WO2014115837A1 - Cover glass for solar cell, and solar cell module - Google Patents

Cover glass for solar cell, and solar cell module Download PDF

Info

Publication number
WO2014115837A1
WO2014115837A1 PCT/JP2014/051492 JP2014051492W WO2014115837A1 WO 2014115837 A1 WO2014115837 A1 WO 2014115837A1 JP 2014051492 W JP2014051492 W JP 2014051492W WO 2014115837 A1 WO2014115837 A1 WO 2014115837A1
Authority
WO
WIPO (PCT)
Prior art keywords
glass
solar cell
cover glass
glass plate
main surface
Prior art date
Application number
PCT/JP2014/051492
Other languages
French (fr)
Japanese (ja)
Inventor
裕介 小林
幸史 桶谷
忠久 金杉
哲 菊地
泰子 一山
小島 浩士
Original Assignee
旭硝子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 旭硝子株式会社 filed Critical 旭硝子株式会社
Priority to JP2014558629A priority Critical patent/JP5812210B2/en
Priority to CN201480005393.3A priority patent/CN104936915A/en
Publication of WO2014115837A1 publication Critical patent/WO2014115837A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/048Encapsulation of modules
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C21/00Treatment of glass, not in the form of fibres or filaments, by diffusing ions or metals in the surface
    • C03C21/001Treatment of glass, not in the form of fibres or filaments, by diffusing ions or metals in the surface in liquid phase, e.g. molten salts, solutions
    • C03C21/002Treatment of glass, not in the form of fibres or filaments, by diffusing ions or metals in the surface in liquid phase, e.g. molten salts, solutions to perform ion-exchange between alkali ions
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/083Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound
    • C03C3/085Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound containing an oxide of a divalent metal
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B10/00Integration of renewable energy sources in buildings
    • Y02B10/10Photovoltaic [PV]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Definitions

  • the present invention relates to a cover glass for a solar cell and a solar cell module, and more particularly to a cover glass for a solar cell that can achieve reduction of damage in long-term use even if the plate thickness is thin due to a chemical strengthening treatment, and the sun using the same
  • the present invention relates to a battery module.
  • a plan for a solar power plant with a large number of solar cell modules installed on a vast site is underway. For example, in a solar power plant of several tens MW class described in the planning stage, 100,000 or more solar cell modules may be installed.
  • a thickness of about 3 mm has been conventionally used, but in recent years, a thickness of about 1 mm has been proposed.
  • the solar cell module is used outdoors, and many scratches can occur on the surface of the cover glass in the process of outdoor installation for many years. Therefore, even if the strength against various events is secured at the initial stage, the strength may not be sufficiently secured after long-term use.
  • a glass plate of 1.5 mm or less subjected to chemical strengthening treatment has strength as a cover glass for solar cells after such a long period of time has passed.
  • the present invention has an object to provide a cover glass for a solar cell that contributes to weight reduction for wiping out concerns 1 and 2 in installation, and that takes into account changes over time.
  • the present invention relates to a solar cell cover glass having a glass plate having first and second main surfaces and an end surface interposed between the first and second main surfaces.
  • the glass plate has a thickness of 0.5 to 1.5 mm and is chemically strengthened.
  • the surface compressive stress value of the main surface is 400 to 1000 MPa, and the thickness of the compressive stress layer on the main surface in the thickness direction is 15 to 50 ⁇ m,
  • the glass plate provides a cover glass for a solar cell, characterized in that a concentric bending strength obtained by the following method is 30 kgf or more: (1) Obtain a square glass piece having a length of 50 mm and a width of 50 mm in plan view from the glass plate, (2) A square 400 mm of 10 mm ⁇ 10 mm along a line translated from the center line in the horizontal direction of the glass piece up and down by 10 mm each and 3 mm to the right from the center line in the vertical direction.
  • the sandpaper of the count is reciprocated three times with a load of 1.5 kgf to form a rubbing line having a length of 20 mm in the vertical direction on the first main surface, (3) On the support ring having a diameter of 30 mm, the first main surface of the glass piece is in contact with the support ring, and the glass piece and the center point of the support ring overlap so that the glass piece is placed on the support ring. Installed in (4) A load ring having a diameter of 10 mm is placed on the glass piece so that the center points of the two overlap. (5) When a load is applied to the glass piece from the load ring side at 1 mm / min, the load at which the glass piece is broken is defined as a concentric bending strength.
  • this invention provides a solar cell module provided with such a cover glass for solar cells.
  • a cover glass for a solar cell that contributes to weight reduction for wiping out the concerns 1 and 2 in installation, and has ensured strength after long-term use.
  • FIG. 2A shows a state in which rubbing lines are formed on the glass piece
  • FIG. 2B shows a state in which a load is applied to the glass piece.
  • FIG. 2A shows a state in which rubbing lines are formed on the glass piece
  • FIG. 2B shows a state in which a load is applied to the glass piece.
  • FIG. 1 is a perspective view showing an example of the cover glass for a solar cell of the present invention.
  • the solar cell cover glass 1 is composed of a glass plate 10 having a thickness t of 0.5 to 1.5 mm.
  • the glass plate 10 has the 1st and 2nd main surfaces 11a and 11b and the end surface 12 interposed between the main surfaces 11a and 11b.
  • the glass plate 10 is a chemically strengthened glass plate having a compressive stress layer of 15 to 50 ⁇ m in the plate thickness direction on the main surfaces 11a and 11b.
  • the compressive stress values of the main surfaces 11a and 11b are 400 to 1000 MPa.
  • this glass plate 10 is a glass plate having a high bending strength after a predetermined scratch is applied to the main surface 11a. That is, in this glass plate 10, a glass piece cut out to 50 mm in length and 50 mm in width has a predetermined concentric bending strength.
  • the predetermined concentric bending strength will be described with reference to FIG.
  • FIG. 2 is a diagram schematically showing a method for measuring the concentric bending strength of a glass piece.
  • FIG. 2A shows a state in which rubbing lines are formed on the glass piece
  • FIG. 2B shows a state in which a load is applied to the glass piece.
  • a square glass piece 100 having a length of 50 mm and a width of 50 mm in a plan view is collected from the glass plate 10.
  • the glass piece 100 is cut out so that, for example, the front view center point of the glass plate 10 becomes the center point of the glass piece 100.
  • the glass piece 100 is placed on the support ring 30 having a diameter of 30 mm.
  • the glass piece 100 is placed on the support ring 30 such that the first main surface 11a of the glass piece 100 is in contact with the support ring 30 and the center points of the glass piece 100 and the support ring 30 are overlapped. Is done.
  • a load ring 40 having a diameter of 10 mm is placed on the glass piece 100 (second main surface thereof). At this time, the load ring 40 is installed on the glass piece 100 so that both center points of the glass piece 100 and the load ring 40 overlap.
  • a load is applied to the glass piece 100 from the load ring 40 side at a rate of 1 mm / min.
  • the load at which the glass piece 100 is broken by this load application is defined as a concentric bending strength.
  • the glass plate 10 has a feature that the concentric bending strength measured by this method is 30 kgf or more.
  • the principle that it is beneficial to use a glass plate having such a predetermined strength for the cover glass of the present invention will be described.
  • conventionally scratches that may occur on the main surface of the glass plate as a result of long-term use have not been fully considered.
  • the present inventors have found that the glass plate of the present invention is suitable for a cover glass for a solar cell.
  • the cover glass itself has rigidity, so that the deflection due to a static load such as wind or snow can be suppressed.
  • the plate thickness is 1.5 mm or less, the deflection due to these static loads increases. As a result, since the main surface is scratched, the cover glass is easily broken starting from the scratch.
  • the solar cell module itself can be structured to reduce the deflection of the cover glass by attaching a frame to the periphery or a reinforcing rail on the back side.
  • the weight increases due to the addition of these reinforcing members, and the effect of thinning the cover glass is reduced.
  • the strength of the cover glass after long-term use can be maintained without adding an excessive reinforcing member by using a glass plate having a high bending strength after applying a predetermined scratch like the cover glass of the present invention.
  • the solar cell module using the cover glass of the present invention exhibits good durability without using an excessive reinforcing member.
  • the solar cell module using the cover glass of the present invention clears JIS C8990 “mechanical load test” and exhibits good durability against wind and snow even after long-term use.
  • the glass plate in the present invention is preferably a glass plate in which the above glass piece has a concentric circular bending strength of 70 kgf or more.
  • a bending strength equal to or higher than the bending strength of the cover glass obtained when a glass plate having a thickness of about 3 mm is used can be obtained.
  • the glass plate of the present invention preferably has a surface compressive stress value of 550 to 800 MPa on the main surface and a thickness in the plate thickness direction of the compressive stress layer on the main surface of 20 to 45 ⁇ m. This is because if the surface compressive stress value of the main surface and the thickness of the compressive stress layer on the main surface in the thickness direction are too large, the internal tensile stress value becomes excessively large. In other words, in addition to the occurrence of scratches during long-term use, sharp objects may collide strongly with the cover glass due to falling rocks, stones, or traps. Such a collision of the object causes a crack that penetrates the compressive stress layer of the main surface. At that time, if the internal tensile stress is too large, the fracture is likely to proceed. From this point, the tensile stress value inside the glass plate in the present invention is preferably 10 to 60 MPa.
  • the area of the main surface is 1 m 2 or more to exhibit the effects of the present invention. That is, if the area of the solar cell module increases, the absolute value of deflection tends to increase. Therefore, if it is a conventional glass plate, the reinforcing member necessary to suppress such deflection becomes excessive, but if it is a glass plate in the present invention, the bending strength after long-term use, that is, after scratches are added Therefore, it is not necessary to increase the number of reinforcing members.
  • the thickness of the glass plate in the present invention is 0.7 to 1.2 mm, and further less than 1.0 mm, as an effect of the present invention. That is, if the thickness of the glass plate decreases, the absolute value of the deflection tends to increase. Therefore, if it is a conventional glass plate, the reinforcing member necessary to suppress such deflection becomes excessive, but if it is a glass plate in the present invention, the bending strength after long-term use, that is, after scratches are added Therefore, it is not necessary to increase the number of reinforcing members.
  • the glass plate in the present invention may have a compressive stress layer formed on the end surface as well as the main surface.
  • the compressive stress layer may not exist on the end face.
  • the compressive stress in this invention is uniformly formed in the main surface direction of the glass plate, it may have distribution within a surface. According to the above chemical strengthening treatment, compressive stress can be obtained almost uniformly except for treatment unevenness. Therefore, when measuring various values related to compressive stress, the center of the main surface (a point where diagonal lines intersect when the glass plate is rectangular, or a point corresponding to this when the glass plate is not rectangular) may be used as a representative point.
  • the method of chemical strengthening treatment for obtaining the glass plate in the present invention is not particularly limited as long as it can ion-exchange Na in the glass surface layer and K in the molten salt, but for example, heated potassium nitrate molten salt
  • the method of immersing glass is mentioned.
  • potassium nitrate molten salt, or potassium nitrate salts in the present invention other KNO 3, including those containing KNO 3 and 10 wt% or less of NaNO 3.
  • the chemical strengthening treatment conditions for forming a compressive stress layer having a desired surface compressive stress on glass vary depending on the thickness of the glass plate, but the glass substrate is immersed in molten potassium nitrate at 350 to 550 ° C. for 2 to 20 hours. It is typical. From an economical point of view, it is preferable to immerse under conditions of 350 to 500 ° C. and 2 to 16 hours, and a more preferable immersion time is 2 to 10 hours.
  • the method for producing the glass plate in the present invention there are no particular restrictions on the method for producing the glass plate in the present invention. For example, an appropriate amount of various raw materials are prepared, heated to about 1400-1800 ° C. and melted, and then homogenized by defoaming, stirring, etc. It is manufactured by forming into a plate shape by a downdraw method, a press method, etc., and then cooling to a desired size after slow cooling.
  • the glass transition point Tg of the glass of the glass plate in this invention is 400 degreeC or more. Thereby, relaxation of the surface compressive stress during ion exchange can be suppressed. More preferably, it is 550 degreeC or more.
  • the temperature T2 at which the viscosity of the glass of the glass plate in the present invention is 10 2 dPa ⁇ s is preferably 1800 ° C. or lower, more preferably 1750 ° C. or lower.
  • the temperature T4 at which the viscosity of the glass in the present invention is 10 4 dPa ⁇ s is preferably 1350 ° C. or lower.
  • the specific gravity ⁇ of the glass plate in the present invention is preferably 2.37 to 2.55.
  • the Young's modulus E of the glass plate in the present invention is preferably 65 GPa or more. As a result, the rigidity and breaking strength of the glass cover glass are sufficient.
  • the Poisson's ratio ⁇ of the glass plate in the present invention is preferably 0.25 or less. As a result, the scratch resistance of the glass, particularly the scratch resistance after long-term use, is sufficient.
  • the glass plate in the present invention is preferably made of the following glass because it is easy to perform chemical strengthening treatment: Expressed in terms of mole percentage based on oxide, SiO 2 is 56 to 75%, Al 2 O 3 is 5 to 20%, Na 2 O is 8 to 22%, K 2 O is 0 to 10%, MgO is 0 to 14 %, ZrO 2 0-5%, CaO 0-5% glass. In the following, percentage display refers to the content expressed in mole percentage unless otherwise specified.
  • SiO 2 is a component that constitutes the skeleton of glass and is essential, and reduces the occurrence of cracks when scratches (indentations) are made on the glass surface, or the fracture rate when indentations are made after chemical strengthening. It is a component to make small.
  • SiO 2 content is less than 56%, the stability, weather resistance or chipping resistance of the glass is lowered.
  • SiO 2 is preferably 58% or more, more preferably 60% or more. If SiO 2 exceeds 75%, the viscosity of the glass increases and the meltability decreases.
  • Al 2 O 3 is an effective component for improving ion exchange performance and chipping resistance, and is a component that increases the surface compressive stress, or a component that decreases the crack generation rate when indented with a 110 ° indenter. And essential. If Al 2 O 3 is less than 5%, a desired surface compressive stress value or compressive stress layer thickness cannot be obtained by ion exchange. Preferably it is 9% or more. If Al 2 O 3 exceeds 20%, the viscosity of the glass becomes high and uniform melting becomes difficult. Al 2 O 3 is preferably 15% or less, typically 14% or less.
  • the total SiO 2 + Al 2 O 3 content of SiO 2 and Al 2 O 3 is preferably 80% or less. If it exceeds 80%, the viscosity of the glass at high temperature may increase and melting may be difficult, and it is preferably 79% or less, more preferably 78% or less. Further, it is preferable that SiO 2 + Al 2 O 3 is 70% or more. If it is less than 70%, the crack resistance when an indentation is made decreases, more preferably 72% or more.
  • Na 2 O is a component that forms a surface compressive stress layer by ion exchange and improves the meltability of the glass, and is essential. If Na 2 O is less than 8%, it becomes difficult to form a desired surface compressive stress layer by ion exchange, and it is preferably 10% or more, more preferably 11% or more. If Na 2 O exceeds 22%, the weather resistance is lowered, or cracks are likely to occur from the indentation. Preferably it is 21% or less.
  • K 2 O is not essential, but may be contained in a range of 10% or less in order to increase the ion exchange rate. If it exceeds 10%, cracks are likely to occur from the indentation, or the change in surface compressive stress due to the concentration of NaNO 3 in the molten potassium nitrate salt may increase.
  • K 2 O is preferably 5% or less, more preferably 0.8% or less, still more preferably 0.5% or less, and typically 0.3% or less. When it is desired to reduce the change in the surface compressive stress due to the NaNO 3 concentration in the potassium nitrate molten salt, it is preferable not to contain K 2 O.
  • MgO is a component that increases the surface compressive stress and is a component that improves the meltability and is essential. When it is desired to suppress stress relaxation, it is preferable to contain MgO. When MgO is not contained, the degree of stress relaxation tends to change depending on the location of the chemical strengthening treatment tank due to variations in the molten salt temperature when performing chemical strengthening treatment, and as a result, a stable compressive stress value can be obtained. May be difficult. On the other hand, if MgO exceeds 14%, the glass tends to be devitrified, or the change in surface compressive stress due to the concentration of NaNO 3 in the potassium nitrate molten salt may increase, and it is preferably 13% or less.
  • the preferred glass component of the glass plate in the present invention consists essentially of the components described above, but may contain other components as long as the object of the present invention is not impaired. When such components are contained, the total content of these components is preferably less than 2%, more preferably 1% or less.
  • the other components will be described as an example.
  • ZnO may be contained up to 2%, for example, in order to improve the melting property of the glass at a high temperature, but is preferably 1% or less, and 0.5% or less in the case of manufacturing by a float process. It is preferable to make it. If ZnO exceeds 0.5%, it may be reduced during float molding, resulting in a product defect. Typically no ZnO is contained. Since TiO 2 coexists with Fe ions present in the glass, the visible light transmittance is lowered and the glass may be colored brown, so even if it is contained, it is preferably 1% or less. Does not contain.
  • Li 2 O is a component that lowers the strain point to facilitate stress relaxation, and as a result makes it impossible to obtain a stable surface compressive stress layer, so it is preferably not contained, and even if it is contained, its content Is preferably less than 1%, more preferably 0.05% or less, and particularly preferably less than 0.01%.
  • Li 2 O may be eluted in a molten salt such as KNO 3 during chemical strengthening treatment, but when the chemical strengthening treatment is performed using a molten salt containing Li, the surface compressive stress is remarkably reduced. Li 2 O is preferably not contained from this viewpoint.
  • CaO may be contained in a range of 5% or less in order to improve the meltability at high temperature or to prevent devitrification. If the CaO content exceeds 5%, the ion exchange rate or the resistance to cracking decreases. Typically no CaO is contained. SrO may be contained as necessary, but since the effect of lowering the ion exchange rate is greater than that of MgO and CaO, the content is preferably less than 1% even when contained. Typically no SrO is contained. Since BaO has the greatest effect of reducing the ion exchange rate among alkaline earth metal oxides, BaO should not be contained, or even if contained, its content should be less than 1%. preferable.
  • the total content thereof is preferably 1% or less, more preferably less than 0.3%.
  • the total content of these four components is preferably less than 1.5%. If the total is 1.5% or more, the ion exchange rate may be lowered, and is typically 1% or less.
  • the present invention provides a solar cell module using the above glass plates as follows.
  • a solar cell module comprising a plurality of solar cells, a sealing material that seals the solar cells, and a first cover glass that is disposed to face at least one surface of the sealing material
  • the solar cell module wherein the first cover glass is a solar cell cover glass using the above glass plates.
  • each glass plate as a cover glass on both sides of the solar cell module.
  • the first cover glass made of each glass plate 10 a and the second cover glass made of each glass plate 10 b are laminated via a sealing material 22.
  • a plurality of solar cells 23 are enclosed in the sealing material 22.
  • Such a solar cell module of the present invention can be suitably used for a factory roof, a roof of a public transportation station building such as a railroad, and a solar power plant often found in a coastal area.
  • a solar power plant often found in a coastal area.
  • sand, dust, salt, and the like frequently fly in factories, stations, and coastal areas, and as a result of installation over a long period of time, many scratches are likely to occur on the main surface of the glass plate.
  • the weight reduction of solar cell modules is strongly demanded for factory roofs, railway station roofs, and solar power plants as mentioned in points 1 and 2 above.
  • the station building here includes a stop, an airport, and a port.
  • the solar cell module of the present invention having the structure in which the end face of the cover glass is exposed can achieve the weight reduction of the entire solar cell module. This is not as simple as reducing the number of parts to achieve weight reduction. That is, such a configuration can be realized by using a cover glass having sufficient strength that does not require a frame around the solar cell module that functions as a reinforcing member.
  • Example 1 is a glass plate according to the cover glass of the present invention
  • Examples 2 to 4 are glass plates according to comparative examples.
  • the glass plates of Examples 1 and 2 are chemically strengthened glass plates.
  • the type of glass plate of Example 1 is LEOFLEX (registered trademark) manufactured by Asahi Glass Co., Ltd., and each reinforced physical property obtained as a result of the chemical strengthening treatment is adjusted to the value shown in the column of “Example 1” in Table 1. is there.
  • the type of the glass plate of Example 2 is soda lime silica glass, and each reinforced physical property obtained as a result of the chemical strengthening treatment is adjusted to the value shown in the column of “Example 2” in Table 1.
  • the surface compressive stress CS (unit: MPa) of the main surface and the thickness DOL (unit: ⁇ m) of the compressive stress layer on the main surface are measured with a surface stress meter FSM-6000 manufactured by Orihara Seisakusho. did. Moreover, internal tensile stress CT (unit: MPa) was calculated from these values.
  • the kind of glass plate of Examples 3 and 4 is soda-lime silica glass.
  • the measured load is the concentric bending strength (unit: kgf).
  • the glass plate of Example 1 has a bending strength greater than the average value of the concentric bending strength before forming the rubbing line of the glass plate of Example 2 because the concentric bending strength after forming the rubbing line is 70 kgf or more. is there. That is, like the glass plate of Example 2, by providing a certain strength at the initial stage, it may be possible to obtain a cover glass that can reduce the plate thickness and achieve weight reduction. On the other hand, it can be said that the glass plate of Example 1 has sufficient strength even after scratches are formed as a result of long-term use. Furthermore, the glass plate of Example 1 is more than the bending strength after a flaw is formed as a result of long-term use of a glass plate having a large plate thickness like the glass plate of Example 4. As described above, the glass plate of Example 1 has bending strength after long-term use that is comparable to a glass plate having a large thickness even if the thickness is reduced in order to reduce the weight of the solar cell module.
  • the cover glass for a solar cell of the present invention wipes away the concerns at the time of installing the solar cell module, is lightweight, and can secure strength even when installed outdoors for a long period of time.

Abstract

A cover glass for a solar cell having a glass plate having first and second principal surfaces and edge surfaces disposed between the first and second principal surfaces, the cover glass for a solar cell being characterized in that the glass plate has a plate thickness of 0.5 to 1.5 mm and has been subjected to a chemical strengthening treatment, the principal surfaces have a surface compressive stress value of 400 to 1000 MPa, the thickness in the plate thickness direction of a compressive stress layer on the principal surfaces is 15 to 50 μm, and the glass plate has a concentric circle bend strength of at least 30 kgf.

Description

太陽電池用カバーガラスおよび太陽電池モジュールCover glass for solar cell and solar cell module
 本発明は、太陽電池用カバーガラスおよび太陽電池モジュールに関し、特に化学強化処理により板厚が薄くても長期的な使用において破損の低減を達成し得る、太陽電池用カバーガラスとこれを用いた太陽電池モジュールに関する。 The present invention relates to a cover glass for a solar cell and a solar cell module, and more particularly to a cover glass for a solar cell that can achieve reduction of damage in long-term use even if the plate thickness is thin due to a chemical strengthening treatment, and the sun using the same The present invention relates to a battery module.
 化石エネルギー資源の枯渇の懸念から、太陽光発電が普及してきている。特に、日本国内における電力買取制度により、一般家庭、工場、建造物等の屋根・屋上に、太陽電池モジュールが設置される例が増加している。 Solar power generation has become widespread due to concerns about exhaustion of fossil energy resources. In particular, due to the power purchase system in Japan, there are an increasing number of cases where solar cell modules are installed on the roofs and rooftops of ordinary households, factories, buildings, and the like.
 これらの屋根・屋上に太陽電池モジュールを設置するには、建築物の耐振強度を充分確保する必要がある。例えば、新規施工の際には、屋根・屋上に太陽電池モジュールを設置することによる荷重を考慮した、建築物の構造設計がなされる。 In order to install solar cell modules on these roofs and rooftops, it is necessary to ensure sufficient vibration resistance of the building. For example, in the case of new construction, a structural design of a building is made in consideration of a load caused by installing a solar cell module on a roof / rooftop.
 しかし、既築と呼ばれる建設済みの建築物は、設計当初屋根・屋上に太陽電池モジュールの設置を想定していない場合もある。このような既築物件の屋根・屋上に太陽電池モジュールを設置することで、建築物全体の耐震強度や耐風圧強度が不充分となることも懸念される(この懸念を懸念点1という)。 However, there is a case where a built building called an existing building does not assume the installation of a solar cell module on the roof / rooftop at the initial design stage. There is also a concern that the installation of solar cell modules on the roof or roof of such an existing property will result in insufficient seismic strength and wind pressure strength of the entire building (this concern is referred to as concern 1).
 また、広大な敷地に太陽電池モジュールを多数設置した太陽光発電所の計画も進められている。例えば、計画段階で述べられている数10MW級の太陽光発電所においては、太陽電池モジュールが10万枚以上設置されることもある。 Also, a plan for a solar power plant with a large number of solar cell modules installed on a vast site is underway. For example, in a solar power plant of several tens MW class described in the planning stage, 100,000 or more solar cell modules may be installed.
 太陽光発電所を展開する事業者にとって、太陽電池モジュール設置と発電所立上げにかかる工数を抑えることは、事業として成り立ちかつ公共の利益を確保する上で重要である。そのため、多数の太陽電池モジュールの設置に要する工数の増大は、大きな関心事であり懸念点である。この工数の増大の懸念は、太陽光発電所に比べて少数であるものの、前述の新規施工の建築物の屋根・屋上への太陽電池モジュール設置にあたっても同様である(これらの懸念を懸念点2という)。 For businesses deploying solar power plants, it is important to reduce the man-hours required to install solar cell modules and start up power plants in order to ensure business benefits and public benefit. Therefore, an increase in the number of man-hours required for installing a large number of solar cell modules is a major concern and concern. Concerns about the increase in man-hours are small compared to solar power plants, but the same applies to the installation of solar cell modules on the roofs and roofs of the above-mentioned newly constructed buildings. Called).
 懸念点1や2を解決するための有効な手段として、太陽電池モジュールを軽量にすることがあげられる。そのために、太陽電池モジュールの各部品を軽量にする提案が多くなされている。この提案の1つとして、太陽電池モジュールのカバーガラスの薄板化があげられる。 As an effective means for solving the concerns 1 and 2, it is possible to reduce the weight of the solar cell module. For this reason, many proposals have been made to reduce the weight of each part of the solar cell module. One proposal is to make the cover glass of the solar cell module thinner.
 典型的なカバーガラスの板厚としては、従来から3mm程度のものが多かったが、近年では1mm程度のものが提案されている。 As a typical cover glass thickness, a thickness of about 3 mm has been conventionally used, but in recent years, a thickness of about 1 mm has been proposed.
国際公開第2012/108417号International Publication No. 2012/108417
 ところで、既築でも新築でも、屋根・屋上への太陽電池モジュールの設置にあたっては、建築物としての耐震性や耐風圧性の確保や、太陽電池モジュールの個体としての耐久性が必要である。例えば、飛来物に対する強度や積雪荷重に対する強度を考慮して、カバーガラスはその強度が確保されている。これらの強度は、JIS C8990の規定に係る機械的荷重試験で表される。太陽電池モジュールの軽量化のためにカバーガラスを1.5mm以下程度に薄くした場合であっても、良好な強度を確保するため、カバーガラスを構成するガラス板を強化処理することが考えられている。板厚が1.5mm以下程度のガラス板の場合、この強化処理として、化学強化処理が考えられる。 By the way, when installing a solar cell module on a roof or a roof, whether it is an existing building or a new building, it is necessary to ensure earthquake resistance and wind pressure resistance as a building and durability as an individual solar cell module. For example, considering the strength against flying objects and the strength against snow load, the strength of the cover glass is ensured. These strengths are represented by a mechanical load test according to JIS C8990. Even if the cover glass is thinned to about 1.5 mm or less to reduce the weight of the solar cell module, it is considered that the glass plate constituting the cover glass is strengthened to ensure good strength. Yes. In the case of a glass plate having a plate thickness of about 1.5 mm or less, chemical strengthening treatment can be considered as this strengthening treatment.
 しかし、現存するこれらの強度に対する基準等には、長期使用における課題が考慮されていない。すなわち、建築物や太陽光発電所は、数10年単位での使用が想定されたものである。このような期間を経たときのカバーガラスの表面の状態については、これまでまったく着目されていなかった。 However, the existing standards for these strengths do not take into account issues in long-term use. That is, buildings and solar power plants are assumed to be used in units of several tens of years. Until now, no attention has been paid to the state of the surface of the cover glass when the period has passed.
 太陽電池モジュールは屋外での使用であり、長年の屋外設置の過程で、カバーガラスの表面には多くの傷が生じ得る。そのため、初期段階で各種事象に対する強度を確保していても、長期使用後にはその強度を充分確保できていないことがあり得る。特に、このような長期間経過後に、化学強化処理をした1.5mm以下のガラス板が、太陽電池用カバーガラスとしての強度を備えているかは、検討がなされていない。 The solar cell module is used outdoors, and many scratches can occur on the surface of the cover glass in the process of outdoor installation for many years. Therefore, even if the strength against various events is secured at the initial stage, the strength may not be sufficiently secured after long-term use. In particular, it has not been investigated whether a glass plate of 1.5 mm or less subjected to chemical strengthening treatment has strength as a cover glass for solar cells after such a long period of time has passed.
 本発明は、設置における懸念点1、2を払拭するための軽量化に寄与し、かつ経時変化を考慮した、太陽電池用カバーガラスの提供を目的とする。 The present invention has an object to provide a cover glass for a solar cell that contributes to weight reduction for wiping out concerns 1 and 2 in installation, and that takes into account changes over time.
 本発明は、第1および第2の主面、ならびに第1および第2の主面間に介在する端面を有するガラス板を有する太陽電池用カバーガラスにおいて、
 前記ガラス板は、板厚が0.5~1.5mmで、化学強化処理されており、
 前記主面の表面圧縮応力値が400~1000MPaであり、前記主面における圧縮応力層の板厚方向の厚さが15~50μmであり、
 前記ガラス板は、以下の方法で得られる同心円曲げ強度が30kgf以上であることを特徴とする、太陽電池用カバーガラスを提供する:
 (1)前記ガラス板から、平面視で縦50mm、横50mmの正方形状のガラス片を取得し、
 (2)該ガラス片の前記横の方向の中心線から上下それぞれ10mmの範囲に、前記縦の方向の中心線から3mm右側に平行移動させた線にそって、10mm×10mmの正方形状の400番手のサンドペーパを1.5kgfの荷重で3往復させて、第1の主面に前記縦の方向に20mmの長さの擦り線を形成し、
 (3)径30mmの支持リング上に、前記ガラス片の第1の主面が支持リングと接し、前記ガラス片と前記支持リングの中心点が重なるようにして、前記ガラス片を前記支持リング上に設置し、
 (4)前記ガラス片の上に、径10mmの荷重リングを、両者の中心点が重なるように載置し、
 (5)前記荷重リング側から前記ガラス片に、1mm/分で荷重を負荷したとき、前記ガラス片に破壊が生じる荷重を同心円曲げ強度とする。
The present invention relates to a solar cell cover glass having a glass plate having first and second main surfaces and an end surface interposed between the first and second main surfaces.
The glass plate has a thickness of 0.5 to 1.5 mm and is chemically strengthened.
The surface compressive stress value of the main surface is 400 to 1000 MPa, and the thickness of the compressive stress layer on the main surface in the thickness direction is 15 to 50 μm,
The glass plate provides a cover glass for a solar cell, characterized in that a concentric bending strength obtained by the following method is 30 kgf or more:
(1) Obtain a square glass piece having a length of 50 mm and a width of 50 mm in plan view from the glass plate,
(2) A square 400 mm of 10 mm × 10 mm along a line translated from the center line in the horizontal direction of the glass piece up and down by 10 mm each and 3 mm to the right from the center line in the vertical direction. The sandpaper of the count is reciprocated three times with a load of 1.5 kgf to form a rubbing line having a length of 20 mm in the vertical direction on the first main surface,
(3) On the support ring having a diameter of 30 mm, the first main surface of the glass piece is in contact with the support ring, and the glass piece and the center point of the support ring overlap so that the glass piece is placed on the support ring. Installed in
(4) A load ring having a diameter of 10 mm is placed on the glass piece so that the center points of the two overlap.
(5) When a load is applied to the glass piece from the load ring side at 1 mm / min, the load at which the glass piece is broken is defined as a concentric bending strength.
 また、本発明は、そのような太陽電池用カバーガラスを備える太陽電池モジュールを提供する。 Moreover, this invention provides a solar cell module provided with such a cover glass for solar cells.
 本発明によれば、設置における懸念点1、2を払拭するための軽量化に寄与し、かつ長期使用後の強度が確保された、太陽電池用カバーガラスが得られる。 According to the present invention, it is possible to obtain a cover glass for a solar cell that contributes to weight reduction for wiping out the concerns 1 and 2 in installation, and has ensured strength after long-term use.
本発明の太陽電池用カバーガラスの一例を示した斜視図である。It is the perspective view which showed an example of the cover glass for solar cells of this invention. ガラス片の同心円曲げ強度の測定方法を概略的に示した図である。図2(a)は、ガラス片に擦り線を形成した状態を示しており、図2(b)は、ガラス片に荷重を印加する様子を示している。It is the figure which showed roughly the measuring method of the concentric-circle bending strength of a glass piece. FIG. 2A shows a state in which rubbing lines are formed on the glass piece, and FIG. 2B shows a state in which a load is applied to the glass piece. 本発明の太陽電池モジュールの一例を示した概略部分断面図である。It is the general | schematic fragmentary sectional view which showed an example of the solar cell module of this invention.
 以下、図面に基づき本発明の太陽電池用カバーガラスの一例を詳細に説明する。 Hereinafter, an example of the cover glass for a solar cell of the present invention will be described in detail with reference to the drawings.
 図1は、本発明の太陽電池用カバーガラスの一例を示した斜視図である。太陽電池用カバーガラス1は、板厚tが0.5~1.5mmのガラス板10からなる。ガラス板10は、第1および第2の主面11a、11b、ならびに主面11a、11b間に介在する端面12を有する。ガラス板10は、主面11a、11bにおいて板厚方向に15~50μmの圧縮応力層を有する化学強化処理されたガラス板である。主面11a、11bの圧縮応力値は、400~1000MPaである。 FIG. 1 is a perspective view showing an example of the cover glass for a solar cell of the present invention. The solar cell cover glass 1 is composed of a glass plate 10 having a thickness t of 0.5 to 1.5 mm. The glass plate 10 has the 1st and 2nd main surfaces 11a and 11b and the end surface 12 interposed between the main surfaces 11a and 11b. The glass plate 10 is a chemically strengthened glass plate having a compressive stress layer of 15 to 50 μm in the plate thickness direction on the main surfaces 11a and 11b. The compressive stress values of the main surfaces 11a and 11b are 400 to 1000 MPa.
 さらにこのガラス板10は、主面11aに所定の傷を加えた後の曲げ強度が高いガラス板である。すなわち、このガラス板10は、縦50mm、横50mmに切りだしたガラス片が所定の同心円曲げ強度を有するものである。 Furthermore, this glass plate 10 is a glass plate having a high bending strength after a predetermined scratch is applied to the main surface 11a. That is, in this glass plate 10, a glass piece cut out to 50 mm in length and 50 mm in width has a predetermined concentric bending strength.
 前記所定の同心円曲げ強度について、図2を用いて説明する。 The predetermined concentric bending strength will be described with reference to FIG.
 図2は、ガラス片の同心円曲げ強度の測定方法を概略的に示した図である。図2(a)は、ガラス片に擦り線を形成した状態を示しており、図2(b)は、ガラス片に荷重を印加する様子を示している。 FIG. 2 is a diagram schematically showing a method for measuring the concentric bending strength of a glass piece. FIG. 2A shows a state in which rubbing lines are formed on the glass piece, and FIG. 2B shows a state in which a load is applied to the glass piece.
 ガラス片の同心円曲げ強度を測定する場合、まず、前記ガラス板10から、平面視で縦50mm、横50mmの正方形状のガラス片100が採取される。ガラス片100は、例えば、ガラス板10の正面視中心点がガラス片100の中心点になるように切り出される。 When measuring the concentric bending strength of a glass piece, first, a square glass piece 100 having a length of 50 mm and a width of 50 mm in a plan view is collected from the glass plate 10. The glass piece 100 is cut out so that, for example, the front view center point of the glass plate 10 becomes the center point of the glass piece 100.
 次に、図2(a)に示すように、ガラス片100の横の方向の中心線HLから上下それぞれ10mmの範囲に、縦の方向の中心線VLから3mm右側に平行移動させた線にそって、10mm×10mmの正方形状の400番手のサンドペーパを1.5kgfの荷重で3往復させることにより、ガラス片100の第1の主面11aに、縦の方向に20mmの長さの擦り線50が形成される。 Next, as shown in FIG. 2 (a), along the line translated from the center line HL in the horizontal direction of the glass piece 100 by 10 mm above and below from the center line VL in the vertical direction and 3 mm to the right from the center line VL in the vertical direction. Then, a 10 mm × 10 mm square 400th sandpaper is reciprocated three times with a load of 1.5 kgf, whereby a rubbing line 50 having a length of 20 mm in the vertical direction is formed on the first main surface 11a of the glass piece 100. Is formed.
 次に、図2(b)に示すように、径30mmの支持リング30上に、ガラス片100が置載される。この際には、ガラス片100の第1の主面11aが支持リング30と接し、さらにガラス片100と支持リング30の両中心点が重なるようにして、ガラス片100が支持リング30上に設置される。 Next, as shown in FIG. 2B, the glass piece 100 is placed on the support ring 30 having a diameter of 30 mm. At this time, the glass piece 100 is placed on the support ring 30 such that the first main surface 11a of the glass piece 100 is in contact with the support ring 30 and the center points of the glass piece 100 and the support ring 30 are overlapped. Is done.
 次に、ガラス片100(の第2の主面)の上に、径10mmの荷重リング40が置載される。この際には、ガラス片100と荷重リング40の両中心点が重なるようにして、荷重リング40がガラス片100上に設置される。 Next, a load ring 40 having a diameter of 10 mm is placed on the glass piece 100 (second main surface thereof). At this time, the load ring 40 is installed on the glass piece 100 so that both center points of the glass piece 100 and the load ring 40 overlap.
 次に、この状態で、荷重リング40の側からガラス片100に、1mm/分で荷重を負荷する。この荷重印加によって、ガラス片100に破壊が生じる荷重を同心円曲げ強度とする。 Next, in this state, a load is applied to the glass piece 100 from the load ring 40 side at a rate of 1 mm / min. The load at which the glass piece 100 is broken by this load application is defined as a concentric bending strength.
 ガラス板10は、この方法で測定される同心円曲げ強度が30kgf以上であるという特徴を有する。 The glass plate 10 has a feature that the concentric bending strength measured by this method is 30 kgf or more.
 次に、本発明のカバーガラスにこのような所定の強度を有するガラス板を用いることが有益である原理を説明する。上述のとおり、従来は長期使用の結果ガラス板の主面に発生し得る傷を充分考慮していなかった。本発明者らは、この長期使用によって生じる従来考慮されていなかった新規な課題に対し取り組んだ結果、本発明におけるガラス板が太陽電池用カバーガラスに適していることを見出した。 Next, the principle that it is beneficial to use a glass plate having such a predetermined strength for the cover glass of the present invention will be described. As described above, conventionally, scratches that may occur on the main surface of the glass plate as a result of long-term use have not been fully considered. As a result of tackling a new problem that has not been considered in the past, the present inventors have found that the glass plate of the present invention is suitable for a cover glass for a solar cell.
 すなわち、長年の屋外使用環境では、飛来する砂塵や付着した砂塵やごみが主面を擦ることによって、微細な擦り傷が生じる。このような傷は、使用期間が長くなればなるほど、多くなっていく。これまで長期、例えば10年の屋外使用環境での使用の結果生じる傷の深さは充分検討されてきていなかったが、本発明者らはこれらの傷の深さが10μm程度であることを見出した。また、10年程度屋外使用した後に発生する傷は、10個/400cm~50個/400cmの範囲であった。このような傷の個数は、使用地域によっても異なり、沿岸部や車、鉄道などの交通量の多い地域では増大する。 That is, in the outdoor use environment for many years, fine scratches are caused by the dust that comes in, the dust that adheres, or dust rubs the main surface. Such scratches increase as the period of use increases. Until now, the depth of scratches resulting from use in an outdoor use environment for a long time, for example, 10 years has not been sufficiently studied, but the present inventors have found that the depth of these scratches is about 10 μm. It was. Further, the number of scratches that occurred after outdoor use for about 10 years was in the range of 10/400 cm 2 to 50/400 cm 2 . The number of such scratches varies depending on the area of use, and increases in areas with high traffic such as coastal areas, cars, and railways.
 このとき、従来のカバーガラスのように、板厚が3mm程度であれば、カバーガラス自体が剛性を備えることで、風や雪などの静荷重によるたわみを抑制できる。しかし、板厚が1.5mm以下であると、これらの静荷重によるたわみが大きくなる。その結果、主面に傷が生じていることで、この傷を起点としてカバーガラスが割れやすくなる。 At this time, if the plate thickness is about 3 mm as in the case of a conventional cover glass, the cover glass itself has rigidity, so that the deflection due to a static load such as wind or snow can be suppressed. However, when the plate thickness is 1.5 mm or less, the deflection due to these static loads increases. As a result, since the main surface is scratched, the cover glass is easily broken starting from the scratch.
 この割れやすさを低減させるために、太陽電池モジュール自体を、周辺にフレームを装着したり裏面側に補強レールを装着したりするなどにより、カバーガラスのたわみを低減し得る構造にすることもできる。しかし、そのためにはこれらの補強部材の追加により重量が増大し、カバーガラスを薄板化する効果が薄れる。 In order to reduce this ease of cracking, the solar cell module itself can be structured to reduce the deflection of the cover glass by attaching a frame to the periphery or a reinforcing rail on the back side. . However, for this purpose, the weight increases due to the addition of these reinforcing members, and the effect of thinning the cover glass is reduced.
 そこで本発明のカバーガラスのように、所定の傷を加えた後の曲げ強度が高いガラス板を用いることで、補強部材を過剰に追加することなく、長期使用後のカバーガラスの強度を保持できる。特に、本発明のカバーガラスを用いた太陽電池モジュールは、過剰な補強部材を用いることなく、良好な耐久性を発揮する。例えば、本発明のカバーガラスを用いた太陽電池モジュールは、JIS C8990「機械荷重試験」をクリアし、長期使用後であっても、風や雪などに対して良好な耐久性を示す。 Therefore, the strength of the cover glass after long-term use can be maintained without adding an excessive reinforcing member by using a glass plate having a high bending strength after applying a predetermined scratch like the cover glass of the present invention. . In particular, the solar cell module using the cover glass of the present invention exhibits good durability without using an excessive reinforcing member. For example, the solar cell module using the cover glass of the present invention clears JIS C8990 “mechanical load test” and exhibits good durability against wind and snow even after long-term use.
 本発明におけるガラス板は、上述のガラス片が同心円曲げ強度を70kgf以上備えるガラス板であることが好ましい。この場合、長期使用後に想定され得る傷が生じたとしても、板厚が3mm程度のガラス板を用いた場合に得られるカバーガラスの曲げ強度と同程度以上の曲げ強度を得ることができる。また、これにより、太陽電池モジュールとして、カバーガラスを薄板にすることで懸念される強度低下を補完するための、補強部材の追加が不要となる。 The glass plate in the present invention is preferably a glass plate in which the above glass piece has a concentric circular bending strength of 70 kgf or more. In this case, even if damage that can be assumed after long-term use occurs, a bending strength equal to or higher than the bending strength of the cover glass obtained when a glass plate having a thickness of about 3 mm is used can be obtained. Thereby, as a solar cell module, the addition of a reinforcing member for supplementing the strength reduction which is a concern due to the thin cover glass is eliminated.
 本発明におけるガラス板は、主面の表面圧縮応力値が550~800MPaであり、主面における圧縮応力層の板厚方向の厚さが20~45μmであることが好ましい。これは、主面の表面圧縮応力値や主面における圧縮応力層の板厚方向の厚さが大きすぎると、内部引張応力値が過剰に大きくなるからである。すなわち屋外では、長期使用における傷の発生とは別に、落石、投石、雹により、鋭利な物体が強くカバーガラスに衝突することがある。このような物体の衝突により、主面の圧縮応力層を突き抜ける割れが生じる。そのときに、内部の引張応力が大きすぎると破壊が進行しやすい。この点から、本発明におけるガラス板の内部の引張応力値としては、10~60MPaが好ましい。 The glass plate of the present invention preferably has a surface compressive stress value of 550 to 800 MPa on the main surface and a thickness in the plate thickness direction of the compressive stress layer on the main surface of 20 to 45 μm. This is because if the surface compressive stress value of the main surface and the thickness of the compressive stress layer on the main surface in the thickness direction are too large, the internal tensile stress value becomes excessively large. In other words, in addition to the occurrence of scratches during long-term use, sharp objects may collide strongly with the cover glass due to falling rocks, stones, or traps. Such a collision of the object causes a crack that penetrates the compressive stress layer of the main surface. At that time, if the internal tensile stress is too large, the fracture is likely to proceed. From this point, the tensile stress value inside the glass plate in the present invention is preferably 10 to 60 MPa.
 本発明におけるガラス板としては、主面の面積が1m以上であることが、本発明の効果を発揮するものとして有益である。すなわち、太陽電池モジュールの面積が増大すればたわみの絶対値が大きくなりやすい。したがって、従来のガラス板であればこのようなたわみを抑制するために必要な補強部材が過剰になるが、本発明におけるガラス板であれば、長期使用後、すなわち傷が加わった後の曲げ強度が高いため、補強部材を増やす必要がない。 As the glass plate in the present invention, it is useful that the area of the main surface is 1 m 2 or more to exhibit the effects of the present invention. That is, if the area of the solar cell module increases, the absolute value of deflection tends to increase. Therefore, if it is a conventional glass plate, the reinforcing member necessary to suppress such deflection becomes excessive, but if it is a glass plate in the present invention, the bending strength after long-term use, that is, after scratches are added Therefore, it is not necessary to increase the number of reinforcing members.
 本発明におけるガラス板の板厚は、0.7~1.2mm、さらには1.0mm未満であることが、本発明の効果を発揮するものとして有益である。すなわち、ガラス板の板厚が減少すればたわみの絶対値が大きくなりやすい。したがって、従来のガラス板であればこのようなたわみを抑制するために必要な補強部材が過剰になるが、本発明におけるガラス板であれば、長期使用後、すなわち傷が加わった後の曲げ強度が高いため、補強部材を増やす必要がない。 It is useful that the thickness of the glass plate in the present invention is 0.7 to 1.2 mm, and further less than 1.0 mm, as an effect of the present invention. That is, if the thickness of the glass plate decreases, the absolute value of the deflection tends to increase. Therefore, if it is a conventional glass plate, the reinforcing member necessary to suppress such deflection becomes excessive, but if it is a glass plate in the present invention, the bending strength after long-term use, that is, after scratches are added Therefore, it is not necessary to increase the number of reinforcing members.
 本発明におけるガラス板は、主面とともに端面にも圧縮応力層が形成されていてもよい。ただし、例えば、化学強化後に所望の形状にガラス板を切断した場合等には、端面に圧縮応力層が存在しない場合もある。本発明における圧縮応力は、ガラス板の主面方向に均一に形成されていても、面内に分布を有していてもよい。上記の化学強化処理によれば、処理むらを除けばほぼ均一に圧縮応力が得られる。そのため、圧縮応力に関する種々に値の測定にあたっては、主面の中央(ガラス板が矩形の場合には対角線の交わる点、矩形でない場合もこれに準じた点)を代表点とすればよい。 The glass plate in the present invention may have a compressive stress layer formed on the end surface as well as the main surface. However, for example, when the glass plate is cut into a desired shape after chemical strengthening, the compressive stress layer may not exist on the end face. Even if the compressive stress in this invention is uniformly formed in the main surface direction of the glass plate, it may have distribution within a surface. According to the above chemical strengthening treatment, compressive stress can be obtained almost uniformly except for treatment unevenness. Therefore, when measuring various values related to compressive stress, the center of the main surface (a point where diagonal lines intersect when the glass plate is rectangular, or a point corresponding to this when the glass plate is not rectangular) may be used as a representative point.
 本発明におけるガラス板を得るための化学強化処理の方法としては、ガラス表層のNaと溶融塩中のKとをイオン交換できるものであれば特に制限はないが、たとえば加熱された硝酸カリウム溶融塩にガラスを浸漬する方法が挙げられる。なお、本発明において硝酸カリウム溶融塩または硝酸カリウム塩はKNOの他、KNOと10質量%以下のNaNOを含有するものなどを含む。
  ガラスに所望の表面圧縮応力を有する圧縮応力層を形成するための化学強化処理条件はガラス板の板厚などによっても異なるが、350~550℃の硝酸カリウム溶融塩に2~20時間ガラス基板を浸漬させることが典型的である。経済的な観点からは350~500℃、2~16時間の条件で浸漬させることが好ましく、より好ましい浸漬時間は2~10時間である。
The method of chemical strengthening treatment for obtaining the glass plate in the present invention is not particularly limited as long as it can ion-exchange Na in the glass surface layer and K in the molten salt, but for example, heated potassium nitrate molten salt The method of immersing glass is mentioned. Incidentally, potassium nitrate molten salt, or potassium nitrate salts in the present invention other KNO 3, including those containing KNO 3 and 10 wt% or less of NaNO 3.
The chemical strengthening treatment conditions for forming a compressive stress layer having a desired surface compressive stress on glass vary depending on the thickness of the glass plate, but the glass substrate is immersed in molten potassium nitrate at 350 to 550 ° C. for 2 to 20 hours. It is typical. From an economical point of view, it is preferable to immerse under conditions of 350 to 500 ° C. and 2 to 16 hours, and a more preferable immersion time is 2 to 10 hours.
 本発明におけるガラス板の製造方法に特に制限はないが、たとえば種々の原料を適量調合し、約1400~1800℃に加熱し溶融した後、脱泡、攪拌などにより均質化し、周知のフロート法、ダウンドロー法、プレス法などによって板状に成形し、徐冷後所望のサイズに切断して製造される。 There are no particular restrictions on the method for producing the glass plate in the present invention. For example, an appropriate amount of various raw materials are prepared, heated to about 1400-1800 ° C. and melted, and then homogenized by defoaming, stirring, etc. It is manufactured by forming into a plate shape by a downdraw method, a press method, etc., and then cooling to a desired size after slow cooling.
 本発明におけるガラス板のガラスのガラス転移点Tgは400℃以上であることが好ましい。これによって、イオン交換時の表面圧縮応力の緩和を抑止できる。より好ましくは550℃以上である。
  本発明におけるガラス板のガラスの粘度が10dPa・sとなる温度T2は好ましくは1800℃以下、より好ましくは1750℃以下である。
  本発明におけるガラスの粘度が10dPa・sとなる温度T4は1350℃以下であることが好ましい。
It is preferable that the glass transition point Tg of the glass of the glass plate in this invention is 400 degreeC or more. Thereby, relaxation of the surface compressive stress during ion exchange can be suppressed. More preferably, it is 550 degreeC or more.
The temperature T2 at which the viscosity of the glass of the glass plate in the present invention is 10 2 dPa · s is preferably 1800 ° C. or lower, more preferably 1750 ° C. or lower.
The temperature T4 at which the viscosity of the glass in the present invention is 10 4 dPa · s is preferably 1350 ° C. or lower.
 本発明におけるガラス板のガラスの比重ρは2.37~2.55であることが好ましい。
  本発明におけるガラス板のガラスのヤング率Eは65GPa以上であることが好ましい。これによって、ガラスのカバーガラスとしての剛性や破壊強度が充分となる。
  本発明におけるガラス板のガラスのポアソン比σは0.25以下であることが好ましい。これによってガラスの耐傷つき性、特に長期使用後の耐傷つき性が充分となる。
The specific gravity ρ of the glass plate in the present invention is preferably 2.37 to 2.55.
The Young's modulus E of the glass plate in the present invention is preferably 65 GPa or more. As a result, the rigidity and breaking strength of the glass cover glass are sufficient.
The Poisson's ratio σ of the glass plate in the present invention is preferably 0.25 or less. As a result, the scratch resistance of the glass, particularly the scratch resistance after long-term use, is sufficient.
 本発明におけるガラス板は、次のガラスからなることが、化学強化処理を施しやすく好ましい:
 酸化物基準のモル百分率表示で、SiOを56~75%、Alを5~20%、NaOを8~22%、KOを0~10%、MgOを0~14%、ZrOを0~5%、CaOを0~5%含有するガラス。なお、以降百分率表示は、特に断らない限りモル百分率表示含有量を指す。
SiOはガラスの骨格を構成する成分であり必須であり、また、ガラス表面に傷(圧痕)がついた時のクラックの発生を低減させる、または化学強化後に圧痕をつけた時の破壊率を小さくする成分である。SiOが56%未満ではガラスとしての安定性や耐候性またはチッピング耐性が低下する。SiOは好ましくは58%以上、より好ましくは60%以上である。SiOが75%超ではガラスの粘性が増大して溶融性が低下する。
The glass plate in the present invention is preferably made of the following glass because it is easy to perform chemical strengthening treatment:
Expressed in terms of mole percentage based on oxide, SiO 2 is 56 to 75%, Al 2 O 3 is 5 to 20%, Na 2 O is 8 to 22%, K 2 O is 0 to 10%, MgO is 0 to 14 %, ZrO 2 0-5%, CaO 0-5% glass. In the following, percentage display refers to the content expressed in mole percentage unless otherwise specified.
SiO 2 is a component that constitutes the skeleton of glass and is essential, and reduces the occurrence of cracks when scratches (indentations) are made on the glass surface, or the fracture rate when indentations are made after chemical strengthening. It is a component to make small. If the SiO 2 content is less than 56%, the stability, weather resistance or chipping resistance of the glass is lowered. SiO 2 is preferably 58% or more, more preferably 60% or more. If SiO 2 exceeds 75%, the viscosity of the glass increases and the meltability decreases.
 Alはイオン交換性能およびチッピング耐性を向上させるために有効な成分であり、表面圧縮応力を大きくする成分であり、または110°圧子で圧痕をつけた時のクラック発生率を小さくする成分であり、必須である。Alが5%未満ではイオン交換により、所望の表面圧縮応力値または圧縮応力層厚みが得られなくなる。好ましくは9%以上である。Alが20%超ではガラスの粘性が高くなり均質な溶融が困難になる。Alは好ましくは15%以下、典型的には14%以下である。 Al 2 O 3 is an effective component for improving ion exchange performance and chipping resistance, and is a component that increases the surface compressive stress, or a component that decreases the crack generation rate when indented with a 110 ° indenter. And essential. If Al 2 O 3 is less than 5%, a desired surface compressive stress value or compressive stress layer thickness cannot be obtained by ion exchange. Preferably it is 9% or more. If Al 2 O 3 exceeds 20%, the viscosity of the glass becomes high and uniform melting becomes difficult. Al 2 O 3 is preferably 15% or less, typically 14% or less.
 SiOおよびAlの含有量の合計SiO+Alは80%以下であることが好ましい。80%超では高温でのガラスの粘性が増大し、溶融が困難となるおそれがあり、好ましくは79%以下、より好ましくは78%以下である。また、SiO+Alは70%以上であることが好ましい。70%未満では圧痕がついた時のクラック耐性が低下し、より好ましくは72%以上である。 The total SiO 2 + Al 2 O 3 content of SiO 2 and Al 2 O 3 is preferably 80% or less. If it exceeds 80%, the viscosity of the glass at high temperature may increase and melting may be difficult, and it is preferably 79% or less, more preferably 78% or less. Further, it is preferable that SiO 2 + Al 2 O 3 is 70% or more. If it is less than 70%, the crack resistance when an indentation is made decreases, more preferably 72% or more.
 NaOはイオン交換により表面圧縮応力層を形成させ、またガラスの溶融性を向上させる成分であり、必須である。NaOが8%未満ではイオン交換により所望の表面圧縮応力層を形成することが困難となり、好ましくは10%以上、より好ましくは11%以上である。NaOが22%超では耐候性が低下する、または圧痕からクラックが発生しやすくなる。好ましくは21%以下である。 Na 2 O is a component that forms a surface compressive stress layer by ion exchange and improves the meltability of the glass, and is essential. If Na 2 O is less than 8%, it becomes difficult to form a desired surface compressive stress layer by ion exchange, and it is preferably 10% or more, more preferably 11% or more. If Na 2 O exceeds 22%, the weather resistance is lowered, or cracks are likely to occur from the indentation. Preferably it is 21% or less.
 KOは必須ではないがイオン交換速度を増大させるため、10%以下の範囲で含有してもよい。10%超では圧痕からクラックが発生しやすくなる、または硝酸カリウム溶融塩中のNaNO濃度による表面圧縮応力の変化が大きくなるおそれがある。KOは好ましくは5%以下、より好ましくは0.8%以下、さらに好ましくは0.5%以下、典型的には0.3%以下である。硝酸カリウム溶融塩中のNaNO濃度による表面圧縮応力の変化を小さくしたい場合にはKOは含有しないことが好ましい。 K 2 O is not essential, but may be contained in a range of 10% or less in order to increase the ion exchange rate. If it exceeds 10%, cracks are likely to occur from the indentation, or the change in surface compressive stress due to the concentration of NaNO 3 in the molten potassium nitrate salt may increase. K 2 O is preferably 5% or less, more preferably 0.8% or less, still more preferably 0.5% or less, and typically 0.3% or less. When it is desired to reduce the change in the surface compressive stress due to the NaNO 3 concentration in the potassium nitrate molten salt, it is preferable not to contain K 2 O.
 MgOは表面圧縮応力を大きくする成分であり、また溶融性を向上させる成分であり、必須である。応力緩和を抑制したい場合などにはMgOを含有させることが好ましい。MgOを含有しない場合は化学強化処理を行う際に溶融塩温度のばらつきに起因して応力緩和の度合いが化学強化処理槽の場所により変化しやすくなり、その結果安定した圧縮応力値を得ることが困難になるおそれがある。また、MgOが14%超ではガラスが失透しやすくなり、または硝酸カリウム溶融塩中のNaNO濃度による表面圧縮応力の変化が大きくなるおそれがあり、好ましくは13%以下である。 MgO is a component that increases the surface compressive stress and is a component that improves the meltability and is essential. When it is desired to suppress stress relaxation, it is preferable to contain MgO. When MgO is not contained, the degree of stress relaxation tends to change depending on the location of the chemical strengthening treatment tank due to variations in the molten salt temperature when performing chemical strengthening treatment, and as a result, a stable compressive stress value can be obtained. May be difficult. On the other hand, if MgO exceeds 14%, the glass tends to be devitrified, or the change in surface compressive stress due to the concentration of NaNO 3 in the potassium nitrate molten salt may increase, and it is preferably 13% or less.
 本発明におけるガラス板の好ましいガラス成分は本質的に以上で説明した成分からなるが、本発明の目的を損なわない範囲でその他の成分を含有してもよい。そのような成分を含有する場合、それら成分の含有量の合計は2%未満であることが好ましく、より好ましくは1%以下である。以下、上記その他成分について例示的に説明する。 The preferred glass component of the glass plate in the present invention consists essentially of the components described above, but may contain other components as long as the object of the present invention is not impaired. When such components are contained, the total content of these components is preferably less than 2%, more preferably 1% or less. Hereinafter, the other components will be described as an example.
 ZnOはガラスの高温での溶融性を向上するためにたとえば2%まで含有してもよい場合があるが、好ましくは1%以下であり、フロート法で製造する場合などには0.5%以下にすることが好ましい。ZnOが0.5%超ではフロート成型時に還元し製品欠点となるおそれがある。典型的にはZnOは含有しない。
  TiOはガラス中に存在するFeイオンと共存することにより、可視光透過率を低下させ、ガラスを褐色に着色するおそれがあるので、含有するとしても1%以下であることが好ましく、典型的には含有しない。
ZnO may be contained up to 2%, for example, in order to improve the melting property of the glass at a high temperature, but is preferably 1% or less, and 0.5% or less in the case of manufacturing by a float process. It is preferable to make it. If ZnO exceeds 0.5%, it may be reduced during float molding, resulting in a product defect. Typically no ZnO is contained.
Since TiO 2 coexists with Fe ions present in the glass, the visible light transmittance is lowered and the glass may be colored brown, so even if it is contained, it is preferably 1% or less. Does not contain.
 LiOは歪点を低くして応力緩和を起こりやすくし、その結果安定した表面圧縮応力層を得られなくする成分であるので含有しないことが好ましく、含有する場合であってもその含有量は1%未満であることが好ましく、より好ましくは0.05%以下、特に好ましくは0.01%未満である。 Li 2 O is a component that lowers the strain point to facilitate stress relaxation, and as a result makes it impossible to obtain a stable surface compressive stress layer, so it is preferably not contained, and even if it is contained, its content Is preferably less than 1%, more preferably 0.05% or less, and particularly preferably less than 0.01%.
 また、LiOは化学強化処理時にKNOなどの溶融塩中に溶出することがあるが、Liを含有する溶融塩を用いて化学強化処理を行うと表面圧縮応力が著しく低下する。LiOはこの観点からは含有しないことが好ましい。 In addition, Li 2 O may be eluted in a molten salt such as KNO 3 during chemical strengthening treatment, but when the chemical strengthening treatment is performed using a molten salt containing Li, the surface compressive stress is remarkably reduced. Li 2 O is preferably not contained from this viewpoint.
 CaOは高温での溶融性を向上させる、または失透を起こりにくくするために5%以下の範囲で含有してもよい。CaOが5%超ではイオン交換速度またはクラック発生に対する耐性が低下する。典型的にはCaOは含有しない。
  SrOは必要に応じて含有してもよいが、MgO、CaOに比べてイオン交換速度を低下させる効果が大きいので含有する場合であってもその含有量は1%未満であることが好ましい。典型的にはSrOは含有しない。
  BaOはアルカリ土類金属酸化物の中でイオン交換速度を低下させる効果が最も大きいので、BaOは含有しないこととするか、含有する場合であってもその含有量は1%未満とすることが好ましい。
CaO may be contained in a range of 5% or less in order to improve the meltability at high temperature or to prevent devitrification. If the CaO content exceeds 5%, the ion exchange rate or the resistance to cracking decreases. Typically no CaO is contained.
SrO may be contained as necessary, but since the effect of lowering the ion exchange rate is greater than that of MgO and CaO, the content is preferably less than 1% even when contained. Typically no SrO is contained.
Since BaO has the greatest effect of reducing the ion exchange rate among alkaline earth metal oxides, BaO should not be contained, or even if contained, its content should be less than 1%. preferable.
 SrOまたはBaOを含有する場合それらの含有量の合計は1%以下であることが好ましく、より好ましくは0.3%未満である。
  CaO、SrO、BaOおよびZrOのいずれか1以上を含有する場合それら4成分の含有量の合計は1.5%未満であることが好ましい。当該合計が1.5%以上ではイオン交換速度が低下するおそれがあり、典型的には1%以下である。
When SrO or BaO is contained, the total content thereof is preferably 1% or less, more preferably less than 0.3%.
When one or more of CaO, SrO, BaO and ZrO 2 are contained, the total content of these four components is preferably less than 1.5%. If the total is 1.5% or more, the ion exchange rate may be lowered, and is typically 1% or less.
 さらに本発明は、上記の各ガラス板を次のように用いた太陽電池モジュールを提供する。複数の太陽電池セルと、該複数の太陽電池セルを封止する封止材と、該封止材の少なくとも一方の面に対向配置される第1のカバーガラスと、を具えた太陽電池モジュールにおいて、第1のカバーガラスが上記各ガラス板を用いた太陽電池用カバーガラスであることを特徴とする、太陽電池モジュール。さらには、上記各ガラス板を太陽電池モジュールの両面にカバーガラスとして用いることは、好ましい。これにより、従来の樹脂製バックシートに比べて耐候性の高いガラス板を用いても、重量を軽くでき強度も確保できる。 Furthermore, the present invention provides a solar cell module using the above glass plates as follows. In a solar cell module comprising a plurality of solar cells, a sealing material that seals the solar cells, and a first cover glass that is disposed to face at least one surface of the sealing material The solar cell module, wherein the first cover glass is a solar cell cover glass using the above glass plates. Furthermore, it is preferable to use each glass plate as a cover glass on both sides of the solar cell module. Thereby, even if it uses a glass plate with high weather resistance compared with the conventional resin backsheet, the weight can be reduced and the strength can be secured.
 両面にカバーガラスを用いた例を、図3を用いて説明する。太陽電池モジュール20は、上記した各ガラス板10aからなる第1のカバーガラスと同じく各ガラス板10bからなる第2のカバーガラスとが、封止材22を介して積層されている。封止材22内には、複数の太陽電池セル23が、封入されている。 An example using cover glass on both sides will be described with reference to FIG. In the solar cell module 20, the first cover glass made of each glass plate 10 a and the second cover glass made of each glass plate 10 b are laminated via a sealing material 22. A plurality of solar cells 23 are enclosed in the sealing material 22.
 こうした本発明の太陽電池モジュールは、工場屋根、鉄道等の公共交通機関の駅舎の屋根、および沿岸部に多くみられる太陽光発電所等に、好適に使用できる。すなわち、工場、駅、沿岸部では、砂、埃、塩等の飛来が頻繁であり、長期にわたった設置の結果、ガラス板の主面に多くの擦り傷が生じやすい。一方で、太陽電池モジュールの軽量化が強く求められるのも、先に懸念点1、2のように述べたとおり、工場屋根、鉄道等の駅の屋根、太陽光発電所である。このような環境において、本発明における、傷が加わった後の曲げ強度の高いガラス板をカバーガラスに使用した太陽電池モジュールを使用することは、軽量化を達成しつつ長期使用の後にも機械荷重に耐えることができ、有益である。なお、ここでいう駅舎とは、停留所、空港、港も含むものとする。 Such a solar cell module of the present invention can be suitably used for a factory roof, a roof of a public transportation station building such as a railroad, and a solar power plant often found in a coastal area. In other words, sand, dust, salt, and the like frequently fly in factories, stations, and coastal areas, and as a result of installation over a long period of time, many scratches are likely to occur on the main surface of the glass plate. On the other hand, the weight reduction of solar cell modules is strongly demanded for factory roofs, railway station roofs, and solar power plants as mentioned in points 1 and 2 above. In such an environment, the use of a solar cell module using a glass plate with high bending strength as a cover glass after being scratched in the present invention makes it possible to reduce the weight while reducing the mechanical load even after long-term use. Can withstand and be beneficial. The station building here includes a stop, an airport, and a port.
 さらに、本発明の太陽電池モジュールにおいて、カバーガラスの端面が露出した構造を有することは、太陽電池モジュール全体の軽量化を達成できる。これは、部品点数を減少させれば軽量化を実現できるという単純なものではない。すなわちこのような構成は、補強部材として機能する太陽電池モジュール周辺のフレームを必要としない、充分な強度を有したカバーガラスを用いることで実現できるものである。 Furthermore, in the solar cell module of the present invention, having the structure in which the end face of the cover glass is exposed can achieve the weight reduction of the entire solar cell module. This is not as simple as reducing the number of parts to achieve weight reduction. That is, such a configuration can be realized by using a cover glass having sufficient strength that does not require a frame around the solar cell module that functions as a reinforcing member.
 以下の表1のような、太陽電池カバーガラス用のガラス板を用意した。表中、例1は本発明のカバーガラスに係るガラス板、例2~4は比較例に係るガラス板である。 A glass plate for solar cell cover glass as shown in Table 1 below was prepared. In the table, Example 1 is a glass plate according to the cover glass of the present invention, and Examples 2 to 4 are glass plates according to comparative examples.
 例1、2のガラス板は、化学強化処理されたガラス板である。例1のガラス板の種類は、旭硝子(株)製LEOFLEX(登録商標)であり、化学強化処理の結果得られる各強化物性を表1の「例1」の欄に示す値に調整したものである。例2のガラス板の種類は、ソーダライムシリカガラスであり、化学強化処理の結果得られる各強化物性を表1の「例2」の欄に示す値に調整したものである。強化物性として、折原製作所社製表面応力計FSM-6000にて主面の表面圧縮応力CS(単位:MPa)および主面における圧縮応力層の板厚方向の厚さDOL(単位:μm)を測定した。また、これらの値から、内部引張応力CT(単位:MPa)を計算した。なお、例3、4のガラス板の種類は、ソーダライムシリカガラスである。 The glass plates of Examples 1 and 2 are chemically strengthened glass plates. The type of glass plate of Example 1 is LEOFLEX (registered trademark) manufactured by Asahi Glass Co., Ltd., and each reinforced physical property obtained as a result of the chemical strengthening treatment is adjusted to the value shown in the column of “Example 1” in Table 1. is there. The type of the glass plate of Example 2 is soda lime silica glass, and each reinforced physical property obtained as a result of the chemical strengthening treatment is adjusted to the value shown in the column of “Example 2” in Table 1. As reinforcing physical properties, the surface compressive stress CS (unit: MPa) of the main surface and the thickness DOL (unit: μm) of the compressive stress layer on the main surface are measured with a surface stress meter FSM-6000 manufactured by Orihara Seisakusho. did. Moreover, internal tensile stress CT (unit: MPa) was calculated from these values. In addition, the kind of glass plate of Examples 3 and 4 is soda-lime silica glass.
 これらの例1~例4のガラス板から、平面視で縦50mm、横50mmのガラス片を切り出し、それぞれ表1に示した枚数のガラス片について、次の方法で、同心円曲げ強度(単位:kgf)を測定した。なお、以下の記載では、明確化のため、図2に示した参照符号を使用して、測定方法を説明する。 From these glass plates of Examples 1 to 4, glass pieces having a length of 50 mm and a width of 50 mm were cut out in plan view, and the number of glass pieces shown in Table 1 was concentrically bent (unit: kgf) by the following method. ) Was measured. In the following description, the measurement method will be described using the reference symbols shown in FIG. 2 for the sake of clarity.
 (擦り線形成ステップ)
 縦50mm×横50mmの正方形状のガラス片100において、平面視横方向の中心線HLから、上下それぞれ10mmの範囲に、縦方向の中心線VLから3mm右側に平行移動させた線(擦り領域)を定める。次に、10mm×10mmの正方形状の400番手のサンドペーパを、ロードセルの先端に固定する。このロードセルを、ガラス片100に対して荷重1.5kgfを付与しながら、擦り領域に沿って3往復させ、ガラス片100の一方の主面に、長さ20mmの擦り線50を形成する。
(Rubbing line forming step)
In the square glass piece 100 of 50 mm long × 50 mm wide, a line (rubbed area) translated from the center line HL in the horizontal direction in a plan view to a range of 10 mm vertically and 3 mm to the right from the center line VL in the vertical direction Determine. Next, 400 mm sandpaper having a square shape of 10 mm × 10 mm is fixed to the tip of the load cell. The load cell is reciprocated three times along the rubbing region while applying a load of 1.5 kgf to the glass piece 100 to form a rubbing line 50 having a length of 20 mm on one main surface of the glass piece 100.
 (同心円曲げ強度測定ステップ)
 擦り線50が形成されたガラス片100の主面を、径30mmの支持リング30上に載置する。次に、その上に径10mmの荷重リング40を載置する。このとき、ガラス片100、支持リング30、荷重リング40それぞれの中心点が重なるように各部材を載置する。その後、荷重リング40側から、ガラス片100に1mm/分で荷重を負荷し、ガラス片が破壊したときの荷重を得る。
(Concentric bending strength measurement step)
The main surface of the glass piece 100 on which the rubbing line 50 is formed is placed on the support ring 30 having a diameter of 30 mm. Next, a load ring 40 having a diameter of 10 mm is placed thereon. At this time, the respective members are placed so that the center points of the glass piece 100, the support ring 30, and the load ring 40 overlap each other. Then, a load is applied to the glass piece 100 at 1 mm / min from the load ring 40 side to obtain a load when the glass piece is broken.
 測定された荷重を、同心円曲げ強度(単位:kgf)とする。 The measured load is the concentric bending strength (unit: kgf).
 なお、表1において、「擦り線付与前同心円曲げ強度」は、前述の擦り線形成ステップを実施しなかった場合に得られた、同心円曲げ強度(単位:kgf)である。 In Table 1, “concentric bending strength before rubbing line application” is the concentric bending strength (unit: kgf) obtained when the above rubbing line forming step was not performed.
Figure JPOXMLDOC01-appb-T000001
 例1のガラス板は、擦り線形成後の同心円曲げ強度が70kgf以上のものであるため、例2のガラス板の擦り線形成前の同心円曲げ強度の平均値よりも大きな曲げ強度を有するものである。すなわち、例2のガラス板のように、初期の段階ではある強度を備えることで、板厚を小さくして軽量化を達成し得るカバーガラスにできることがある。これに対し例1のガラス板は、長期使用の結果傷が形成された後でも、充分な強度を有しているといえる。さらに例1のガラス板は、例4のガラス板のように板厚が大きいガラス板の長期使用の結果傷が形成された後の曲げ強度以上のものである。このように例1のガラス板は、太陽電池モジュールを軽量化するために板厚を小さくしても、板厚の大きなガラス板と遜色ない、長期使用後の曲げ強度を有している。
Figure JPOXMLDOC01-appb-T000001
The glass plate of Example 1 has a bending strength greater than the average value of the concentric bending strength before forming the rubbing line of the glass plate of Example 2 because the concentric bending strength after forming the rubbing line is 70 kgf or more. is there. That is, like the glass plate of Example 2, by providing a certain strength at the initial stage, it may be possible to obtain a cover glass that can reduce the plate thickness and achieve weight reduction. On the other hand, it can be said that the glass plate of Example 1 has sufficient strength even after scratches are formed as a result of long-term use. Furthermore, the glass plate of Example 1 is more than the bending strength after a flaw is formed as a result of long-term use of a glass plate having a large plate thickness like the glass plate of Example 4. As described above, the glass plate of Example 1 has bending strength after long-term use that is comparable to a glass plate having a large thickness even if the thickness is reduced in order to reduce the weight of the solar cell module.
 本発明の太陽電池用カバーガラスは、太陽電池モジュールの設置の際の懸念点を払拭し、軽量であり長期間屋外に設置されても強度を確保できる。 The cover glass for a solar cell of the present invention wipes away the concerns at the time of installing the solar cell module, is lightweight, and can secure strength even when installed outdoors for a long period of time.
 また、本願は2013年1月24日に出願した日本国特許出願2013-010834号に基づく優先権を主張するものであり同日本国出願の全内容を本願に参照により援用する。 Also, this application claims priority based on Japanese Patent Application No. 2013-010834 filed on January 24, 2013, the entire contents of which are incorporated herein by reference.
 1    太陽電池用カバーガラス
 10   ガラス板
 11a  第1の主面
 11b  第2の主面
 12   端面
 30   支持リング
 40   荷重リング40
 50   擦り線
 100  ガラス片
DESCRIPTION OF SYMBOLS 1 Solar cell cover glass 10 Glass plate 11a 1st main surface 11b 2nd main surface 12 End surface 30 Support ring 40 Load ring 40
50 rubbing line 100 piece of glass

Claims (12)

  1.  第1および第2の主面、ならびに第1および第2の主面間に介在する端面を有するガラス板を有する太陽電池用カバーガラスにおいて、
     前記ガラス板は、板厚が0.5~1.5mmで、化学強化処理されており、
     前記主面の表面圧縮応力値が400~1000MPaであり、前記主面における圧縮応力層の板厚方向の厚さが15~50μmであり、
     前記ガラス板は、以下の方法で得られる同心円曲げ強度が30kgf以上であることを特徴とする、太陽電池用カバーガラス:
     (1)前記ガラス板から、平面視で縦50mm、横50mmの正方形状のガラス片を取得し、
     (2)該ガラス片の前記横の方向の中心線から上下それぞれ10mmの範囲に、前記縦の方向の中心線から3mm右側に平行移動させた線にそって、10mm×10mmの正方形状の400番手のサンドペーパを1.5kgfの荷重で3往復させて、第1の主面に前記縦の方向に20mmの長さの擦り線を形成し、
     (3)径30mmの支持リング上に、前記ガラス片の第1の主面が支持リングと接し、前記ガラス片と前記支持リングの中心点が重なるようにして、前記ガラス片を前記支持リング上に設置し、
     (4)前記ガラス片の上に、径10mmの荷重リングを、両者の中心点が重なるように載置し、
     (5)前記荷重リング側から前記ガラス片に、1mm/分で荷重を負荷したとき、前記ガラス片に破壊が生じる荷重を同心円曲げ強度とする。
    In a solar cell cover glass having a glass plate having first and second main surfaces and an end surface interposed between the first and second main surfaces,
    The glass plate has a thickness of 0.5 to 1.5 mm and is chemically strengthened.
    The surface compressive stress value of the main surface is 400 to 1000 MPa, and the thickness of the compressive stress layer on the main surface in the thickness direction is 15 to 50 μm,
    The glass plate has a concentric bending strength obtained by the following method of 30 kgf or more, and is a solar cell cover glass:
    (1) Obtain a square glass piece having a length of 50 mm and a width of 50 mm in plan view from the glass plate,
    (2) A square 400 mm of 10 mm × 10 mm along a line translated from the center line in the horizontal direction of the glass piece up and down by 10 mm each and 3 mm to the right from the center line in the vertical direction. The sandpaper of the count is reciprocated three times with a load of 1.5 kgf to form a rubbing line having a length of 20 mm in the vertical direction on the first main surface,
    (3) On the support ring having a diameter of 30 mm, the first main surface of the glass piece is in contact with the support ring, and the glass piece and the center point of the support ring overlap so that the glass piece is placed on the support ring. Installed in
    (4) A load ring having a diameter of 10 mm is placed on the glass piece so that the center points of the two overlap.
    (5) When a load is applied to the glass piece from the load ring side at 1 mm / min, the load at which the glass piece is broken is defined as a concentric bending strength.
  2.  前記主面の表面圧縮応力値が550~800MPa、前記主面における圧縮応力層の板厚方向の厚さが20~45μmである、請求項1に記載の太陽電池用カバーガラス。 2. The cover glass for a solar cell according to claim 1, wherein a surface compressive stress value of the main surface is 550 to 800 MPa, and a thickness of the compressive stress layer on the main surface in a plate thickness direction is 20 to 45 μm.
  3.  前記同心円曲げ強度は70kgf以上である、請求項1または2に記載の太陽電池用カバーガラス。 The solar cell cover glass according to claim 1 or 2, wherein the concentric circular bending strength is 70 kgf or more.
  4.  前記ガラス板の内部引張応力値が10~60MPaである、請求項1~3のいずれか1項に記載の太陽電池用カバーガラス。 The solar cell cover glass according to any one of claims 1 to 3, wherein an internal tensile stress value of the glass plate is 10 to 60 MPa.
  5.  前記主面の面積が1m以上である、請求項1~4のいずれか1項に記載の太陽電池用カバーガラス。 The cover glass for a solar cell according to any one of claims 1 to 4, wherein an area of the main surface is 1 m 2 or more.
  6.  板厚が0.7~1.2mmである、請求項1~5のいずれか1項に記載の太陽電池用カバーガラス。 The solar cell cover glass according to any one of claims 1 to 5, wherein the plate thickness is 0.7 to 1.2 mm.
  7.  板厚が1.0mm未満である、請求項6に記載の太陽電池用カバーガラス。 The cover glass for solar cells according to claim 6, wherein the plate thickness is less than 1.0 mm.
  8.  前記ガラス板は、酸化物基準のモル百分率表示で、SiOを56~75%、Alを5~20%、NaOを8~22%、KOを0~10%、MgOを0~14%、ZrOを0~5%、CaOを0~5%含有するガラスからなる、請求項1~7のいずれか1項に記載の太陽電池用カバーガラス。 The glass plate is expressed in terms of mole percentage based on oxide, and SiO 2 is 56 to 75%, Al 2 O 3 is 5 to 20%, Na 2 O is 8 to 22%, K 2 O is 0 to 10%, The solar cell cover glass according to any one of claims 1 to 7, comprising a glass containing 0 to 14% of MgO, 0 to 5% of ZrO 2 and 0 to 5% of CaO.
  9.  複数の太陽電池セルと、該複数の太陽電池セルを封止する封止材と、該封止材の少なくとも一方の面に配置された第1のカバーガラスと、を具えた太陽電池モジュールにおいて、
     第1のカバーガラスが請求項1~8のいずれか1項に記載の太陽電池用カバーガラスであることを特徴とする、太陽電池モジュール。
    In a solar cell module comprising a plurality of solar cells, a sealing material for sealing the plurality of solar cells, and a first cover glass disposed on at least one surface of the sealing material,
    A solar cell module, wherein the first cover glass is the solar cell cover glass according to any one of claims 1 to 8.
  10.  前記第1のカバーガラスの端面が露出している、請求項9に記載の太陽電池モジュール。 The solar cell module according to claim 9, wherein an end face of the first cover glass is exposed.
  11.  前記第1のカバーガラスの側と反対の側に、第2のカバーガラスが配置され、該第2のカバーガラスも、請求項1~8のいずれか1項に記載の太陽電池用カバーガラスである、請求項9または10に記載の太陽電池モジュール。 The solar cell cover glass according to any one of claims 1 to 8, wherein a second cover glass is disposed on a side opposite to the first cover glass side, and the second cover glass is also the solar cell cover glass according to any one of claims 1 to 8. The solar cell module according to claim 9 or 10.
  12.  工場屋根設置用、公共交通機関駅舎屋根設置用、または太陽光発電所用の、請求項9~11のいずれか1項に記載の太陽電池モジュール。 The solar cell module according to any one of claims 9 to 11, for factory roof installation, public transportation station building roof installation, or for a solar power plant.
PCT/JP2014/051492 2013-01-24 2014-01-24 Cover glass for solar cell, and solar cell module WO2014115837A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2014558629A JP5812210B2 (en) 2013-01-24 2014-01-24 Cover glass for solar cell and solar cell module
CN201480005393.3A CN104936915A (en) 2013-01-24 2014-01-24 Cover glass for solar cell, and solar cell module

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-010834 2013-01-24
JP2013010834 2013-01-24

Publications (1)

Publication Number Publication Date
WO2014115837A1 true WO2014115837A1 (en) 2014-07-31

Family

ID=51227626

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/051492 WO2014115837A1 (en) 2013-01-24 2014-01-24 Cover glass for solar cell, and solar cell module

Country Status (4)

Country Link
JP (1) JP5812210B2 (en)
CN (1) CN104936915A (en)
TW (1) TW201442973A (en)
WO (1) WO2014115837A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2985267A4 (en) * 2013-04-12 2016-11-09 Asahi Glass Co Ltd Outdoor chemically strengthened glass plate
CN107311448B (en) * 2017-07-21 2020-05-12 厦门大学 Compound eye type solar cell packaging glass and preparation method and application thereof

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010116276A (en) * 2008-11-11 2010-05-27 Nippon Electric Glass Co Ltd Tempered glass substrate and producing method of the same
WO2011114821A1 (en) * 2010-03-19 2011-09-22 石塚硝子株式会社 Glass composition for chemical strengthening and chemically strengthened glass material
JP2012076994A (en) * 2007-01-16 2012-04-19 Nippon Electric Glass Co Ltd Method for manufacturing tempered glass substrate, and the tempered glass substrate
JP2012089403A (en) * 2010-10-21 2012-05-10 Sony Corp Solar cell and manufacturing method therefor
WO2012099053A1 (en) * 2011-01-18 2012-07-26 日本電気硝子株式会社 Tempered glass, and tempered glass plate
JP2012148955A (en) * 2010-09-30 2012-08-09 Avanstrate Inc Method for manufacturing cover glass, and cover glass
JP2012180262A (en) * 2011-02-10 2012-09-20 Nippon Electric Glass Co Ltd Reinforced glass plate
JP2012236760A (en) * 2007-08-03 2012-12-06 Nippon Electric Glass Co Ltd Tempered glass substrate and method for manufacturing the same

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012076994A (en) * 2007-01-16 2012-04-19 Nippon Electric Glass Co Ltd Method for manufacturing tempered glass substrate, and the tempered glass substrate
JP2012236760A (en) * 2007-08-03 2012-12-06 Nippon Electric Glass Co Ltd Tempered glass substrate and method for manufacturing the same
JP2010116276A (en) * 2008-11-11 2010-05-27 Nippon Electric Glass Co Ltd Tempered glass substrate and producing method of the same
WO2011114821A1 (en) * 2010-03-19 2011-09-22 石塚硝子株式会社 Glass composition for chemical strengthening and chemically strengthened glass material
JP2012148955A (en) * 2010-09-30 2012-08-09 Avanstrate Inc Method for manufacturing cover glass, and cover glass
JP2012089403A (en) * 2010-10-21 2012-05-10 Sony Corp Solar cell and manufacturing method therefor
WO2012099053A1 (en) * 2011-01-18 2012-07-26 日本電気硝子株式会社 Tempered glass, and tempered glass plate
JP2012180262A (en) * 2011-02-10 2012-09-20 Nippon Electric Glass Co Ltd Reinforced glass plate

Also Published As

Publication number Publication date
JP5812210B2 (en) 2015-11-11
TW201442973A (en) 2014-11-16
CN104936915A (en) 2015-09-23
JPWO2014115837A1 (en) 2017-01-26

Similar Documents

Publication Publication Date Title
JP5920554B1 (en) Method for producing tempered glass substrate
JP5429684B2 (en) Tempered glass substrate and manufacturing method thereof
JP5896338B2 (en) Method for producing tempered glass and method for producing tempered glass plate
JP6136599B2 (en) Tempered glass, tempered glass plate and tempered glass
JP5483262B2 (en) Laminated glass
WO2012099053A1 (en) Tempered glass, and tempered glass plate
CN103097315B (en) Chemical enhanced glass, chemically reinforced glass and glass plate for display devices
US20130017380A1 (en) Tempered glass and tempered glass sheet
EP3613710B1 (en) Composition for glass, alkali aluminosilicate glass, and preparation method therefor and applications thereof
JP5376032B1 (en) Chemically tempered glass plate, cover glass and display device
CN103946171A (en) Glass for chemical reinforcement and chemically reinforced glass
WO2014168246A1 (en) Outdoor chemically strengthened glass plate
WO2012099055A1 (en) Tempered glass, and tempered glass plate
TW201404753A (en) Reinforced glass, reinforced glass plate and glass for reinforcing
JP2009057271A (en) Hardened glass substrate and method for manufacturing the same
JP6311704B2 (en) Double-glazed glass for architectural windows
CN107108330A (en) Glass plate
CN105621882A (en) Composition for glass, chemically strengthened glass with low brittleness, and preparation method and application of chemically strengthened glass with low brittleness
CN109148633B (en) Ultrathin reinforced glass back plate for photovoltaic module, preparation method of ultrathin reinforced glass back plate and photovoltaic module comprising ultrathin reinforced glass back plate
JP5812210B2 (en) Cover glass for solar cell and solar cell module
JP2018510834A (en) Glass
CN109768108A (en) A kind of ultra-thin reinforcing glass backboard of bound edge, preparation method and the photovoltaic module comprising it
JP6172445B2 (en) cover glass
CN209266422U (en) A kind of ultra-thin reinforcing glass backboard of bound edge and the photovoltaic module comprising it
JP2005327886A (en) Solar power generating module

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14743614

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014558629

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14743614

Country of ref document: EP

Kind code of ref document: A1