WO2014114234A1 - 触摸信号检测电路及方法和触摸设备 - Google Patents

触摸信号检测电路及方法和触摸设备 Download PDF

Info

Publication number
WO2014114234A1
WO2014114234A1 PCT/CN2014/071118 CN2014071118W WO2014114234A1 WO 2014114234 A1 WO2014114234 A1 WO 2014114234A1 CN 2014071118 W CN2014071118 W CN 2014071118W WO 2014114234 A1 WO2014114234 A1 WO 2014114234A1
Authority
WO
WIPO (PCT)
Prior art keywords
value
capacitance change
touch signal
capacitance
interference
Prior art date
Application number
PCT/CN2014/071118
Other languages
English (en)
French (fr)
Inventor
刘海龙
周锦
Original Assignee
华为终端有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为终端有限公司 filed Critical 华为终端有限公司
Priority to EP14743739.6A priority Critical patent/EP2853996B1/en
Priority to JP2015523412A priority patent/JP6010826B2/ja
Publication of WO2014114234A1 publication Critical patent/WO2014114234A1/zh
Priority to US14/575,064 priority patent/US9720540B2/en

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/0416Control or interface arrangements specially adapted for digitisers
    • G06F3/0418Control or interface arrangements specially adapted for digitisers for error correction or compensation, e.g. based on parallax, calibration or alignment
    • G06F3/04186Touch location disambiguation
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/0412Digitisers structurally integrated in a display
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • G06F3/0446Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means using a grid-like structure of electrodes in at least two directions, e.g. using row and column electrodes

Definitions

  • TECHNICAL FIELD Embodiments of the present invention relate to communication technologies, and in particular, to a touch signal detection circuit and method, and a touch device.
  • touch devices have become one of the most important input devices, and a touch device can convert a user's touch signal into an electrical signal through a touch detection circuit.
  • the mutual capacitance sensing technology is a typical touch detection method, and the touch device using the mutual capacitance sensing technology includes a plurality of transmitting electrodes and a plurality of receiving electrodes, and the transmitting electrodes and the receiving electrodes are located in different layers, each transmitting electrode and each receiving
  • the node formed between the electrodes can be equivalent to a mutual capacitance of the node.
  • the node capacitance of the touch point changes, so by detecting the change value of the capacitance of all the nodes in the touch device, the touch can be determined. Click where you are on the touch device.
  • the touch device is widely used on a user device having a display function such as a mobile phone or a tablet computer, and an electromagnetic signal generated when a liquid crystal display (LCD) is displayed may cause interference to the touch detection of the touch device, resulting in a touch device.
  • LCD liquid crystal display
  • the detection accuracy is lowered, and even erroneous detection or undetectable conditions may occur.
  • the present invention provides a touch signal detecting circuit and method and a touch device for enhancing the ability of a touch device to resist interference of a display device, and improving the accuracy of touch position detection.
  • a touch signal detecting circuit includes: a processing unit, at least one linear emitter, and at least two linear receivers;
  • the emitter is perpendicular to the receiving pole, and the receiving pole is perpendicular to a source driving line of the display screen, Each receiving pole forms a node mutual capacitance with each emitter;
  • the processing unit acquires a capacitance change value of at least two mutual capacitances of the nodes, and acquires a position of the touch signal according to a capacitance change value of the mutual capacitance of the at least two nodes.
  • the processing unit is configured to perform statistics on a capacitance change value of the mutual capacitance of the at least two nodes, and determine an interference value according to the statistical result, according to the interference value and The capacitance change value determines a location of the touch signal.
  • the second possible capacitance change value in the first aspect is divided into two groups to include an average value of all capacitance change values in the group having the largest capacitance change value.
  • one of the capacitance change values is the interference value, and the interference value is subtracted from the capacitance change value to obtain a data value, where the position of the mutual capacitance of the node whose data value is greater than the preset value is used as the touch The location of the signal.
  • a second aspect of the invention provides a touch device comprising a display screen and the touch signal detection circuit of any of the first aspect, the first or second possible implementation of the first aspect.
  • a third aspect of the present invention provides a touch signal detecting method, including:
  • Obtaining a capacitance change value of at least two node mutual capacitances wherein the at least two node capacitances are formed by at least two linear receivers and at least one linear emitter, the emitter being perpendicular to the receiver
  • the receiving pole is perpendicular to a source driving line of the display screen, and each receiving pole forms a node mutual capacitance with each emitter;
  • the acquiring, by the capacitance change value of the mutual capacitance of the at least two nodes, the location of the touch signal includes:
  • a position of the touch signal is determined according to the interference value and the capacitance change value.
  • the determining, by the capacitance change value of the mutual capacitance of the at least two nodes, the interference value includes:
  • Determining the location of the touch signal according to the interference value and the capacitance change value includes: subtracting the interference value from the capacitance change value to obtain a data value; and the data value is greater than the preset value The position of the node mutual capacitance is taken as the position of the touch signal.
  • the touch signal detecting circuit and method and the touch device provided by the invention are designed such that the emitter of the touch signal detecting circuit is perpendicular to the receiving pole, the receiving pole is perpendicular to the source driving line of the display screen, and at least two are acquired according to the processing unit.
  • the capacitance change value of the mutual capacitance of the node acquires the position of the touch signal, which can reduce the interference of the driving of the display screen on the detection of the touch signal, and improve the accuracy of the touch position detection.
  • FIGS. 1A and 1B are schematic diagrams showing an electrode arrangement in a first embodiment of a touch signal detecting circuit according to the present invention
  • FIG. 2 is a schematic structural diagram of Embodiment 1 of a touch signal detecting circuit according to the present invention
  • FIG. 3 is a flowchart of Embodiment 1 of a touch signal detecting method provided by the present invention
  • Embodiment 4 is a flowchart of Embodiment 2 of a touch signal detecting method provided by the present invention.
  • 5A to 5D are schematic diagrams showing capacitance change values of a third embodiment of a touch signal detecting method according to the present invention.
  • FIG. 6 is a flowchart of Embodiment 4 of a touch signal detecting method provided by the present invention.
  • FIG. 7A and FIG. 7B are schematic diagrams showing capacitance change values of Embodiment 5 of the touch signal detecting method provided by the present invention.
  • the technical solutions in the embodiments of the present invention are clearly and completely described in the following with reference to the accompanying drawings in the embodiments of the present invention.
  • the embodiments are a part of the embodiments of the invention, and not all of the embodiments. All other embodiments obtained by those skilled in the art based on the embodiments of the present invention without creative efforts are within the scope of the present invention.
  • FIG. 1A and FIG. 1B are diagrams showing the electrode arrangement in the first embodiment of the touch signal detecting circuit according to the present invention.
  • the electrode arrangement in the touch signal detecting circuit of the embodiment is at least one linear type.
  • the emitter 11 is composed of at least two linear receiving electrodes 12, the emitter 11 and the receiving pole 12 are in a vertical relationship, and the receiving pole 12 is perpendicular to the source driving line 13 of the display screen.
  • FIG. 2 is a touch signal provided by the present invention.
  • the structure of the first embodiment of the detection circuit is as shown in FIG. 2.
  • the touch signal detection circuit in this embodiment may include a processing unit (not shown), at least one emitter 11 and at least two receivers 12, wherein the emitter 11 and the receiving pole 12 can be located in two different layers, each receiving pole 12 and each emitter 11 form a node mutual capacitance 14; the processing unit can obtain the capacitance change value of the at least two node mutual capacitance 14 before at least The capacitance change value of the mutual capacitance 14 of the two nodes acquires the position of the touch signal.
  • the touch signal detecting circuit of the embodiment has a vertical relationship between the emitter electrode 11 and the receiving electrode 12, and the receiving electrode 12 is perpendicular to the source driving line 13 of the display screen.
  • the receiving pole 12 causes interference.
  • the transmitting end 11 transmits a signal and the receiving pole 12 receives, the receiving pole 12 receives the transmitted signal component and also receives the interference signal component generated when the display screen is driven, so that the receiving pole 12 can be considered to be received.
  • the signal consists of two parts: the transmitted signal component and the driving interference signal component of the display screen.
  • the interference signal generated by the driving of the display screen to the receiving electrode 12 is hardly affected by the finger touch, all the corresponding to the same emitter 11
  • the receiving pole 12 the interference signal generated by the driving of the display screen is similar, and does not change with the touch state. For one emitter 11, find the driving interference signal component of the display screen which is close to each receiving pole, and then each The receiving pole subtracts the interference signal component, and the signal component emitted by the emitter can be obtained.
  • the interference of the display driving to the touch signal detecting circuit can be reduced, thereby improving the accuracy of the detection by the touch signal detecting circuit.
  • the emitter and the receiving end are not limited to the configuration and arrangement of the touch signal detecting circuit shown in FIG. 2, and may be a single-layer multi-point electrode arrangement, and the form of the emitter and the receiving end is not limited.
  • the continuous electrode connected to the whole may be a discontinuous rectangular electrode block or a diamond-shaped electrode block, and the conductive wires are taken out from the electrode block to the outside of the screen, and then the wires are connected to realize the communication of the electrode blocks.
  • the source driving line 13 of the above display screen may be a source driver line in the LCD display.
  • the display point is charged by the source driver line, so the display is displayed.
  • the direction of the generated interference signal is the same as the direction of the source driver line.
  • the source driving line 13 of the receiving pole 12 perpendicular to the display screen can ensure that the interference signals received by the display screens received by the at least two receiving poles are similar.
  • the driving interference signal component of the display screens on the receiving poles is reduced, and then the respective receiving poles subtract the interference signal components, thereby reducing the interference of the display driving.
  • the signal received by the receiving pole 12 can be represented by the capacitance change value of the at least two node mutual capacitances 14 acquired by the processing unit, and the driving interference signal component of the display screen can be determined according to the capacitance change value of the at least two node mutual capacitances 14 Then, the position of the touch signal is obtained according to the capacitance change value of the mutual capacitance 14 of at least two nodes after the driving interference of the display screen is eliminated, so that the interference of the driving of the display screen on the detection of the touch signal can be reduced, and the accuracy of the touch position detection is improved.
  • the technical solution of the embodiment of the present invention is not limited to the reduction of interference on the display screen driving, and may be applicable to some interferences affecting the overall data characteristics of the touch signal detecting circuit, for example, temperature and humidity changes lead to touch signal detection.
  • the interference of the circuit detects the overall offset of the signal, or the radio frequency (RF), etc., causes all the receivers corresponding to the same emitter to be affected at the same time.
  • the touch signal detecting circuit provided in this embodiment is designed such that the emitter in the touch signal detecting circuit is perpendicular to the receiving pole, the receiving pole is perpendicular to the source driving line of the display screen, and then the mutual capacitance of at least two nodes obtained according to the processing unit is obtained.
  • the capacitance change value acquires the position of the touch signal, which can reduce the interference of the display driving on the touch signal detection, and improve the accuracy of the touch position detection.
  • the processing unit may be configured to perform statistics on capacitance change values of mutual capacitance of at least two nodes, and determine interference values according to statistical results, according to the interference value and The capacitance change value determines the position of the touch signal.
  • the processing unit performs statistics on the capacitance change values of the acquired mutual capacitances of the at least two nodes, determines the interference value according to the statistical result, and subtracts the capacitance change value of the obtained mutual capacitance of the node by the determined interference value, thereby obtaining Clean touch signal, according to the clean touch signal, the position of the touch signal can be accurately determined, and the touch signal detection circuit caused by the interference signal is prevented from detecting the touch position, the detection accuracy is low, and even the false detection or the undetectable condition is raised, and the touch position is improved. The accuracy of the test.
  • the touch signal detecting circuit provided in this embodiment collects the capacitance change value of the mutual capacitance of at least two nodes through the processing unit, determines the interference value according to the statistical result, and determines the position of the touch signal according to the interference value and the capacitance change value, which can be reduced.
  • the drive of the display screen interferes with the detection of the touch signal, improving the accuracy of the touch position detection.
  • the average value of all the capacitance change values in one of the groups including the most change in capacitance value or one of the capacitance change values is an interference value.
  • the capacitance change value is subtracted from the interference value to obtain a data value, and the position of the mutual capacitance of the node whose data value is greater than the preset value is used as the position of the touch signal.
  • the touch action generates a touch signal only in a small area
  • the touch signal detecting circuit can be divided into a touch area and a non-touch area, and the difference in capacitance change between the touch area and the non-touch area Larger, so the capacitance change value can be divided into two groups according to the numerical interval of the capacitance change value.
  • the group containing the most capacitance change value can be regarded as a non-touch area, and the capacitance change value is mainly caused by the influence of the interference signal on the receiver pole.
  • the data value can be regarded as a clean touch signal.
  • the position of the mutual capacitance of the node whose data value is greater than the preset value is generated as the position of the touch signal.
  • the above interference value is not limited to the average value or one of the capacitance change values of all the capacitance change values in the group including the largest capacitance change value, and the obtained capacitance change value may be counted by using a correlation method. Determine the interference value.
  • the touch signal detecting circuit provided in this embodiment divides the capacitance change value into two groups according to the numerical interval of the capacitance change value by the processing unit, and includes an average value or one of all the capacitance change values in the group having the largest capacitance change value.
  • the change value of the capacitance is the interference value, and the interference value is subtracted from the capacitance change value to obtain the data value.
  • the position of the mutual capacitance of the node whose data value is greater than the preset value is used as the position of the touch signal, and the driving of the display screen can be reduced. Interference to improve the accuracy of touch position detection.
  • the embodiment of the present invention further provides a touch device, which may include a display screen and a touch signal detecting circuit in any of the above embodiments.
  • the touch device involved in the embodiments of the present invention includes, but is not limited to, a mobile phone with a touch signal detection circuit, a personal digital assistant (PDA), a wireless handheld device, a wireless netbook, a portable computer, an MP3 player, and an MP4. Player, etc.
  • PDA personal digital assistant
  • the touch device provided in this embodiment includes a display screen and a touch signal detecting circuit in any of the above embodiments, wherein the emitter of the touch signal detecting circuit in the touch device is perpendicular to the receiving end, and the receiving end is perpendicular to the source driving line of the display screen. , can reduce the display drive to touch signal detection Interference to improve the accuracy of touch position detection.
  • FIG. 3 is a flowchart of a first embodiment of a touch signal detecting method according to the present invention. As shown in FIG. 3, the touch signal detecting method of the embodiment includes:
  • each receiving pole forms a mutual capacitance with each emitter.
  • the at least two node mutual capacitances are formed by at least two linear receiving electrodes and at least one linear emitter, the emitter is perpendicular to the receiving pole, and the receiving pole is perpendicular to the source driving line of the display screen.
  • the interference signal generated when the source driver line of the display screen is driven by the display can cause interference to all the receiving poles.
  • the emitter transmits the signal and the receiver receives the receiver, the receiving pole receives the transmitted signal component and also receives the display screen.
  • the interference signal component is driven, so that the signal on the receiving pole can be considered to be composed of the transmitting signal component and the driving interference signal component of the display screen.
  • the signal received by the receiving end can be represented by the capacitance change value of the mutual capacitance of the at least two nodes acquired by the processing unit, and the driving interference signal of the display screen can be determined according to the capacitance change value of the mutual capacitance of the at least two nodes.
  • the component obtains the position of the touch signal according to the capacitance change value of the mutual capacitance of at least two nodes after eliminating the driving interference of the display screen, thereby reducing the interference of the driving of the display screen on the detection of the touch signal, and improving the accuracy of the touch position detection.
  • the execution body of the present embodiment may be a processing unit provided in the touch signal detecting circuit or a processor of a touch device including the touch signal detecting circuit.
  • the technical solution of the embodiment of the present invention is not limited to the elimination of the driving interference of the display screen, and may be applicable to some interferences affecting the overall data characteristics of the touch signal detecting circuit, for example, the temperature and humidity changes cause the touch signal detecting circuit to detect.
  • the interference of the overall offset of the signal, or the RF abbreviation RF, etc. causes all the receivers corresponding to the same emitter to be simultaneously affected.
  • the processing unit obtains a capacitance change value of at least two mutual capacitances of the node, and at least two node capacitances are formed by at least two linear receivers. At least one linear emitter is formed, the emitter is perpendicular to the receiving pole, the receiving pole is perpendicular to the source driving line of the display screen, and each receiving pole forms a mutual capacitance with each emitter, and then according to at least two nodes
  • the capacitance change value of the capacitor acquires the position of the touch signal, which can reduce the interference of the display driving on the touch signal detection, and improve the accuracy of the touch position detection.
  • FIG. 4 is a flowchart of a second embodiment of a touch signal detection method according to the present invention.
  • the method for detecting a touch signal in this embodiment includes:
  • each receiving pole forms a mutual capacitance with each emitter.
  • S402. Determine an interference value according to a capacitance change value of the mutual capacitance of the at least two nodes.
  • the method for determining the interference value may be to calculate or calculate the capacitance change value of the mutual capacitance of the node acquired by the processing unit, or may be implemented by a specific simulation algorithm.
  • the interference value can be subtracted from the capacitance change value to obtain a data value, which can represent a clean touch signal, and then touch detection and positioning according to the data value.
  • the execution body of the present embodiment may be a processing unit provided in the touch signal detecting circuit or a processor of a touch device including the touch signal detecting circuit.
  • FIG. 5A to FIG. 5D are schematic diagrams showing the capacitance change value of the third embodiment of the touch signal detection method according to the present invention.
  • the touch signal detection method of the present embodiment will be described in detail below with reference to FIG. 5A to FIG. 5D, as shown in FIG. 5A to FIG. 5D.
  • a 10 node capacitor formed by 1 emitter and 10 receivers is taken as an example.
  • FIG. 5A is a schematic diagram of the capacitance change value detected by the processing unit when there is no display driving interference and no touch, when there is no display driver. When the interference or no touch occurs, the processing unit detects that the change value of the 10 node capacitance is relatively small, and these small change values are caused by system noise, etc.; FIG.
  • FIG. 5B is that the display unit drives the interference, and the processing unit detects when there is no touch.
  • a schematic diagram of the change in capacitance When there is display drive interference and no touch, a large change in capacitance can be detected. For the same emitter, the amplitudes of the signals received by these receivers are similar. These similar interferences The signal can be referred to as the interference value in the signal;
  • FIG. 5C is a schematic diagram of the capacitance change value detected by the processing unit when there is a display driving interference and a touch When there is a touch, the touch signal is superimposed with the interference signal driven by the display screen, and the similar display driving interference signal can be obtained by comparison.
  • the part of the dotted line in FIG. 5C is the interference value; FIG.
  • 5D is the capacitance change after eliminating the display driving interference. Value indication Figure, because the display drive interference is similar, when the similar signal is eliminated, the capacitance change value corresponding to the clean touch signal can be obtained. Specifically, the capacitance change value obtained by the processing unit can be subtracted from the interference value to obtain a clean touch signal corresponding. The capacitance change value is then detected and located according to the capacitance change value corresponding to the clean touch signal.
  • the capacitance change value of the mutual capacitance of at least two nodes is obtained by the processing unit, and the at least two node capacitances are formed by at least two linear receiving electrodes and at least one linear emitter.
  • the emitter is perpendicular to the receiving pole, and the receiving pole is perpendicular to the source driving line of the display screen.
  • Each receiving pole forms a mutual capacitance with each emitter, and the interference value is determined according to the capacitance change value of the mutual capacitance of at least two nodes, and then Determining the position of the touch signal according to the interference value and the capacitance change value can reduce the interference of the driving of the display screen on the detection of the touch signal, and improve the accuracy of the touch position detection.
  • FIG. 6 is a flowchart of a method for detecting a touch signal according to a fourth embodiment of the present invention.
  • the method for detecting a touch signal according to the embodiment includes:
  • each receiving pole forms a mutual capacitance with each emitter.
  • the position of the mutual capacitance of the node whose data value is greater than the preset value is used as the position of the touch signal.
  • the execution body of the present embodiment may be a processing unit provided in the touch signal detecting circuit or a processor of a touch device including the touch signal detecting circuit.
  • FIG. 7A and FIG. 7B are schematic diagrams showing the capacitance change value of the fifth embodiment of the touch signal detection method according to the present invention.
  • the touch signal detection method of the present embodiment will be described in detail below with reference to FIG. 7A and FIG. 7B, as shown in FIG. 7A and FIG. 7B.
  • a 120-node capacitor formed by 12 emitters and 10 receivers is taken as an example.
  • FIG. 7A is another schematic diagram of a capacitance change value detected by a processing unit when there is a display driving interference and a touch, in FIG. 7A.
  • the black circle is a touch position.
  • the processing unit in the touch signal detecting circuit detects and locates the touch, it is determined that when the capacitance change value is greater than 100, the touch action is considered, but the display drive interference exists. a lot of The value of the capacitance change fluctuates so that the value of the capacitance change detected by some areas without touch action exceeds 100, such as the value of the capacitance change in the shaded area in Fig. 7A, which inevitably causes false detection.
  • the interference values among the 10 capacitance change values generated by the 10 receivers receiving the same emitter can be determined.
  • the specific determination method is that the capacitance change value is divided into two groups according to the numerical interval of the capacitance change value, and the average value of all the capacitance change values in one group including the most capacitance change value or one of the capacitance change values is the interference value.
  • the dry 4 id value 120 is one of 10 capacitance change values
  • the eighth line in FIG. 7A can be "198, 268, 201" is divided into the first group, the remaining seven values close to the capacitance change value is the second group, and the interference value 120 is a capacitance change value in the second group.
  • FIG. 7B is another schematic diagram of eliminating the capacitance change value after the display driving interference. After each capacitance change value in FIG. 7B minus the interference value, the data value is obtained, and the capacitance change value in FIG. 7B is greater than the preset value of 100 mutual capacitance. The position is the position of the touch signal.
  • the capacitance change value of the mutual capacitance of at least two nodes is obtained by the processing unit, and the at least two node capacitances are formed by at least two linear receiving electrodes and at least one linear emitter.
  • the emitter is perpendicular to the receiving pole, and the receiving pole is perpendicular to the source driving line of the display screen.
  • Each receiving pole forms a mutual capacitance with each emitter, and the interference value is determined according to the capacitance change value of the mutual capacitance of at least two nodes, according to The value interval of the capacitance change value is divided into two groups, and the average value of all the capacitance change values in one of the groups having the largest capacitance change value or one of the capacitance change values is the interference value, and then the capacitance change value is subtracted.
  • the interference value, the data value is obtained, and the position of the mutual capacitance of the node whose data value is greater than the preset value is used as the position of the touch signal, which can reduce the interference of the driving of the display screen on the detection of the touch signal, and improve the accuracy of the touch position detection.
  • the aforementioned program can be stored in a computer readable storage medium.
  • the program when executed, performs the steps including the above-described method embodiments; and the foregoing storage medium includes: a medium that can store program codes, such as a ROM, a RAM, a magnetic disk, or an optical disk.

Abstract

本发明实施例提供一种触摸信号检测电路及方法和触摸设备,该触摸信号检测电路,包括:处理单元、至少一个呈直线型的发射极和至少两个呈直线型的接收极;发射极与接收极垂直,接收极垂直于显示屏的源驱动线,每个接收极与每个发射极形成一个节点互电容;处理单元获取至少两个节点互电容的电容变化值,根据至少两个节点互电容的电容变化值获取触摸信号的位置,本发明提供的技术方案,通过发射极与接收极垂直,接收极垂直于显示屏的源驱动线,再根据处理单元获取到的至少两个节点互电容的电容变化值获取触摸信号的位置,可以确定并减小显示屏的扫描对触摸信号检测的干扰,提高触摸位置检测的精确度和抗显示屏干扰的能力。

Description

触摸信号检测电路及方法和触摸设备
本申请要求于 2013年 1月 22日提交中国专利局、 申请号为 201310022720.3中国专利申请的优先权,其全部内容通过引用结合在本申请 中。
技术领域 本发明实施例涉及通信技术, 尤其涉及一种触摸信号检测电路及方法 和触摸设备。 背景技术 近年来,触控设备已经成为最重要的输入设备之一,触摸设备可以通过触 摸检测电路将用户的触摸信号转化为电信号。 互电容感应技术是一种典型的触 摸检测方法, 釆用互电容感应技术的触摸设备中包括若干发射电极和若干接收 电极, 且发射电极和接收电极位于不同层, 每个发射电极和每个接收电极之间 构成的节点可以等效为一个节点互电容, 当用户对触摸设备进行触摸时, 会使 触摸点的节点电容发生变化, 所以通过检测触摸设备中所有节点电容的变化 值, 可以确定触摸点在触摸设备上所处的位置。
目前, 触摸设备在手机、 平板电脑等具有显示功能的用户设备上大量 使用, 液晶显示器(Liquid Crystal Display, 简称 LCD )显示时产生的电磁 信号会给触摸设备的触摸检测带来干扰, 导致触摸设备在进行触摸位置检 测时, 检测精确度降低, 甚至出现误检测或无法检测的情况。 发明内容 本发明提供一种触摸信号检测电路及方法和触摸设备, 用以增强触摸 设备抵抗显示器件干扰的能力, 提高触摸位置检测的精确度。
本发明第一方面, 提供一种触摸信号检测电路, 包括: 处理单元、 至 少一个呈直线型的发射极和至少两个呈直线型的接收极;
所述发射极与所述接收极垂直, 所述接收极垂直于显示屏的源驱动线, 每个接收极与每个发射极形成一个节点互电容;
所述处理单元获取至少两个所述节点互电容的电容变化值, 根据所述 至少两个节点互电容的电容变化值获取触摸信号的位置。
在第一方面的第一种可能的实现方式中, 所述处理单元具体用于对所 述至少两个节点互电容的电容变化值进行统计, 根据统计结果确定干扰值, 根据所述干扰值和所述电容变化值确定所述触摸信号的位置。
根据第一方面的第一种可能的实现方式, 在第一方面的第二种可能的 所述电容变化值分为两组, 以包含电容变化值最多的一组中所有电容变化 值的平均值或其中一个电容变化值为所述干扰值, 用所述电容变化值减去 所述干扰值, 获得数据值, 以所述数据值大于所述预设值的节点互电容的 位置作为所述触摸信号的位置。
本发明第二方面, 提供一种触摸设备, 包括显示屏和上述第一方面、 第一方面的第一种或者第二种可能的实现方式中任一项所述的触摸信号检 测电路。
本发明第三方面, 提供一种触摸信号检测方法, 包括:
获取至少两个节点互电容的电容变化值, 所述至少两个节点电容由至 少两个呈直线型的接收极与至少一个呈直线型的发射极形成, 所述发射极 与所述接收极垂直, 所述接收极垂直于显示屏的源驱动线, 每个接收极与 每个发射极形成一个节点互电容;
根据所述至少两个节点互电容的电容变化值获取触摸信号的位置。 在第三方面的第一种可能的实现方式中, 所述根据所述至少两个节点 互电容的电容变化值获取触摸信号的位置包括:
才艮据所述至少两个节点互电容的电容变化值确定干 4尤值;
根据所述干扰值和所述电容变化值确定所述触摸信号的位置。
根据第三方面的第一种可能的实现方式, 在第三方面的第二种可能的 实现方式中, 所述根据所述至少两个节点互电容的电容变化值确定干扰值 包括:
根据所述电容变化值的数值区间, 将所述电容变化值分为两组, 以包 含电容变化值最多的一组中所有电容变化值的平均值或其中一个电容变化 值为所述干扰值; 所述根据所述干扰值和所述电容变化值确定所述触摸信号的位置包 括: 用所述电容变化值减去所述干扰值, 获得数据值; 以所述数据值大于 所述预设值的节点互电容的位置作为所述触摸信号的位置。
本发明提供的触摸信号检测电路及方法和触摸设备, 通过设计使得触 摸信号检测电路的发射极与接收极垂直, 接收极垂直于显示屏的源驱动线, 再根据处理单元获取到的至少两个节点互电容的电容变化值获取触摸信号 的位置, 可以减小显示屏的驱动对触摸信号检测的干扰, 提高触摸位置检 测的精确度。 附图说明 为了更清楚地说明本发明实施例或现有技术中的技术方案, 下面将对 实施例或现有技术描述中所需要使用的附图作一简单地介绍, 显而易见地, 下面描述中的附图是本发明的一些实施例, 对于本领域普通技术人员来讲, 在不付出创造性劳动性的前提下, 还可以根据这些附图获得其他的附图。
图 1A和图 1B为本发明提供的触摸信号检测电路实施例一中电极排布 示意图;
图 2为本发明提供的触摸信号检测电路实施例一的结构示意图; 图 3为本发明提供的触摸信号检测方法实施例一的流程图;
图 4为本发明提供的触摸信号检测方法实施例二的流程图;
图 5A〜图 5D为本发明提供的触摸信号检测方法实施例三的电容变化值 的示意图;
图 6为本发明提供的触摸信号检测方法实施例四的流程图;
图 7A和图 7B为本发明提供的触摸信号检测方法实施例五的电容变化 值的示意图。 具体实施方式 为使本发明实施例的目的、 技术方案和优点更加清楚, 下面将结合本 发明实施例中的附图, 对本发明实施例中的技术方案进行清楚、 完整地描 述, 显然, 所描述的实施例是本发明一部分实施例, 而不是全部的实施例。 基于本发明中的实施例, 本领域普通技术人员在没有作出创造性劳动前提 下所获得的所有其他实施例, 都属于本发明保护的范围。
图 1A和图 1B为本发明提供的触摸信号检测电路实施例一中电极排布 示意图, 如图 1A和图 1B所示, 本实施例的触摸信号检测电路中电极排布 由至少一个呈直线型的发射极 11和至少两个呈直线型的接收极 12组成, 发射极 11和接收极 12呈垂直关系,接收极 12垂直于显示屏的源驱动线 13 , 图 2为本发明提供的触摸信号检测电路实施例一的结构示意图, 如图 2所 示, 本实施例中触摸信号检测电路可以包括处理单元(未绘示) 、 至少一 个发射极 11和至少两个接收极 12, 其中,发射极 11和接收极 12可以位于 不同的两层, 每个接收极 12与每个发射极 11形成一个节点互电容 14; 处 理单元可以获取至少两个节点互电容 14的电容变化值, 才艮据至少两个节点 互电容 14的电容变化值获取触摸信号的位置。
具体来说, 本实施例的触摸信号检测电路由于发射极 11 与接收极 12 呈垂直关系, 接收极 12垂直于显示屏的源驱动线 13 , 显示屏的源驱动线 13进行驱动时可以对所有接收极 12造成干扰, 当发射极 11发射信号, 接 收极 12接收时, 接收极 12接收到发射信号分量, 同时也接收到显示屏驱 动时产生的干扰信号分量, 所以可以认为接收极 12接收到的信号由发射信 号分量和显示屏的驱动干扰信号分量两部分组成, 但由于显示屏的驱动对 接收极 12产生的干扰信号几乎不受手指触摸的影响, 所以对于同一发射极 11所对应的所有接收极 12, 显示屏的驱动产生的干扰信号是相近的, 不会 随触摸状态的不同而变化, 针对一个发射极 11 , 找出各接收极上相近的显 示屏的驱动干扰信号分量, 然后各个接收极减去此干扰信号分量, 可以得 到发射极发射的信号分量, 可以减小显示屏驱动对触摸信号检测电路的干 扰, 进而提高触摸信号检测电路检测的精确度。
可以理解的是, 发射极和接收极并不限于图 2所示的的形态和排布触 摸信号检测电路, 其也可以是单层多点的电极排布, 发射极和接收极的形 态不限定为整条连通的连续电极, 可以是不连续的矩形电极块或菱形电极 块, 通过导电线从这些电极块引出至屏幕外后, 再对这些导线进行连通, 以可以实现这些电极块的连通而形成一个发射极或一个接收极。
上述显示屏的源驱动线 13可以是 LCD显示器中的 source driver线,显 示屏显示时, 由 source driver线对显示点进行充电, 所以显示屏显示时的产 生的干扰信号的方向和 source driver线的方向一致, 本实施例中接收极 12 垂直于显示屏的源驱动线 13可以保证至少两个接收极接收到的显示屏驱动 的干扰信号相近, 找出各接收极上相近的显示屏的驱动干扰信号分量, 然 后各个接收极减去此干扰信号分量, 则可以减小显示屏驱动的干扰。
接收极 12接收到的信号可以通过处理单元获取到的至少两个节点互电 容 14的电容变化值来体现, 可以根据至少两个节点互电容 14的电容变化 值, 确定显示屏的驱动干扰信号分量, 再根据消除显示屏的驱动干扰后的 至少两个节点互电容 14的电容变化值获取触摸信号的位置, 可以减小显示 屏的驱动对触摸信号检测的干扰, 提高触摸位置检测的精确度。
需要说明的是, 本发明实施例的技术方案并不限于对显示屏驱动的干 扰的减小 , 对于一些影响触摸信号检测电路整体数据特性的干扰均能适用 , 例如温度、 湿度变化导致触摸信号检测电路检测信号的整体偏移的干扰, 或者射频 (Radio Frequency, 简称 RF )等导致同一发射极对应的所有接收 极同时受到影响的干扰。
本实施例提供的触摸信号检测电路, 通过设计使得触摸信号检测电路 中的发射极与接收极垂直, 接收极垂直于显示屏的源驱动线, 再根据处理 单元获取到的至少两个节点互电容的电容变化值获取触摸信号的位置, 可 以减小显示屏的驱动对触摸信号检测的干扰, 提高触摸位置检测的精确度。
进一步地, 在本发明提供的触摸信号检测电路实施例一的基础上, 处 理单元具体可以用于对至少两个节点互电容的电容变化值进行统计, 根据 统计结果确定干扰值, 根据干扰值和电容变化值确定触摸信号的位置。
具体来说, 处理单元对获取到的至少两个节点互电容的电容变化值进 行统计, 根据统计结果确定干扰值, 将获取到的节点互电容的电容变化值 减去确定的干扰值, 可以得到干净触摸信号, 根据干净触摸信号可以精确 确定触摸信号的位置, 避免干扰信号导致的触摸信号检测电路在进行触摸 位置检测时, 检测精确度低, 甚至出现误检测或无法检测的情况, 提高触 摸位置检测的精确度。
本实施例提供的触摸信号检测电路, 通过处理单元对至少两个节点互 电容的电容变化值进行统计, 根据统计结果确定干扰值, 根据干扰值和电 容变化值确定触摸信号的位置, 可以减小显示屏的驱动对触摸信号检测的 干扰, 提高触摸位置检测的精确度。 更进一步地, 在本发明提供的触摸信号检测电路实施例一的基础上, 组, 以包含电容变化值最多的一组中所有电容变化值的平均值或其中一个 电容变化值为干扰值, 用电容变化值减去干扰值, 获得数据值, 以数据值 大于预设值的节点互电容的位置作为触摸信号的位置。
具体来说, 相对于整个触摸信号检测电路, 触摸动作只在较小的区域 产生触摸信号, 可以将触摸信号检测电路划分为触摸区域和非触摸区域, 触摸区域和非触摸区域的电容变化值差别较大, 所以可以根据电容变化值 的数值区间, 将电容变化值分为两组, 包含电容变化值最多的一组可以认 为是非触摸区域, 其电容变化值主要由干扰信号对接收极的影响产生, 以 包含电容变化值最多的一组中所有电容变化值的平均值或其中一个电容变 化值为干扰值, 用电容变化值减去干扰值, 获得数据值, 该数据值可以认 为是干净触摸信号对接收极的影响产生的, 再以数据值大于预设值的节点 互电容的位置作为触摸信号的位置。
可以理解的是, 上述干扰值并不限于包含电容变化值最多的一组中所 有电容变化值的平均值或其中一个电容变化值, 还可以釆用相关方法对获 取到的电容变化值进行统计以确定干扰值。
本实施例提供的触摸信号检测电路, 通过处理单元根据电容变化值的 数值区间, 将电容变化值分为两组, 以包含电容变化值最多的一组中所有 电容变化值的平均值或其中一个电容变化值为干扰值, 用电容变化值减去 干扰值, 获得数据值, 以数据值大于预设值的节点互电容的位置作为触摸 信号的位置, 可以减小显示屏的驱动对触摸信号检测的干扰, 提高触摸位 置检测的精确度。
本发明实施例还提供一种触摸设备, 该触摸设备可以包括显示屏和上 述任一实施例中的触摸信号检测电路。
本发明实施例中所涉及的触摸设备包括但不限于带有触摸信号检测电 路的手机、 个人数字处理(Personal Digital Assistant, 简称 PDA ) 、 无线手 持设备、 无线上网本、 便携电脑、 MP3播放器、 MP4播放器等。
本实施例提供的触摸设备, 包括显示屏和上述任一实施例中的触摸信 号检测电路, 通过触摸设备中触摸信号检测电路的发射极与接收极垂直, 接收极垂直于显示屏的源驱动线, 可以减小显示屏的驱动对触摸信号检测 的干扰, 提高触摸位置检测的精确度。
图 3为本发明提供的触摸信号检测方法实施例一的流程图, 如图 3所 示, 本实施例的触摸信号检测方法, 包括:
S301、 获取至少两个节点互电容的电容变化值, 至少两个节点电容由 至少两个呈直线型的接收极与至少一个呈直线型的发射极形成, 发射极与 接收极垂直, 接收极垂直于显示屏的源驱动线, 每个接收极与每个发射极 形成一个节点互电容。
具体来说, 上述至少两个节点互电容由至少两个呈直线型的接收极与 至少一个呈直线型的发射极形成, 发射极与接收极垂直, 接收极垂直于显 示屏的源驱动线,可以使得显示屏的 source driver线进行显示驱动时产生的 干扰信号可以对所有接收极造成干扰, 当发射极发射信号, 接收极接收时, 接收极接收到发射信号分量, 同时也接收到显示屏的驱动干扰信号分量, 所以可以认为接收极上的信号由发射信号分量和显示屏的驱动干扰信号分 量两部分组成, 但由于显示屏的驱动干扰信号分量对接收极的干扰信号几 乎不受手指触摸的影响, 所以对于同一发射极所对应的所有接收极, 显示 屏的驱动干扰信号是相近的, 不会随触摸状态的不同而变化。
S302、 根据至少两个节点互电容的电容变化值获取触摸信号的位置。 具体来说, 接收极接收到的信号可以通过处理单元获取到的至少两个 节点互电容的电容变化值来体现, 可以根据至少两个节点互电容的电容变 化值, 确定显示屏的驱动干扰信号分量, 再根据消除显示屏的驱动干扰后 的至少两个节点互电容的电容变化值获取触摸信号的位置, 可以减小显示 屏的驱动对触摸信号检测的干扰, 提高触摸位置检测的精确度。
本实施例的执行主体可以是触摸信号检测电路中设置的处理单元, 或 者是包含有触摸信号检测电路的触摸设备的处理器。
需要说明的是, 本发明实施例的技术方案不限于对显示屏的驱动干扰 的消除, 对于一些影响触摸信号检测电路整体数据特性的干扰均能适用, 例如温度、 湿度变化导致触摸信号检测电路检测信号的整体偏移的干扰, 或者射频简称 RF 等导致同一发射极对应的所有接收极同时受到影响的干 扰。
本实施例提供的触摸信号检测方法, 通过处理单元获取至少两个节点 互电容的电容变化值, 至少两个节点电容由至少两个呈直线型的接收极与 至少一个呈直线型的发射极形成, 发射极与接收极垂直, 接收极垂直于显 示屏的源驱动线, 每个接收极与每个发射极形成一个节点互电容, 再根据 至少两个节点互电容的电容变化值获取触摸信号的位置, 可以减小显示屏 的驱动对触摸信号检测的干扰, 提高触摸位置检测的精确度。
图 4为本发明提供的触摸信号检测方法实施例二的流程图, 本实施例 的触摸信号检测方法, 包括:
5401、 获取至少两个节点互电容的电容变化值, 至少两个节点电容由 至少两个呈直线型的接收极与至少一个呈直线型的发射极形成, 发射极与 接收极垂直, 接收极垂直于显示屏的源驱动线, 每个接收极与每个发射极 形成一个节点互电容。
5402、 根据至少两个节点互电容的电容变化值确定干扰值。
确定干扰值的方法可以是对处理单元获取到的节点互电容的电容变化 值进行统计或计算, 也可以通过特定的模拟算法来实现。
5403、 根据干扰值和电容变化值确定触摸信号的位置。
举例来说, 可以用电容变化值减去干扰值, 获得数据值, 该数据值可 以表示干净触摸信号, 再根据该数据值进行触摸的检测和定位。
本实施例的执行主体可以是触摸信号检测电路中设置的处理单元, 或 者是包含有触摸信号检测电路的触摸设备的处理器。
图 5A〜图 5D为本发明提供的触摸信号检测方法实施例三的电容变化值 的示意图,以下结合图 5A〜图 5D对本实施例的触摸信号检测方法进行详细 说明, 如图 5 A〜图 5D所示, 以 1个发射极与 10个接收极形成的 10个节点 电容为例, 图 5A为无显示屏驱动干扰、 无触摸时处理单元检测到的电容变 化值的示意图, 当无显示屏驱动干扰、 无触摸时, 处理单元检测到 10个节 点电容的变化值比较小, 这些较小的变化值是由系统噪声等导致的; 图 5B 为有显示屏驱动干扰、 无触摸时处理单元检测到的电容变化值的示意图, 当有显示屏驱动干扰、 无触摸时, 可以检测到较大的电容变化值, 对于同 一发射极, 这些接收极接收到的信号幅度是相近的, 这些大小相近的干扰 信号可称为信号中的干扰值; 图 5C为有显示屏驱动干扰、有触摸时处理单 元检测到的电容变化值的示意图, 有触摸时, 触摸信号与显示屏驱动的干 扰信号叠加, 通过比较可以获得相近的显示屏驱动干扰信号, 图 5C中的虚 线中的部分为干扰值; 图 5D 为消除显示屏驱动干扰后电容变化值的示意 图, 由于显示屏驱动干扰相近, 当消除相近的信号后, 可以得到干净的触 摸信号对应的电容变化值, 具体可以将处理单元获取到的电容变化值与干 扰值相减, 得到干净触摸信号对应的电容变化值, 再根据干净触摸信号对 应的电容变化值进行触摸的检测和定位。
本实施例提供的触摸信号检测方法, 通过处理单元获取至少两个节点 互电容的电容变化值, 至少两个节点电容由至少两个呈直线型的接收极与 至少一个呈直线型的发射极形成, 发射极与接收极垂直, 接收极垂直于显 示屏的源驱动线, 每个接收极与每个发射极形成一个节点互电容, 根据至 少两个节点互电容的电容变化值确定干扰值, 再根据干扰值和电容变化值 确定触摸信号的位置, 可以减小显示屏的驱动对触摸信号检测的干扰, 提 高触摸位置检测的精确度。
图 6为本发明提供的触摸信号检测方法实施例四的流程图, 本实施例 的触摸信号检测方法, 包括:
5601、 获取至少两个节点互电容的电容变化值, 至少两个节点电容由 至少两个呈直线型的接收极与至少一个呈直线型的发射极形成, 发射极与 接收极垂直, 接收极垂直于显示屏的源驱动线, 每个接收极与每个发射极 形成一个节点互电容。
5602、 根据电容变化值的数值区间, 将电容变化值分为两组, 以包含 电容变化值最多的一组中所有电容变化值的平均值或其中一个电容变化值 为干扰值。
5603、 用电容变化值减去干扰值, 获得数据值;
5604、 以数据值大于预设值的节点互电容的位置作为触摸信号的位置。 本实施例的执行主体可以是触摸信号检测电路中设置的处理单元, 或 者是包含有触摸信号检测电路的触摸设备的处理器。
图 7A和图 7B为本发明提供的触摸信号检测方法实施例五的电容变化 值的示意图, 以下结合图 7A和图 7B对本实施例的触摸信号检测方法进行 详细说明,如图 7A和图 7B所示,以 12个发射极与 10个接收极形成的 120 个节点电容为例, 图 7A为有显示屏驱动干扰、有触摸时处理单元检测到的 电容变化值的有又一示意图, 图 7A中黑色圓圈处为触摸位置, 例如触摸信 号检测电路中的处理单元在进行触摸的检测和定位时, 设定当电容变化值 大于 100 时则认为有触摸动作, 但由于显示屏驱动干扰的存在, 导致很多 电容变化值起伏不定, 以致某些没有触摸动作的区域检测到的电容变化值 超过了 100,例如图 7A中阴影区域的电容变化值,这样必然会产生误检测。
根据图 7A中根据 10个接收极接收到同一发射极所产生的 10个电容变 化值的数值区间, 可以确定出 10个接收极接收到同一发射极所产生的 10 个电容变化值中的干扰值, 具体的确定方法为根据电容变化值的数值区间, 将电容变化值分为两组, 以包含电容变化值最多的一组中所有电容变化值 的平均值或其中一个电容变化值为干扰值, 例如图 7A中第二行, 由于 10 个电容变化值均比较接近, 所以干 4尤值 120为 10个电容变化值其中一个电 容变化值, 图 7A中第八行, 可以将 "198、 268、 201" 划分为第一组, 其 余 7个数值接近的电容变化值为第二组, 干扰值 120为第二组中的一个电 容变化值。
图 7B为消除显示屏驱动干扰后电容变化值的又一示意图, 图 7B中每 一个电容变化值减去干扰值后, 获得数据值, 图 7B中电容变化值大于预设 值 100的节点互电容的位置为触摸信号的位置。
本实施例提供的触摸信号检测方法, 通过处理单元获取至少两个节点 互电容的电容变化值, 至少两个节点电容由至少两个呈直线型的接收极与 至少一个呈直线型的发射极形成, 发射极与接收极垂直, 接收极垂直于显 示屏的源驱动线, 每个接收极与每个发射极形成一个节点互电容, 根据至 少两个节点互电容的电容变化值确定干扰值, 根据电容变化值的数值区间, 将电容变化值分为两组, 以包含电容变化值最多的一组中所有电容变化值 的平均值或其中一个电容变化值为干扰值, 再用电容变化值减去干扰值, 获得数据值, 以数据值大于预设值的节点互电容的位置作为触摸信号的位 置, 可以减小显示屏的驱动对触摸信号检测的干扰, 提高触摸位置检测的 精确度。
本领域普通技术人员可以理解: 实现上述各方法实施例的全部或部分 步骤可以通过程序指令相关的硬件来完成。 前述的程序可以存储于一计算 机可读取存储介质中。 该程序在执行时, 执行包括上述各方法实施例的步 骤; 而前述的存储介质包括: ROM、 RAM, 磁碟或者光盘等各种可以存储 程序代码的介质。
最后应说明的是: 以上各实施例仅用以说明本发明的技术方案, 而非 对其限制; 尽管参照前述各实施例对本发明进行了详细的说明, 本领域的 普通技术人员应当理解: 其依然可以对前述各实施例所记载的技术方案进 行修改, 或者对其中部分或者全部技术特征进行等同替换; 而这些修改或 者替换, 并不使相应技术方案的本质脱离本发明各实施例技术方案的范围。

Claims

权利要求
1、 一种触摸信号检测电路, 其特征在于, 包括: 处理单元、 至少一个 呈直线型的发射极和至少两个呈直线型的接收极;
所述发射极与所述接收极垂直, 所述接收极垂直于显示屏的源驱动线, 每个接收极与每个发射极形成一个节点互电容;
所述处理单元获取至少两个所述节点互电容的电容变化值, 根据所述 至少两个节点互电容的电容变化值获取触摸信号的位置。
2、 根据权利要求 1所述的触摸信号检测电路, 其特征在于, 所述处理 单元具体用于对所述至少两个节点互电容的电容变化值进行统计, 根据统 计结果确定干扰值, 根据所述干扰值和所述电容变化值确定所述触摸信号 的位置。
3、 根据权利要求 2所述的触摸信号检测电路, 其特征在于, 所述处理 单元具体用于根据所述电容变化值的数值区间, 将所述电容变化值分为两 组, 以包含电容变化值最多的一组中所有电容变化值的平均值或其中一个 电容变化值为所述干扰值, 用所述电容变化值减去所述干扰值, 获得数据 值, 以所述数据值大于所述预设值的节点互电容的位置作为所述触摸信号 的位置。
4、 一种触摸设备, 其特征在于, 包括显示屏和如权利要求 1~3任一所 述的触摸信号检测电路。
5、 一种触摸信号检测方法, 其特征在于, 包括:
获取至少两个节点互电容的电容变化值, 所述至少两个节点电容由至 少两个接收极呈直线型的与至少一个呈直线型的发射极形成, 所述发射极 与所述接收极垂直, 所述接收极垂直于显示屏的源驱动线, 每个接收极与 每个发射极形成一个节点互电容;
根据所述至少两个节点互电容的电容变化值获取触摸信号的位置。
6、 根据权利要求 5所述的触摸信号检测方法, 其特征在于, 所述根据 所述至少两个节点互电容的电容变化值获取触摸信号的位置包括:
才艮据所述至少两个节点互电容的电容变化值确定干 4尤值;
根据所述干扰值和所述电容变化值确定所述触摸信号的位置。
7、 根据权利要求 6所述的触摸信号检测方法, 其特征在于, 所述根据 所述至少两个节点互电容的电容变化值确定干扰值包括:
根据所述电容变化值的数值区间, 将所述电容变化值分为两组, 以包 含电容变化值最多的一组中所有电容变化值的平均值或其中一个电容变化 值为所述干扰值;
所述根据所述干扰值和所述电容变化值确定所述触摸信号的位置包 括: 用所述电容变化值减去所述干扰值, 获得数据值;
以所述数据值大于所述预设值的节点互电容的位置作为所述触摸信号 的位置。
PCT/CN2014/071118 2013-01-22 2014-01-22 触摸信号检测电路及方法和触摸设备 WO2014114234A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP14743739.6A EP2853996B1 (en) 2013-01-22 2014-01-22 Touch signal detection circuit and method
JP2015523412A JP6010826B2 (ja) 2013-01-22 2014-01-22 タッチ信号検出回路および方法、ならびにタッチデバイス
US14/575,064 US9720540B2 (en) 2013-01-22 2014-12-18 Touch signal detection circuit and method, and touch device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201310022720.3A CN103941927A (zh) 2013-01-22 2013-01-22 触摸信号检测电路及方法和触摸设备
CN201310022720.3 2013-01-22

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/575,064 Continuation US9720540B2 (en) 2013-01-22 2014-12-18 Touch signal detection circuit and method, and touch device

Publications (1)

Publication Number Publication Date
WO2014114234A1 true WO2014114234A1 (zh) 2014-07-31

Family

ID=51189616

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/071118 WO2014114234A1 (zh) 2013-01-22 2014-01-22 触摸信号检测电路及方法和触摸设备

Country Status (5)

Country Link
US (1) US9720540B2 (zh)
EP (1) EP2853996B1 (zh)
JP (1) JP6010826B2 (zh)
CN (1) CN103941927A (zh)
WO (1) WO2014114234A1 (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2015209272A1 (en) * 2014-01-22 2016-08-18 Tactual Labs Co. Dynamic assignment of possible channels in a touch sensor
TWI525501B (zh) * 2014-10-23 2016-03-11 瑞鼎科技股份有限公司 觸控濾波電路
CN106708336B (zh) * 2015-07-14 2020-08-25 比亚迪股份有限公司 电容触摸屏
US10061437B2 (en) * 2015-09-30 2018-08-28 Synaptics Incorporated Active canceling of display noise in simultaneous display and touch sensing using an impulse response
JP7092480B2 (ja) * 2017-09-27 2022-06-28 エルジー ディスプレイ カンパニー リミテッド センサ装置及びその制御方法
CN111527472B (zh) * 2018-10-31 2023-11-07 深圳市汇顶科技股份有限公司 降噪方法、触控显示装置和计算机可读存储介质

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101661359A (zh) * 2009-10-10 2010-03-03 友达光电股份有限公司 电容式触控检测系统及其检测信号接收及波形整形模块
CN102597938A (zh) * 2009-10-27 2012-07-18 摩托罗拉移动公司 用于提供等电势触摸屏的方法和设备

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5543588A (en) * 1992-06-08 1996-08-06 Synaptics, Incorporated Touch pad driven handheld computing device
JP3972834B2 (ja) * 2003-02-21 2007-09-05 ソニー株式会社 入力装置、携帯型電子機器及び携帯型電子機器の入力方法
JP4942729B2 (ja) * 2008-05-21 2012-05-30 三菱電機株式会社 タッチパネル、およびそれを備えた表示装置
TWI417766B (zh) * 2008-05-23 2013-12-01 Innolux Corp 觸控液晶顯示裝置及其驅動方法
US8963843B2 (en) * 2008-08-28 2015-02-24 Stmicroelectronics Asia Pacific Pte. Ltd. Capacitive touch sensor system
CN101727242B (zh) * 2009-12-21 2012-05-30 苏州瀚瑞微电子有限公司 触控板上侦测多指触控的方法
CN101840297B (zh) * 2010-04-07 2012-09-05 敦泰科技(深圳)有限公司 一种电容式触摸屏的触摸检测方法和检测电路
JP5455126B2 (ja) * 2010-04-28 2014-03-26 株式会社ジャパンディスプレイ タッチ検出機能付き表示装置、駆動方法、および電子機器
JP5307110B2 (ja) * 2010-12-01 2013-10-02 株式会社ジャパンディスプレイ タッチパネル
CN102707821B (zh) * 2011-03-28 2015-04-22 深圳市汇顶科技股份有限公司 触摸检测装置的降噪处理方法及系统
US9196207B2 (en) * 2011-05-03 2015-11-24 Apple Inc. System and method for controlling the slew rate of a signal
US9870103B2 (en) * 2012-01-03 2018-01-16 Silicon Laboratories Inc. Controller and method for controlling a capacitive touch screen or the like

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101661359A (zh) * 2009-10-10 2010-03-03 友达光电股份有限公司 电容式触控检测系统及其检测信号接收及波形整形模块
CN102597938A (zh) * 2009-10-27 2012-07-18 摩托罗拉移动公司 用于提供等电势触摸屏的方法和设备

Also Published As

Publication number Publication date
US9720540B2 (en) 2017-08-01
EP2853996B1 (en) 2018-11-14
US20150103046A1 (en) 2015-04-16
JP6010826B2 (ja) 2016-10-19
EP2853996A1 (en) 2015-04-01
CN103941927A (zh) 2014-07-23
JP2015522893A (ja) 2015-08-06
EP2853996A4 (en) 2015-08-26

Similar Documents

Publication Publication Date Title
WO2014114234A1 (zh) 触摸信号检测电路及方法和触摸设备
US9244578B2 (en) Detecting gestures on the side of a computing device
US9182862B2 (en) High noise immunity sensing methods and apparatus for a capacitive touch device
JP6219959B2 (ja) 雑音検出および補正ルーチン
US9778742B2 (en) Glove touch detection for touch devices
US9442598B2 (en) Detecting interference in an input device having electrodes
US9104265B2 (en) Touch device and operating method thereof
US9395824B2 (en) Active pen with improved interference performance
WO2014169567A1 (zh) 误触摸识别方法和装置
US10712870B2 (en) Method for improving fault tolerance of touchscreen and touchscreen terminal
CN103076939A (zh) 利用自电容与互电容感应交替扫瞄以去除触控噪声的方法
JP2016006609A (ja) 電子機器
CN113950660A (zh) 触摸装置及其触摸检测方法
KR20160105878A (ko) 터치스크린 간섭 억제 방법 및 장치, 그리고 단말 기기
CN104881174A (zh) 一种动态调整触摸屏灵敏度的方法及装置
CN107003758B (zh) 鬼点处理方法及用户设备
JP5639487B2 (ja) 入力装置
CN108885519B (zh) 确定电容屏触摸位置的方法及装置
CN109716273B (zh) 一种触摸屏湿水状态下手指的定位方法、装置及触控检测装置
US20140139495A1 (en) System for optimizing touch tracks and method for optimizing touch tracks
JP5997842B2 (ja) タッチパネルシステム及び電子情報機器
KR20170037490A (ko) 좌표 측정 장치 및 이를 구비한 좌표 측정 시스템
US20160147357A1 (en) Anti-noise method of touch panel, touch panel and display device
TWI525498B (zh) 觸控軌跡的偵測裝置、系統及其方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14743739

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2014743739

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2015523412

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE