WO2014114275A2 - 提高蒸汽吞吐效果的两个重要方法 - Google Patents

提高蒸汽吞吐效果的两个重要方法 Download PDF

Info

Publication number
WO2014114275A2
WO2014114275A2 PCT/CN2014/072426 CN2014072426W WO2014114275A2 WO 2014114275 A2 WO2014114275 A2 WO 2014114275A2 CN 2014072426 W CN2014072426 W CN 2014072426W WO 2014114275 A2 WO2014114275 A2 WO 2014114275A2
Authority
WO
WIPO (PCT)
Prior art keywords
steam injection
steam
well
injection
row
Prior art date
Application number
PCT/CN2014/072426
Other languages
English (en)
French (fr)
Other versions
WO2014114275A3 (zh
Inventor
于文英
Original Assignee
Yu wen-ying
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yu wen-ying filed Critical Yu wen-ying
Priority to CN201480009578.1A priority Critical patent/CN105283631A/zh
Publication of WO2014114275A2 publication Critical patent/WO2014114275A2/zh
Publication of WO2014114275A3 publication Critical patent/WO2014114275A3/zh

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B43/00Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
    • E21B43/16Enhanced recovery methods for obtaining hydrocarbons
    • E21B43/24Enhanced recovery methods for obtaining hydrocarbons using heat, e.g. steam injection

Definitions

  • the method is applicable to the bottom-water heavy oil reservoir and the high-condensation oil reservoir developed by the thermal mining method in the petroleum industry. It is mainly aimed at the thermal recovery method of high crude oil viscosity or high wax content, low crude oil steam stimulation or steam flooding efficiency, short production time, high decline rate and low recovery.
  • the thermal recovery method of the fired oil layer is not applicable to the super heavy oil reservoir from the analysis of the oil recovery mechanism.
  • the SAGD heat effect is better, it is limited to the layer heating and cannot solve the vertical multilayer thin film -
  • the medium-thick oil layer is effectively developed, and the horizontal wells occupy the vertical well and will cause other multi-layer reserves to be lost.
  • the development of heavy oil is facing a situation: the production capacity of new wells is increasingly exhausted, and the old wells are entering high-volume production.
  • the natural decline rate is as high as 20%. Left and right, the overall decline is about 5%.
  • the thermal recovery conversion development mode can not enter the industrial promotion, and the heavy oil thermal recovery development is in a bottleneck stage. By 2015, the production capacity of some oilfield blocks is nearly exhausted.
  • the effect of steam stimulation is poor, the oil production rate of old wells after six cycles is high, and the preheated crude oil in the far well zone cannot flow to the bottom of the well.
  • the vertical multi-layer reservoir cannot solve the problem of continuous supply of heat.
  • the current steam stimulation method solves the above problems. .
  • Alternate steam stimulation method that is, the production wells are divided into two groups or three groups, and then the steam injection is batch-injected, so that the heat injected into the steam injection well can compensate for the heat energy demand in the middle and late stages of the throughput, and ensure more heat to maintain the liquid flow to the well. bottom.
  • the newly injected heat energy replenishes the demand for heat energy in the middle and late stages of the latter.
  • the three alternately carry out the throughput, echoing each other, to achieve the purpose of maintaining the thermal energy of the formation and improving the effect of heat recovery.
  • the advantage of this method is: to fully exert the thermal effect of the centralized throughput scale, and at the same time solve the problem of insufficient supply of heat energy.
  • the horizontal well position can be replaced by a vertical well position.
  • Straight wells can also be replaced by horizontal wells.
  • the horizontal connection of each row of wells in the same injection well network is preferably the vertical sedimentary facies extension direction. The difference between single-row and double-row and three-row wells lies in the reservoir. Geological features, for reservoirs with good layered plane connectivity, using double or three rows of wells, will achieve better thermal recovery development.
  • Method 2 Dynamically adjust the steam injection parameter method, and dynamically adjust the steam injection parameters during the high round throughput stage.
  • the steam injection parameters cannot be kept unchanged for a long time after a certain period.
  • Figure 1 is a square single row row alternate injection well network diagram, black and white are each a group of well patterns;
  • Figure 2 is a square single-row oblique alternating injection well network diagram, black and white are each a group of well patterns;
  • Figure 3 is a square double-row row alternate injection well network diagram, black and white are each a group of well patterns;
  • Figure 4 is a square double-row oblique alternating injection well network diagram, black and white are each a group of well patterns;
  • Figure 5 is a square three-row alternating injection well pattern network diagram, black, gray, white are each a group of well patterns;
  • Figure 6 is a square three-row oblique alternating injection well network diagram, black, gray, white are each a group of well patterns;
  • Figure 7 is a network diagram of a three-row, two-row, alternating row of wells, black, gray, and white, each of which is a group of well patterns;
  • Figure 8 is a square three-row double-row oblique alternating injection well network diagram, black, gray, white are each a group of well patterns;
  • Figure 9 is a square anti-nine-point diagram, black and white are each a group of well patterns
  • Figure 10 is a square two-point diagram, black and white are each a group of well patterns
  • Figure 11 is a square three-point diagram, black and white are each a group of well patterns
  • Figure 12 is a square four-point diagram, black and white are each a group of well patterns
  • Figure 13 is a network diagram of a triangular single row alternating injection well pattern, black and white each being a group of well patterns;
  • Figure 14 is a network diagram of a triangular double row alternating injection well pattern, black and white each being a group of well patterns;
  • Figure 15 is a three-row, single-row, alternating-row, well-joined well pattern network diagram, black, gray, and white each being a group of well patterns;
  • Figure 16 is a three-row, double-row, alternating-row, well-joined well pattern network diagram, black, gray, and white each being a group of well patterns;
  • Figure 17 is a triangle single-row oblique alternating injection well network diagram, black and white are each a group of well patterns;
  • Figure 18 is a triangular double-row oblique alternating injection well network diagram, black and white are each a group of well patterns;
  • Figure 19 is a three-row, three-row, single-row, oblique-row alternate injection-production well pattern, with black, gray, and white being each set of well patterns;
  • Figure 20 is a three-row, three-row, double-row, oblique-row alternate injection well network diagram, black, gray, and white each being a group of well patterns;
  • Figure 21 is a triangle-positive seven-point alternating injection well network diagram, black and white are each a group of well patterns;
  • Figure 22 is a network diagram of seven-point alternating injection wells between triangles, each of which is a set of well patterns in black and white;
  • Figure 23 is a network diagram of a triangular stack of seven-point alternating injection wells, black and white each being a group of well patterns;
  • Figure 24 is a triangle three-point alternate injection well network diagram, black and white are each a group of well patterns;
  • Figure 25 is a network diagram of two sets of single horizontal well alternate injection wells.
  • the thick and thin lines are each a group of well patterns, and the horizontal wells can be replaced by vertical wells.
  • Figure 26 is a network diagram of two sets of double horizontal well alternate injection wells.
  • the thick and thin lines are each a group of well patterns, and the horizontal wells can be replaced by vertical wells.
  • Figure 27 is a network diagram of three sets of single horizontal well alternate injection wells.
  • the thin, thick and dashed bars are each a set of well patterns, and horizontal wells can be replaced by vertical wells;
  • Figure 28 is a network diagram of three sets of double horizontal well alternate injection wells.
  • the thin, thick and dashed lines are each a group of well patterns, and the horizontal wells can be replaced by vertical wells;
  • Figure 29 is a network diagram of three groups of three horizontal well alternate injection wells.
  • the thin, thick and dashed lines are each a group of well patterns, and the horizontal wells can be replaced by vertical wells;
  • the dynamic adjustment time point of steam injection parameters is selected in the previous cycle where the steam injection parameters are unchanged.
  • the preheating crude oil in the far well zone needs more heat energy due to the increase of the distance. Therefore, the subjective active reinforcement is enhanced.
  • Series parameters such as steam strength, at the same time, in order to better maintain the formation thermal energy, using alternate steam stimulation to produce oil, will achieve the desired development results.

Landscapes

  • Geology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mining & Mineral Resources (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Fluid Mechanics (AREA)
  • Environmental & Geological Engineering (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Earth Drilling (AREA)
  • Geophysics And Detection Of Objects (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
  • General Factory Administration (AREA)
  • Control Of Turbines (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)
  • Fats And Perfumes (AREA)

Abstract

目前,超稠油大部分生产井进入高轮次蒸汽吞吐阶段,开发指标表现为'五降一升',为此,部分区块进入转换开发方式探索阶段,但生产实施中发现,转换开发方式为时尚早,成本高、效益差。交替蒸汽吞吐方法是将油藏井网按一定规则拆分成两到三套井网(图1~图29),然后交替进行蒸汽吞吐,再结合动态注汽参数调整,不仅充分发挥集中吞吐规模效应,同时又侧重解决吞吐中热力持续供应问题,能有效节约成本、降低老井高递减率问题。

Description

提高蒸汽吞吐效果的两个重要方法 技术领域
本方法适用于石油行业中利用热采方法开发的边底水稠油油藏、高凝油油藏。主要针对油藏原油黏度高或含蜡量高、原油蒸汽吞吐或蒸汽驱热采效率低、稳产时间短、递减率高及采出程度低等问题而提出的热采方法。
背景技术
目前,超稠油进入高轮次蒸汽吞吐阶段,开发指标表现为 ' 五降一升 ' :注汽量降低、产液量、产油量降低、采油速度降低、油汽比降低,操作成本升高等诸多不利条件,蒸汽吞吐生产效果变差,面临严峻的开发形势,因此,部分区块进入转换开发方式试验阶段。但在实际生产操作中发现,油汽比低仅仅是吞吐转蒸汽驱必要而非充分条件。转蒸汽驱另一重要的条件是地层温度场要连通且足够高,原油处于半流动至可流动状态,否则,会出现驱不动、汽窜、对应生产井见效慢甚至不见效等系列问题。而火烧油层热采方法,除会彻底损坏储层不利因素外,从采油机理分析也不适用超稠油油藏。 SAGD 热力持效虽然好些,但仅限于层面加热,不能解决纵向多层薄 - 中厚油层有效开发,且水平井占据直井进位后会造成其它多层储量损失。目前稠油开发面临形势:新井产能接替日益枯竭、老井进入高轮次吞吐,自然递减率高达 20% 左右,综合递减 5% 左右,热采转换开发方式还不能进入工业推广,稠油热采开发陷入瓶颈阶段,至 2015 年,油田部分区块产能接近枯竭。
技术问题
蒸汽吞吐效果差、六周期后的老井产油量递减率高,远井地带预热原油无法流至井底,纵向多层油藏无法解决热力持续供应问题,目前的蒸汽吞吐方法解决上述问题。
技术解决方案
方法一: 交替蒸汽吞吐方法,即把生产井分成两组或三组,然后分批注汽吞吐,这样后期注汽井注入的热量可弥补前者吞吐中后期热能需求,保证有更多的热能维持液体流至井底。当第一批井进入新一轮注汽时,新注入的热能再来补充后者吞吐中后期对热能的需求,两 / 三者交替进行吞吐,交相呼应,达到维持地层热能,提高吞吐热采效果的目的。该方法优点是:充分发挥集中吞吐规模热效应,同时解决后续热能供应不足问题。
根据目前油藏基本上采用正方形井网、三角形井网和水平井井网三种类型,特设计 29 种不同交替注采井网结构图(图 1 ~图 29 ),实际应用中,可根据特定油藏地质特征、地面采油工艺设计状况、油藏开发现状,选择适当的井网组合结构进行交替蒸汽吞吐,其中,水平井井位可以用直井井位替代,直井井位也可以用水平井替代,原则上,同一注采井网每一排井横向连线最好垂直沉积相带延展方向,单排井与双排井、三排井选择的区别在于油藏地质特征,对于厚层块状平面连通性好的油藏,采用双排或三排井,会取得更好的热采开发效果。
方法二:动态调整注汽参数方法,在高轮次吞吐阶段注汽参数动态增强调整,不能在某一周期后注汽参数长期保持不变,注汽参数调整遵从以下原则: 1 )根据采油量与存水量体积之差,计算汽腔体积,动态增加注汽强度; 2 )随着注汽强度增加,注汽速度 v=Q/t 相应增强; 3 )随加热半径增加,相应提高注汽干度; 4 )闷井时间略微延长; 5 )初期采油速度降低,日产油量控制在平均日产油水平。
有益效果
可以有效解决目前热采开发油藏生产低效问题,避免因蒸汽吞吐无效而过早采用转蒸汽驱开发形式,由此出现事倍功半效果。同时,吞吐效果提高了,就可以不采用火烧油层热采方法,该方法彻底破坏储层20~30%剩余地质储量,经济损失严重。
附图说明
图 1 是正方形单排横列交替注采井网图,黑色、白色各为一组井网;
图 2 是正方形单排斜列交替注采井网图,黑色、白色各为一组井网;
图 3 是正方形双排横列交替注采井网图,黑色、白色各为一组井网;
图 4 是正方形双排斜列交替注采井网图,黑色、白色各为一组井网;
图 5 是正方形三排横列交替注采井网图,黑色、灰色、白色各为一组井网;
图 6 是正方形三排斜列交替注采井网图,黑色、灰色、白色各为一组井网;
图 7 是正方形三行双排横列交替注采井网图,黑色、灰色、白色各为一组井网;
图 8 是正方形三行双排斜列交替注采井网图,黑色、灰色、白色各为一组井网;
图 9 是正方形反九点式图,黑色、白色各为一组井网;
图 10 是正方形两点式图,黑色、白色各为一组井网;
图 11 是正方形三点式图,黑色、白色各为一组井网;
图 12 是正方形四点式图,黑色、白色各为一组井网;
图 13 是三角形单排横列交替注采井网图,黑色、白色各为一组井网;
图 14 是三角形双排横列交替注采井网图,黑色、白色各为一组井网;
图 15 是三角形三行单排横列交替注采井网图,黑色、灰色、白色各为一组井网;
图 16 是三角形三行双排横列交替注采井网图,黑色、灰色、白色各为一组井网;
图 17 是三角形单排斜列交替注采井网图,黑色、白色各为一组井网;
图 18 是三角形双排斜列交替注采井网图,黑色、白色各为一组井网;
图 19 是三角形三行单排斜列交替注采井网图,黑色、灰色、白色各为一组井网;
图 20 是三角形三行双排斜列交替注采井网图,黑色、灰色、白色各为一组井网;
图 21 是三角形正七点交替注采井网图,黑色、白色各为一组井网;
图 22 是三角形间七点交替注采井网图,黑色、白色各为一组井网;
图 23 是三角形叠七点交替注采井网图,黑色、白色各为一组井网;
图 24 是三角形三点式交替注采井网图,黑色、白色各为一组井网;
图 25 是两组单水平井交替注采井网图,粗、细线条各为一组井网,水平井可用直井替代;
图 26 是两组双水平井交替注采井网图,粗、细线条各为一组井网,水平井可用直井替代;
图 27 是三组单水平井交替注采井网图,细、粗、虚线条各为一组井网,水平井可用直井替代;
图 28 是三组双水平井交替注采井网图,细、粗、虚线各为一组井网,水平井可用直井替代;
图 29 是三组三口水平井交替注采井网图,细、粗、虚线各为一组井网,水平井可用直井替代;
本发明的最佳实施方式
在蒸汽吞吐4周期后,即开始动态加强注汽参数调整,同时根据特定油藏地质、开发及地面采油工艺特征编制交替注采井网,六周周期后进行交替蒸汽吞吐,这样可以最大程度降低地层热能损失,提高热采开发效果,降低蒸汽冷凝对储层造成伤害。交替蒸汽吞吐方法不要在一开始吞吐就采用,因为,蒸汽吞吐初级阶段热波及半径小,交替效果不明显。
本发明的实施方式
根据不同油藏开发方案设计,注汽参数动态调整时间点选择在注汽参数不变的前一周期,远井地带预热原油因距离增加而需要更多的热能,因此,主观能动地增强注汽强度等系列参数,同时,为更好地维持地层热能,采用交替蒸汽吞吐方式采油,会取得理想的开发效果。
工业实用性
对一切采用蒸汽吞吐热采开发油藏,稠油油藏、高凝油油藏均适用。
序列表自由内容

Claims (1)

  1. 1. 交替蒸汽吞吐方法 的特点是对油藏拆分好的两或三套井网,分时段分别集中蒸汽吞吐,交替进行,突出热力集中、吞吐交替进行的特点。
    2. 二十九种交替注采井网结构 的特点是根据特定油藏地质特征、地面采油工艺设施状况、油藏开发现状把单一井网结构拆分成两或三组,如图 1~ 图 29 任一井网结构。
    3 .动态调整注汽参数方法 的特点是在高轮次吞吐阶段要注汽参数动态增强调整,不能某一注汽参数长期保持不变,注汽参数调整遵从以下原则: 1 )根据采油量与存水量体积之差,计算汽腔体积,动态增加注汽强度; 2 )随着注汽强度增加,注汽速度 v=Q/t 相应增强; 3 )随加热半径增加,相应提高注汽干度; 4 )闷井时间略微延长; 5 )初期采油速度降低,日产油量控制在平均日产油水平。
PCT/CN2014/072426 2013-01-23 2014-02-23 提高蒸汽吞吐效果的两个重要方法 WO2014114275A2 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201480009578.1A CN105283631A (zh) 2013-01-23 2014-02-23 提高蒸汽吞吐效果的两个重要方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201310024407.3 2013-01-23
CN201310024407.3A CN103256034B (zh) 2013-01-23 2013-01-23 提高蒸汽吞吐效果方法

Publications (2)

Publication Number Publication Date
WO2014114275A2 true WO2014114275A2 (zh) 2014-07-31
WO2014114275A3 WO2014114275A3 (zh) 2014-09-25

Family

ID=48960212

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/072426 WO2014114275A2 (zh) 2013-01-23 2014-02-23 提高蒸汽吞吐效果的两个重要方法

Country Status (2)

Country Link
CN (2) CN103256034B (zh)
WO (1) WO2014114275A2 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110827166A (zh) * 2019-11-29 2020-02-21 重庆科技学院 稠油油藏汽驱开采最优注汽速度的调整方法
CN114016983A (zh) * 2021-11-10 2022-02-08 克拉玛依胜利高原机械有限公司 一种油田注采比精确管控注汽管路及注汽工艺
CN114165202A (zh) * 2020-08-20 2022-03-11 中国石油化工股份有限公司 一种提高高轮次吞吐后吞吐动用半径的方法

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103256034B (zh) * 2013-01-23 2016-12-07 于文英 提高蒸汽吞吐效果方法
CN106846157A (zh) * 2016-12-28 2017-06-13 中国石油天然气股份有限公司 一种sec准则下蒸汽吞吐后期的储量评估方法
CN108825190B (zh) * 2018-06-08 2020-08-21 中国石油化工股份有限公司 稠油油藏蒸汽吞吐转周时机的确定方法
CN113622885B (zh) * 2020-05-08 2023-02-07 中国石油天然气股份有限公司 一种注气提高采收率的分层注采方法
CN114198075B (zh) * 2021-12-01 2024-05-07 中国石油天然气股份有限公司 一种稠油水平井吸汽剖面调整方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3332480A (en) * 1965-03-04 1967-07-25 Pan American Petroleum Corp Recovery of hydrocarbons by thermal methods
US5246071A (en) * 1992-01-31 1993-09-21 Texaco Inc. Steamflooding with alternating injection and production cycles
CN101555787A (zh) * 2009-05-15 2009-10-14 中国石油天然气股份有限公司 一种改进的蒸汽驱采油方法
CN102076930A (zh) * 2008-04-30 2011-05-25 世界能源系统有限公司 用于提高烃类采收的方法
CN102852496A (zh) * 2012-04-20 2013-01-02 中国石油天然气股份有限公司 一种中深层稠油油藏开采方法
CN103256034A (zh) * 2013-01-23 2013-08-21 于文英 提高蒸汽吞吐效果的两个重要方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4635720A (en) * 1986-01-03 1987-01-13 Mobil Oil Corporation Heavy oil recovery process using intermittent steamflooding
CN1601052A (zh) * 2003-09-27 2005-03-30 中国石油天然气股份有限公司 多井整体吞吐开采稠油的方法
CN101148985A (zh) * 2007-10-26 2008-03-26 大庆油田有限责任公司 特高含水期油田注采系统的调整方法
CA2769189C (en) * 2011-04-26 2019-04-23 Conocophillips Company Method for steam assisted gravity drainage with pressure differential injection
CN102268983B (zh) * 2011-06-23 2015-03-25 李剑 一种浅油藏提高稠油采收率的混合开采方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3332480A (en) * 1965-03-04 1967-07-25 Pan American Petroleum Corp Recovery of hydrocarbons by thermal methods
US5246071A (en) * 1992-01-31 1993-09-21 Texaco Inc. Steamflooding with alternating injection and production cycles
CN102076930A (zh) * 2008-04-30 2011-05-25 世界能源系统有限公司 用于提高烃类采收的方法
CN101555787A (zh) * 2009-05-15 2009-10-14 中国石油天然气股份有限公司 一种改进的蒸汽驱采油方法
CN102852496A (zh) * 2012-04-20 2013-01-02 中国石油天然气股份有限公司 一种中深层稠油油藏开采方法
CN103256034A (zh) * 2013-01-23 2013-08-21 于文英 提高蒸汽吞吐效果的两个重要方法

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110827166A (zh) * 2019-11-29 2020-02-21 重庆科技学院 稠油油藏汽驱开采最优注汽速度的调整方法
CN110827166B (zh) * 2019-11-29 2022-08-26 重庆科技学院 稠油油藏汽驱开采最优注汽速度的调整方法
CN114165202A (zh) * 2020-08-20 2022-03-11 中国石油化工股份有限公司 一种提高高轮次吞吐后吞吐动用半径的方法
CN114165202B (zh) * 2020-08-20 2024-04-16 中国石油化工股份有限公司 一种提高高轮次吞吐后吞吐动用半径的方法
CN114016983A (zh) * 2021-11-10 2022-02-08 克拉玛依胜利高原机械有限公司 一种油田注采比精确管控注汽管路及注汽工艺

Also Published As

Publication number Publication date
CN103256034B (zh) 2016-12-07
CN103256034A (zh) 2013-08-21
CN105283631A (zh) 2016-01-27
WO2014114275A3 (zh) 2014-09-25

Similar Documents

Publication Publication Date Title
WO2014114275A2 (zh) 提高蒸汽吞吐效果的两个重要方法
CN102181010B (zh) 抗高温高盐聚合物驱油剂的制备方法
CN110952952B (zh) 一种低渗透油藏深部调驱方法
CN108194069A (zh) 直井辅助sagd井改造含泥质夹层稠油储层的方法
WO2023046187A1 (zh) 利用底水蒸汽驱开采油气提高单井经济效益方法
CN1601052A (zh) 多井整体吞吐开采稠油的方法
CN104314540A (zh) 一种注蒸汽油藏防治汽窜方法
CN104895538A (zh) 一种提高强水敏稠油油藏采收率的方法
CN103497288B (zh) 一种AM/AA/HMDAAC/A-β-CD共聚物及其制备方法
Clark et al. The oxygen consumption of the frog's heart: I
CN108457630A (zh) 利用多配点小压差注水提高油藏采收率的方法
CN110529085A (zh) 一种稠油油藏的化学驱方法
CN107246257B (zh) 非均质储层酸化改造方法
CN104533371B (zh) 水平井非对称立体压裂方法
CN106639996B (zh) 直井体积压裂和线状注水组合开发超低渗透油藏的方法
CN108868718A (zh) 一种有气顶稠油油藏的组合热采方法
CN104974733A (zh) 一种聚合物驱油剂及其制备方法
CN105781494A (zh) 一种液态胶体柱塞气举排水采气方法
CN112627792B (zh) 孤立井点压裂驱油后补液增产方法
CN104775144B (zh) 一种铝合金钻杆表面微弧氧化膜掺杂陶瓷微粉的制备方法
CN104233365B (zh) 从海洋生物功能糖中制备寡糖的电化学反应器及制备方法
CN206867780U (zh) 一种取水泵站预沉曝气池的椭圆形穿孔配水花墙
CN102913203A (zh) 一种开发低渗透气藏的方法
CN1148660A (zh) 低渗透储层矿化度梯度注水方法
CN205445566U (zh) 直平组合注气注水井网结构

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480009578.1

Country of ref document: CN

DPE2 Request for preliminary examination filed before expiration of 19th month from priority date (pct application filed from 20040101)
122 Ep: pct application non-entry in european phase

Ref document number: 14742838

Country of ref document: EP

Kind code of ref document: A2