WO2014114068A1 - Non-aqueous organic electrolyte, preparation method therefor and lithium ion secondary battery - Google Patents

Non-aqueous organic electrolyte, preparation method therefor and lithium ion secondary battery Download PDF

Info

Publication number
WO2014114068A1
WO2014114068A1 PCT/CN2013/080350 CN2013080350W WO2014114068A1 WO 2014114068 A1 WO2014114068 A1 WO 2014114068A1 CN 2013080350 W CN2013080350 W CN 2013080350W WO 2014114068 A1 WO2014114068 A1 WO 2014114068A1
Authority
WO
WIPO (PCT)
Prior art keywords
aqueous organic
organic electrolyte
formula
lithium
ion secondary
Prior art date
Application number
PCT/CN2013/080350
Other languages
French (fr)
Chinese (zh)
Inventor
王圣
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2014114068A1 publication Critical patent/WO2014114068A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0567Liquid materials characterised by the additives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0025Organic electrolyte
    • H01M2300/0028Organic electrolyte characterised by the solvent
    • H01M2300/0037Mixture of solvents
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • Non-aqueous organic electrolyte and preparation method thereof and lithium ion secondary battery The present application claims to be submitted to the Chinese Patent Office on January 28, 2013, the application number 201310031863.0, the invention name is "a non-aqueous organic electrolyte and The priority of the preparation method and the Chinese patent application of the lithium ion secondary battery is hereby incorporated by reference in its entirety.
  • the present invention relates to the field of lithium ion secondary batteries, and more particularly to a nonaqueous organic electrolyte and a method of preparing the same, and a lithium ion secondary battery. Background technique
  • the high-voltage positive electrode material has been reported to have a lithium-rich solid solution xLi 2 Mn0 3 ( lx)LiM0 2 and a spinel LiNio.sMn C ⁇ , etc., and the charging voltage is close to or higher than 5 V, but the matching non-aqueous organic electrolyte Existing reports.
  • a first aspect of embodiments of the present invention is directed to a non-aqueous organic electrolyte for solving a non-aqueous organic electrolyte in a prior art battery at a full charge high voltage (voltage greater than 4.5V).
  • the side reaction of the positive electrode active material is liable to cause a problem of a decrease in cycle performance, volume expansion, and discharge capacity of the lithium ion secondary battery.
  • the non-aqueous organic electrolyte still exhibits in a high voltage working environment of about 4.9V. Good cycle performance.
  • a second aspect of the embodiment of the present invention is to provide a method for producing the above nonaqueous organic electrolyte.
  • a third aspect of the embodiment of the invention is directed to a lithium ion secondary battery comprising the above nonaqueous organic electrolyte, which has a high energy density.
  • an embodiment of the present invention provides a non-aqueous organic electrolyte, comprising: a lithium salt; a non-aqueous organic solvent; and a non-aqueous organic electrolyte additive, wherein the non-aqueous organic electrolyte additive is of the formula (I) a non-aqueous organic electrolyte additive as shown and/or a non-aqueous organic electrolyte additive as shown in formula (II),
  • R 2 , R 3 , R 4 , R 5 , R 6 , R 7 and R 8 are a straight or branched alkyl group of Cr ⁇ do, C ⁇ do Alkenyl group, Cr ⁇ do alkyne group or C 6 -C 14 aromatic group, or Ri, R 2 , R 3 , R 4 , R 5 , R 6 , R 7 and R 8 are halogen-containing: Cr ⁇ a linear or branched alkyl group of do, an alkene group of Cu), an alkyne group of Cr ⁇ do or an aromatic group of C 6 to C 14 .
  • the non-aqueous organic electrolyte additive represented by the formula (I) in the embodiment of the present invention is a derivative of pyrophosphate, and the non-aqueous organic electrolyte additive represented by the formula (II) is pyrophosphite. derivative.
  • R 2 , R 3 and R 4 may be the same structure or different.
  • R 5 , R 6 , R 7 and R 8 may be the same structure or different.
  • R 2 , R 3 and R 4 are a mercapto group, an ethyl group, an ethyl trifluoromethyl group, a trifluoroethyl group, a perfluoroethyl group, a phenyl group, Benzyl, partially or perfluoro substituted phenyl.
  • R 2 , R 3 and R 4 may be the same structure or different.
  • R 5 , R 6 , R 7 and R 8 are an indenyl group, an ethyl group, a trifluoromethyl group, a trifluoroethyl group, a perfluoroethyl group. , phenyl, benzyl, partially or perfluoro substituted phenyl.
  • R 5 , R 6 , R 7 and R 8 may be the same structure or different.
  • Lithium salt is used as a carrier to ensure the basic operation of lithium ions in lithium ion secondary batteries, including but not limited to lithium hexafluorophosphate (LiPF 6 ), lithium perchlorate (LiC10 4 ), lithium tetrafluoroborate (LiBF 4 ), hexafluoride Lithium arsenate (LiAsF 6 ), lithium hexafluorosilicate (LiSiF 6 ), lithium tetraphenylborate (LiB(C 6 3 ⁇ 4 ) 4 ), lithium chloride (LiCl), lithium bromide (LiBr), lithium chloroaluminate ( LiAlCl 4 ), lithium bis(oxalate)borate (LiBOB), lithium trifluoromethanesulfonate (LiCF 3 S0 3 ), lithium perfluorobutyl sulfonate (LiC 4 F 9 S0 3 ), lithium fluorosulfonimide (
  • the final concentration of the lithium salt in the non-aqueous organic electrolyte is not limited and is usually from 0.5 to 2.0 mol/L.
  • the final concentration of the lithium salt in the non-aqueous organic electrolyte is from 0.7 to 1.6 mol/L.
  • the non-aqueous organic electrolyte of the embodiment of the present invention can simultaneously provide better lithium ion conductivity and lithium ion mobility.
  • the non-aqueous organic solvent is selected from solvents conventional in the art and may be one or more of aliphatic or cyclic carbonates, ethers, sulfones, nitriles, ionic liquids, and derivatives thereof, including but not limited to Y-butyl Lactone (GBL), ethylene carbonate (EC), diethyl carbonate (DEC), dinonyl carbonate (DMC), vinylene carbonate (VC), ethyl cerium carbonate (EMC), dipropyl carbonate ( DPC), propyl propyl carbonate (MPC), propylene carbonate (PC), decyl decanoate (MF), decyl acrylate (MA), decyl butyrate (MB) ethyl acetate (EP), ethylene sulfite Ester (ES), propylene sulfite (PS), sulfonium sulfide (DMS), diethyl sulfite (DES), tetra
  • the non-aqueous organic solvent accounts for 85% to 99.5% of the non-aqueous organic electrolyte
  • the non-aqueous organic electrolyte additive accounts for 0.5% to 15% of the non-aqueous organic electrolyte
  • the non-aqueous organic solvent accounts for 92% to 99% of the non-aqueous organic electrolyte
  • the non-aqueous organic electrolyte additive accounts for 1% to 8% of the non-aqueous organic electrolyte
  • the non-aqueous organic electrolyte further includes a functional auxiliary agent selected from the group consisting of a cyclic additive, a high temperature additive, a flame retardant additive, and an overcharge additive.
  • a functional auxiliaries include, but are not limited to, vinylene carbonate (VC), biphenyl, cyclohexylbenzene, 2,52 di-tert-butyl 21,42-dimethoxybenzene (DDB), thiophene, .
  • Dithiazine lithium carbonate, carbon dioxide, 1,3-propane sultone (PS), ethylene carbonate (FEC) and lithium tetrafluoroborate (LiBF 4 ), tridecyl phosphate, triethyl phosphate, triphenyl phosphate Ester, tributyl phosphate and phosphazene compounds.
  • the functional additive accounts for 0.1% to 15% of the non-aqueous organic electrolyte by mass fraction.
  • the non-aqueous organic electrolyte provided by the first aspect of the present invention can be used in a working environment of full charge high voltage (voltage above 4.5V), has excellent chemical stability and electrochemical stability, and can avoid high voltage.
  • the phenomenon of gas expansion under the lithium ion secondary battery, and the improvement of lithium ion II under high voltage The cycle performance and discharge capacity of the secondary battery.
  • non-aqueous organic electrolyte additive as shown in formula (I) and/or a non-aqueous one as shown in formula (II)
  • Part of the phosphorus-oxygen bond of the organic electrolyte additive is broken, and part of the phosphorus-containing fraction interacts with a product formed by oxidative decomposition of a non-aqueous organic solvent or a lithium salt to form an electron-conducting, ion-conducting phosphorus-containing element on the surface of the positive electrode active material.
  • the surface film covers the active site on the surface of the positive active material, blocks the direct contact between the active site on the surface of the positive active material and the non-aqueous organic electrolyte, and reduces the oxidation of the positive active material on the non-aqueous organic electrolyte, thereby improving The cycle performance of a lithium ion secondary battery at a high voltage, and the case where the volume expansion of the lithium ion secondary battery and the discharge capacity are prevented.
  • an embodiment of the present invention provides a method for preparing a non-aqueous organic electrolyte, comprising the steps of: dissolving a lithium salt in a non-aqueous organic solvent, and adding a non-aqueous organic electrolyte as shown in formula (I) Adding an additive and/or a non-aqueous organic electrolyte additive as shown in formula (II) to a non-aqueous organic electrolyte,
  • R 2 , R 3 , R 4 , R 5 , R 6 , R 7 and R 8 are a straight or branched alkyl group of Cr ⁇ do, an alkene group of C ⁇ do, an alkyne group of Cr ⁇ do or C
  • R 7 and R 8 are halogen-containing: a straight or branched alkyl group of Cr ⁇ do, an alkene group of Cu), an alkyne group of CH ⁇ o or an aromatic group of C 6 to C 14 .
  • R 2 , R 3 and R 4 are a mercapto group, an ethyl group, an ethyl trifluoromethyl group, a trifluoroethyl group, a perfluoroethyl group, a phenyl group, Benzyl, partially or perfluoro substituted phenyl.
  • R 2 , R 3 and R 4 may be the same structure or different.
  • R 5 , R 6 , R 7 and R 8 are an indenyl group, an ethyl group, a trifluoromethyl group, a trifluoroethyl group, a perfluoroethyl group. , phenyl, benzyl, partially or perfluoro substituted phenyl.
  • R 5 , R 6 , R 7 and R 8 may be the same structure or different.
  • the preparation method of the non-aqueous organic electrolyte is carried out in an argon-filled glove box.
  • the lithium salt is dissolved in a non-aqueous organic solvent for a controlled temperature of 20 to 35 °C.
  • a non-aqueous organic solvent for a controlled temperature of 20 to 35 °C.
  • Lithium salt is used as a carrier to ensure the basic operation of lithium ions in lithium ion secondary batteries, including but not limited to lithium hexafluorophosphate (LiPF 6 ), lithium perchlorate (LiC10 4 ), lithium tetrafluoroborate (LiBF 4 ), hexafluoride Lithium arsenate (LiAsF 6 ), lithium hexafluorosilicate (LiSiF 6 ), lithium tetraphenylborate (LiB(C 6 3 ⁇ 4 ) 4 ), lithium chloride (LiCl), lithium bromide (LiBr), lithium chloroaluminate ( LiAlCl 4 ), lithium bis(oxalate)borate (LiBOB), lithium trifluoromethanesulfonate (LiCF 3 S0 3 ), lithium perfluorobutyl sulfonate (LiC 4 F 9 S0 3 ), lithium fluorosulfonimide (
  • the final concentration of the lithium salt in the non-aqueous organic electrolyte is not limited and is usually 0.5 to 2.0 mol/L.
  • the final concentration of the lithium salt in the non-aqueous organic electrolyte is from 0.7 to 1.6 mol/L.
  • the non-aqueous organic electrolyte of the embodiment of the present invention can simultaneously provide better lithium ion conductivity and lithium ion mobility.
  • the non-aqueous organic solvent is selected from solvents conventional in the art and may be one or more of aliphatic or cyclic carbonates, ethers, sulfones, nitriles, ionic liquids, and derivatives thereof, including but not limited to Y-butyl Lactone (GBL), ethylene carbonate (EC), diethyl carbonate (DEC), dinonyl carbonate (DMC), vinylene carbonate (VC), Ethyl carbonate (EMC), dipropyl carbonate (DPC), propyl propyl carbonate (MPC), propylene carbonate (PC), decyl decanoate (MF), decyl acrylate (MA), decyl butyrate (MB) ethyl acetate (EP), vinyl sulfite (ES), propylene sulfite (PS), sulfonium sulfide (DMS), diethyl sulfite (DES), tetrahydrofuran, an
  • the non-aqueous organic solvent accounts for 85% to 99.5% of the non-aqueous organic electrolyte
  • the non-aqueous organic electrolyte additive accounts for 0.5% to 15% of the non-aqueous organic electrolyte
  • the non-aqueous organic solvent accounts for 92% to 99% of the non-aqueous organic electrolyte
  • the non-aqueous organic electrolyte additive accounts for 1% to 8% of the non-aqueous organic electrolyte
  • non-aqueous organic compound as shown in formula (I) it is preferable to add a non-aqueous organic compound as shown in formula (I) to the preparation method of the non-aqueous organic electrolyte provided by the second aspect of the present invention.
  • a functional auxiliary agent selected from the group consisting of a cyclic additive, a high temperature additive, a flame retardant additive, and an overcharge additive
  • the functional auxiliaries include, but are not limited to, vinylene carbonate (VC), biphenyl, cyclohexylbenzene, 2, 52 di-tert-butyl 21,42 didecyloxybenzene (DDB), Thiophene, phenothiazine, lithium carbonate, carbon dioxide, 1,3-propane sultone, ethylene carbonate (FEC) and lithium tetrafluoroborate (LiBF 4 ), tridecyl phosphate, triethyl phosphate, triphenyl phosphat
  • the functional additive accounts for 0.1% to 15% of the non-aqueous organic electrolyte by mass fraction.
  • a method for preparing a non-aqueous organic electrolyte provided by a second aspect of the present invention provides a novel non-aqueous organic electrolyte, and the preparation method is simple.
  • an embodiment of the present invention provides a lithium ion secondary battery, including: a positive electrode, a negative electrode, a separator, a casing, and a non-aqueous organic electrolyte, the non-aqueous organic electrolyte, including: lithium salt, non-aqueous Have a solvent, and a non-aqueous organic electrolyte additive as shown in formula (I) and/or a non-aqueous organic electrolyte additive as shown in formula (II),
  • R 2 , R 3 , R 5 , R 6 , R 7 and R 8 are a straight or branched alkyl group of Cr ⁇ o, an alkene group of C ⁇ do, an alkyne group of Cr ⁇ do or C 6 ⁇
  • R 7 and R 8 are halogen-containing: a straight or branched alkyl group of Cr ⁇ do, an alkene group of Cu), an alkyne group of CH ⁇ o or an aromatic group of C 6 to C 14 .
  • the non-aqueous organic electrolyte is as described in the first aspect of the embodiment of the present invention, and details are not described herein again.
  • the positive electrode includes a positive active material capable of inserting or extracting lithium ions.
  • the positive active material has a high deintercalation lithium platform at a voltage of 4.5 V and above and above at the time of charge and discharge deintercalation of lithium ions.
  • the positive active material is LiM x Mn x )0 4 , wherein M is selected from one or more of transition metals Ni, Co and Fe, 0 X 2 .
  • the positive active material is xLi 2 Mn0 3 ( 1 -x)LiM0 2 , wherein ruthenium is selected from one or more of transition metals Ni, Co and Mn, 0 x 1.
  • the lithium ion secondary battery provided in the third aspect of the embodiment of the present invention is not limited in form, and may be a square, cylindrical or soft pack battery, and the lithium ion secondary battery has high energy whether it is wound or laminated. Density, good cycle performance and discharge capacity.
  • the lithium ion secondary battery is prepared by forming a positive electrode, a negative electrode and a separator into a battery core, placing the same in a casing, injecting the non-aqueous organic electrolyte, and sealing to obtain a lithium ion secondary battery.
  • Lithium ion The preparation method of the secondary battery is simple and feasible.
  • the first aspect of the present invention provides a non-aqueous organic electrolyte for solving the problem that the non-aqueous organic electrolyte in the prior art is easily generated with the positive active material in a fully charged high voltage (voltage above 4.5V) battery system.
  • the side reaction causes a problem of a decrease in cycle performance, volume expansion, and discharge capacity of the lithium ion secondary battery, and the non-aqueous organic electrolyte exhibits good cycle performance in a high-voltage working environment of about 4.9V.
  • a second aspect of the embodiment of the present invention provides a method of producing the above nonaqueous organic electrolyte.
  • a third aspect of the present invention provides a lithium ion secondary battery comprising the above nonaqueous organic electrolyte, the lithium ion secondary battery having a high energy density.
  • an embodiment of the present invention provides a non-aqueous organic electrolyte, comprising:
  • R 2 , R 3 , R 4 , R 5 , R 6 , R 7 and R 8 are a linear or branched alkyl group of C ⁇ do, an alkene group of C ⁇ do, an alkyne group of Cr ⁇ do or C
  • R 7 and R 8 are halogen-containing: a straight or branched alkyl group of Cr ⁇ do, an olefin group of Cu), an alkyne group of Cr ⁇ do or an aromatic group of C 6 to C 14 .
  • the non-aqueous organic electrolyte additive represented by the formula (I) in the embodiment of the present invention is a derivative of pyrophosphate, and the non-aqueous organic electrolyte additive represented by the formula (II) is pyrophosphite. derivative.
  • R 2 , R 3 and R 4 may be the same structure or different.
  • R 5 , R 6 , R 7 and R 8 may be the same structure or different.
  • R 2 , R 3 and R 4 are a mercapto group, an ethyl group, a trifluoromethyl group, a trifluoroethyl group, a perfluoroethyl group, a phenyl group, a benzyl group. , partial or perfluoro substituted phenyl.
  • R 2 , R 3 and R 4 may be the same structure or different.
  • R 5 , R 6 , R 7 and R 8 are an indenyl group, an ethyl group, an ethyl trifluoromethyl group, a trifluoroethyl group, a perfluoroethyl group, a phenyl group. , benzyl, partially or perfluoro substituted phenyl.
  • R 5 , R 6 , R 7 and R 8 may be the same structure or different.
  • Lithium salt is used as a carrier to ensure the basic operation of lithium ions in lithium ion secondary batteries, including but not limited to lithium hexafluorophosphate (LiPF 6 ), lithium perchlorate (LiC10 4 ), lithium tetrafluoroborate (LiBF 4 ), hexafluoride Lithium arsenate (LiAsF 6 ), lithium hexafluorosilicate (LiSiF 6 ), lithium tetraphenylborate (LiB(C 6 3 ⁇ 4 ) 4 ), lithium chloride (LiCl), lithium bromide (LiBr), lithium chloroaluminate ( LiAlCl 4 ), lithium bis(oxalate)borate (LiBOB), lithium trifluoromethanesulfonate (LiCF 3 S0 3 ), lithium perfluorobutyl sulfonate (LiC 4 F 9 S0 3 ), lithium fluorosulfonimide (
  • the final concentration of the lithium salt in the non-aqueous organic electrolyte is not limited and is usually from 0.5 to 2.0 mol/L. Specifically, The final concentration of the lithium salt in the non-aqueous organic electrolyte is 0.7 to 1.6 mol/L. When the final concentration of the lithium salt is preferably within this range, the non-aqueous organic electrolyte of the embodiment of the present invention can simultaneously provide better lithium ion conductivity and lithium ion mobility.
  • the non-aqueous organic solvent is selected from solvents conventional in the art and may be one or more of aliphatic or cyclic carbonates, ethers, sulfones, nitriles, ionic liquids, and derivatives thereof, including but not limited to Y-butyl Lactone (GBL), ethylene carbonate (EC), diethyl carbonate (DEC), dinonyl carbonate (DMC), vinylene carbonate (VC), ethyl cerium carbonate (EMC), dipropyl carbonate ( DPC), propyl propyl carbonate (MPC), propylene carbonate (PC), decyl decanoate (MF), decyl acrylate (MA), decyl butyrate (MB) ethyl acetate (EP), ethylene sulfite Ester (ES), propylene sulfite (PS), sulfonium sulfide (DMS), diethyl sulfite (DES), tetra
  • the non-aqueous organic solvent accounts for 85% to 99.5% of the non-aqueous organic electrolyte
  • the non-aqueous organic electrolyte additive accounts for 0.5% to 15% of the non-aqueous organic electrolyte.
  • the non-aqueous organic solvent accounts for 92% to 99% of the non-aqueous organic electrolyte
  • the non-aqueous organic electrolyte additive accounts for 1% to 8% of the non-aqueous organic electrolytic solution.
  • the non-aqueous organic electrolyte may further include a functional auxiliary agent selected from the group consisting of a cyclic additive, a high-temperature additive, a flame retardant additive, and an overcharge additive. kind or several.
  • the functional auxiliaries include, but are not limited to, vinylene carbonate (VC), biphenyl, cyclohexylbenzene, 2, 52 di-tert-butyl 21,42 didecyloxybenzene (DDB), thiophene, phenothiazine, carbonic acid Lithium, carbon dioxide, 1,3 propane lactone (PS), ethylene carbonate (FEC) and lithium tetrafluoroborate (LiBF 4 ), tridecyl phosphate, triethyl phosphate, triphenyl phosphate, tributyl phosphate Ester and phosphazene compounds.
  • VC vinylene carbonate
  • DDB didecyloxybenzene
  • thiophene phenothiazine
  • carbonic acid Lithium carbon dioxide
  • PS 1,3 propane lactone
  • FEC ethylene carbonate
  • LiBF 4 lithium tetrafluoroborate
  • tridecyl phosphate triethy
  • the functional additives account for 0.1% to 15% of the non-aqueous organic electrolyte.
  • the non-aqueous organic electrolyte provided by the first aspect of the present invention can be used in a working environment of full charge high voltage (voltage above 4.5V), has excellent chemical stability and electrochemical stability, and can avoid high voltage.
  • OR ——I Lithium_, the phenomenon of gas expansion of ion secondary batteries, and the increase of lithium ion at high voltage
  • the cycle performance and discharge capacity of the secondary battery is operated at a high voltage of about 4.9V.
  • the non-aqueous organic electrolyte additive and/or the non-aqueous organic electrolyte additive as shown in formula (II) are partially broken by phosphorus-oxygen bonds, and some of the phosphorus-containing fragments are formed by oxidative decomposition of a non-aqueous organic solvent or a lithium salt.
  • the product interacts to form an electron-conducting, ion-conducting surface film containing phosphorus on the surface of the positive electrode active material, covering the active site on the surface of the positive electrode active material, blocking the active site on the surface of the positive electrode active material and non-aqueous organic electrolysis
  • the direct contact of the liquid reduces the oxidation of the positive electrode active material to the non-aqueous organic electrolyte, thereby improving the cycle performance of the lithium ion secondary battery at a high voltage, and avoiding the volume expansion of the lithium ion secondary battery and the decrease in the discharge capacity.
  • an embodiment of the present invention provides a method for preparing a non-aqueous organic electrolyte, comprising the steps of: dissolving a lithium salt in a non-aqueous organic solvent, and adding a non-aqueous organic electrolyte as shown in formula (I) Adding an additive and/or a non-aqueous organic electrolyte additive as shown in formula (II) to a non-aqueous organic electrolyte,
  • R 2 , R 3 , R 4 , R 5 , R 6 , R 7 and R 8 are a straight or branched alkyl group of Cr ⁇ do, C ⁇ do Alkenyl group, Cr ⁇ do alkyne group or C 6 -C 14 aromatic group, or Ri, R 2 , R 3 , R 4 , R 5 , R 6 , R 7 and R 8 are halogen-containing: Cr ⁇ a linear or branched alkyl group of do, an alkene group of Cu), an alkyne group of Cr ⁇ do or an aromatic group of C 6 to C 14 .
  • R 2 , R 3 and R 4 are a mercapto group, an ethyl group, a trifluoromethyl group, a trifluoroethyl group, a perfluoroethyl group, a phenyl group, a benzyl group. , partial or perfluoro substituted phenyl.
  • R 2 , R 3 and R 4 may be the same structure or different.
  • R 5 , R 6 , R 7 and R 8 are an indenyl group, an ethyl group, an ethyl trifluoromethyl group, a trifluoroethyl group, a perfluoroethyl group, a phenyl group. , benzyl, partially or perfluoro substituted phenyl.
  • R 5 , R 6 , R 7 and R 8 may be the same structure or different.
  • the preparation method of the non-aqueous organic electrolyte is carried out in an argon-filled glove box.
  • the lithium salt is dissolved in a non-aqueous organic solvent and the temperature is controlled at 20 to 35 °C. In this preferred temperature range, it is possible to avoid the volatilization of the non-aqueous organic solvent and to avoid the decomposition of the lithium salt, and to prevent the dissolution of the lithium salt due to the freezing of the non-aqueous organic solvent due to the low temperature.
  • Lithium salt is used as a carrier to ensure the basic operation of lithium ions in lithium ion secondary batteries, including but not limited to lithium hexafluorophosphate (LiPF 6 ), lithium perchlorate (LiC10 4 ), lithium tetrafluoroborate (LiBF 4 ), hexafluoride Lithium arsenate (LiAsF 6 ), lithium hexafluorosilicate (LiSiF 6 ), lithium tetraphenylborate (LiB(C 6 3 ⁇ 4 ) 4 ), lithium chloride (LiCl), lithium bromide (LiBr), lithium chloroaluminate ( LiAlCl 4 ), lithium bis(oxalate)borate (LiBOB), lithium trifluoromethanesulfonate (LiCF 3 S0 3 ), lithium perfluorobutyl sulfonate (LiC 4 F 9 S0 3 ), lithium fluorosulfonimide (
  • the final concentration of the lithium salt in the non-aqueous organic electrolyte is not limited and is usually from 0.5 to 2.0 mol/L. Specifically, the final concentration of the lithium salt in the non-aqueous organic electrolyte is 0.7 to 1.6 mol/L. When the final concentration of the lithium salt is preferably within this range, the non-aqueous organic electrolyte of the embodiment of the present invention can simultaneously provide better lithium ion conductivity and lithium ion mobility.
  • the non-aqueous organic solvent is selected from solvents conventional in the art and may be one or more of aliphatic or cyclic carbonates, ethers, sulfones, nitriles, ionic liquids, and derivatives thereof, including but not limited to Y-butyl Lactone (GBL), ethylene carbonate (EC), diethyl carbonate (DEC), dinonyl carbonate (DMC), vinylene carbonate (VC), ethyl cerium carbonate (EMC), dipropyl carbonate ( DPC), propyl propyl carbonate (MPC), propylene carbonate (PC), decyl decanoate (MF), decyl acrylate (MA), decyl butyrate (MB) ethyl acetate (EP), ethylene sulfite Ester (ES), propylene sulfite (PS), sulfonium sulfide (DMS), diethyl sulfite (DES), tetra
  • the non-aqueous organic solvent accounts for 85% to 99.5% of the non-aqueous organic electrolyte
  • the non-aqueous organic electrolyte additive accounts for 0.5% to 15% of the non-aqueous organic electrolyte.
  • the non-aqueous organic solvent accounts for 92% to 99% of the non-aqueous organic electrolyte
  • the non-aqueous organic electrolyte additive accounts for 1% to 8% of the non-aqueous organic electrolytic solution.
  • the non-aqueous organic electrolyte additive represented by the formula (I) is added to the preparation method of the non-aqueous organic electrolyte provided by the second aspect of the present invention. And/or after the non-aqueous organic electrolyte additive as shown in formula (II), further comprising adding a functional auxiliary agent selected from the group consisting of a cyclic additive, a high temperature additive, a flame retardant additive, and an overcharge additive.
  • the functional auxiliaries include, but are not limited to, vinylene carbonate (VC), biphenyl, cyclohexylbenzene, 2, 52 di-tert-butyl 21,42 didecyloxybenzene (DDB), thiophene, .
  • Dithiazine lithium carbonate, carbon dioxide, 1,3-propane sultone, ethylene carbonate (FEC) and lithium tetrafluoroborate (LiBF 4 ), tridecyl phosphate, triethyl phosphate, triphenyl phosphate, phosphoric acid Tributyl ester and phosphazene compounds.
  • the functional additives account for 0.1% to 15% of the non-aqueous organic electrolyte.
  • a method for preparing a non-aqueous organic electrolyte provided by a second aspect of the present invention provides a method
  • the new non-aqueous organic electrolyte has a simple process.
  • an embodiment of the present invention provides a lithium ion secondary battery, including: a positive electrode, a negative electrode, and o
  • R 2 , R 3 , R 5 , R 6 , R 7 and R 8 are a linear or branched alkyl group of C ⁇ Q, an alkene group of C ⁇ do, an alkyne group of Cr ⁇ do or C 6 ⁇
  • R 7 and R 8 are halogen-containing: a straight or branched alkyl group of Cr ⁇ do, an alkene group of Cu), an alkyne group of CH ⁇ o or an aromatic group of C 6 to C 14 .
  • the non-aqueous organic electrolyte is as described in the first aspect of the embodiment of the present invention, and details are not described herein again.
  • the positive electrode includes a positive active material capable of inserting or extracting lithium ions.
  • the positive active material has a high deintercalation lithium platform at a voltage of 4.5 V and 4.5 V or higher during charge and discharge deintercalation of lithium ions.
  • the positive active material may be LiM x Mn ⁇ x )0 4 , wherein M is selected from one or more of transition metals Ni, Co, and Fe.
  • the positive active material may be xLi 2 Mn0 3 ( 1 -x)LiM0 2 , wherein ruthenium is selected from one or more of transition metals Ni, Co, and Mn, 0 ⁇ 1.
  • the lithium ion secondary battery provided in the third aspect of the embodiment of the present invention is not limited in form, and may be a square, cylindrical or soft pack battery, and the lithium ion secondary battery has high energy whether it is wound or laminated. Density, good cycle performance and discharge capacity.
  • the lithium ion secondary battery is prepared by forming a positive electrode, a negative electrode and a separator into a battery core, placing the same in a casing, injecting the non-aqueous organic electrolyte, and sealing to obtain a lithium ion secondary battery.
  • the preparation method of the lithium ion secondary battery is simple and feasible.
  • a method for preparing a non-aqueous organic electrolyte comprising the steps of:
  • the positive active material LiNi sMn C conductive agent acetylene black and the binder PVDF powder material were mixed at a mass ratio of 80:10:10, and then N-decylpyrrolidone (NMP) solution was added and stirred in a vacuum mixer for 2 hours to prepare a solution.
  • NMP N-decylpyrrolidone
  • the oil-based slurry is finally coated on both sides of the aluminum current collector, dried at 110 ° C, and rolled to form a positive electrode sheet of a lithium ion secondary battery.
  • CMC carboxymethyl cellulose
  • SBR styrene-butadiene rubber
  • the non-aqueous organic electrolyte As the non-aqueous organic electrolyte, the non-aqueous organic electrolyte A obtained in the present example was used.
  • a composite separator composed of polypropylene and polyethylene is placed between the positive electrode tab and the negative electrode tab prepared above, such as a sandwich structure, and then rolled together into a 423450 square battery pole core, and finally a square-wound soft pack battery is completed. Finally, the nonaqueous organic electrolyte A was injected to obtain a lithium ion secondary battery A.
  • the same effect can be obtained by the above-described lithium ion secondary battery preparation method.
  • a method for preparing a non-aqueous organic electrolyte comprising the steps of:
  • ethylene carbonate (EC), 1000 g of dinonyl carbonate (DMC) and 500 g of diethyl carbonate (DEC) were added to the stirrer to form a non-aqueous organic solvent, and 250 g of lithium salt LiC10 4 was dissolved.
  • stirring temperature is 20 ° C;
  • non-aqueous organic electrolyte additive as shown in Formula Ib, obtained from Beijing Jiashengyang Pharmaceutical Technology Co., Ltd., and stirring, to obtain a non-aqueous organic electrolyte B,
  • the mass fraction, the non-aqueous organic electrolyte additive lb accounts for 1% of the non-aqueous organic electrolyte.
  • the following is a square-wound lithium ion secondary soft pack battery (model number is 423450-800mAh). As an example, a method of preparing a lithium ion secondary battery according to an embodiment of the present invention will be described.
  • the positive active material LiNi sMn C conductive agent carbon black powder and the binder PVDF powder material were mixed at a mass ratio of 85:10:5, and then N-decylpyrrolidone (NMP) solution was added and stirred in a vacuum mixer for 2 hours.
  • NMP N-decylpyrrolidone
  • the oil-based slurry is finally coated on both sides of the aluminum current collector, dried at 110 ° C, and rolled to form a positive electrode sheet of a lithium ion secondary battery.
  • the non-aqueous organic electrolyte B was prepared by using the non-aqueous organic electrolyte B obtained in the present example, and the lithium ion secondary battery B was obtained by the same method as the lithium ion secondary battery of the first embodiment.
  • a method for preparing a non-aqueous organic electrolyte comprising the steps of:
  • non-aqueous organic electrolyte additive as shown in Formula Ic, obtained from Beijing Swanda Kangkee Co., Ltd., and stirring, to obtain a non-aqueous organic electrolyte C
  • the non-aqueous organic electrolyte additive I c accounts for 8% of the non-aqueous organic electrolyte by mass fraction.
  • Positive electrode active material 0.5 (Li 2 MnO 3 ) 0.5 (LiNi 1 / 3 Co 1 / 3 Mn 1/3 O 2 ), conductive agent carbon black powder and sticky
  • the cement PVDF powder material was mixed at a mass ratio of 85:10:5, then a solution of N-decylpyrrolidone (NMP) was added, and stirred in a vacuum mixer for 2 hours to prepare an oil-based slurry, and finally the slurry was coated on aluminum.
  • the two sides of the current collector are dried at 110 ° C and rolled to form a positive electrode of a lithium ion secondary battery.
  • the non-aqueous organic electrolyte C obtained in the present example was used, and another lithium ion secondary battery C was produced in the same manner as in the production method of the lithium ion secondary battery of the first embodiment.
  • a method for preparing a non-aqueous organic electrolyte comprising the steps of:
  • EC ethylene carbonate
  • DMC dinonyl carbonate
  • LiCF 3 S0 3 lithium salt trifluorosulfonylsulfonate
  • non-aqueous organic electrolyte additive as shown in Formula Ib, obtained from Beijing Jiashengyang Pharmaceutical Technology Co., Ltd., and stirring, to obtain a non-aqueous organic electrolyte D, According to the mass fraction, the non-aqueous organic electro-hydraulic additive lb accounts for 15% of the non-aqueous organic electrolyte.
  • the positive electrode active material 0.7 (Li 2 MnO 3 ) 0.3 (LiNi 1 / 3 Co 1 / 3 Mn 1/3 O 2 ), the conductive agent carbon black powder, and the binder PVDF powder material were subjected to a mass ratio of 85:10:5. Mixing, then adding N-decylpyrrolidone (NMP) solution, stirring in a vacuum mixer for 2 h, preparing an oil-based slurry, and finally coating the slurry in The aluminum current collector is coated on both sides, dried at 110 ° C, and rolled to form a positive electrode of a lithium ion secondary battery.
  • NMP N-decylpyrrolidone
  • the non-aqueous organic electrolyte D obtained in the present embodiment was used, and other lithium ion secondary batteries of the same manner as in the first embodiment were used to produce a lithium ion secondary battery D.
  • a method for preparing a non-aqueous organic electrolyte comprising the steps of:
  • EC ethylene carbonate
  • DMC dinonyl carbonate
  • EMC cesium carbonate
  • non-aqueous organic electrolyte additive as shown in Formula Ib, 22.73 g of tetrabenzyl pyrophosphate and 2.27 g of vinylene carbonate (VC), stirring, A non-aqueous organic electrolyte E is obtained.
  • the non-aqueous organic electrolyte additive lb accounts for 1% of the non-aqueous organic electrolyte
  • the functional additive vinylene carbonate (VC) accounts for 0.1% of the non-aqueous organic electrolyte. .
  • the positive active material LiNi sMn C conductive agent carbon black powder and the binder PVDF powder material were mixed at a mass ratio of 85:10:5, and then N-decylpyrrolidone (NMP) solution was added and stirred in a vacuum mixer for 2 hours.
  • NMP N-decylpyrrolidone
  • the oil-based slurry is finally coated on both sides of the aluminum current collector, dried at 110 ° C, and rolled to form a positive electrode sheet of a lithium ion secondary battery.
  • the non-aqueous organic electrolyte solution was the non-aqueous organic electrolyte E obtained in the present example, and the lithium ion secondary battery E was produced in the same manner as in the production method of the lithium ion secondary battery of the first embodiment.
  • a method for preparing a non-aqueous organic electrolyte comprising the steps of:
  • EC ethylene carbonate
  • DEC diethyl carbonate
  • the positive active material LiNi sMn C conductive agent carbon black powder and the binder PVDF powder material were mixed at a mass ratio of 85:10:5, and then N-decylpyrrolidone (NMP) solution was added and stirred in a vacuum mixer for 2 hours.
  • NMP N-decylpyrrolidone
  • the oil-based slurry is finally coated on both sides of the aluminum current collector, dried at 110 ° C, and rolled to form a positive electrode sheet of a lithium ion secondary battery.
  • the non-aqueous organic electrolyte solution was the non-aqueous organic electrolyte solution F obtained in the present example, and the lithium ion secondary battery F was produced in the same manner as in the production method of the lithium ion secondary battery of the first embodiment.
  • Example 7 A method for preparing a non-aqueous organic electrolyte, comprising the steps of:
  • ethylene carbonate (EC), 1000 g of dinonyl carbonate (DMC) and 500 g of diethyl carbonate (DEC) were added to the stirrer to form a non-aqueous organic solvent, and 250 g of lithium salt LiB (C 6 ) was added. 3 ⁇ 4 ) 4 in a non-aqueous organic solvent, stirring, stirring temperature is 25 ° C;
  • non-aqueous organic electrolyte additive lib accounts for 8% of the non-aqueous organic electrolyte.
  • the positive electrode active material 0.4 (Li 2 MnO 3 ) 0.6 (LiNi 1 / 3 Co 1 / 3 Mn 1/3 O 2 ), the conductive agent carbon black powder, and the binder PVDF powder material were subjected to a mass ratio of 85:10:5. Mixing, then adding N-decylpyrrolidone (NMP) solution, stirring in a vacuum mixer for 2 h to prepare an oil-based slurry, and finally coating the slurry on both sides of the aluminum current collector, drying at 110 ° C, rolling, A positive electrode of a lithium ion secondary battery was fabricated.
  • NMP N-decylpyrrolidone
  • the non-aqueous organic electrolyte G obtained in the present example was used, and other lithium ion secondary batteries of the same manner as in the first embodiment were used to produce a lithium ion secondary battery G.
  • a method for preparing a non-aqueous organic electrolyte comprising the steps of:
  • the non-aqueous organic electrolyte additive li b accounts for 2% of the non-aqueous organic electrolyte
  • the functional additive triethyl phosphate (TEP) It accounts for 15% of the non-aqueous organic electrolyte.
  • the positive active material LiNi sMn C conductive agent carbon black powder and the binder PVDF powder material were mixed at a mass ratio of 85:10:5, and then N-decylpyrrolidone (NMP) solution was added and stirred in a vacuum mixer for 2 hours.
  • NMP N-decylpyrrolidone
  • the oil-based slurry is finally coated on both sides of the aluminum current collector, dried at 110 ° C, and rolled to form a positive electrode sheet of a lithium ion secondary battery.
  • the non-aqueous organic electrolyte H obtained in the present example was used, and other lithium ion secondary batteries of the same manner as in the first embodiment were used to produce a lithium ion secondary battery H. Comparative example one
  • Non Water organic electrolyte I Adding 500 g of ethylene carbonate (EC) and 500 g of cesium carbonate (EMC) to the stirrer to form a non-aqueous organic solvent, and dissolving 125 g of lithium salt LiPF 6 in a non-aqueous organic solvent, stirring, and obtaining Non Water organic electrolyte I.
  • EC ethylene carbonate
  • EMC cesium carbonate
  • the positive active material LiNi sMn C conductive agent carbon black powder and the binder PVDF powder material were mixed at a mass ratio of 85:10:5, and then N-decylpyrrolidone (NMP) solution was added and stirred in a vacuum mixer for 2 hours.
  • NMP N-decylpyrrolidone
  • the oil-based slurry is finally coated on both sides of the aluminum current collector, dried at 110 ° C, and rolled to form a positive electrode sheet of a lithium ion secondary battery.
  • the non-aqueous organic electrolyte I used the non-aqueous organic electrolyte I obtained in the comparative example, and other lithium ion secondary batteries of the same manner as in the first embodiment were used to produce a lithium ion secondary battery I.
  • the positive electrode active material 0.5 (Li 2 MnO 3 ) 0.5 (LiNi 1 / 3 Co 1 / 3 Mn 1/3 O 2 ), the conductive agent carbon black powder, and the binder PVDF powder material were subjected to a mass ratio of 85:10:5. Mixing, then adding N-decylpyrrolidone (NMP) solution, stirring in a vacuum mixer for 2 h to prepare an oil-based slurry, and finally coating the slurry on both sides of the aluminum current collector, drying at 110 ° C, rolling, A positive electrode of a lithium ion secondary battery was fabricated.
  • NMP N-decylpyrrolidone
  • the non-aqueous organic electrolyte solution is the non-aqueous organic electrolyte J prepared in the comparative example, and the others are implemented in the same manner.
  • a lithium ion secondary battery J was obtained. Effect embodiment
  • the first and second examples were subjected to cyclic voltammetry using a three-electrode system.
  • the working electrode was glassy carbon
  • the counter electrode and the reference electrode were lithium electrodes
  • the scanning range was 0 to 5.5 V
  • the scanning speed was 10 mV/ S o
  • the non-aqueous organic electrolytes provided in Examples 1 to 8 of the present invention have an oxidative decomposition potential of 5.0 V or more, and No pyrophosphate or pyrophosphite in Comparative Examples 1 and 2.
  • the oxidative decomposition potential of the non-aqueous organic electrolyte of the additive-like additive is only 4.4 V, which is much lower than the decomposition potential of the non-aqueous organic electrolyte provided in Examples 1 to 8 of the present invention.
  • the lithium ion secondary batteries prepared according to the above Examples 1 to 8 and Comparative Examples 1 and 2 were subjected to cycle performance tests.
  • the test method is as follows: The lithium ion secondary battery is loaded into the secondary battery performance test in the correct way to BS-9300, first charged to 4.9V with constant current constant voltage of 1C (for spinel LiM x Mn x ) 0 4 , Wherein M is selected from one or more of transition metals Ni, Co and Fe, 0 x 2 ) or 4.6 V (for lithium-rich solid solution cathode material xLi 2 Mn0 3 (lx)LiM0 2 , wherein M is selected from transition metal Ni , one or more of Co and Mn, 0 ⁇ 1 ), set aside for 5 minutes, discharge to 3.0V with 1C, and then charge to 4.9V with constant current at 1C (for spinel LiM x Mn x )0 4 , wherein M is selected from one or more of transition metals Ni, Co and Fe,
  • the lithium ion secondary battery provided by Examples 1 to 8 of the present invention has a capacity retention rate of up to 95% and a minimum of 89% after 100 cycles, and is prepared in Comparative Examples 1 and 2.
  • the capacity retention of the lithium ion secondary battery after only 100 cycles is only 56% and 43%, and it can be seen that the nonaqueous organic electrolyte provided in the first to eighth embodiments of the present invention has good high pressure resistance.
  • the cycle performance of the lithium ion secondary battery provided by the first to eighth embodiments of the present invention is improved.

Abstract

Disclosed are a non-aqueous organic electrolyte, a preparation method therefor and a lithium ion secondary battery containing the non-aqueous organic electrolyte. The non-aqueous organic electrolyte comprises: a lithium salt, a non-aqueous organic solvent, and a non-aqueous organic electrolyte additive. The non-aqueous organic electrolyte additive is a non-aqueous organic electrolyte additive as shown in formula (I) and/or a non-aqueous organic electrolyte additive as shown in formula (II). The present invention solves the problem in the prior art of easy occurrence of side reaction between the non-aqueous organic electrolyte and a positive electrode active material in a fully-charged and high-voltage (a voltage of above 4.5 V) battery system which results in the cycle performance decrease, volume expansion and discharge capacity decrease of a lithium ion secondary battery. The non-aqueous organic electrolyte still shows good cycle performance in an operating environment with a high voltage of about 4.9 V.

Description

一种非水有机电解液及其制备方法和锂离子二次电池 本申请要求了 2013年 1月 28日提交中国专利局的, 申请号 201310031863.0, 发明名称为"一种非水有机电解液及其制备方法和锂离子二次电池"的中国专利 申请的优先权, 其全部内容通过引用结合在本申请中。 技术领域  Non-aqueous organic electrolyte and preparation method thereof and lithium ion secondary battery The present application claims to be submitted to the Chinese Patent Office on January 28, 2013, the application number 201310031863.0, the invention name is "a non-aqueous organic electrolyte and The priority of the preparation method and the Chinese patent application of the lithium ion secondary battery is hereby incorporated by reference in its entirety. Technical field
本发明涉及锂离子二次电池领域, 特别是涉及一种非水有机电解液及其制 备方法和锂离子二次电池。 背景技术  The present invention relates to the field of lithium ion secondary batteries, and more particularly to a nonaqueous organic electrolyte and a method of preparing the same, and a lithium ion secondary battery. Background technique
随着锂离子二次电池应用领域的扩展, 包括近年来大型储能电站、 高温基站 备电等新的应用场景的引入, 人们对具有高能量锂离子二次电池的需求变得更 力口迫切。  With the expansion of the application field of lithium ion secondary batteries, including the introduction of new application scenarios such as large-scale energy storage power stations and high-temperature base station backup power in recent years, the demand for high-energy lithium-ion secondary batteries has become more urgent. .
为了实现锂离子二次电池的高能量,一般通过提高锂离子二次电池的工作电 压或研发高能量正极材料来实现。 已经报道的高电压正极材料有富锂固溶体 xLi2Mn03( l-x)LiM02和尖晶石 LiNio.sMn C^等, 其充电电压接近或高于 5V, 但与之匹配的非水有机电解液现有报道。 目前常用的锂离子二次电池的电解液 主要为 1M LiPF6溶解在碳酸酯类溶剂中,但其在满充电高电压( 4.5V以上电压 ) 电池体系中, 特别容易与正极活性材料发生副反应进而被氧化分解, 导致锂离 子二次电池循环性能下降、 体积膨胀以及放电容量下降, 因此无法应用于高电 压锂离子二次电池体系。 In order to realize high energy of a lithium ion secondary battery, it is generally achieved by increasing the operating voltage of a lithium ion secondary battery or developing a high energy positive electrode material. The high-voltage positive electrode material has been reported to have a lithium-rich solid solution xLi 2 Mn0 3 ( lx)LiM0 2 and a spinel LiNio.sMn C^, etc., and the charging voltage is close to or higher than 5 V, but the matching non-aqueous organic electrolyte Existing reports. Currently the commonly used electrolyte lithium ion secondary battery mainly 1M LiPF 6 dissolved in a carbonate-based solvent, but the high voltage at full charge (4.5V above voltage) of the battery system, the positive electrode active material are particularly vulnerable to side reactions Further, it is oxidatively decomposed, resulting in a decrease in cycle performance, volume expansion, and discharge capacity of the lithium ion secondary battery, and thus cannot be applied to a high-voltage lithium ion secondary battery system.
近年来, 有部分研究学者提出在非水有机电解液中添加抗氧化电位可到达 5V以上的砜类、 腈类、 离子液体等高电压溶剂, 用以提高非水有机电解液的抗 氧化性, 进而使得锂离子二次电池可以在 4.5V以上的电压下进行使用。 但这些 高电压溶剂普遍粘度较大将导致非水有机电解液的电导率降低, 同时, 这些高 电压溶剂润湿性 oOR= I——较差, 因此导致锂离子二次电池放电容量下降。 In recent years, some researchers have proposed to add anti-oxidation potentials to non-aqueous organic electrolytes to reach high-voltage solvents such as sulfones, nitriles, and ionic liquids above 5V to improve the resistance of non-aqueous organic electrolytes. The oxidizing property further enables the lithium ion secondary battery to be used at a voltage of 4.5 V or more. However, the high viscosity of these high-voltage solvents will lead to a decrease in the conductivity of the non-aqueous organic electrolyte. At the same time, these high-voltage solvent wettability oOR = I - poor, thus causing a decrease in the discharge capacity of the lithium ion secondary battery.
o o
† R o o= I I  † R o o= I I
发明内容 为解决上述问题, 本发明实施例第一方面旨在提供一种非水有机电解液, 用以解决现有技术中的非水有机电解液在满充电高电压 (4.5V 以上电压) 电池 体系中易与正极活性材料发生副反应导致锂离子二次电池循环性能下降、 体积 膨胀以及放电容量下降的问题的问题, 该非水有机电解液在 4.9V左右高电压的 工作环境中仍表现出良好的循环性能。 本发明实施例第二方面旨在提供上述非 水有机电解液的制备方法。 本发明实施例第三方面旨在提供一种包含上述非水 有机电解液的锂离子二次电池, 该锂离子二次电池具有高能量密度。 第一方面, 本发明实施例提供了一种非水有机电解液, 包括: 锂盐; 非水有机溶剂; 以及 非水有机电解液添加剂, 所述非水有机电解液添加剂为如式( I )所示的非 水有机电解液添加剂和 /或如式( II ) 所示的非水有机电解液添加剂, SUMMARY OF THE INVENTION In order to solve the above problems, a first aspect of embodiments of the present invention is directed to a non-aqueous organic electrolyte for solving a non-aqueous organic electrolyte in a prior art battery at a full charge high voltage (voltage greater than 4.5V). In the system, the side reaction of the positive electrode active material is liable to cause a problem of a decrease in cycle performance, volume expansion, and discharge capacity of the lithium ion secondary battery. The non-aqueous organic electrolyte still exhibits in a high voltage working environment of about 4.9V. Good cycle performance. A second aspect of the embodiment of the present invention is to provide a method for producing the above nonaqueous organic electrolyte. A third aspect of the embodiment of the invention is directed to a lithium ion secondary battery comprising the above nonaqueous organic electrolyte, which has a high energy density. In a first aspect, an embodiment of the present invention provides a non-aqueous organic electrolyte, comprising: a lithium salt; a non-aqueous organic solvent; and a non-aqueous organic electrolyte additive, wherein the non-aqueous organic electrolyte additive is of the formula (I) a non-aqueous organic electrolyte additive as shown and/or a non-aqueous organic electrolyte additive as shown in formula (II),
R — 0— R4 R — 0 — R 4
3 式( I ), 3 (I),
R5— 0― P— 0— P— 0— R8 R 5 — 0― P— 0— P— 0— R 8
I I  I I
0 0  0 0
1 I  1 I
R6 R7 式( II ), R 6 R 7 (II),
其中, R2、 R3、 R4、 R5、 R6、 R7和 R8为 Cr^do的直链或支链烷基、 C^do 的烯烃基、 Cr^do的炔烃基或 C6〜C14的芳香基, 或者 Ri、 R2、 R3、 R4、 R5、 R6、 R7和 R8为含有卤素的: Cr^do的直链或支链烷基、 Cu)的烯烃基、 Cr^do的 炔烃基或 C6〜C14的芳香基。 Wherein R 2 , R 3 , R 4 , R 5 , R 6 , R 7 and R 8 are a straight or branched alkyl group of Cr^do, C^do Alkenyl group, Cr^do alkyne group or C 6 -C 14 aromatic group, or Ri, R 2 , R 3 , R 4 , R 5 , R 6 , R 7 and R 8 are halogen-containing: Cr^ a linear or branched alkyl group of do, an alkene group of Cu), an alkyne group of Cr^do or an aromatic group of C 6 to C 14 .
其中, 本发明实施例中的如式( I )所示的非水有机电解液添加剂为焦磷酸 酯的衍生物, 如式 ( II )所示的非水有机电解液添加剂为焦亚磷酸酯的衍生物。 、 R2、 R3和 R4可以为相同的结构, 也可以不同。 R5、 R6、 R7和 R8可以为相 同的结构, 也可以不同。 The non-aqueous organic electrolyte additive represented by the formula (I) in the embodiment of the present invention is a derivative of pyrophosphate, and the non-aqueous organic electrolyte additive represented by the formula (II) is pyrophosphite. derivative. R 2 , R 3 and R 4 may be the same structure or different. R 5 , R 6 , R 7 and R 8 may be the same structure or different.
优选地, 如式( I )所示的非水有机电解液添加剂中 R2、 R3和 R4为曱 基、 乙基、 三氟曱基、 三氟乙基、 全氟乙基、 苯基、 苄基、 部分或全氟取代苯 基。 R2、 R3和 R4可以为相同的结构, 也可以不同。 Preferably, in the non-aqueous organic electrolyte additive represented by the formula (I), R 2 , R 3 and R 4 are a mercapto group, an ethyl group, an ethyl trifluoromethyl group, a trifluoroethyl group, a perfluoroethyl group, a phenyl group, Benzyl, partially or perfluoro substituted phenyl. R 2 , R 3 and R 4 may be the same structure or different.
优选地, 如式( II )所示的非水有机电解液添加剂中 R5、 R6、 R7和 R8为曱 基、 乙基、 三氟曱基、 三氟乙基、 全氟乙基、 苯基、 苄基、 部分或全氟取代苯 基。 R5、 R6、 R7和 R8可以为相同的结构, 也可以不同。 Preferably, in the non-aqueous organic electrolyte additive represented by the formula (II), R 5 , R 6 , R 7 and R 8 are an indenyl group, an ethyl group, a trifluoromethyl group, a trifluoroethyl group, a perfluoroethyl group. , phenyl, benzyl, partially or perfluoro substituted phenyl. R 5 , R 6 , R 7 and R 8 may be the same structure or different.
锂盐作为载体,用以保证锂离子二次电池中锂离子的基本运行, 包括但不限 于六氟磷酸锂 (LiPF6)、 高氯酸锂 (LiC104)、 四氟硼酸锂 (LiBF4)、 六氟砷酸锂 (LiAsF6)、 六氟硅酸锂 (LiSiF6)、 四苯基硼酸锂 (LiB(C6¾)4)、 氯化锂 (LiCl)、 溴化 锂(LiBr)、 氯铝酸锂(LiAlCl4)、 双草酸硼酸锂(LiBOB)、 三氟曱基磺酸锂 (LiCF3S03)、 全氟丁基磺酸锂 (LiC4F9S03)、 氟代磺酰亚胺锂 (LiN(CxF2x+1S02) (CyF2y+1S02)( 式中 x和 y为小于 21 自然数)和楼化锂 (Lil)。 Lithium salt is used as a carrier to ensure the basic operation of lithium ions in lithium ion secondary batteries, including but not limited to lithium hexafluorophosphate (LiPF 6 ), lithium perchlorate (LiC10 4 ), lithium tetrafluoroborate (LiBF 4 ), hexafluoride Lithium arsenate (LiAsF 6 ), lithium hexafluorosilicate (LiSiF 6 ), lithium tetraphenylborate (LiB(C 6 3⁄4 ) 4 ), lithium chloride (LiCl), lithium bromide (LiBr), lithium chloroaluminate ( LiAlCl 4 ), lithium bis(oxalate)borate (LiBOB), lithium trifluoromethanesulfonate (LiCF 3 S0 3 ), lithium perfluorobutyl sulfonate (LiC 4 F 9 S0 3 ), lithium fluorosulfonimide ( LiN(C x F 2x+1 S0 2 ) (C y F 2y+1 S0 2 ) (where x and y are less than 21 natural numbers) and lithosium (Lil).
锂盐在非水有机电解液中的终浓度不限, 通常为 0.5〜2.0mol/L。 优选地, 锂 盐在非水有机电解液中的终浓度为 0.7〜1.6mol/L。 锂盐终浓度优选在该范围内 时, 本发明实施例非水有机电解液能同时提供更好的锂离子电导率和锂离子迁 移率。 非水有机溶剂选自本领域常规的溶剂,可以为脂肪或环状的碳酸酯、醚、砜、 腈、离子液体及它们的衍生物中的一种或多种, 包括但不限于 Y - 丁内酯 (GBL)、 乙烯碳酸酯 (EC)、 碳酸二乙酯 (DEC)、 碳酸二曱酯 (DMC)、 碳酸亚乙烯酯 (VC)、 碳酸曱乙酯 (EMC)、 碳酸二丙酯 (DPC)、 碳酸曱丙酯 (MPC)、 丙烯碳酸酯 (PC)、 曱酸曱酯 (MF)、 丙烯酸曱酯 (MA)、 丁酸曱酯 (MB) 乙酸乙酯 (EP)、 亚硫酸乙烯 酯 (ES)、 亚硫酸丙烯酯 (PS)、 曱硫醚 (DMS)、 二乙基亚硫酸酯 (DES)、 四氢呋喃、 酸酐、 N-曱基吡咯烷酮、 N-曱基曱酰胺、 N-基乙酰胺、 乙腈、 N, N-二曱基曱 酰胺、 环丁砜、 二曱亚砜、 亚硫酸二曱酯以及其它含氟、 含硫或含不饱和键的 环状有机酯类。 The final concentration of the lithium salt in the non-aqueous organic electrolyte is not limited and is usually from 0.5 to 2.0 mol/L. Preferably, the final concentration of the lithium salt in the non-aqueous organic electrolyte is from 0.7 to 1.6 mol/L. When the final concentration of the lithium salt is preferably within this range, the non-aqueous organic electrolyte of the embodiment of the present invention can simultaneously provide better lithium ion conductivity and lithium ion mobility. The non-aqueous organic solvent is selected from solvents conventional in the art and may be one or more of aliphatic or cyclic carbonates, ethers, sulfones, nitriles, ionic liquids, and derivatives thereof, including but not limited to Y-butyl Lactone (GBL), ethylene carbonate (EC), diethyl carbonate (DEC), dinonyl carbonate (DMC), vinylene carbonate (VC), ethyl cerium carbonate (EMC), dipropyl carbonate ( DPC), propyl propyl carbonate (MPC), propylene carbonate (PC), decyl decanoate (MF), decyl acrylate (MA), decyl butyrate (MB) ethyl acetate (EP), ethylene sulfite Ester (ES), propylene sulfite (PS), sulfonium sulfide (DMS), diethyl sulfite (DES), tetrahydrofuran, acid anhydride, N-mercaptopyrrolidone, N-mercaptocarboxamide, N-based Acetamide, acetonitrile, N, N-dimercaptoamide, sulfolane, disulfoxide, dinonyl sulfite, and other fluorine-containing, sulfur-containing or unsaturated bond-containing cyclic organic esters.
优选地, 按质量分数计, 非水有机溶剂占非水有机电解液的 85%〜99.5%, 非水有机电解液添加剂占非水有机电解液的 0.5%〜15%。  Preferably, the non-aqueous organic solvent accounts for 85% to 99.5% of the non-aqueous organic electrolyte, and the non-aqueous organic electrolyte additive accounts for 0.5% to 15% of the non-aqueous organic electrolyte.
更优选地, 按质量分数计, 非水有机溶剂占非水有机电解液的 92%〜99%, 非水有机电解液添加剂占非水有机电解液的 1%〜8%。  More preferably, the non-aqueous organic solvent accounts for 92% to 99% of the non-aqueous organic electrolyte, and the non-aqueous organic electrolyte additive accounts for 1% to 8% of the non-aqueous organic electrolyte.
为了满足非水有机电解液在特定情形下的应用需求,优选地,非水有机电解 液还包括功能助剂, 所述功能助剂选自循环添加剂、 高温添加剂、 阻燃添加剂 和过充添加剂中的一种或几种。所述功能助剂包括但不限于碳酸亚乙烯酯( VC )、 联苯、 环己基苯、 2 , 52二特丁基 21,42二曱氧基苯 (DDB)、 噻吩、 。分噻嗪、 碳酸 锂、 二氧化碳、 1 , 3丙磺酸内酯(PS )、 碳酸乙烯脂 (FEC)和四氟硼酸锂 (LiBF4)、 磷酸三曱酯、 磷酸三乙酯、 磷酸三苯酯、 磷酸三丁酯和磷腈类化合物。 In order to meet the application requirements of the non-aqueous organic electrolyte in a specific situation, preferably, the non-aqueous organic electrolyte further includes a functional auxiliary agent selected from the group consisting of a cyclic additive, a high temperature additive, a flame retardant additive, and an overcharge additive. One or several. The functional auxiliaries include, but are not limited to, vinylene carbonate (VC), biphenyl, cyclohexylbenzene, 2,52 di-tert-butyl 21,42-dimethoxybenzene (DDB), thiophene, . Dithiazine, lithium carbonate, carbon dioxide, 1,3-propane sultone (PS), ethylene carbonate (FEC) and lithium tetrafluoroborate (LiBF 4 ), tridecyl phosphate, triethyl phosphate, triphenyl phosphate Ester, tributyl phosphate and phosphazene compounds.
优选地, 按质量分数计, 功能助剂占非水有机电解液的 0.1%〜15%。  Preferably, the functional additive accounts for 0.1% to 15% of the non-aqueous organic electrolyte by mass fraction.
本发明实施例第一方面提供的一种非水有机电解液可在满充电高电压 ( 4.5V以上电压)的工作环境中使用, 具有优异的化学稳定性和电化学稳定性, 可避免高电压下锂离子二次电池产气膨胀的现象, 以及提高高电压下锂离子二 次电池的循环性能和放电容量。 该非水有机电解液在 4.9V左右高电压的工作环 境中仍表现出良好的循环性能。 这可能是因为: 锂离子二次电池在充电过程中, 正负极电位差不 o OR=——I断 _,升高, 当该电位差达到 4.5V及 4.5V以上时, 非水有机电解 o The non-aqueous organic electrolyte provided by the first aspect of the present invention can be used in a working environment of full charge high voltage (voltage above 4.5V), has excellent chemical stability and electrochemical stability, and can avoid high voltage. The phenomenon of gas expansion under the lithium ion secondary battery, and the improvement of lithium ion II under high voltage The cycle performance and discharge capacity of the secondary battery. The non-aqueous organic electrolyte still exhibits good cycle performance in a high voltage working environment of about 4.9V. This may be because: During the charging process of the lithium ion secondary battery, the potential difference between the positive and negative electrodes is not OR OR=——I broken_, rises, when the potential difference reaches 4.5V and above 4.5V, non-aqueous organic electrolysis o
液中的如式( I ) 所示的非水有机电解液添加剂和 /或如式( II ) 所示的非水有a non-aqueous organic electrolyte additive as shown in formula (I) and/or a non-aqueous one as shown in formula (II)
† R 。 o= I I  † R . o= I I
机电解液添加剂的部分磷氧键断裂, 部分含磷的片段同非水有机溶剂或锂盐被 氧化分解所形成的产物相互作用而在正极活性材料表面形成电子不导电、 离子 导电的含有磷元素的表面膜, 覆盖正极活性材料表面的活性位点, 阻断正极活 性材料表面上活性位点与非水有机电解液的直接接触, 减少正极活性材料对非 水有机电解液的氧化作用, 从而提高高电压下锂离子二次电池的循环性能, 以 及避免锂离子二次电池体积膨胀以及放电容量下降的情况。 第二方面,本发明实施例提供了一种非水有机电解液的制备方法, 包括以下 步骤: 将锂盐溶于非水有机溶剂中, 加入如式( I )所示的非水有机电解液添加剂 和 /或如式 ( II )所示的非水有机电解液添加剂, 搅拌, 制得非水有机电解液, Part of the phosphorus-oxygen bond of the organic electrolyte additive is broken, and part of the phosphorus-containing fraction interacts with a product formed by oxidative decomposition of a non-aqueous organic solvent or a lithium salt to form an electron-conducting, ion-conducting phosphorus-containing element on the surface of the positive electrode active material. The surface film covers the active site on the surface of the positive active material, blocks the direct contact between the active site on the surface of the positive active material and the non-aqueous organic electrolyte, and reduces the oxidation of the positive active material on the non-aqueous organic electrolyte, thereby improving The cycle performance of a lithium ion secondary battery at a high voltage, and the case where the volume expansion of the lithium ion secondary battery and the discharge capacity are prevented. In a second aspect, an embodiment of the present invention provides a method for preparing a non-aqueous organic electrolyte, comprising the steps of: dissolving a lithium salt in a non-aqueous organic solvent, and adding a non-aqueous organic electrolyte as shown in formula (I) Adding an additive and/or a non-aqueous organic electrolyte additive as shown in formula (II) to a non-aqueous organic electrolyte,
R — 0— R4 R — 0 — R 4
3 式( I ), 3 (I),
R5— 0― P— 0— P— 0— R8 R 5 — 0― P— 0— P— 0— R 8
I I  I I
0 0  0 0
1 I  1 I
R6 R7 式( II ), R 6 R 7 (II),
其中, R2、 R3、 R4、 R5、 R6、 R7和 R8为 Cr^do的直链或支链烷基、 C^do 的烯烃基、 Cr^do的炔烃基或 C6〜C14的芳香基, 或者 Ri、 R2、 R3、 R4、 R5、 R6Wherein R 2 , R 3 , R 4 , R 5 , R 6 , R 7 and R 8 are a straight or branched alkyl group of Cr^do, an alkene group of C^do, an alkyne group of Cr^do or C An aromatic group of 6 to C 14 or Ri, R 2 , R 3 , R 4 , R 5 , R 6 ,
R7和 R8为含有卤素的: Cr^do的直链或支链烷基、 Cu)的烯烃基、 CH^o的 炔烃基或 C6〜C14的芳香基。 优选地, 如式( I )所示的非水有机电解液添加剂中 R2、 R3和 R4为曱 基、 乙基、 三氟曱基、 三氟乙基、 全氟乙基、 苯基、 苄基、 部分或全氟取代苯 基。 R2、 R3和 R4可以为相同的结构, 也可以不同。 R 7 and R 8 are halogen-containing: a straight or branched alkyl group of Cr^do, an alkene group of Cu), an alkyne group of CH^o or an aromatic group of C 6 to C 14 . Preferably, in the non-aqueous organic electrolyte additive represented by the formula (I), R 2 , R 3 and R 4 are a mercapto group, an ethyl group, an ethyl trifluoromethyl group, a trifluoroethyl group, a perfluoroethyl group, a phenyl group, Benzyl, partially or perfluoro substituted phenyl. R 2 , R 3 and R 4 may be the same structure or different.
优选地, 如式( II )所示的非水有机电解液添加剂中 R5、 R6、 R7和 R8为曱 基、 乙基、 三氟曱基、 三氟乙基、 全氟乙基、 苯基、 苄基、 部分或全氟取代苯 基。 R5、 R6、 R7和 R8可以为相同的结构, 也可以不同。 Preferably, in the non-aqueous organic electrolyte additive represented by the formula (II), R 5 , R 6 , R 7 and R 8 are an indenyl group, an ethyl group, a trifluoromethyl group, a trifluoroethyl group, a perfluoroethyl group. , phenyl, benzyl, partially or perfluoro substituted phenyl. R 5 , R 6 , R 7 and R 8 may be the same structure or different.
优选地, 所述非水有机电解液的制备方法在充满氩气的手套箱中进行。  Preferably, the preparation method of the non-aqueous organic electrolyte is carried out in an argon-filled glove box.
优选地,将锂盐溶于非水有机溶剂的过程中进行搅拌,控制温度为 20〜35°C。 在该优选温度范围内, 既能避免非水有机溶剂挥发以及避免锂盐的分解, 又能 避免因温度过低导致非水有机溶剂凝固而影响锂盐溶解的情况发生。  Preferably, the lithium salt is dissolved in a non-aqueous organic solvent for a controlled temperature of 20 to 35 °C. In the preferred temperature range, it is possible to avoid the volatilization of the non-aqueous organic solvent and to avoid the decomposition of the lithium salt, and to prevent the dissolution of the lithium salt due to the freezing of the non-aqueous organic solvent due to the excessive temperature.
锂盐作为载体,用以保证锂离子二次电池中锂离子的基本运行, 包括但不限 于六氟磷酸锂 (LiPF6)、 高氯酸锂 (LiC104)、 四氟硼酸锂 (LiBF4)、 六氟砷酸锂 (LiAsF6)、 六氟硅酸锂 (LiSiF6)、 四苯基硼酸锂 (LiB(C6¾)4)、 氯化锂 (LiCl)、 溴化 锂(LiBr)、 氯铝酸锂(LiAlCl4)、 双草酸硼酸锂(LiBOB)、 三氟曱基磺酸锂 (LiCF3S03)、 全氟丁基磺酸锂 (LiC4F9S03)、 氟代磺酰亚胺锂 (LiN(CxF2x+1S02) (CyF2y+1S02)( 式中 x和 y为小于 21 自然数)和楼化锂 (Lil)。 Lithium salt is used as a carrier to ensure the basic operation of lithium ions in lithium ion secondary batteries, including but not limited to lithium hexafluorophosphate (LiPF 6 ), lithium perchlorate (LiC10 4 ), lithium tetrafluoroborate (LiBF 4 ), hexafluoride Lithium arsenate (LiAsF 6 ), lithium hexafluorosilicate (LiSiF 6 ), lithium tetraphenylborate (LiB(C 6 3⁄4 ) 4 ), lithium chloride (LiCl), lithium bromide (LiBr), lithium chloroaluminate ( LiAlCl 4 ), lithium bis(oxalate)borate (LiBOB), lithium trifluoromethanesulfonate (LiCF 3 S0 3 ), lithium perfluorobutyl sulfonate (LiC 4 F 9 S0 3 ), lithium fluorosulfonimide ( LiN(C x F 2x+1 S0 2 ) (C y F 2y+1 S0 2 ) (where x and y are less than 21 natural numbers) and lithosium (Lil).
锂盐在非水有机电解液中的终浓度不限, 通常为 0.5〜2.0mol/L。 优选地, 锂 盐在非水有机电解液中的终浓度为 0.7〜1.6mol/L。 锂盐终浓度优选在该范围内 时, 本发明实施例非水有机电解液能同时提供更好的锂离子电导率和锂离子迁 移率。  The final concentration of the lithium salt in the non-aqueous organic electrolyte is not limited and is usually 0.5 to 2.0 mol/L. Preferably, the final concentration of the lithium salt in the non-aqueous organic electrolyte is from 0.7 to 1.6 mol/L. When the final concentration of the lithium salt is preferably within this range, the non-aqueous organic electrolyte of the embodiment of the present invention can simultaneously provide better lithium ion conductivity and lithium ion mobility.
非水有机溶剂选自本领域常规的溶剂,可以为脂肪或环状的碳酸酯、醚、砜、 腈、离子液体及它们的衍生物中的一种或多种, 包括但不限于 Y - 丁内酯 (GBL)、 乙烯碳酸酯 (EC)、 碳酸二乙酯 (DEC)、 碳酸二曱酯 (DMC)、 碳酸亚乙烯酯 (VC)、 碳酸曱乙酯 (EMC)、 碳酸二丙酯 (DPC)、 碳酸曱丙酯 (MPC)、 丙烯碳酸酯 (PC)、 曱酸曱酯 (MF)、 丙烯酸曱酯 (MA)、 丁酸曱酯 (MB) 乙酸乙酯 (EP)、 亚硫酸乙烯 酯 (ES)、 亚硫酸丙烯酯 (PS)、 曱硫醚 (DMS)、 二乙基亚硫酸酯 (DES)、 四氢呋喃、 酸酐、 N-曱基吡咯烷酮、 N-曱基曱酰胺、 N-基乙酰胺、 乙腈、 N, N-二曱基曱 酰胺、 环丁砜、 二曱亚砜、 亚硫酸二曱酯以及其它含氟、 含硫或含不饱和键的 环状有机酯类。 The non-aqueous organic solvent is selected from solvents conventional in the art and may be one or more of aliphatic or cyclic carbonates, ethers, sulfones, nitriles, ionic liquids, and derivatives thereof, including but not limited to Y-butyl Lactone (GBL), ethylene carbonate (EC), diethyl carbonate (DEC), dinonyl carbonate (DMC), vinylene carbonate (VC), Ethyl carbonate (EMC), dipropyl carbonate (DPC), propyl propyl carbonate (MPC), propylene carbonate (PC), decyl decanoate (MF), decyl acrylate (MA), decyl butyrate (MB) ethyl acetate (EP), vinyl sulfite (ES), propylene sulfite (PS), sulfonium sulfide (DMS), diethyl sulfite (DES), tetrahydrofuran, anhydride, N-曱Pyrrolidone, N-mercaptocarboxamide, N-yl acetamide, acetonitrile, N, N-dimercaptoamide, sulfolane, disulfoxide, dinonyl sulfite and other fluorine-containing, sulfur-containing or non-containing A cyclic organic ester of a saturated bond.
优选地, 按质量分数计, 非水有机溶剂占非水有机电解液的 85%〜99.5%, 非水有机电解液添加剂占非水有机电解液的 0.5%〜15%。  Preferably, the non-aqueous organic solvent accounts for 85% to 99.5% of the non-aqueous organic electrolyte, and the non-aqueous organic electrolyte additive accounts for 0.5% to 15% of the non-aqueous organic electrolyte.
更优选地, 按质量分数计, 非水有机溶剂占非水有机电解液的 92%〜99%, 非水有机电解液添加剂占非水有机电解液的 1%〜8%。  More preferably, the non-aqueous organic solvent accounts for 92% to 99% of the non-aqueous organic electrolyte, and the non-aqueous organic electrolyte additive accounts for 1% to 8% of the non-aqueous organic electrolyte.
为了满足非水有机电解液在特定情形下的应用需求,优选地,本发明实施例 第二方面提供的一种非水有机电解液的制备方法中加入如式( I ) 所示的非水 有机电解液添加剂和 /或如式( II )所示的非水有机电解液添加剂之后, 还包括 加入功能助剂, 所述功能助剂选自循环添加剂、 高温添加剂、 阻燃添加剂和过 充添加剂中的一种或几种, 所述功能助剂包括但不限于碳酸亚乙烯酯(VC )、联 苯、环己基苯、 2 , 52二特丁基 21,42二曱氧基苯 (DDB)、噻吩、吩噻嗪、碳酸锂、 二氧化碳、 1 , 3丙磺酸内酯、 碳酸乙烯脂 (FEC)和四氟硼酸锂 (LiBF4)、 磷酸三曱 酯、 磷酸三乙酯、 磷酸三苯酯、 磷酸三丁酯和磷腈类化合物。 In order to meet the application requirements of the non-aqueous organic electrolyte in a specific situation, it is preferable to add a non-aqueous organic compound as shown in formula (I) to the preparation method of the non-aqueous organic electrolyte provided by the second aspect of the present invention. After the electrolyte additive and/or the non-aqueous organic electrolyte additive as shown in formula (II), further comprising adding a functional auxiliary agent selected from the group consisting of a cyclic additive, a high temperature additive, a flame retardant additive, and an overcharge additive One or more of the functional auxiliaries include, but are not limited to, vinylene carbonate (VC), biphenyl, cyclohexylbenzene, 2, 52 di-tert-butyl 21,42 didecyloxybenzene (DDB), Thiophene, phenothiazine, lithium carbonate, carbon dioxide, 1,3-propane sultone, ethylene carbonate (FEC) and lithium tetrafluoroborate (LiBF 4 ), tridecyl phosphate, triethyl phosphate, triphenyl phosphate , tributyl phosphate and phosphazene compounds.
优选地, 按质量分数计, 功能助剂占非水有机电解液的 0.1%〜15%。  Preferably, the functional additive accounts for 0.1% to 15% of the non-aqueous organic electrolyte by mass fraction.
本发明实施例第二方面提供的一种非水有机电解液的制备方法提供了一种 新的非水有机电解液, 该制备方法工艺简单。  A method for preparing a non-aqueous organic electrolyte provided by a second aspect of the present invention provides a novel non-aqueous organic electrolyte, and the preparation method is simple.
第三方面, 本发明实施例提供了一种锂离子二次电池, 包括: 正极、 负极、 隔膜、 壳体以及非水有机电解液, 所述非水有机电解液, 包括: 锂盐、 非水有 机溶剂、 以及如式 ( I ) 所示的非水有机电解液添加剂和 /或如式 ( II )所示的 非水有机电解液添加剂, In a third aspect, an embodiment of the present invention provides a lithium ion secondary battery, including: a positive electrode, a negative electrode, a separator, a casing, and a non-aqueous organic electrolyte, the non-aqueous organic electrolyte, including: lithium salt, non-aqueous Have a solvent, and a non-aqueous organic electrolyte additive as shown in formula (I) and/or a non-aqueous organic electrolyte additive as shown in formula (II),
Figure imgf000009_0001
( I ),
Figure imgf000009_0001
(I),
R5— 0― P— 0— P— 0— R8 R 5 — 0― P— 0— P— 0— R 8
I I  I I
0 0  0 0
1 I  1 I
R6 R7 式( II ), R 6 R 7 (II),
其中, R2、 R3、 、 R5、 R6、 R7和 R8为 Cr^ o的直链或支链烷基、 C^do 的烯烃基、 Cr^do的炔烃基或 C6〜C14的芳香基, 或者 Ri、 R2、 R3、 R4、 R5、 R6Wherein R 2 , R 3 , R 5 , R 6 , R 7 and R 8 are a straight or branched alkyl group of Cr^o, an alkene group of C^do, an alkyne group of Cr^do or C 6 〜 An aromatic group of C 14 or Ri, R 2 , R 3 , R 4 , R 5 , R 6 ,
R7和 R8为含有卤素的: Cr^do的直链或支链烷基、 Cu)的烯烃基、 CH^o的 炔烃基或 C6〜C14的芳香基。 R 7 and R 8 are halogen-containing: a straight or branched alkyl group of Cr^do, an alkene group of Cu), an alkyne group of CH^o or an aromatic group of C 6 to C 14 .
所述非水有机电解液如本发明实施例第一方面所述, 此处不再赘述。  The non-aqueous organic electrolyte is as described in the first aspect of the embodiment of the present invention, and details are not described herein again.
正极包括能嵌入或脱出锂离子的正极活性材料。优选地,所述正极活性材料 在 4.5V及 4.5V以上电压下在充放电脱嵌锂离子时具有高的脱嵌锂平台。 更优 选地, 所述正极活性材料为 LiMxMn x)04, 其中 M选自过渡金属 Ni、 Co和 Fe 中的一种或几种, 0 X 2。 以及更优选地, 所述正极活性材料为 xLi2Mn03( 1 -x)LiM02 , 其中 Μ选自过渡金属 Ni、 Co和 Mn中的一种或几种 , 0 x 1。 本发明实施例第三方面提供的一种锂离子二次电池的形式不限, 可以为方 形、 圓柱或软包电池, 无论是卷绕式还是叠片式, 该锂离子二次电池具有高能 量密度、 良好的循环性能和放电容量。 The positive electrode includes a positive active material capable of inserting or extracting lithium ions. Preferably, the positive active material has a high deintercalation lithium platform at a voltage of 4.5 V and above and above at the time of charge and discharge deintercalation of lithium ions. More preferably, the positive active material is LiM x Mn x )0 4 , wherein M is selected from one or more of transition metals Ni, Co and Fe, 0 X 2 . And more preferably, the positive active material is xLi 2 Mn0 3 ( 1 -x)LiM0 2 , wherein ruthenium is selected from one or more of transition metals Ni, Co and Mn, 0 x 1. The lithium ion secondary battery provided in the third aspect of the embodiment of the present invention is not limited in form, and may be a square, cylindrical or soft pack battery, and the lithium ion secondary battery has high energy whether it is wound or laminated. Density, good cycle performance and discharge capacity.
该锂离子二次电池的制备方法为: 将正极、 负极和隔膜制成电池极芯, 置于 壳体内, 注入所述非水有机电解液, 密封, 得到锂离子二次电池。 所述锂离子 二次电池的制备方法简易可行。 The lithium ion secondary battery is prepared by forming a positive electrode, a negative electrode and a separator into a battery core, placing the same in a casing, injecting the non-aqueous organic electrolyte, and sealing to obtain a lithium ion secondary battery. Lithium ion The preparation method of the secondary battery is simple and feasible.
本发明实施例的优点将会在下面的说明书中部分阐明  The advantages of the embodiments of the present invention will be partially explained in the following description.
o ,一部分根据说明书是 显而易见的,†或 o OR=—I者可以通过本发明实施例的实施而获知。  o, a part of which is apparent from the description, † or o OR = -I can be known by the implementation of the embodiments of the present invention.
o  o
具体实施方式 † R o o=— I DETAILED DESCRIPTION OF THE INVENTION † R o o=— I
o  o
以下所述是本发明实施例的 R优选实施方式,应当指出,对于本技术领域的普 通技术人员来说, 在不脱离本发明实施例原理的前提下, 还可以做出若干改进 和润饰, 这些改进和润饰也视为本发明实施例的保护范围。  The following is a preferred embodiment of the embodiment of the present invention, and it should be noted that those skilled in the art can make some improvements and refinements without departing from the principles of the embodiments of the present invention. Improvements and retouching are also considered to be the scope of protection of embodiments of the present invention.
本发明实施例第一方面提供了一种非水有机电解液, 用以解决现有技术中 的非水有机电解液在满充电高电压 (4.5V 以上电压) 电池体系中易与正极活性 材料发生副反应导致锂离子二次电池循环性能下降、 体积膨胀以及放电容量下 降的问题的问题, 该非水有机电解液在 4.9V左右高电压的工作环境中仍表现出 良好的循环性能。 本发明实施例第二方面提供了上述非水有机电解液的制备方 法。 本发明实施例第三方面提供了一种包含上述非水有机电解液的锂离子二次 电池, 该锂离子二次电池具有高能量密度。  The first aspect of the present invention provides a non-aqueous organic electrolyte for solving the problem that the non-aqueous organic electrolyte in the prior art is easily generated with the positive active material in a fully charged high voltage (voltage above 4.5V) battery system. The side reaction causes a problem of a decrease in cycle performance, volume expansion, and discharge capacity of the lithium ion secondary battery, and the non-aqueous organic electrolyte exhibits good cycle performance in a high-voltage working environment of about 4.9V. A second aspect of the embodiment of the present invention provides a method of producing the above nonaqueous organic electrolyte. A third aspect of the present invention provides a lithium ion secondary battery comprising the above nonaqueous organic electrolyte, the lithium ion secondary battery having a high energy density.
第一方面, 本发明实施例提供了一种非水有机电解液, 包括:  In a first aspect, an embodiment of the present invention provides a non-aqueous organic electrolyte, comprising:
锂盐;  Lithium salt
非水有机溶剂; 以及 非水有机电解液添加剂, 所述非水有机电解液添加剂为如式( I )所示的非 水有机电解液添加剂和 /或如式( II ) 所示的非水有机电解液添加剂,  a non-aqueous organic solvent; and a non-aqueous organic electrolyte additive, the non-aqueous organic electrolyte additive as shown in formula (I) and/or a non-aqueous organic compound as shown in formula (II) Electrolyte additive,
R R5— O― P— O— P— O— R8 R R 5 — O— P— O— P— O— R 8
I I  I I
0 o  0 o
1 I  1 I
R6 R7 式( II ), R 6 R 7 (II),
其中, R2、 R3、 R4、 R5、 R6、 R7和 R8为 C^do的直链或支链烷基、 C^do 的烯烃基、 Cr^do的炔烃基或 C6〜C14的芳香基, 或者 Ri、 R2、 R3、 R4、 R5、 R6Wherein R 2 , R 3 , R 4 , R 5 , R 6 , R 7 and R 8 are a linear or branched alkyl group of C^do, an alkene group of C^do, an alkyne group of Cr^do or C An aromatic group of 6 to C 14 or Ri, R 2 , R 3 , R 4 , R 5 , R 6 ,
R7和 R8为含有卤素的: Cr^do的直链或支链烷基、 Cu)的烯烃基、 Cr^do的 炔烃基或 C6〜C14的芳香基。 R 7 and R 8 are halogen-containing: a straight or branched alkyl group of Cr^do, an olefin group of Cu), an alkyne group of Cr^do or an aromatic group of C 6 to C 14 .
其中, 本发明实施例中的如式( I )所示的非水有机电解液添加剂为焦磷酸 酯的衍生物, 如式 ( II )所示的非水有机电解液添加剂为焦亚磷酸酯的衍生物。 、 R2、 R3和 R4可以为相同的结构, 也可以不同。 R5、 R6、 R7和 R8可以为相 同的结构, 也可以不同。 The non-aqueous organic electrolyte additive represented by the formula (I) in the embodiment of the present invention is a derivative of pyrophosphate, and the non-aqueous organic electrolyte additive represented by the formula (II) is pyrophosphite. derivative. R 2 , R 3 and R 4 may be the same structure or different. R 5 , R 6 , R 7 and R 8 may be the same structure or different.
如式( I )所示的非水有机电解液添加剂中 R2、 R3和 R4为曱基、 乙基、 三氟曱基、 三氟乙基、 全氟乙基、 苯基、 苄基、 部分或全氟取代苯基。 R2、 R3和 R4可以为相同的结构, 也可以不同。 In the non-aqueous organic electrolyte additive represented by the formula (I), R 2 , R 3 and R 4 are a mercapto group, an ethyl group, a trifluoromethyl group, a trifluoroethyl group, a perfluoroethyl group, a phenyl group, a benzyl group. , partial or perfluoro substituted phenyl. R 2 , R 3 and R 4 may be the same structure or different.
如式( II )所示的非水有机电解液添加剂中 R5、 R6、 R7和 R8为曱基、 乙基、 三氟曱基、 三氟乙基、 全氟乙基、 苯基、 苄基、 部分或全氟取代苯基。 R5、 R6、 R7和 R8可以为相同的结构, 也可以不同。 In the non-aqueous organic electrolyte additive represented by the formula (II), R 5 , R 6 , R 7 and R 8 are an indenyl group, an ethyl group, an ethyl trifluoromethyl group, a trifluoroethyl group, a perfluoroethyl group, a phenyl group. , benzyl, partially or perfluoro substituted phenyl. R 5 , R 6 , R 7 and R 8 may be the same structure or different.
锂盐作为载体,用以保证锂离子二次电池中锂离子的基本运行, 包括但不限 于六氟磷酸锂 (LiPF6)、 高氯酸锂 (LiC104)、 四氟硼酸锂 (LiBF4)、 六氟砷酸锂 (LiAsF6)、 六氟硅酸锂 (LiSiF6)、 四苯基硼酸锂 (LiB(C6¾)4)、 氯化锂 (LiCl)、 溴化 锂(LiBr)、 氯铝酸锂(LiAlCl4)、 双草酸硼酸锂(LiBOB)、 三氟曱基磺酸锂 (LiCF3S03)、 全氟丁基磺酸锂 (LiC4F9S03)、 氟代磺酰亚胺锂 (LiN(CxF2x+1S02) (CyF2y+1S02)( 式中 x和 y为小于 21 自然数)和楼化锂 (Lil)。 Lithium salt is used as a carrier to ensure the basic operation of lithium ions in lithium ion secondary batteries, including but not limited to lithium hexafluorophosphate (LiPF 6 ), lithium perchlorate (LiC10 4 ), lithium tetrafluoroborate (LiBF 4 ), hexafluoride Lithium arsenate (LiAsF 6 ), lithium hexafluorosilicate (LiSiF 6 ), lithium tetraphenylborate (LiB(C 6 3⁄4 ) 4 ), lithium chloride (LiCl), lithium bromide (LiBr), lithium chloroaluminate ( LiAlCl 4 ), lithium bis(oxalate)borate (LiBOB), lithium trifluoromethanesulfonate (LiCF 3 S0 3 ), lithium perfluorobutyl sulfonate (LiC 4 F 9 S0 3 ), lithium fluorosulfonimide ( LiN(C x F 2x+1 S0 2 ) (C y F 2y+1 S0 2 ) (where x and y are less than 21 natural numbers) and lithosium (Lil).
锂盐在非水有机电解液中的终浓度不限,通常为 0.5〜2.0mol/L。具体可以为, 锂盐在非水有机电解液中的终浓度为 0.7〜1.6mol/L。锂盐终浓度优选在该范围内 时, 本发明实施例非水有机电解液能同时提供更好的锂离子电导率和锂离子迁 移率。 The final concentration of the lithium salt in the non-aqueous organic electrolyte is not limited and is usually from 0.5 to 2.0 mol/L. Specifically, The final concentration of the lithium salt in the non-aqueous organic electrolyte is 0.7 to 1.6 mol/L. When the final concentration of the lithium salt is preferably within this range, the non-aqueous organic electrolyte of the embodiment of the present invention can simultaneously provide better lithium ion conductivity and lithium ion mobility.
非水有机溶剂选自本领域常规的溶剂,可以为脂肪或环状的碳酸酯、醚、砜、 腈、离子液体及它们的衍生物中的一种或多种, 包括但不限于 Y - 丁内酯 (GBL)、 乙烯碳酸酯 (EC)、 碳酸二乙酯 (DEC)、 碳酸二曱酯 (DMC)、 碳酸亚乙烯酯 (VC)、 碳酸曱乙酯 (EMC)、 碳酸二丙酯 (DPC)、 碳酸曱丙酯 (MPC)、 丙烯碳酸酯 (PC)、 曱酸曱酯 (MF)、 丙烯酸曱酯 (MA)、 丁酸曱酯 (MB) 乙酸乙酯 (EP)、 亚硫酸乙烯 酯 (ES)、 亚硫酸丙烯酯 (PS)、 曱硫醚 (DMS)、 二乙基亚硫酸酯 (DES)、 四氢呋喃、 酸酐、 N-曱基吡咯烷酮、 N-曱基曱酰胺、 N-基乙酰胺、 乙腈、 N, N-二曱基曱 酰胺、 环丁砜、 二曱亚砜、 亚硫酸二曱酯以及其它含氟、 含硫或含不饱和键的 环状有机酯类。  The non-aqueous organic solvent is selected from solvents conventional in the art and may be one or more of aliphatic or cyclic carbonates, ethers, sulfones, nitriles, ionic liquids, and derivatives thereof, including but not limited to Y-butyl Lactone (GBL), ethylene carbonate (EC), diethyl carbonate (DEC), dinonyl carbonate (DMC), vinylene carbonate (VC), ethyl cerium carbonate (EMC), dipropyl carbonate ( DPC), propyl propyl carbonate (MPC), propylene carbonate (PC), decyl decanoate (MF), decyl acrylate (MA), decyl butyrate (MB) ethyl acetate (EP), ethylene sulfite Ester (ES), propylene sulfite (PS), sulfonium sulfide (DMS), diethyl sulfite (DES), tetrahydrofuran, acid anhydride, N-mercaptopyrrolidone, N-mercaptocarboxamide, N-based Acetamide, acetonitrile, N, N-dimercaptoamide, sulfolane, disulfoxide, dinonyl sulfite, and other fluorine-containing, sulfur-containing or unsaturated bond-containing cyclic organic esters.
按质量分数计, 非水有机溶剂占非水有机电解液的 85%〜99.5%, 非水有机 电解液添加剂占非水有机电解液的 0.5%〜15%。 具体地, 按质量分数计, 非水有 机溶剂占非水有机电解液的 92%〜99%, 非水有机电解液添加剂占非水有机电解 液的 1%〜8%。  According to the mass fraction, the non-aqueous organic solvent accounts for 85% to 99.5% of the non-aqueous organic electrolyte, and the non-aqueous organic electrolyte additive accounts for 0.5% to 15% of the non-aqueous organic electrolyte. Specifically, the non-aqueous organic solvent accounts for 92% to 99% of the non-aqueous organic electrolyte, and the non-aqueous organic electrolyte additive accounts for 1% to 8% of the non-aqueous organic electrolytic solution.
为了满足非水有机电解液在特定情形下的应用需求,非水有机电解液还可以 包括功能助剂, 所述功能助剂选自循环添加剂、 高温添加剂、 阻燃添加剂和过 充添加剂中的一种或几种。 所述功能助剂包括但不限于碳酸亚乙烯酯(VC )、联 苯、环己基苯、 2 , 52二特丁基 21,42二曱氧基苯 (DDB)、噻吩、吩噻嗪、碳酸锂、 二氧化碳、 1 , 3丙磺酸内酯(PS )、 碳酸乙烯脂 (FEC)和四氟硼酸锂 (LiBF4)、 磷 酸三曱酯、 磷酸三乙酯、 磷酸三苯酯、 磷酸三丁酯和磷腈类化合物。 In order to meet the application requirements of the non-aqueous organic electrolyte in a specific situation, the non-aqueous organic electrolyte may further include a functional auxiliary agent selected from the group consisting of a cyclic additive, a high-temperature additive, a flame retardant additive, and an overcharge additive. Kind or several. The functional auxiliaries include, but are not limited to, vinylene carbonate (VC), biphenyl, cyclohexylbenzene, 2, 52 di-tert-butyl 21,42 didecyloxybenzene (DDB), thiophene, phenothiazine, carbonic acid Lithium, carbon dioxide, 1,3 propane lactone (PS), ethylene carbonate (FEC) and lithium tetrafluoroborate (LiBF 4 ), tridecyl phosphate, triethyl phosphate, triphenyl phosphate, tributyl phosphate Ester and phosphazene compounds.
按质量分数计, 功能助剂占非水有机电解液的 0.1%〜15%。 本发明实施例第一方面提供的一种非水有机电解液可在满充电高电压 ( 4.5V以上电压)的工作环境中使用, 具有优异的化学稳定性和电化学稳定性, 可避免高电压下 o OR=——I锂 _, 离子二次电池产气膨胀的现象, 以及提高高电压下锂离子二 o According to the mass fraction, the functional additives account for 0.1% to 15% of the non-aqueous organic electrolyte. The non-aqueous organic electrolyte provided by the first aspect of the present invention can be used in a working environment of full charge high voltage (voltage above 4.5V), has excellent chemical stability and electrochemical stability, and can avoid high voltage. Under o OR=——I Lithium_, the phenomenon of gas expansion of ion secondary batteries, and the increase of lithium ion at high voltage
次电池的循环性能和放电容量。 该非水有机电解液在 4.9V左右高电压的工作环The cycle performance and discharge capacity of the secondary battery. The non-aqueous organic electrolyte is operated at a high voltage of about 4.9V.
† R 。 o= I I  † R . o= I I
境中仍表现出良好的循环性能。 这可能是因为: 锂离子二次电池在充电过程中, 正负极电位差不断升高, 当该电位差达到 4.5V及 4.5V以上时, 非水有机电解 液中的如式( I ) 所示的非水有机电解液添加剂和 /或如式( II ) 所示的非水有 机电解液添加剂的部分磷氧键断裂, 部分含磷的片段同非水有机溶剂或锂盐被 氧化分解所形成的产物相互作用而在正极活性材料表面形成电子不导电、 离子 导电的含有磷元素的表面膜, 覆盖正极活性材料表面的活性位点, 阻断正极活 性材料表面上活性位点与非水有机电解液的直接接触, 减少正极活性材料对非 水有机电解液的氧化作用, 从而提高高电压下锂离子二次电池的循环性能, 以 及避免锂离子二次电池体积膨胀以及放电容量下降的情况。 第二方面,本发明实施例提供了一种非水有机电解液的制备方法, 包括以下 步骤: 将锂盐溶于非水有机溶剂中, 加入如式( I )所示的非水有机电解液添加剂 和 /或如式 ( II )所示的非水有机电解液添加剂, 搅拌, 制得非水有机电解液, It still shows good cycle performance in the environment. This may be because: During the charging process of the lithium ion secondary battery, the potential difference between the positive and negative electrodes is continuously increased. When the potential difference reaches 4.5V and 4.5V or higher, the non-aqueous organic electrolyte is in the formula (I). The non-aqueous organic electrolyte additive and/or the non-aqueous organic electrolyte additive as shown in formula (II) are partially broken by phosphorus-oxygen bonds, and some of the phosphorus-containing fragments are formed by oxidative decomposition of a non-aqueous organic solvent or a lithium salt. The product interacts to form an electron-conducting, ion-conducting surface film containing phosphorus on the surface of the positive electrode active material, covering the active site on the surface of the positive electrode active material, blocking the active site on the surface of the positive electrode active material and non-aqueous organic electrolysis The direct contact of the liquid reduces the oxidation of the positive electrode active material to the non-aqueous organic electrolyte, thereby improving the cycle performance of the lithium ion secondary battery at a high voltage, and avoiding the volume expansion of the lithium ion secondary battery and the decrease in the discharge capacity. In a second aspect, an embodiment of the present invention provides a method for preparing a non-aqueous organic electrolyte, comprising the steps of: dissolving a lithium salt in a non-aqueous organic solvent, and adding a non-aqueous organic electrolyte as shown in formula (I) Adding an additive and/or a non-aqueous organic electrolyte additive as shown in formula (II) to a non-aqueous organic electrolyte,
R — 0— R4 R — 0 — R 4
3 式( I ), 3 (I),
R5— 0― P— 0— P— 0— R8 R 5 — 0― P— 0— P— 0— R 8
I I  I I
0 0  0 0
1 I  1 I
R6 R7 式( II ), R 6 R 7 (II),
其中, R2、 R3、 R4、 R5、 R6、 R7和 R8为 Cr^do的直链或支链烷基、 C^do 的烯烃基、 Cr^do的炔烃基或 C6〜C14的芳香基, 或者 Ri、 R2、 R3、 R4、 R5、 R6、 R7和 R8为含有卤素的: Cr^do的直链或支链烷基、 Cu)的烯烃基、 Cr^do的 炔烃基或 C6〜C14的芳香基。 Wherein R 2 , R 3 , R 4 , R 5 , R 6 , R 7 and R 8 are a straight or branched alkyl group of Cr^do, C^do Alkenyl group, Cr^do alkyne group or C 6 -C 14 aromatic group, or Ri, R 2 , R 3 , R 4 , R 5 , R 6 , R 7 and R 8 are halogen-containing: Cr^ a linear or branched alkyl group of do, an alkene group of Cu), an alkyne group of Cr^do or an aromatic group of C 6 to C 14 .
如式( I )所示的非水有机电解液添加剂中 R2、 R3和 R4为曱基、 乙基、 三氟曱基、 三氟乙基、 全氟乙基、 苯基、 苄基、 部分或全氟取代苯基。 R2、 R3和 R4可以为相同的结构, 也可以不同。 In the non-aqueous organic electrolyte additive represented by the formula (I), R 2 , R 3 and R 4 are a mercapto group, an ethyl group, a trifluoromethyl group, a trifluoroethyl group, a perfluoroethyl group, a phenyl group, a benzyl group. , partial or perfluoro substituted phenyl. R 2 , R 3 and R 4 may be the same structure or different.
如式( II )所示的非水有机电解液添加剂中 R5、 R6、 R7和 R8为曱基、 乙基、 三氟曱基、 三氟乙基、 全氟乙基、 苯基、 苄基、 部分或全氟取代苯基。 R5、 R6、 R7和 R8可以为相同的结构, 也可以不同。 In the non-aqueous organic electrolyte additive represented by the formula (II), R 5 , R 6 , R 7 and R 8 are an indenyl group, an ethyl group, an ethyl trifluoromethyl group, a trifluoroethyl group, a perfluoroethyl group, a phenyl group. , benzyl, partially or perfluoro substituted phenyl. R 5 , R 6 , R 7 and R 8 may be the same structure or different.
所述非水有机电解液的制备方法在充满氩气的手套箱中进行。  The preparation method of the non-aqueous organic electrolyte is carried out in an argon-filled glove box.
将锂盐溶于非水有机溶剂的过程中进行搅拌, 控制温度为 20〜35°C。 在该优 选温度范围内, 既能避免非水有机溶剂挥发以及避免锂盐的分解, 又能避免因 温度过低导致非水有机溶剂凝固而影响锂盐溶解的情况发生。  The lithium salt is dissolved in a non-aqueous organic solvent and the temperature is controlled at 20 to 35 °C. In this preferred temperature range, it is possible to avoid the volatilization of the non-aqueous organic solvent and to avoid the decomposition of the lithium salt, and to prevent the dissolution of the lithium salt due to the freezing of the non-aqueous organic solvent due to the low temperature.
锂盐作为载体,用以保证锂离子二次电池中锂离子的基本运行, 包括但不限 于六氟磷酸锂 (LiPF6)、 高氯酸锂 (LiC104)、 四氟硼酸锂 (LiBF4)、 六氟砷酸锂 (LiAsF6)、 六氟硅酸锂 (LiSiF6)、 四苯基硼酸锂 (LiB(C6¾)4)、 氯化锂 (LiCl)、 溴化 锂(LiBr)、 氯铝酸锂(LiAlCl4)、 双草酸硼酸锂(LiBOB)、 三氟曱基磺酸锂 (LiCF3S03)、 全氟丁基磺酸锂 (LiC4F9S03)、 氟代磺酰亚胺锂 (LiN(CxF2x+1S02) (CyF2y+1S02)( 式中 x和 y为小于 21 自然数)和楼化锂 (Lil)。 Lithium salt is used as a carrier to ensure the basic operation of lithium ions in lithium ion secondary batteries, including but not limited to lithium hexafluorophosphate (LiPF 6 ), lithium perchlorate (LiC10 4 ), lithium tetrafluoroborate (LiBF 4 ), hexafluoride Lithium arsenate (LiAsF 6 ), lithium hexafluorosilicate (LiSiF 6 ), lithium tetraphenylborate (LiB(C 6 3⁄4 ) 4 ), lithium chloride (LiCl), lithium bromide (LiBr), lithium chloroaluminate ( LiAlCl 4 ), lithium bis(oxalate)borate (LiBOB), lithium trifluoromethanesulfonate (LiCF 3 S0 3 ), lithium perfluorobutyl sulfonate (LiC 4 F 9 S0 3 ), lithium fluorosulfonimide ( LiN(C x F 2x+1 S0 2 ) (C y F 2y+1 S0 2 ) (where x and y are less than 21 natural numbers) and lithosium (Lil).
锂盐在非水有机电解液中的终浓度不限,通常为 0.5〜2.0mol/L。具体可以为, 锂盐在非水有机电解液中的终浓度为 0.7〜1.6mol/L。锂盐终浓度优选在该范围内 时, 本发明实施例非水有机电解液能同时提供更好的锂离子电导率和锂离子迁 移率。 非水有机溶剂选自本领域常规的溶剂,可以为脂肪或环状的碳酸酯、醚、砜、 腈、离子液体及它们的衍生物中的一种或多种, 包括但不限于 Y - 丁内酯 (GBL)、 乙烯碳酸酯 (EC)、 碳酸二乙酯 (DEC)、 碳酸二曱酯 (DMC)、 碳酸亚乙烯酯 (VC)、 碳酸曱乙酯 (EMC)、 碳酸二丙酯 (DPC)、 碳酸曱丙酯 (MPC)、 丙烯碳酸酯 (PC)、 曱酸曱酯 (MF)、 丙烯酸曱酯 (MA)、 丁酸曱酯 (MB) 乙酸乙酯 (EP)、 亚硫酸乙烯 酯 (ES)、 亚硫酸丙烯酯 (PS)、 曱硫醚 (DMS)、 二乙基亚硫酸酯 (DES)、 四氢呋喃、 酸酐、 N-曱基吡咯烷酮、 N-曱基曱酰胺、 N-基乙酰胺、 乙腈、 N, N-二曱基曱 酰胺、 环丁砜、 二曱亚砜、 亚硫酸二曱酯以及其它含氟、 含硫或含不饱和键的 环状有机酯类。 The final concentration of the lithium salt in the non-aqueous organic electrolyte is not limited and is usually from 0.5 to 2.0 mol/L. Specifically, the final concentration of the lithium salt in the non-aqueous organic electrolyte is 0.7 to 1.6 mol/L. When the final concentration of the lithium salt is preferably within this range, the non-aqueous organic electrolyte of the embodiment of the present invention can simultaneously provide better lithium ion conductivity and lithium ion mobility. The non-aqueous organic solvent is selected from solvents conventional in the art and may be one or more of aliphatic or cyclic carbonates, ethers, sulfones, nitriles, ionic liquids, and derivatives thereof, including but not limited to Y-butyl Lactone (GBL), ethylene carbonate (EC), diethyl carbonate (DEC), dinonyl carbonate (DMC), vinylene carbonate (VC), ethyl cerium carbonate (EMC), dipropyl carbonate ( DPC), propyl propyl carbonate (MPC), propylene carbonate (PC), decyl decanoate (MF), decyl acrylate (MA), decyl butyrate (MB) ethyl acetate (EP), ethylene sulfite Ester (ES), propylene sulfite (PS), sulfonium sulfide (DMS), diethyl sulfite (DES), tetrahydrofuran, acid anhydride, N-mercaptopyrrolidone, N-mercaptocarboxamide, N-based Acetamide, acetonitrile, N, N-dimercaptoamide, sulfolane, disulfoxide, dinonyl sulfite, and other fluorine-containing, sulfur-containing or unsaturated bond-containing cyclic organic esters.
按质量分数计, 非水有机溶剂占非水有机电解液的 85%〜99.5%, 非水有机 电解液添加剂占非水有机电解液的 0.5%〜15%。 具体地, 按质量分数计, 非水有 机溶剂占非水有机电解液的 92%〜99%, 非水有机电解液添加剂占非水有机电解 液的 1%〜8%。  According to the mass fraction, the non-aqueous organic solvent accounts for 85% to 99.5% of the non-aqueous organic electrolyte, and the non-aqueous organic electrolyte additive accounts for 0.5% to 15% of the non-aqueous organic electrolyte. Specifically, the non-aqueous organic solvent accounts for 92% to 99% of the non-aqueous organic electrolyte, and the non-aqueous organic electrolyte additive accounts for 1% to 8% of the non-aqueous organic electrolytic solution.
为了满足非水有机电解液在特定情形下的应用需求,本发明实施例第二方面 提供的一种非水有机电解液的制备方法中加入如式( I ) 所示的非水有机电解 液添加剂和 /或如式( II )所示的非水有机电解液添加剂之后, 还包括加入功能 助剂, 所述功能助剂选自循环添加剂、 高温添加剂、 阻燃添加剂和过充添加剂 中的一种或几种, 所述功能助剂包括但不限于碳酸亚乙烯酯(VC )、 联苯、 环己 基苯、 2 , 52二特丁基 21,42二曱氧基苯 (DDB)、 噻吩、 。分噻嗪、 碳酸锂、 二氧化 碳、 1 , 3丙磺酸内酯、 碳酸乙烯脂 (FEC)和四氟硼酸锂 (LiBF4)、 磷酸三曱酯、 磷 酸三乙酯、 磷酸三苯酯、 磷酸三丁酯和磷腈类化合物。 In order to meet the application requirements of the non-aqueous organic electrolyte in a specific situation, the non-aqueous organic electrolyte additive represented by the formula (I) is added to the preparation method of the non-aqueous organic electrolyte provided by the second aspect of the present invention. And/or after the non-aqueous organic electrolyte additive as shown in formula (II), further comprising adding a functional auxiliary agent selected from the group consisting of a cyclic additive, a high temperature additive, a flame retardant additive, and an overcharge additive. Or several, the functional auxiliaries include, but are not limited to, vinylene carbonate (VC), biphenyl, cyclohexylbenzene, 2, 52 di-tert-butyl 21,42 didecyloxybenzene (DDB), thiophene, . Dithiazine, lithium carbonate, carbon dioxide, 1,3-propane sultone, ethylene carbonate (FEC) and lithium tetrafluoroborate (LiBF 4 ), tridecyl phosphate, triethyl phosphate, triphenyl phosphate, phosphoric acid Tributyl ester and phosphazene compounds.
按质量分数计, 功能助剂占非水有机电解液的 0.1%〜15%。  According to the mass fraction, the functional additives account for 0.1% to 15% of the non-aqueous organic electrolyte.
本发明实施例第二方面提供的一种非水有机电解液的制备方法提供了一种 新的非水有机电解液, 该制备方法工艺简单。 第三方面, 本发明实施例提供了一种锂离子二次电池, 包括: 正极、 负极、 o A method for preparing a non-aqueous organic electrolyte provided by a second aspect of the present invention provides a method The new non-aqueous organic electrolyte has a simple process. In a third aspect, an embodiment of the present invention provides a lithium ion secondary battery, including: a positive electrode, a negative electrode, and o
隔膜、 壳体以†及 o OR= II非 _水有机电解液, 所述非水有机电解液, 包括: 锂盐、 非水有 o The separator, the shell and the OR OR II non-aqueous organic electrolyte, the non-aqueous organic electrolyte, including: lithium salt, non-aqueous o
机溶剂、 以及如式( I ) 所示的非水有机电解液添加剂和 /或如式( II )所示的a solvent, and a non-aqueous organic electrolyte additive as shown in formula (I) and/or as shown in formula (II)
† R 。 o= I I  † R . o= I I
非水有机电解液添加剂, Non-aqueous organic electrolyte additive,
R — 0— R4 R — 0 — R 4
3 式( I ), 3 (I),
R5— 0― P— 0— P— 0— R8 R 5 — 0― P— 0— P— 0— R 8
I I  I I
0 0  0 0
1 I  1 I
R6 R7 式( II ), R 6 R 7 (II),
其中, R2、 R3、 、 R5、 R6、 R7和 R8为 C^ Q的直链或支链烷基、 C^do 的烯烃基、 Cr^do的炔烃基或 C6〜C14的芳香基, 或者 Ri、 R2、 R3、 R4、 R5、 R6Wherein R 2 , R 3 , R 5 , R 6 , R 7 and R 8 are a linear or branched alkyl group of C^Q, an alkene group of C^do, an alkyne group of Cr^do or C 6 〜 An aromatic group of C 14 or Ri, R 2 , R 3 , R 4 , R 5 , R 6 ,
R7和 R8为含有卤素的: Cr^do的直链或支链烷基、 Cu)的烯烃基、 CH^o的 炔烃基或 C6〜C14的芳香基。 所述非水有机电解液如本发明实施例第一方面所述, 此处不再赘述。 正极包括能嵌入或脱出锂离子的正极活性材料。 所述正极活性材料在 4.5V 及 4.5V以上电压下在充放电脱嵌锂离子时具有高的脱嵌锂平台。 所述正极活性 材料可以为 LiMxMn^x)04,其中 M选自过渡金属 Ni、 Co和 Fe中的一种或几种, R 7 and R 8 are halogen-containing: a straight or branched alkyl group of Cr^do, an alkene group of Cu), an alkyne group of CH^o or an aromatic group of C 6 to C 14 . The non-aqueous organic electrolyte is as described in the first aspect of the embodiment of the present invention, and details are not described herein again. The positive electrode includes a positive active material capable of inserting or extracting lithium ions. The positive active material has a high deintercalation lithium platform at a voltage of 4.5 V and 4.5 V or higher during charge and discharge deintercalation of lithium ions. The positive active material may be LiM x Mn^ x )0 4 , wherein M is selected from one or more of transition metals Ni, Co, and Fe.
0 X 2。 以及, 所述正极活性材料可以为 xLi2Mn03( 1 -x)LiM02 , 其中 Μ选自 过渡金属 Ni、 Co和 Mn中的一种或几种, 0 χ 1。 本发明实施例第三方面提供的一种锂离子二次电池的形式不限, 可以为方 形、 圓柱或软包电池, 无论是卷绕式还是叠片式, 该锂离子二次电池具有高能 量密度、 良好的循环性能和放电容量。 该锂离子二次电池的制备方法为: 将正极、 负极和隔膜制成电池极芯, 置于 壳体内, 注入所述非水有机电解液, 密封, 得到锂离子二次电池。 所述锂离子 二次电池的制备方法简易可行。 0 X 2. And, the positive active material may be xLi 2 Mn0 3 ( 1 -x)LiM0 2 , wherein ruthenium is selected from one or more of transition metals Ni, Co, and Mn, 0 χ 1. The lithium ion secondary battery provided in the third aspect of the embodiment of the present invention is not limited in form, and may be a square, cylindrical or soft pack battery, and the lithium ion secondary battery has high energy whether it is wound or laminated. Density, good cycle performance and discharge capacity. The lithium ion secondary battery is prepared by forming a positive electrode, a negative electrode and a separator into a battery core, placing the same in a casing, injecting the non-aqueous organic electrolyte, and sealing to obtain a lithium ion secondary battery. The preparation method of the lithium ion secondary battery is simple and feasible.
实施例一  Embodiment 1
一种非水有机电解液的制备方法, 包括以下步骤:  A method for preparing a non-aqueous organic electrolyte, comprising the steps of:
向搅拌器中加入 500克碳酸乙烯酯(EC )和 500克碳酸曱乙酯(EMC ) 混 合配成非水有机溶剂, 将 125克锂盐 LiPF6溶于非水有机溶剂中, 搅拌, 搅拌温 度为 28 °C ; Add 500 g of ethylene carbonate (EC) and 500 g of cesium carbonate (EMC) to the stirrer to form a non-aqueous organic solvent, and dissolve 125 g of lithium salt LiPF 6 in a non-aqueous organic solvent, stir, and stir. 28 ° C ;
加入从北京嘉盛扬医药科技有限公司购得的纯度为 99.5%如式 I a所示的非 水有机电解液添加剂焦磷酸四 (三氟曱基) 酯 5.65克, 搅拌, 制得非水有机电 解液 A, 按质量分数计, 非水有机电解液添加剂 I a占非水有机电解液的 0.5%。 Add 5.65 g of tetrakis(trifluorodecyl) pyrophosphate, a non-aqueous organic electrolyte additive as shown in Formula Ia, obtained from Beijing Jiashengyang Pharmaceutical Technology Co., Ltd., and stir to obtain a non-aqueous organic The electrolyte A, based on the mass fraction, the non-aqueous organic electrolyte additive I a accounts for 0.5% of the non-aqueous organic electrolyte.
Figure imgf000017_0001
Figure imgf000017_0001
下面以方形卷绕式锂离子二次软包电池(型号为 423450-800mAh ) 的制作 为例, 对本发明实施例锂离子二次电池的制备方法进行说明。  Hereinafter, a method for preparing a lithium ion secondary battery according to an embodiment of the present invention will be described by taking a production of a square-wound lithium ion secondary soft pack battery (model number 423450-800 mAh) as an example.
正极片的制备  Preparation of positive electrode sheet
将正极活性材料 LiNi sMn C 导电剂乙炔黑和粘结剂 PVDF粉末材料按 照质量比 80:10: 10进行混合, 然后加入 N-曱基吡咯烷酮(NMP )溶液, 在真空 搅拌机中搅拌 2h,制备成油系浆料,最后将浆料涂覆在铝集流体两面,经过 110°C 烘干, 辊轧, 制成锂离子二次电池正极片。  The positive active material LiNi sMn C conductive agent acetylene black and the binder PVDF powder material were mixed at a mass ratio of 80:10:10, and then N-decylpyrrolidone (NMP) solution was added and stirred in a vacuum mixer for 2 hours to prepare a solution. The oil-based slurry is finally coated on both sides of the aluminum current collector, dried at 110 ° C, and rolled to form a positive electrode sheet of a lithium ion secondary battery.
负极片的制备  Preparation of negative electrode sheets
将负极活性材料人造石墨粉末、 粘结剂羧曱基纤维素(CMC )、 粘结剂苯乙 烯丁二烯橡胶 ( SBR )乳液按照质量比 100:3:2进行混合, 然后加入去离子水制 备成水系负极浆料, 最后将浆料涂覆在铜集流体两面, 制成锂离子二次电池负 极片, 负极片容量设计为正极片容量的 1.2倍。 Anode active material artificial graphite powder, binder carboxymethyl cellulose (CMC), binder styrene The styrene-butadiene rubber (SBR) emulsion is mixed at a mass ratio of 100:3:2, and then deionized water is added to prepare an aqueous negative electrode slurry, and finally the slurry is coated on both sides of the copper current collector to prepare lithium ions twice. The battery negative electrode, the negative electrode capacity is designed to be 1.2 times the capacity of the positive electrode.
非水有机电解液采用本实施例制得的非水有机电解液 A。  As the non-aqueous organic electrolyte, the non-aqueous organic electrolyte A obtained in the present example was used.
锂离子二次电池的制作  Production of lithium ion secondary battery
将聚丙烯和聚乙烯组成的复合隔膜放入上述制备的正极极片和负极极片之 间, 如三明治结构, 然后一起卷制成 423450方型电池极芯, 最后完成方形卷绕 软包电池, 最后注入非水有机电解液 A, 得到锂离子二次电池 A。  A composite separator composed of polypropylene and polyethylene is placed between the positive electrode tab and the negative electrode tab prepared above, such as a sandwich structure, and then rolled together into a 423450 square battery pole core, and finally a square-wound soft pack battery is completed. Finally, the nonaqueous organic electrolyte A was injected to obtain a lithium ion secondary battery A.
对于锂离子二次电池,无论是方形还是圓柱或软包电池,也无论是卷绕式还 是叠片式, 采用上述锂离子二次电池制备方法都能取得相同的效果。  For the lithium ion secondary battery, whether it is a square or a cylindrical or soft pack battery, whether it is a wound type or a laminated type, the same effect can be obtained by the above-described lithium ion secondary battery preparation method.
实施例二  Embodiment 2
一种非水有机电解液的制备方法, 包括以下步骤:  A method for preparing a non-aqueous organic electrolyte, comprising the steps of:
向搅拌器中加入 500克碳酸乙烯酯 (EC )、 1000克碳酸二曱酯(DMC )和 500克碳酸二乙酯(DEC ) 混合配成非水有机溶剂, 将 250克锂盐 LiC104溶于 非水有机溶剂中, 搅拌, 搅拌温度为 20°C ; 500 g of ethylene carbonate (EC), 1000 g of dinonyl carbonate (DMC) and 500 g of diethyl carbonate (DEC) were added to the stirrer to form a non-aqueous organic solvent, and 250 g of lithium salt LiC10 4 was dissolved. In a non-aqueous organic solvent, stirring, stirring temperature is 20 ° C;
加入从北京嘉盛扬医药科技有限公司购得的纯度为 99.5%如式 I b所示的非 水有机电解液添加剂焦磷酸四苄酯 22.73克, 搅拌, 制得非水有机电解液 B, 按 质量分数计, 非水有机电解液添加剂 l b占非水有机电解液的 1%。 Adding 22.73 g of tetrabenzyl pyrophosphate, a non-aqueous organic electrolyte additive as shown in Formula Ib, obtained from Beijing Jiashengyang Pharmaceutical Technology Co., Ltd., and stirring, to obtain a non-aqueous organic electrolyte B, The mass fraction, the non-aqueous organic electrolyte additive lb accounts for 1% of the non-aqueous organic electrolyte.
Figure imgf000018_0001
Figure imgf000018_0001
下面以方形卷绕式锂离子二次软包电池(型号为 423450-800mAh ) 的制作 为例, 对本发明实施例锂离子二次电池的制备方法进行说明。 The following is a square-wound lithium ion secondary soft pack battery (model number is 423450-800mAh). As an example, a method of preparing a lithium ion secondary battery according to an embodiment of the present invention will be described.
正极片的制备  Preparation of positive electrode sheet
将正极活性材料 LiNi sMn C 导电剂炭黑粉末和粘结剂 PVDF粉末材料 按照质量比 85:10:5进行混合, 然后加入 N-曱基吡咯烷酮 (NMP )溶液, 在真 空搅拌机中搅拌 2h, 制备成油系浆料, 最后将浆料涂覆在铝集流体两面, 经过 110°C烘干, 辊轧, 制成锂离子二次电池正极片。  The positive active material LiNi sMn C conductive agent carbon black powder and the binder PVDF powder material were mixed at a mass ratio of 85:10:5, and then N-decylpyrrolidone (NMP) solution was added and stirred in a vacuum mixer for 2 hours. The oil-based slurry is finally coated on both sides of the aluminum current collector, dried at 110 ° C, and rolled to form a positive electrode sheet of a lithium ion secondary battery.
非水有机电解液采用本实施例制得的非水有机电解液 B,其它按同实施例一 的锂离子二次电池的制作方法, 制得锂离子二次电池 B。  The non-aqueous organic electrolyte B was prepared by using the non-aqueous organic electrolyte B obtained in the present example, and the lithium ion secondary battery B was obtained by the same method as the lithium ion secondary battery of the first embodiment.
实施例三  Embodiment 3
一种非水有机电解液的制备方法, 包括以下步骤:  A method for preparing a non-aqueous organic electrolyte, comprising the steps of:
向搅拌器中加入 500克碳酸乙烯酯 (EC )和 500克碳酸二乙酯(DEC ) 混 合配成非水有机溶剂, 将 200克锂盐四苯基硼酸锂 LiB(C6¾)4于非水有机溶剂 中, 搅拌, 搅拌温度为 25 °C ; Add 500 g of ethylene carbonate (EC) and 500 g of diethyl carbonate (DEC) to a stirrer to form a non-aqueous organic solvent, and 200 g of lithium salt tetraphenylborate LiB (C 6 3⁄4 ) 4 In aqueous organic solvent, stir and stir at 25 °C;
加入从北京斯旺达康科贸有限公司购得的纯度为 99.5%如式 I c所示的非水 有机电解液添加剂焦磷酸四乙酯 104.35克, 搅拌, 制得非水有机电解液 C, 按 质量分数计, 非水有机电解液添加剂 I c占非水有机电解液的 8%。  Adding 104.35 g of tetraethyl pyrophosphate, a non-aqueous organic electrolyte additive as shown in Formula Ic, obtained from Beijing Swanda Kangkee Co., Ltd., and stirring, to obtain a non-aqueous organic electrolyte C, The non-aqueous organic electrolyte additive I c accounts for 8% of the non-aqueous organic electrolyte by mass fraction.
0 0  0 0
H3CH2C一 0― P—— 0一 P—— 0― CH2CH3 H 3 CH 2 C - 0 - P - 0 - P - 0 - CH 2 CH 3
CH2CH3 CH2CH3 I Q CH2CH3 CH2CH3 I Q
下面以方形卷绕式锂离子二次软包电池(型号为 423450-800mAh ) 的制作 为例, 对本发明实施例锂离子二次电池的制备方法进行说明。  Hereinafter, a method for preparing a lithium ion secondary battery according to an embodiment of the present invention will be described by taking a production of a square-wound lithium ion secondary soft pack battery (model number 423450-800 mAh) as an example.
正极片的制备  Preparation of positive electrode sheet
将正极活性材料 0.5(Li2MnO3)0.5(LiNi1/3Co1/3Mn1/3O2)、导电剂炭黑粉末和粘 结剂 PVDF粉末材料按照质量比 85:10:5进行混合, 然后加入 N-曱基吡咯烷酮 ( NMP )溶液, 在真空搅拌机中搅拌 2h, 制备成油系浆料, 最后将浆料涂覆在 铝集流体两面, 经过 110°C烘干, 辊轧, 制成锂离子二次电池正极片。 Positive electrode active material 0.5 (Li 2 MnO 3 ) 0.5 (LiNi 1 / 3 Co 1 / 3 Mn 1/3 O 2 ), conductive agent carbon black powder and sticky The cement PVDF powder material was mixed at a mass ratio of 85:10:5, then a solution of N-decylpyrrolidone (NMP) was added, and stirred in a vacuum mixer for 2 hours to prepare an oil-based slurry, and finally the slurry was coated on aluminum. The two sides of the current collector are dried at 110 ° C and rolled to form a positive electrode of a lithium ion secondary battery.
非水有机电解液采用本实施例制得的非水有机电解液 C,其它按同实施例一 的锂离子二次电池的制作方法, 制得锂离子二次电池 C。  As the non-aqueous organic electrolyte, the non-aqueous organic electrolyte C obtained in the present example was used, and another lithium ion secondary battery C was produced in the same manner as in the production method of the lithium ion secondary battery of the first embodiment.
实施例四  Embodiment 4
一种非水有机电解液的制备方法, 包括以下步骤:  A method for preparing a non-aqueous organic electrolyte, comprising the steps of:
向搅拌器中加入 500克碳酸乙烯酯( EC )和 500克碳酸二曱酯 ( DMC )混 合配成非水有机溶剂, 将 100克锂盐三氟曱基磺酰锂(LiCF3S03 ) 于非水有机 溶剂中, 搅拌, 搅拌温度为 25 °C ; Adding 500 g of ethylene carbonate (EC) and 500 g of dinonyl carbonate (DMC) to the stirrer to form a non-aqueous organic solvent, and 100 g of lithium salt trifluorosulfonylsulfonate (LiCF 3 S0 3 ) In a non-aqueous organic solvent, stir and stir at a temperature of 25 °C;
加入从北京嘉盛扬医药科技有限公司购得的纯度为 99.5%如式 I b所示的非 水有机电解液添加剂焦磷酸四苄酯 194克, 搅拌, 制得非水有机电解液 D, 按 质量分数计, 非水有机电 液添加剂 l b占非水有机电解液的 15%。 Adding 194 g of tetrabenzyl pyrophosphate, a non-aqueous organic electrolyte additive as shown in Formula Ib, obtained from Beijing Jiashengyang Pharmaceutical Technology Co., Ltd., and stirring, to obtain a non-aqueous organic electrolyte D, According to the mass fraction, the non-aqueous organic electro-hydraulic additive lb accounts for 15% of the non-aqueous organic electrolyte.
Figure imgf000020_0001
Figure imgf000020_0001
下面以方形卷绕式锂离子二次软包电池(型号为 423450-800mAh ) 的制作 为例, 对本发明实施例锂离子二次电池的制备方法进行说明。  Hereinafter, a method for preparing a lithium ion secondary battery according to an embodiment of the present invention will be described by taking a production of a square-wound lithium ion secondary soft pack battery (model number 423450-800 mAh) as an example.
正极片的制备  Preparation of positive electrode sheet
将正极活性材料 0.7(Li2MnO3)0.3(LiNi1/3Co1/3Mn1/3O2)、导电剂炭黑粉末和粘 结剂 PVDF粉末材料按照质量比 85:10:5进行混合, 然后加入 N-曱基吡咯烷酮 ( NMP )溶液, 在真空搅拌机中搅拌 2h, 制备成油系浆料, 最后将浆料涂覆在 铝集流体两面, 经过 110°C烘干, 辊轧, 制成锂离子二次电池正极片。 The positive electrode active material 0.7 (Li 2 MnO 3 ) 0.3 (LiNi 1 / 3 Co 1 / 3 Mn 1/3 O 2 ), the conductive agent carbon black powder, and the binder PVDF powder material were subjected to a mass ratio of 85:10:5. Mixing, then adding N-decylpyrrolidone (NMP) solution, stirring in a vacuum mixer for 2 h, preparing an oil-based slurry, and finally coating the slurry in The aluminum current collector is coated on both sides, dried at 110 ° C, and rolled to form a positive electrode of a lithium ion secondary battery.
非水有机电解液采用本实施例制得的非水有机电解液 D, 其它按同实施例 一的锂离子二次电池的制作方法, 制得锂离子二次电池 D。  As the non-aqueous organic electrolyte, the non-aqueous organic electrolyte D obtained in the present embodiment was used, and other lithium ion secondary batteries of the same manner as in the first embodiment were used to produce a lithium ion secondary battery D.
实施例五  Embodiment 5
一种非水有机电解液的制备方法, 包括以下步骤:  A method for preparing a non-aqueous organic electrolyte, comprising the steps of:
向搅拌器中加入 500克碳酸乙烯酯 (EC )、 1000克碳酸二曱酯(DMC )和 500克碳酸曱乙酯 ( EMC )混合配成非水有机溶剂, 将 250克锂盐 LiPF6于非水 有机溶剂中, 搅拌, 搅拌温度为 25 °C ; Add 500 g of ethylene carbonate (EC), 1000 g of dinonyl carbonate (DMC) and 500 g of cesium carbonate (EMC) to the stirrer to form a non-aqueous organic solvent, and 250 g of lithium salt LiPF 6 In aqueous organic solvent, stir and stir at 25 °C;
加入从北京嘉盛扬医药科技有限公司购得的纯度为 99.5%如式 I b所示的非 水有机电解液添加剂焦磷酸四苄酯 22.73克以及 2.27克碳酸亚乙烯酯 ( VC ),搅 拌, 制得非水有机电解液 E, 按质量分数计, 非水有机电解液添加剂 l b占非水 有机电解液的 1%, 功能助剂碳酸亚乙烯酯(VC ) 占非水有机电解液的 0.1%。  Adding a purity of 99.5% from Beijing Jiashengyang Pharmaceutical Technology Co., Ltd. as a non-aqueous organic electrolyte additive as shown in Formula Ib, 22.73 g of tetrabenzyl pyrophosphate and 2.27 g of vinylene carbonate (VC), stirring, A non-aqueous organic electrolyte E is obtained. According to the mass fraction, the non-aqueous organic electrolyte additive lb accounts for 1% of the non-aqueous organic electrolyte, and the functional additive vinylene carbonate (VC) accounts for 0.1% of the non-aqueous organic electrolyte. .
Figure imgf000021_0001
Figure imgf000021_0001
下面以方形卷绕式锂离子二次软包电池(型号为 423450-800mAh ) 的制作 为例, 对本发明实施例锂离子二次电池的制备方法进行说明。  Hereinafter, a method for preparing a lithium ion secondary battery according to an embodiment of the present invention will be described by taking a production of a square-wound lithium ion secondary soft pack battery (model number 423450-800 mAh) as an example.
正极片的制备  Preparation of positive electrode sheet
将正极活性材料 LiNi sMn C 导电剂炭黑粉末和粘结剂 PVDF粉末材料 按照质量比 85:10:5进行混合, 然后加入 N-曱基吡咯烷酮 (NMP )溶液, 在真 空搅拌机中搅拌 2h, 制备成油系浆料, 最后将浆料涂覆在铝集流体两面, 经过 110°C烘干, 辊轧, 制成锂离子二次电池正极片。 非水有机电解液采用本实施例制得的非水有机电解液 E,其它按同实施例一 的锂离子二次电池的制作方法, 制得锂离子二次电池 E。 实施例六 The positive active material LiNi sMn C conductive agent carbon black powder and the binder PVDF powder material were mixed at a mass ratio of 85:10:5, and then N-decylpyrrolidone (NMP) solution was added and stirred in a vacuum mixer for 2 hours. The oil-based slurry is finally coated on both sides of the aluminum current collector, dried at 110 ° C, and rolled to form a positive electrode sheet of a lithium ion secondary battery. The non-aqueous organic electrolyte solution was the non-aqueous organic electrolyte E obtained in the present example, and the lithium ion secondary battery E was produced in the same manner as in the production method of the lithium ion secondary battery of the first embodiment. Embodiment 6
一种非水有机电解液的制备方法, 包括以下步骤:  A method for preparing a non-aqueous organic electrolyte, comprising the steps of:
向搅拌器中加入 500克碳酸乙烯酯 (EC )和 500克碳酸二乙酯(DEC ) 混 合配成非水有机溶剂, 将 125克锂盐 LiPF6于非水有机溶剂中, 搅拌, 搅拌温度 为 25°C ; 有机电解液添加剂焦亚磷酸四乙酯 11.36克, 搅拌, 制得非水有机电解液 F, 按 质量分数计, 非水有机电解液添加剂 Il a占非水有机电解液的 1%。 Adding 500 g of ethylene carbonate (EC) and 500 g of diethyl carbonate (DEC) to the stirrer to form a non-aqueous organic solvent, and 125 g of lithium salt LiPF 6 in a non-aqueous organic solvent, stirring, stirring temperature is 25 ° C ; organic electrolyte additive 11.36 g of tetraethyl pyrite, stirred, to obtain a non-aqueous organic electrolyte F, according to the mass fraction, non-aqueous organic electrolyte additive Il a accounted for 1% of non-aqueous organic electrolyte .
H3CH2C― O― P― O― P― O― CH2CH3 H 3 CH 2 C― O― P― O― P― O― CH 2 CH 3
0 I o I  0 I o I
1 I  1 I
CH2CH3 CH2CH3 II ^ CH 2 CH 3 CH 2 CH 3 II ^
下面以方形卷绕式锂离子二次软包电池(型号为 423450-800mAh ) 的制作 为例, 对本发明实施例锂离子二次电池的制备方法进行说明。  Hereinafter, a method for preparing a lithium ion secondary battery according to an embodiment of the present invention will be described by taking a production of a square-wound lithium ion secondary soft pack battery (model number 423450-800 mAh) as an example.
正极片的制备  Preparation of positive electrode sheet
将正极活性材料 LiNi sMn C 导电剂炭黑粉末和粘结剂 PVDF粉末材料 按照质量比 85:10:5进行混合, 然后加入 N-曱基吡咯烷酮 (NMP )溶液, 在真 空搅拌机中搅拌 2h, 制备成油系浆料, 最后将浆料涂覆在铝集流体两面, 经过 110°C烘干, 辊轧, 制成锂离子二次电池正极片。  The positive active material LiNi sMn C conductive agent carbon black powder and the binder PVDF powder material were mixed at a mass ratio of 85:10:5, and then N-decylpyrrolidone (NMP) solution was added and stirred in a vacuum mixer for 2 hours. The oil-based slurry is finally coated on both sides of the aluminum current collector, dried at 110 ° C, and rolled to form a positive electrode sheet of a lithium ion secondary battery.
非水有机电解液采用本实施例制得的非水有机电解液 F,其它按同实施例一 的锂离子二次电池的制作方法, 制得锂离子二次电池 F。 实施例七 一种非水有机电解液的制备方法, 包括以下步骤: The non-aqueous organic electrolyte solution was the non-aqueous organic electrolyte solution F obtained in the present example, and the lithium ion secondary battery F was produced in the same manner as in the production method of the lithium ion secondary battery of the first embodiment. Example 7 A method for preparing a non-aqueous organic electrolyte, comprising the steps of:
向搅拌器中加入 500克碳酸乙烯酯 (EC )、 1000克碳酸二曱酯(DMC )和 500克碳酸二乙酯 (DEC ) 混合配成非水有机溶剂, 将 250克锂盐 LiB(C6¾)4 于非水有机溶剂中, 搅拌, 搅拌温度为 25°C ; 500 g of ethylene carbonate (EC), 1000 g of dinonyl carbonate (DMC) and 500 g of diethyl carbonate (DEC) were added to the stirrer to form a non-aqueous organic solvent, and 250 g of lithium salt LiB (C 6 ) was added. 3⁄4 ) 4 in a non-aqueous organic solvent, stirring, stirring temperature is 25 ° C;
加入从北京斯旺达康科贸有限公司购得的纯度为 99.5%如式 li b所示的非水 有机电解液添加剂焦亚磷酸四苄酯 195.65克, 搅拌, 制得非水有机电解液 G, 按质量分数计, 非水有机电解液添加剂 lib占非水有机电解液的 8%。  Adding 195.65 g of tetrabenzyl pyrophosphite, which is a non-aqueous organic electrolyte additive as shown by formula li b, obtained from Beijing Swanda Kangke Trading Co., Ltd., and stirring to obtain a non-aqueous organic electrolyte G According to the mass fraction, the non-aqueous organic electrolyte additive lib accounts for 8% of the non-aqueous organic electrolyte.
Figure imgf000023_0001
Figure imgf000023_0001
下面以方形卷绕式锂离子二次软包电池(型号为 423450-800mAh ) 的制作 为例, 对本发明实施例锂离子二次电池的制备方法进行说明。  Hereinafter, a method for preparing a lithium ion secondary battery according to an embodiment of the present invention will be described by taking a production of a square-wound lithium ion secondary soft pack battery (model number 423450-800 mAh) as an example.
正极片的制备  Preparation of positive electrode sheet
将正极活性材料 0.4(Li2MnO3)0.6(LiNi1/3Co1/3Mn1/3O2)、导电剂炭黑粉末和粘 结剂 PVDF粉末材料按照质量比 85:10:5进行混合, 然后加入 N-曱基吡咯烷酮 ( NMP )溶液, 在真空搅拌机中搅拌 2h, 制备成油系浆料, 最后将浆料涂覆在 铝集流体两面, 经过 110°C烘干, 辊轧, 制成锂离子二次电池正极片。 The positive electrode active material 0.4 (Li 2 MnO 3 ) 0.6 (LiNi 1 / 3 Co 1 / 3 Mn 1/3 O 2 ), the conductive agent carbon black powder, and the binder PVDF powder material were subjected to a mass ratio of 85:10:5. Mixing, then adding N-decylpyrrolidone (NMP) solution, stirring in a vacuum mixer for 2 h to prepare an oil-based slurry, and finally coating the slurry on both sides of the aluminum current collector, drying at 110 ° C, rolling, A positive electrode of a lithium ion secondary battery was fabricated.
非水有机电解液采用本实施例制得的非水有机电解液 G, 其它按同实施例 一的锂离子二次电池的制作方法, 制得锂离子二次电池 G。  As the non-aqueous organic electrolyte, the non-aqueous organic electrolyte G obtained in the present example was used, and other lithium ion secondary batteries of the same manner as in the first embodiment were used to produce a lithium ion secondary battery G.
实施例八  Example eight
一种非水有机电解液的制备方法, 包括以下步骤:  A method for preparing a non-aqueous organic electrolyte, comprising the steps of:
向搅拌器中加入 500克碳酸乙烯酯( EC )和 500克碳酸二曱酯 ( DMC )混 合配成非水有机溶剂, 将 125克锂盐 LiCF3S03于非水有机溶剂中, 搅拌, 搅拌 温度为 25 °C ; 有机电解液添加剂焦亚磷酸四苄酯 27.09克以及 202.58克磷酸三乙酯( TEP ), 搅拌, 制得非水有机电解液 H, 按质量分数计, 非水有机电解液添加剂 li b占非 水有机电解液的 2%, 功能助剂磷酸三乙酯 (TEP ) 占非水有机电解液的 15%。 Add 500 g of ethylene carbonate (EC) and 500 g of dinonyl carbonate (DMC) to the blender. Combined into a non-aqueous organic solvent, 125 g of lithium salt LiCF 3 S0 3 in a non-aqueous organic solvent, stirred, stirring temperature is 25 ° C; organic electrolyte additive tetrabenzyl phosphite 27.09 g and 202.58 g of phosphoric acid Ethyl ester (TEP), stirred to produce a non-aqueous organic electrolyte H. According to the mass fraction, the non-aqueous organic electrolyte additive li b accounts for 2% of the non-aqueous organic electrolyte, and the functional additive triethyl phosphate (TEP) It accounts for 15% of the non-aqueous organic electrolyte.
Figure imgf000024_0001
Figure imgf000024_0001
下面以方形卷绕式锂离子二次软包电池(型号为 423450-800mAh ) 的制作 为例, 对本发明实施例锂离子二次电池的制备方法进行说明。  Hereinafter, a method for preparing a lithium ion secondary battery according to an embodiment of the present invention will be described by taking a production of a square-wound lithium ion secondary soft pack battery (model number 423450-800 mAh) as an example.
正极片的制备  Preparation of positive electrode sheet
将正极活性材料 LiNi sMn C 导电剂炭黑粉末和粘结剂 PVDF粉末材料 按照质量比 85:10:5进行混合, 然后加入 N-曱基吡咯烷酮 (NMP )溶液, 在真 空搅拌机中搅拌 2h, 制备成油系浆料, 最后将浆料涂覆在铝集流体两面, 经过 110°C烘干, 辊轧, 制成锂离子二次电池正极片。  The positive active material LiNi sMn C conductive agent carbon black powder and the binder PVDF powder material were mixed at a mass ratio of 85:10:5, and then N-decylpyrrolidone (NMP) solution was added and stirred in a vacuum mixer for 2 hours. The oil-based slurry is finally coated on both sides of the aluminum current collector, dried at 110 ° C, and rolled to form a positive electrode sheet of a lithium ion secondary battery.
非水有机电解液采用本实施例制得的非水有机电解液 H, 其它按同实施例 一的锂离子二次电池的制作方法, 制得锂离子二次电池 H。 对比例一  As the non-aqueous organic electrolyte, the non-aqueous organic electrolyte H obtained in the present example was used, and other lithium ion secondary batteries of the same manner as in the first embodiment were used to produce a lithium ion secondary battery H. Comparative example one
向搅拌器中加入 500克碳酸乙烯酯(EC )和 500克碳酸曱乙酯(EMC ) 混 合配成非水有机溶剂, 将 125克锂盐 LiPF6溶于非水有机溶剂中, 搅拌, 制得非 水有机电解液 I。 Adding 500 g of ethylene carbonate (EC) and 500 g of cesium carbonate (EMC) to the stirrer to form a non-aqueous organic solvent, and dissolving 125 g of lithium salt LiPF 6 in a non-aqueous organic solvent, stirring, and obtaining Non Water organic electrolyte I.
下面以方形卷绕式锂离子二次软包电池(型号为 423450-800mAh ) 的制作 为例, 对本发明对比例锂离子二次电池的制备方法进行说明。  Next, a method of preparing a comparative lithium ion secondary battery of the present invention will be described by taking a production of a square-wound lithium ion secondary soft pack battery (model number 423450-800 mAh) as an example.
正极片的制备  Preparation of positive electrode sheet
将正极活性材料 LiNi sMn C 导电剂炭黑粉末和粘结剂 PVDF粉末材料 按照质量比 85:10:5进行混合, 然后加入 N-曱基吡咯烷酮 (NMP )溶液, 在真 空搅拌机中搅拌 2h, 制备成油系浆料, 最后将浆料涂覆在铝集流体两面, 经过 110°C烘干, 辊轧, 制成锂离子二次电池正极片。  The positive active material LiNi sMn C conductive agent carbon black powder and the binder PVDF powder material were mixed at a mass ratio of 85:10:5, and then N-decylpyrrolidone (NMP) solution was added and stirred in a vacuum mixer for 2 hours. The oil-based slurry is finally coated on both sides of the aluminum current collector, dried at 110 ° C, and rolled to form a positive electrode sheet of a lithium ion secondary battery.
非水有机电解液采用本对比实施例制得的非水有机电解液 I, 其它按同实施 例一的锂离子二次电池的制作方法, 制得锂离子二次电池 I。  The non-aqueous organic electrolyte I used the non-aqueous organic electrolyte I obtained in the comparative example, and other lithium ion secondary batteries of the same manner as in the first embodiment were used to produce a lithium ion secondary battery I.
对比例二 Comparative example two
向搅拌器中加入 500克碳酸乙烯酯 (EC )和 500克碳酸二乙酯(DEC ) 混 合配成非水有机溶剂, 将 125克锂盐 LiPF6溶于非水有机溶剂中, 加入 198.53 克功能助剂磷酸三乙酯 (TEP ), 搅拌, 制得非水有机电解液 J, 按质量分数计, 功能助剂磷酸三乙酯 (TEP ) 占非水有机电解液的 15%。 Add 500 g of ethylene carbonate (EC) and 500 g of diethyl carbonate (DEC) to a stirrer to prepare a non-aqueous organic solvent, and dissolve 125 g of lithium salt LiPF 6 in a non-aqueous organic solvent, and add 198.53 g of function. The auxiliary triethyl phosphate (TEP) is stirred to obtain a non-aqueous organic electrolyte J. According to the mass fraction, the functional additive triethyl phosphate (TEP) accounts for 15% of the non-aqueous organic electrolyte.
下面以方形卷绕式锂离子二次软包电池(型号为 423450-800mAh ) 的制作 为例, 对本发明对比例锂离子二次电池的制备方法进行说明。  Next, a method of preparing a comparative lithium ion secondary battery of the present invention will be described by taking a production of a square-wound lithium ion secondary soft pack battery (model number 423450-800 mAh) as an example.
正极片的制备  Preparation of positive electrode sheet
将正极活性材料 0.5(Li2MnO3)0.5(LiNi1/3Co1/3Mn1/3O2)、导电剂炭黑粉末和粘 结剂 PVDF粉末材料按照质量比 85:10:5进行混合, 然后加入 N-曱基吡咯烷酮 ( NMP )溶液, 在真空搅拌机中搅拌 2h, 制备成油系浆料, 最后将浆料涂覆在 铝集流体两面, 经过 110°C烘干, 辊轧, 制成锂离子二次电池正极片。 The positive electrode active material 0.5 (Li 2 MnO 3 ) 0.5 (LiNi 1 / 3 Co 1 / 3 Mn 1/3 O 2 ), the conductive agent carbon black powder, and the binder PVDF powder material were subjected to a mass ratio of 85:10:5. Mixing, then adding N-decylpyrrolidone (NMP) solution, stirring in a vacuum mixer for 2 h to prepare an oil-based slurry, and finally coating the slurry on both sides of the aluminum current collector, drying at 110 ° C, rolling, A positive electrode of a lithium ion secondary battery was fabricated.
非水有机电解液采用本对比实施例制得的非水有机电解液 J ,其它按同实施 例一的锂离子二次电池的制作方法, 制得锂离子二次电池 J。 效果实施例 The non-aqueous organic electrolyte solution is the non-aqueous organic electrolyte J prepared in the comparative example, and the others are implemented in the same manner. In the method for producing a lithium ion secondary battery of Example 1, a lithium ion secondary battery J was obtained. Effect embodiment
1.非水有机电解液分解电位的测试  1. Test of decomposition potential of non-aqueous organic electrolyte
对实施例一至八、 对比例一、 二采用三电极体系进行循环伏安测试, 工作 电极为玻璃碳, 对电极和参比电极为锂电极, 扫描范围为 0 ~ 5.5V, 扫描速度为 10mV/So For the first to eighth embodiments, the first and second examples were subjected to cyclic voltammetry using a three-electrode system. The working electrode was glassy carbon, the counter electrode and the reference electrode were lithium electrodes, and the scanning range was 0 to 5.5 V, and the scanning speed was 10 mV/ S o
测试结果见表 1。  The test results are shown in Table 1.
表 1.实施例一〜八和对比例一〜二非水有机电解液的分解电位测试  Table 1. Decomposition potential test of Examples 1 to 8 and Comparative Example 1 to 2 non-aqueous organic electrolyte
Figure imgf000026_0001
Figure imgf000026_0001
从表 1 的结果可以看出, 本发明实施例一至八所提供的非水有机电解液, 氧化分解电位都大于等于 5.0V, 而对比例一和二中不加焦磷酸酯或者焦亚磷酸 酯类添加剂的非水有机电解液氧化分解电位则只有 4.4V, 远低于于本发明实施 例一至八所提供的非水有机电解液的分解电位。  It can be seen from the results of Table 1 that the non-aqueous organic electrolytes provided in Examples 1 to 8 of the present invention have an oxidative decomposition potential of 5.0 V or more, and No pyrophosphate or pyrophosphite in Comparative Examples 1 and 2. The oxidative decomposition potential of the non-aqueous organic electrolyte of the additive-like additive is only 4.4 V, which is much lower than the decomposition potential of the non-aqueous organic electrolyte provided in Examples 1 to 8 of the present invention.
2.锂离子二次电池循环性能测试  2. Lithium ion secondary battery cycle performance test
将根据上述实施例一至八和对比例一和二所制备的锂离子二次电池进行循 环性能测试。 测试方法为: 将锂离子二次电池以正确的方法装入二次电池性能 测试以 BS-9300上, 先以 1C恒流恒压充电至 4.9V (对于尖晶石 LiMxMn x)04, 其中 M选自过渡金属 Ni、 Co和 Fe中的一种或几种, 0 x 2 )或 4.6V (对于 富锂固溶体正极材料 xLi2Mn03(l-x)LiM02,其中 M选自过渡金属 Ni、 Co和 Mn 中的一种或几种, 0 χ 1 ), 搁置 5分钟, 用 1C放电至 3.0V, 再以 1C恒流恒 压充电至 4.9V (对于尖晶石 LiMxMn x)04, 其中 M选自过渡金属 Ni、 Co和 Fe 中的一种或几种, 0 x 2 ) 或 4.6V (对于富锂固溶体正极材料 xLi2Mn03( 1 -x)LiM02 , 其中 Μ选自过渡金属 Ni、 Co和 Mn中的一种或几种 , 0 < x < 1 ), 就这样循环 100次。 循环结束后, 待电池温度恢复常温, 用 1C充满 电, 再用 0.2C放电至 3.0V, 得出剩余容量, 将剩余容量除以首次循环容量即得 容量保持率, 所得结果如表 2所示。 The lithium ion secondary batteries prepared according to the above Examples 1 to 8 and Comparative Examples 1 and 2 were subjected to cycle performance tests. The test method is as follows: The lithium ion secondary battery is loaded into the secondary battery performance test in the correct way to BS-9300, first charged to 4.9V with constant current constant voltage of 1C (for spinel LiM x Mn x ) 0 4 , Wherein M is selected from one or more of transition metals Ni, Co and Fe, 0 x 2 ) or 4.6 V (for lithium-rich solid solution cathode material xLi 2 Mn0 3 (lx)LiM0 2 , wherein M is selected from transition metal Ni , one or more of Co and Mn, 0 χ 1 ), set aside for 5 minutes, discharge to 3.0V with 1C, and then charge to 4.9V with constant current at 1C (for spinel LiM x Mn x )0 4 , wherein M is selected from one or more of transition metals Ni, Co and Fe, 0 x 2 ) or 4.6V (for lithium-rich solid solution cathode material xLi 2 Mn0 3 ( 1 -x)LiM0 2 , wherein One or more of the transition metals Ni, Co and Mn, 0 < x < 1 ), are thus cycled 100 times. After the end of the cycle, wait until the battery temperature returns to normal temperature, fully charge with 1C, and then discharge to 3.0V with 0.2C to obtain the remaining capacity. Divide the remaining capacity by the first cycle capacity to obtain the capacity retention rate. The results are shown in Table 2. .
表 2.实施例一〜八和对比例一〜二锂离子二次电池循环性能测试  Table 2. Example 1 to 8 and Comparative Example 1 to 2 Lithium Ion Secondary Battery Cycle Performance Test
Figure imgf000027_0001
Figure imgf000027_0001
由表 2 可以看出, 采用本发明实施例一至八所提供的锂离子二次电池在经 过 100次循环后容量保持率最高为 95%, 最低为 89%, 而对比例一和二中所制 备的锂离子二次电池在经过 100次循环后容量保持率则只有 56%和 43%, 由此 可以看出本发明实施例一至八所提供的非水有机电解液具有良好的耐高压的性 能, 同时采用本发明实施例一至八所提供的锂离子二次电池循环性能得到了提 高。  As can be seen from Table 2, the lithium ion secondary battery provided by Examples 1 to 8 of the present invention has a capacity retention rate of up to 95% and a minimum of 89% after 100 cycles, and is prepared in Comparative Examples 1 and 2. The capacity retention of the lithium ion secondary battery after only 100 cycles is only 56% and 43%, and it can be seen that the nonaqueous organic electrolyte provided in the first to eighth embodiments of the present invention has good high pressure resistance. At the same time, the cycle performance of the lithium ion secondary battery provided by the first to eighth embodiments of the present invention is improved.

Claims

权 利 要 求 o OR=——I Claim o OR=——I
1、 一种非水 _有机电解液, 其特征在于, 包括: 1. A non-aqueous organic electrolyte, characterized by including:
o o
锂盐; † R 。 o= I I 非水有机溶剂; 以及 非水有机电解液添加剂, 所述非水有机电解液添加剂为如式( I )所示的非 水有机电解液添加剂和 /或如式( II ) 所示的非水有机电解液添加剂, Lithium salt; † R. o=II non-aqueous organic solvent; and non-aqueous organic electrolyte additive, the non-aqueous organic electrolyte additive is a non-aqueous organic electrolyte additive shown in formula (I) and/or a non-aqueous organic electrolyte additive shown in formula (II) Non-aqueous organic electrolyte additives,
R — 0— R4 R — 0 — R 4
3 式( I ), 3 formula (I),
R5— 0― P— 0— P— 0— R8 R 5 — 0 — P — 0 — P — 0 — R 8
I I I I
0 0 0 0
1 I 1 I
R6 R7 式( II ), R 6 R 7 formula (II),
其中, R2、 R3、 、 R5、 R6、 R7和 R8为 C^ Q的直链或支链烷基、 C^do 的烯烃基、 Cr^do的炔烃基或 C6〜C14的芳香基, 或者 Ri、 R2、 R3、 R4、 R5、 R6 Among them, R 2 , R 3 , R 5 , R 6 , R 7 and R 8 are C^Q linear or branched chain alkyl groups, C^do alkenyl groups, Cr^do alkyne groups or C 6 ~ C 14 aryl group, or Ri, R 2 , R 3 , R 4 , R 5 , R 6 ,
R7和 R8为含有卤素的: Cr^do的直链或支链烷基、 Cu)的烯烃基、 CH^o的 炔烃基或 C6〜C14的芳香基。 R 7 and R 8 are halogen-containing: linear or branched alkyl groups of Crdo, alkenyl groups of Cu), alkynyl groups of CHo, or aromatic groups of C 6 to C 14 .
2、 如权利要求 1所述的一种非水有机电解液, 其特征在于, 所述如式( I ) 所示的非水有机电解液添加剂中 、 R2、 R3和 R4为曱基、 乙基、 三氟曱基、 三 氟乙基、 全氟乙基、 苯基、 苄基、 部分或全氟取代苯基。 2. A non-aqueous organic electrolyte as claimed in claim 1, characterized in that, in the non-aqueous organic electrolyte additive represented by formula (I), R 2 , R 3 and R 4 are methyl groups. , ethyl, trifluoromethyl, trifluoroethyl, perfluoroethyl, phenyl, benzyl, partially or perfluoro-substituted phenyl.
3、 如权利要求 1所述的一种非水有机电解液, 其特征在于, 所述如式 ( II ) 所示的非水有机电解液添加剂中 R5、 R6、 R7和 R8为曱基、 乙基、 三氟曱基、 三 氟乙基、 全氟乙基、 苯基、 苄基、 部分或全氟取代苯基。 3. A non-aqueous organic electrolyte as claimed in claim 1, wherein R 5 , R 6 , R 7 and R 8 in the non-aqueous organic electrolyte additive represented by formula (II) are Methyl, ethyl, trifluoromethyl, trifluoroethyl, perfluoroethyl, phenyl, benzyl, partially or perfluorinated phenyl.
4、如权利要求 1所述的一种非水有机电解液, 其特征在于,按质量分数计, 所述非水有机溶剂占非水有机电解液的 85%〜99.5% , 所述非水有机电解液添加 剂占非水有机电解液的 0.5%〜15%。 4. A non-aqueous organic electrolyte as claimed in claim 1, characterized in that, in terms of mass fraction, The non-aqueous organic solvent accounts for 85% to 99.5% of the non-aqueous organic electrolyte, and the non-aqueous organic electrolyte additive accounts for 0.5% to 15% of the non-aqueous organic electrolyte.
o o
5、 如权利†要 o OR= II 1 5. If the right is required o OR= II 1
_求 所述的一种非水有机电解液, 其特征在于, 所述非水有机 o _Seeking the non-aqueous organic electrolyte, characterized in that, the non-aqueous organic electrolyte is
电解液还包括功能助剂, 所述功能助剂选自循环添加剂、 高温添加剂、 阻燃添The electrolyte also includes functional additives, which are selected from recycling additives, high-temperature additives, and flame retardant additives.
† R 。 o= I I R. o= I I
加剂和过充添加剂中的一种或几种。 One or more of additives and overcharge additives.
6、 一种非水有机电解液的制备方法, 其特征在于, 包括以下步骤: 将锂盐溶于非水有机溶剂中, 加入如式( I )所示的非水有机电解液添加剂 和 /或如式 ( II )所示的非水有机电解液添加剂, 搅拌, 制得非水有机电解液, 6. A method for preparing a non-aqueous organic electrolyte, characterized in that it includes the following steps: Dissolve lithium salt in a non-aqueous organic solvent, and add a non-aqueous organic electrolyte additive as shown in formula (I) and/or Stir the non-aqueous organic electrolyte additive shown in formula (II) to prepare the non-aqueous organic electrolyte,
R — 0— R4 R — 0 — R 4
3 式( I ), 3 formula (I),
R5— 0― P— 0— P— 0— R8 R 5 — 0 — P — 0 — P — 0 — R 8
I I I I
0 0 0 0
1 I 1 I
R6 R7 式( II ), R 6 R 7 formula (II),
其中, R2、 R3、 、 R5、 R6、 R7和 R8为 C^ Q的直链或支链烷基、 C^do 的烯烃基、 Cr^do的炔烃基或 C6〜C14的芳香基, 或者 Ri、 R2、 R3、 R4、 R5、 R6 Among them, R 2 , R 3 , R 5 , R 6 , R 7 and R 8 are C^Q linear or branched chain alkyl groups, C^do alkenyl groups, Cr^do alkyne groups or C 6 ~ C 14 aryl group, or Ri, R 2 , R 3 , R 4 , R 5 , R 6 ,
R7和 R8为含有卤素的: Cr^do的直链或支链烷基、 Cu)的烯烃基、 CH^o的 炔烃基或 C6〜C14的芳香基。 R 7 and R 8 are halogen-containing: linear or branched chain alkyl groups of Crdo, alkenyl groups of Cu), alkynyl groups of CHo, or aromatic groups of C 6 to C 14 .
7、 如权利要求 6所述的一种非水有机电解液的制备方法, 其特征在于, 所 述如式( I )所示的非水有机电解液添加剂中 R2、 R3和 R4为曱基、 乙基、 三氟曱基、 三氟乙基、 全氟乙基、 苯基、 苄基、 部分或全氟取代苯基。 7. The preparation method of a non-aqueous organic electrolyte as claimed in claim 6, wherein R 2 , R 3 and R 4 in the non-aqueous organic electrolyte additive represented by formula (I) are Methyl, ethyl, trifluoromethyl, trifluoroethyl, perfluoroethyl, phenyl, benzyl, partially or perfluorinated phenyl.
8、 如权利要求 6所述的一种非水有机电解液的制备方法, 其特征在于, 所 述如式( II )所示的非水有机电解液添加剂中 R5、 R6、 R7和 R8为曱基、 乙基、 三氟曱基、 三氟乙基、 全氟乙基、 苯基、 苄基、 部分或全氟取代苯基。 8. The method for preparing a non-aqueous organic electrolyte as claimed in claim 6, wherein R 5 , R 6 , R 7 and R 8 is methyl, ethyl, trifluoromethyl, trifluoroethyl, perfluoroethyl, phenyl, benzyl, partially or perfluoro-substituted phenyl.
9、 如权利要求 6所述的一种非水有机电解液的制备方法, 其特征在于, 按 质量分数计, 所述非水有机溶剂占非水有机电解液的 85%〜99.5% , 所述非水有 o 9. The method for preparing a non-aqueous organic electrolyte as claimed in claim 6, wherein the non-aqueous organic solvent accounts for 85% to 99.5% of the non-aqueous organic electrolyte in terms of mass fraction. Non-water has o
机电解液添加†剂 o OR= II占 0.5%〜15%。 Mechanical electrolyte additive o OR= II accounts for 0.5%~15%.
_非水有机电解液的 _Non-aqueous organic electrolytes
o o
10、 一种锂离子二次电池, 其特征在于, 包括: 正极、 负极、 隔膜、 壳体 10. A lithium ion secondary battery, characterized by including: a positive electrode, a negative electrode, a separator, and a casing
† R 。 o= I I R. o= I I
以及非水有机电解液, 所述非水有机电解液, 包括: 锂盐、 非水有机溶剂、 以 及如式( I ) 所示的非水有机电解液添加剂和 /或如式( II ) 所示的非水有机电 力口剂 , And a non-aqueous organic electrolyte, the non-aqueous organic electrolyte includes: lithium salt, non-aqueous organic solvent, and a non-aqueous organic electrolyte additive as shown in formula (I) and/or as shown in formula (II) non-aqueous organic power oral agent,
R — 0— R4 R — 0 — R 4
3 式( I ), 3 formula (I),
R5— 0― P— 0— P— 0— R8 R 5 — 0 — P — 0 — P — 0 — R 8
I I I I
0 0 0 0
1 I 1 I
R6 R7 式( II ), R 6 R 7 formula (II),
其中, R2、 R3、 、 R5、 R6、 R7和 R8为 C^ Q的直链或支链烷基、 C^do 的烯烃基、 Cr^do的炔烃基或 C6〜C14的芳香基, 或者 Ri、 R2、 R3、 R4、 R5、 R6 Among them, R 2 , R 3 , R 5 , R 6 , R 7 and R 8 are C^Q linear or branched chain alkyl groups, C^do alkenyl groups, Cr^do alkyne groups or C 6 ~ C 14 aryl group, or Ri, R 2 , R 3 , R 4 , R 5 , R 6 ,
R7和 R8为含有卤素的: Cr^do的直链或支链烷基、 Cu)的烯烃基、 CH^o的 炔烃基或 C6〜C14的芳香基。 R 7 and R 8 are halogen-containing: linear or branched alkyl groups of Crdo, alkenyl groups of Cu), alkynyl groups of CHo, or aromatic groups of C 6 to C 14 .
PCT/CN2013/080350 2013-01-28 2013-07-29 Non-aqueous organic electrolyte, preparation method therefor and lithium ion secondary battery WO2014114068A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201310031863.0 2013-01-28
CN201310031863.0A CN103972586B (en) 2013-01-28 2013-01-28 A kind of non-aqueous organic electrolyte and preparation method thereof and lithium rechargeable battery

Publications (1)

Publication Number Publication Date
WO2014114068A1 true WO2014114068A1 (en) 2014-07-31

Family

ID=51226877

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/080350 WO2014114068A1 (en) 2013-01-28 2013-07-29 Non-aqueous organic electrolyte, preparation method therefor and lithium ion secondary battery

Country Status (2)

Country Link
CN (1) CN103972586B (en)
WO (1) WO2014114068A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3226329A4 (en) * 2014-11-28 2018-05-23 Sumitomo Metal Mining Co., Ltd. Positive electrode active material for nonaqueous electrolyte secondary cell, method for manufacturing same, and nonaqueous electrolyte secondary cell
CN111540952A (en) * 2020-05-12 2020-08-14 上海纳米技术及应用国家工程研究中心有限公司 High-voltage electrolyte for improving high-temperature storage performance of lithium ion battery
CN112042016A (en) * 2018-05-04 2020-12-04 尤米科尔公司 Lithium cobalt oxide secondary battery comprising fluorinated electrolyte and positive electrode material for high voltage applications
US11101495B2 (en) * 2019-02-13 2021-08-24 Robert Bosch Gmbh Phosphorous-based polyester electrolytes for high voltage lithium ion batteries

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105336983A (en) * 2014-07-31 2016-02-17 比亚迪股份有限公司 Non-aqueous electrolyte and lithium ion battery adopting same
CN105119019B (en) * 2015-09-11 2017-09-26 合肥国轩高科动力能源有限公司 A kind of electrolyte and the lithium ion battery using the electrolyte
CN109659618A (en) * 2018-12-29 2019-04-19 桑德集团有限公司 A kind of electrolysis additive, electrolyte and preparation method thereof, lithium ion battery and equipment
CN111370763A (en) * 2020-03-04 2020-07-03 珠海市赛纬电子材料股份有限公司 Electrolyte and lithium ion battery using same
CN111342135B (en) * 2020-03-13 2022-02-15 宁德新能源科技有限公司 Electrochemical device and electronic device comprising same
CN111883837A (en) * 2020-07-30 2020-11-03 香河昆仑化学制品有限公司 Electrolyte containing cyclic pyrophosphate and lithium ion battery

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020192564A1 (en) * 2001-04-19 2002-12-19 Taeko Ota Lithium secondary battery
CN101071863A (en) * 2007-05-31 2007-11-14 惠州亿纬电源科技有限公司 Lithium cell electrolyte
CN101442141A (en) * 2008-12-18 2009-05-27 天津力神电池股份有限公司 Composite non-water electrolytic solution additive for improving battery high-temperature behavior
US20090136440A1 (en) * 2007-11-23 2009-05-28 Clariant International Ltd. Mixtures of phosphorus-containing compounds, a process for their preparation, and their use as flame retardants

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008300126A (en) * 2007-05-30 2008-12-11 Bridgestone Corp Nonaqueous electrolyte for battery, and nonaqueous electrolyte secondary battery equipped with the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020192564A1 (en) * 2001-04-19 2002-12-19 Taeko Ota Lithium secondary battery
CN101071863A (en) * 2007-05-31 2007-11-14 惠州亿纬电源科技有限公司 Lithium cell electrolyte
US20090136440A1 (en) * 2007-11-23 2009-05-28 Clariant International Ltd. Mixtures of phosphorus-containing compounds, a process for their preparation, and their use as flame retardants
CN101442141A (en) * 2008-12-18 2009-05-27 天津力神电池股份有限公司 Composite non-water electrolytic solution additive for improving battery high-temperature behavior

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3226329A4 (en) * 2014-11-28 2018-05-23 Sumitomo Metal Mining Co., Ltd. Positive electrode active material for nonaqueous electrolyte secondary cell, method for manufacturing same, and nonaqueous electrolyte secondary cell
CN112042016A (en) * 2018-05-04 2020-12-04 尤米科尔公司 Lithium cobalt oxide secondary battery comprising fluorinated electrolyte and positive electrode material for high voltage applications
CN112042016B (en) * 2018-05-04 2023-10-20 尤米科尔公司 Lithium cobalt oxide secondary battery for high voltage applications comprising a fluorinated electrolyte and a positive electrode material
US11101495B2 (en) * 2019-02-13 2021-08-24 Robert Bosch Gmbh Phosphorous-based polyester electrolytes for high voltage lithium ion batteries
CN111540952A (en) * 2020-05-12 2020-08-14 上海纳米技术及应用国家工程研究中心有限公司 High-voltage electrolyte for improving high-temperature storage performance of lithium ion battery

Also Published As

Publication number Publication date
CN103972586B (en) 2018-03-27
CN103972586A (en) 2014-08-06

Similar Documents

Publication Publication Date Title
CN103797635B (en) Nonaqueous electrolytic solution secondary battery
WO2017152624A1 (en) Electrolyte and lithium ion battery
CN101981749B (en) Nonaqueous electrolyte for lithium battery and lithium battery using same
JP4726282B2 (en) Non-aqueous electrolyte and secondary battery using the same
WO2014114068A1 (en) Non-aqueous organic electrolyte, preparation method therefor and lithium ion secondary battery
CN102035022B (en) Method for preparing electrolyte for 5V lithium ion battery
JP2017168347A (en) Nonaqueous electrolyte solution for power storage device
WO2012037805A1 (en) Nonaqueous electrolyte for improving high-temperature electrochemistry performance of lithium ion battery and use thereof
CN103858267A (en) Non-aqueous electrolyte and battery
CN102119463A (en) Nonaqueous electrolyte and lithium cell using the same
EP3972029A1 (en) Lithium secondary battery electrolyte, preparation method therefor and lithium secondary battery
WO2014079183A1 (en) Nonaqueous organic electrolyte additive and preparation method thereof, nonaqueous organic electrolyte, and lithium ion secondary battery
CN105633467A (en) Electrolyte and lithium ion battery adopting same
CN102224630A (en) Non-aqueous electrolytic solution, and lithium battery comprising same
KR100371403B1 (en) New electrolytes and lithium ion battery using the same
CN110911748B (en) Lithium secondary battery electrolyte and lithium secondary battery
KR20200082557A (en) An Electrolyte for a lithium ion secondary battery and a lithium ion secondary battery comprising the same
WO2015032215A1 (en) Nonaqueous organic high-voltage electrolyte additive, nonaqueous organic high-voltage electrolyte and lithium ion secondary battery
CN104701570A (en) Non-aqueous organic high-voltage electrolyte additive, non-aqueous organic high-voltage electrolyte and lithium ion secondary battery
CN113113668B (en) Electrolyte additive, non-aqueous electrolyte containing electrolyte additive and lithium ion battery
CN105390747A (en) Trimethyl borate additive-containing electrolyte solution, preparation method therefor and application thereof
JP2019169305A (en) Nonaqueous electrolyte solution for power storage device
CN110635166B (en) Electrolyte, battery containing electrolyte and electric vehicle
CN104466244B (en) A kind of non-aqueous organic high-voltage electrolyte additive, non-aqueous organic high-voltage electrolyte and lithium rechargeable battery
CN105742711A (en) Electrolyte and lithium ion battery

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13872499

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13872499

Country of ref document: EP

Kind code of ref document: A1