WO2014115260A1 - Virtual image creating device and display system - Google Patents

Virtual image creating device and display system Download PDF

Info

Publication number
WO2014115260A1
WO2014115260A1 PCT/JP2013/051267 JP2013051267W WO2014115260A1 WO 2014115260 A1 WO2014115260 A1 WO 2014115260A1 JP 2013051267 W JP2013051267 W JP 2013051267W WO 2014115260 A1 WO2014115260 A1 WO 2014115260A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
image
virtual image
optical
combiner
Prior art date
Application number
PCT/JP2013/051267
Other languages
French (fr)
Japanese (ja)
Inventor
柳澤 琢麿
Original Assignee
パイオニア株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パイオニア株式会社 filed Critical パイオニア株式会社
Priority to PCT/JP2013/051267 priority Critical patent/WO2014115260A1/en
Publication of WO2014115260A1 publication Critical patent/WO2014115260A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/017Head mounted
    • G02B27/0172Head mounted characterised by optical features
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/0101Head-up displays characterised by optical features
    • G02B2027/0123Head-up displays characterised by optical features comprising devices increasing the field of view
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/017Head mounted
    • G02B2027/0178Eyeglass type

Definitions

  • the present invention relates to a technical field for visually recognizing an image as a virtual image.
  • Patent Document 1 proposes a technique related to HMD. Specifically, Patent Document 1 describes a phenomenon in which even an opaque object appears translucent when placed close to the eye if the size is smaller than the pupil diameter (hereinafter referred to as “pupil division see-through phenomenon”). HMD using this method has been proposed. In addition, Patent Document 2 proposes a technique related to the present invention.
  • the above-mentioned HUD and HMD have the following disadvantages.
  • a normal HUD if the size of the combiner is fixed, the larger the distance between the observer and the combiner, the smaller the size of the virtual image (hereinafter referred to as “angle of view”) viewed by the user tends to be.
  • angle of view when the angle of view is fixed, a large combiner tends to be required.
  • the HUD when the HUD is mounted on a vehicle, the type in which the combiner is provided on the dashboard tends to be restricted by location and size, and the type in which the combiner is provided near the ceiling gives the driver a sense of discomfort and pressure. There was a case.
  • various optical elements, a control circuit, a battery, and the like are housed in a spectacle-shaped structure, which tends to increase the size and weight.
  • Examples of the problem to be solved by the present invention include the above. It is an object of the present invention to provide a virtual image generating device that can be used easily and can appropriately visually recognize a desired virtual image without causing a feeling of pressure or discomfort.
  • the virtual image generating device that visually recognizes the image formed by the image forming unit as a virtual image separates the image light corresponding to the image and the scattered light of the object from the incident light, and separates them.
  • the display system includes an image forming unit and the virtual image conversion device that causes the image formed by the image forming unit to be visually recognized as a virtual image.
  • FIG. 1 shows a basic configuration of a display system according to an embodiment.
  • the schematic structure of HMD using a pupil division see-through phenomenon is shown.
  • the schematic structure of the combiner which concerns on a reference example is shown.
  • the light which passes a non-lens part is shown.
  • the light which passes a micro lens part is shown.
  • 1 shows a schematic configuration of a combiner according to a first embodiment.
  • the combiner which concerns on 1st Example the light which passes a non-lens part is shown.
  • the light which passes a micro lens part is shown.
  • the schematic structure of the combiner which concerns on 2nd Example is shown.
  • the combiner which concerns on 2nd Example the light which passes a non-lens part is shown.
  • the combiner which concerns on 2nd Example the light which passes a micro lens part is shown.
  • the schematic structure of the combiner which concerns on 3rd Example is shown.
  • the light which passes the combiner which concerns on 3rd Example is shown.
  • the schematic structure of the combiner which concerns on 4th Example is shown.
  • the light which passes the combiner which concerns on 4th Example is shown.
  • An example of the manufacturing method of the combiner concerning a 4th example is shown.
  • the figure when the real image is a display screen shows light passing through a combiner according to another example of the fourth embodiment.
  • the schematic structure of the combiner which concerns on 5th Example is shown.
  • a virtual image generating device that visually recognizes an image formed by an image forming unit as a virtual image scatters image light and an object (corresponding to a general object) corresponding to the image from incident light.
  • the virtual image generating apparatus includes optical means for separating the light, transmitting the separated scattered light, and imparting an optical action for generating the virtual image to the separated image light.
  • the image forming unit is configured separately from the image forming unit and can be mounted on the user's head.
  • a desired virtual image can be appropriately generated for the image formed by the image forming unit by optical means.
  • the virtual image generating device is configured separately from the image forming unit and is used by being mounted on the user's head, so that it can be used easily and does not cause a feeling of pressure or discomfort.
  • the optical unit is provided in the lens unit having a width smaller than the pupil diameter of the user, a non-lens unit having no lens function, and the lens unit.
  • a first optical filter that transmits the image light and shields the scattered light.
  • the desired virtual image (the image formed by the image forming unit that is visually recognized to exist at a position different from the real image)
  • the corresponding virtual image the same shall apply hereinafter).
  • the expression “transmit light” includes not only transmitting all light but also transmitting only part of light. The same applies to expressions such as “shield light” and “reflect light”.
  • the optical unit is further provided with a second optical filter that is provided in the non-lens portion and shields the image light and transmits the scattered light.
  • the real image corresponding to the image formed by the image forming unit is not visually recognized, so that the real image is visually recognized as converted into a virtual image.
  • the optical unit includes a plurality of lens units having a width smaller than the pupil diameter of the user, a plurality of non-lens units having no lens function, and the scattered light.
  • a plurality of first optical filters that transmit the image light, and the lens portions and the non-lens portions are alternately formed in a comb shape on one surface of the optical means, The first optical filter causes the transmitted image light to enter the lens unit.
  • the above virtual image generation device can also appropriately generate a desired virtual image while ensuring transparency by the pupil division see-through phenomenon.
  • the boundary between the lens unit and the non-lens unit is not easily recognized, and is less susceptible to the movement of the eyeball.
  • the optical unit further includes a plurality of second optical filters that shield the image light, transmit the scattered light, and enter the non-lens portion. Also with the above virtual image generation device, the real image corresponding to the image formed by the image forming unit is not visually recognized, so that the real image is visually recognized as converted into a virtual image.
  • the optical means is provided on a surface based on a lens, and a plurality of first optical filters that reflect the image light and transmit the scattered light. And a plurality of second optical filters that are provided on a surface opposite to the surface on which the first optical filter is provided, reflect the image light, and transmit the scattered light.
  • the first optical filter and the second optical filter are configured such that the image light is reflected by the first optical filter and the second optical filter and is incident on the user's eye.
  • the optical filter collects the image light when reflecting the image light.
  • the above-described virtual image generation device can also appropriately generate a desired virtual image while ensuring transparency. Further, in the virtual image generating apparatus, since the transparency is not ensured by using the pupil division see-through phenomenon, the real image of the object looks brighter.
  • the optical unit reflects the image light reflected by the first optical filter and the image light reflected by the first optical filter, and the scattering.
  • a half mirror that transmits light, and the first optical filter or the half mirror has a function of condensing the image light.
  • the optical unit is provided on the image forming unit side of the half mirror, and shields the image light and transmits the scattered light.
  • An optical filter is further provided. Also with the above virtual image generation device, the real image corresponding to the image formed by the image forming unit is not visually recognized, so that the real image is visually recognized as converted into a virtual image.
  • the optical unit reflects the image light reflected by the total reflection mirror and totally reflects the image light, and transmits the scattered light.
  • a hologram optical element that has a function of condensing the image light.
  • the above-described virtual image generation device can also appropriately generate a desired virtual image while ensuring transparency. Moreover, according to the virtual image generating apparatus, the thickness of the entire virtual image generating apparatus can be reduced by using the hologram optical element, and the cost of the apparatus can be reduced by using an inexpensive total reflection mirror.
  • the optical unit is provided on the image forming unit side with respect to the hologram optical element, and shields the image light and transmits the scattered light. Is further provided. Also with the above virtual image generation device, the real image corresponding to the image formed by the image forming unit is not visually recognized, so that the real image is visually recognized as converted into a virtual image.
  • the optical filter (first optical filter and / or second optical filter) is a polarizing filter or a wavelength filter.
  • the virtual image generating device is configured as a glasses.
  • a display system includes an image forming unit and the virtual image generating device that causes an image formed by the image forming unit to be visually recognized as a virtual image.
  • the image forming unit may be provided on the dashboard of the vehicle.
  • FIG. 26A shows a schematic configuration of a general HUD
  • FIG. 26B shows a schematic configuration of a general HMD.
  • a half-mirror combiner 500a placed in front of the driver's field of view is used to display an image on the screen of a liquid crystal display or a projector (real image RI) as a virtual image VI to the driver. It is visually recognized. Thereby, for example, the driver can visually recognize the instrument, navigation information, and the like superimposed on the scenery without lowering the line of sight while looking forward.
  • the user generates light emitted from the micro display (real image RI for left eye and right eye) such as LCOS (Liquid Crystal On On Silicon) or OLED (Organic Light-Emitting Diode) and the like.
  • Eyepiece optical system such as a left eye combiner 500b and a right eye combiner 500b).
  • the combiner 500a and the combiner 500b are collectively referred to as “combiner 500”.
  • a user of HUD or HMD (including a combiner according to a later-described embodiment) is appropriately referred to as an “observer”.
  • HUD and HMD look like completely different optical systems, but can be interpreted as the same in that the real image RI is visually recognized as a virtual image VI by the combiner 500.
  • the difference is where the real image RI and the combiner 500 are fixed.
  • these are fixed in a space (such as a vehicle body), and in the HMD, these are fixed to an observer (glasses).
  • the size (angle of view) of the virtual image visually recognized by the observer (driver) with a general HUD is limited by the angle at which the observer looks at the combiner 500. Therefore, when the size of the combiner 500 is fixed, the angle of view tends to decrease as the distance between the observer and the combiner 500 increases. On the other hand, when the angle of view is fixed, a larger combiner 500 is required as the distance between the observer and the combiner 500 increases. On the other hand, the HUD combiner 500 is often fixed on the dashboard. However, in this type of HUD, it is not possible to place a very large combiner 500 from the viewpoint of space.
  • a general HMD a system that fixes a real image and a combiner to the observer's head
  • a real image RI is fixed to an observer's head (glasses).
  • various control circuits are used in addition to a spatial modulation element for generating an image such as LCOS or OLED.
  • a substrate and a secondary battery are also required. Therefore, in a general HMD, the size and weight of the entire spectacle-type device tend to increase.
  • there is a method of connecting secondary batteries etc. separately and connecting them to the spectacles part by wire but this method causes troublesomeness at the time of wearing. May end up. In any case, with a general HMD, it is difficult for the observer to wear it as easily as wearing normal sunglasses.
  • FIG. 1 shows a basic configuration of a display system according to the present embodiment.
  • the real image RI is fixed in a space like the HUD, but the combiner 100 adopts a configuration in which the combiner 100 is fixed on the observer side (glasses) like the HMD.
  • the real image RI corresponds to the “image forming unit” in the present invention
  • the combiner 100 corresponds to the “virtual image generating device” in the present invention (hereinafter the same).
  • the magnification between the real image RI and the combiner 500 is increased.
  • the optical element convex lens or the like
  • the combiner 500 itself is a concave mirror. Therefore, in this embodiment, the eyeglass-type combiner 100 as shown in FIG. 1 is configured to ensure transparency while increasing the magnification. Configurations capable of realizing this are shown in the following first to sixth embodiments. Note that combiners 100a to 100f shown in first to sixth embodiments to be described later are applied to the display system of FIG.
  • FIG. 2 shows a schematic configuration of the HMD using the pupil division see-through phenomenon.
  • the HMD light from the micro display (real image RI) is guided to the eye through an opaque optical bar 310 (shown by a broken line).
  • the opaque optical bar 310 has a size smaller than the pupil diameter and is provided in the immediate vicinity of the eye. Therefore, the optical bar 310 is visually recognized as translucent due to the pupil division see-through phenomenon. That is, the general object (background object) OB is visually recognized with almost no obstruction by the optical bar 310.
  • the convex lens 330 it is visually recognized like the light emitted from a distant place by loosening the diffusion angle of the light emitted from each pixel of a micro display. As a result, the virtual image VI appears larger than the real image RI (same principle as seen with a magnifying glass).
  • a combiner that can generate a virtual image VI while ensuring transparency by using the above-described pupil division see-through phenomenon
  • FIGS. a basic configuration of a combiner whose main purpose is to generate a virtual image VI while ensuring transparency
  • the combiner is referred to as a “combiner according to a reference example”.
  • the combiner according to the reference example since all objects in the space are visually recognized as virtual images VI, it is actually necessary to add a configuration for dealing with this. The configuration will be described with reference to FIG.
  • FIG. 3 shows a schematic configuration of the combiner 100x according to the reference example.
  • the combiner 100 x according to the reference example mainly includes a minute lens 91 and a transparent parallel plate 92.
  • the micro lens 91 is a micro lens cut out from a large convex lens, and has a width (for example, 2 mm) smaller than the pupil diameter.
  • FIG. 4 shows light passing through a portion of the parallel plate 92 (in other words, a non-lens portion) in the combiner 100x according to the reference example. That is, the light that is visually recognized as the real image RI is shown.
  • FIG. 4A shows a view of the light passing from above
  • FIG. 4B shows a view of the light passing from the side.
  • the real image RI can be viewed as it is even if the minute lens 91 is attached due to the pupil division see-through phenomenon. That is, transparency can be ensured.
  • reference numeral 95 in FIGS. 4A and 4B indicates a convex lens that is a base when the microlens 91 is cut out (the same applies hereinafter).
  • FIG. 5 shows light passing through the portion of the micro lens 91 in the combiner 100x according to the reference example. That is, it shows light that is visually recognized as a virtual image.
  • FIG. 5A shows a view in which light passes from above (specifically, it corresponds to a perspective view in which the microlens 91 is observed through the parallel plate 92).
  • FIG. 5 (b) shows a side view of how light passes.
  • a broken line L1 in FIGS. 5A and 5B is a line obtained by extending a light beam after being refracted by the micro lens 91 (hereinafter the same).
  • the virtual image VI corresponding to the real image RI is visually recognized by the observer by the micro lens 91. Specifically, a virtual image VI that is located farther than the real image RI and has a larger size than the real image RI is visually recognized.
  • the focal length f of the convex lens that is the basis of the microlens 91 is expressed by the following equation from the distance a between the lens and the real image RI and the distance b between the lens and the virtual image VI (see FIG. 5A). It is calculated from (1).
  • the vertical position of the real image RI and the virtual image VI that can be visually recognized can be freely changed by cutting out the position shifted vertically. Further, by adjusting the position of the micro lens 91 on the combiner 100x in the vertical direction, the virtual image VI can be viewed only when the line of sight is directed in a specific direction.
  • the combiner which concerns on 1st Example adds the structure which can suppress that all the objects in space are visually recognized as the virtual image VI with respect to the combiner 100x which concerns on a reference example.
  • the combiner according to the first embodiment is configured to be able to selectively visually recognize the display screen as a virtual image VI.
  • FIG. 6 shows a schematic configuration of the combiner 100a according to the first embodiment.
  • the combiner 100 a according to the first example mainly includes a minute lens 11, a parallel plate 12, and polarizing filters 13 and 14.
  • the basic configuration of the minute lens 11 and the parallel plate 12 is the same as that of the minute lens 91 and the parallel plate 92 of the combiner 100x according to the reference example described above.
  • the micro lens 11 is a micro lens cut out from a large convex lens, and has a width (for example, 2 mm) smaller than the pupil diameter.
  • the combiner 100a according to the first embodiment is different from the combiner 100x according to the reference example in that polarizing filters 13 and 14 are attached to the microlens 11 and the parallel plate 12, respectively.
  • the polarizing filter 13 attached to the microlens 11 is configured to transmit light from the display screen and cut 50% of random polarized light.
  • the polarizing filter 14 attached to the parallel plate 12 is configured to cut light from the display screen and cut random polarized light by 50%.
  • the “display screen” used in the first embodiment and the second embodiment described later refers to a screen in which the polarization directions of light emitted from the display screen are aligned.
  • a liquid crystal display or an image drawn on a screen by a laser projector is applicable.
  • the display screen corresponds to an image formed by the “image forming unit” in the present invention, and the light on the display screen corresponds to “image light” in the present invention.
  • the microlens 11 corresponds to an example of the “lens part” in the present invention
  • the parallel plate 12 corresponds to an example of the “non-lens part” in the present invention
  • the polarizing filter 13 corresponds to the “first optical filter” in the present invention
  • the polarizing filter 14 corresponds to an example of a “second optical filter” in the present invention.
  • FIG. 7 shows light passing through a portion of the parallel plate 12 (in other words, a non-lens portion) in the combiner 100a according to the first embodiment. That is, the light that is visually recognized as the real image RI is shown.
  • FIGS. 7A and 7B are views of the light passing through as viewed from above.
  • FIG. 7A shows a view when the real image RI is the display screen DP
  • FIG. 7B shows a view when the real image RI is a general object OB.
  • the light on the display screen DP is cut by the polarizing filter 14, so that the observer does not see the real image RI of the display screen DP.
  • the light scattered by the general object OB is usually random polarized light, and the random polarized light is transmitted through the polarizing filter 14, so that the observer can visually recognize the real image RI of the general object OB.
  • the polarization filter 14 cuts 50% of random polarized light, that is, transmits 50% random polarized light, the real image RI of the general object OB is visually recognized with 50% brightness (strictly speaking, it is minute)
  • the area ratio between the lens 11 and the parallel plate 12 in other words, the area is visually recognized with brightness according to the area ratio between the polarizing filter 13 and the polarizing filter 14.
  • the parallel plate 12 to which such a polarizing filter 14 is attached has the same function as general polarizing sunglasses.
  • FIG. 8 shows light passing through the portion of the microlens 11 in the combiner 100a according to the first embodiment. That is, it shows light that is visually recognized as a virtual image.
  • FIGS. 8 (a) and 8 (b) are diagrams in which the state of light passing through is observed from above (specifically, it corresponds to a perspective view in which the microlens 11 is observed through the parallel plate 12). Is shown.
  • FIG. 8A shows a view when the real image RI is the display screen DP
  • FIG. 8B shows a view when the real image RI is a general object OB.
  • the light of the display screen DP is refracted by the microlens 11 and passes through the polarizing filter 13 and enters the eye.
  • the virtual image VI corresponding to the display screen DP is visually recognized.
  • the polarizing filter 13 transmits almost 100% of the light on the display screen DP
  • the virtual image VI of the display screen DP is visually recognized with almost the original brightness (that is, there is almost no light loss due to the polarizing filter 13).
  • the light scattered by the general object OB is also refracted by the minute lens 11 and transmitted through the polarizing filter 13 to enter the eye. Thereby, the virtual image VI corresponding to the general object OB is visually recognized.
  • the polarization filter 13 cuts 50% of random polarized light corresponding to the light scattered by the general object OB
  • the virtual image VI of the general object OB is visually recognized with a brightness of 50%. That is, the virtual image VI of the general object OB is visually recognized with a brightness of 50% with respect to the virtual image VI of the display screen DP.
  • the virtual image VI it is possible to appropriately generate the virtual image VI while ensuring transparency.
  • a virtual image VI that is located farther than the real image RI and is visually recognized to have a size larger than the real image RI (hereinafter, such a virtual image is appropriately referred to as a “desired virtual image”). ) Can be generated.
  • the virtual image VI of the display screen DP can be viewed brightly with respect to the virtual image VI of the general object OB by the polarizing filter 13 attached to the microlens 11. That is, it can be said that the display screen DP can be selectively viewed as a virtual image VI.
  • the polarizing filter 14 is attached to the parallel plate 12, but the polarizing filter 14 may not be attached to the parallel plate 12.
  • the real image RI on the display screen DP is not visually recognized, so that the real image RI is visually recognized as converted into the virtual image VI.
  • the real image RI and the virtual image VI of the display screen DP are visually recognized at the same time.
  • the micro lens 11 is based on a convex lens.
  • a Fresnel lens having the same focal length may be used instead of the convex lens. That is, a minute lens cut out from a Fresnel lens having the same focal length may be used as the minute lens 11. In such a case, the overall thickness of the combiner 100a can be reduced. Note that the configuration in which such a Fresnel lens is applied can be similarly applied to second to fifth embodiments described later.
  • the second embodiment is the same as the first embodiment in that the transparency is ensured by using the pupil division see-through phenomenon and the magnification is obtained by using a microlens. Detailed description is omitted).
  • the second embodiment is different from the first embodiment in the method for separating the light of the display screen DP and the scattered light of the general object OB.
  • the polarizing filter is used to separate the light of the display screen DP and the scattered light of the general object OB.
  • the wavelength filter is used instead of the polarizing filter. Is used to separate the light of the display screen DP and the scattered light of the general object OB.
  • the “wavelength filter” corresponds to a wavelength selective transmission film or a wavelength selective reflection film.
  • FIG. 9 shows a schematic configuration of the combiner 100b according to the second embodiment.
  • the combiner 100 b according to the second embodiment mainly includes a micro lens 21, a parallel plate 22, and wavelength filters 23 and 24.
  • the basic configuration of the minute lens 21 and the parallel plate 22 is the same as the minute lens 11 and the parallel plate 12 of the combiner 100a according to the first embodiment (that is, the minute lens 91 and the parallel plate of the combiner 100x according to the reference example). 92).
  • the microlens 21 is a microlens cut out from a large convex lens and has a width (for example, 2 mm) smaller than the pupil diameter.
  • the combiner 100b according to the second embodiment is different from the combiner 100a according to the first embodiment in that wavelength filters 23 and 24 are attached to the micro lens 21 and the parallel plate 22, respectively.
  • the wavelength filter 23 attached to the minute lens 21 is configured to transmit only light (wavelength) from the display screen DP.
  • the wavelength filter 23 is configured to cut light other than light from the display screen DP.
  • the wavelength filter 24 attached to the parallel plate 22 is configured to cut only light (wavelength) from the display screen DP.
  • the wavelength filter 24 is configured to transmit light other than light from the display screen DP.
  • a wavelength filter that transmits or cuts (reflects) only a specific wavelength is manufactured by laminating a plurality of dielectric films having different refractive indexes.
  • the micro lens 21 corresponds to an example of the “lens part” in the present invention
  • the parallel plate 22 corresponds to an example of the “non-lens part” in the present invention
  • the wavelength filter 23 corresponds to the “first optical filter” in the present invention
  • the wavelength filter 24 corresponds to an example of a “second optical filter” in the present invention.
  • FIG. 10 shows light passing through a portion of the parallel plate 22 (in other words, a non-lens portion) in the combiner 100b according to the second embodiment. That is, the light that is visually recognized as the real image RI is shown.
  • FIGS. 10A and 10B are views of the state in which light passes observed from above.
  • FIG. 10A shows a view when the real image RI is the display screen DP
  • FIG. 10B shows a view when the real image RI is a general object OB.
  • the real image RI of the general object OB is visually recognized by the observer. Specifically, since the light scattered by the general object OB has very little light having the same wavelength as the display display light (light cut by the wavelength filter 24), the real image RI of the general object OB is almost the original brightness. It is visually recognized.
  • FIG. 11 shows light passing through the portion of the microlens 21 in the combiner 100b according to the second embodiment. That is, it shows light that is visually recognized as a virtual image.
  • FIGS. 11A and 11B are views in which light is observed from above (specifically, it corresponds to a perspective view in which the microlens 21 is observed through the parallel plate 22). Is shown.
  • FIG. 11A shows a view when the real image RI is the display screen DP
  • FIG. 11B shows a view when the real image RI is a general object OB.
  • the light of the display screen DP is refracted by the micro lens 21 and passes through the wavelength filter 23 to enter the eye.
  • the virtual image VI corresponding to the display screen DP is visually recognized.
  • the wavelength filter 23 transmits almost 100% of the light on the display screen DP
  • the virtual image VI of the display screen DP is visually recognized with almost the original brightness (that is, there is almost no light loss due to the wavelength filter 23).
  • the virtual image VI corresponding to the general object OB is not visually recognized.
  • the second embodiment is more effective than the first embodiment.
  • a desired virtual image VI can be generated while ensuring transparency, as in the first embodiment.
  • the virtual image VI of the display screen DP is obtained by the wavelength filter 23 attached to the microlens 21 while hardly viewing the virtual image VI of the general object OB. It can be visually recognized. That is, according to the second embodiment, the display screen DP can be selectively visually recognized as the virtual image VI more effectively than the first embodiment.
  • the second embodiment allows the display screen DP to be selectively viewed as a virtual image VI more effectively than the first embodiment.
  • the light emitted from the liquid crystal display is determined by the wavelength of the backlight.
  • the backlight Even in a full-color liquid crystal display, the backlight often uses only RGB three-wavelength LEDs.
  • the laser display also realizes full color using RGB three-wavelength lasers.
  • the virtual image VI can be generated by effectively separating the display screen DP and the general object OB by using the wavelength filter 23 rather than the polarizing filter 13.
  • the wavelength filter 24 is attached to the parallel plate 22.
  • the wavelength filter 24 may not be attached to the parallel plate 22.
  • the real image RI on the display screen DP is not visually recognized, so that the real image RI is visually recognized as converted into the virtual image VI.
  • the wavelength filter 24 is not attached to the parallel plate 22, the real image RI and the virtual image VI of the display screen DP are visually recognized at the same time.
  • the third embodiment is the same as the first and second embodiments in that the magnification is secured using the convex lens effect.
  • the third embodiment is different from the first and second embodiments in a method of visually recognizing a virtual image while ensuring transparency.
  • the first and second embodiments only the light of the display screen that passes through one micro lens 11, 21 (strictly, one micro lens 11, 21 for each of the right eye and the left eye) is transmitted.
  • the third embodiment all the light on the display screen that transmits a plurality of (two or more) microlenses is converted into a virtual image. Transparency is ensured by light transmitted through the non-lens portion.
  • a combiner in which minute lens portions and non-lens portions are alternately formed is employed.
  • FIG. 12 shows a schematic configuration of the combiner 100c according to the third embodiment.
  • 12A shows a front view of the combiner 100c
  • FIG. 12B shows a cross-sectional view of the combiner 100c along the cutting line X1-X1 ′ in FIG. 12A.
  • the micro lens 33 and the wavelength filter 35 are provided in a plurality of regions (hatched regions) indicated by reference numeral 31, and the plurality of regions (regions not hatched) indicated by reference numeral 32 are provided.
  • the wavelength filter 35 is configured to transmit only light (wavelength) from the display screen DP
  • the wavelength filter 36 is configured to cut (reflect) only light (wavelength) from the display screen DP. Yes. That is, the wavelength filters 35 and 36 have the same functions as the wavelength filters 23 and 24 shown in the second embodiment, respectively.
  • a plurality of microlenses 33 and parallel flat plates 34 are alternately formed on one surface in a comb shape.
  • a plurality of wavelength filters 35 and wavelength filters 36 are alternately provided on the other surface facing the surface.
  • the micro lens 33 is provided at a position where light transmitted through the wavelength filter 35 is incident
  • the parallel plate 34 is provided at a position where light transmitted through the wavelength filter 36 is incident.
  • the micro lens 33 is based on a convex lens indicated by reference numeral 38 in FIG.
  • the minute lens 33 and the parallel flat plate 34 can be formed by cutting a concentric groove on the original convex lens 38.
  • a mask shielding pattern
  • the micro lens 33 in the third embodiment may be configured to have a considerably narrower width than the micro lenses 11 and 21 in the first and second embodiments.
  • the microlenses 11 and 21 having a width of about 2 mm are used in the first and second embodiments
  • the microlens 33 having a width of about 0.3 mm may be used in the third embodiment.
  • the third embodiment is more effective than the first and second embodiments.
  • the pitch size at which the micro lenses 33 are provided is too small, a diffraction phenomenon occurs. Therefore, it is desirable to employ a pitch size that does not cause the diffraction phenomenon.
  • the micro lens 33 corresponds to an example of the “lens part” in the present invention
  • the parallel plate 34 corresponds to an example of the “non-lens part” in the present invention
  • the wavelength filter 35 corresponds to the “first optical filter” in the present invention
  • the wavelength filter 36 corresponds to an example of a “second optical filter” in the present invention.
  • FIG. 13 shows light passing through the combiner 100c according to the third embodiment.
  • FIGS. 13 (a) and 13 (b) show views of the passage of light from the side (combiner 100c is shown in a cross-sectional view similar to FIG. 12 (b)).
  • FIG. 13A shows a diagram when the real image RI is the display screen DP
  • FIG. 13B shows a diagram when the real image RI is a general object OB.
  • the light of the display screen DP passes through the wavelength filter 35 and then passes through the micro lens 33 and enters the eye.
  • the virtual image VI corresponding to the display screen DP is visually recognized.
  • the display screen DP is not visually recognized as the real image RI.
  • the light scattered by the general object OB passes through the wavelength filter 36 and then enters the eye through the parallel plate 34.
  • the light scattered by the general object OB does not enter the minute lens 33 because it is cut by the wavelength filter 35. Therefore, the general object OB is visually recognized as the real image RI by the pupil division see-through phenomenon without being converted into the virtual image VI. Therefore, transparency is ensured also by the combiner 100c which concerns on 3rd Example.
  • a desired virtual image VI can be generated while ensuring transparency, as in the first and second embodiments. Further, according to the third embodiment, as in the second embodiment, the display screen DP can be selectively visually recognized as the virtual image VI. On the other hand, according to the third embodiment, as compared with the first and second embodiments, the boundary between the lens portion and the non-lens portion is less visible and less susceptible to the movement of the eyeball.
  • the micro lens 33 and the parallel plate 34 including the wavelength filters 35 and 36
  • the microlenses 33 may be provided only in the upper half or the lower half of the combiner 100c. In such a case, the virtual image can be viewed only when the line of sight is directed upward or downward.
  • the area ratio between the region 31 and the region 32 is changed, the brightness ratio between the real image RI and the virtual image VI changes, so that a desired brightness ratio between the real image RI and the virtual image VI can be obtained.
  • the area ratio between the region 31 and the region 32 may be changed as appropriate.
  • the wavelength filters 35 and 36 are provided on the surface opposite to the surface in which the microlenses 33 and the parallel flat plates 34 are alternately formed in a comb shape, but the microlens 33, the parallel flat plate 34, and the wavelength are provided.
  • the filters 35 and 36 may be provided on the same surface. In that case, the wavelength filter 35 may be provided at the position of the minute lens 33 and the wavelength filter 36 may be provided at the position of the parallel plate 34.
  • the wavelength filter 36 is used, but the wavelength filter 36 may not be used.
  • the wavelength filter 36 the real image RI on the display screen DP is not visually recognized, so that the real image RI is visually recognized as converted into the virtual image VI.
  • the wavelength filter 36 is not used, the real image RI and the virtual image VI of the display screen DP are visually recognized at the same time.
  • the wavelength filters 35 and 36 are used.
  • the first embodiment is shown instead of the wavelength filters 35 and 36.
  • Such a polarizing filter may be used.
  • the fourth embodiment is different from the first to third embodiments in the method for increasing the magnification. Specifically, in the first to third embodiments, the magnification is gained by the function of the convex lens (microlenses 11, 21, 33), but in the fourth embodiment, the magnification is increased by the function of the concave mirror instead of the convex lens. Earn.
  • the fourth embodiment is different from the first to third embodiments in a method for ensuring transparency. Specifically, in the first to third embodiments, the pupil division see-through phenomenon is used to ensure transparency, but in the fourth embodiment, the pupil division see-through phenomenon is not used when ensuring transparency. . In the fourth embodiment, the pupil division see-through phenomenon is used when the virtual image VI is visually recognized, not for ensuring transparency.
  • FIG. 14 shows a schematic configuration of a combiner 100d according to the fourth embodiment.
  • 14A shows a front view of the combiner 100d
  • FIG. 14B shows a cross-sectional view of the combiner 100d along the cutting line X2-X2 'in FIG. 14A.
  • wavelength filters 43 are provided in a plurality of regions (hatched regions) denoted by reference numeral 41
  • wavelength filters are disposed in a plurality of regions (unhatched regions) denoted by reference numeral 42. 44 is provided.
  • the wavelength filter 43 is attached to a curved surface (hereinafter referred to as “internal curved surface”) 45 formed inside the combiner 100 d, and the wavelength filter 44.
  • the internal curved surface 45 corresponds to a part of the curved surface of the convex lens, and the wavelength filter 43 is attached on such a curved surface.
  • the surface 46 to which the wavelength filter 44 is attached is not an external plane.
  • Both wavelength filters 43 and 44 are configured to reflect only light (wavelength) from the display screen DP.
  • the wavelength filters 43 and 44 are configured to transmit wavelengths other than the wavelength of the display display light (for example, other than RGB3 wavelengths).
  • the wavelength filter 44 is provided at a position on the external plane 46 where the light that has passed through the portion of the internal curved surface 45 where the wavelength filter 43 is not provided is incident.
  • the wavelength filter 43 is provided at a position on the internal curved surface 45 where the light incident on the wavelength filter 44 and reflected by the wavelength filter 44 is incident.
  • the wavelength filter 43 corresponds to an example of the “first optical filter” in the present invention
  • the wavelength filter 44 corresponds to an example of the “second optical filter” in the present invention.
  • FIG. 15 shows light passing through the combiner 100d according to the fourth embodiment.
  • 15 (a) and 15 (b) show views of the light passing from the side (combiner 100d is shown in a cross-sectional view similar to FIG. 14 (b)).
  • FIG. 15A shows a view when the real image RI is the display screen DP
  • FIG. 15B shows a view when the real image RI is a general object OB.
  • the light of the display screen DP enters the eye through the combiner 100d. Specifically, the light of the display screen DP passes through the portion of the internal curved surface 45 where the wavelength filter 43 is not provided (cut (reflected) at the location of the internal curved surface 45 where the wavelength filter 43 is provided) The light is incident on the external plane 46 where the wavelength filter 44 is provided. Thereafter, the light is reflected by the wavelength filter 44, enters the portion where the wavelength filter 43 is provided on the internal curved surface 45, and is reflected by the wavelength filter 43. In this case, since the wavelength filter 43 provided on the internal curved surface 45 acts as a concave mirror, the magnification can be increased.
  • the light reflected by the internal curved surface 45 passes through a portion where the wavelength filter 44 is not provided on the external plane 46 and enters the eye. Thereby, the virtual image VI corresponding to the display screen DP is visually recognized by the pupil division see-through phenomenon.
  • the light scattered by the general object OB passes through the wavelength filters 43 and 44 and enters the eye. Thereby, the real image RI of the general object OB is visually recognized.
  • the light having the same wavelength as the display display light (the light cut by the wavelength filters 43 and 44) is very small.
  • it functions as a simple transparent parallel plate. Therefore, according to the combiner 100d which concerns on 4th Example, transparency will be ensured.
  • a desired virtual image VI can be appropriately generated while ensuring transparency, as in the first to third embodiments.
  • the transparency is not ensured using the pupil division see-through phenomenon as in the first to third embodiments, the real image RI of the general object OB is brighter. appear.
  • the wavelength filters 43 and 44 are used.
  • the first embodiment is shown instead of the wavelength filters 43 and 44.
  • Such a polarizing filter may be used.
  • the convex lens 47 is cut out or produced by injection molding.
  • the wavelength filters 43 and 44 as dielectric multilayer films are formed.
  • the wavelength filter 43 is formed on the curved surface 45 of the convex lens 47 (which becomes the above-described internal curved surface)
  • the wavelength filter 44 is formed on the plane 46 of the convex lens 47 (which becomes the above-described external plane).
  • the convex lens 47 is bonded to the cover substrate 48 using a UV adhesive or the like.
  • the optical interfaces other than the wavelength filters 43 and 44 can be eliminated by making the refractive indexes of the convex lens 47, the cover substrate 48, and the adhesive substantially the same.
  • FIG. 17 shows light passing through a combiner 100d1 according to another example of the fourth embodiment in the figure in the case where the real image RI is the display screen DP. In this case, as indicated by an arrow Arr2 in FIG. 17, the light on the display screen DP enters the eye via the combiner 100d1.
  • the light of the display screen DP passes through a portion of the external plane 46 where the wavelength filter 44 is not provided (it is cut (reflected) at the location of the external plane 46 where the wavelength filter 44 is provided)
  • the light is incident on the inner curved surface 45 where the wavelength filter 43 is provided.
  • the light is reflected by the wavelength filter 43, enters the portion where the wavelength filter 44 is provided on the external plane 46, and is reflected by the wavelength filter 44.
  • the light reflected by the external plane 46 passes through a portion of the internal curved surface 45 where the wavelength filter 43 is not provided and enters the eye.
  • the fifth embodiment is the same as the fourth embodiment in that the magnification is gained by the function of the concave mirror. However, the fifth embodiment differs from the fourth embodiment in a method for ensuring transparency. Specifically, in the fifth embodiment, transparency is ensured by using the function of a half mirror.
  • FIG. 18 shows a schematic configuration of a combiner 100e according to the fifth embodiment.
  • 18A shows a front view of the combiner 100e
  • FIG. 18B shows a top view of the combiner 100e as viewed from above (some components are shown through).
  • the combiner 100e according to the fifth embodiment mainly includes an internal concave mirror 51, a wavelength filter 52, and a wavelength filter 53.
  • the internal concave mirror 51 is formed inside the combiner 100e.
  • the internal concave mirror 51 is configured as a translucent concave mirror.
  • the internal concave mirror 51 is configured as a half mirror having a concave shape.
  • the internal concave mirror 51 is configured by a translucent reflective film.
  • the wavelength filter 52 is attached to the surface of the protruding portion of the combiner 100e formed in the vicinity of the left and right temple portions of the glasses.
  • the wavelength filter 53 is attached to the front surface of the combiner 100e.
  • the wavelength filters 52 and 53 are both configured to reflect (cut) only light (wavelength) from the display screen DP. In other words, the wavelength filters 52 and 53 are configured to transmit wavelengths other than the wavelength of display display light (for example, other than RGB3 wavelengths).
  • the internal concave mirror 51 and the wavelength filter 52 are provided in the combiner 100e at positions and angles at which the light reflected by the wavelength filter 52 enters the internal concave mirror 51.
  • the wavelength filter 52 corresponds to an example of a “first optical filter” in the present invention
  • the wavelength filter 53 corresponds to an example of a “second optical filter” in the present invention.
  • FIG. 19 shows light passing through the combiner 100e according to the fifth embodiment when the real image RI is a general object OB.
  • FIG. 19 (a) shows a view of the light passing from above
  • FIG. 19 (b) shows a view of the light passing from the side (FIG. 19 ( In a) and (b), some components of the combiner 100e are shown in perspective).
  • the light scattered by the general object OB passes through the wavelength filter 53 and the internal concave mirror 51 and enters the eye.
  • the real image RI of the general object OB is visually recognized.
  • the light scattered by the general object OB almost passes through the wavelength filter 53 as it is, and the inner concave mirror 51 acts as a half mirror for the light after passing through the wavelength filter 53. Therefore, the real image RI of the general object OB is visually recognized with brightness according to the transmittance (reflectance) of the internal concave mirror 51. Therefore, transparency is also ensured by the combiner 100e according to the fifth embodiment.
  • FIG. 20 shows light passing through the combiner 100e according to the fifth embodiment when the real image RI is the display screen DP.
  • FIG. 20A shows a view of the light passing from above
  • FIG. 20B shows a view of the light passing from the side (FIG. 20 ( In a) and (b), some components of the combiner 100e are shown in perspective).
  • the light of the display screen DP passes through a location where the wavelength filter 53 is not provided (cut (reflected) at the location where the wavelength filter 53 is provided). Then, the light enters the portion where the wavelength filter 52 is provided. Thereafter, the light is reflected by the wavelength filter 52, enters the internal concave mirror 51, and is reflected. In this case, the magnification can be gained by the function of the internal concave mirror 51. Then, the light reflected by the internal concave mirror 51 enters the eye. Thereby, the virtual image VI corresponding to the display screen DP is visually recognized.
  • a desired virtual image VI can be appropriately generated while ensuring transparency, as in the first to fourth embodiments.
  • the magnification is obtained by the internal concave mirror 51.
  • the shape of the wavelength filter 52 to a concave surface and changing the shape of the internal concave mirror 51 to a plane (that is, the internal concave mirror 51 is simply changed). Change to half mirror), you may earn magnification.
  • the wavelength filter 52 is provided in the vicinity of the left and right temple portions.
  • the wavelength filter 52 may be provided in the upper part or the lower part.
  • a horizontal folding optical path is formed.
  • a vertical folding optical path is provided.
  • a combiner 100e1 having wavelength filters 52a and 52b provided at the upper and lower portions and internal concave mirrors 51a and 51b that reflect light from the wavelength filters 52a and 52b, respectively, is adopted. Also good. According to the combiner 100e1, it is possible to appropriately generate the virtual image VI of the display screen DP regardless of whether the display screen DP is in the upper part or the lower part (see reference symbols DPa and DPb).
  • the wavelength filter 52 for turning back the light is not limited to be integrally formed with the combiner 100e, but as shown in FIG. May be adopted.
  • the mirror 52c is installed in the temple part of the glasses. According to the combiner 100e2, since the angle of the mirror 52c can be freely changed, the reflected light from the display screen DP can be incident on the eyeball wherever the display screen DP is.
  • the wavelength filter 53 is used. However, the wavelength filter 53 may not be used.
  • the wavelength filter 53 the real image RI on the display screen DP is not visually recognized, so that the real image RI is visually recognized as converted into the virtual image VI.
  • the wavelength filter 53 is not used, the real image RI and the virtual image VI of the display screen DP are visually recognized at the same time.
  • the wavelength filters 52 and 53 are used.
  • the first embodiment is shown instead of the wavelength filters 52 and 53.
  • Such a polarizing filter may be used.
  • the above-described combiner 100e can be manufactured by a method similar to the method shown in FIG. That is, the combiner 100e can be manufactured by forming a translucent reflective film on the convex lens and then bonding it to the cover substrate.
  • the sixth embodiment is the same as the fourth and fifth embodiments in that the magnification is gained by the function of the concave mirror. However, the sixth embodiment is different from the fourth and fifth embodiments in that the magnification is obtained by the hologram optical element having the function of a concave mirror. The sixth embodiment is different from the fourth and fifth embodiments in that transparency is ensured by utilizing the wavelength selectivity of such a hologram optical element.
  • FIG. 23 shows a schematic configuration of the combiner 100f according to the sixth embodiment.
  • Fig.23 (a) has shown the front view of the combiner 100f
  • FIG.23 (b) has shown the top view which observed the combiner 100f from upper direction (a part of component is shown through and shown through).
  • the combiner 100f according to the sixth example mainly includes a hologram optical element 61, a total reflection mirror 62, and a wavelength filter 63.
  • the hologram optical element 61 is attached to the front surface of the combiner 100f.
  • the hologram optical element 61 is configured to have a concave mirror function.
  • the hologram optical element 61 is configured to have wavelength selectivity.
  • the hologram optical element 61 is configured to reflect light (wavelength) from the display screen DP and transmit light (wavelength) other than light from the display screen DP. In realizing the hologram optical element 61 having the above function, various known techniques can be applied.
  • the total reflection mirror 62 is provided on the surface of the protruding portion of the combiner 100f formed in the vicinity of the left and right temple portions of the glasses, and totally reflects the incident light.
  • the wavelength filter 63 is attached to the front surface of the combiner 100f. Specifically, the wavelength filter 63 is attached to the front surface of the hologram optical element 61 (that is, provided in front of the hologram optical element 61).
  • the wavelength filter 63 is configured to reflect (cut) only light (wavelength) from the display screen DP. In other words, it is configured to transmit wavelengths other than the wavelength of display display light (for example, other than the RGB three wavelengths).
  • the total reflection mirror 62 is provided in the combiner 100f at a position and an angle at which the light reflected by the total reflection mirror 62 enters the hologram optical element 61.
  • the wavelength filter 63 corresponds to an example of the “optical filter” in the present invention.
  • FIG. 24 shows light passing through the combiner 100f according to the sixth embodiment when the real image RI is a general object OB.
  • FIG. 24A shows a view of the light passing from above
  • FIG. 24B shows a view of the light passing from the side (FIG. 24 ( In a) and (b), some constituent elements of the combiner 100f are shown in perspective).
  • the light scattered by the general object OB passes through the hologram optical element 61 and the wavelength filter 63 and enters the eye. Thereby, the real image RI of the general object OB is visually recognized.
  • the hologram optical element 61 and the wavelength filter 63 hardly reflect the light scattered by the general object OB, the real image RI of the general object OB is visually recognized with almost the original brightness. Therefore, transparency is also ensured by the combiner 100f according to the sixth embodiment.
  • FIG. 25 shows light passing through the combiner 100f according to the sixth embodiment when the real image RI is the display screen DP.
  • FIG. 25A shows a view of the light passing from above
  • FIG. 25B shows a view of the light passing from the side (FIG. 25 ( In a) and (b), some constituent elements of the combiner 100f are shown in perspective).
  • the light of the display screen DP passes through a location where the wavelength filter 63 is not provided (it is cut (reflected) at the location where the wavelength filter 63 is provided). Then, the light enters the part where the total reflection mirror 62 is provided. Thereafter, the light is totally reflected by the total reflection mirror 62, enters the hologram optical element 61, and is reflected. In this case, since the hologram optical element 61 functions as a concave mirror, the magnification can be increased. Then, the light reflected by the hologram optical element 61 enters the eye. Thereby, the virtual image VI corresponding to the display screen DP is visually recognized.
  • a desired virtual image VI can be appropriately generated while ensuring transparency, as in the first to fifth embodiments.
  • the optical characteristics similar to those of the internal concave mirror 51 shown in the fifth embodiment can be realized by a plane (film). Can be made thinner.
  • the wavelength filter 52 as shown in the fifth embodiment is used as an optical element (mirror) for turning back the light. Instead of this, an inexpensive total reflection mirror 62 can be used.
  • the internal concave mirror 51 in order to ensure transparency, the internal concave mirror 51 must be translucent, and both the real image RI of the general object OB and the virtual image VI of the display screen DP are darkened.
  • both the real image RI of the general object OB and the virtual image VI of the display screen DP can be viewed brighter than in the fifth embodiment.
  • the wavelength filter 63 is used. However, when the display display light has polarization, the wavelength filter 63 may not be used. Further, instead of such a wavelength filter 63, a polarizing filter as shown in the first embodiment may be used.
  • the combiner is configured as a spectacle type, but the present invention is not limited to this, and the combiner may be configured as a helmet type. In short, it is sufficient that the combiner can be mounted on the user's head.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Instrument Panels (AREA)

Abstract

Disclosed is a virtual image creating device that causes an image formed by an image forming unit to be viewed as a virtual image, the virtual image creating device comprising an optical means that: separates, from incident light, image light corresponding to an image and scattered light of an object; lets the separated scattered light pass therethrough; and subjects the separated image light to an optical action for creating a virtual image. The virtual image creating device is constructed as a separate part from the image forming unit, and is constructed so as to be wearable on the user's head.

Description

虚像生成装置、及び表示システムVirtual image generating apparatus and display system
 本発明は、虚像として画像を視認させる技術分野に関する。 The present invention relates to a technical field for visually recognizing an image as a virtual image.
 従来から、虚像として画像を視認させるヘッドアップディスプレイ(以下では適宜「HUD」と表記する。)やヘッドマウントディスプレイ(以下では適宜「HMD」と表記する。)などの表示装置が知られている。例えば、特許文献1には、HMDに関する技術が提案されている。具体的には、特許文献1には、不透明な物体であっても、そのサイズが瞳孔径より小さければ、眼の直近に置くことで半透明に見えるといった現象(以下では「瞳分割シースルー現象」と呼ぶ。)を利用したHMDが提案されている。その他にも、本発明に関連する技術が特許文献2に提案されている。 Conventionally, display devices such as a head-up display (hereinafter referred to as “HUD” as appropriate) and a head-mounted display (hereinafter referred to as “HMD” as appropriate) for visually recognizing an image as a virtual image are known. For example, Patent Document 1 proposes a technique related to HMD. Specifically, Patent Document 1 describes a phenomenon in which even an opaque object appears translucent when placed close to the eye if the size is smaller than the pupil diameter (hereinafter referred to as “pupil division see-through phenomenon”). HMD using this method has been proposed. In addition, Patent Document 2 proposes a technique related to the present invention.
特開2009-75195号公報JP 2009-75195 A 特表2012-502319号公報Special table 2012-502319 gazette
 ところで、上記したHUD及びHMDには以下のような欠点が考えられる。通常のHUDでは、コンバイナのサイズを固定すると、観察者とコンバイナとの距離が大きくなるほど、ユーザが視認する虚像の大きさ(以下では「画角」と呼ぶ。)が小さくなる傾向にあり、逆に、画角を固定すると、大きなコンバイナが必要になる傾向にあった。また、HUDを車両に搭載する場合、コンバイナをダッシュボードに設けるタイプでは場所や大きさの制約を受ける傾向にあり、コンバイナを天井付近に設けるタイプでは運転者に対して違和感や圧迫感を与えてしまう場合があった。他方で、通常のHMDでは、眼鏡形状の構造体に各種の光学素子や制御回路や電池などを収納するため、サイズや重量が大きくなる傾向にあった。 By the way, the above-mentioned HUD and HMD have the following disadvantages. In a normal HUD, if the size of the combiner is fixed, the larger the distance between the observer and the combiner, the smaller the size of the virtual image (hereinafter referred to as “angle of view”) viewed by the user tends to be. In addition, when the angle of view is fixed, a large combiner tends to be required. In addition, when the HUD is mounted on a vehicle, the type in which the combiner is provided on the dashboard tends to be restricted by location and size, and the type in which the combiner is provided near the ceiling gives the driver a sense of discomfort and pressure. There was a case. On the other hand, in an ordinary HMD, various optical elements, a control circuit, a battery, and the like are housed in a spectacle-shaped structure, which tends to increase the size and weight.
 本発明が解決しようとする課題は上記のようなものが一例として挙げられる。本発明は、手軽に利用可能であると共に、圧迫感や違和感を生じさせることなく所望の虚像を適切に視認させることが可能な虚像生成装置などを提供することを課題とする。 Examples of the problem to be solved by the present invention include the above. It is an object of the present invention to provide a virtual image generating device that can be used easily and can appropriately visually recognize a desired virtual image without causing a feeling of pressure or discomfort.
 請求項に記載の発明では、画像形成部によって形成された画像を虚像として視認させる虚像生成装置は、入射される光から、前記画像に対応する画像光と物体の散乱光とを分離し、分離した前記散乱光を透過させると共に、分離した前記画像光に対して、前記虚像を生成するための光学的作用を付与する光学的手段を備え、当該虚像生成装置は、前記画像形成部と別体に構成されていると共に、ユーザの頭部に装着可能に構成されていることを特徴とする。 In the invention described in the claims, the virtual image generating device that visually recognizes the image formed by the image forming unit as a virtual image separates the image light corresponding to the image and the scattered light of the object from the incident light, and separates them. An optical means for transmitting the scattered light and imparting an optical action for generating the virtual image to the separated image light, the virtual image generating apparatus being separate from the image forming unit It is comprised so that it can mount | wear to a user's head.
 また、請求項に記載の発明では、表示システムは、画像形成部と、前記画像形成部によって形成された画像を虚像として視認させる、上記の虚像変換装置と、を備えることを特徴とする。 Further, in the invention described in the claims, the display system includes an image forming unit and the virtual image conversion device that causes the image formed by the image forming unit to be visually recognized as a virtual image.
本実施例に係る表示システムの基本構成を示す。1 shows a basic configuration of a display system according to an embodiment. 瞳分割シースルー現象を利用したHMDの概略構成を示す。The schematic structure of HMD using a pupil division see-through phenomenon is shown. 参考例に係るコンバイナの概略構成を示す。The schematic structure of the combiner which concerns on a reference example is shown. 参考例に係るコンバイナにおいて、非レンズ部を通過する光を示す。In the combiner which concerns on a reference example, the light which passes a non-lens part is shown. 参考例に係るコンバイナにおいて、微小レンズ部を通過する光を示す。In the combiner which concerns on a reference example, the light which passes a micro lens part is shown. 第1実施例に係るコンバイナの概略構成を示す。1 shows a schematic configuration of a combiner according to a first embodiment. 第1実施例に係るコンバイナにおいて、非レンズ部を通過する光を示す。In the combiner which concerns on 1st Example, the light which passes a non-lens part is shown. 第1実施例に係るコンバイナにおいて、微小レンズ部を通過する光を示す。In the combiner which concerns on 1st Example, the light which passes a micro lens part is shown. 第2実施例に係るコンバイナの概略構成を示す。The schematic structure of the combiner which concerns on 2nd Example is shown. 第2実施例に係るコンバイナにおいて、非レンズ部を通過する光を示す。In the combiner which concerns on 2nd Example, the light which passes a non-lens part is shown. 第2実施例に係るコンバイナにおいて、微小レンズ部を通過する光を示す。In the combiner which concerns on 2nd Example, the light which passes a micro lens part is shown. 第3実施例に係るコンバイナの概略構成を示す。The schematic structure of the combiner which concerns on 3rd Example is shown. 第3実施例に係るコンバイナを通過する光を示す。The light which passes the combiner which concerns on 3rd Example is shown. 第4実施例に係るコンバイナの概略構成を示す。The schematic structure of the combiner which concerns on 4th Example is shown. 第4実施例に係るコンバイナを通過する光を示す。The light which passes the combiner which concerns on 4th Example is shown. 第4実施例に係るコンバイナの製造方法の一例を示す。An example of the manufacturing method of the combiner concerning a 4th example is shown. 実像がディスプレイ画面である場合の図に、第4実施例の他の例に係るコンバイナを通過する光を示す。The figure when the real image is a display screen shows light passing through a combiner according to another example of the fourth embodiment. 第5実施例に係るコンバイナの概略構成を示す。The schematic structure of the combiner which concerns on 5th Example is shown. 実像が一般物体である場合に、第5実施例に係るコンバイナを通過する光を示す。When a real image is a general object, the light which passes the combiner which concerns on 5th Example is shown. 実像がディスプレイ画面である場合に、第5実施例に係るコンバイナを通過する光を示す。When a real image is a display screen, the light which passes the combiner which concerns on 5th Example is shown. 第5実施例の他の例に係るコンバイナの概略構成を示す。The schematic structure of the combiner which concerns on the other example of 5th Example is shown. 第5実施例の更に他の例に係るコンバイナの概略構成を示す。The schematic structure of the combiner which concerns on the further another example of 5th Example is shown. 第6実施例に係るコンバイナの概略構成を示す。The schematic structure of the combiner which concerns on 6th Example is shown. 実像が一般物体である場合に、第6実施例に係るコンバイナを通過する光を示す。When a real image is a general object, the light which passes the combiner which concerns on 6th Example is shown. 実像がディスプレイ画面である場合に、第6実施例に係るコンバイナを通過する光を示す。When a real image is a display screen, the light which passes the combiner which concerns on 6th Example is shown. 一般的なHUD及びHMDの欠点を説明するための図を示す。The figure for demonstrating the fault of common HUD and HMD is shown.
 本発明の1つの観点では、画像形成部によって形成された画像を虚像として視認させる虚像生成装置は、入射される光から、前記画像に対応する画像光と物体(一般物体に相当する)の散乱光とを分離し、分離した前記散乱光を透過させると共に、分離した前記画像光に対して、前記虚像を生成するための光学的作用を付与する光学的手段を備え、当該虚像生成装置は、前記画像形成部と別体に構成されていると共に、ユーザの頭部に装着可能に構成されている。 In one aspect of the present invention, a virtual image generating device that visually recognizes an image formed by an image forming unit as a virtual image scatters image light and an object (corresponding to a general object) corresponding to the image from incident light. The virtual image generating apparatus includes optical means for separating the light, transmitting the separated scattered light, and imparting an optical action for generating the virtual image to the separated image light. The image forming unit is configured separately from the image forming unit and can be mounted on the user's head.
 上記の虚像生成装置によれば、光学的手段により、画像形成部が形成した画像についての所望の虚像を適切に生成することができる。また、虚像生成装置は、画像形成部と別体に構成され、ユーザの頭部に装着されて利用されるので、手軽に利用可能であると共に、圧迫感や違和感を生じさせることはない。 According to the above virtual image generating device, a desired virtual image can be appropriately generated for the image formed by the image forming unit by optical means. In addition, the virtual image generating device is configured separately from the image forming unit and is used by being mounted on the user's head, so that it can be used easily and does not cause a feeling of pressure or discomfort.
 上記の虚像生成装置の一態様では、前記光学的手段は、前記ユーザの瞳孔径よりも小さい幅を有するレンズ部と、レンズ機能を有しない非レンズ部と、前記レンズ部に設けられており、前記画像光を透過させ、前記散乱光を遮光する第1の光学フィルタと、を備える。 In one aspect of the virtual image generating device, the optical unit is provided in the lens unit having a width smaller than the pupil diameter of the user, a non-lens unit having no lens function, and the lens unit. A first optical filter that transmits the image light and shields the scattered light.
 上記の虚像生成装置によれば、瞳分割シースルー現象により透明性を確保しつつ、所望の虚像(実像とは異なる位置に存在しているように視認される、画像形成部によって形成された画像に対応する虚像を意味する。以下同様とする。)を適切に生成することができる。 According to the above virtual image generation device, while ensuring transparency by the pupil division see-through phenomenon, the desired virtual image (the image formed by the image forming unit that is visually recognized to exist at a position different from the real image) The corresponding virtual image, the same shall apply hereinafter).
 なお、本明細書では、「光を透過させる」といった表現には、全ての光を透過させることだけでなく、一部の光のみを透過させることも含まれるものとする。「光を遮光する」や「光を反射させる」といった表現も同様である。 In the present specification, the expression “transmit light” includes not only transmitting all light but also transmitting only part of light. The same applies to expressions such as “shield light” and “reflect light”.
 上記の虚像生成装置の他の一態様では、前記光学的手段は、前記非レンズ部に設けられており、前記画像光を遮光し、前記散乱光を透過させる第2の光学フィルタを更に備える。 In another aspect of the virtual image generating device, the optical unit is further provided with a second optical filter that is provided in the non-lens portion and shields the image light and transmits the scattered light.
 上記の虚像生成装置によれば、画像形成部によって形成された画像に対応する実像が視認されなくなるため、当該実像が虚像に変換されたように視認されることとなる。 According to the above-described virtual image generating device, the real image corresponding to the image formed by the image forming unit is not visually recognized, so that the real image is visually recognized as converted into a virtual image.
 上記の虚像生成装置の他の一態様では、前記光学的手段は、前記ユーザの瞳孔径よりも小さい幅を有する複数のレンズ部と、レンズ機能を有しない複数の非レンズ部と、前記散乱光を遮光し、前記画像光を透過させる複数の第1の光学フィルタと、を備え、前記レンズ部及び前記非レンズ部は、前記光学的手段の一の面に、交互に櫛形に形成され、前記第1の光学フィルタは、透過させた前記画像光を前記レンズ部に入射させる。 In another aspect of the virtual image generating device, the optical unit includes a plurality of lens units having a width smaller than the pupil diameter of the user, a plurality of non-lens units having no lens function, and the scattered light. A plurality of first optical filters that transmit the image light, and the lens portions and the non-lens portions are alternately formed in a comb shape on one surface of the optical means, The first optical filter causes the transmitted image light to enter the lens unit.
 上記の虚像生成装置によっても、瞳分割シースルー現象により透明性を確保しつつ、所望の虚像を適切に生成することができる。また、当該虚像生成装置によれば、レンズ部と非レンズ部との境界が視認されにくくなると共に、眼球移動の影響を受けにくくなる。 The above virtual image generation device can also appropriately generate a desired virtual image while ensuring transparency by the pupil division see-through phenomenon. In addition, according to the virtual image generating device, the boundary between the lens unit and the non-lens unit is not easily recognized, and is less susceptible to the movement of the eyeball.
 上記の虚像生成装置の他の一態様では、前記光学的手段は、前記画像光を遮光し、前記散乱光を透過させて前記非レンズ部に入射させる複数の第2の光学フィルタを更に備える。上記の虚像生成装置によっても、画像形成部によって形成された画像に対応する実像が視認されなくなるため、当該実像が虚像に変換されたように視認されることとなる。 In another aspect of the virtual image generating device, the optical unit further includes a plurality of second optical filters that shield the image light, transmit the scattered light, and enter the non-lens portion. Also with the above virtual image generation device, the real image corresponding to the image formed by the image forming unit is not visually recognized, so that the real image is visually recognized as converted into a virtual image.
 上記の虚像生成装置の他の一態様では、前記光学的手段は、レンズを元にした面に設けられており、前記画像光を反射させ、前記散乱光を透過させる複数の第1の光学フィルタと、前記第1の光学フィルタが設けられた面に対向する面に設けられており、前記画像光を反射させ、前記散乱光を透過させる複数の第2の光学フィルタと、を備え、前記第1の光学フィルタ及び前記第2の光学フィルタは、前記画像光が当該第1の光学フィルタ及び当該第2の光学フィルタで反射して前記ユーザの眼に入射されるように構成され、前記第1の光学フィルタは、前記画像光を反射する際に、当該画像光を集光する。 In another aspect of the virtual image generating apparatus, the optical means is provided on a surface based on a lens, and a plurality of first optical filters that reflect the image light and transmit the scattered light. And a plurality of second optical filters that are provided on a surface opposite to the surface on which the first optical filter is provided, reflect the image light, and transmit the scattered light. The first optical filter and the second optical filter are configured such that the image light is reflected by the first optical filter and the second optical filter and is incident on the user's eye. The optical filter collects the image light when reflecting the image light.
 上記の虚像生成装置によっても、透明性を確保しつつ、所望の虚像を適切に生成することができる。また、当該虚像生成装置では、瞳分割シースルー現象を利用して透明性を確保しているわけではないため、物体の実像がより明るく見える。 The above-described virtual image generation device can also appropriately generate a desired virtual image while ensuring transparency. Further, in the virtual image generating apparatus, since the transparency is not ensured by using the pupil division see-through phenomenon, the real image of the object looks brighter.
 上記の虚像生成装置の他の一態様では、前記光学的手段は、前記画像光を反射させる第1の光学フィルタと、前記第1の光学フィルタによって反射された前記画像光を反射させ、前記散乱光を透過させるハーフミラーと、を備え、前記第1の光学フィルタ又は前記ハーフミラーは、前記画像光を集光する機能を有する。上記の虚像生成装置によっても、透明性を確保しつつ、所望の虚像を適切に生成することができる。 In another aspect of the virtual image generating device, the optical unit reflects the image light reflected by the first optical filter and the image light reflected by the first optical filter, and the scattering. A half mirror that transmits light, and the first optical filter or the half mirror has a function of condensing the image light. The above virtual image generating device can also appropriately generate a desired virtual image while ensuring transparency.
 上記の虚像生成装置の他の一態様では、前記光学的手段は、前記ハーフミラーよりも前記画像形成部側に設けられており、前記画像光を遮光し、前記散乱光を透過させる第2の光学フィルタを更に備える。上記の虚像生成装置によっても、画像形成部によって形成された画像に対応する実像が視認されなくなるため、当該実像が虚像に変換されたように視認されることとなる。 In another aspect of the virtual image generating device, the optical unit is provided on the image forming unit side of the half mirror, and shields the image light and transmits the scattered light. An optical filter is further provided. Also with the above virtual image generation device, the real image corresponding to the image formed by the image forming unit is not visually recognized, so that the real image is visually recognized as converted into a virtual image.
 上記の虚像生成装置の他の一態様では、前記光学的手段は、前記画像光を全反射させる全反射ミラーと、前記全反射ミラーによって反射された前記画像光を反射させ、前記散乱光を透過させるホログラム光学素子と、を備え、前記ホログラム光学素子は、前記画像光を集光する機能を有する。 In another aspect of the virtual image generating apparatus, the optical unit reflects the image light reflected by the total reflection mirror and totally reflects the image light, and transmits the scattered light. A hologram optical element that has a function of condensing the image light.
 上記の虚像生成装置によっても、透明性を確保しつつ、所望の虚像を適切に生成することができる。また、当該虚像生成装置によれば、ホログラム光学素子を用いることで虚像生成装置全体の厚みを薄くすることができると共に、安価な全反射ミラーを用いることで装置のコストを低減することができる。 The above-described virtual image generation device can also appropriately generate a desired virtual image while ensuring transparency. Moreover, according to the virtual image generating apparatus, the thickness of the entire virtual image generating apparatus can be reduced by using the hologram optical element, and the cost of the apparatus can be reduced by using an inexpensive total reflection mirror.
 上記の虚像生成装置の他の一態様では、前記光学的手段は、前記ホログラム光学素子よりも前記画像形成部側に設けられており、前記画像光を遮光し、前記散乱光を透過させる光学フィルタを更に備える。上記の虚像生成装置によっても、画像形成部によって形成された画像に対応する実像が視認されなくなるため、当該実像が虚像に変換されたように視認されることとなる。 In another aspect of the virtual image generating apparatus, the optical unit is provided on the image forming unit side with respect to the hologram optical element, and shields the image light and transmits the scattered light. Is further provided. Also with the above virtual image generation device, the real image corresponding to the image formed by the image forming unit is not visually recognized, so that the real image is visually recognized as converted into a virtual image.
 好適な例では、前記光学フィルタ(第1の光学フィルタ及び/又は第2の光学フィルタ)は、偏光フィルタ又は波長フィルタである。 In a preferred example, the optical filter (first optical filter and / or second optical filter) is a polarizing filter or a wavelength filter.
 また、好適な例では、上記の虚像生成装置は、眼鏡型に構成される。 In a preferred example, the virtual image generating device is configured as a glasses.
 本発明の他の観点では、表示システムは、画像形成部と、前記画像形成部によって形成された画像を虚像として視認させる、上記の虚像生成装置と、を備える。例えば、画像形成部は、車両のダッシュボードに設けると良い。 In another aspect of the present invention, a display system includes an image forming unit and the virtual image generating device that causes an image formed by the image forming unit to be visually recognized as a virtual image. For example, the image forming unit may be provided on the dashboard of the vehicle.
 以下、図面を参照して本発明の好適な実施例について説明する。 Hereinafter, preferred embodiments of the present invention will be described with reference to the drawings.
 [基本概念]
 ここでは、本実施例における基本概念について説明する。
[Basic concept]
Here, the basic concept in the present embodiment will be described.
 まず、図26を参照して、一般的なHUD及びHMDの欠点について説明する。図26(a)は、一般的なHUDの概略構成を示しており、図26(b)は、一般的なHMDの概略構成を示している。 First, the disadvantages of general HUD and HMD will be described with reference to FIG. FIG. 26A shows a schematic configuration of a general HUD, and FIG. 26B shows a schematic configuration of a general HMD.
 一般的なHUDでは、運転者の視界前方に置かれたハーフミラーによるコンバイナ500aを用いて、液晶ディスプレイの画面やプロジェクタで投影されたスクリーン上の画像(実像RI)を、虚像VIとして運転者に視認させている。これにより、例えば、運転者は前方を見たまま視線を下げることなく、計器類やナビゲーション情報等を景色に重畳した状態で視認することができる。他方で、一般的なHMDでは、LCOS(Liquid Crystal On Silicon)やOLED(Organic Light-Emitting Diode)などのマイクロディスプレイ(左眼用及び右眼用の実像RI)と、マイクロディスプレイから発する光をユーザの眼球に導くための接眼光学系(左眼用及び右眼用のコンバイナ500bなど)とから構成される。 In a general HUD, a half-mirror combiner 500a placed in front of the driver's field of view is used to display an image on the screen of a liquid crystal display or a projector (real image RI) as a virtual image VI to the driver. It is visually recognized. Thereby, for example, the driver can visually recognize the instrument, navigation information, and the like superimposed on the scenery without lowering the line of sight while looking forward. On the other hand, in general HMD, the user generates light emitted from the micro display (real image RI for left eye and right eye) such as LCOS (Liquid Crystal On On Silicon) or OLED (Organic Light-Emitting Diode) and the like. Eyepiece optical system (such as a left eye combiner 500b and a right eye combiner 500b).
 なお、以下では、コンバイナ500aとコンバイナ500bとをまとめて「コンバイナ500」と表記する。また、HUD又はHMD(後述する本実施例に係るコンバイナも含む)のユーザのことを適宜「観察者」と呼ぶ。 In the following, the combiner 500a and the combiner 500b are collectively referred to as “combiner 500”. In addition, a user of HUD or HMD (including a combiner according to a later-described embodiment) is appropriately referred to as an “observer”.
 一見するとHUDとHMDとは全く異なる光学系のように見えるが、実像RIをコンバイナ500によって虚像VIとして視認させるという点では同じものと解釈することができる。異なるのは、実像RI及びコンバイナ500を何処に固定するかという点であり、HUDではこれらを空間(車体など)に固定しており、HMDではこれらを観察者(眼鏡)に固定している。 At first glance, HUD and HMD look like completely different optical systems, but can be interpreted as the same in that the real image RI is visually recognized as a virtual image VI by the combiner 500. The difference is where the real image RI and the combiner 500 are fixed. In the HUD, these are fixed in a space (such as a vehicle body), and in the HMD, these are fixed to an observer (glasses).
 一般的なHUD(実像RI及びコンバイナ500を空間に固定するシステム)の欠点について述べる。一般的なHUDにより観察者(運転者)が視認する虚像の大きさ(画角)は、観察者がコンバイナ500を見込む角度で制限される。そのため、コンバイナ500のサイズを固定すると、観察者とコンバイナ500との距離が大きくなるほど画角が小さくなる傾向にある。逆に、画角を固定すると、観察者とコンバイナ500との距離が大きくなるほど大きなコンバイナ500が必要になる。他方で、HUDのコンバイナ500はダッシュボード上に固定されることが多いが、このタイプのHUDでは、スペース的な観点から、あまり大きなコンバイナ500を置くことはできない。逆に、車体の天井付近(例えばサンバイザの位置)にコンバイナ500を設けるタイプのHUDでは、比較的大きなコンバイナ500を固定することが可能であるが、上部にコンバイナ500を固定することで運転者に圧迫感や違和感を与えてしまう場合がある。 Described below are the disadvantages of general HUD (system that fixes real image RI and combiner 500 in space). The size (angle of view) of the virtual image visually recognized by the observer (driver) with a general HUD is limited by the angle at which the observer looks at the combiner 500. Therefore, when the size of the combiner 500 is fixed, the angle of view tends to decrease as the distance between the observer and the combiner 500 increases. On the other hand, when the angle of view is fixed, a larger combiner 500 is required as the distance between the observer and the combiner 500 increases. On the other hand, the HUD combiner 500 is often fixed on the dashboard. However, in this type of HUD, it is not possible to place a very large combiner 500 from the viewpoint of space. Conversely, in a type of HUD in which the combiner 500 is provided near the ceiling of the vehicle body (for example, the position of the sun visor), it is possible to fix a relatively large combiner 500, but by fixing the combiner 500 on the top, There may be a feeling of oppression or discomfort.
 次に、一般的なHMD(実像及びコンバイナを観察者頭部に固定するシステム)の欠点について述べる。一般的なHMDでは、実像RIを観察者の頭部(眼鏡)に固定するが、実像RIを作るためにはLCOSやOLEDなど画像を生成するための空間変調素子に加えて、各種の制御回路基板や2次電池なども必要である。そのため、一般的なHMDでは、眼鏡型装置全体のサイズや重量が大きくなる傾向にある。一方で、サイズや重量を減らすために、2次電池などを別体としたうえで、それらを有線で眼鏡部分と繋ぐ方法も考えられるが、この方法では、装着時の煩わしさが発生してしまう場合がある。いずれにしても、一般的なHMDでは、観察者が通常のサングラスを掛けるような手軽さで装着することは難しい。 Next, the disadvantages of a general HMD (a system that fixes a real image and a combiner to the observer's head) will be described. In a general HMD, a real image RI is fixed to an observer's head (glasses). In order to create a real image RI, various control circuits are used in addition to a spatial modulation element for generating an image such as LCOS or OLED. A substrate and a secondary battery are also required. Therefore, in a general HMD, the size and weight of the entire spectacle-type device tend to increase. On the other hand, in order to reduce the size and weight, there is a method of connecting secondary batteries etc. separately and connecting them to the spectacles part by wire, but this method causes troublesomeness at the time of wearing. May end up. In any case, with a general HMD, it is difficult for the observer to wear it as easily as wearing normal sunglasses.
 本実施例では、上記のようなHUD及びHMDの欠点を解消可能な構成を採用する。図1は、本実施例に係る表示システムの基本構成を示している。図1に示すように、本実施例では、実像RIは、HUDと同様に空間に固定するが、コンバイナ100は、HMDと同様に観察者側(眼鏡)に固定するような構成を採用する。これにより、サングラスを掛けるような手軽さで利用可能であり、圧迫感や違和感を生じさせることなく画角の大きな虚像を視認させることが可能となる。なお、実像RIは本発明における「画像形成部」に相当するものであり、コンバイナ100は本発明における「虚像生成装置」に相当する(以下同様とする)。 In the present embodiment, a configuration that can eliminate the disadvantages of HUD and HMD as described above is adopted. FIG. 1 shows a basic configuration of a display system according to the present embodiment. As shown in FIG. 1, in this embodiment, the real image RI is fixed in a space like the HUD, but the combiner 100 adopts a configuration in which the combiner 100 is fixed on the observer side (glasses) like the HMD. Thereby, it can be used as easily as wearing sunglasses, and a virtual image with a large angle of view can be visually recognized without causing a feeling of pressure or a sense of incongruity. The real image RI corresponds to the “image forming unit” in the present invention, and the combiner 100 corresponds to the “virtual image generating device” in the present invention (hereinafter the same).
 ここで、一般的なHUDやHMDでは、虚像VIを実像RIよりも大きく視認させると共に、虚像VIを実像RIよりも遠くに視認させるために、実像RIとコンバイナ500との間に倍率を上げるための光学素子(凸レンズなど)を設けたり、コンバイナ500自体を凹面鏡にしたりしている。したがって、本実施例では、図1に示すような眼鏡型のコンバイナ100を、倍率を稼ぎつつ透明性を確保できるように構成する。それを実現可能な構成を、以下の第1乃至第6実施例に示す。なお、後述する第1乃至第6実施例に示すコンバイナ100a~100fは、図1の表示システムに適用されるものとする。 Here, in general HUD and HMD, in order to make the virtual image VI larger than the real image RI and to make the virtual image VI visible farther than the real image RI, the magnification between the real image RI and the combiner 500 is increased. The optical element (convex lens or the like) is provided, or the combiner 500 itself is a concave mirror. Therefore, in this embodiment, the eyeglass-type combiner 100 as shown in FIG. 1 is configured to ensure transparency while increasing the magnification. Configurations capable of realizing this are shown in the following first to sixth embodiments. Note that combiners 100a to 100f shown in first to sixth embodiments to be described later are applied to the display system of FIG.
 [第1実施例]
 最初に、第1実施例について説明する。第1実施例では、倍率を稼ぎつつ透明性を確保するために、前述した特許文献1に記載された瞳分割シースルー現象を利用する。したがって、まず、図2を参照して、特許文献1に記載された瞳分割シースルー現象について簡単に説明する。
[First embodiment]
First, the first embodiment will be described. In the first embodiment, the pupil division see-through phenomenon described in Patent Document 1 described above is used in order to ensure transparency while increasing the magnification. Therefore, first, the pupil division see-through phenomenon described in Patent Document 1 will be briefly described with reference to FIG.
 図2は、瞳分割シースルー現象を利用したHMDの概略構成を示している。当該HMDでは、マイクロディスプレイ(実像RI)からの光を、不透明な光学バー310(破線で示す)を介して眼に導いている。具体的には、マイクロディスプレイの光を、不透明な全反射鏡320及び凸レンズ330を介して眼に導いている。これにより、観察者に虚像VIが視認される。このようなHMDでは、不透明な光学バー310は、瞳孔径よりも小さなサイズを有すると共に、眼の直近に設けられる。そのため、瞳分割シースルー現象により、光学バー310は半透明に視認される。つまり、一般物体(背景物体)OBは、光学バー310によって殆ど阻害されることなく視認される。なお、上記の凸レンズ330によれば、マイクロディスプレイの各画素から発する光の拡散角度を緩くすることで、遠方から発している光のように視認される。その結果、虚像VIは実像RIよりも大きく見える(虫眼鏡で見ているのと同じ原理である)。 FIG. 2 shows a schematic configuration of the HMD using the pupil division see-through phenomenon. In the HMD, light from the micro display (real image RI) is guided to the eye through an opaque optical bar 310 (shown by a broken line). Specifically, the light of the micro display is guided to the eye through the opaque total reflection mirror 320 and the convex lens 330. Thereby, the virtual image VI is visually recognized by the observer. In such an HMD, the opaque optical bar 310 has a size smaller than the pupil diameter and is provided in the immediate vicinity of the eye. Therefore, the optical bar 310 is visually recognized as translucent due to the pupil division see-through phenomenon. That is, the general object (background object) OB is visually recognized with almost no obstruction by the optical bar 310. In addition, according to said convex lens 330, it is visually recognized like the light emitted from a distant place by loosening the diffusion angle of the light emitted from each pixel of a micro display. As a result, the virtual image VI appears larger than the real image RI (same principle as seen with a magnifying glass).
 次に、図3乃至図5を参照して、上記した瞳分割シースルー現象を利用することで、透明性を確保しながら虚像VIを生成可能なコンバイナについて説明する。ここでは、透明性を確保しながら虚像VIを生成することを主目的としたコンバイナの基本構成について説明する(以下では、当該コンバイナを「参考例に係るコンバイナ」と呼ぶ。)。なお、参考例に係るコンバイナでは、空間にある全ての物体が虚像VIとして視認されてしまうため、実際にはこれに対処するための構成を付加する必要がある。その構成については、図6以降で説明する。 Next, a combiner that can generate a virtual image VI while ensuring transparency by using the above-described pupil division see-through phenomenon will be described with reference to FIGS. Here, a basic configuration of a combiner whose main purpose is to generate a virtual image VI while ensuring transparency will be described (hereinafter, the combiner is referred to as a “combiner according to a reference example”). In the combiner according to the reference example, since all objects in the space are visually recognized as virtual images VI, it is actually necessary to add a configuration for dealing with this. The configuration will be described with reference to FIG.
 図3は、参考例に係るコンバイナ100xの概略構成を示している。図3に示すように、参考例に係るコンバイナ100xは、主に、微小レンズ91及び透明な平行平板92を有する。微小レンズ91は、大きな凸レンズから切り出した微小なレンズであり、瞳孔径よりも小さい幅(例えば2mm)を有する。 FIG. 3 shows a schematic configuration of the combiner 100x according to the reference example. As shown in FIG. 3, the combiner 100 x according to the reference example mainly includes a minute lens 91 and a transparent parallel plate 92. The micro lens 91 is a micro lens cut out from a large convex lens, and has a width (for example, 2 mm) smaller than the pupil diameter.
 図4は、参考例に係るコンバイナ100xにおいて、平行平板92の部分(言い換えると非レンズ部)を通過する光を示している。つまり、実像RIのまま視認される光を示している。具体的には、図4(a)は、光が通過する様子を上方から観察した図を示し、図4(b)は、光が通過する様子を側方から観察した図を示している。図4(b)に示すように、参考例に係るコンバイナ100xによれば、瞳分割シースルー現象により、微小レンズ91が付いていても実像RIをそのまま視認させることができる。つまり、透明性を確保することができる。なお、図4(a)及び(b)中の符号95は、微小レンズ91を切り出す時の元になる凸レンズを示している(以下同様とする)。 FIG. 4 shows light passing through a portion of the parallel plate 92 (in other words, a non-lens portion) in the combiner 100x according to the reference example. That is, the light that is visually recognized as the real image RI is shown. Specifically, FIG. 4A shows a view of the light passing from above and FIG. 4B shows a view of the light passing from the side. As shown in FIG. 4B, according to the combiner 100x according to the reference example, the real image RI can be viewed as it is even if the minute lens 91 is attached due to the pupil division see-through phenomenon. That is, transparency can be ensured. Note that reference numeral 95 in FIGS. 4A and 4B indicates a convex lens that is a base when the microlens 91 is cut out (the same applies hereinafter).
 図5は、参考例に係るコンバイナ100xにおいて、微小レンズ91の部分を通過する光を示している。つまり、虚像として視認される光を示している。具体的には、図5(a)は、光が通過する様子を上方から観察した図(詳しくは、平行平板92を透視して微小レンズ91を観察した透視図に相当する)を示しており、図5(b)は、光が通過する様子を側方から観察した図を示している。図5(a)中の領域Ar1に示すように、実像RIの光は、微小レンズ91で屈折して眼に入射する。また、図5(a)及び(b)中の破線L1は、微小レンズ91で屈折した後の光線を延長した線である(以下同様とする)。図5(a)及び(b)より、微小レンズ91によって、実像RIに対応する虚像VIが観察者に視認されることがわかる。具体的には、実像RIよりも遠方に位置すると共に、実像RIよりも大きなサイズを有するような虚像VIが視認される。 FIG. 5 shows light passing through the portion of the micro lens 91 in the combiner 100x according to the reference example. That is, it shows light that is visually recognized as a virtual image. Specifically, FIG. 5A shows a view in which light passes from above (specifically, it corresponds to a perspective view in which the microlens 91 is observed through the parallel plate 92). FIG. 5 (b) shows a side view of how light passes. As shown in a region Ar1 in FIG. 5A, the light of the real image RI is refracted by the micro lens 91 and enters the eye. In addition, a broken line L1 in FIGS. 5A and 5B is a line obtained by extending a light beam after being refracted by the micro lens 91 (hereinafter the same). 5A and 5B, it can be seen that the virtual image VI corresponding to the real image RI is visually recognized by the observer by the micro lens 91. Specifically, a virtual image VI that is located farther than the real image RI and has a larger size than the real image RI is visually recognized.
 ここで、微小レンズ91の元となる凸レンズの焦点距離fは、当該レンズと実像RIとの距離a、及び当該レンズと虚像VIとの距離bから(図5(a)参照)、以下の式(1)より求められる。 Here, the focal length f of the convex lens that is the basis of the microlens 91 is expressed by the following equation from the distance a between the lens and the real image RI and the distance b between the lens and the virtual image VI (see FIG. 5A). It is calculated from (1).
  f=a×b/(b-a)  式(1)
 例えば、0.5m先の実像RIを3m先に虚像として視認させるためには、「f=0.5×3/(3-0.5)=0.6m」の焦点距離を有する凸レンズから微小レンズ91を切り出せば良い。
f = a × b / (ba) Formula (1)
For example, in order to make a real image RI 0.5 m ahead visible as a virtual image 3 m ahead, a minute amount is required from a convex lens having a focal length “f = 0.5 × 3 / (3-0.5) = 0.6 m” The lens 91 may be cut out.
 なお、微小レンズ91を凸レンズから切り出す際に、上下にずれた位置を切り出すことで、視認される実像RIと虚像VIとの上下位置を自由に変えることができる。また、コンバイナ100x上での微小レンズ91の位置を上下方向に調整することで、特定の方向に視線を向けたときにのみ虚像VIが視認させるようにすることができる。 It should be noted that when the minute lens 91 is cut out from the convex lens, the vertical position of the real image RI and the virtual image VI that can be visually recognized can be freely changed by cutting out the position shifted vertically. Further, by adjusting the position of the micro lens 91 on the combiner 100x in the vertical direction, the virtual image VI can be viewed only when the line of sight is directed in a specific direction.
 次に、図6乃至図8を参照して、上記した参考例に係るコンバイナ100xを元にした、第1実施例に係るコンバイナについて説明する。第1実施例に係るコンバイナは、参考例に係るコンバイナ100xに対して、空間にある全ての物体が虚像VIとして視認されてしまうことを抑制可能な構成を付加したものである。具体的には、第1実施例に係るコンバイナは、ディスプレイ画面を選択的に虚像VIとして視認させることが可能に構成されている。 Next, a combiner according to the first embodiment based on the combiner 100x according to the reference example described above will be described with reference to FIGS. The combiner which concerns on 1st Example adds the structure which can suppress that all the objects in space are visually recognized as the virtual image VI with respect to the combiner 100x which concerns on a reference example. Specifically, the combiner according to the first embodiment is configured to be able to selectively visually recognize the display screen as a virtual image VI.
 図6は、第1実施例に係るコンバイナ100aの概略構成を示している。図6に示すように、第1実施例に係るコンバイナ100aは、主に、微小レンズ11と、平行平板12と、偏光フィルタ13、14と、を有する。微小レンズ11及び平行平板12は、基本的な構成は、上記した参考例に係るコンバイナ100xの微小レンズ91及び平行平板92と同様である。例えば、微小レンズ11は、微小レンズ91と同様に、大きな凸レンズから切り出した微小なレンズであり、瞳孔径よりも小さい幅(例えば2mm)を有する。 FIG. 6 shows a schematic configuration of the combiner 100a according to the first embodiment. As shown in FIG. 6, the combiner 100 a according to the first example mainly includes a minute lens 11, a parallel plate 12, and polarizing filters 13 and 14. The basic configuration of the minute lens 11 and the parallel plate 12 is the same as that of the minute lens 91 and the parallel plate 92 of the combiner 100x according to the reference example described above. For example, like the micro lens 91, the micro lens 11 is a micro lens cut out from a large convex lens, and has a width (for example, 2 mm) smaller than the pupil diameter.
 第1実施例に係るコンバイナ100aは、微小レンズ11及び平行平板12のそれぞれに偏光フィルタ13、14が付されている点で、参考例に係るコンバイナ100xと異なる。微小レンズ11に付された偏光フィルタ13は、ディスプレイ画面からの光を透過し、ランダム偏光を50%カットするように構成されている。他方で、平行平板12に付された偏光フィルタ14は、ディスプレイ画面からの光をカットし、ランダム偏光を50%カットするように構成されている。 The combiner 100a according to the first embodiment is different from the combiner 100x according to the reference example in that polarizing filters 13 and 14 are attached to the microlens 11 and the parallel plate 12, respectively. The polarizing filter 13 attached to the microlens 11 is configured to transmit light from the display screen and cut 50% of random polarized light. On the other hand, the polarizing filter 14 attached to the parallel plate 12 is configured to cut light from the display screen and cut random polarized light by 50%.
 なお、第1実施例及び後述する第2実施例で用いる「ディスプレイ画面」とは、そこから発する光の偏光方向が揃っている画面を指す。例えば、液晶ディスプレイや、レーザプロジェクタでスクリーン上に描画した画像などが該当する。 The “display screen” used in the first embodiment and the second embodiment described later refers to a screen in which the polarization directions of light emitted from the display screen are aligned. For example, a liquid crystal display or an image drawn on a screen by a laser projector is applicable.
 また、ディスプレイ画面は、本発明における「画像形成部」によって形成された画像に相当し、ディスプレイ画面の光は、本発明における「画像光」に相当する。 The display screen corresponds to an image formed by the “image forming unit” in the present invention, and the light on the display screen corresponds to “image light” in the present invention.
 また、微小レンズ11は本発明における「レンズ部」の一例に相当し、平行平板12は本発明における「非レンズ部」の一例に相当し、偏光フィルタ13は本発明における「第1の光学フィルタ」の一例に相当し、偏光フィルタ14は本発明における「第2の光学フィルタ」の一例に相当する。 The microlens 11 corresponds to an example of the “lens part” in the present invention, the parallel plate 12 corresponds to an example of the “non-lens part” in the present invention, and the polarizing filter 13 corresponds to the “first optical filter” in the present invention. The polarizing filter 14 corresponds to an example of a “second optical filter” in the present invention.
 図7は、第1実施例に係るコンバイナ100aにおいて、平行平板12の部分(言い換えると非レンズ部)を通過する光を示している。つまり、実像RIのまま視認される光を示している。具体的には、図7(a)及び(b)は、光が通過する様子を上方から観察した図を示している。また、図7(a)は、実像RIがディスプレイ画面DPである場合の図を示しており、図7(b)は、実像RIが一般物体OBである場合の図を示している。 FIG. 7 shows light passing through a portion of the parallel plate 12 (in other words, a non-lens portion) in the combiner 100a according to the first embodiment. That is, the light that is visually recognized as the real image RI is shown. Specifically, FIGS. 7A and 7B are views of the light passing through as viewed from above. FIG. 7A shows a view when the real image RI is the display screen DP, and FIG. 7B shows a view when the real image RI is a general object OB.
 図7(a)に示すように、ディスプレイ画面DPの光は偏光フィルタ14によってカットされるため、観察者にはディスプレイ画面DPの実像RIは視認されない。他方で、図7(b)に示すように、一般物体OBが散乱する光は通常ランダム偏光であり、ランダム偏光は偏光フィルタ14を透過するため、観察者に一般物体OBの実像RIが視認される。具体的には、偏光フィルタ14はランダム偏光を50%カットするため、つまり50%のランダム偏光を透過させるため、一般物体OBの実像RIは50%の明るさで視認される(厳密には微小レンズ11と平行平板12との面積比(言い換えると偏光フィルタ13と偏光フィルタ14との面積比)に応じた明るさで視認される)。なお、このような偏光フィルタ14が付された平行平板12は、一般的な偏光サングラスと同様の機能を有する。 As shown in FIG. 7A, the light on the display screen DP is cut by the polarizing filter 14, so that the observer does not see the real image RI of the display screen DP. On the other hand, as shown in FIG. 7B, the light scattered by the general object OB is usually random polarized light, and the random polarized light is transmitted through the polarizing filter 14, so that the observer can visually recognize the real image RI of the general object OB. The Specifically, since the polarization filter 14 cuts 50% of random polarized light, that is, transmits 50% random polarized light, the real image RI of the general object OB is visually recognized with 50% brightness (strictly speaking, it is minute) The area ratio between the lens 11 and the parallel plate 12 (in other words, the area is visually recognized with brightness according to the area ratio between the polarizing filter 13 and the polarizing filter 14). In addition, the parallel plate 12 to which such a polarizing filter 14 is attached has the same function as general polarizing sunglasses.
 図8は、第1実施例に係るコンバイナ100aにおいて、微小レンズ11の部分を通過する光を示している。つまり、虚像として視認される光を示している。具体的には、図8(a)及び(b)は、光が通過する様子を上方から観察した図(詳しくは、平行平板12を透視して微小レンズ11を観察した透視図に相当する)を示している。また、図8(a)は、実像RIがディスプレイ画面DPである場合の図を示しており、図8(b)は、実像RIが一般物体OBである場合の図を示している。 FIG. 8 shows light passing through the portion of the microlens 11 in the combiner 100a according to the first embodiment. That is, it shows light that is visually recognized as a virtual image. Specifically, FIGS. 8 (a) and 8 (b) are diagrams in which the state of light passing through is observed from above (specifically, it corresponds to a perspective view in which the microlens 11 is observed through the parallel plate 12). Is shown. FIG. 8A shows a view when the real image RI is the display screen DP, and FIG. 8B shows a view when the real image RI is a general object OB.
 図8(a)に示すように、ディスプレイ画面DPの光は、微小レンズ11で屈折すると共に偏光フィルタ13を透過して眼に入射する。これにより、ディスプレイ画面DPに対応する虚像VIが視認されることとなる。この場合、偏光フィルタ13はディスプレイ画面DPの光を概ね100%透過させるため、ディスプレイ画面DPの虚像VIはほぼ元の明るさで視認される(つまり偏光フィルタ13による光量ロスは殆どない)。同様に、図8(b)に示すように、一般物体OBが散乱する光も、微小レンズ11で屈折すると共に偏光フィルタ13を透過して眼に入射する。これにより、一般物体OBに対応する虚像VIが視認されることとなる。この場合、偏光フィルタ13は、一般物体OBが散乱する光に対応するランダム偏光を50%カットするため、一般物体OBの虚像VIは50%の明るさで視認される。つまり、一般物体OBの虚像VIは、ディスプレイ画面DPの虚像VIに対して50%の明るさで視認される。 As shown in FIG. 8A, the light of the display screen DP is refracted by the microlens 11 and passes through the polarizing filter 13 and enters the eye. Thereby, the virtual image VI corresponding to the display screen DP is visually recognized. In this case, since the polarizing filter 13 transmits almost 100% of the light on the display screen DP, the virtual image VI of the display screen DP is visually recognized with almost the original brightness (that is, there is almost no light loss due to the polarizing filter 13). Similarly, as shown in FIG. 8B, the light scattered by the general object OB is also refracted by the minute lens 11 and transmitted through the polarizing filter 13 to enter the eye. Thereby, the virtual image VI corresponding to the general object OB is visually recognized. In this case, since the polarization filter 13 cuts 50% of random polarized light corresponding to the light scattered by the general object OB, the virtual image VI of the general object OB is visually recognized with a brightness of 50%. That is, the virtual image VI of the general object OB is visually recognized with a brightness of 50% with respect to the virtual image VI of the display screen DP.
 以上説明した第1実施例によれば、透明性を確保しつつ、虚像VIを適切に生成することができる。具体的には、実像RIよりも遠方に位置すると共に、実像RIよりも大きなサイズを有するように視認される虚像VI(以下では、このような虚像のことを適宜「所望の虚像」と呼ぶ。)を生成することができる。また、第1実施例によれば、微小レンズ11に付した偏光フィルタ13により、一般物体OBの虚像VIに対してディスプレイ画面DPの虚像VIを明るく視認させることができる。つまり、ディスプレイ画面DPを選択的に虚像VIとして視認させることができると言える。 According to the first embodiment described above, it is possible to appropriately generate the virtual image VI while ensuring transparency. Specifically, a virtual image VI that is located farther than the real image RI and is visually recognized to have a size larger than the real image RI (hereinafter, such a virtual image is appropriately referred to as a “desired virtual image”). ) Can be generated. Further, according to the first embodiment, the virtual image VI of the display screen DP can be viewed brightly with respect to the virtual image VI of the general object OB by the polarizing filter 13 attached to the microlens 11. That is, it can be said that the display screen DP can be selectively viewed as a virtual image VI.
 なお、上記したコンバイナ100aでは、平行平板12に偏光フィルタ14が付されていたが、平行平板12に偏光フィルタ14を付さなくても良い。平行平板12に偏光フィルタ14を付した場合には、ディスプレイ画面DPの実像RIが視認されなくなるので、実像RIが虚像VIに変換されたように視認されることとなる。他方で、平行平板12に偏光フィルタ14を付さない場合には、ディスプレイ画面DPの実像RIと虚像VIとが同時に視認されることとなる。 In the above-described combiner 100a, the polarizing filter 14 is attached to the parallel plate 12, but the polarizing filter 14 may not be attached to the parallel plate 12. When the polarizing filter 14 is attached to the parallel plate 12, the real image RI on the display screen DP is not visually recognized, so that the real image RI is visually recognized as converted into the virtual image VI. On the other hand, when the polarizing filter 14 is not attached to the parallel plate 12, the real image RI and the virtual image VI of the display screen DP are visually recognized at the same time.
 また、上記では、微小レンズ11は凸レンズを元にしていたが、凸レンズの代わりに、焦点距離の等しいフレネルレンズを元にしても良い。つまり、焦点距離の等しいフレネルレンズから切り出した微小なレンズを、微小レンズ11として用いても良い。そうした場合、コンバイナ100a全体の厚みを薄くすることができる。なお、このようなフレネルレンズを適用する構成は、後述する第2乃至第5実施例にも同様に適用可能である。 In the above description, the micro lens 11 is based on a convex lens. However, a Fresnel lens having the same focal length may be used instead of the convex lens. That is, a minute lens cut out from a Fresnel lens having the same focal length may be used as the minute lens 11. In such a case, the overall thickness of the combiner 100a can be reduced. Note that the configuration in which such a Fresnel lens is applied can be similarly applied to second to fifth embodiments described later.
 [第2実施例]
 次に、第2実施例について説明する。第2実施例は、瞳分割シースルー現象を利用して透明性を確保する点、及び微小レンズを利用して倍率を稼ぐ点は、第1実施例と同様である(よって、ここでは、それらの詳細な説明を省略する)。しかしながら、第2実施例は、ディスプレイ画面DPの光と一般物体OBの散乱光とを分離するための手法が、第1実施例と異なる。具体的には、第1実施例では、偏光フィルタを用いて、ディスプレイ画面DPの光と一般物体OBの散乱光とを分離していたが、第2実施例では、偏光フィルタの代わりに波長フィルタを用いて、ディスプレイ画面DPの光と一般物体OBの散乱光とを分離する。
[Second Embodiment]
Next, a second embodiment will be described. The second embodiment is the same as the first embodiment in that the transparency is ensured by using the pupil division see-through phenomenon and the magnification is obtained by using a microlens. Detailed description is omitted). However, the second embodiment is different from the first embodiment in the method for separating the light of the display screen DP and the scattered light of the general object OB. Specifically, in the first embodiment, the polarizing filter is used to separate the light of the display screen DP and the scattered light of the general object OB. However, in the second embodiment, the wavelength filter is used instead of the polarizing filter. Is used to separate the light of the display screen DP and the scattered light of the general object OB.
 なお、本明細書では、「波長フィルタ」は、波長選択透過膜又は波長選択性反射膜に相当するものとする。 In this specification, the “wavelength filter” corresponds to a wavelength selective transmission film or a wavelength selective reflection film.
 図9は、第2実施例に係るコンバイナ100bの概略構成を示している。図9に示すように、第2実施例に係るコンバイナ100bは、主に、微小レンズ21と、平行平板22と、波長フィルタ23、24と、を有する。微小レンズ21及び平行平板22は、基本的な構成は、第1実施例に係るコンバイナ100aの微小レンズ11及び平行平板12と同様である(つまり参考例に係るコンバイナ100xの微小レンズ91及び平行平板92と同様である)。例えば、微小レンズ21は、微小レンズ11と同様に、大きな凸レンズから切り出した微小なレンズであり、瞳孔径よりも小さい幅(例えば2mm)を有する。 FIG. 9 shows a schematic configuration of the combiner 100b according to the second embodiment. As shown in FIG. 9, the combiner 100 b according to the second embodiment mainly includes a micro lens 21, a parallel plate 22, and wavelength filters 23 and 24. The basic configuration of the minute lens 21 and the parallel plate 22 is the same as the minute lens 11 and the parallel plate 12 of the combiner 100a according to the first embodiment (that is, the minute lens 91 and the parallel plate of the combiner 100x according to the reference example). 92). For example, like the microlens 11, the microlens 21 is a microlens cut out from a large convex lens and has a width (for example, 2 mm) smaller than the pupil diameter.
 第2実施例に係るコンバイナ100bは、微小レンズ21及び平行平板22のそれぞれに波長フィルタ23、24が付されている点で、第1実施例に係るコンバイナ100aと異なる。微小レンズ21に付された波長フィルタ23は、ディスプレイ画面DPからの光(波長)のみ透過するように構成されている。言い換えると、波長フィルタ23は、ディスプレイ画面DPからの光以外をカットするように構成されている。他方で、平行平板22に付された波長フィルタ24は、ディスプレイ画面DPからの光(波長)のみをカットするように構成されている。言い換えると、波長フィルタ24は、ディスプレイ画面DPからの光以外を透過するように構成されている。ここで、一般的に、特定の波長のみを透過したりカット(反射)したりする波長フィルタは、屈折率の異なる複数の誘電体膜を積層することで作製される。 The combiner 100b according to the second embodiment is different from the combiner 100a according to the first embodiment in that wavelength filters 23 and 24 are attached to the micro lens 21 and the parallel plate 22, respectively. The wavelength filter 23 attached to the minute lens 21 is configured to transmit only light (wavelength) from the display screen DP. In other words, the wavelength filter 23 is configured to cut light other than light from the display screen DP. On the other hand, the wavelength filter 24 attached to the parallel plate 22 is configured to cut only light (wavelength) from the display screen DP. In other words, the wavelength filter 24 is configured to transmit light other than light from the display screen DP. Here, in general, a wavelength filter that transmits or cuts (reflects) only a specific wavelength is manufactured by laminating a plurality of dielectric films having different refractive indexes.
 なお、微小レンズ21は本発明における「レンズ部」の一例に相当し、平行平板22は本発明における「非レンズ部」の一例に相当し、波長フィルタ23は本発明における「第1の光学フィルタ」の一例に相当し、波長フィルタ24は本発明における「第2の光学フィルタ」の一例に相当する。 The micro lens 21 corresponds to an example of the “lens part” in the present invention, the parallel plate 22 corresponds to an example of the “non-lens part” in the present invention, and the wavelength filter 23 corresponds to the “first optical filter” in the present invention. The wavelength filter 24 corresponds to an example of a “second optical filter” in the present invention.
 図10は、第2実施例に係るコンバイナ100bにおいて、平行平板22の部分(言い換えると非レンズ部)を通過する光を示している。つまり、実像RIのまま視認される光を示している。具体的には、図10(a)及び(b)は、光が通過する様子を上方から観察した図を示している。また、図10(a)は、実像RIがディスプレイ画面DPである場合の図を示しており、図10(b)は、実像RIが一般物体OBである場合の図を示している。 FIG. 10 shows light passing through a portion of the parallel plate 22 (in other words, a non-lens portion) in the combiner 100b according to the second embodiment. That is, the light that is visually recognized as the real image RI is shown. Specifically, FIGS. 10A and 10B are views of the state in which light passes observed from above. FIG. 10A shows a view when the real image RI is the display screen DP, and FIG. 10B shows a view when the real image RI is a general object OB.
 図10(a)に示すように、ディスプレイ画面DPの光は波長フィルタ24によってカットされるため、観察者にはディスプレイ画面DPの実像RIは視認されない。他方で、図10(b)に示すように、一般物体OBが散乱する光は波長フィルタ24を透過するため、観察者に一般物体OBの実像RIが視認される。具体的には、一般物体OBが散乱する光のうち、ディスプレイ表示光と同じ波長の光(波長フィルタ24でカットされる光)は非常に少ないため、一般物体OBの実像RIはほぼ元の明るさで視認される。 As shown in FIG. 10A, since the light on the display screen DP is cut by the wavelength filter 24, the observer does not see the real image RI of the display screen DP. On the other hand, as shown in FIG. 10B, since the light scattered by the general object OB passes through the wavelength filter 24, the real image RI of the general object OB is visually recognized by the observer. Specifically, since the light scattered by the general object OB has very little light having the same wavelength as the display display light (light cut by the wavelength filter 24), the real image RI of the general object OB is almost the original brightness. It is visually recognized.
 図11は、第2実施例に係るコンバイナ100bにおいて、微小レンズ21の部分を通過する光を示している。つまり、虚像として視認される光を示している。具体的には、図11(a)及び(b)は、光が通過する様子を上方から観察した図(詳しくは、平行平板22を透視して微小レンズ21を観察した透視図に相当する)を示している。また、図11(a)は、実像RIがディスプレイ画面DPである場合の図を示しており、図11(b)は、実像RIが一般物体OBである場合の図を示している。 FIG. 11 shows light passing through the portion of the microlens 21 in the combiner 100b according to the second embodiment. That is, it shows light that is visually recognized as a virtual image. Specifically, FIGS. 11A and 11B are views in which light is observed from above (specifically, it corresponds to a perspective view in which the microlens 21 is observed through the parallel plate 22). Is shown. FIG. 11A shows a view when the real image RI is the display screen DP, and FIG. 11B shows a view when the real image RI is a general object OB.
 図11(a)に示すように、ディスプレイ画面DPの光は、微小レンズ21で屈折すると共に波長フィルタ23を透過して眼に入射する。これにより、ディスプレイ画面DPに対応する虚像VIが視認されることとなる。この場合、波長フィルタ23はディスプレイ画面DPの光を概ね100%透過させるため、ディスプレイ画面DPの虚像VIはほぼ元の明るさで視認される(つまり波長フィルタ23による光量ロスは殆どない)。他方で、図11(b)に示すように、一般物体OBが散乱する光は波長フィルタ23によってカットされるため、一般物体OBに対応する虚像VIは視認されない。具体的には、一般物体OBが散乱する光のうち、ディスプレイ表示光と同じ波長の光(波長フィルタ23を透過できる光)は非常に少ないため、一般物体OBの虚像VIは殆ど視認されない。この点で、第2実施例は第1実施例よりも有効である。 As shown in FIG. 11A, the light of the display screen DP is refracted by the micro lens 21 and passes through the wavelength filter 23 to enter the eye. Thereby, the virtual image VI corresponding to the display screen DP is visually recognized. In this case, since the wavelength filter 23 transmits almost 100% of the light on the display screen DP, the virtual image VI of the display screen DP is visually recognized with almost the original brightness (that is, there is almost no light loss due to the wavelength filter 23). On the other hand, as shown in FIG. 11B, since the light scattered by the general object OB is cut by the wavelength filter 23, the virtual image VI corresponding to the general object OB is not visually recognized. Specifically, the light with the same wavelength as the display display light (light that can pass through the wavelength filter 23) out of the light scattered by the general object OB is very small, so that the virtual image VI of the general object OB is hardly visually recognized. In this respect, the second embodiment is more effective than the first embodiment.
 以上説明した第2実施例によっても、第1実施例と同様に、透明性を確保しつつ、所望の虚像VIを生成することができる。他方で、第2実施例によれば、第1実施例と異なり、微小レンズ21に付した波長フィルタ23により、一般物体OBの虚像VIを殆ど視認させずに、ディスプレイ画面DPの虚像VIのみを視認させることができる。つまり、第2実施例によれば、第1実施例よりも効果的に、ディスプレイ画面DPを選択的に虚像VIとして視認させることができる。 Also in the second embodiment described above, a desired virtual image VI can be generated while ensuring transparency, as in the first embodiment. On the other hand, according to the second embodiment, unlike the first embodiment, only the virtual image VI of the display screen DP is obtained by the wavelength filter 23 attached to the microlens 21 while hardly viewing the virtual image VI of the general object OB. It can be visually recognized. That is, according to the second embodiment, the display screen DP can be selectively visually recognized as the virtual image VI more effectively than the first embodiment.
 ここで、第2実施例が、第1実施例よりも効果的に、ディスプレイ画面DPを選択的に虚像VIとして視認させることができる点について補足する。液晶ディスプレイから発する光は、バックライトの波長で決まる。フルカラーの液晶ディスプレイでも、バックライトはRGB3波長のLEDのみを用いている場合が多い。また、レーザディスプレイも、RGB3波長のレーザを用いてフルカラーを実現している。このような構成では、偏光フィルタ13よりも波長フィルタ23を用いたほうが、ディスプレイ画面DPと一般物体OBとを効果的に分離して虚像VIを生成することができる。 Here, it is supplemented that the second embodiment allows the display screen DP to be selectively viewed as a virtual image VI more effectively than the first embodiment. The light emitted from the liquid crystal display is determined by the wavelength of the backlight. Even in a full-color liquid crystal display, the backlight often uses only RGB three-wavelength LEDs. The laser display also realizes full color using RGB three-wavelength lasers. In such a configuration, the virtual image VI can be generated by effectively separating the display screen DP and the general object OB by using the wavelength filter 23 rather than the polarizing filter 13.
 なお、上記したコンバイナ100bでは、平行平板22に波長フィルタ24が付されていたが、平行平板22に波長フィルタ24を付さなくても良い。平行平板22に波長フィルタ24を付した場合には、ディスプレイ画面DPの実像RIが視認されなくなるので、実像RIが虚像VIに変換されたように視認されることとなる。他方で、平行平板22に波長フィルタ24を付さない場合には、ディスプレイ画面DPの実像RIと虚像VIとが同時に視認されることとなる。 In the above-described combiner 100b, the wavelength filter 24 is attached to the parallel plate 22. However, the wavelength filter 24 may not be attached to the parallel plate 22. When the wavelength filter 24 is attached to the parallel plate 22, the real image RI on the display screen DP is not visually recognized, so that the real image RI is visually recognized as converted into the virtual image VI. On the other hand, when the wavelength filter 24 is not attached to the parallel plate 22, the real image RI and the virtual image VI of the display screen DP are visually recognized at the same time.
 [第3実施例]
 次に、第3実施例について説明する。第3実施例は、凸レンズ効果を利用して倍率を確保する点は、第1及び第2実施例と同様である。しかしながら、第3実施例は、透明性を確保しつつ虚像を視認させる手法が第1及び第2実施例と異なる。具体的には、第1及び第2実施例では、1つの微小レンズ11、21(厳密には右眼及び左眼のそれぞれについて1つの微小レンズ11、21)を透過するディスプレイ画面の光のみを虚像に変換し、非レンズ部を透過する光で透明性を確保していたが、第3実施例では、複数(2つ以上)の微小レンズを透過するディスプレイ画面の光を全て虚像に変換し、非レンズ部を透過する光で透明性を確保する。詳しくは、第3実施例では、微小レンズの部分と非レンズの部分とが交互に形成されたコンバイナを採用する。
[Third embodiment]
Next, a third embodiment will be described. The third embodiment is the same as the first and second embodiments in that the magnification is secured using the convex lens effect. However, the third embodiment is different from the first and second embodiments in a method of visually recognizing a virtual image while ensuring transparency. Specifically, in the first and second embodiments, only the light of the display screen that passes through one micro lens 11, 21 (strictly, one micro lens 11, 21 for each of the right eye and the left eye) is transmitted. Although it was converted to a virtual image and transparency was ensured by the light transmitted through the non-lens portion, in the third embodiment, all the light on the display screen that transmits a plurality of (two or more) microlenses is converted into a virtual image. Transparency is ensured by light transmitted through the non-lens portion. Specifically, in the third embodiment, a combiner in which minute lens portions and non-lens portions are alternately formed is employed.
 図12は、第3実施例に係るコンバイナ100cの概略構成を示している。図12(a)は、コンバイナ100cの正面図を示しており、図12(b)は、図12(a)中の切断線X1-X1’に沿ったコンバイナ100cの断面図を示している。図12(a)において、符号31で示す複数の領域(ハッチングした領域)には、微小レンズ33及び波長フィルタ35が設けられており、符号32で示す複数の領域(ハッチングしていない領域)には、平行平板34及び波長フィルタ36が設けられている。波長フィルタ35は、ディスプレイ画面DPからの光(波長)のみ透過するように構成されており、波長フィルタ36は、ディスプレイ画面DPからの光(波長)のみをカット(反射)するように構成されている。つまり、波長フィルタ35、36は、それぞれ、第2実施例で示した波長フィルタ23、24と同様の機能を有する。 FIG. 12 shows a schematic configuration of the combiner 100c according to the third embodiment. 12A shows a front view of the combiner 100c, and FIG. 12B shows a cross-sectional view of the combiner 100c along the cutting line X1-X1 ′ in FIG. 12A. In FIG. 12A, the micro lens 33 and the wavelength filter 35 are provided in a plurality of regions (hatched regions) indicated by reference numeral 31, and the plurality of regions (regions not hatched) indicated by reference numeral 32 are provided. Are provided with a parallel plate 34 and a wavelength filter 36. The wavelength filter 35 is configured to transmit only light (wavelength) from the display screen DP, and the wavelength filter 36 is configured to cut (reflect) only light (wavelength) from the display screen DP. Yes. That is, the wavelength filters 35 and 36 have the same functions as the wavelength filters 23 and 24 shown in the second embodiment, respectively.
 具体的には、図12(b)に示すように、第3実施例に係るコンバイナ100cでは、一方の面に、微小レンズ33と平行平板34とが交互に櫛形に複数形成されており、当該面に対向する他方の面に、波長フィルタ35と波長フィルタ36とが交互に複数設けられている。この場合、微小レンズ33は、波長フィルタ35を透過した光が入射するような位置に設けられており、平行平板34は、波長フィルタ36を透過した光が入射するような位置に設けられている。また、微小レンズ33は、図12(b)中の符号38で示す凸レンズを元にしている。例えば、元になる凸レンズ38に対して同心円状の溝を刻むことで、微小レンズ33及び平行平板34を形成することができる。加えて、このように微小レンズ33及び平行平板34を形成した面と反対側の面(平面)に対してマスク(遮蔽パターン)を適用することで、当該面に波長フィルタ35、36を成膜することができる。 Specifically, as shown in FIG. 12 (b), in the combiner 100c according to the third embodiment, a plurality of microlenses 33 and parallel flat plates 34 are alternately formed on one surface in a comb shape. A plurality of wavelength filters 35 and wavelength filters 36 are alternately provided on the other surface facing the surface. In this case, the micro lens 33 is provided at a position where light transmitted through the wavelength filter 35 is incident, and the parallel plate 34 is provided at a position where light transmitted through the wavelength filter 36 is incident. . The micro lens 33 is based on a convex lens indicated by reference numeral 38 in FIG. For example, the minute lens 33 and the parallel flat plate 34 can be formed by cutting a concentric groove on the original convex lens 38. In addition, by applying a mask (shielding pattern) to the surface (plane) opposite to the surface on which the micro lens 33 and the parallel plate 34 are formed in this way, the wavelength filters 35 and 36 are formed on the surface. can do.
 ここで、第3実施例における微小レンズ33は、第1及び第2実施例における微小レンズ11、21よりもかなり狭い幅に構成すると良い。例えば、第1及び第2実施例では、2mm程度の幅を有する微小レンズ11、21を用いていたが、第3実施例では、0.3mm程度の幅を有する微小レンズ33を用いると良い。その際、1つの微小レンズ33ごとに瞳分割シースルー現象が生じるように、0.3mm程度の隙間を空けると良い。つまり、0.3mm程度の幅を有する微小レンズ33と、0.3mm程度の幅を有する平行平板34とを交互に形成すると良い。こうすると、レンズ部と非レンズ部との境界がより視認されにくくなると共に、眼球移動の影響を受けにくくなる。この点で、第3実施例は第1及び第2実施例よりも有効である。この際、微小レンズ33を設けるピッチサイズをあまり小さくし過ぎると回折現象が生じてしまうので、回折現象が生じないようなピッチサイズを採用することが望ましい。 Here, the micro lens 33 in the third embodiment may be configured to have a considerably narrower width than the micro lenses 11 and 21 in the first and second embodiments. For example, although the microlenses 11 and 21 having a width of about 2 mm are used in the first and second embodiments, the microlens 33 having a width of about 0.3 mm may be used in the third embodiment. At this time, it is preferable to leave a gap of about 0.3 mm so that the pupil division see-through phenomenon occurs for each minute lens 33. That is, it is preferable to alternately form the microlenses 33 having a width of about 0.3 mm and the parallel plates 34 having a width of about 0.3 mm. If it carries out like this, while the boundary of a lens part and a non-lens part becomes difficult to visually recognize, it becomes difficult to receive the influence of eyeball movement. In this respect, the third embodiment is more effective than the first and second embodiments. At this time, if the pitch size at which the micro lenses 33 are provided is too small, a diffraction phenomenon occurs. Therefore, it is desirable to employ a pitch size that does not cause the diffraction phenomenon.
 なお、微小レンズ33は本発明における「レンズ部」の一例に相当し、平行平板34は本発明における「非レンズ部」の一例に相当し、波長フィルタ35は本発明における「第1の光学フィルタ」の一例に相当し、波長フィルタ36は本発明における「第2の光学フィルタ」の一例に相当する。 The micro lens 33 corresponds to an example of the “lens part” in the present invention, the parallel plate 34 corresponds to an example of the “non-lens part” in the present invention, and the wavelength filter 35 corresponds to the “first optical filter” in the present invention. The wavelength filter 36 corresponds to an example of a “second optical filter” in the present invention.
 図13は、第3実施例に係るコンバイナ100cを通過する光を示している。図13(a)及び(b)は、光が通過する様子を側方から観察した図を示している(コンバイナ100cは図12(b)と同様の断面図にて示している)。また、図13(a)は、実像RIがディスプレイ画面DPである場合の図を示しており、図13(b)は、実像RIが一般物体OBである場合の図を示している。 FIG. 13 shows light passing through the combiner 100c according to the third embodiment. FIGS. 13 (a) and 13 (b) show views of the passage of light from the side (combiner 100c is shown in a cross-sectional view similar to FIG. 12 (b)). FIG. 13A shows a diagram when the real image RI is the display screen DP, and FIG. 13B shows a diagram when the real image RI is a general object OB.
 図13(a)に示すように、ディスプレイ画面DPの光は、波長フィルタ35を透過した後、微小レンズ33を通過して眼に入射する。これにより、ディスプレイ画面DPに対応する虚像VIが視認されることとなる。この場合、ディスプレイ画面DPの光は、波長フィルタ36でカットされるため平行平板34には入射しないので、ディスプレイ画面DPは実像RIとしては視認されない。他方で、図13(b)に示すように、一般物体OBが散乱する光は、波長フィルタ36を透過した後、平行平板34を通過して眼に入射する。この場合、一般物体OBが散乱する光は、波長フィルタ35でカットされるため微小レンズ33には入射しない。したがって、一般物体OBは、虚像VIに変換されることなく、瞳分割シースルー現象によって実像RIとして視認される。よって、第3実施例に係るコンバイナ100cによっても、透明性が確保されることとなる。 As shown in FIG. 13A, the light of the display screen DP passes through the wavelength filter 35 and then passes through the micro lens 33 and enters the eye. Thereby, the virtual image VI corresponding to the display screen DP is visually recognized. In this case, since the light of the display screen DP is cut by the wavelength filter 36 and does not enter the parallel plate 34, the display screen DP is not visually recognized as the real image RI. On the other hand, as shown in FIG. 13B, the light scattered by the general object OB passes through the wavelength filter 36 and then enters the eye through the parallel plate 34. In this case, the light scattered by the general object OB does not enter the minute lens 33 because it is cut by the wavelength filter 35. Therefore, the general object OB is visually recognized as the real image RI by the pupil division see-through phenomenon without being converted into the virtual image VI. Therefore, transparency is ensured also by the combiner 100c which concerns on 3rd Example.
 以上説明した第3実施例によっても、第1及び第2実施例と同様に、透明性を確保しつつ、所望の虚像VIを生成することができる。また、第3実施例によれば、第2実施例と同様に、効果的に、ディスプレイ画面DPを選択的に虚像VIとして視認させることができる。他方で、第3実施例によれば、第1及び第2実施例と比較して、レンズ部と非レンズ部との境界が視認されにくいと共に、眼球移動の影響を受けにくい。 According to the third embodiment described above, a desired virtual image VI can be generated while ensuring transparency, as in the first and second embodiments. Further, according to the third embodiment, as in the second embodiment, the display screen DP can be selectively visually recognized as the virtual image VI. On the other hand, according to the third embodiment, as compared with the first and second embodiments, the boundary between the lens portion and the non-lens portion is less visible and less susceptible to the movement of the eyeball.
 なお、図12(a)に示すようなパターン(領域31、32参照)にて、微小レンズ33及び平行平板34(波長フィルタ35、36も含む)をコンバイナ100c上に設けることに限定はされない。他の例では、コンバイナ100cの上半分又は下半分にのみ微小レンズ33を設けても良い。そうした場合、上方又は下方に視線を向けた際にのみ虚像を視認させることができる。更に他の例では、領域31と領域32との面積比を変えると実像RIと虚像VIとの明るさの比が変わるため、実像RIと虚像VIとの所望の明るさの比が得られるように、領域31と領域32との面積比を適宜変えても良い。 In addition, it is not limited to providing the micro lens 33 and the parallel plate 34 (including the wavelength filters 35 and 36) on the combiner 100c with a pattern (see the areas 31 and 32) as shown in FIG. In another example, the microlenses 33 may be provided only in the upper half or the lower half of the combiner 100c. In such a case, the virtual image can be viewed only when the line of sight is directed upward or downward. In yet another example, if the area ratio between the region 31 and the region 32 is changed, the brightness ratio between the real image RI and the virtual image VI changes, so that a desired brightness ratio between the real image RI and the virtual image VI can be obtained. In addition, the area ratio between the region 31 and the region 32 may be changed as appropriate.
 また、上記したコンバイナ100cでは、微小レンズ33と平行平板34とが交互に櫛形に複数形成された面と対向する面に波長フィルタ35、36を設けたが、微小レンズ33、平行平板34及び波長フィルタ35、36を同じ面に設けても良い。その場合は、波長フィルタ35を微小レンズ33の位置に設け、波長フィルタ36を平行平板34の位置に設ければ良い。 Further, in the above combiner 100c, the wavelength filters 35 and 36 are provided on the surface opposite to the surface in which the microlenses 33 and the parallel flat plates 34 are alternately formed in a comb shape, but the microlens 33, the parallel flat plate 34, and the wavelength are provided. The filters 35 and 36 may be provided on the same surface. In that case, the wavelength filter 35 may be provided at the position of the minute lens 33 and the wavelength filter 36 may be provided at the position of the parallel plate 34.
 また、上記したコンバイナ100cでは、波長フィルタ36を用いていたが、波長フィルタ36を用いなくても良い。波長フィルタ36を用いた場合には、ディスプレイ画面DPの実像RIが視認されなくなるので、実像RIが虚像VIに変換されたように視認されることとなる。他方で、波長フィルタ36を用いない場合には、ディスプレイ画面DPの実像RIと虚像VIとが同時に視認されることとなる。 In the above combiner 100c, the wavelength filter 36 is used, but the wavelength filter 36 may not be used. When the wavelength filter 36 is used, the real image RI on the display screen DP is not visually recognized, so that the real image RI is visually recognized as converted into the virtual image VI. On the other hand, when the wavelength filter 36 is not used, the real image RI and the virtual image VI of the display screen DP are visually recognized at the same time.
 また、上記したコンバイナ100cでは、波長フィルタ35、36を用いていたが、ディスプレイ表示光が偏光性を有している場合には、波長フィルタ35、36の代わりに、第1実施例で示したような偏光フィルタを用いても良い。 In the above-described combiner 100c, the wavelength filters 35 and 36 are used. However, when the display display light has a polarization property, the first embodiment is shown instead of the wavelength filters 35 and 36. Such a polarizing filter may be used.
 [第4実施例]
 次に、第4実施例について説明する。第4実施例は、倍率を稼ぐための手法が第1乃至第3実施例と異なる。具体的には、第1乃至第3実施例では、凸レンズ(微小レンズ11、21、33)の機能によって倍率を稼いでいたが、第4実施例では、凸レンズの代わりに凹面鏡の機能によって倍率を稼ぐ。また、第4実施例は、透明性を確保するための手法が第1乃至第3実施例と異なる。具体的には、第1乃至第3実施例では、瞳分割シースルー現象を利用して透明性を確保していたが、第4実施例では、透明性を確保するに際して瞳分割シースルー現象を利用しない。第4実施例では、透明性を確保するためではなく、虚像VIを視認させる際に瞳分割シースルー現象を利用する。
[Fourth embodiment]
Next, a fourth embodiment will be described. The fourth embodiment is different from the first to third embodiments in the method for increasing the magnification. Specifically, in the first to third embodiments, the magnification is gained by the function of the convex lens ( microlenses 11, 21, 33), but in the fourth embodiment, the magnification is increased by the function of the concave mirror instead of the convex lens. Earn. The fourth embodiment is different from the first to third embodiments in a method for ensuring transparency. Specifically, in the first to third embodiments, the pupil division see-through phenomenon is used to ensure transparency, but in the fourth embodiment, the pupil division see-through phenomenon is not used when ensuring transparency. . In the fourth embodiment, the pupil division see-through phenomenon is used when the virtual image VI is visually recognized, not for ensuring transparency.
 図14は、第4実施例に係るコンバイナ100dの概略構成を示している。図14(a)は、コンバイナ100dの正面図を示しており、図14(b)は、図14(a)中の切断線X2-X2’に沿ったコンバイナ100dの断面図を示している。図14(a)において、符号41で示す複数の領域(ハッチングした領域)には、波長フィルタ43が設けられており、符号42で示す複数の領域(ハッチングしていない領域)には、波長フィルタ44が設けられている。 FIG. 14 shows a schematic configuration of a combiner 100d according to the fourth embodiment. 14A shows a front view of the combiner 100d, and FIG. 14B shows a cross-sectional view of the combiner 100d along the cutting line X2-X2 'in FIG. 14A. In FIG. 14A, wavelength filters 43 are provided in a plurality of regions (hatched regions) denoted by reference numeral 41, and wavelength filters are disposed in a plurality of regions (unhatched regions) denoted by reference numeral 42. 44 is provided.
 具体的には、図14(b)に示すように、波長フィルタ43は、コンバイナ100dの内部に形成された曲面(以下では「内部曲面」と呼ぶ。)45に付されており、波長フィルタ44は、コンバイナ100dの外壁を構成する平面(以下では「外部平面」と呼ぶ。)46に付されている。詳しくは、内部曲面45は、凸レンズが有する曲面の一部に相当し、波長フィルタ43は、そのような曲面上に付されている。なお、実際には、コンバイナ100dにおいて波長フィルタ44が付された面の上に保護層などが付されるため、厳密に言うと、波長フィルタ44が付される面46は外部平面ではない。 Specifically, as shown in FIG. 14B, the wavelength filter 43 is attached to a curved surface (hereinafter referred to as “internal curved surface”) 45 formed inside the combiner 100 d, and the wavelength filter 44. Is attached to a plane (hereinafter referred to as “external plane”) 46 constituting the outer wall of the combiner 100d. Specifically, the internal curved surface 45 corresponds to a part of the curved surface of the convex lens, and the wavelength filter 43 is attached on such a curved surface. Actually, since a protective layer or the like is attached on the surface of the combiner 100d to which the wavelength filter 44 is attached, strictly speaking, the surface 46 to which the wavelength filter 44 is attached is not an external plane.
 波長フィルタ43、44は、両方とも、ディスプレイ画面DPからの光(波長)のみを反射するように構成されている。言い換えると、波長フィルタ43、44は、ディスプレイ表示光の波長以外(例えばRGB3波長以外)の波長を透過させるように構成されている。また、波長フィルタ44は、波長フィルタ43が設けられていない内部曲面45の箇所を通過した光が入射されるような外部平面46上の位置に設けられている。他方で、波長フィルタ43は、そのようにして波長フィルタ44に入射されて当該波長フィルタ44で反射された光が入射されるような内部曲面45上の位置に設けられている。 Both wavelength filters 43 and 44 are configured to reflect only light (wavelength) from the display screen DP. In other words, the wavelength filters 43 and 44 are configured to transmit wavelengths other than the wavelength of the display display light (for example, other than RGB3 wavelengths). Further, the wavelength filter 44 is provided at a position on the external plane 46 where the light that has passed through the portion of the internal curved surface 45 where the wavelength filter 43 is not provided is incident. On the other hand, the wavelength filter 43 is provided at a position on the internal curved surface 45 where the light incident on the wavelength filter 44 and reflected by the wavelength filter 44 is incident.
 なお、波長フィルタ43は本発明における「第1の光学フィルタ」の一例に相当し、波長フィルタ44は本発明における「第2の光学フィルタ」の一例に相当する。 The wavelength filter 43 corresponds to an example of the “first optical filter” in the present invention, and the wavelength filter 44 corresponds to an example of the “second optical filter” in the present invention.
 図15は、第4実施例に係るコンバイナ100dを通過する光を示している。図15(a)及び(b)は、光が通過する様子を側方から観察した図を示している(コンバイナ100dは図14(b)と同様の断面図にて示している)。また、図15(a)は、実像RIがディスプレイ画面DPである場合の図を示しており、図15(b)は、実像RIが一般物体OBである場合の図を示している。 FIG. 15 shows light passing through the combiner 100d according to the fourth embodiment. 15 (a) and 15 (b) show views of the light passing from the side (combiner 100d is shown in a cross-sectional view similar to FIG. 14 (b)). FIG. 15A shows a view when the real image RI is the display screen DP, and FIG. 15B shows a view when the real image RI is a general object OB.
 図15(a)中の矢印Arr1に示すように、ディスプレイ画面DPの光はコンバイナ100dを介して眼に入射する。具体的には、ディスプレイ画面DPの光は、波長フィルタ43が設けられていない内部曲面45の箇所を通過し(波長フィルタ43が設けられた内部曲面45の箇所ではカット(反射)される)、外部平面46において波長フィルタ44が設けられた箇所に入射する。この後、当該光は、波長フィルタ44で反射され、内部曲面45において波長フィルタ43が設けられた箇所に入射し、波長フィルタ43で反射される。この場合、内部曲面45に設けられた波長フィルタ43が凹面鏡として作用するため、倍率を稼ぐことができる。そして、内部曲面45で反射された光は、外部平面46において波長フィルタ44が設けられていない箇所を通過して眼に入射する。これにより、瞳分割シースルー現象によって、ディスプレイ画面DPに対応する虚像VIが視認されることとなる。 As shown by the arrow Arr1 in FIG. 15A, the light of the display screen DP enters the eye through the combiner 100d. Specifically, the light of the display screen DP passes through the portion of the internal curved surface 45 where the wavelength filter 43 is not provided (cut (reflected) at the location of the internal curved surface 45 where the wavelength filter 43 is provided) The light is incident on the external plane 46 where the wavelength filter 44 is provided. Thereafter, the light is reflected by the wavelength filter 44, enters the portion where the wavelength filter 43 is provided on the internal curved surface 45, and is reflected by the wavelength filter 43. In this case, since the wavelength filter 43 provided on the internal curved surface 45 acts as a concave mirror, the magnification can be increased. Then, the light reflected by the internal curved surface 45 passes through a portion where the wavelength filter 44 is not provided on the external plane 46 and enters the eye. Thereby, the virtual image VI corresponding to the display screen DP is visually recognized by the pupil division see-through phenomenon.
 他方で、図15(b)に示すように、一般物体OBが散乱する光は、波長フィルタ43、44を透過して眼に入射する。これにより、一般物体OBの実像RIが視認される。この場合、一般物体OBが散乱する光のうち、ディスプレイ表示光と同じ波長の光(波長フィルタ43、44でカットされる光)は非常に少ないため、コンバイナ100dは、一般物体OBが散乱する光に対して、単なる透明な平行平板として機能する。よって、第4実施例に係るコンバイナ100dによれば、透明性が確保されることとなる。 On the other hand, as shown in FIG. 15B, the light scattered by the general object OB passes through the wavelength filters 43 and 44 and enters the eye. Thereby, the real image RI of the general object OB is visually recognized. In this case, among the light scattered by the general object OB, the light having the same wavelength as the display display light (the light cut by the wavelength filters 43 and 44) is very small. On the other hand, it functions as a simple transparent parallel plate. Therefore, according to the combiner 100d which concerns on 4th Example, transparency will be ensured.
 以上説明した第4実施例によっても、第1乃至第3実施例と同様に、透明性を確保しつつ、所望の虚像VIを適切に生成することができる。他方で、第4実施例によれば、第1乃至第3実施例のように瞳分割シースルー現象を利用して透明性を確保しているわけではないため、一般物体OBの実像RIがより明るく見える。 According to the fourth embodiment described above, a desired virtual image VI can be appropriately generated while ensuring transparency, as in the first to third embodiments. On the other hand, according to the fourth embodiment, since the transparency is not ensured using the pupil division see-through phenomenon as in the first to third embodiments, the real image RI of the general object OB is brighter. appear.
 なお、上記したコンバイナ100dでは、波長フィルタ43、44を用いていたが、ディスプレイ表示光が偏光性を有している場合には、波長フィルタ43、44の代わりに、第1実施例で示したような偏光フィルタを用いても良い。 In the above combiner 100d, the wavelength filters 43 and 44 are used. However, when the display display light has a polarization property, the first embodiment is shown instead of the wavelength filters 43 and 44. Such a polarizing filter may be used.
 ここで、図16を参照して、第4実施例に係るコンバイナ100dの製造方法の一例について説明する。まず、図16(a)に示すように、凸レンズ47を切り出す、若しくは射出成形で凸レンズ47を作製する。この後、図16(b)に示すように、凸レンズ47にマスクなどを適用することで、誘電体多層膜としての波長フィルタ43、44を成膜する。具体的には、凸レンズ47の曲面45(上記した内部曲面となる)に波長フィルタ43を成膜すると共に、凸レンズ47の平面46(上記した外部平面となる)に波長フィルタ44を成膜する。この後、図16(c)に示すように、UV接着剤などを用いて、凸レンズ47をカバー基板48と貼り合わせる。この時、凸レンズ47、カバー基板48及び接着剤の屈折率をほぼ同じにすることで、波長フィルタ43、44以外の光学界面を無くすことができる。 Here, with reference to FIG. 16, an example of a method for manufacturing the combiner 100d according to the fourth embodiment will be described. First, as shown in FIG. 16A, the convex lens 47 is cut out or produced by injection molding. Thereafter, as shown in FIG. 16B, by applying a mask or the like to the convex lens 47, the wavelength filters 43 and 44 as dielectric multilayer films are formed. Specifically, the wavelength filter 43 is formed on the curved surface 45 of the convex lens 47 (which becomes the above-described internal curved surface), and the wavelength filter 44 is formed on the plane 46 of the convex lens 47 (which becomes the above-described external plane). Thereafter, as shown in FIG. 16C, the convex lens 47 is bonded to the cover substrate 48 using a UV adhesive or the like. At this time, the optical interfaces other than the wavelength filters 43 and 44 can be eliminated by making the refractive indexes of the convex lens 47, the cover substrate 48, and the adhesive substantially the same.
 なお、上記では、波長フィルタ44が設けられた外部平面46が観察者側になるような設置例を示したが、波長フィルタ44が設けられた外部平面46を観察者側とは反対側になるように設置しても良い。図17は、実像RIがディスプレイ画面DPである場合の図に、そのような第4実施例の他の例に係るコンバイナ100d1を通過する光を示している。この場合は、図17中の矢印Arr2に示すように、ディスプレイ画面DPの光はコンバイナ100d1を介して眼に入射する。具体的には、ディスプレイ画面DPの光は、波長フィルタ44が設けられていない外部平面46の箇所を通過し(波長フィルタ44が設けられた外部平面46の箇所ではカット(反射)される)、内部曲面45において波長フィルタ43が設けられた箇所に入射する。この後、当該光は、波長フィルタ43で反射され、外部平面46において波長フィルタ44が設けられた箇所に入射し、波長フィルタ44で反射される。そして、外部平面46で反射された光は、内部曲面45において波長フィルタ43が設けられていない箇所を通過して眼に入射する。 In the above example, the external plane 46 provided with the wavelength filter 44 is on the viewer side. However, the external plane 46 provided with the wavelength filter 44 is on the side opposite to the viewer side. You may install as follows. FIG. 17 shows light passing through a combiner 100d1 according to another example of the fourth embodiment in the figure in the case where the real image RI is the display screen DP. In this case, as indicated by an arrow Arr2 in FIG. 17, the light on the display screen DP enters the eye via the combiner 100d1. Specifically, the light of the display screen DP passes through a portion of the external plane 46 where the wavelength filter 44 is not provided (it is cut (reflected) at the location of the external plane 46 where the wavelength filter 44 is provided) The light is incident on the inner curved surface 45 where the wavelength filter 43 is provided. Thereafter, the light is reflected by the wavelength filter 43, enters the portion where the wavelength filter 44 is provided on the external plane 46, and is reflected by the wavelength filter 44. Then, the light reflected by the external plane 46 passes through a portion of the internal curved surface 45 where the wavelength filter 43 is not provided and enters the eye.
 [第5実施例]
 次に、第5実施例について説明する。第5実施例は、凹面鏡の機能によって倍率を稼ぐ点は、第4実施例と同様である。しかしながら、第5実施例は、透明性を確保するための手法が第4実施例と異なる。具体的には、第5実施例では、ハーフミラーの機能を利用して透明性を確保する。
[Fifth embodiment]
Next, a fifth embodiment will be described. The fifth embodiment is the same as the fourth embodiment in that the magnification is gained by the function of the concave mirror. However, the fifth embodiment differs from the fourth embodiment in a method for ensuring transparency. Specifically, in the fifth embodiment, transparency is ensured by using the function of a half mirror.
 図18は、第5実施例に係るコンバイナ100eの概略構成を示している。図18(a)は、コンバイナ100eの正面図を示しており、図18(b)は、コンバイナ100eを上方から観察した上面図を示している(一部の構成要素については透視して示している)。第5実施例に係るコンバイナ100eは、主に、内部凹面鏡51と、波長フィルタ52と、波長フィルタ53と、を有する。 FIG. 18 shows a schematic configuration of a combiner 100e according to the fifth embodiment. 18A shows a front view of the combiner 100e, and FIG. 18B shows a top view of the combiner 100e as viewed from above (some components are shown through). ) The combiner 100e according to the fifth embodiment mainly includes an internal concave mirror 51, a wavelength filter 52, and a wavelength filter 53.
 内部凹面鏡51は、コンバイナ100eの内部に形成されている。内部凹面鏡51は、半透明の凹面鏡として構成されている。言い換えると、内部凹面鏡51は、凹面の形状を有するハーフミラーとして構成されている。例えば、内部凹面鏡51は、半透明反射膜によって構成される。 The internal concave mirror 51 is formed inside the combiner 100e. The internal concave mirror 51 is configured as a translucent concave mirror. In other words, the internal concave mirror 51 is configured as a half mirror having a concave shape. For example, the internal concave mirror 51 is configured by a translucent reflective film.
 波長フィルタ52は、眼鏡における左右のテンプル部に付近に形成された、コンバイナ100eにおける突起状の部分の面に付されている。波長フィルタ53は、コンバイナ100eの前面に付されている。波長フィルタ52、53は、両方とも、ディスプレイ画面DPからの光(波長)のみを反射(カット)するように構成されている。言い換えると、波長フィルタ52、53は、ディスプレイ表示光の波長以外(例えばRGB3波長以外)の波長を透過させるように構成されている。なお、内部凹面鏡51及び波長フィルタ52は、波長フィルタ52によって反射された光が内部凹面鏡51に入射するような位置や角度にてコンバイナ100eに設けられている。 The wavelength filter 52 is attached to the surface of the protruding portion of the combiner 100e formed in the vicinity of the left and right temple portions of the glasses. The wavelength filter 53 is attached to the front surface of the combiner 100e. The wavelength filters 52 and 53 are both configured to reflect (cut) only light (wavelength) from the display screen DP. In other words, the wavelength filters 52 and 53 are configured to transmit wavelengths other than the wavelength of display display light (for example, other than RGB3 wavelengths). The internal concave mirror 51 and the wavelength filter 52 are provided in the combiner 100e at positions and angles at which the light reflected by the wavelength filter 52 enters the internal concave mirror 51.
 なお、波長フィルタ52は本発明における「第1の光学フィルタ」の一例に相当し、波長フィルタ53は本発明における「第2の光学フィルタ」の一例に相当する。 The wavelength filter 52 corresponds to an example of a “first optical filter” in the present invention, and the wavelength filter 53 corresponds to an example of a “second optical filter” in the present invention.
 図19は、実像RIが一般物体OBである場合に、第5実施例に係るコンバイナ100eを通過する光を示している。図19(a)は、光が通過する様子を上方から観察した図を示しており、図19(b)は、光が通過する様子を側方から観察した図を示している(図19(a)及び(b)では、コンバイナ100eの一部の構成要素については透視して示している)。 FIG. 19 shows light passing through the combiner 100e according to the fifth embodiment when the real image RI is a general object OB. FIG. 19 (a) shows a view of the light passing from above, and FIG. 19 (b) shows a view of the light passing from the side (FIG. 19 ( In a) and (b), some components of the combiner 100e are shown in perspective).
 図19(a)及び(b)に示すように、一般物体OBが散乱する光は、波長フィルタ53及び内部凹面鏡51を透過して眼に入射する。これにより、一般物体OBの実像RIが視認される。この場合、一般物体OBが散乱する光は、ほとんどそのまま波長フィルタ53を通過し、波長フィルタ53を通過した後の光に対して、内部凹面鏡51はハーフミラーとして作用する。よって、一般物体OBの実像RIは、内部凹面鏡51が有する透過率(反射率)に応じた明るさで視認される。したがって、第5実施例に係るコンバイナ100eによっても、透明性が確保されることとなる。 19A and 19B, the light scattered by the general object OB passes through the wavelength filter 53 and the internal concave mirror 51 and enters the eye. Thereby, the real image RI of the general object OB is visually recognized. In this case, the light scattered by the general object OB almost passes through the wavelength filter 53 as it is, and the inner concave mirror 51 acts as a half mirror for the light after passing through the wavelength filter 53. Therefore, the real image RI of the general object OB is visually recognized with brightness according to the transmittance (reflectance) of the internal concave mirror 51. Therefore, transparency is also ensured by the combiner 100e according to the fifth embodiment.
 図20は、実像RIがディスプレイ画面DPである場合に、第5実施例に係るコンバイナ100eを通過する光を示している。図20(a)は、光が通過する様子を上方から観察した図を示しており、図20(b)は、光が通過する様子を側方から観察した図を示している(図20(a)及び(b)では、コンバイナ100eの一部の構成要素については透視して示している)。 FIG. 20 shows light passing through the combiner 100e according to the fifth embodiment when the real image RI is the display screen DP. FIG. 20A shows a view of the light passing from above, and FIG. 20B shows a view of the light passing from the side (FIG. 20 ( In a) and (b), some components of the combiner 100e are shown in perspective).
 図20(a)及び(b)に示すように、ディスプレイ画面DPの光は、波長フィルタ53が設けられていない箇所を通過し(波長フィルタ53が設けられた箇所ではカット(反射)される)、波長フィルタ52が設けられた箇所に入射する。この後、当該光は、波長フィルタ52で反射され、内部凹面鏡51に入射して反射される。この場合、内部凹面鏡51の機能により倍率を稼ぐことができる。そして、内部凹面鏡51で反射された光は、眼に入射する。これにより、ディスプレイ画面DPに対応する虚像VIが視認されることとなる。 As shown in FIGS. 20A and 20B, the light of the display screen DP passes through a location where the wavelength filter 53 is not provided (cut (reflected) at the location where the wavelength filter 53 is provided). Then, the light enters the portion where the wavelength filter 52 is provided. Thereafter, the light is reflected by the wavelength filter 52, enters the internal concave mirror 51, and is reflected. In this case, the magnification can be gained by the function of the internal concave mirror 51. Then, the light reflected by the internal concave mirror 51 enters the eye. Thereby, the virtual image VI corresponding to the display screen DP is visually recognized.
 以上説明した第5実施例によっても、第1乃至第4実施例と同様に、透明性を確保しつつ、所望の虚像VIを適切に生成することができる。 According to the fifth embodiment described above, a desired virtual image VI can be appropriately generated while ensuring transparency, as in the first to fourth embodiments.
 なお、上記したコンバイナ100eでは、内部凹面鏡51によって倍率を稼いでいたが、波長フィルタ52の形状を凹面に変更すると共に、内部凹面鏡51の形状を平面に変更することで(つまり内部凹面鏡51を単なるハーフミラーに変更する)、倍率を稼いでも良い。 In the above-described combiner 100e, the magnification is obtained by the internal concave mirror 51. However, by changing the shape of the wavelength filter 52 to a concave surface and changing the shape of the internal concave mirror 51 to a plane (that is, the internal concave mirror 51 is simply changed). Change to half mirror), you may earn magnification.
 また、上記したコンバイナ100eでは、波長フィルタ52を左右のテンプル部付近に設けていたが、この代わりに、波長フィルタ52を上部又は下部に設けても良い。波長フィルタ52を左右のテンプル部付近に設けた場合には、水平方向の折り返し光路となるが、波長フィルタ52を上部又は下部に設けた場合には、垂直方向の折り返し光路となる。また、図21に示すように、上部及び下部に設けられた波長フィルタ52a、52bと、波長フィルタ52a、52bからの光をそれぞれ反射する内部凹面鏡51a、51bと、を有するコンバイナ100e1を採用しても良い。このコンバイナ100e1によれば、ディスプレイ画面DPが上部及び下部のいずれにあっても(符号DPa、DPb参照)、ディスプレイ画面DPの虚像VIを適切に生成することが可能になる。 In the above-described combiner 100e, the wavelength filter 52 is provided in the vicinity of the left and right temple portions. Alternatively, the wavelength filter 52 may be provided in the upper part or the lower part. When the wavelength filter 52 is provided in the vicinity of the left and right temple parts, a horizontal folding optical path is formed. However, when the wavelength filter 52 is provided at the upper part or the lower part, a vertical folding optical path is provided. Further, as shown in FIG. 21, a combiner 100e1 having wavelength filters 52a and 52b provided at the upper and lower portions and internal concave mirrors 51a and 51b that reflect light from the wavelength filters 52a and 52b, respectively, is adopted. Also good. According to the combiner 100e1, it is possible to appropriately generate the virtual image VI of the display screen DP regardless of whether the display screen DP is in the upper part or the lower part (see reference symbols DPa and DPb).
 また、光を折り返すための波長フィルタ52をコンバイナ100eに一体形成することに限定はされず、図22に示すように、波長フィルタとしての機能を具備するミラー52cが別体に構成されたコンバイナ100e2を採用しても良い。このコンバイナ100e2では、眼鏡のテンプル部にミラー52cが設置されている。当該コンバイナ100e2によれば、ミラー52cの角度を自由に変えることができるので、ディスプレイ画面DPがどこにあっても、ディスプレイ画面DPからの反射光を眼球に入射させることが可能になる。 In addition, the wavelength filter 52 for turning back the light is not limited to be integrally formed with the combiner 100e, but as shown in FIG. May be adopted. In this combiner 100e2, the mirror 52c is installed in the temple part of the glasses. According to the combiner 100e2, since the angle of the mirror 52c can be freely changed, the reflected light from the display screen DP can be incident on the eyeball wherever the display screen DP is.
 また、上記したコンバイナ100eでは、波長フィルタ53を用いていたが、波長フィルタ53を用いなくても良い。波長フィルタ53を用いた場合には、ディスプレイ画面DPの実像RIが視認されなくなるので、実像RIが虚像VIに変換されたように視認されることとなる。他方で、波長フィルタ53を用いない場合には、ディスプレイ画面DPの実像RIと虚像VIとが同時に視認されることとなる。 In the above combiner 100e, the wavelength filter 53 is used. However, the wavelength filter 53 may not be used. When the wavelength filter 53 is used, the real image RI on the display screen DP is not visually recognized, so that the real image RI is visually recognized as converted into the virtual image VI. On the other hand, when the wavelength filter 53 is not used, the real image RI and the virtual image VI of the display screen DP are visually recognized at the same time.
 また、上記したコンバイナ100eでは、波長フィルタ52、53を用いていたが、ディスプレイ表示光が偏光性を有している場合には、波長フィルタ52、53の代わりに、第1実施例で示したような偏光フィルタを用いても良い。 Further, in the above-described combiner 100e, the wavelength filters 52 and 53 are used. However, when the display display light has a polarization property, the first embodiment is shown instead of the wavelength filters 52 and 53. Such a polarizing filter may be used.
 また、上記したコンバイナ100eは、図16で示した方法と同様の方法で作製することができる。つまり、凸レンズに半透明反射膜を成膜してからカバー基板と貼り合わせることで、コンバイナ100eを作製することができる。 Further, the above-described combiner 100e can be manufactured by a method similar to the method shown in FIG. That is, the combiner 100e can be manufactured by forming a translucent reflective film on the convex lens and then bonding it to the cover substrate.
 [第6実施例]
 次に、第6実施例について説明する。第6実施例は、凹面鏡の機能によって倍率を稼ぐ点は、第4及び第5実施例と同様である。しかしながら、第6実施例は、凹面鏡の機能を有するホログラム光学素子によって倍率を稼ぐ点で、第4及び第5実施例と異なる。また、第6実施例は、そのようなホログラム光学素子が有する波長選択性を利用して透明性を確保する点でも、第4及び第5実施例と異なる。
[Sixth embodiment]
Next, a sixth embodiment will be described. The sixth embodiment is the same as the fourth and fifth embodiments in that the magnification is gained by the function of the concave mirror. However, the sixth embodiment is different from the fourth and fifth embodiments in that the magnification is obtained by the hologram optical element having the function of a concave mirror. The sixth embodiment is different from the fourth and fifth embodiments in that transparency is ensured by utilizing the wavelength selectivity of such a hologram optical element.
 図23は、第6実施例に係るコンバイナ100fの概略構成を示している。図23(a)は、コンバイナ100fの正面図を示しており、図23(b)は、コンバイナ100fを上方から観察した上面図を示している(一部の構成要素については透視して示している)。第6実施例に係るコンバイナ100fは、主に、ホログラム光学素子61と、全反射ミラー62と、波長フィルタ63と、を有する。 FIG. 23 shows a schematic configuration of the combiner 100f according to the sixth embodiment. Fig.23 (a) has shown the front view of the combiner 100f, FIG.23 (b) has shown the top view which observed the combiner 100f from upper direction (a part of component is shown through and shown through). ) The combiner 100f according to the sixth example mainly includes a hologram optical element 61, a total reflection mirror 62, and a wavelength filter 63.
 ホログラム光学素子61は、コンバイナ100fの前面に付されている。ホログラム光学素子61は、凹面鏡の機能を有するように構成されている。また、ホログラム光学素子61は、波長選択性を有するように構成されている。具体的には、ホログラム光学素子61は、ディスプレイ画面DPからの光(波長)を反射し、ディスプレイ画面DPからの光以外の光(波長)を透過させるように構成されている。なお、上記のような機能を有するホログラム光学素子61を実現するに当たっては、公知の種々の技術を適用することができる。 The hologram optical element 61 is attached to the front surface of the combiner 100f. The hologram optical element 61 is configured to have a concave mirror function. The hologram optical element 61 is configured to have wavelength selectivity. Specifically, the hologram optical element 61 is configured to reflect light (wavelength) from the display screen DP and transmit light (wavelength) other than light from the display screen DP. In realizing the hologram optical element 61 having the above function, various known techniques can be applied.
 全反射ミラー62は、眼鏡における左右のテンプル部に付近に形成された、コンバイナ100fにおける突起状の部分の面に設けられており、入射された光を全反射する。波長フィルタ63は、コンバイナ100fの前面に付されている。具体的には、波長フィルタ63は、ホログラム光学素子61の前面に付されている(つまりホログラム光学素子61よりも前側に設けられている)。波長フィルタ63は、ディスプレイ画面DPからの光(波長)のみを反射(カット)するように構成されている。言い換えると、ディスプレイ表示光の波長以外(例えばRGB3波長以外)の波長を透過させるように構成されている。なお、全反射ミラー62は、当該全反射ミラー62によって反射された光がホログラム光学素子61に入射するような位置や角度にてコンバイナ100fに設けられている。 The total reflection mirror 62 is provided on the surface of the protruding portion of the combiner 100f formed in the vicinity of the left and right temple portions of the glasses, and totally reflects the incident light. The wavelength filter 63 is attached to the front surface of the combiner 100f. Specifically, the wavelength filter 63 is attached to the front surface of the hologram optical element 61 (that is, provided in front of the hologram optical element 61). The wavelength filter 63 is configured to reflect (cut) only light (wavelength) from the display screen DP. In other words, it is configured to transmit wavelengths other than the wavelength of display display light (for example, other than the RGB three wavelengths). The total reflection mirror 62 is provided in the combiner 100f at a position and an angle at which the light reflected by the total reflection mirror 62 enters the hologram optical element 61.
 なお、波長フィルタ63は本発明における「光学フィルタ」の一例に相当する。 The wavelength filter 63 corresponds to an example of the “optical filter” in the present invention.
 図24は、実像RIが一般物体OBである場合に、第6実施例に係るコンバイナ100fを通過する光を示している。図24(a)は、光が通過する様子を上方から観察した図を示しており、図24(b)は、光が通過する様子を側方から観察した図を示している(図24(a)及び(b)では、コンバイナ100fの一部の構成要素については透視して示している)。 FIG. 24 shows light passing through the combiner 100f according to the sixth embodiment when the real image RI is a general object OB. FIG. 24A shows a view of the light passing from above, and FIG. 24B shows a view of the light passing from the side (FIG. 24 ( In a) and (b), some constituent elements of the combiner 100f are shown in perspective).
 図24(a)及び(b)に示すように、一般物体OBが散乱する光は、ホログラム光学素子61及び波長フィルタ63を透過して眼に入射する。これにより、一般物体OBの実像RIが視認される。この場合、ホログラム光学素子61及び波長フィルタ63は一般物体OBが散乱する光を殆ど反射しないため、一般物体OBの実像RIはほぼ元の明るさで視認される。したがって、第6実施例に係るコンバイナ100fによっても、透明性が確保されることとなる。 As shown in FIGS. 24A and 24B, the light scattered by the general object OB passes through the hologram optical element 61 and the wavelength filter 63 and enters the eye. Thereby, the real image RI of the general object OB is visually recognized. In this case, since the hologram optical element 61 and the wavelength filter 63 hardly reflect the light scattered by the general object OB, the real image RI of the general object OB is visually recognized with almost the original brightness. Therefore, transparency is also ensured by the combiner 100f according to the sixth embodiment.
 図25は、実像RIがディスプレイ画面DPである場合に、第6実施例に係るコンバイナ100fを通過する光を示している。図25(a)は、光が通過する様子を上方から観察した図を示しており、図25(b)は、光が通過する様子を側方から観察した図を示している(図25(a)及び(b)では、コンバイナ100fの一部の構成要素については透視して示している)。 FIG. 25 shows light passing through the combiner 100f according to the sixth embodiment when the real image RI is the display screen DP. FIG. 25A shows a view of the light passing from above, and FIG. 25B shows a view of the light passing from the side (FIG. 25 ( In a) and (b), some constituent elements of the combiner 100f are shown in perspective).
 図25(a)及び(b)に示すように、ディスプレイ画面DPの光は、波長フィルタ63が設けられていない箇所を通過し(波長フィルタ63が設けられた箇所ではカット(反射)される)、全反射ミラー62が設けられた箇所に入射する。この後、当該光は、全反射ミラー62で全反射され、ホログラム光学素子61に入射して反射される。この場合、ホログラム光学素子61が凹面鏡として機能するため、倍率を稼ぐことができる。そして、ホログラム光学素子61で反射された光は、眼に入射する。これにより、ディスプレイ画面DPに対応する虚像VIが視認されることとなる。 As shown in FIGS. 25A and 25B, the light of the display screen DP passes through a location where the wavelength filter 63 is not provided (it is cut (reflected) at the location where the wavelength filter 63 is provided). Then, the light enters the part where the total reflection mirror 62 is provided. Thereafter, the light is totally reflected by the total reflection mirror 62, enters the hologram optical element 61, and is reflected. In this case, since the hologram optical element 61 functions as a concave mirror, the magnification can be increased. Then, the light reflected by the hologram optical element 61 enters the eye. Thereby, the virtual image VI corresponding to the display screen DP is visually recognized.
 以上説明した第6実施例によっても、第1乃至第5実施例と同様に、透明性を確保しつつ、所望の虚像VIを適切に生成することができる。 According to the sixth embodiment described above, a desired virtual image VI can be appropriately generated while ensuring transparency, as in the first to fifth embodiments.
 他方で、第6実施例によれば、ホログラム光学素子61を用いることで、第5実施例で示した内部凹面鏡51と同様の光学特性を平面(フィルム)にて実現できるため、コンバイナ100fの全体の厚みを薄くすることができる。また、第6実施例によれば、ホログラム光学素子61自体が波長選択性を有しているため、光を折り返すための光学素子(ミラー)として、第5実施例で示したような波長フィルタ52の代わりに、安価な全反射ミラー62を用いることができる。更に、第5実施例では、透明性を確保するために内部凹面鏡51を半透明にしなければならず、一般物体OBの実像RI及びディスプレイ画面DPの虚像VIの両方が暗くなっていたが、第6実施例では、ホログラム光学素子61を用いることで、一般物体OBの実像RI及びディスプレイ画面DPの虚像VIの両方を第5実施例よりも明るく視認させることができる。 On the other hand, according to the sixth embodiment, by using the hologram optical element 61, the optical characteristics similar to those of the internal concave mirror 51 shown in the fifth embodiment can be realized by a plane (film). Can be made thinner. Further, according to the sixth embodiment, since the hologram optical element 61 itself has wavelength selectivity, the wavelength filter 52 as shown in the fifth embodiment is used as an optical element (mirror) for turning back the light. Instead of this, an inexpensive total reflection mirror 62 can be used. Furthermore, in the fifth embodiment, in order to ensure transparency, the internal concave mirror 51 must be translucent, and both the real image RI of the general object OB and the virtual image VI of the display screen DP are darkened. In the sixth embodiment, by using the hologram optical element 61, both the real image RI of the general object OB and the virtual image VI of the display screen DP can be viewed brighter than in the fifth embodiment.
 なお、上記したコンバイナ100fでは波長フィルタ63を用いていたが、ディスプレイ表示光が偏光性を有している場合には、波長フィルタ63を用いなくても良い。また、そのような波長フィルタ63の代わりに、第1実施例で示したような偏光フィルタを用いても良い。 In the above-described combiner 100f, the wavelength filter 63 is used. However, when the display display light has polarization, the wavelength filter 63 may not be used. Further, instead of such a wavelength filter 63, a polarizing filter as shown in the first embodiment may be used.
 [変形例]
 上記した実施例ではコンバイナを眼鏡型に構成していたが、これに限定はされず、コンバイナをヘルメット型に構成しても良い。要は、コンバイナがユーザの頭部に装着可能であれば良い。
[Modification]
In the embodiment described above, the combiner is configured as a spectacle type, but the present invention is not limited to this, and the combiner may be configured as a helmet type. In short, it is sufficient that the combiner can be mounted on the user's head.
 100、100a、100b、100c、100d、100e、100f コンバイナ
 11、21、33 微小レンズ
 12、22、34 平行平板
 13、14 偏光フィルタ
 23、24、35、36、43、44、52、53、63 波長フィルタ
 51 内部凹面鏡
 61 ホログラム光学素子
 62 全反射ミラー
 DP ディスプレイ画面
 OB 一般物体
 RI 実像
 VI 虚像
100, 100a, 100b, 100c, 100d, 100e, 100f Combiner 11, 21, 33 Micro lens 12, 22, 34 Parallel plate 13, 14 Polarizing filter 23, 24, 35, 36, 43, 44, 52, 53, 63 Wavelength filter 51 Internal concave mirror 61 Hologram optical element 62 Total reflection mirror DP Display screen OB General object RI Real image VI Virtual image

Claims (14)

  1.  画像形成部によって形成された画像を虚像として視認させる虚像生成装置であって、
     入射される光から、前記画像に対応する画像光と物体の散乱光とを分離し、分離した前記散乱光を透過させると共に、分離した前記画像光に対して、前記虚像を生成するための光学的作用を付与する光学的手段を備え、
     当該虚像生成装置は、前記画像形成部と別体に構成されていると共に、ユーザの頭部に装着可能に構成されていることを特徴とする虚像生成装置。
    A virtual image generating device that visually recognizes an image formed by an image forming unit as a virtual image,
    Optical for separating image light corresponding to the image and scattered light of the object from incident light, transmitting the separated scattered light, and generating the virtual image for the separated image light Optical means for imparting a functional effect,
    The virtual image generating device is configured separately from the image forming unit and configured to be wearable on a user's head.
  2.  前記光学的手段は、
     前記ユーザの瞳孔径よりも小さい幅を有するレンズ部と、
     レンズ機能を有しない非レンズ部と、
     前記レンズ部に設けられており、前記画像光を透過させ、前記散乱光を遮光する第1の光学フィルタと、を備えることを特徴とする請求項1に記載の虚像生成装置。
    The optical means comprises
    A lens portion having a width smaller than the pupil diameter of the user;
    A non-lens part having no lens function;
    The virtual image generating apparatus according to claim 1, further comprising: a first optical filter that is provided in the lens unit and transmits the image light and blocks the scattered light.
  3.  前記光学的手段は、前記非レンズ部に設けられており、前記画像光を遮光し、前記散乱光を透過させる第2の光学フィルタを更に備えることを特徴とする請求項2に記載の虚像生成装置。 3. The virtual image generation according to claim 2, wherein the optical means further includes a second optical filter that is provided in the non-lens portion, shields the image light, and transmits the scattered light. apparatus.
  4.  前記光学的手段は、
     前記ユーザの瞳孔径よりも小さい幅を有する複数のレンズ部と、
     レンズ機能を有しない複数の非レンズ部と、
     前記散乱光を遮光し、前記画像光を透過させる複数の第1の光学フィルタと、を備え、
     前記レンズ部及び前記非レンズ部は、前記光学的手段の一の面に、交互に櫛形に形成され、
     前記第1の光学フィルタは、透過させた前記画像光を前記レンズ部に入射させることを特徴とする請求項1に記載の虚像生成装置。
    The optical means comprises
    A plurality of lens portions having a width smaller than the pupil diameter of the user;
    A plurality of non-lens portions not having a lens function;
    A plurality of first optical filters that shield the scattered light and transmit the image light,
    The lens portions and the non-lens portions are alternately formed in a comb shape on one surface of the optical means,
    The virtual image generating apparatus according to claim 1, wherein the first optical filter causes the transmitted image light to enter the lens unit.
  5.  前記光学的手段は、前記画像光を遮光し、前記散乱光を透過させて前記非レンズ部に入射させる複数の第2の光学フィルタを更に備えることを特徴とする請求項4に記載の虚像生成装置。 5. The virtual image generation according to claim 4, wherein the optical means further includes a plurality of second optical filters that shield the image light, transmit the scattered light, and enter the non-lens portion. apparatus.
  6.  前記光学的手段は、
     レンズを元にした面に設けられており、前記画像光を反射させ、前記散乱光を透過させる複数の第1の光学フィルタと、
     前記第1の光学フィルタが設けられた面に対向する面に設けられており、前記画像光を反射させ、前記散乱光を透過させる複数の第2の光学フィルタと、を備え、
     前記第1の光学フィルタ及び前記第2の光学フィルタは、前記画像光が当該第1の光学フィルタ及び当該第2の光学フィルタで反射して前記ユーザの眼に入射されるように構成され、
     前記第1の光学フィルタは、前記画像光を反射する際に、当該画像光を集光することを特徴とする請求項1に記載の虚像生成装置。
    The optical means comprises
    A plurality of first optical filters that are provided on a surface based on a lens, reflect the image light, and transmit the scattered light;
    A plurality of second optical filters that are provided on a surface opposite to the surface on which the first optical filter is provided, reflect the image light, and transmit the scattered light;
    The first optical filter and the second optical filter are configured such that the image light is reflected by the first optical filter and the second optical filter and is incident on the user's eyes,
    The virtual image generating apparatus according to claim 1, wherein the first optical filter condenses the image light when the image light is reflected.
  7.  前記光学的手段は、
     前記画像光を反射させる第1の光学フィルタと、
     前記第1の光学フィルタによって反射された前記画像光を反射させ、前記散乱光を透過させるハーフミラーと、を備え、
     前記第1の光学フィルタ又は前記ハーフミラーは、前記画像光を集光する機能を有することを特徴とする請求項1に記載の虚像生成装置。
    The optical means comprises
    A first optical filter that reflects the image light;
    A half mirror that reflects the image light reflected by the first optical filter and transmits the scattered light;
    The virtual image generating apparatus according to claim 1, wherein the first optical filter or the half mirror has a function of condensing the image light.
  8.  前記光学的手段は、前記ハーフミラーよりも前記画像形成部側に設けられており、前記画像光を遮光し、前記散乱光を透過させる第2の光学フィルタを更に備えることを特徴とする請求項7に記載の虚像生成装置。 The optical means is further provided on the image forming unit side with respect to the half mirror, and further includes a second optical filter that shields the image light and transmits the scattered light. 8. The virtual image generating device according to 7.
  9.  前記光学的手段は、
     前記画像光を全反射させる全反射ミラーと、
     前記全反射ミラーによって反射された前記画像光を反射させ、前記散乱光を透過させるホログラム光学素子と、を備え、
     前記ホログラム光学素子は、前記画像光を集光する機能を有することを特徴とする請求項1に記載の虚像生成装置。
    The optical means comprises
    A total reflection mirror that totally reflects the image light;
    A hologram optical element that reflects the image light reflected by the total reflection mirror and transmits the scattered light; and
    The virtual image generating apparatus according to claim 1, wherein the hologram optical element has a function of condensing the image light.
  10.  前記光学的手段は、前記ホログラム光学素子よりも前記画像形成部側に設けられており、前記画像光を遮光し、前記散乱光を透過させる光学フィルタを更に備えることを特徴とする請求項9に記載の虚像生成装置。 10. The optical device according to claim 9, further comprising an optical filter that is provided closer to the image forming unit than the hologram optical element, shields the image light, and transmits the scattered light. The virtual image generating device described.
  11.  前記光学フィルタは、偏光フィルタ又は波長フィルタであることを特徴とする請求項2乃至10のいずれか一項に記載の虚像生成装置。 The virtual image generating apparatus according to any one of claims 2 to 10, wherein the optical filter is a polarizing filter or a wavelength filter.
  12.  眼鏡型に構成されていることを特徴とする請求項1乃至11のいずれか一項に記載の虚像生成装置。 The virtual image generating device according to any one of claims 1 to 11, wherein the virtual image generating device is configured in a glasses shape.
  13.  画像形成部と、
     前記画像形成部によって形成された画像を虚像として視認させる、請求項1乃至12のいずれか一項に記載の虚像生成装置と、を備えることを特徴とする表示システム。
    An image forming unit;
    13. A display system comprising: the virtual image generation device according to claim 1 that causes an image formed by the image forming unit to be visually recognized as a virtual image.
  14.  前記画像形成部は、車両のダッシュボードに設けられることを特徴とする請求項13に記載の表示システム。 The display system according to claim 13, wherein the image forming unit is provided on a dashboard of a vehicle.
PCT/JP2013/051267 2013-01-23 2013-01-23 Virtual image creating device and display system WO2014115260A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2013/051267 WO2014115260A1 (en) 2013-01-23 2013-01-23 Virtual image creating device and display system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2013/051267 WO2014115260A1 (en) 2013-01-23 2013-01-23 Virtual image creating device and display system

Publications (1)

Publication Number Publication Date
WO2014115260A1 true WO2014115260A1 (en) 2014-07-31

Family

ID=51227077

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/051267 WO2014115260A1 (en) 2013-01-23 2013-01-23 Virtual image creating device and display system

Country Status (1)

Country Link
WO (1) WO2014115260A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016050546A1 (en) * 2014-09-30 2016-04-07 Carl Zeiss Ag Spectacle lens for a display device which can be placed on the head of a user and which generates an image, and display device comprising such a spectacle lens

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010271526A (en) * 2009-05-21 2010-12-02 Konica Minolta Opto Inc Video display device, head mounted display, and head-up display
JP2011053367A (en) * 2009-08-31 2011-03-17 Olympus Corp Spectacles-type image display device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010271526A (en) * 2009-05-21 2010-12-02 Konica Minolta Opto Inc Video display device, head mounted display, and head-up display
JP2011053367A (en) * 2009-08-31 2011-03-17 Olympus Corp Spectacles-type image display device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016050546A1 (en) * 2014-09-30 2016-04-07 Carl Zeiss Ag Spectacle lens for a display device which can be placed on the head of a user and which generates an image, and display device comprising such a spectacle lens
CN106796350A (en) * 2014-09-30 2017-05-31 卡尔蔡司斯马特光学有限公司 For that can be worn on user's head and can produce image display device eyeglass and the display device with such eyeglass
US10185149B2 (en) 2014-09-30 2019-01-22 tooz technologies GmbH Spectacle lens for a display device which can be placed on the head of a user and which generates an image, and display device comprising such a spectacle lens

Similar Documents

Publication Publication Date Title
JP6774429B2 (en) Addition of prescription modifications to eyepieces for see-through headwearable displays
CN107533227B (en) Effective thin curved eyepiece for see-through head mounted display
US9052506B2 (en) Virtual image display device and manufacturing method of virtual image display device
US8848289B2 (en) Near-to-eye display with diffractive lens
EP2930552B1 (en) Display apparatus and optical apparatus
EP2956815B1 (en) Cascading optics in optical combiners of head mounted displays
US9091851B2 (en) Light control in head mounted displays
WO2012118573A1 (en) Light control in head mounted displays
US9568731B2 (en) Virtual image display device
WO2014107272A1 (en) Optical combiner for near-eye display
US10634915B2 (en) Image display device
JP2016126134A (en) Display device and wearable device
US11474357B2 (en) Augmented reality display device
US20190265479A1 (en) Virtual image display device
CN114051593A (en) Near-eye display device, augmented reality glasses comprising same, and operation method thereof
CN117092825B (en) Multi-focal-plane display device and AR near-to-eye display apparatus for resolving AR convergence adjustment conflict
US20210165216A1 (en) Correction optical member and head-mounted display
EP4150384A1 (en) Eyebox steering and field of view expansion using a beam steering element
US10509230B2 (en) Virtual display apparatus
WO2014115260A1 (en) Virtual image creating device and display system
WO2017077965A1 (en) Image display device
JP2014098855A (en) Optical system for observation and display system
JPWO2019077975A1 (en) Video display and optical see-through display
KR20140077378A (en) Apparatus for head mounted display using holographic optical element lens
US20220128756A1 (en) Display system for generating three-dimensional image and method therefor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13872701

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13872701

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP