量Imtが演算される。具体的には、指示通電量Istに対してフィードバック通電量Iptを加えて、これが最終的な目標通電量Imtとして演算される。そして、目標通電量Imtの符号(値の正負)に基づいて電気モータMTRの回転方向(押圧力が増加する正転方向、又は、押圧力が減少する逆転方向)が決定され、目標通電量Imtの大きさに基づいて電気モータMTRの出力(回転動力)が制御される。 In the energization amount adjustment calculation block IMT, a target energization amount Imt that is a final target value for the electric motor MTR is calculated. In the IMT, the command energization amount Ist is adjusted by the pressing force feedback energization amount Ipt, and the target energization amount Imt is calculated. Specifically, the feedback energization amount Ipt is added to the command energization amount Ist, and this is calculated as the final target energization amount Imt. Then, based on the sign (value sign) of the target energization amount Imt, the rotation direction of the electric motor MTR (forward rotation direction in which the pressing force increases or reverse rotation direction in which the pressing force decreases) is determined, and the target energization amount Imt. The output (rotational power) of the electric motor MTR is controlled based on the size of the motor.
〔制動手段(ブレーキアクチュエータ)BRK〕
 制動手段BRKは、ブレーキキャリパ(浮動型キャリパ)CPR、電気モータ(ブラシモータ、又は、ブラシレスモータ)MTR、駆動手段(MTRの駆動回路)DRV、減速機GSK、シャフト部材SFT、ねじ部材NJB、押圧部材(ブレーキピストン)PSN、位置検出手段MKA、通電量取得手段IMA、及び、押圧力取得手段FBAにて構成されている。
[Brake means (brake actuator) BRK]
The brake means BRK includes a brake caliper (floating caliper) CPR, an electric motor (brush motor or brushless motor) MTR, a drive means (MTR drive circuit) DRV, a reduction gear GSK, a shaft member SFT, a screw member NJB, and a press. The member (brake piston) PSN, position detection means MKA, energization amount acquisition means IMA, and pressing force acquisition means FBA are configured.
 制動手段(ブレーキアクチュエータ)BRKは、電気モータMTRの軸(回転軸であって、モータ軸)Jmt、及び、シャフト部材SFTの軸(回転軸であって、シャフト軸)Jsfの2つの軸を有する構成(即ち、2軸構成)である。モータ軸Jmtには、MTRの他に、位置取得手段(回転角センサ)MKA、減速機GSKの小径歯車SKHが設けられる。また、シャフト軸Jsfには、SFTの他に、ねじ部材NJB、押圧部材PSN、押圧力取得手段FBA、及び、減速機GSKの大径歯車DKHが設けられる。制動手段BRKの各構成部材(MTR、DRV等)は、キャリパCPR内に備えられている。キャリパCPRは、マウンティングブラケット(マウント部材に相当)MTBに摺動可能な状態で固定されている。マウント部材MTBは、ナックル(支持部材に相当)NKLに取り付けられている。 The braking means (brake actuator) BRK has two axes: an axis (rotation axis and motor axis) Jmt of the electric motor MTR and an axis (rotation axis and shaft axis) Jsf of the shaft member SFT. Configuration (ie, a biaxial configuration). In addition to MTR, the motor shaft Jmt is provided with position acquisition means (rotation angle sensor) MKA and small-diameter gear SKH of the reduction gear GSK. In addition to SFT, the shaft shaft Jsf is provided with a screw member NJB, a pressing member PSN, a pressing force acquisition means FBA, and a large-diameter gear DKH of the reduction gear GSK. Each component (MTR, DRV, etc.) of the braking means BRK is provided in the caliper CPR. The caliper CPR is slidably fixed to a mounting bracket (corresponding to a mount member) MTB. The mount member MTB is attached to a knuckle (corresponding to a support member) NKL.
 電子制御ユニットECUから、MTRの駆動指示値(目標通電量)Imtが信号線SGLを介して送られ、MTRの駆動電力が電力線PWLを介して送電される。キャリパCPRの表面には、コネクタCNCが固定されていて、このコネクタCNCを通して、Imt及び電力が駆動回路DRVに取り込まれる。電気モータMTRは、DRVによって駆動され、回転動力が発生される。 The MTR drive instruction value (target energization amount) Imt is sent from the electronic control unit ECU via the signal line SGL, and the drive power of the MTR is transmitted via the power line PWL. A connector CNC is fixed on the surface of the caliper CPR, and Imt and electric power are taken into the drive circuit DRV through the connector CNC. The electric motor MTR is driven by DRV to generate rotational power.
 電気モータMTRの出力(モータ軸Jmtまわりの回転動力)は、減速機GSKを介して、シャフト部材SFTに伝達される。シャフト部材SFTの回転動力(シャフト軸Jsfまわりのトルク)は、運動変換部材であるねじ部材NJBによって、直線動力(押圧軸Jps方向の推力)に変換され、押圧部材PSNに伝達される。そして、押圧部材(ブレーキピストン)PSNが、回転部材(ブレーキディスク)KTBに向かって前進・後退される。これにより、摩擦部材(ブレーキパッド)MSBが、回転部材KTBを押す力(押圧力)Fbaが調整される。回転部材KTBは車輪WHLに固定されているため、摩擦部材MSBと回転部材KTBとの間に摩擦力が発生し、車輪WHLに制動力が調整され、例えば、走行中の車両が減速される。なお、回転運動を直線運動に変換するための変換部材として、ねじ部材NJBに代えて、ボールランプ部材、回転クサビ部材、ラック&ピニオン部材等の変換機構が採用され得る。 The output of the electric motor MTR (rotational power around the motor shaft Jmt) is transmitted to the shaft member SFT via the reduction gear GSK. The rotational power (torque around the shaft axis Jsf) of the shaft member SFT is converted into linear power (thrust in the direction of the pressing axis Jps) by the screw member NJB, which is a motion converting member, and transmitted to the pressing member PSN. Then, the pressing member (brake piston) PSN is moved forward / backward toward the rotating member (brake disc) KTB. Thus, the force (pressing force) Fba that the friction member (brake pad) MSB presses the rotating member KTB is adjusted. Since the rotating member KTB is fixed to the wheel WHL, a frictional force is generated between the friction member MSB and the rotating member KTB, and the braking force is adjusted to the wheel WHL, for example, the traveling vehicle is decelerated. Note that a conversion mechanism such as a ball ramp member, a rotary wedge member, a rack and pinion member, or the like may be employed as the conversion member for converting the rotational motion into the linear motion instead of the screw member NJB.
 上述のように、ブレーキキャリパCPRは、浮動型キャリパであり、2つの摩擦部材(ブレーキパッド)MSBを介して、回転部材(ブレーキディスク)KTBを挟み込むように構成される。キャリパCPR内で、押圧部材PSNがスライドされ、回転部材KTBに向けて前進又は後退される。キャリパCPRには、キー溝KYMが、シャフト部材SFTの回転軸(シャフト軸Jsf)方向に延びるように形成される。 As described above, the brake caliper CPR is a floating caliper, and is configured to sandwich the rotating member (brake disc) KTB via the two friction members (brake pads) MSB. Within the caliper CPR, the pressing member PSN is slid and moved forward or backward toward the rotating member KTB. In the caliper CPR, the keyway KYM is formed so as to extend in the direction of the rotation axis (shaft axis Jsf) of the shaft member SFT.
 押圧部材(ブレーキピストン)PSNは、回転部材KTBに摩擦部材MSBを押し付けて摩擦力を発生させる。キー部材KYAが、押圧部材PSNに固定される。キー部材KYAが、キー溝KYMに嵌合されることによって、押圧部材PSNは、シャフト軸まわりの回転運動は制限されるが、シャフト軸の方向(キー溝KYMの長手方向)の直線運動は許容される。 The pressing member (brake piston) PSN generates a frictional force by pressing the friction member MSB against the rotating member KTB. The key member KYA is fixed to the pressing member PSN. When the key member KYA is fitted into the key groove KYM, the pressing member PSN is restricted from rotating around the shaft axis, but linear movement in the direction of the shaft axis (longitudinal direction of the key groove KYM) is allowed. Is done.
 電気モータMTRとして、ブラシ付モータ、或いは、ブラシレスモータが採用される。電気モータMTRの回転方向において、正転方向が、摩擦部材MSBが回転部材KTBに近づいていく方向(押圧力が増加し、制動トルクが増加する方向)に相当し、逆転方向が、摩擦部材MSBが回転部材KTBから離れていく方向(押圧力が減少し、制動トルクが減少する方向)に相当する。電気モータMTRの出力は、制御手段CTLにて演算される目標通電量Imtに基づいて決定される。具体的には、目標通電量Imtの符号が正符号である場合(Imt>0)には、電気モータMTRが正転方向に駆動され、Imtの符号が負符号である場合(Imt<0)には、電気モータMTRが逆転方向に駆動される。また、目標通電量Imtの大きさ(絶対値)に基づいて電気モータMTRの回転動力が決定される。即ち、目標通電量Imtの絶対値が大きいほど電気モータMTRの出力トルクが大きく、目標通電量Imtの絶対値が小さいほど出力トルクは小さい。 A motor with a brush or a brushless motor is adopted as the electric motor MTR. In the rotation direction of the electric motor MTR, the forward rotation direction corresponds to the direction in which the friction member MSB approaches the rotation member KTB (the direction in which the pressing force increases and the braking torque increases), and the reverse rotation direction corresponds to the friction member MSB. Corresponds to the direction away from the rotating member KTB (the direction in which the pressing force decreases and the braking torque decreases). The output of the electric motor MTR is determined based on the target energization amount Imt calculated by the control means CTL. Specifically, when the sign of the target energization amount Imt is a positive sign (Imt> 0), the electric motor MTR is driven in the forward rotation direction, and the sign of Imt is a negative sign (Imt <0). The electric motor MTR is driven in the reverse direction. Further, the rotational power of the electric motor MTR is determined based on the magnitude (absolute value) of the target energization amount Imt. That is, the larger the absolute value of the target energization amount Imt, the larger the output torque of the electric motor MTR, and the smaller the absolute value of the target energization amount Imt, the smaller the output torque.
 位置取得手段(例えば、回転角度センサ)MKAは、電気モータMTRのロータ(回転子)の位置(例えば、回転角)Mkaを検出する。位置取得手段MKAは、電気モータMTRの内部であって、MTRと同軸に設けられる(モータ軸Jmt上に配置される)。 Position acquisition means (for example, rotation angle sensor) MKA detects the position (for example, rotation angle) Mka of the rotor (rotor) of the electric motor MTR. The position acquisition means MKA is provided inside the electric motor MTR and coaxially with the MTR (arranged on the motor shaft Jmt).
 駆動手段(電気モータMTRを駆動するための電気回路)DRVにて、目標通電量(目標値)Imtに基づき電気モータMTRへの通電量(最終的には電流値)が制御される。具体的には、駆動手段DRVには、複数のスイッチング素子(パワートランジスタであって、例えば、MOS-FET、IGBT)が用いられたブリッジ回路が構成される。電気モータの目標通電量Imtに基づいて、それらの素子が駆動され、電気モータMTRの出力が制御される。具体的には、スイッチング素子の通電/非通電の状態が切り替えられることによって、電気モータMTRの回転方向と出力トルクとが調整される。 The driving means (electric circuit for driving the electric motor MTR) DRV controls the energization amount (finally the current value) to the electric motor MTR based on the target energization amount (target value) Imt. Specifically, the driving unit DRV includes a bridge circuit using a plurality of switching elements (power transistors such as MOS-FETs and IGBTs). These elements are driven based on the target energization amount Imt of the electric motor, and the output of the electric motor MTR is controlled. Specifically, the rotation direction and output torque of the electric motor MTR are adjusted by switching the energization / non-energization state of the switching element.
 駆動回路DRVには、電圧変動等を低減するためのノイズ低減回路(安定化回路)LPFp、LPFtが設けられる。ノイズ低減回路LPFp、LPFtは、所謂、LC回路であり、インダクタ(コイル)IND、及び、コンデンサ(キャパシタ)CNDの組み合わせによって構成される。 The drive circuit DRV is provided with noise reduction circuits (stabilization circuits) LPFp and LPFt for reducing voltage fluctuation and the like. The noise reduction circuits LPFp and LPFt are so-called LC circuits, and are configured by a combination of an inductor (coil) IND and a capacitor (capacitor) CND.
 通電量取得手段(例えば、電流センサ)IMAは、電気モータMTRへの実際の通電量(例えば、実際に電気モータMTRに流れる電流)Imaを取得(検出)する。通電量取得手段IMAは、電気モータの駆動回路DRVの内部に設けられる。 The energization amount acquisition means (for example, current sensor) IMA acquires (detects) an actual energization amount (for example, current that actually flows through the electric motor MTR) Ima to the electric motor MTR. The energization amount acquisition means IMA is provided in the electric motor drive circuit DRV.
 キャリパCPRの表面にはコネクタCNCが設けられる。コネクタCNCによって中継される配線(信号線SGL、及び、電力線PWL)を介して、電子制御ユニットECU(車体BDYに配置)と、駆動回路DRV(キャリパCPR内に配置)との間で接続される。信号線SGLは、コネクタCNCを介して、目標通電量ImtをECUからDRVに送信する。また、電力線PWLは、コネクタCNCを介して、電気モータMTRを駆動する電力を、ECUからDRVに供給する。 A connector CNC is provided on the surface of the caliper CPR. Connected between the electronic control unit ECU (arranged in the vehicle body BDY) and the drive circuit DRV (arranged in the caliper CPR) via wiring (signal line SGL and power line PWL) relayed by the connector CNC. . The signal line SGL transmits the target energization amount Imt from the ECU to the DRV via the connector CNC. Further, the power line PWL supplies power for driving the electric motor MTR from the ECU to the DRV via the connector CNC.
 減速機GSKは、電気モータMTRの動力において、回転速度を減じて、シャフト部材SFTに出力する。即ち、MTRの回転出力(トルク)が、減速機GSKの減速比に応じて増加され、シャフト部材SFTの回転力(トルク)が得られる。例えば、GSKは、小径歯車SKH、及び、大径歯車DKHにて構成される。GSKとして、歯車伝達機構に代えて、ベルト、チェーン等の巻き掛け伝達機構、或いは、摩擦伝達機構が採用され得る。 Reducer GSK reduces the rotational speed and outputs it to shaft member SFT in the power of electric motor MTR. That is, the rotational output (torque) of the MTR is increased according to the reduction ratio of the reduction gear GSK, and the rotational force (torque) of the shaft member SFT is obtained. For example, the GSK is composed of a small diameter gear SKH and a large diameter gear DKH. As GSK, instead of the gear transmission mechanism, a winding transmission mechanism such as a belt or a chain, or a friction transmission mechanism may be employed.
 シャフト部材SFTは、回転軸部材であって、減速機GSKから伝達された回転動力をねじ部材NJBに伝達する。 The shaft member SFT is a rotating shaft member and transmits the rotational power transmitted from the reduction gear GSK to the screw member NJB.
 ねじ部材NJBは、シャフト部材SFTの回転動力を、直線動力に変換する変換部材である。即ち、ねじ部材NJBは、回転・直動変換機構である。ねじ部材NJBは、ナット部材NUT、及び、ボルト部材BLTにて構成される。ねじ部材NJBには、可逆性があり(逆効率をもち)、双方向に動力伝達が可能である。即ち、制動トルクが増加される場合(押圧力Fbaが増加される場合)、ねじ部材NJBを通して、シャフト部材SFTから押圧部材PSNへ動力が伝達される。逆に、制動トルクが減少される場合(押圧力Fbaが減少される場合)、ねじ部材NJBを介して、押圧部材PSNからシャフト部材SFTへ動力が伝達される(逆効率が「0」よりも大きい)。 The screw member NJB is a conversion member that converts the rotational power of the shaft member SFT into linear power. That is, the screw member NJB is a rotation / linear motion conversion mechanism. The screw member NJB includes a nut member NUT and a bolt member BLT. The screw member NJB has reversibility (has reverse efficiency) and can transmit power in both directions. That is, when the braking torque is increased (when the pressing force Fba is increased), power is transmitted from the shaft member SFT to the pressing member PSN through the screw member NJB. Conversely, when the braking torque is reduced (when the pressing force Fba is reduced), power is transmitted from the pressing member PSN to the shaft member SFT via the screw member NJB (reverse efficiency is less than “0”). large).
 ねじ部材NJBは、「滑り」によって動力伝達が行われる滑りねじ(台形ねじ等)によって構成される。この場合には、ナット部材NUTには、めねじ(内側ねじ)MNJが設けられる。ボルト部材BLTには、おねじ(外側ねじ)ONJが設けられ、NUTのMNJと螺合される。シャフト部材SFTから伝達された回転動力(トルク)は、ねじ部材NJB(ONJとMNJ)を介して、押圧部材PSNの直線動力(推力)として伝達される。また、上記の滑りねじに代えて、ねじ部材NJBには、「転がり」によって動力伝達が行われる転がりねじ(ボールねじ等)が採用され得る。この場合、ナット部材NUTb、及び、ボルト部材BLTbには、ボール溝が設けられる。このボール溝にはめ合わされるボール(鋼球)BALを介して、動力伝達が行われる。 The screw member NJB is configured by a sliding screw (such as a trapezoidal screw) that transmits power by “sliding”. In this case, the nut member NUT is provided with a female screw (inner screw) MNJ. The bolt member BLT is provided with a male screw (outer screw) ONJ and is screwed to the MNJ of the NUT. The rotational power (torque) transmitted from the shaft member SFT is transmitted as linear power (thrust) of the pressing member PSN via the screw member NJB (ONJ and MNJ). Further, instead of the above-described sliding screw, a rolling screw (such as a ball screw) in which power is transmitted by “rolling” may be employed for the screw member NJB. In this case, the nut member NUTb and the bolt member BLTb are provided with ball grooves. Power is transmitted through a ball (steel ball) BAL fitted in the ball groove.
 押圧力取得手段FBAにて、押圧部材PSNが摩擦部材MSBを押す力(押圧力)Fbaの反力(反作用)が取得(検出)される。FBAには、起歪体が形成され、その歪が、歪検出素子によって検出され、Fbaが取得される。例えば、歪検出素子として、電気抵抗変化によるもの(歪ゲージ)、超音波によるもの等が用いられ得る。FBAは、シャフト部材SFTとキャリパCPRとの間に設けられる。FBAはキャリパCRPに固定されている。検出された押圧力Fbaは、アナログ信号であり、電子制御ユニットECUに設けられているアナログ・デジタル変換手段を介してデジタル信号に変換されてECUに入力される。 In the pressing force acquisition means FBA, the reaction force (reaction) of the force (pressing force) Fba that the pressing member PSN presses the friction member MSB is acquired (detected). A strain generating body is formed in the FBA, and the strain is detected by a strain detection element, and Fba is acquired. For example, as a strain detection element, a device using a change in electrical resistance (strain gauge), a device using ultrasonic waves, or the like can be used. The FBA is provided between the shaft member SFT and the caliper CPR. The FBA is fixed to the caliper CRP. The detected pressing force Fba is an analog signal, converted into a digital signal via an analog / digital conversion means provided in the electronic control unit ECU, and input to the ECU.
<ブラシ付モータが採用される場合の駆動手段(駆動回路)DRV>
 図3は、電気モータMTRとして、ブラシ付モータ(単に、ブラシモータともいう)が採用される場合の駆動手段(駆動回路)DRVの一例である。ブラシ付モータは、整流子電動機(Commutator Motor)とも称呼され、該電気モータでは、電機子(巻線による電磁石)に流れる電流が、機械的整流子(コミュテータ)CMT、及び、ブラシBLCによって、回転位相に応じて切り替えられる。即ち、整流子CMT、及び、ブラシBLCによって、機械的な回転スイッチが構成され、巻線回路への電流が交互に反転される。ブラシ付モータでは、固定子(ステータ)側が永久磁石で、回転子(ロータ)側が巻線回路(電磁石)で構成される。そして、巻線回路(回転子)に電力が供給されるように、ブラシBLCが整流子CMTに当接されている。ブラシBLCは、ばね(弾性体)によって、整流子CMTに押し付けられ、CMTが回転することにより電流が転流される。
<Driving means (driving circuit) DRV when a brushed motor is employed>
FIG. 3 shows an example of driving means (driving circuit) DRV in the case where a motor with a brush (also simply referred to as a brush motor) is employed as the electric motor MTR. A motor with a brush is also called a commutator motor. In the electric motor, a current flowing through an armature (electromagnet by winding) is rotated by a mechanical commutator (commutator) CMT and a brush BLC. It is switched according to the phase. That is, the commutator CMT and the brush BLC constitute a mechanical rotation switch, and the current to the winding circuit is alternately inverted. In a motor with a brush, the stator (stator) side is constituted by a permanent magnet, and the rotor (rotor) side is constituted by a winding circuit (electromagnet). The brush BLC is in contact with the commutator CMT so that electric power is supplied to the winding circuit (rotor). The brush BLC is pressed against the commutator CMT by a spring (elastic body), and a current is commutated by rotating the CMT.
 電気モータMTRの回転子の位置Mkaを検出する位置取得手段MKAが、電気モータMTRの内部に設けられる。MKAは、回転子、及び、整流子と同軸に配置される(即ち、モータ軸Jmt上に設けられる)。 Position acquisition means MKA for detecting the rotor position Mka of the electric motor MTR is provided inside the electric motor MTR. The MKA is disposed coaxially with the rotor and the commutator (that is, provided on the motor shaft Jmt).
 駆動手段DRVは、電気モータMTRを駆動する電気回路であって、スイッチング素子S1乃至S4、Imtに基づいてパルス幅変調(PWM:Pulse Width Modulation)を行うパルス幅変調ブロックPWM、及び、PWMが決定するデューティ比に基づいて、S1乃至S4の通電状態/非通電状態を制御するスイッチング制御ブロックSWTにて構成される。ブラシ付モータMTRには、ブラシBLC、及び、整流子CMTが設けられる。DRV及びMTRは、車輪側に設けられ、CPRに固定されている。駆動回路DRVへは、車体側に設けられたECUから、コネクタCNCを介して、信号線SGL、及び、電力線PWLによって、駆動信号、及び、電力が供給される。 The driving means DRV is an electric circuit that drives the electric motor MTR, and the pulse width modulation block PWM that performs pulse width modulation (PWM) based on the switching elements S1 to S4 and Imt, and the PWM are determined. The switching control block SWT controls the energized state / non-energized state of S1 to S4 based on the duty ratio to be performed. The brushed motor MTR is provided with a brush BLC and a commutator CMT. DRV and MTR are provided on the wheel side and fixed to the CPR. A drive signal and power are supplied to the drive circuit DRV from the ECU provided on the vehicle body side via the connector CNC through the signal line SGL and the power line PWL.
 スイッチング素子S1乃至S4は、電気回路の一部をON/OFFできる素子であって、例えば、MOS-FETが用いられ得る。S1乃至S4によって、MTRの正転方向、及び、逆転方向のブリッジ回路が構成される。ここで、MTRの正転方向は、MSBをKTBに近づかせ、制動トルクが増加され、走行中の車両の減速度が増加される回転方向であり、MTRの逆転方向は、MSBをKTBから引き離し、制動トルクが減少され、走行中の車両の減速度が減少される回転方向である。スイッチング制御ブロックSWTによって、正転方向では、S1及びS4が通電状態(ON状態)、且つ、S2及びS3が非通電状態(OFF状態)に制御される。また、逆転方向では、S1及びS4が非通電状態(OFF状態)、且つ、S2及びS3が通電状態(ON状態)に制御される。 The switching elements S1 to S4 are elements that can turn on / off a part of the electric circuit, and for example, MOS-FETs can be used. A bridge circuit in the forward direction and the reverse direction of the MTR is configured by S1 to S4. Here, the forward rotation direction of the MTR is a rotation direction in which the MSB is brought closer to the KTB, the braking torque is increased, and the deceleration of the traveling vehicle is increased. The reverse rotation direction of the MTR is to pull the MSB away from the KTB. In the rotational direction, the braking torque is reduced and the deceleration of the running vehicle is reduced. In the forward direction, the switching control block SWT controls S1 and S4 to be in an energized state (ON state) and S2 and S3 to be in a non-energized state (OFF state). In the reverse direction, S1 and S4 are controlled to be in a non-energized state (OFF state), and S2 and S3 are controlled to be in an energized state (ON state).
 MTRに対して大出力が要求される場合には、スイッチング素子S1乃至S4に大電流が流される。このとき、スイッチング素子S1~S4には発熱が生じるため、放熱板(ヒートシンク)が、S1~S4に設けられ得る。具体的には、熱伝導のよい金属板(例えば、アルミニウム板)が、S1~S4に固定され得る。 When a large output is required for the MTR, a large current is passed through the switching elements S1 to S4. At this time, since heat is generated in the switching elements S1 to S4, a heat sink (heat sink) can be provided in S1 to S4. Specifically, a metal plate (for example, an aluminum plate) having good heat conductivity can be fixed to S1 to S4.
 パルス幅変調ブロックPWMでは、Imtの大きさに基づいて、パルス幅のデューティ比(ON/OFFの時間の割合)が決定され、Imtの符号(正符号、或いは、負符号)に基づいてMTRの回転方向が決定される。例えば、MTRの回転方向は、正転方向が正(プラス)の値、逆転方向が負(マイナス)の値として設定され得る。入力電圧(BATの電圧)、及び、デューティ比によって最終的な出力電圧が決まるため、DRVによって、MTRの回転方向と出力トルクが制御される。 In the pulse width modulation block PWM, the duty ratio of the pulse width (ratio of ON / OFF time) is determined based on the magnitude of Imt, and the MTR value is determined based on the sign of Imt (positive sign or negative sign). The direction of rotation is determined. For example, the rotation direction of the MTR can be set such that the forward rotation direction is a positive (plus) value and the reverse rotation direction is a negative (minus) value. Since the final output voltage is determined by the input voltage (BAT voltage) and the duty ratio, the rotation direction and output torque of the MTR are controlled by DRV.
 DRVには、供給電力を安定化するために、少なくとも1つのコンデンサ(キャパシタ)、及び、少なくとも1つのインダクタ(コイル)の組み合わせにて、ノイズ低減(電力変動低減)のフィルタ回路(LC回路であり、LCフィルタともいう)が形成される。例えば、第1、第2コンデンサCND1、CND2、及び、インダクタINDが組み合わされてローパスフィルタ(π型フィルタ)LPFpが形成され、ノイズ低減が行われ得る。具体的には、π型ローパスフィルタLPFpは、ラインに並列な2つのコンデンサCND1、CND2と、1つの直列インダクタとで構成されるフィルタで、所謂、チェビシェフ・ローパスLCフィルタである。一般的に、インダクタは、コンデンサ(キャパシタ)よりも高価であるため、LPFpが採用されることで、部品コストが抑制され、良好な性能が得られる。また、ノイズ低減フィルタには、LPFpに代えて、後述するT型ローパスフィルタLPFtが採用され得る(後述する図4を参照)。 DRV is a filter circuit (LC circuit) for reducing noise (reducing power fluctuations) with a combination of at least one capacitor (capacitor) and at least one inductor (coil) in order to stabilize power supply. , Also referred to as LC filter). For example, the first and second capacitors CND1, CND2 and the inductor IND are combined to form a low-pass filter (π-type filter) LPFp, and noise reduction can be performed. Specifically, the π-type low-pass filter LPFp is a so-called Chebyshev low-pass LC filter, which is a filter composed of two capacitors CND1 and CND2 parallel to the line and one series inductor. In general, an inductor is more expensive than a capacitor (capacitor), and therefore, by adopting LPFp, component costs are suppressed and good performance can be obtained. In addition, a T-type low-pass filter LPFt described later can be adopted as the noise reduction filter instead of LPFp (see FIG. 4 described later).
<ブラシレスモータが採用される場合の駆動手段(駆動回路)DRV>
 図4は、電気モータMTRがブラシレスモータ(3相ブラシレスモータ)である場合の駆動手段(駆動回路)DRVの一例である。ブラシレスモータは、無整流子電動機(ブラシレスDCモータ:Brushless Direct Current Motor)とも称呼され、該電気モータでは、ブラシ付モータの機械式整流子CMTに代えて、電子回路によって電流の転流が行われる。ブラシレスモータでは、回転子(ロータ)が永久磁石に、固定子(ステータ)が巻線回路(電磁石)とされる構造で、ロータの回転位置Mkaが検出され、Mkaに合わせてスイッチング素子が切り替えられることによって、供給電流が転流される。回転子の位置Mkaは、電気モータMTRの内部に設けられる位置取得手段MKAによって検出される。
<Driving means (driving circuit) DRV when a brushless motor is employed>
FIG. 4 shows an example of drive means (drive circuit) DRV when the electric motor MTR is a brushless motor (three-phase brushless motor). The brushless motor is also referred to as a non-commutator motor (brushless direct current motor). In the electric motor, current is commutated by an electronic circuit instead of the mechanical commutator CMT of the brushed motor. . In the brushless motor, the rotor (rotor) is a permanent magnet, and the stator (stator) is a winding circuit (electromagnet). The rotor rotation position Mka is detected, and the switching element is switched according to Mka. As a result, the supply current is commutated. The rotor position Mka is detected by position acquisition means MKA provided inside the electric motor MTR.
 駆動手段DRVは、MTRを駆動する電気回路であって、スイッチング素子Z1乃至Z6、Imtに基づいてパルス幅変調を行うパルス幅変調ブロックPWM、及び、PWMが決定するデューティ比に基づいて、Z1乃至Z6の通電状態/非通電状態を制御するスイッチング制御ブロックSWTにて構成される。ブラシ付モータの場合と同様に、DRV及びMTRは、車輪側に設けられ、CPRに固定されている。駆動回路DRVへは、車体側に設けられた電子制御ユニットECUから、コネクタCNCを介して、信号線SGL、及び、電力線PWLによって、駆動信号、及び、電力が供給される。 The driving means DRV is an electric circuit that drives the MTR, and includes switching elements Z1 to Z6, a pulse width modulation block PWM that performs pulse width modulation based on Imt, and Z1 to The switching control block SWT is configured to control the energization state / non-energization state of Z6. As in the case of the motor with brush, DRV and MTR are provided on the wheel side and are fixed to the CPR. A drive signal and power are supplied to the drive circuit DRV from the electronic control unit ECU provided on the vehicle body side via the connector CNC through the signal line SGL and the power line PWL.
 ブラシレスモータでは、位置取得手段MKAによって、MTRのロータ位置(回転角)Mkaが取得される。そして、スイッチング制御ブロックSWTでは、実際の位置Mkaに基づいて、3相ブリッジ回路を構成するスイッチング素子Z1乃至Z6が制御される。スイッチング素子Z1乃至Z6によって、ブリッジ回路のU相、V相、及びW相のコイル通電量の方向(即ち、励磁方向)が順次切り替えられて、MTRが駆動される。ブラシレスモータの回転方向(正転、或いは、逆転方向)は、ロータと励磁する位置との関係によって決定される。ブラシ付モータの場合と同様に、正転方向は、MSBとKTBとを近づかせ、制動トルクが増加され、走行中の車両の減速度が増加される回転方向であり、逆転方向は、MSBをKTBから引き離し、制動トルクが減少され、走行中の車両の減速度が減少される回転方向である。ブラシレスモータにおいても、大出力要求時の放熱のため、スイッチング素子Z1乃至Z6に放熱板(例えば、アルミニウム板)が固定される。また、PWMにて、Imtの大きさに基づいて、パルス幅のデューティ比が決定され、Imtの符号(値の正負)に基づいてMTRの回転方向が決定される。そして、目標通電量Imtに基づいて、スイッチング素子Z1乃至Z6がSWTからの信号によって制御されることによって、MTRの回転方向と出力トルクが制御される。 In the brushless motor, the position acquisition means MKA acquires the rotor position (rotation angle) Mka of the MTR. In the switching control block SWT, the switching elements Z1 to Z6 constituting the three-phase bridge circuit are controlled based on the actual position Mka. The switching elements Z1 to Z6 sequentially switch the direction of the coil energization amount of the U-phase, V-phase, and W-phase (that is, the excitation direction) of the bridge circuit to drive the MTR. The rotation direction (forward rotation or reverse rotation) of the brushless motor is determined by the relationship between the rotor and the excitation position. As in the case of a motor with a brush, the forward direction is a rotational direction in which the MSB and KTB are brought closer to each other, the braking torque is increased, and the deceleration of the running vehicle is increased. This is the direction of rotation in which the brake torque is reduced and the deceleration of the running vehicle is reduced, away from the KTB. Also in the brushless motor, a heat radiating plate (for example, an aluminum plate) is fixed to the switching elements Z1 to Z6 in order to radiate heat when a high output is required. Also, in PWM, the duty ratio of the pulse width is determined based on the magnitude of Imt, and the rotation direction of the MTR is determined based on the sign of Imt (the sign of the value). Then, based on the target energization amount Imt, the switching elements Z1 to Z6 are controlled by signals from the SWT, whereby the rotation direction and output torque of the MTR are controlled.
 更に、供給電力を安定化するために、DRVには、少なくとも1つのコンデンサ(キャパシタ)、及び、少なくとも1つのインダクタ(コイル)の組み合わせにて、ノイズ低減(電力変動低減)のフィルタ回路(LC回路であり、LCフィルタともいう)が形成される。例えば、コンデンサCND、及び、第1、第2インダクタIND1、IND2が組み合わされてローパスフィルタ(T型フィルタ)LPFtが形成され、ノイズ低減が行われ得る。具体的には、T型フィルタLPFtは、2つの直列インダクタIND1、IND2、及び、1つの並列コンデンサCNDにて構成される。該フィルタ構成によって、入出力間の結合が減少され、高調波の減衰性能(減衰帯域での減衰量)が向上され得る。また、ノイズ低減フィルタには、T型ローパスフィルタLPFtに代えて、前述のπ型ローパスフィルタLPFpが採用され得る。 Further, in order to stabilize the supplied power, the DRV includes a filter circuit (LC circuit) for reducing noise (reducing power fluctuation) by combining at least one capacitor (capacitor) and at least one inductor (coil). And also referred to as an LC filter). For example, the capacitor CND and the first and second inductors IND1 and IND2 are combined to form a low-pass filter (T-type filter) LPFt, and noise reduction can be performed. Specifically, the T-type filter LPFt includes two series inductors IND1 and IND2 and one parallel capacitor CND. With this filter configuration, coupling between input and output can be reduced, and harmonic attenuation performance (attenuation in the attenuation band) can be improved. In addition, the above-described π-type low-pass filter LPFp can be adopted as the noise reduction filter instead of the T-type low-pass filter LPFt.
<キャリパ内における電子部品(スイッチング素子S1等)の配置>
 次に、図5を参照しながら、ブレーキアクチュエータBRKのキャリパCPRにおける駆動回路DRVの電子部品(スイッチング素子S1等)の配置について説明する。ここで、DRVは、図3に示すブラシ付モータ、及び、π型ローパスフィルタLPFpが採用される場合に対応している。
<Arrangement of electronic components (such as switching element S1) in the caliper>
Next, the arrangement of the electronic components (switching element S1 and the like) of the drive circuit DRV in the caliper CPR of the brake actuator BRK will be described with reference to FIG. Here, DRV corresponds to the case where the brush motor shown in FIG. 3 and the π-type low-pass filter LPFp are employed.
 キャリパCRPは、第1、第2ガイド部材(スライドピン)GD1、GD2によって、マウント部材(マウンティングブラケット)MTBに取り付けられる。そして、ガイド部材GD1、GD2に沿って、キャリパCPRがスライド(GD1、GD2の軸方向に摺動)される。この構成の浮動キャリパは、所謂、リバース型(リバースピン型ともいう)と称呼される。電動制動装置では、電気モータMTR等の質量が大きい部材が車輪側に備えられる。リバース型浮動キャリパでは、質量の大きい部材が、ガイド部材の間に配置され得ることで、振動増幅が抑制され得る。さらに、リバース型浮動キャリパは、ガイド部材によるスライド部が回転部材(ブレーキディスク)KTBの外周に位置しないため、回転部材KTBの半径が大きくされ、制動効果が向上され得る。このため、ブレーキアクチュエータが、全体として小型化され得る。 The caliper CRP is attached to the mounting member (mounting bracket) MTB by the first and second guide members (slide pins) GD1 and GD2. Then, the caliper CPR is slid along the guide members GD1 and GD2 (sliding in the axial direction of GD1 and GD2). The floating caliper having this configuration is referred to as a so-called reverse type (also called a reverse pin type). In the electric braking device, a member having a large mass such as an electric motor MTR is provided on the wheel side. In the reverse type floating caliper, vibration amplification can be suppressed because a member having a large mass can be disposed between the guide members. Furthermore, since the slide part by a guide member is not located in the outer periphery of a rotation member (brake disc) KTB, the radius of the rotation member KTB can be enlarged and the braking effect can be improved. For this reason, the brake actuator can be reduced in size as a whole.
 第1、第2のピン用ボルトPB1、PB2によって、支持部材NKLに固定されたマウント部材MTBに、第1、第2のガイド部材(スライドピンであって、スリーブともいう)GD1、GD2が夫々取り付けられる。キャリパCPRは、第1、第2ガイド部材GD1及びGD2と隙間をもって勘合し、GD1及びGD2の軸方向Jgd1、Jgd2に摺動され得る。具体的には、CPRには、GD1、GD2と勘合する長穴(内径がGD1、GD2の外径よりも大きい)が設けられ、それらの中を第1、第2ガイド部材GD1、GD2が貫通している。第1、第2ガイド部材GD1、GD2は円筒形のスリーブであり、GD1、GD2の両端部が、マウント部材MTB、及び、第1、第2ピン用ボルトPB1、PB2の頭部に圧接している。即ち、GD1、GD2が、PB1、PB2に締め付けられることによって、片持ちの状態でマウント部材MTBに固定される。したがって、CPRは、GD1の軸Jgd1、及び、GD2の軸Jgd2(Jgd1と平行)の方向にスライドすることが可能である。換言すれば、キャリパCPRは、GD1及びGD2によって、スライド可能な状態でマウント部材MTBに取り付けられている。 The first and second guide members (slide pins, also referred to as sleeves) GD1 and GD2 are mounted on the mount member MTB fixed to the support member NKL by the first and second pin bolts PB1 and PB2, respectively. It is attached. The caliper CPR can be slid in the axial directions Jgd1 and Jgd2 of the GD1 and GD2 by fitting with the first and second guide members GD1 and GD2 with a gap. Specifically, the CPR is provided with elongated holes (the inner diameter is larger than the outer diameter of GD1 and GD2) for fitting with GD1 and GD2, through which the first and second guide members GD1 and GD2 penetrate. is doing. The first and second guide members GD1 and GD2 are cylindrical sleeves, and both ends of the GD1 and GD2 are pressed against the heads of the mount member MTB and the first and second pin bolts PB1 and PB2. Yes. That is, GD1 and GD2 are fastened to PB1 and PB2 to be fixed to the mount member MTB in a cantilever state. Therefore, the CPR can slide in the direction of the axis Jgd1 of GD1 and the axis Jgd2 of GD2 (parallel to Jgd1). In other words, the caliper CPR is attached to the mount member MTB in a slidable state by GD1 and GD2.
 駆動回路DRVの電子基板KBNがキャリパCPR内に固定され、この基板KBNに、スイッチング素子S1~S4、第1、第2コンデンサCND1、CND2、インダクタIND、及び、他の電子部品(マイクロプロセッサ、抵抗器等)が実装される(固定される)。第1ガイド部材GD1の両端を点A、点Bとし、第2ガイド部材GD2の両端を点C、点Dとする場合に、四角形(平面)A-B-D-Cが「ガイド面(ガイド四角形)Mgd」と称呼され、このガイド面Mgdに垂直な空間(四角柱)が、ガイド空間Kgdと称呼される。詳細には、点Aは、第1ガイド部材GD1の軸Jgd1と、GD1の一方の端面がマウント部材MTBに当接する面との交点である。点Bは、Jgd1と、GD1の他方の端面が第1ピン用ボルトPB1の頭部と当接する面との交点である。同様に、点Cは、第2ガイド部材GD2の軸Jgd2と、GD2の一方の端面がマウント部材MTBに当接する面との交点であり、点Dは、Jgd2と、GD2の他方の端面が第2ピン用ボルトPB2の頭部と当接する面との交点である。 The electronic substrate KBN of the drive circuit DRV is fixed in the caliper CPR, and the switching elements S1 to S4, the first and second capacitors CND1, CND2, the inductor IND, and other electronic components (microprocessor, resistor) Are mounted (fixed). When both ends of the first guide member GD1 are point A and point B, and both ends of the second guide member GD2 are point C and point D, the quadrangle (plane) A-B-D-C is "guide surface (guide (Rectangular) Mgd ”, and a space (square prism) perpendicular to the guide surface Mgd is referred to as a guide space Kgd. Specifically, the point A is an intersection between the axis Jgd1 of the first guide member GD1 and the surface where one end surface of the GD1 contacts the mount member MTB. Point B is the intersection of Jgd1 and the surface where the other end surface of GD1 contacts the head of first pin bolt PB1. Similarly, the point C is an intersection of the axis Jgd2 of the second guide member GD2 and the surface where one end surface of the GD2 contacts the mount member MTB, and the point D is Jgd2 and the other end surface of the GD2 is the first end surface. This is the intersection of the surface of the 2-pin bolt PB2 and the surface in contact with the head.
 スイッチング素子S1~S4は、電気モータMTRを駆動するためのHブリッジ回路を構成する。コンデンサCND1、CND2、及び、インダクタ(チョークコイル)INDは、MTRに電力供給するための安定化回路(電力変動の低減回路)を構成する。S1~S4、CND1、CND2、及び、INDは、他の電子部品に比較して、質量が相対的に大きい電子部品である。このため、これらの電子部品のうちで少なくとも1つが、キャリパCPRの内部であって、且つ、第1ガイド部材GD1、及び、第2ガイド部材GD2の間に形成されるガイド空間Kgd内に配置される(固定される)。換言すれば、ガイド面Mgd(GD1及びGD2の端点A、B、C、Dによって形成されるガイド四角形A-B-D-C)に垂直な方向から投影した場合(視点が無限遠に存在する平行投影における垂直投影の場合)、CPRに内蔵されるS1~S4、CND1、CND2、及び、INDのうちの少なくとも1つの電子部品が、ガイド面Mgdに投影される(即ち、ガイド面Mgdが、投影面と投影線とが垂直である場合の平行投影において、各電子部品の投影面とされる)。ここで、「投影」とは、物体に平行光線(投影線)を当てて、その影を平面上に映すことであり、その平面が「投影面」である。なお、スイッチング素子S1~S4は、放熱板が固定された場合に、特に、質量が増大され得る。 The switching elements S1 to S4 constitute an H bridge circuit for driving the electric motor MTR. Capacitors CND1, CND2 and inductor (choke coil) IND constitute a stabilization circuit (power fluctuation reduction circuit) for supplying power to MTR. S1 to S4, CND1, CND2, and IND are electronic components having a relatively large mass compared to other electronic components. For this reason, at least one of these electronic components is disposed inside the caliper CPR and in the guide space Kgd formed between the first guide member GD1 and the second guide member GD2. (Fixed). In other words, when projected from a direction perpendicular to the guide surface Mgd (guide quadrangle A-B-D-C formed by the end points A, B, C, and D of GD1 and GD2) (the viewpoint exists at infinity) In the case of vertical projection in parallel projection), at least one electronic component among S1 to S4, CND1, CND2, and IND incorporated in the CPR is projected onto the guide surface Mgd (that is, the guide surface Mgd is In parallel projection when the projection plane and the projection line are vertical, the projection plane of each electronic component is used). Here, “projection” means that a parallel ray (projection line) is applied to an object and its shadow is projected on a plane, and the plane is a “projection plane”. Note that the mass of the switching elements S1 to S4 can be increased particularly when the heat sink is fixed.
 ガイド面Mgdは、互いに平行なガイド部材(スライドピン)GD1及びGD2によって形成される面であり、キャリパCPRはMgdに沿ってスライドされる。路面振動の観点からは、GD1とGD2との間(即ち、ガイド空間Kgd)が、振動(特に、回転部材KTBの回転軸(車輪軸)Jktに垂直方向の振動に対する振動)が増幅され難い場所である。逆に、GD1又はGD2から、外側に離れていくと振動増幅が顕著となり得る。このため、比較的質量の大きい電子部品(スイッチング素子等)が、平行投影においてガイド面Mgdに投影されるように(即ち、ガイド空間Kgd内に)配置される。この結果、該電子部品が路面振動の観点から有利な場所に置かれるため、その信頼性が確保され得る。 The guide surface Mgd is a surface formed by mutually parallel guide members (slide pins) GD1 and GD2, and the caliper CPR is slid along the Mgd. From the viewpoint of road surface vibration, a place where GD1 and GD2 (that is, guide space Kgd) are difficult to amplify vibration (particularly vibration with respect to vibration perpendicular to the rotation axis (wheel axis) Jkt of rotating member KTB). It is. On the contrary, vibration amplification may become remarkable when it goes away from GD1 or GD2. For this reason, an electronic component (such as a switching element) having a relatively large mass is arranged so as to be projected onto the guide surface Mgd in parallel projection (that is, in the guide space Kgd). As a result, the electronic component is placed in an advantageous place from the viewpoint of road surface vibration, and thus its reliability can be ensured.
 キャリパCPRは、第1及び第2ガイド部材GD1、GD2と勘合して、KTBの軸Jkt方向にスライドするため、GD1の軸Jgd1とGD2の軸Jgd2とは平行であることが必要とされる。しかし、CPRの加工精度、及び、取り付け精度の関係上、Jgd1とJgd2との平行度合には誤差が含まれる。平面は、基本的に3つの点で定まるため、GD1とGD2との関係において、主従関係が設けられ得る。例えば、GD1が「主(メイン)」とされ、GD2が「従(サブ)」とされた場合を想定すると、メインガイド部材GD1が、サブガイド部材GD2よりも軸方向に長く設定される。また、GD1とCPRとの隙間(外径と孔径との隙間)が、GD2とCPRとの隙間よりも狭く設定され得る。さらに、GD1がMTBに対して両持ち構造とされ、GD2がMTBに対して片持ち構造とされ得る。CRPは、基本的にはメインガイド部材GD1に沿ってスライドされる。そして、ガイド面Mgdが形成されるように、サブガイド部材GD2によって、そのスライドの動きが補助される。この場合、Mgdにおいて、メインガイド部材GD1に近接するほど、振動的に有利な条件となる。 The caliper CPR is fitted with the first and second guide members GD1 and GD2 and slides in the KTB axis Jkt direction, so that the axis GD1 and the axis Jgd2 of GD2 are required to be parallel. However, an error is included in the degree of parallelism between Jgd1 and Jgd2 due to the relationship between CPR processing accuracy and mounting accuracy. Since the plane is basically determined by three points, a master-slave relationship can be provided in the relationship between GD1 and GD2. For example, assuming that GD1 is “main” and GD2 is “sub”, the main guide member GD1 is set longer in the axial direction than the sub guide member GD2. Further, the gap between GD1 and CPR (the gap between the outer diameter and the hole diameter) can be set narrower than the gap between GD2 and CPR. Furthermore, GD1 can be a cantilever structure with respect to MTB, and GD2 can be a cantilever structure with respect to MTB. The CRP is basically slid along the main guide member GD1. Then, the movement of the slide is assisted by the sub guide member GD2 so that the guide surface Mgd is formed. In this case, in MGD, the closer to the main guide member GD1, the more favorable the condition for vibration.
 第1、第2ガイド部材GD1及びGD2に対して、上述した主従関係が設けられる場合(GD1が主で、GD2が従である)には、S1~S4、CND1、CND2、及び、INDのうちの少なくとも1つの電子部品が、メインガイド部材GD1に近接して配置される。具体的には、該当部材(電子部品)が、シャフト部材の軸Jsf(押圧部材PSNの軸Jpsと同じ)に対して、メインガイド部材GD1の軸Jgd1に近い側に配置される。このとき、回転部材KTBの軸(車輪軸)Jkt、及び、シャフト部材SFTの軸(シャフト軸)Jsf(即ち、押圧部材PSNの軸(押圧軸)Jps)にて形成される平面によって区切られた(2つに分割された)ガイド面Mgdの一部分であってGD1に近い側(GD1を含む側)の面(四角形A-B-F-E)が、メインガイド面(メインガイド四角形)Mgdmとされる。そして、メインガイド面Mgdmに垂直な空間(四角柱)が、メインガイド空間Kgdmとされる。 When the above-described master-slave relationship is provided for the first and second guide members GD1 and GD2 (GD1 is the main and GD2 is the subordinate), S1 to S4, CND1, CND2, and IND The at least one electronic component is disposed in proximity to the main guide member GD1. Specifically, the corresponding member (electronic component) is arranged on the side closer to the axis Jgd1 of the main guide member GD1 with respect to the axis Jsf of the shaft member (same as the axis Jps of the pressing member PSN). At this time, it is delimited by a plane formed by the axis (wheel axis) Jkt of the rotating member KTB and the axis (shaft axis) Jsf of the shaft member SFT (that is, the axis (pressing axis) Jps of the pressing member PSN). A surface (rectangle A-B-F-E) that is a part of the guide surface Mgd (divided into two) and is close to GD1 (including GD1) is a main guide surface (main guide rectangle) Mgdm. Is done. A space (square prism) perpendicular to the main guide surface Mgdm is defined as a main guide space Kgdm.
 質量が相対的に大きい電子部品である、ブリッジ回路を形成するスイッチング素子S1~S4、供給電力の変動低減回路を形成する第1、第2コンデンサCND1、CND2、及び、インダクタ(チョークコイル)INDのうちで少なくとも1つが、キャリパCPRの内部であって、且つ、メインガイド空間Kgdm内に配置され得る。換言すれば、ガイド面Mgd(ガイド四角形A-B-D-C)に垂直な方向から投影した場合に、CPRの内部に固定されるS1~S4、CND1、CND2、及び、INDのうちの少なくとも1つの電子部品が、メインガイド面Mgdm(メインガイド四角形A-B-F-E)に投影される。即ち、シャフト軸Jktとシャフト軸Jsf(押圧軸Jps)とで形成される面によって、ガイド面Mgd(四角形A-B-D-C)は、2つの部分(四角形A-B-F-Eと、四角形E-F-D-C)に区画(分割)されるが、2つの部分のうちでメインガイド部材GD1を含む方の面であるメインガイド面Mgdm(メインガイド四角形A-B-F-E)が、該当する電子部品(S1等)の投影面とされる。 The switching elements S1 to S4 that form a bridge circuit, which are electronic components having a relatively large mass, the first and second capacitors CND1, CND2, and the inductor (choke coil) IND that form a fluctuation reduction circuit of the supplied power At least one of them can be arranged inside the caliper CPR and in the main guide space Kgdm. In other words, at least one of S1 to S4, CND1, CND2, and IND fixed inside the CPR when projected from a direction perpendicular to the guide surface Mgd (guide quadrangle ABCD-C). One electronic component is projected onto the main guide surface Mgdm (main guide rectangle A-B-F-E). In other words, the guide surface Mgd (square A-B-D-C) is divided into two parts (rectangle A-B-F-E) by the surface formed by the shaft axis Jkt and the shaft axis Jsf (pressing axis Jps). , Square E-F-D-C), which is divided (divided) into a main guide surface Mgdm (a main guide quadrangle A-B-F-, which is the surface of the two parts including the main guide member GD1). E) is a projection plane of the corresponding electronic component (S1 or the like).
 一方、質量が相対的に小さい抵抗器(レジスタ)R、小型コンデンサC、或いは、マイクロプロセッサMPCは、上述した振動的に有利な空間(Kgd、Kgdm)から外れて、キャリパCPR内に配置され得る。CPRに内蔵されるDRVにおいて、電子部品の質量に基づいて、レイアウト上の優先順位付けが行われ、質量が大きい電子部品が振動に有利な場所に優先的に配置され、質量が小さい電子部品は空いた場所に配置される。このため、車両走行中の路面凹凸に起因する振動に対して、振動が増幅されることが抑制され、制動手段BRKの信頼性が向上され得る。 On the other hand, the resistor (resistor) R, the small capacitor C, or the microprocessor MPC having a relatively small mass can be disposed in the caliper CPR by deviating from the above-described vibrationally advantageous spaces (Kgd, Kgdm). . In DRV built in CPR, prioritization in layout is performed based on the mass of electronic components, electronic components with large mass are preferentially arranged in a place advantageous for vibration, and electronic components with small mass are It is placed in a vacant place. For this reason, it is possible to suppress the vibration from being amplified with respect to the vibration caused by the road surface unevenness during traveling of the vehicle, and to improve the reliability of the braking means BRK.
 同様に、図4に示されるブラシレスモータ、及び、T型ローパスフィルタLPFtが採用される場合においても、スイッチング素子Z1~Z6は、MTRを駆動するための3相ブリッジ回路を構成し、コンデンサCND、及び、第1、第2インダクタ(チョークコイル)IND1、IND2は、MTRに電力供給するための安定化回路(電力変動低減回路)を構成するが、これらは質量が相対的に大きい電子部品である。このため、これらの電子部品のうちで少なくとも1つが、キャリパCPRの内部であって、且つ、ガイド空間Kgd内に配置され得る。換言すれば、ガイド面Mgd(GD1、GD2の端点で形成されるガイド四角形A-B-D-C)に垂直な方向から投影した場合、CPRの内部に固定されるZ1~Z6、CND、IND1、及び、IND2のうちの少なくとも1つの電子部品が、ガイド面Mgdに投影される。 Similarly, when the brushless motor shown in FIG. 4 and the T-type low-pass filter LPFt are employed, the switching elements Z1 to Z6 constitute a three-phase bridge circuit for driving the MTR, and the capacitors CND, The first and second inductors (choke coils) IND1 and IND2 constitute a stabilization circuit (power fluctuation reduction circuit) for supplying power to the MTR, but these are electronic components having a relatively large mass. . Therefore, at least one of these electronic components can be disposed inside the caliper CPR and in the guide space Kgd. In other words, Z1 to Z6, CND, IND1 fixed inside the CPR when projected from a direction perpendicular to the guide surface Mgd (guide quadrangle ABCD-C formed by the end points of GD1, GD2). , And at least one electronic component of IND2 is projected onto the guide surface Mgd.
 また、第1ガイド部材GD1がメイン(主)であり、第2ガイド部材GD2がサブ(従)である場合には、スイッチング素子Z1~Z6、コンデンサCND、及び、第1、第2インダクタ(チョークコイル)IND1、IND2のうちで少なくとも1つが、キャリパCPRの内部であって、ガイド空間Kgdmと重複する場所に配置され得る。ここで、メインガイド空間Kgdmは、JktとJsf(Jps)との形成面によって区切られた2つのガイド空間のうちで、メインガイド部材GD1を含む側のガイド空間Kgdである。GD1がメインガイド部材とされる条件は、「GD1がGD2よりも長いこと」、「GD1とCPRとの隙間がGD2とCPRとの隙間よりも狭いこと」、及び、「MTBに対して、GD1が両持ち構造で、GD2が片持ち構造であること」の3つの条件のうちの少なくとも1つが満足されることである。 When the first guide member GD1 is the main (main) and the second guide member GD2 is the sub (secondary), the switching elements Z1 to Z6, the capacitor CND, and the first and second inductors (choke) Coils) At least one of IND1 and IND2 may be disposed in the caliper CPR at a location overlapping the guide space Kgdm. Here, the main guide space Kgdm is the guide space Kgd on the side including the main guide member GD1 among the two guide spaces separated by the formation surface of Jkt and Jsf (Jps). The condition that GD1 is the main guide member is that “GD1 is longer than GD2”, “the gap between GD1 and CPR is narrower than the gap between GD2 and CPR”, and “GD1 with respect to MTB. That is, at least one of the three conditions that “is a double-supported structure and GD2 is a cantilever structure” is satisfied.
 なお、浮動キャリパには、ガイド部材(スライドピン)がキャリパに固定され、マウント部材(マウンティングブラケット)の中をスライドする構造を有するコレット型の浮動キャリパも存在する。このコレット型キャリパでは、ガイド部材が回転部材(ブレーキディスク)の外周部に設けられるため、上記のガイド空間Kgdが回転部材MTBと重なり合う。このため、ガイド部材GD1、GD2が回転部材KTBの側面に位置する(即ち、ガイド空間KgdがKTBの側面に形成される)リバース型浮動キャリパが採用され得る。 There are also collet-type floating calipers that have a structure in which a guide member (slide pin) is fixed to the caliper and slides in a mounting member (mounting bracket). In this collet type caliper, since the guide member is provided on the outer peripheral portion of the rotating member (brake disc), the guide space Kgd overlaps with the rotating member MTB. For this reason, a reverse floating caliper in which the guide members GD1 and GD2 are located on the side surface of the rotating member KTB (that is, the guide space Kgd is formed on the side surface of the KTB) can be employed.
<コネクタCNCの配置>
 次に、図6を参照しながら、コネクタCNCの配置について説明する。相対的に質量の大きい電子部品と同様に、コネクタCNCについても、上述した振動的に有利な空間(ガイド空間Kgd、Kgdm)、且つ、キャリパCPRの表面に配置(固定)され得る。ここで、コネクタ(Connector)とは、電子回路、通信等において、配線を接続するために用いられる電気的に連絡可能とする、接続器(中継部材)のことである。配線が、はんだ接着、又は、圧着等で接続される場合、配線の分断には、その切断が必要となり、再接続は困難となる。しかし、配線にコネクタが使用される場合、配線の分断が必要な際に、コネクタを介し、容易に繰り返し脱着することが可能となる。コネクタは、電気信号、及び、電力を伝える金属製端子(コンタクトピン)が、それらを取り囲む樹脂製絶縁体(インシュレータ)に固定されて構成される。コネクタでは、凸形状の雄側コネクタと、凹形状の雌側コネクタがペアとして用いられる。
<Arrangement of connector CNC>
Next, the arrangement of the connector CNC will be described with reference to FIG. Similarly to the electronic component having a relatively large mass, the connector CNC can be disposed (fixed) on the above-described space (guide spaces Kgd, Kgdm) that is advantageous in terms of vibration and on the surface of the caliper CPR. Here, the connector (Connector) is a connector (relay member) that can be electrically connected to connect wiring in an electronic circuit, communication, or the like. When the wiring is connected by solder bonding or crimping, the wiring needs to be cut to make the reconnection difficult. However, when a connector is used for the wiring, when the wiring needs to be divided, it can be easily and repeatedly attached and detached through the connector. The connector is configured by fixing an electric signal and a metal terminal (contact pin) for transmitting electric power to a resin insulator (insulator) surrounding them. In the connector, a convex male connector and a concave female connector are used as a pair.
 電気モータの駆動信号及び電力が、寄り合わされた複数の電源線PWL、信号線SGL、及び、コネクタCNCによって、電気モータの駆動手段DRVに伝達される。具体的には、車体に固定される電子制御ユニットECUの回路基板と、CPRに固定されるDRVの回路基板KBNとが、コネクタCNCを介して電気的・電子的に接続される。電気モータの駆動信号Imtは、ECU内部で生成されて、信号線(例えば、通信バスライン)SGLを介して、DRVに送信される。また、電気モータを駆動するための電力は、蓄電池BATから電子制御ユニットECUに供給され、ECUから電力線PWLを通して駆動回路DRVに供給される。 The drive signal and power of the electric motor are transmitted to the drive means DRV of the electric motor by the power supply line PWL, the signal line SGL, and the connector CNC that are close to each other. Specifically, the circuit board of the electronic control unit ECU fixed to the vehicle body and the circuit board KBN of the DRV fixed to the CPR are electrically and electronically connected via the connector CNC. The electric motor drive signal Imt is generated inside the ECU and transmitted to the DRV via a signal line (for example, a communication bus line) SGL. The electric power for driving the electric motor is supplied from the storage battery BAT to the electronic control unit ECU, and is supplied from the ECU to the drive circuit DRV through the power line PWL.
 コネクタCNCでは、特に、勘合部位(雌側コネクタと雄側コネクタとがはめ合わされる部分)、及び、配線(電力線PWL、信号線SGL)とコンタクトピンとの接合部位が、振動の影響を被り易い。このため、コネクタCNCは、キャリパCPRの表面であって、且つ、ガイド空間Kgd内に配置され得る。換言すれば、ガイド面Mgd(第1、第2ガイド部材GD1、GD2の端点で形成されるガイド四角形A-B-D-C)に垂直な方向から投影した場合、キャリパCPRの表面に固定されるコネクタCNCが、ガイド面Mgdに投影される。 In the connector CNC, in particular, the fitting portion (the portion where the female connector and the male connector are fitted) and the joint portion between the wiring (power line PWL, signal line SGL) and the contact pin are easily affected by vibration. For this reason, the connector CNC can be arranged on the surface of the caliper CPR and in the guide space Kgd. In other words, when projected from a direction perpendicular to the guide surface Mgd (guide quadrangle ABCD-C formed by the end points of the first and second guide members GD1, GD2), it is fixed to the surface of the caliper CPR. The connector CNC is projected onto the guide surface Mgd.
 また、第1ガイド部材GD1がメイン(主)であり、第2ガイド部材GD2がサブ(従)である場合には、コネクタCNCが、キャリパCPRの表面であって、メインガイド空間Kgdmと重複する場所に配置され得る。ここで、メインガイド空間Kgdmは、JktとJsf(Jps)との形成面によって区切られた2つのガイド空間のうちで、メインガイド部材GD1を含む側のガイド空間Kgdである。GD1がメインガイド部材とされる条件は、「GD1がGD2よりも長いこと」、「GD1とCPRとの隙間がGD2とCPRとの隙間よりも狭いこと」、及び、「MTBに対して、GD1が両持ち構造で、GD2が片持ち構造であること」の3つの条件のうちの少なくとも1つが満足されることである。 When the first guide member GD1 is the main (main) and the second guide member GD2 is the sub (secondary), the connector CNC is the surface of the caliper CPR and overlaps the main guide space Kgdm. Can be placed in place. Here, the main guide space Kgdm is the guide space Kgd on the side including the main guide member GD1 among the two guide spaces separated by the formation surface of Jkt and Jsf (Jps). The condition that GD1 is the main guide member is that “GD1 is longer than GD2”, “the gap between GD1 and CPR is narrower than the gap between GD2 and CPR”, and “GD1 with respect to MTB. That is, at least one of the three conditions that “is a double-supported structure and GD2 is a cantilever structure” is satisfied.
 コネクタCNCでは、配線における通電がコンタクトピンの接触(雄側ピンと雌側ピンのはめ合い)によって行われるため、この接触が振動によって緩む場合があり得る。さらに、電力を供給する電力線PWLでは、電流を流すために必要な断面積が必要となるため、或る程度太い配線が必要となる。このため、振動に起因する屈曲によって生じる曲げ疲労が配慮されなければならない。上述するように、コネクタCNCが、キャリパCPR表面において、振動的に有利な箇所(例えば、Kgd内)に固定されるため、コンタクトピンの接触、或いは、配線(特に、太さが必要とされる電力線PWL)の屈曲における振動影響が抑制され得る。 In the connector CNC, energization in the wiring is performed by contact of the contact pins (fitting of the male pin and the female pin), and this contact may be loosened by vibration. Furthermore, the power line PWL that supplies power requires a cross-sectional area that is necessary for flowing current, and thus requires a certain amount of wiring. For this reason, bending fatigue caused by bending due to vibration must be taken into consideration. As described above, since the connector CNC is fixed on the caliper CPR surface at a vibrationally advantageous place (for example, in Kgd), contact of the contact pin or wiring (particularly, thickness is required). The influence of vibration in the bending of the power line PWL) can be suppressed.
 ここで、電力線PWLが、信号線SGLとして用いられる電力線通信が採用され得る。電力線通信では、電気モータの駆動信号Imtが、電力線PWLに重畳して送信される。この場合、信号線SGLは省略され、配線は電力線PWLのみである。配線(PWL)が、CPR表面のCNCを中継して、CPR内のDRVに引き込まれる。 Here, power line communication in which the power line PWL is used as the signal line SGL can be adopted. In power line communication, an electric motor drive signal Imt is transmitted superimposed on the power line PWL. In this case, the signal line SGL is omitted, and the wiring is only the power line PWL. The wiring (PWL) is drawn into the DRV in the CPR through the CNC on the CPR surface.
<ガイド部材、シャフト軸Jsf(押圧軸Jps)、及び、モータ軸Jmtの位置関係>
 以上、相対的に質量が大きい電子部品(S1等)、及び、コネクタCNCの配置について説明した。次に、図7を参照しながら、電気モータMTR、及び、押圧部材PSNの配置(即ち、ガイド軸Jgd1、Jgd2、シャフト軸Jsf(押圧軸Jps)、及び、モータ軸Jmtの幾何的関係)について説明する。図7は、第1、第2ガイド部材(スライドピン)GD1、GD2、及び、第1、第2締結部材(例えば、ボルト)TK1、TK2によって取り付けられる、キャリパCPR、マウント部材MTB、支持部材NKL、及び、ハブベアリングユニットHBUを、回転部材KTBの回転軸Jktの方向に見た状態を示している。点Gが第1ガイド部材GD1の軸(第1ガイド軸)Jgd1、点Hが第2ガイド部材GD2の軸(第2ガイド軸)Jgd2に相当する。同様に、点Kが第1締結部材(第1締結ボルト)TK1の軸(第1締結軸)Jtk1、点Lが第2締結部材(第2締結ボルト)TK2の軸(第2締結軸)Jtk2に相当する。Jgd1(点H)とJgd2(点G)とを結ぶ直線H-Gが、ガイド面Mgdに相当する。
<Position relationship between guide member, shaft axis Jsf (pressing axis Jps), and motor axis Jmt>
The arrangement of the electronic parts (S1 and the like) having a relatively large mass and the connector CNC has been described above. Next, with reference to FIG. 7, the arrangement of the electric motor MTR and the pressing member PSN (that is, the geometric relationship between the guide shafts Jgd1, Jgd2, the shaft shaft Jsf (pressing shaft Jps), and the motor shaft Jmt). explain. FIG. 7 shows a caliper CPR, a mount member MTB, and a support member NKL that are attached by first and second guide members (slide pins) GD1 and GD2 and first and second fastening members (for example, bolts) TK1 and TK2. And the state which looked at the hub bearing unit HBU in the direction of the rotating shaft Jkt of the rotating member KTB is shown. The point G corresponds to the axis (first guide axis) Jgd1 of the first guide member GD1, and the point H corresponds to the axis (second guide axis) Jgd2 of the second guide member GD2. Similarly, the point K is the shaft (first fastening shaft) Jtk1 of the first fastening member (first fastening bolt) TK1, and the point L is the shaft (second fastening shaft) Jtk2 of the second fastening member (second fastening bolt) TK2. It corresponds to. A straight line HG connecting Jgd1 (point H) and Jgd2 (point G) corresponds to the guide surface Mgd.
 キャリパCPRは、マウント部材MTBにスライド可能な状態で固定されるが、MTBから車輪軸Jkt方向に離れるほど、車輪から加振される場合の振動影響が大きい。このため、電気モータ、減速機、回転・直動変換部材、ブレーキピストンを一列に配置する1軸構成は、軸方向に長くなるため採用されない。軸方向のサイズを短縮するため、電気モータMTRと押圧部材PSNとが異なる2つの軸(モータ軸Jmt、押圧軸Jps)で構成される2軸構成が採用される。ここで、減速機GSKの部分にて、2つの軸Jmt、Jsf(Jps)に分断され得る。制動手段BRKが、異なる2つの軸(Jmt、Jsf)で構成され、減速機GSKの部分が軸間(JmtとJsfとの間)に設けられるため、軸間距離djk(JmtとJsfとの距離)が長く設定され得る。この結果、減速機GSKの減速比が大きく設定され、小型の電気モータ(高速・低トルク型)が採用され得る。 The caliper CPR is fixed to the mount member MTB so as to be slidable. However, the farther the caliper CPR is from the MTB in the wheel axis Jkt direction, the greater the influence of vibration when the wheel is vibrated. For this reason, the single-axis configuration in which the electric motor, the speed reducer, the rotation / linear motion conversion member, and the brake piston are arranged in a row is not adopted because it becomes longer in the axial direction. In order to reduce the size in the axial direction, a two-axis configuration is adopted in which the electric motor MTR and the pressing member PSN are composed of two different shafts (motor shaft Jmt and pressing shaft Jps). Here, the shaft can be divided into two axes Jmt and Jsf (Jps) at the reduction gear GSK. Since the braking means BRK is composed of two different shafts (Jmt, Jsf) and the speed reducer GSK is provided between the shafts (between Jmt and Jsf), the inter-shaft distance djk (distance between Jmt and Jsf) ) Can be set longer. As a result, the reduction ratio of the reduction gear GSK is set large, and a small electric motor (high speed / low torque type) can be employed.
 マウント部材MTBは、支持部材(ナックル)NKLに第1締結部材(第1締結ボルト)TK1、及び、第2締結部材(第2締結ボルト)TK2にて固定される。このため、ガイド部材GD1、GD2、及び、締結部材TK1、TK2によって囲まれる領域(空間)が、車両が凸凹路を走行する際に、最も振動(特に、回転部材KTBの回転軸Jktの方向における振動)が増幅され難い。即ち、Jktの方向に平行投影した場合において、第1ガイド部材GD1の軸Jgd1、第2ガイド部材GD2の軸Jgd2、第1締結部材TK1の軸Jtk1、及び、第2締結部材TK2の軸Jtk2で、各軸に対して垂直に形成される面(締結面Mtkと称呼する)が、路面振動に対して有利な場所となる。回転部材KTBの回転軸Jktの方向に見た場合、締結面Mtk(締結四角形G-H-L-K)の内側が、振動増幅され難い領域(空間)である。なお、Jkt、Jgd1、Jgd2、Jtk1、及び、Jtk2は、夫々が平行である。 The mount member MTB is fixed to the support member (knuckle) NKL with a first fastening member (first fastening bolt) TK1 and a second fastening member (second fastening bolt) TK2. For this reason, the region (space) surrounded by the guide members GD1 and GD2 and the fastening members TK1 and TK2 is most vibrated (particularly in the direction of the rotation axis Jkt of the rotating member KTB) when the vehicle travels on the uneven road. Vibration) is difficult to amplify. That is, in the case of parallel projection in the direction of Jkt, the axis Jgd1 of the first guide member GD1, the axis Jgd2 of the second guide member GD2, the axis Jtk1 of the first fastening member TK1, and the axis Jtk2 of the second fastening member TK2. A surface (referred to as a fastening surface Mtk) formed perpendicular to each axis is an advantageous place for road surface vibration. When viewed in the direction of the rotation axis Jkt of the rotating member KTB, the inside of the fastening surface Mtk (fastening square G-HL-K) is a region (space) in which vibration is not easily amplified. Note that Jkt, Jgd1, Jgd2, Jtk1, and Jtk2 are parallel to each other.
 押圧部材PSNの軸Jps(即ち、シャフト部材SFTの軸Jsf)が、GD1の軸Jgd1、及び、GD2の軸Jgd2を結ぶ平面(即ち、Mgd)の中央に配置される。PSNの軸Jps(即ち、SFTの軸Jsf)が、Jgd1とJgd2との中央に配置されるため、MSBがKTBに対して均一に押し付けられ得る。そして、電気モータMTRの回転軸(モータ軸)Jmtが、締結面Mtkと直交するように、MTRがCPRに固定される。したがって、MTRがブラシ付モータの場合、電気モータMTRを構成するブラシBLC、及び、整流子CMTが、Jkt方向から見た場合に、締結面Mtkに投影される。また、位置取得手段(回転角検出手段)MKAが、モータ軸Jmtまわりに配置される。したがって、位置取得手段MKAが、Jkt方向から見た場合に、締結面Mtkに投影される。 The axis Jps of the pressing member PSN (that is, the axis Jsf of the shaft member SFT) is arranged at the center of the plane (that is, Mgd) that connects the axis Jgd1 of GD1 and the axis Jgd2 of GD2. Since the PSN axis Jps (that is, the SFT axis Jsf) is arranged at the center of Jgd1 and Jgd2, the MSB can be uniformly pressed against the KTB. Then, the MTR is fixed to the CPR so that the rotation shaft (motor shaft) Jmt of the electric motor MTR is orthogonal to the fastening surface Mtk. Therefore, when the MTR is a motor with a brush, the brush BLC and the commutator CMT constituting the electric motor MTR are projected onto the fastening surface Mtk when viewed from the Jkt direction. A position acquisition means (rotation angle detection means) MKA is arranged around the motor shaft Jmt. Therefore, when the position acquisition means MKA is seen from the Jkt direction, it is projected on the fastening surface Mtk.
 電気モータMTRのブラシBLCが、ばね(スプリング)によって、整流子(定期的に電流の方向を交替させる回転スイッチ)CMTに押し付けられながら摺動回転する(図3を参照)。振動によってブラシBLCが整流子CMTと離れないように、ばね力が増加される(ばね定数が大きいばねが採用される)と、摺動抵抗が増加され、トルク損失が増大され得る。このため、BLC及びCMTの位置が、振動増幅され難い場所とされる。車両走行中の路面振動によって、信頼性低下、及び、ノイズ影響が懸念され得るため、MKAについても振動増幅され難い場所に設置され得る。 The brush BLC of the electric motor MTR is slid and rotated while being pressed against a commutator (a rotary switch that periodically changes the direction of current) CMT by a spring (see FIG. 3). When the spring force is increased so that the brush BLC is not separated from the commutator CMT by vibration (a spring having a large spring constant is employed), the sliding resistance is increased and the torque loss can be increased. For this reason, the positions of BLC and CMT are places where vibration amplification is difficult. Since road surface vibration while the vehicle is running may be concerned about reliability degradation and noise effects, the MKA can also be installed in a place where vibration amplification is difficult.
 以下、各軸の位置的な関係をまとめる。先ず、シャフト軸(SFTの軸)Jsf、押圧軸(PSNの軸)Jps、モータ軸(MTRの軸)Jmt、車輪軸(WHLの軸であって、回転部材KTBの軸)Jkt、第1ガイド軸(第1ガイド部材GD1の軸)Jgd1、第2ガイド軸(第2ガイド部材GD2の軸)Jgd2、第1締結軸(第1締結部材TK1の軸)Jtk1、及び、第2締結軸(第2締結部材TK2の軸)Jtk2は、互いに平行である。また、シャフト軸Jsfと、押圧軸Jpsとは同軸である。Jgd1、Jgd2、及び、Jsf(Jps)は、同一平面上(ガイド面Mgd上)にあり、Jgd1とJsf(Jps)との距離、及び、Jgd2とJsf(Jps)との距離が等しくされる。即ち、Jsf(Jps)は、Jgd1とJgd2との中央にある。 The following summarizes the positional relationship of each axis. First, the shaft axis (SFT axis) Jsf, the pressing axis (PSN axis) Jps, the motor axis (MTR axis) Jmt, the wheel axis (WHL axis, the axis of the rotating member KTB) Jkt, the first guide Axis (axis of first guide member GD1) Jgd1, second guide axis (axis of second guide member GD2) Jgd2, first fastening axis (axis of first fastening member TK1) Jtk1, and second fastening axis (first 2) The axes of the fastening members TK2) Jtk2 are parallel to each other. The shaft axis Jsf and the pressing axis Jps are coaxial. Jgd1, Jgd2, and Jsf (Jps) are on the same plane (on the guide surface Mgd), and the distance between Jgd1 and Jsf (Jps) and the distance between Jgd2 and Jsf (Jps) are made equal. That is, Jsf (Jps) is at the center of Jgd1 and Jgd2.
 電気モータの回転軸(モータ軸)Jmtは、締結面Mtkに直行し(四角形G-H-L-Kに垂直な空間に含まれ)、Jsf(Jps)よりもJktに近づいて(即ち、ガイド面Mgdに対してJkt側に)配置される。また、Jmtは、少なくともMTRの半径に相当する距離だけ、Jgd1(又は、Jgd2)から離れて配置される。そして、Jsf(Jps)とJmtとの間の距離(軸間距離djk)が、押圧部材PSN、及び、第1ガイド部材GD1と干渉しないように、可能な限り長く設定され得る。この結果、MTRからSFTへの動力伝達において、減速機GSKの減速比が大きく設定され、MTRが小型化され得る。 The rotating shaft (motor shaft) Jmt of the electric motor is orthogonal to the fastening surface Mtk (included in a space perpendicular to the square GHLK) and is closer to Jkt than Jsf (Jps) (that is, the guide). (On the Jkt side with respect to the surface Mgd). Further, Jmt is arranged away from Jgd1 (or Jgd2) by a distance corresponding to at least the radius of MTR. The distance between Jsf (Jps) and Jmt (interaxial distance djk) can be set as long as possible so as not to interfere with the pressing member PSN and the first guide member GD1. As a result, in the power transmission from the MTR to the SFT, the reduction ratio of the reduction gear GSK is set large, and the MTR can be downsized.
 第1ガイド軸Jgd1方向(Jkt方向等)に見た場合に、駆動手段DRVの回路基板KBN1が、締結面Mtk内に投影される。同様に、Jgd1方向に見た場合に、駆動回路DRVの基板KBN1に実装(固定)されている比較的質量の大きい電子部品(スイッチング素子S1乃至S4、Z1乃至Z6、電圧変動低減回路におけるコンデンサCND、CND1、CND2、及び、インダクタIND、IND1、IND2、)のうちの少なくとも1つが、締結面Mtkの内側に投影される。さらに、Jgd1方向に見た場合に、コネクタCNCが、Mtk内に投影される。 When viewed in the first guide axis Jgd1 direction (Jkt direction or the like), the circuit board KBN1 of the driving means DRV is projected into the fastening surface Mtk. Similarly, when viewed in the Jgd1 direction, electronic components with relatively large mass (switching elements S1 to S4, Z1 to Z6, capacitors CND in the voltage fluctuation reduction circuit) mounted (fixed) on the substrate KBN1 of the drive circuit DRV. , CND1, CND2, and inductors IND, IND1, IND2, etc.) are projected inside the fastening surface Mtk. Further, when viewed in the Jgd1 direction, the connector CNC is projected into Mtk.
 第1ガイド軸Jgd1方向(即ち、Jkt方向等)から見た場合に、締結面Mtkに投影される空間(四角柱、締結空間Ktkと称呼する)内に、MTRの回転軸Jmtが収められるように配置される。2軸の構成によって、ブレーキアクチュエータ全体が軸方向に短縮されるとともに、MTRの概ね全体(特に、モータブラシBLC、モータ整流子CMT)、回転角取得手段MKAが締結空間Ktkの内部に位置される。このため、これらの構成要素に対する、路面からの振動影響が抑制され得る。また、質量の大きい電子部品(IND等)、及び、コネクタCNCも併せて、締結空間Ktk内に収められるため、振動影響が低減されて、信頼性が向上され得る。 When viewed from the first guide axis Jgd1 direction (that is, the Jkt direction or the like), the rotation axis Jmt of the MTR is accommodated in a space projected on the fastening surface Mtk (referred to as a square pillar, the fastening space Ktk). Placed in. With the two-axis configuration, the entire brake actuator is shortened in the axial direction, and substantially the entire MTR (particularly, the motor brush BLC and the motor commutator CMT) and the rotation angle acquisition means MKA are positioned inside the fastening space Ktk. . For this reason, the vibration influence from the road surface with respect to these components can be suppressed. In addition, since the electronic component (such as IND) having a large mass and the connector CNC are also housed in the fastening space Ktk, the influence of vibration can be reduced and the reliability can be improved.
 さらに、第1ガイド部材GD1、及び、第2ガイド部材GD2の間で、上記の主従関係(メインガイド部材GD1と、サブガイド部材GD2とによる構成)がある場合に、Jgd1方向(Jkt方向)から見る場合に、上記の構成要素(BLC、CMT、MKA、CNC、S1等、IND等、CND等)が、メインガイド部材GD1の側の締結面Mtkmに投影され得る。具体的には、締結面Mtkは、Jsf(即ち、Jps)とJktとで形成される平面(Mtk上でJsf(Jps)及びJktと交わる直線Sghを含む平面)によって区切られる(2つに分割される)が、メイン締結面Mtkmは、この区切られたMtkの一方側の部分であって、メインガイド軸Jgd1(メインガイド部材GD1の軸)を含む側の平面(直線Sghで区画される四角形G-M-N-K)である。この平面(メイン締結面)Mtkmに垂直な直線の集合体(四角柱)が、メイン締結空間Ktkmと称呼される。モータ軸Jmtが、メイン締結面Ktkm内に配置されるため、モータブラシBLC、モータ整流子CMT、位置取得手段MKAが、併せてKtkmの内部に配置され得る。また、MTRを駆動するためのスイッチング素子(例えば、S1~S4)、電圧変動を抑制するためのインダクタ(コイル)IND等、キャパシタ(コンデンサ)CND等のうちの少なくとも1つが、メイン締結面Ktkmの内部に配置される。電子制御ユニットECUから駆動回路DRVに駆動信号、及び、電力を供給する配線のコネクタが、メイン締結面Ktkm内に配置され得る。 Furthermore, when there is the above-mentioned master-slave relationship (configuration with the main guide member GD1 and the sub guide member GD2) between the first guide member GD1 and the second guide member GD2, from the Jgd1 direction (Jkt direction). When viewed, the above components (BLC, CMT, MKA, CNC, S1, etc., IND, etc., CND, etc.) can be projected onto the fastening surface Mtkm on the main guide member GD1 side. Specifically, the fastening surface Mtk is divided (divided into two parts) by a plane formed by Jsf (that is, Jps) and Jkt (a plane including a straight line Sgh intersecting Jsf (Jps) and Jkt on Mtk). However, the main fastening surface Mtkm is a portion on one side of the divided Mtk and is a quadrangle defined by a plane (straight line Sgh) including the main guide shaft Jgd1 (the shaft of the main guide member GD1). G-M-N-K). A set of straight lines (quadrangular prisms) perpendicular to the plane (main fastening surface) Mtkm is referred to as a main fastening space Ktkm. Since the motor shaft Jmt is disposed within the main fastening surface Ktkm, the motor brush BLC, the motor commutator CMT, and the position acquisition means MKA can be disposed together within Ktkm. In addition, at least one of switching elements (for example, S1 to S4) for driving the MTR, an inductor (coil) IND for suppressing voltage fluctuation, a capacitor (capacitor) CND, and the like is provided on the main fastening surface Ktkm. Arranged inside. A connector for wiring for supplying a drive signal and electric power from the electronic control unit ECU to the drive circuit DRV can be arranged in the main fastening surface Ktkm.
 2つのガイド部材(スライドピン)に長短等があって、メイン・サブの関係が設けられる場合には、メインガイド部材GD1に近接する位置ほど、振動影響が小さい。したがって、メインガイド部材GD1の側のメイン締結空間Ktkmの内部に上記の構成要素が配置される(即ち、Jgd1方向に見た場合に、該構成要素がMtkmに投影される)ため、車両走行中の路面振動の影響が低減され得る。 When the two guide members (slide pins) are long and short and have a main / sub relationship, the closer to the main guide member GD1, the smaller the influence of vibration. Therefore, since the above-described components are arranged inside the main fastening space Ktkm on the main guide member GD1 side (that is, the components are projected onto Mtkm when viewed in the Jgd1 direction), the vehicle is traveling. The influence of road surface vibration can be reduced.
 なお、全ての構成要素が締結空間Ktk内に配置されるには、場所的な制限がある。押圧軸(ピストンPSNの軸)Jpsとモータ軸Jmtとの軸間距離djkが最大限に確保されて、ブレーキアクチュエータBRKが小型にされるため、Jmtの締結空間Ktk(又は、メイン締結空間Ktkm)内への配置が優先され得る。この場合、駆動回路DRVの基板KBN2が、締結空間Ktkからは外れて、ガイド面Mgdに対して、車輪軸Jktとは反対側に配置され得る。しかしながら、電子基板KBN2は、JktとJps(Jsf)との形成面(線分Sghで示す)に対して、メインガイド部材GD1に近い側に配置され得る。KBN2は、Jps(Jsf)とJgd1とに挟まれる場所に配置され得る。この場合、KBN2に実装される電子部品(比較的質量の大きいノイズ低減回路のコンデンサCND、CND1、CND2、インダクタIND、IND1、IND2、及び、スイッチング素子S1乃至S4、Z1乃至Z6のうちの少なくとも1つ)が、GD1に近い側(メインガイド空間Kgdmの内部)に配置される。また、コネクタCNCが、メイン締結空間Ktkmとは反対側の締結空間Ktkの内部に配置される。 In addition, there is a place restriction for all the components to be arranged in the fastening space Ktk. Since the inter-axis distance djk between the pressing shaft (piston PSN) Jps and the motor shaft Jmt is secured to the maximum and the brake actuator BRK is reduced in size, the Jmt fastening space Ktk (or the main fastening space Ktkm) Inward placement may be prioritized. In this case, the substrate KBN2 of the drive circuit DRV can be disposed away from the fastening space Ktk and disposed on the opposite side of the wheel shaft Jkt with respect to the guide surface Mgd. However, the electronic substrate KBN2 can be disposed on the side closer to the main guide member GD1 with respect to the formation surface (indicated by the line segment Sgh) of Jkt and Jps (Jsf). KBN2 can be placed at a location between Jps (Jsf) and Jgd1. In this case, electronic components mounted on KBN2 (capacitors CND, CND1, CND2 of a relatively large mass noise reduction circuit, inductors IND, IND1, IND2, and at least one of switching elements S1 to S4, Z1 to Z6) Are arranged on the side close to GD1 (inside the main guide space Kgdm). Further, the connector CNC is disposed inside the fastening space Ktk on the opposite side to the main fastening space Ktkm.
 また、モータ軸Jmtがメイン締結空間Ktkmとは反対側の締結空間Ktk(JktとJpsとの形成面で区切られたGD2を含む側のKtk)の内部に配置され、ノイズ低減回路のコンデンサCND、CND1、CND2、インダクタIND、IND1、IND2、スイッチング素子S1乃至S4、Z1乃至Z6、及び、コネクタCNCのうちの少なくとも1つが、メイン締結空間Ktkmの内部に配置され得る。各構成要素の配置は、それらの振動影響に対する優先順位に因る。 Further, the motor shaft Jmt is disposed inside the fastening space Ktk on the side opposite to the main fastening space Ktkm (Ktk on the side including GD2 separated by the formation surface of Jkt and Jps), and the capacitor CND of the noise reduction circuit, At least one of CND1, CND2, inductors IND, IND1, IND2, switching elements S1 to S4, Z1 to Z6, and connector CNC may be disposed in the main fastening space Ktkm. The arrangement of each component depends on the priority for their vibration effects.
<押圧力取得手段、位置取得手段、及び、モータブラシの配置>
 次に、図8を参照しながら、押圧力取得手段FBA、位置取得手段MKA、及び、モータブラシBLCの配置について説明する。これらの構成要素についても、上述した電子部品と同様に、振動的に有利な空間(Kgd、Kgdm)の内部、且つ、キャリパCPRの内部に配置(固定)される。
<Arrangement of pressing force acquisition means, position acquisition means, and motor brush>
Next, the arrangement of the pressing force acquisition unit FBA, the position acquisition unit MKA, and the motor brush BLC will be described with reference to FIG. These components are also arranged (fixed) inside the space (Kgd, Kgdm) advantageous in terms of vibration and inside the caliper CPR, similarly to the electronic component described above.
 センサ(検出手段)は、振動に対して脆弱である要素を含むものがあり、また、振動によるノイズ影響も懸念され得る。このため、ガイド面Mgdの垂直方向に見る場合に、FBA、及び/又は、MKAが、ガイド面Mgd(特に、ガイド部材に主従が存在する場合の主ガイド部材GD1側のガイド面Mgdm)に投影される。即ち、FBA、MKAの位置が、ガイド空間Kgd(又は、主ガイド空間Kgdm)の内部に設定され得る。これらが、振動的に有利な場所(空間)に配置されるため、車両走行中の路面振動に対する懸念が解消され得る。 Some sensors (detecting means) include elements that are vulnerable to vibrations, and noise effects due to vibrations may also be a concern. For this reason, when viewed in the direction perpendicular to the guide surface Mgd, FBA and / or MKA are projected onto the guide surface Mgd (particularly, the guide surface Mgdm on the main guide member GD1 side when the guide member has a master-slave). Is done. That is, the positions of the FBA and MKA can be set inside the guide space Kgd (or the main guide space Kgdm). Since these are disposed in a place (space) that is advantageous in terms of vibration, the concern about road surface vibration during vehicle travel can be eliminated.
 また、電気モータMTRとしてブラシ付モータが採用される場合において、モータブラシBLC、及び、モータ整流子CMTが、ガイド空間Kgd(又は、主ガイド空間Kgdm)の内部に配置されて、それらの位置は、ガイド面Mgd(又は、主ガイド面Mgdm)に投影される。ブラシ付モータでは、ばね(弾性体)によって、モータブラシBLCが整流子CMTに押し付けられながら摺動する。BLCとCMTとの接触状態が、振動に対して維持されるには、ばね定数を大きく設定することが必要となる。BLC及びCMTが適切な位置に配置されることによって、ばね定数の増加が抑制され、摺動抵抗の増大が防止され得る。 When a motor with a brush is employed as the electric motor MTR, the motor brush BLC and the motor commutator CMT are disposed in the guide space Kgd (or the main guide space Kgdm), and their positions are , Projected onto the guide surface Mgd (or the main guide surface Mgdm). In the motor with a brush, the motor brush BLC slides while being pressed against the commutator CMT by a spring (elastic body). In order to maintain the contact state between BLC and CMT against vibration, it is necessary to set a large spring constant. By arranging BLC and CMT at appropriate positions, an increase in spring constant can be suppressed and an increase in sliding resistance can be prevented.
<作用・効果>
 以下、本発明の実施形態の作用・効果について、図9、及び、図10を参照しながら説明する。
<Action and effect>
Hereinafter, the operation and effect of the embodiment of the present invention will be described with reference to FIGS. 9 and 10.
 制動手段BRKは、動力源である電気モータMTRの回転軸Jmtと、MSBを押圧するPSNの軸(押圧軸Jps)とが、別々の軸で構成される、所謂、2軸構成である。MTRの回転動力が減速されて、SFTに伝達され、さらに、NJBにて回転・直動変換され、PSNがMSBをKTBに押し付ける。したがって、PSNの軸Jpsと、SFTの回転軸Jsfとは同一軸である。 The braking means BRK has a so-called two-axis configuration in which the rotation axis Jmt of the electric motor MTR that is a power source and the PSN axis (pressing axis Jps) that presses the MSB are configured as separate axes. The rotational power of the MTR is decelerated, transmitted to the SFT, and further rotated / linearly converted by the NJB, and the PSN presses the MSB against the KTB. Therefore, the PSN axis Jps and the SFT rotation axis Jsf are the same axis.
 電気モータMTRは、浮動型キャリパCPRに固定される。CPRには、MTRを駆動するための駆動回路DRVが内蔵される(内部に固定される)。駆動回路DRVには、MTRを駆動するため、スイッチング素子によってブリッジ回路が形成される。また、駆動回路DRVには、MTRへの供給電力を安定化(変動低減)するため、インダクタ、及び、コンデンサによってローパスフィルタ回路が形成される。駆動回路DRVへの電力、及び、電気モータMTRの駆動信号は、車体に固定される電子制御ユニットECUから、コネクタCNCを通して供給される。 The electric motor MTR is fixed to the floating caliper CPR. The CPR includes a drive circuit DRV for driving the MTR (fixed inside). In the drive circuit DRV, a bridge circuit is formed by a switching element in order to drive the MTR. Further, in the drive circuit DRV, a low-pass filter circuit is formed by an inductor and a capacitor in order to stabilize (variation reduction) the power supplied to the MTR. The power to the drive circuit DRV and the drive signal for the electric motor MTR are supplied from the electronic control unit ECU fixed to the vehicle body through the connector CNC.
 電気モータMTRの回転軸(Jmt)のまわりには、位置取得手段(例えば、回転角センサ)MKAが設けられる。MKAによって、電気モータMTRの実際の位置(回転角)Mkaが検出される。MTRがブラシレスモータの場合には、Mkaによってスイッチング素子が同期されて、MTRが駆動される。一方、MTRがブラシ付モータの場合には、機械的な整流子CMT、及び、ブラシBLCが設けられる。シャフト軸Jsf(押圧軸Jpsと同心)のまわりには、摩擦部材MSBが回転部材KTBを押す力である押圧力Fbaを検出するための押圧力取得手段(例えば、推力センサ)FBAが設けられる。 A position acquisition means (for example, a rotation angle sensor) MKA is provided around the rotation axis (Jmt) of the electric motor MTR. The actual position (rotation angle) Mka of the electric motor MTR is detected by the MKA. When the MTR is a brushless motor, the switching element is synchronized by Mka, and the MTR is driven. On the other hand, when the MTR is a motor with a brush, a mechanical commutator CMT and a brush BLC are provided. Around the shaft axis Jsf (concentric with the pressing axis Jps), a pressing force acquisition means (for example, a thrust sensor) FBA for detecting a pressing force Fba that is a force by which the friction member MSB presses the rotating member KTB is provided.
 図9は、第1、第2ガイド部材GD1、GD2で形成されるガイド面Mgd(ガイド四角形A-B-D-C)、及び、該平面に垂直なガイド空間Kgdを示している。ここで、四角形A-B-D-C(ガイド面Mgd)の4隅の各点は、夫々、第1ガイド部材GD1の両端(点A、点B)、第2ガイド部材GD2の両端(点C、点D)である。具体的には、点Aは、GD1の一方の端面がマウント部材MTBに当接する面と、第1ガイド部材GD1の軸(第1ガイド軸)Jgd1との交点であり、点Bは、GD1の他方の端面が第1ピン用ボルトPB1の頭部と当接する面と、第1ガイド軸Jgd1との交点である。同様に、点Cは、GD2の一方の端面がマウント部材MTBに当接する面と、第2ガイド部材GD2の軸(第2ガイド軸)Jgd2との交点であり、点Dは、GD2の他方の端面が第2ピン用ボルトPB2の頭部と当接する面と、第2ガイド軸Jgd2との交点である。CPRは、GD1及びGD2によってMTBに取り付けられるため、Mgdに近接する位置ほど、車両走行時の路面凹凸振動の影響を受け難い。ここで、路面振動はランダムな方向(任意方向)に入力されるが、この場合、「ZAの矢印」で示す方向(車輪軸Jktに垂直な方向)の振動影響が、特に、問題とされる。 FIG. 9 shows a guide surface Mgd (guide quadrangle ABCD-C) formed by the first and second guide members GD1 and GD2, and a guide space Kgd perpendicular to the plane. Here, each of the four corners of the quadrangle A-B-D-C (guide surface Mgd) is respectively the both ends (point A, point B) of the first guide member GD1 and the both ends (points) of the second guide member GD2. C, point D). Specifically, the point A is an intersection of the surface where one end surface of the GD1 is in contact with the mount member MTB and the axis (first guide axis) Jgd1 of the first guide member GD1, and the point B is the point of the GD1. The other end surface is an intersection of the surface that contacts the head of the first pin bolt PB1 and the first guide shaft Jgd1. Similarly, point C is the intersection of the surface of one end surface of GD2 that contacts the mount member MTB and the axis (second guide axis) Jgd2 of the second guide member GD2, and point D is the other point of GD2. The end surface of the second pin bolt PB2 is a point of contact with the head and the second guide shaft Jgd2. Since the CPR is attached to the MTB by the GD1 and the GD2, the position closer to the Mgd is less susceptible to road surface uneven vibration during vehicle travel. Here, the road surface vibration is input in a random direction (arbitrary direction). In this case, the vibration effect in the direction indicated by the “ZA arrow” (direction perpendicular to the wheel axis Jkt) is particularly problematic. .
 車両走行中の路面からの振動影響(特に、Jktに垂直なZA方向)が抑制され得る場所が、ガイド空間Kgdである。Kgdの内部に、耐振動性が要求されるBRKの構成要素が設けられる。Kgdは、Mgdに垂直な直線の集合体であるため、これらの構成要素は、Mgdに垂直な方向から見た場合に、Mgdに投影される。ここで、投影とは、物体に平行光線(投影線)を照射し、その物体の影を平面上に映すことである。したがって、Kgd内に設けられる構成要素に対して、平行投影(視点が無限遠に存在する投影)が行われる場合に、ガイド面Mgdが投影面(投影線の垂直面)とされる。 A place where the influence of vibration from the road surface during traveling of the vehicle (particularly, the ZA direction perpendicular to Jkt) can be suppressed is the guide space Kgd. The components of BRK that require vibration resistance are provided inside Kgd. Since Kgd is an aggregate of straight lines perpendicular to Mgd, these components are projected onto Mgd when viewed from a direction perpendicular to Mgd. Here, the projection is to irradiate an object with parallel rays (projection lines) and project the shadow of the object on a plane. Therefore, when parallel projection (projection where the viewpoint exists at infinity) is performed on the components provided in Kgd, the guide surface Mgd is a projection surface (a vertical surface of the projection line).
 以下、ガイド空間Kgdの内部に配置され得るBRKの構成要素が列挙される。ここで、「ガイド空間Kgd(又は、Kgdm)の内部に配置されること」は、ガイド面Mgd(又は、Mgdm)に対して垂直方向(ZV1又はZV2)から見たときに、「ガイド面Mgd(又は、Mgdm)の内部に位置すること」、及び、「ガイド面Mgd(又は、Mgdm)が投影面となること」と等しい。 Hereinafter, the components of BRK that can be arranged inside the guide space Kgd are listed. Here, “arranged in the guide space Kgd (or Kgdm)” means “guide surface Mgd when viewed from the direction (ZV1 or ZV2) perpendicular to the guide surface Mgd (or Mgdm)”. (Or be positioned inside (or Mgdm)) and “the guide surface Mgd (or Mgdm) becomes the projection surface”.
 耐振動の要求がある構成要素は、CPR内に固定されるDRVの回路基板KBNに実装(固定)される電子部品において、相対的に重量の大きいものである。具体的には、MTRの駆動ブリッジ回路のスイッチング素子(放熱板付の場合、特に、重量が大きい)、電源ノイズ低減回路のインダクタ、及び、コンデンサである。同一加速度であっても、質量が大きい場合には、慣性力が大きい。さらに、電子部品は、回路基板に導体(導線)の部分で固定されるため、前記の慣性力がこの部分に集中する。したがって、CPR内に固定される、これら電子部品のうちの少なくとも1つが、Kgdの内部に配置されることによって、耐振動性が向上され得る。 Components that require vibration resistance are relatively heavy in electronic components mounted (fixed) on a DRV circuit board KBN that is fixed in the CPR. Specifically, the switching elements of the drive bridge circuit of the MTR (particularly heavy when the heat sink is provided), the inductor and the capacitor of the power supply noise reduction circuit. Even with the same acceleration, if the mass is large, the inertial force is large. Further, since the electronic component is fixed to the circuit board at the conductor (conductive wire) portion, the inertial force is concentrated on this portion. Therefore, vibration resistance can be improved by arranging at least one of these electronic components fixed in the CPR inside the Kgd.
 加えて、耐振動の要求が高い構成要素は、CPRの表面に固定されるコネクタCNCである。電気モータMTRの駆動回路DRVには、電子制御ユニットECUから、電力線PWLを通して電力が、信号線SGL(例えば、通信バス)を通して駆動信号が伝達される。PWL及びSGLは、コネクタCNCによって中継されている。具体的には、PWL及びSGLは、分断され、CNCの内部でコンタクトピン(凹凸ピンのはめ合わせ)によって接合される。過大な振動が加えられると、コンタクトピンに緩みが発生し得る。さらに、電力線PWLには、大電流が通電されるため、所定の断面積が必要となるが、振動に対する屈曲性、及び、疲労強度が要求される。キャリパCPR上に固定されるコネクタCNCが、ガイド空間Kgdの内部に配置されることによって、これら課題が解消され、耐振動性が向上され得る。 In addition, a component having a high demand for vibration resistance is a connector CNC fixed to the surface of the CPR. Electric power is transmitted from the electronic control unit ECU to the drive circuit DRV of the electric motor MTR through the power line PWL, and a drive signal is transmitted through the signal line SGL (for example, a communication bus). PWL and SGL are relayed by the connector CNC. Specifically, PWL and SGL are divided and joined by contact pins (fitting of concavo-convex pins) inside the CNC. When excessive vibration is applied, the contact pin may loosen. Further, since a large current is applied to the power line PWL, a predetermined cross-sectional area is required, but flexibility with respect to vibration and fatigue strength are required. By arranging the connector CNC fixed on the caliper CPR inside the guide space Kgd, these problems can be solved and the vibration resistance can be improved.
 ノイズ影響等を受けるため、センサ等の検出手段においても、耐振動性が要求される。このため、位置取得手段MKA、及び、押圧力取得手段FBAのうちの少なくとも一方が、ガイド空間Kgd内に配置され得る。電気モータMTRとしてブラシ付モータが用いられる場合には、電気モータMTRのブラシBLC部分、及び、整流子CMT部分が、ガイド空間Kgd内に配置され得る。これは、BLCが、ばね(スプリング)によってCMTに押し付けられ、MTRへの通電が確保されることに因る。 ・ Because it is affected by noise, vibration resistance is also required for detection means such as sensors. For this reason, at least one of the position acquisition means MKA and the pressing force acquisition means FBA can be arranged in the guide space Kgd. When a motor with a brush is used as the electric motor MTR, the brush BLC portion and the commutator CMT portion of the electric motor MTR can be disposed in the guide space Kgd. This is because the BLC is pressed against the CMT by a spring (spring), and energization to the MTR is ensured.
 さらに、ガイド部材GD1及びGD2に主従関係が設けられる場合(主(メイン)ガイド部材GD1、従(サブ)ガイド部材GD2である場合)には、メイン部材GD1に近い側のガイド空間(メインガイド空間)Kgdm内に、上記に列挙された構成部品のうちの少なくとも1つが配置される。ガイド部材の「主従関係」とは、「一方が他方よりも長いこと」、「CPRとのはめ合い孔において、一方の隙間が他方のそれよりも狭いこと」、及び、「一方が両持ち支持で他方が片持ち支持であること」のうちで、少なくとも1つの条件が満足されていることをいう。Kgdは、JktとJsfとで構成される面によって、2つに分割されるが、これらの空間のうちで、GD1(上記の一方側のガイド部材)を含む方がメインガイド空間Kgdmとされる。即ち、Mgdにおいて、Jsfで区切られ、且つ、GD1を含むメインガイド面Mgdm(メインガイド四角形A-B-F-E)に対して、垂直な直線の集合で構成される空間が、Kgdmである。CRPは、メインガイド部材GD1に沿ってスライドされ、サブガイド部材GD2によって、そのスライドの動きが補助される。この場合、メインガイド部材GD1に近接するほど、振動的に有利となるため、耐振動が要求される構成要素が、Kgdmに配置され、これらの投影面がMgdmとなる。 Further, when a master-slave relationship is provided for the guide members GD1 and GD2 (in the case of the main (main) guide member GD1 and the slave (sub) guide member GD2), the guide space on the side close to the main member GD1 (main guide space) ) At least one of the components listed above is placed in Kgdm. The “master-slave relationship” of the guide member is “one side is longer than the other”, “one gap is narrower than the other in the fitting hole with the CPR”, and “one side is supported by both ends” "The other is cantilever support" means that at least one condition is satisfied. Kgd is divided into two parts by a plane constituted by Jkt and Jsf. Of these spaces, the one including GD1 (the above-mentioned one side guide member) is the main guide space Kgdm. . That is, in Mgd, a space constituted by a set of straight lines perpendicular to the main guide surface Mgdm (main guide quadrangle A-B-F-E) that is separated by Jsf and includes GD1 is Kgdm. . The CRP is slid along the main guide member GD1, and the movement of the slide is assisted by the sub guide member GD2. In this case, the closer to the main guide member GD1, the more advantageous in terms of vibration. Therefore, the components requiring vibration resistance are arranged in Kgdm, and their projection surfaces are Mgdm.
 図10は、締結部材TK1、TK2、及び、ガイド部材GD1、GD2で形成される締結面Mtk(締結四角形G-H-L-K)、及び、該平面に垂直な締結空間Ktkを示している。締結面Mtkは、第1ガイド部材GD1の軸Jgd1、第2ガイド部材GD2の軸Jgd2、第1締結部材TK1の軸Jtk1、及び、第2締結部材TK2の軸Jtk2によって、各軸に対して垂直に形成される面(四角形G-H-L-K)である。四角形G-H-L-Kの4隅の各点は、回転部材KTBの回転軸(車輪軸)Jktに垂直な平面(例えば、マウント部材MTBの表面)を想定した場合に、第1ガイド部材GD1の軸(第1ガイド軸)Jgd1との交点が点G、第2ガイド部材GD2の軸(第2ガイド軸)Jgd2との交点が点H、第1締結部材(第1締結ボルト)TK1の軸(第1締結軸)Jtk1との交点が点K、及び、第2締結部材(第2締結ボルト)TK2の軸(第2締結軸)Jtk2との交点が点Lに、夫々対応する。ここで、KTBの回転軸Jkt、ガイド部材の軸Jgd1、Jgd2、締結部材の軸Jtk1、Jtk2、電気モータの回転軸Jmt、及び、シャフト部材の回転軸Jsfは、夫々が平行である。また、押圧部材の軸(押圧方向)Jpsは、Jsfと同一である。したがって、これらの軸(Jkt等)と、締結面Mtkとは垂直である。なお、Jgd1(点H)とJgd2(点G)とを結ぶ直線H-Gが、ガイド面Mgdに相当する。 FIG. 10 shows a fastening surface Mtk (fastening square GHLK) formed by the fastening members TK1 and TK2 and the guide members GD1 and GD2, and a fastening space Ktk perpendicular to the plane. . The fastening surface Mtk is perpendicular to each axis by the axis Jgd1 of the first guide member GD1, the axis Jgd2 of the second guide member GD2, the axis Jtk1 of the first fastening member TK1, and the axis Jtk2 of the second fastening member TK2. Is a surface (square GHLK) formed on the surface. Each point of the four corners of the quadrangle G-HL-K is a first guide member when assuming a plane (for example, the surface of the mount member MTB) perpendicular to the rotation axis (wheel axis) Jkt of the rotation member KTB. The point of intersection of the GD1 axis (first guide axis) Jgd1 is the point G, the point of intersection of the second guide member GD2 (second guide axis) Jgd2 is the point H, and the first fastening member (first fastening bolt) TK1. The intersection with the axis (first fastening axis) Jtk1 corresponds to the point K, and the intersection with the axis (second fastening axis) Jtk2 of the second fastening member (second fastening bolt) TK2 corresponds to the point L. Here, the rotation axis Jkt of the KTB, the axes Jgd1 and Jgd2 of the guide member, the axes Jtk1 and Jtk2 of the fastening member, the rotation axis Jmt of the electric motor, and the rotation axis Jsf of the shaft member are parallel to each other. The axis (pressing direction) Jps of the pressing member is the same as Jsf. Therefore, these axes (such as Jkt) and the fastening surface Mtk are perpendicular. A straight line HG connecting Jgd1 (point H) and Jgd2 (point G) corresponds to the guide surface Mgd.
 マウント部材MTBは、締結部材TK1及びTK2によって支持部材(ナックル)NKLに取り付けられ、キャリパCPRは、ガイド部材GD1及びGD2によってマウント部材MTBに取り付けられる。このため、締結面Mtkに近接する位置ほど、路面振動の影響を受け難い。ここで、車両走行中の路面振動はランダムな方向(任意方向)に入力されるが、この場合、「ZBの矢印」で示す方向(車輪軸Jktの方向)の振動影響が、特に、問題とされる。 The mount member MTB is attached to the support member (knuckle) NKL by the fastening members TK1 and TK2, and the caliper CPR is attached to the mount member MTB by the guide members GD1 and GD2. For this reason, the closer to the fastening surface Mtk, the less likely to be affected by road surface vibration. Here, road surface vibration during vehicle travel is input in a random direction (arbitrary direction). In this case, the vibration effect in the direction indicated by the “ZB arrow” (direction of the wheel axis Jkt) is particularly problematic. Is done.
 車両走行中の路面からの振動影響(特に、Jktと平行なZB方向)が抑制され得る場所が、締結空間Ktkである。PSNによって、MSBが中央で押圧され得るように、Jpsが、Jgd1とJgd2との中央に配置される。JpsとJsfとは同一軸であるため、Jsfが、Jgd1及びJgd2の中央に設けられる。そして、MTRがガイド部材GD1、又は、GD2と干渉しないように、Mtk内に配置される。即ち、Jmtは、Ktk内に設けられる。 The place where the influence of vibration from the road surface during traveling of the vehicle (in particular, the ZB direction parallel to Jkt) can be suppressed is the fastening space Ktk. Jps is placed in the middle of Jgd1 and Jgd2 so that the MSB can be pressed in the middle by the PSN. Since Jps and Jsf are on the same axis, Jsf is provided at the center of Jgd1 and Jgd2. And it arrange | positions in Mtk so that MTR may not interfere with guide member GD1 or GD2. That is, Jmt is provided in Ktk.
 ガイド空間Kgdの場合と同様に、締結空間Ktkの内部に、耐振動性が要求される制動手段BRKの構成要素が設けられる。締結空間Ktkは、締結面Mtkに垂直な直線の集合体であるため、これらの構成要素は、締結面Mtkに垂直な方向(例えば、Jgd1の方向)から見た場合に、締結面Mtkに投影される。上述したように、投影とは、物体に平行光線(投影線)を照射し、その物体の影を平面上に映すことである。したがって、締結空間Ktk内に設けられる構成要素に対して、平行投影(視点が無限遠に存在する投影)が行われる場合に、締結面Mtkが投影面(投影線の垂直面)とされる。即ち、「締結空間Ktk(又は、Ktkm)の内部に配置されること」は、第1ガイド部材GD1の軸Jgd1の方向(ZH1又はZH2)から見た場合に、「締結面Mtk(又は、Mtkm)の内部に位置すること」、及び、「締結面Mtk(又は、Mtkm)が投影面となること」と等しい。 As in the case of the guide space Kgd, a component of the braking means BRK that requires vibration resistance is provided inside the fastening space Ktk. Since the fastening space Ktk is a collection of straight lines perpendicular to the fastening surface Mtk, these components are projected onto the fastening surface Mtk when viewed from the direction perpendicular to the fastening surface Mtk (for example, the direction of Jgd1). Is done. As described above, the projection is to irradiate an object with parallel rays (projection lines) and project the shadow of the object on a plane. Therefore, when parallel projection (projection where the viewpoint exists at infinity) is performed on the components provided in the fastening space Ktk, the fastening surface Mtk is set as a projection surface (a vertical surface of the projection line). That is, “arranged in the fastening space Ktk (or Ktkm)” means “fastening surface Mtk (or Mtkm) when viewed from the direction (ZH1 or ZH2) of the axis Jgd1 of the first guide member GD1. ) ”And“ the fastening surface Mtk (or Mtkm) is the projection surface ”.
 上述したガイド空間Kgdの場合と同様の理由で、制動手段BRKの構成要素(耐振動の要求が高い構成要素)が、締結空間Ktkの内部に配置され得る。キャリパCPR内に固定される電子部品において、相対的に重量の大きいもの(MTRの駆動ブリッジ回路のスイッチング素子、電源ノイズ低減回路のインダクタ、及び、コンデンサ)のうちの少なくとも1つが、締結空間Ktkの内部に配置される。キャリパCPR上に固定されるコネクタCNCが、締結空間Ktkの内部に配置され得る。センサ等の検出手段において、位置取得手段MKA、及び、押圧力取得手段FBAのうちの少なくとも一方が、締結空間Ktk内に配置され得る。MTRとしてブラシ付モータが用いられる場合には、MTRのBLC部分、及び、CMT部分が、Ktk内に配置され得る。 For the same reason as in the case of the guide space Kgd described above, the components of the braking means BRK (components with high vibration resistance requirements) can be arranged inside the fastening space Ktk. Among electronic components fixed in the caliper CPR, at least one of relatively heavy components (a switching element of an MTR drive bridge circuit, an inductor of a power supply noise reduction circuit, and a capacitor) is connected to the fastening space Ktk. Arranged inside. A connector CNC fixed on the caliper CPR can be arranged inside the fastening space Ktk. In the detection means such as a sensor, at least one of the position acquisition means MKA and the pressing force acquisition means FBA may be disposed in the fastening space Ktk. When a motor with a brush is used as the MTR, the BLC portion and the CMT portion of the MTR can be arranged in the Ktk.
 さらに、上述したように、ガイド部材GD1及びGD2に主従関係が設けられる場合(メインガイド部材GD1、サブガイド部材GD2の場合)には、メイン部材GD1に近い側の締結空間(メイン締結空間)Ktkm内に、上記の構成部品のうちの少なくとも1つが配置される。Ktkも、Kgdと同様に、JktとJsf(Jps)とで構成される面によって、2つに分割されるが、これらの空間のうちで、メインガイド部材GD1を含む方がメイン締結空間Ktkmとされる。即ち、締結面Mtkにおいて、Jsf(Jps)及びJktの形成面で区切られ、且つ、メインガイド部材GD1を含むメイン締結面Mtkm(メイン締結四角形G-M-N-K)に対して、垂直な直線の集合で構成される空間が、メイン締結空間Ktkmである。上記の耐振動が要求される構成要素が、主締結空間Ktkmに配置され、これらの投影面が、主締結面Mtkmとされ得る。 Furthermore, as described above, when a master-slave relationship is provided for the guide members GD1 and GD2 (in the case of the main guide member GD1 and the sub guide member GD2), the fastening space (main fastening space) Ktkm near the main member GD1 Inside, at least one of the above-mentioned components is arranged. Similarly to Kgd, Ktk is also divided into two by a plane constituted by Jkt and Jsf (Jps). Of these spaces, the one including the main guide member GD1 is the main fastening space Ktkm. Is done. In other words, the fastening surface Mtk is separated by the formation surface of Jsf (Jps) and Jkt, and is perpendicular to the main fastening surface Mtkm (main fastening quadrangle G-M-N-K) including the main guide member GD1. A space constituted by a set of straight lines is the main fastening space Ktkm. The above-mentioned components requiring vibration resistance are arranged in the main fastening space Ktkm, and these projection surfaces can be the main fastening surface Mtkm.
 車両が走行している場合に、車輪側から入力される路面振動は、任意の方向に作用する。以上で説明したように、キャリパCPRにおいて、車両が凸凹路を走行するときに、最も振動影響が少ない場所(空間)は、ガイド空間Kgdの内部であって、且つ、締結空間Ktkの内部である。さらに、ガイド部材に主従がある場合には、その場所は、メインガイド空間Kgdmの内部、且つ、メイン締結空間Ktkmの内部である。この条件を満足する領域(場所)は限られるため、優先度の高い構成要素から順次配置される。しかし、少なくとも上記の一方の配置条件が満足され得れば、振動影響の懸念は大幅に低減され得る。 When the vehicle is running, road surface vibration input from the wheel side acts in any direction. As described above, in the caliper CPR, when the vehicle travels on a bumpy road, the place (space) with the least vibration influence is inside the guide space Kgd and inside the fastening space Ktk. . Further, when the guide member has a master-slave, the place is inside the main guide space Kgdm and inside the main fastening space Ktkm. Since the area (location) that satisfies this condition is limited, components are arranged in order from components with higher priority. However, if at least one of the arrangement conditions described above can be satisfied, the concern about vibration effects can be greatly reduced.
 MSB…摩擦部材、KTB…回転部材、MTR…電気モータ、NKL…支持部材、MTB…マウンド部材、GD1、GD2…第1、第2のガイド部材、TK1、TK2…第1、第2の締結部材、CPR…キャリパ、S1~S4、Z1~Z6…スイッチング素子、IND、IND1、IND2…インダクタ、CND、CND1、CND2…コンデンサ、FBA…押圧力取得手段、MKA…位置取得手段、Mgd…ガイド四角形、Mtk…締結四角形、CNC…コネクタ、BAT…電源、PWL、SGL…配線、BLC…ブラシ、CMT…整流子 MSB ... friction member, KTB ... rotating member, MTR ... electric motor, NKL ... support member, MTB ... mound member, GD1, GD2 ... first and second guide members, TK1, TK2 ... first, second fastening members CPR ... caliper, S1 to S4, Z1 to Z6 ... switching element, IND, IND1, IND2 ... inductor, CND, CND1, CND2 ... capacitor, FBA ... pressing force acquisition means, MKA ... position acquisition means, Mgd ... guide square, Mtk ... fastening rectangle, CNC ... connector, BAT ... power supply, PWL, SGL ... wiring, BLC ... brush, CMT ... commutator

Claims (9)

  1.  車両の車輪に固定された回転部材に、電気モータを介して摩擦部材を押圧し、前記車輪の制動トルクを発生させる車両の電動制動装置であって、
     前記車輪を支持する支持部材に固定されるマウント部材と、
     前記マウント部材に固定される、軸線を有する第1のガイド部材と、
     前記第1のガイド部材とは異なる位置で前記マウント部材に固定される、前記第1のガイド部材の軸線と平行な軸線を有する第2のガイド部材と、
     前記第1、第2のガイド部材に支持され、前記第1、第2のガイド部材の軸線方向において前記第1、第2のガイド部材に対して相対移動可能なキャリパと、
     を備え、
     前記電気モータが前記キャリパに固定され、
     前記電気モータを駆動するブリッジ回路のスイッチング素子、前記電気モータへ供給される電力の変動を低減するインダクタ、及び、コンデンサのうちの少なくとも1つが、
     前記キャリパに内蔵され、且つ、
     前記第1のガイド部材の軸線方向の両端点、及び、前記第2のガイド部材の軸線方向の両端点を4隅とする四角形であるガイド四角形の平面に対して垂直方向から見たときに、前記ガイド四角形の内部に位置する、車両の電動制動装置。
    An electric braking device for a vehicle that presses a friction member to a rotating member fixed to a wheel of the vehicle via an electric motor to generate a braking torque of the wheel,
    A mount member fixed to a support member for supporting the wheel;
    A first guide member having an axis fixed to the mount member;
    A second guide member having an axis parallel to the axis of the first guide member, fixed to the mount member at a position different from the first guide member;
    A caliper supported by the first and second guide members and movable relative to the first and second guide members in the axial direction of the first and second guide members;
    With
    The electric motor is fixed to the caliper;
    At least one of a switching element of a bridge circuit that drives the electric motor, an inductor that reduces fluctuations in power supplied to the electric motor, and a capacitor,
    Built in the caliper, and
    When viewed from the vertical direction with respect to the plane of the guide quadrangle that is a quadrangle having four corners at both end points in the axial direction of the first guide member and both end points in the axial direction of the second guide member, An electric braking device for a vehicle located inside the guide quadrangle.
  2.  車両の車輪に固定された回転部材に、電気モータを介して摩擦部材を押圧し、前記車輪の制動トルクを発生させる車両の電動制動装置であって、
     前記車輪を支持する支持部材に固定されるマウント部材と、
     前記マウント部材に固定される、軸線を有する第1のガイド部材と、
     前記第1のガイド部材とは異なる位置で前記マウント部材に固定される、前記第1のガイド部材の軸線と平行な軸線を有する第2のガイド部材と、
     前記第1、第2のガイド部材に支持され、前記第1、第2のガイド部材の軸線方向において前記第1、第2のガイド部材に対して相対移動可能なキャリパと、
     前記マウント部材を前記支持部材に固定する、前記第1のガイド部材の軸線と平行な軸線を有する第1の締結部材と、
     前記第1の締結部材とは異なる位置で前記マウント部材を前記支持部材に固定する、前記第1のガイド部材の軸線と平行な軸線を有する第2の締結部材と、
     を備え、
     前記電気モータが前記キャリパに固定され、
     前記電気モータを駆動するブリッジ回路のスイッチング素子、前記電気モータへ供給される電力の変動を低減するインダクタ、及び、コンデンサのうちの少なくとも1つが、
     前記キャリパに内蔵され、且つ、
     前記第1のガイド部材の軸線方向から見たときに、前記第1のガイド部材の軸線、前記第2のガイド部材の軸線、前記第1の締結部材の軸線、及び、前記第2の締結部材の軸線のそれぞれの位置を4隅とする、前記第1のガイド部材の軸線に垂直な平面を有する四角形である締結四角形の内部に位置する、車両の電動制動装置。
    An electric braking device for a vehicle that presses a friction member to a rotating member fixed to a wheel of the vehicle via an electric motor to generate a braking torque of the wheel,
    A mount member fixed to a support member for supporting the wheel;
    A first guide member having an axis fixed to the mount member;
    A second guide member having an axis parallel to the axis of the first guide member, fixed to the mount member at a position different from the first guide member;
    A caliper supported by the first and second guide members and movable relative to the first and second guide members in the axial direction of the first and second guide members;
    A first fastening member having an axis parallel to the axis of the first guide member for fixing the mount member to the support member;
    A second fastening member having an axis parallel to the axis of the first guide member for fixing the mount member to the support member at a position different from the first fastening member;
    With
    The electric motor is fixed to the caliper;
    At least one of a switching element of a bridge circuit that drives the electric motor, an inductor that reduces fluctuations in power supplied to the electric motor, and a capacitor,
    Built in the caliper, and
    When viewed from the axial direction of the first guide member, the axis of the first guide member, the axis of the second guide member, the axis of the first fastening member, and the second fastening member An electric braking device for a vehicle, which is located inside a fastening quadrangle that is a quadrangle having four planes perpendicular to the axis of the first guide member, each of which has four corners.
  3.  車両の車輪に固定された回転部材に、電気モータを介して摩擦部材を押圧し、前記車輪の制動トルクを発生させる車両の電動制動装置であって、
     前記車輪を支持する支持部材に固定されるマウント部材と、
     前記マウント部材に固定される、軸線を有する第1のガイド部材と、
     前記第1のガイド部材とは異なる位置で前記マウント部材に固定される、前記第1のガイド部材の軸線と平行な軸線を有する第2のガイド部材と、
     前記第1、第2のガイド部材に支持され、前記第1、第2のガイド部材の軸線方向において前記第1、第2のガイド部材に対して相対移動可能なキャリパと、
     前記摩擦部材が前記回転部材を押し付ける力である押圧力を取得する押圧力取得手段と、
     を備え、
     前記押圧力取得手段は、
     前記キャリパに固定され、且つ、
     前記第1のガイド部材の軸線方向の両端点、及び、前記第2のガイド部材の軸線方向の両端点を4隅とする四角形であるガイド四角形の平面に対して垂直方向から見たときに、前記ガイド四角形の内部に位置する、車両の電動制動装置。
    An electric braking device for a vehicle that presses a friction member to a rotating member fixed to a wheel of the vehicle via an electric motor to generate a braking torque of the wheel,
    A mount member fixed to a support member for supporting the wheel;
    A first guide member having an axis fixed to the mount member;
    A second guide member having an axis parallel to the axis of the first guide member, fixed to the mount member at a position different from the first guide member;
    A caliper supported by the first and second guide members and movable relative to the first and second guide members in the axial direction of the first and second guide members;
    A pressing force acquisition means for acquiring a pressing force that is a force with which the friction member presses the rotating member;
    With
    The pressing force acquisition means is
    Fixed to the caliper, and
    When viewed from the vertical direction with respect to the plane of the guide quadrangle that is a quadrangle having four corners at both end points in the axial direction of the first guide member and both end points in the axial direction of the second guide member, An electric braking device for a vehicle located inside the guide quadrangle.
  4.  車両の車輪に固定された回転部材に、電気モータを介して摩擦部材を押圧し、前記車輪の制動トルクを発生させる車両の電動制動装置であって、
     前記車輪を支持する支持部材に固定されるマウント部材と、
     前記マウント部材に固定される、軸線を有する第1のガイド部材と、
     前記第1のガイド部材とは異なる位置で前記マウント部材に固定される、前記第1のガイド部材の軸線と平行な軸線を有する第2のガイド部材と、
     前記第1、第2のガイド部材に支持され、前記第1、第2のガイド部材の軸線方向において前記第1、第2のガイド部材に対して相対移動可能なキャリパと、
     前記電気モータの位置を取得する位置取得手段と、
     を備え、
     前記電気モータが前記キャリパに固定され、
     前記位置取得手段は、
     前記電気モータに内蔵され、且つ、
     前記第1のガイド部材の軸線方向の両端点、及び、前記第2のガイド部材の軸線方向の両端点を4隅とする四角形であるガイド四角形の平面に対して垂直方向から見たときに、前記ガイド四角形の内部に位置する、車両の電動制動装置。
    An electric braking device for a vehicle that presses a friction member to a rotating member fixed to a wheel of the vehicle via an electric motor to generate a braking torque of the wheel,
    A mount member fixed to a support member for supporting the wheel;
    A first guide member having an axis fixed to the mount member;
    A second guide member having an axis parallel to the axis of the first guide member, fixed to the mount member at a position different from the first guide member;
    A caliper supported by the first and second guide members and movable relative to the first and second guide members in the axial direction of the first and second guide members;
    Position acquisition means for acquiring the position of the electric motor;
    With
    The electric motor is fixed to the caliper;
    The position acquisition means includes
    Embedded in the electric motor, and
    When viewed from the vertical direction with respect to the plane of the guide quadrangle that is a quadrangle having four corners at both end points in the axial direction of the first guide member and both end points in the axial direction of the second guide member, An electric braking device for a vehicle located inside the guide quadrangle.
  5.  車両の車輪に固定された回転部材に、電気モータを介して摩擦部材を押圧し、前記車輪の制動トルクを発生させる車両の電動制動装置であって、
     前記車輪を支持する支持部材に固定されるマウント部材と、
     前記マウント部材に固定される、軸線を有する第1のガイド部材と、
     前記第1のガイド部材とは異なる位置で前記マウント部材に固定される、前記第1のガイド部材の軸線と平行な軸線を有する第2のガイド部材と、
     前記第1、第2のガイド部材に支持され、前記第1、第2のガイド部材の軸線方向において前記第1、第2のガイド部材に対して相対移動可能なキャリパと、
     前記マウント部材を前記支持部材に固定する、前記第1のガイド部材の軸線と平行な軸線を有する第1の締結部材と、
     前記第1の締結部材とは異なる位置で前記マウント部材を前記支持部材に固定する、前記第1のガイド部材の軸線と平行な軸線を有する第2の締結部材と、
     前記電気モータの位置を取得する位置取得手段と、
     を備え、
     前記電気モータが前記キャリパに固定され、
     前記位置取得手段は、
     前記電気モータに内蔵され、且つ、
     前記第1のガイド部材の軸線方向から見たときに、前記第1のガイド部材の軸線、前記第2のガイド部材の軸線、前記第1の締結部材の軸線、及び、前記第2の締結部材の軸線のそれぞれの位置を4隅とする、前記第1のガイド部材の軸線に垂直な平面を有する四角形である締結四角形の内部に位置する、車両の電動制動装置。
    An electric braking device for a vehicle that presses a friction member to a rotating member fixed to a wheel of the vehicle via an electric motor to generate a braking torque of the wheel,
    A mount member fixed to a support member for supporting the wheel;
    A first guide member having an axis fixed to the mount member;
    A second guide member having an axis parallel to the axis of the first guide member, fixed to the mount member at a position different from the first guide member;
    A caliper supported by the first and second guide members and movable relative to the first and second guide members in the axial direction of the first and second guide members;
    A first fastening member having an axis parallel to the axis of the first guide member for fixing the mount member to the support member;
    A second fastening member having an axis parallel to the axis of the first guide member for fixing the mount member to the support member at a position different from the first fastening member;
    Position acquisition means for acquiring the position of the electric motor;
    With
    The electric motor is fixed to the caliper;
    The position acquisition means includes
    Embedded in the electric motor, and
    When viewed from the axial direction of the first guide member, the axis of the first guide member, the axis of the second guide member, the axis of the first fastening member, and the second fastening member An electric braking device for a vehicle, which is located inside a fastening quadrangle that is a quadrangle having four planes perpendicular to the axis of the first guide member, each of which has four corners.
  6.  車両の車輪に固定された回転部材に、電気モータを介して摩擦部材を押圧し、前記車輪の制動トルクを発生させる車両の電動制動装置であって、
     前記車両の車体に設置される電源と、
     前記電源から前記電気モータに、電力及び駆動信号を供給する配線と、
     前記配線を中継するコネクタと、
     前記車輪を支持する支持部材に固定されるマウント部材と、
     前記マウント部材に固定される、軸線を有する第1のガイド部材と、
     前記第1のガイド部材とは異なる位置で前記マウント部材に固定される、前記第1のガイド部材の軸線と平行な軸線を有する第2のガイド部材と、
     前記第1、第2のガイド部材に支持され、前記第1、第2のガイド部材の軸線方向において前記第1、第2のガイド部材に対して相対移動可能なキャリパと、
     を備え、
     前記コネクタが、
     前記キャリパの表面に固定され、且つ、
     前記第1のガイド部材の軸線方向の両端点、及び、前記第2のガイド部材の軸線方向の両端点を4隅とする四角形であるガイド四角形の平面に対して垂直方向から見たときに、前記ガイド四角形の内部に位置する、車両の電動制動装置。
    An electric braking device for a vehicle that presses a friction member to a rotating member fixed to a wheel of the vehicle via an electric motor to generate a braking torque of the wheel,
    A power source installed in the vehicle body;
    Wiring for supplying power and drive signals from the power source to the electric motor;
    A connector that relays the wiring;
    A mount member fixed to a support member for supporting the wheel;
    A first guide member having an axis fixed to the mount member;
    A second guide member having an axis parallel to the axis of the first guide member, fixed to the mount member at a position different from the first guide member;
    A caliper supported by the first and second guide members and movable relative to the first and second guide members in the axial direction of the first and second guide members;
    With
    The connector is
    Fixed to the surface of the caliper; and
    When viewed from the vertical direction with respect to the plane of the guide quadrangle that is a quadrangle having four corners at both end points in the axial direction of the first guide member and both end points in the axial direction of the second guide member, An electric braking device for a vehicle located inside the guide quadrangle.
  7.  車両の車輪に固定された回転部材に、電気モータを介して摩擦部材を押圧し、前記車輪の制動トルクを発生させる車両の電動制動装置であって、
     前記車両の車体に設置される電源と、
     前記電源から前記電気モータに、電力及び駆動信号を供給する配線と、
     前記配線を中継するコネクタと、
     前記車輪を支持する支持部材に固定されるマウント部材と、
     前記マウント部材に固定される、軸線を有する第1のガイド部材と、
     前記第1のガイド部材とは異なる位置で前記マウント部材に固定される、前記第1のガイド部材の軸線と平行な軸線を有する第2のガイド部材と、
     前記第1、第2のガイド部材に支持され、前記第1、第2のガイド部材の軸線方向において前記第1、第2のガイド部材に対して相対移動可能なキャリパと、
     前記マウント部材を前記支持部材に固定する、前記第1のガイド部材の軸線と平行な軸線を有する第1の締結部材と、
     前記第1の締結部材とは異なる位置で前記マウント部材を前記支持部材に固定する、前記第1のガイド部材の軸線と平行な軸線を有する第2の締結部材と、
     を備え、
     前記コネクタが、
     前記キャリパの表面に固定され、且つ、
     前記第1のガイド部材の軸線方向から見たときに、前記第1のガイド部材の軸線、前記第2のガイド部材の軸線、前記第1の締結部材の軸線、及び、前記第2の締結部材の軸線のそれぞれの位置を4隅とする、前記第1のガイド部材の軸線に垂直な平面を有する四角形である締結四角形の内部に位置する、車両の電動制動装置。
    An electric braking device for a vehicle that presses a friction member to a rotating member fixed to a wheel of the vehicle via an electric motor to generate a braking torque of the wheel,
    A power source installed in the vehicle body;
    Wiring for supplying power and drive signals from the power source to the electric motor;
    A connector that relays the wiring;
    A mount member fixed to a support member for supporting the wheel;
    A first guide member having an axis fixed to the mount member;
    A second guide member having an axis parallel to the axis of the first guide member, fixed to the mount member at a position different from the first guide member;
    A caliper supported by the first and second guide members and movable relative to the first and second guide members in the axial direction of the first and second guide members;
    A first fastening member having an axis parallel to the axis of the first guide member for fixing the mount member to the support member;
    A second fastening member having an axis parallel to the axis of the first guide member for fixing the mount member to the support member at a position different from the first fastening member;
    With
    The connector is
    Fixed to the surface of the caliper; and
    When viewed from the axial direction of the first guide member, the axis of the first guide member, the axis of the second guide member, the axis of the first fastening member, and the second fastening member An electric braking device for a vehicle, which is located inside a fastening quadrangle that is a quadrangle having four planes perpendicular to the axis of the first guide member, each of which has four corners.
  8.  車両の車輪に固定された回転部材に、電気モータを介して摩擦部材を押圧し、前記車輪の制動トルクを発生させる車両の電動制動装置であって、
     前記車輪を支持する支持部材に固定されるマウント部材と、
     前記マウント部材に固定される、軸線を有する第1のガイド部材と、
     前記第1のガイド部材とは異なる位置で前記マウント部材に固定される、前記第1のガイド部材の軸線と平行な軸線を有する第2のガイド部材と、
     前記第1、第2のガイド部材に支持され、前記第1、第2のガイド部材の軸線方向において前記第1、第2のガイド部材に対して相対移動可能なキャリパと、
     を備え、
     前記電気モータが前記キャリパに固定され、且つ、ブラシ、及び、整流子を有し、
     前記ブラシ、及び、整流子が、
     前記第1のガイド部材の軸線方向の両端点、及び、前記第2のガイド部材の軸線方向の両端点を4隅とする四角形であるガイド四角形の平面に対して垂直方向から見たときに、前記ガイド四角形の内部に位置する、車両の電動制動装置。
    An electric braking device for a vehicle that presses a friction member to a rotating member fixed to a wheel of the vehicle via an electric motor to generate a braking torque of the wheel,
    A mount member fixed to a support member for supporting the wheel;
    A first guide member having an axis fixed to the mount member;
    A second guide member having an axis parallel to the axis of the first guide member, fixed to the mount member at a position different from the first guide member;
    A caliper supported by the first and second guide members and movable relative to the first and second guide members in the axial direction of the first and second guide members;
    With
    The electric motor is fixed to the caliper, and has a brush and a commutator;
    The brush and the commutator are
    When viewed from the vertical direction with respect to the plane of the guide quadrangle that is a quadrangle having four corners at both end points in the axial direction of the first guide member and both end points in the axial direction of the second guide member, An electric braking device for a vehicle located inside the guide quadrangle.
  9.  車両の車輪に固定された回転部材に、電気モータを介して摩擦部材を押圧し、前記車輪の制動トルクを発生させる車両の電動制動装置であって、
     前記車輪を支持する支持部材に固定されるマウント部材と、
     前記マウント部材に固定される、軸線を有する第1のガイド部材と、
     前記第1のガイド部材とは異なる位置で前記マウント部材に固定される、前記第1のガイド部材の軸線と平行な軸線を有する第2のガイド部材と、
     前記第1、第2のガイド部材に支持され、前記第1、第2のガイド部材の軸線方向において前記第1、第2のガイド部材に対して相対移動可能なキャリパと、
     前記マウント部材を前記支持部材に固定する、前記第1のガイド部材の軸線と平行な軸線を有する第1の締結部材と、
     前記第1の締結部材とは異なる位置で前記マウント部材を前記支持部材に固定する、前記第1のガイド部材の軸線と平行な軸線を有する第2の締結部材と、
     を備え、
     前記電気モータが前記キャリパに固定され、且つ、ブラシ、及び、整流子を有し、
     前記ブラシ、及び、整流子が、
     前記第1のガイド部材の軸線方向から見たときに、前記第1のガイド部材の軸線、前記第2のガイド部材の軸線、前記第1の締結部材の軸線、及び、前記第2の締結部材の軸線のそれぞれの位置を4隅とする、前記第1のガイド部材の軸線に垂直な平面を有する四角形である締結四角形の内部に位置する、車両の電動制動装置。
    An electric braking device for a vehicle that presses a friction member to a rotating member fixed to a wheel of the vehicle via an electric motor to generate a braking torque of the wheel,
    A mount member fixed to a support member for supporting the wheel;
    A first guide member having an axis fixed to the mount member;
    A second guide member having an axis parallel to the axis of the first guide member, fixed to the mount member at a position different from the first guide member;
    A caliper supported by the first and second guide members and movable relative to the first and second guide members in the axial direction of the first and second guide members;
    A first fastening member having an axis parallel to the axis of the first guide member for fixing the mount member to the support member;
    A second fastening member having an axis parallel to the axis of the first guide member for fixing the mount member to the support member at a position different from the first fastening member;
    With
    The electric motor is fixed to the caliper, and has a brush and a commutator;
    The brush and the commutator are
    When viewed from the axial direction of the first guide member, the axis of the first guide member, the axis of the second guide member, the axis of the first fastening member, and the second fastening member An electric braking device for a vehicle, which is located inside a fastening quadrangle that is a quadrangle having four planes perpendicular to the axis of the first guide member, each of which has four corners.
PCT/JP2014/051685 2013-01-25 2014-01-27 Vehicle electric braking device WO2014115873A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2013012492A JP5907350B2 (en) 2013-01-25 2013-01-25 Electric braking device for vehicle
JP2013012489A JP5880875B2 (en) 2013-01-25 2013-01-25 Electric braking device for vehicle
JP2013-012489 2013-01-25
JP2013-012492 2013-01-25

Publications (1)

Publication Number Publication Date
WO2014115873A1 true WO2014115873A1 (en) 2014-07-31

Family

ID=51227661

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/051685 WO2014115873A1 (en) 2013-01-25 2014-01-27 Vehicle electric braking device

Country Status (1)

Country Link
WO (1) WO2014115873A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0135218B2 (en) * 1981-03-25 1989-07-24 Sumitomo Electric Industries
JP2000283196A (en) * 1999-03-31 2000-10-13 Tokico Ltd Electric brake device
JP2008095909A (en) * 2006-10-16 2008-04-24 Hitachi Ltd Electrically driven brake device
JP2008238987A (en) * 2007-03-28 2008-10-09 Hitachi Ltd Electric brake device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0135218B2 (en) * 1981-03-25 1989-07-24 Sumitomo Electric Industries
JP2000283196A (en) * 1999-03-31 2000-10-13 Tokico Ltd Electric brake device
JP2008095909A (en) * 2006-10-16 2008-04-24 Hitachi Ltd Electrically driven brake device
JP2008238987A (en) * 2007-03-28 2008-10-09 Hitachi Ltd Electric brake device

Similar Documents

Publication Publication Date Title
JP5970385B2 (en) Electric braking device for vehicle
JP6439709B2 (en) Electric braking device for vehicle
JP6443354B2 (en) Electric braking device for vehicle
WO2016125701A1 (en) Electric drive apparatus and electric power steering apparatus
JP2003137081A (en) Braking device
CN111032395B (en) Vehicle mounting structure for electronic equipment
JP5284217B2 (en) Electronic circuit device for vehicle
JP6198549B2 (en) Electric braking device for vehicle
JP5880875B2 (en) Electric braking device for vehicle
JP5907350B2 (en) Electric braking device for vehicle
WO2014115873A1 (en) Vehicle electric braking device
JP5017311B2 (en) Electric brake control device
JP7046079B2 (en) Permanent magnet type synchronous motor and electric power steering device
JP6793205B2 (en) Actuator device, braking system for vehicles
JP2017128283A (en) Electric braking device for vehicle
JP6800261B2 (en) Electric drive
JP6252077B2 (en) Electric braking device for vehicle
JP6090061B2 (en) Electric braking device for vehicle
WO2023234028A1 (en) Brake device for vehicle
JP6082945B2 (en) Electric braking device for vehicle
JP2014184743A (en) Brake controller

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14743444

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14743444

Country of ref document: EP

Kind code of ref document: A1