WO2014112691A1 - 적외선 센서를 이용한 굴뚝 배기 가스의 연기 농도 측정기 - Google Patents

적외선 센서를 이용한 굴뚝 배기 가스의 연기 농도 측정기 Download PDF

Info

Publication number
WO2014112691A1
WO2014112691A1 PCT/KR2013/002987 KR2013002987W WO2014112691A1 WO 2014112691 A1 WO2014112691 A1 WO 2014112691A1 KR 2013002987 W KR2013002987 W KR 2013002987W WO 2014112691 A1 WO2014112691 A1 WO 2014112691A1
Authority
WO
WIPO (PCT)
Prior art keywords
smoke
infrared sensor
chimney
infrared
light
Prior art date
Application number
PCT/KR2013/002987
Other languages
English (en)
French (fr)
Inventor
박정환
Original Assignee
Park Jeong-Hwan
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Park Jeong-Hwan filed Critical Park Jeong-Hwan
Publication of WO2014112691A1 publication Critical patent/WO2014112691A1/ko

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/47Scattering, i.e. diffuse reflection
    • G01N21/49Scattering, i.e. diffuse reflection within a body or fluid
    • G01N21/53Scattering, i.e. diffuse reflection within a body or fluid within a flowing fluid, e.g. smoke
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/35Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/02Devices for withdrawing samples
    • G01N1/22Devices for withdrawing samples in the gaseous state
    • G01N1/2247Sampling from a flowing stream of gas
    • G01N1/2258Sampling from a flowing stream of gas in a stack or chimney
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/02Investigating particle size or size distribution
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/85Investigating moving fluids or granular solids
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/94Investigating contamination, e.g. dust
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/06Investigating concentration of particle suspensions

Definitions

  • the present invention relates to a smoke concentration measuring device of a flue gas using an infrared sensor, and more particularly, to an exhaust gas discharged through a chimney using an infrared sensor regardless of illuminance and disturbance light (particularly, sunlight). It relates to a smoke concentration meter for measuring the smoke concentration.
  • the amount of smoke emitted through the chimney, and the concentration of the smoke is preferably kept steady without sudden fluctuations. If smoke levels and smoke concentrations increase rapidly, the amount of emissions regulated by the Atmospheric Environmental Conservation Act may exceed the allowable threshold, or at least cause misunderstandings that neighboring residents have increased pollutant emissions.
  • a system for installing a surveillance CCTV camera near a chimney outer wall or a chimney and monitoring the amount of smoke and the smoke concentration by an image obtained through the camera is also used.
  • the chimney smoke monitoring system it is difficult to monitor the amount of smoke and even whether the smoke is discharged because the smoke is not displayed properly in the image at night or in the fog when the light is low.
  • the subjective criteria for the normal range of the smoke generation amount for each worker is difficult to uniformly determine whether the abnormality, there is a problem that only a skilled person can perform the monitoring work.
  • the smoke concentration measuring device of the method of measuring the amount of smoke and smoke concentration using a CDS sensor using the visible light wavelength is installed in the chimney.
  • 1 is a schematic diagram illustrating a method of measuring smoke concentration using a CDS sensor using visible light wavelengths.
  • a stack adapter is installed on both sides of a smoke stack facing each other, a light projector is installed at an end of one stack adapter, and a stack adapter is mounted on the other stack adapter.
  • Install RECEIVER consisting of CDS SHELL at the end of.
  • the LED light emitting part emits light in the visible wavelength range
  • the emitted light senses the light reached from the opposite light receiving part after passing through the stack. That is, a method of measuring the amount of smoke (smoke concentration) of the exhaust gas by detecting a change in the light transmission amount according to the smoke concentration passing through the chimney based on the amount of light constantly emitted from the light emitting unit.
  • the method as shown in FIG. 1 simply measures the smoke concentration by the light transmittance by visible light, thereby causing interference of disturbance light (solar light) according to the change of environment, and the type of smoke particles (black, white, particle size). Etc.), there is a disadvantage in that the measured value changes and errors are severe, and it is difficult to accurately measure the smoke concentration.
  • the method using the CDS sensor as shown in FIG. 1 increases the concentration of the smoke due to the limitation of the LED light power (light intensity) capacity applied to the light emitting unit (PROJECTOR), so that the light intensity from the LED does not pass through the concentration of smoke. If it is not possible, LED light (visible light) is not transmitted to the receiver (RECEIVER) at all, there was a disadvantage that can not accurately measure the actual smoke concentration.
  • the present invention is to solve the above problems, by using an infrared sensor, measuring the smoke concentration of the exhaust gas discharged through the smoke stack (smoke stack) installed in the industrial and ship, and displays the measured value in real time, When the smoke concentration increases above the set value, an alarm sound is generated to notify the user of the adjustment of the combustion amount or the abnormality of the combustion material so that the soot or combustion gas generated can be prevented from adversely affecting the surrounding environment. It is to provide a smoke concentration meter of the flue exhaust gas using an infrared sensor.
  • the smoke concentration measuring instrument of the flue exhaust gas using the infrared sensor of the present invention is coupled to communicate with the stack adapter installed on the side of the chimney, smoke through which the through-hole 12 is formed Chamber 10;
  • a fan chamber attached to one side of the smoke chamber and having a blow fan attached therein to supply wind to the smoke chamber so that smoke does not stay continuously;
  • An infrared sensor 30 installed at the other end of the smoke chamber, the infrared light emitting unit for emitting light in the infrared wavelength band, and the infrared sensor 30 integrally formed with an infrared light receiving unit for detecting the light emitted by the chimney exhaust smoke reflected from the infrared light emitting unit ;
  • a control panel 40 displaying the flue exhaust smoke concentration measured by the infrared sensor.
  • control panel 40 is connected to an alarm, the control panel sends an alarm signal to the alarm when the smoke concentration measured by the infrared sensor is more than a predetermined value to generate an alarm sound. Let's do it.
  • the light source generated in the infrared light emitting unit hits the smoke coming back to the principle of detecting the infrared light receiving unit, that is, the amount of light returned depending on the amount of smoke of the exhaust gas generated is the infrared light receiving unit The greater the amount of light detected by the, the higher the smoke concentration.
  • the smoke concentration measuring device of the chimney exhaust gas using the infrared sensor of the present invention adopts a DIR (Dispersive Infrared absorption) measuring method using an infrared sensor to prevent the environmental environment and the interference of natural light (sunlight). It is not affected and has the advantage of being able to measure precisely regardless of the type of smoke particles.
  • DIR Display Infrared absorption
  • the smoke concentration meter of the present invention is formed integrally with the infrared light emitting unit and the infrared light receiving unit is installed on one side of the chimney, so that the light reflected by the smoke is reflected in the infrared light receiving unit instead of the light passing through the smoke concentration of the smoke Even if it is increased, it is possible to accurately measure linearly the smoke concentration by accurately measuring the amount of reflection of infrared light according to the smoke concentration.
  • the smoke concentration meter of the present invention is connected to the alarm, the smoke or combustion gas generated by generating an alarm when the smoke concentration above the set value increases to inform the user of the adjustment of the combustion amount or the combustion material abnormality is around
  • the advantage is that it can prevent the adverse effects of polluting the environment in advance.
  • FIG. 1 is a schematic diagram illustrating a method of measuring smoke concentration using a conventional CDS sensor.
  • FIG. 2 is a schematic diagram of a smoke test chamber (smoke test) of the smoke concentration meter of the flue exhaust gas using an infrared sensor in accordance with a preferred embodiment of the present invention.
  • FIG. 3 is a schematic view of a smoke concentration meter of a chimney exhaust gas using an infrared sensor, in accordance with a preferred embodiment of the present invention.
  • FIG. 4 is a graph showing actual measurements of smoke concentrations according to Examples (FIG. 2) and Comparative Examples (FIG. 1).
  • FIG. 2 is a schematic diagram illustrating a smoke test chamber of smoke flue gas using an infrared sensor in a smoke test chamber according to a preferred embodiment of the present invention, and FIG. Overall schematic of the concentration meter.
  • the smoke concentration measuring device of the flue gas using the infrared sensor of the present invention smoke chamber (smoke chamber, 10), fan chamber (fan chamber, 20), infrared sensor 30, control panel 40 and an alarm 50.
  • the most basic feature of the present invention is that smoke concentration is measured using an infrared sensor instead of a CDS sensor using a conventional visible light wavelength.
  • the infrared sensor 30 is installed at the end of the smoke chamber 10 communicated with the staff adapter of the chimney.
  • the infrared sensor 30 includes an infrared light emitting unit 32 that emits light of an infrared wavelength band of a predetermined frequency, and an infrared light receiving unit 34 that senses light emitted from the infrared light emitting unit and reflected by the chimney exhaust smoke. Is formed. That is, the infrared rays emitted from the infrared light emitter 32 are reflected by hitting the smoke, and the reflected light is reflected by the infrared light receiver 34 to measure the concentration of the smoke.
  • the method of measuring the smoke concentration by infrared light is reflected by the light emitted from the infrared light emitting unit (INFRARED EMITTING DIODE 32) indicated by dotted lines hitting the smoke particles indicated by the solid line.
  • the method of detecting the amount of light returned by the infrared receiver 34 is applied.
  • the infrared light receiving unit detects the amount of infrared light reflected by the smoke particles and returns, and the more the amount of light hitting the smoke particles, the darker the soot concentration.
  • the amount of current flowing varies according to the amount of infrared light received, and the principle of measuring the smoke concentration by amplifying a small change in the current by using an OP AMP and converting it into a voltage is applied.
  • the smoke concentration measuring device of the chimney exhaust gas of the present invention uses an infrared sensor to measure the smoke concentration without being affected by environmental changes or interference of natural light (solar light), and infrared rays reflected by the smoke Compared to the conventional method of measuring the amount of visible light passing through the smoke, it is possible to accurately measure linearly the concentration of the infrared light by accurately measuring the reflection of infrared light even when the concentration of the smoke is increased. .
  • the smoke chamber 10 in which the infrared sensor 30 is installed at the end, is coupled to the stack adapter of the chimney by a flange 14.
  • the smoke chamber 10 serves as a passage through which infrared light passes.
  • a fan chamber 20 is installed at an upper end of the smoke chamber in communication with the smoke chamber 10.
  • a fan 22 is attached to the fan chamber 20 to supply wind to the smoke chamber 10 by a blow fan. This is to prevent the exhaust gas from entering the staff adapter and the smoke chamber and staying continually without circulating with the convection, thus interfering with the continuous smoke measurement. That is, the blow fan of the fan chamber 20 supplies the continuous and constant wind to the smoke chamber 10 so as to discharge the exhaust gas so that the exhaust gas is introduced into the step adapter and the smoke chamber 10 and is not stagnant.
  • control panel 40 is electrically connected to the infrared sensor 30 serves to display the smoke concentration of the chimney exhaust gas measured by the infrared sensor.
  • the smoke concentration information measured by the infrared sensor is transmitted to the control panel, the concentration is displayed according to the Ringgelman concentration table method.
  • the control panel 40 is electrically connected to the alarm unit 50.
  • the control panel When the smoke concentration of the exhaust gas measured by the infrared sensor 30 is greater than or equal to a value set by an operator, the control panel generates an alarm signal. The alarm will be sent to the alarm.
  • the operator of the smoke concentration measuring instrument of the present invention recognizes whether the combustion amount is excessive or abnormality of the combustion material when an alarm is generated, so as to block in advance the adverse effects of soot or combustion gas polluting the surrounding environment.
  • the accuracy of the smoke concentration measurement was evaluated for the smoke concentration measuring device (comparative example) using the CDS sensor using the conventional visible light, and the smoke concentration measuring device for the smoke concentration measuring device using the infrared sensor of this invention.
  • the smoke generated from the separately prepared SMOKE GENERATOR was injected into the SMOKE INPUT pipe located at the bottom, the smoke was circulated to exit the SMOKE OUTPUT located at the top, and the change in the sensing value of each case was measured.
  • the concentration of smoke from the chimney was measured according to the Ringelman's smoke chart, an internationally widely used method.
  • smoke generated from the SMOKE GENERATOR whose smoke concentration can be adjusted, and a standard film having respective transmittances (0, 20%, 40%, 60%, 80%, 100%)
  • the smoke concentration at the most similar smoke concentration is reported as a standard smoke concentration, and in the case of each standard smoke concentration, each SMOKE TEST CHAMBER implemented in the SMOKE GENERATOR implemented as shown in FIGS. 1 and 2.
  • the method of measuring the smoke concentration sensing value in each case (comparative example, Example) by using smoke was used.
  • the smoke concentration at this time is 20%
  • the smoke generated from the SMOKE GENERATOR was introduced into each SMOKE TEST CHAMBER implemented in FIGS. 1 and 2, and the smoke concentration was measured by the smoke concentration sensing value of each case (Comparative Example, Example). The remaining concentrations were measured in the same manner.
  • FIG. 4 is a graph showing smoke concentration chamber measurements according to Examples (FIG. 2) and Comparative Examples (FIG. 1).
  • the measurement of the company B shows a measurement error that rises with a sharp slope to 100%.
  • the Example (developed product) which is a product of this invention the measured value same as an actual value was obtained.
  • the method of using the CDS sensor using visible light has a high smoke concentration due to the limitation of the LED light power (light intensity) capacity applied to the light emitting unit (PROJECTOR). If the intensity of the light emitted from the LED does not pass through the concentration of soot, the LED light does not penetrate the RECEVER at all, and thus a linear measurement value cannot be obtained in proportion to the soot actually generated. In the case of using an infrared sensor as in the embodiment (developed product) of the present invention, a linear measured value can be obtained even if the concentration of smoke generated actually increases.
  • the present invention relates to a smoke concentration measuring device of a flue gas using an infrared sensor, and more particularly, to an exhaust gas discharged through a chimney using an infrared sensor regardless of illuminance and disturbance light (particularly, sunlight). It is available in the field of smoke concentration meter for measuring smoke concentration.

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Immunology (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Pathology (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Dispersion Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Molecular Biology (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

본 발명은 적외선 센서를 이용한 굴뚝 배기 가스의 연기 농도 측정기에 관한 것으로서, 보다 상세하게는 적외선 센서를 이용하여 조도 및 외란광(특히, 태양광)의 간섭에 관계없이 굴뚝을 통하여 배출되는 배기가스의 연기 농도를 측정하는 연기농도 측정기에 관한 것이다. 본 발명의 적외선 센서를 이용한 굴뚝 배기가스의 연기 농도 측정기는 굴뚝의 측면에 설치된 스택 어탭터에 연통하여 결합되며, 내부에 관통공(12)이 형성된 스모크 챔버(smoke chamber, 10); 상기 스모크 챔버의 일측에 연통되게 부착되며, 상기 스모크 챔버에 바람을 공급하도록 내부에 블로우 팬(fan)이 부착된 팬 챔버(fan chamber, 20); 상기 스모크 챔버의 타단에 설치되되, 적외선 파장대의 빛을 발산하는 적외선 발광부와, 상기 적외선 발광부에서 발산되어 굴뚝 배기 연기에 의해 반사된 빛을 감지하는 적외선 수광부가 일체로 형성된 적외선 센서(30); 상기 적외선 센서에서 측정된 굴뚝 배기 연기 농도를 표시하는 제어 판넬(40);을 포함한다.

Description

적외선 센서를 이용한 굴뚝 배기 가스의 연기 농도 측정기
본 발명은 적외선 센서를 이용한 굴뚝 배기 가스의 연기 농도 측정기에 관한 것으로서, 보다 상세하게는 적외선 센서를 이용하여 조도 및 외란광(특히, 태양광)의 간섭에 관계없이 굴뚝을 통하여 배출되는 배기가스의 연기 농도를 측정하는 연기농도 측정기에 관한 것이다.
일반적으로 공장, 폐기물 소각장, 열병합 발전소 등 연료를 사용하는 사업장이나 선박 등에는 대형 굴뚝(Stack)이 설치되어 있다. 이와 같은 굴뚝은 자연 대류 현상에 의해 공기를 외부로 배출시킴으로써, 오염물질 및 비오염물질을 배출함과 아울러, 열을 방출하는 기능을 수행한다.
굴뚝을 통해 방출되는 연기의 양, 연기의 농도는 급격한 변동이 없이 꾸준함을 유지하는 것이 바람직하다. 만약 연기량, 연기 농도가 급격히 증가한다면, 대기환경보전법에서 규율하는 배출가스의 양이 허용기준치를 넘어설 수 있거나, 적어도 인근 주민들로 하여금 오염물질 배출량이 증가하였다는 오해를 야기할 수 있다.
한편, 연기량이 갑자기 감소한다면, 굴뚝 내벽 또는 열회수용 히트 파이프 등에 이물질이 축적되어 굴뚝이 부분적으로 막혔거나 굴뚝 전단에 있는 로(furnace)나 그밖의 기계장치에서 고장이 발생하였을 가능성이 있다. 따라서 굴뚝이 설치된 사업장에서는 굴뚝을 통해 방출되는 연기량과 연기 농도를 지속적으로 감시할 필요가 있다. 연기량과 연기 농도의 감시는 육안으로 행해질 수도 있지만, 이와 같은 육안 감시는 지속적으로 이루어지기가 어렵다.
종래의 기술로서, 굴뚝 외벽 또는 굴뚝 인근에 감시용 CCTV 카메라를 설치하고, 카메라를 통해 획득된 영상에 의해 연기량 및 연기농도를 감시하는 시스템도 사용되고 있다. 이러한 굴뚝 연기용 감시 시스템에 따르면, 조도가 낮은 야간이나 안개가 낀 날에는 연기가 영상에 제대로 표시되지 않기 때문에, 연기량 감시는 물론 연기 배출 여부조차 확인이 어려울 수 있다. 또한 기존 시스템에 따르면, 작업자마다 연기 발생량의 정상 범위에 대한 주관적 기준이 상이하기 때문에 비정상 여부에 대한 일률적인 판단이 어렵고, 숙련자만이 감시 업무를 행할 수 있다는 문제점이 있다.
한편, 가시광선 파장을 이용하는 CDS 센서를 이용하여 연기량 및 연기농도를 측정하는 방식의 연기 농도 측정기가 굴뚝에 설치되고 있는 실정이다. 도 1은 가시광선 파장을 이용한 CDS 센서를 사용하여 연기 농도를 측정하는 방법을 나타내는 개략도이다.
도 1을 참조하면, 굴뚝(smoke stack)을 중심으로 서로 마주보는 양쪽에 스택 어탭터(stack adaptor)을 설치하고, 한쪽의 스택 어탭터의 끝단에 발광부(LED PROJECTOR)를 설치하고 다른 쪽의 스택 어탭터의 끝단에 CDS SHELL로 구성된 수광부(RECEIVER)를 설치한다. LED 발광부가 가시광선 파장대의 빛을 발산하면, 발산된 빛은 굴뚝(stack)을 통과한 후 반대편의 수광부에서 도달된 빛을 감지한다. 즉, 발광부에서 일정하게 방사되는 광량을 기준으로 굴뚝을 통과하는 연기 농도에 따른 빛 투과량의 변화를 수광부에서 감지하여 배기 가스의 연기량(연기 농도)를 측정하는 방식이다.
하지만, 도 1에서와 같은 방식은 단순히 가시광선에 의한 광 투과율로 연기 농도를 측정함으로써, 환경의 변화에 따른 외란 광(태양광)의 간섭과, 연기 입자의 종류(흑색, 백색, 입자의 크기 등)의 변화에 따라서 측정값의 변화 및 오차가 심하다는 단점이 있어, 정확한 연기 농도의 측정에 어려움이 있었다. 다시말해, 도 1과 같이 CDS 센서를 이용하는 방식은 발광부(PROJECTOR)에 적용된 LED 광파워(빛의 세기) 용량의 한계 때문에 연기의 농도가 높아져 LED에서 나오는 빛의 세기가 매연의 농도를 통과하지 못하는 수준이 되면, 수광부(RECEIVER)쪽으로 LED 빛(가시광선)이 전혀 투과되지 못하여 실제로 발생되는 연기 농도를 정확히 측정할 수 없다는 단점이 있었다.
본 발명은 상기의 문제점을 해결하기 위한 것으로서, 적외선 센서를 이용하여, 산업용 및 선박에 설치된 연기 배기관(smoke stack)을 통하여 배출되는 배기 가스의 연기 농도를 측정하여 실시간으로 그 측정값을 표시하고, 설정값 이상으로 연기 농도가 증가하였을 경우에 경보음을 발생하여 연소량의 조정 또는 연소 물질의 이상여부를 사용자에게 알려줌으로써 발생하는 매연 또는 연소 가스가 주위 환경을 오염시키는 악영향을 사전에 차단할 수 있는, 적외선 센서를 이용한 굴뚝 배기 가스의 연기 농도 측정기를 제공하는 것이다.
본 발명의 목적은 이상에서 언급한 목적으로 제한되지 않으며, 언급되지 않은 또다른 목적들은 아래의 기재로부터 명확하게 이해될 수 있을 것이다.
본 발명은 상기의 목적을 달성하기 위한 것으로서, 본 발명의 적외선 센서를 이용한 굴뚝 배기가스의 연기 농도 측정기는 굴뚝의 측면에 설치된 스택 어탭터에 연통하여 결합되며, 내부에 관통공(12)이 형성된 스모크 챔버(smoke chamber, 10); 상기 스모크 챔버의 일측에 연통되게 부착되며, 상기 스모크 챔버에 연기가 계속적으로 머물지 못하게 바람을 공급하도록 내부에 블로우 팬(fan)이 부착된 팬 챔버(fan chamber, 20); 상기 스모크 챔버의 타단에 설치되되, 적외선 파장대의 빛을 발산하는 적외선 발광부와, 상기 적외선 발광부에서 발산되어 굴뚝 배기 연기에 의해 반사된 빛을 감지하는 적외선 수광부가 일체로 형성된 적외선 센서(30); 상기 적외선 센서에서 측정된 굴뚝 배기 연기 농도를 표시하는 제어 판넬(40);을 포함한다.
바람직한 실시예에 따르면, 상기 제어 판넬(40)은 경보기가 연결되되, 상기 적외선 센서에서 측정된 연기 농도가 미리설정된 값 이상이 될 경우에 상기 제어 판넬은 경보신호를 상기 경보기에 보내 경보음을 발생시킨다.
바람직한 실시예에 다르면, 적외선 발광부에서 발생하는 광원이 연기에 부딪혀 돌아오는 광량을 상기 적외선 수광부에서 감지하는 원리이며, 즉, 발생되는 배기가스의 연기량에 따라 돌아오는 광량이 변화하므로 이는 적외선 수광부에서 감지하는 광량이 많을수록 연기농도가 높다.
이상에서 상술한 바와 같이, 본 발명의 적외선 센서를 이용한 굴뚝 배기 가스의 연기 농도 측정기는 적외선센서를 이용한 DIR(Dispersive Infrared absorption) 측정방식을 채택하여 주위 환경변화 및 자연광(태양광)의 간섭에 대한 영향을 받지 않고, 연기입자의 종류와 상관없이 정밀한 측정이 가능하다는 장점이 있다.
또한, 본 발명의 연기 농도 측정기는 적외선 발광부와 적외선 수광부가 일체로 형성되어 굴뚝의 한쪽에 설치됨으로, 연기를 통과한 빛이 아니라 연기에 의해 반사되는 빛을 적외선 수광부에서 감지하게 됨으로 연기의 농도가 높아진 경우에도 연기 농도에 따른 적외선 빛의 반사량을 정확히 측정하여 연기의 농도를 정밀하게 선형적으로 감지할 수 있다는 장점이 있다.
아울러, 본 발명의 연기 농도 측정기는 경보기와 연결되어, 설정값 이상의 연기 농도가 증가하였을 경우에 경보를 발생하여 연소량의 조정 또는 연소 물질의 이상여부를 사용자에게 알려줌으로써 발생하는 매연 또는 연소 가스가 주위 환경을 오염시키는 악영향을 사전에 차단할 수 있다는 장점이 있다.
도 1은 종래의 CDS 센서를 사용하여 연기 농도를 측정하는 방법을 나타내는 개략도.
도 2는 본 발명의 바람직한 실시예에 따른, 적외선 센서를 이용한 굴뚝 배기 가스의 연기 농도 측정기를 스모크 테스트 챔버(smoke test chamber)에 구현한 개략도.
도 3은 본 발명의 바람직한 실시예에 따른, 적외선 센서를 이용한 굴뚝 배기 가스의 연기 농도 측정기의 개략도.
도 4는 실시예(도 2)와 비교예(도 1)에 따른 연기 농도의 실측정치를 나타내는 그래프.
이하에서는 첨부된 도면을 참조로 하여, 본 발명의 적외선 센서를 이용한 굴뚝 배기 가스의 연기 농도 측정기를 보다 상세히 설명하기로 한다.
도 2는 본 발명의 바람직한 실시예에 따른, 적외선 센서를 이용한 굴뚝 배기 가스의 연기 농도 측정기를 스모크 테스트 챔버(smoke test chamber)에 구현한 개략도이며, 도 3은 적외선 센서를 이용한 굴뚝 배기 가스의 연기 농도 측정기의 전체 개략도이다.
도 2 및 도 3을 참조하면, 본 발명의 적외선 센서를 이용한 굴뚝 배기 가스의 연기 농도 측정기는 스모크 챔버(smoke chamber, 10), 팬 챔버(fan chamber, 20), 적외선 센서(30), 제어 판넬(40) 및 경보기(50)를 포함한다.
본 발명의 가장 기본적인 특징으로 종래의 가시광선 파장을 이용하는 CDS 센서 대신에, 적외선 센서를 이용하여 연기 농도를 측정한다는 점이다.
*적외선 센서(30)는 굴뚝의 스탭 어탭터에 연통된 스모크 챔버(10)의 끝단에 설치된다.
적외선 센서(30)는 일정 주파수의 적외선 파장대의 빛을 발산하는 적외선 발광부(32)와, 상기 적외선 발광부에서 발산되어 굴뚝 배기 연기에 의해 반사된 빛을 감지하는 적외선 수광부(34)가 일체로 형성된다. 즉, 적외선 발광부(32)에서 발산된 적외선은 연기에 부딪혀 반사되고, 이 반사되어 되돌아 오는 빛을 적외선 수광부(34)에서 감지하여 연기의 농도를 측정하게 된다.
적외선 발광부와 적외선 수광부가 일체로 형성되어 있음으로, 적외선으로 연기농도를 측정하는 방법은 점선으로 표시된 적외선발광부(INFRARED EMITTING DIODE, 32)에서 발산한 광이 실선으로 표시된 연기 입자에 부딪혀서 반사되어 돌아오는 광량을 적외선 수광부(PHOTO DIODE, 34)에서 감지하는 방식이 적용된다. 적외선 수광부는 연기입자에 반사되어 돌아오는 적외선 광량을 감지함으로, 연기입자에 부딪혀 돌아오는 광량이 많으면 많을수록 매연농도가 짙은 것을 의미한다. 적외선 수광부에서는 수광되는 적외선의 광량에 따라 흐르는 전류량이 변화하는 데, 이 전류의 작은 변화량을 OP AMP를 이용하여 증폭하여 전압으로 변환하여 연기 농도를 측정하는 원리가 적용되는 것이다.
따라서, 본 발명의 굴뚝 배기가스의 연기 농도 측정기는 적외선 센서를 이용함으로, 주위 환경변화이나 자연광(태양광)의 간섭에 대한 영향을 받지 않고 연기 농도를 측정할 수 있으며, 연기에 의해 반사되는 적외선 광량을 측정하는 방식임으로 연기를 통과한 가시광선 량을 측정하는 종래의 방식에 비하여 연기의 농도가 높아진 경우라도 적외선 빛의 반사량을 정확히 측정하여 연기의 농도를 정밀하게 선형적으로 감지할 수 있는 것이다.
적외선 센서(30)가 끝단에 설치되는 스모크 챔버(10)은 플랜지(14)에 의해 굴뚝의 스탭 어탭터(stack adaptor)에 연통되게 결합된다. 스모크 챔버(smoke chamber, 10)는 적외선 빛이 지나가는 통로 역할을 하게 된다.
스모크 챔버의 상단에는 팬 챔버(fan chamber, 20)가 상기 스모크 챔버(10)와 연통되어 설치된다. 팬 챔버(20)에는 블로우 팬(fan, 22)이 부착되어, 블로우팬(blow fan)에 의해 스모크 챔버(10) 내부에 바람을 공급한다. 이는 배기 가스가 스탭 어탭터와 스모크 챔버 내부로 유입되어 대류와 함께 순환하지 않고 계속적으로 머물러 연속적인 연기 측정을 방해ㅎ는 것을 방지하기 위해서이다. 즉, 팬 챔버(20)의 블로우 팬은 스모크 챔버(10)에 연속적이고 일정한 바람을 공급하여 배기가스가 스탭 어탭터와 스모크 챔버(10)에 유입되어 정체되지 않도록 배기 가스를 내보내는 역할을 한다.
한편, 제어 판넬(40)는 적외선 센서(30)와 전기적으로 연결되어 적외선 센서에서 측정된 굴뚝 배기 가스의 연기 농도를 표시하는 역할을 한다. 즉, 적외선 센서에 의해 측정된 연기 농도 정보는 제어 판넬에 전달된 후, 링겔만 농도표법에 따라 농도가 표시된다.
상기 제어 판넬(40)는 경보기(50)가 전기적으로 연결되는 데, 상기 적외선 센서(30)에서 측정된 배기 가스의 연기 농도가 운용자가 설정한 값 이상이 될 경우에 상기 제어 판넬은 경보신호를 상기 경보기에 보내 경보음을 발생시키게 된다. 본 발명의 연기 농도 측정기의 운용자는 경보가 발생된 경우에 연소량의 과다여부, 연소 물질의 이상 여부를 인식하여, 매연 또는 연소 가스가 주위 환경을 오염시키는 악영향을 사전에 차단할 수 있다.
실시예
종래의 가시광선을 이용하는 CDS 센서를 이용한 연기 농도 측정기(비교예)와 본 발명의 적외선 센서를 이용한 연기 농도 측정기에 대한 연기 농도 측정기에 대해서, 연기 농도 측정의 정확성을 평가하였다.
먼저, 도 1에 도시된 바와 같은 종래의 CDS 센서를 이용한 연기 농도 측정기(비아이산업(주)(국내 B사), Model: BI-SM2004)가 설치된 스모크 테스트 챔버를 구성하는 한편, 도 2에 도시된 바와 같은 본 발명의 적외선 센서를 이용한 연기 농도 측정기가 설치된 스모크 테스트 챔버를 각각 구성하였다.
별도로 준비된 SMOKE GENERATOR에서 발생된 연기를 아래쪽에 위치한 SMOKE INPUT 배관으로 주입하고, 위쪽에 위치한 SMOKE OUTPUT으로 빠져 나오도록 연기를 순환시키며 각각의 경우의 센싱 값의 변화를 측정하였다.
굴뚝에서 나오는 매연(연기)의 농도를 측정할 때 국제적으로 널리 사용되는 방법인 링겔만 농도표법(Ringelman's smoke chart)에 따라 측정하였다. 표준이 되는 발생 연기농도의 측정을 위하여, 연기농도의 조정이 가능한 SMOKE GENERATOR에서 발생되는 연기와, 각각의 투과율을 가지는 표준필름(0, 20%, 40%, 60%, 80%, 100%)과 비교하여, 가장 비슷한 연기농도가 되었을 때의 연기농도를 표준 연기농도로 보고, 각각의 표준 연기농도의 경우에, 도 1 및 도 2와 같이 구현된 각각의 SMOKE TEST CHAMBER로 SMOKE GENERATOR에서 발생된 연기를 투입하여 각각의 경우(비교예, 실시예)의 연기농도 센싱 값을 측정하는 방법을 사용하였다.
다시 말해, 예를 들어 SMOKE GENERATOR에서 발생되는 연기의 농도를 조정하여 SMOKE GENERATOR에서 발생되는 연기의 농도가 20% 투과율을 가지는 표준필름의 농도와 동일한 경우, 이 때의 연기농도를 20%로 보고, 이 때 SMOKE GENERATOR에서 발생된 연기를 도 1 및 도 2로 구현된 각각의 SMOKE TEST CHAMBER로 투입하여 각각의 경우(비교예, 실시예)의 연기농도 센싱 값으로 연기농도를 측정하였다. 나머지 농도에 대해서도 동일한 방식으로 측정하였다.
측정된 결과를 도 4에 도시하였다. 도 4는 실시예(도 2)와 비교예(도 1)에 따른 연기 농도 실 측정치를 나타내는 그래프이다.
도 4를 참조하면, 매연 발생률 0 ~ 40%까지는 국내 B사 제품의 경우(비교예)나 개발제품(실시예) 경우 모두 표준 필름의 농도와 거의 비슷한 값을 나타내나, 50% 이상에서 확연히 차이가 발생하기 시작하여 실제 값(표준 농도) 60%에서는 B사제품의 측정치는 100%로의 급격한 기울기로 상승하는 측정 오류를 보여주고 있다. 이에 반하여, 본 발명의 제품인 실시예(개발제품)의 경우에는 실제 값과 동일한 측정값의 얻을 수 있었다.
따라서, 비교예(국내 B사 제품)에서와 같이 가시광선을 이용하는 CDS 센서를 사용하는 방식은 발광부(PROJECTOR)에 적용된 LED 광파워(빛의 세기) 용량의 한계 때문에 연기의 농도가 높아져 발광부 LED에서 나오는 빛의 세기가 매연의 농도를 통과하지 못하는 수준이 되면, 수광부(RECEIVER)쪽으로 LED 빛이 전혀 투과되지 못하여 실제로 발생되는 매연에 비례한 선형적인 측정값을 얻을 수 없는 단점이 있는 데 반하여, 본 발명의 실시예(개발 제품)에서와 같이 적외선 센서를 이용하는 경우에는 실제 발생되는 매연의 농도가 증가하더라도 선형적인 측정값을 얻을 수 있는 것이다.
이상의 설명은 본 발명의 기술 사상을 예시적으로 설명한 것에 불과한 것으로, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자라면 본 발명의 본질적인 특성에서 벗어나지 않는 범위에서 다양한 수정 및 변형이 가능할 것이다. 따라서, 본 발명에 개시된 실시예들은 본 발명의 기술 사상을 한정하기 위한 것이 아니라, 설명하기 위한 것이고, 이러한 실시예에 의하여 본 발명의 기술 사상의 범위가 한정되는 것도 아니다. 본 발명의 보호 범위는 아래 특허청구범위에 의하여 해석되어야 하며, 그와 동등한 범위 내에 있는 모든 기술사상은 본 발명의 권리범위에 포함되는 것으로 해석되어야 할 것이다.
본 발명은 적외선 센서를 이용한 굴뚝 배기 가스의 연기 농도 측정기에 관한 것으로서, 보다 상세하게는 적외선 센서를 이용하여 조도 및 외란광(특히, 태양광)의 간섭에 관계없이 굴뚝을 통하여 배출되는 배기가스의 연기 농도를 측정하는 연기농도 측정기 분야에 이용가능하다.

Claims (5)

  1. 굴뚝의 측면에 설치된 스택 어탭터에 연통하여 결합되며, 내부에 관통공(12)이 형성된 스모크 챔버(smoke chamber, 10);
    상기 스모크 챔버의 일측에 연통되게 부착되며, 상기 스모크 챔버에 바람을 공급하도록 내부에 블로우 팬(fan, 22)이 부착된 팬 챔버(fan chamber, 20);
    상기 스모크 챔버의 타단에 설치되되, 적외선 파장대의 빛을 발산하는 적외선 발광부와, 상기 적외선 발광부에서 발산되어 굴뚝 배기 연기에 의해 반사된 빛을 감지하는 적외선 수광부가 일체로 형성된 적외선 센서(infrared sensor, 30); 및
    상기 적외선 센서에서 측정된 굴뚝 배기 연기 농도를 표시하는 제어 판넬(control panel, 40);을 포함하는 것을 특징으로 하는 적외선 센서를 이용한 굴뚝 배기가스의 연기 농도 측정기.
  2. 제 1항에 있어서,
    상기 제어 판넬(40)은 경보기(50)에 전기적으로 연결되되, 상기 적외선 센서에서 측정된 연기 농도가 미리설정된 값 이상이 될 경우에 상기 제어 판넬은 경보신호를 상기 경보기에 보내 경보음을 발생시키는 것을 특징으로 하는 적외선 센서를 이용한 굴뚝 배기가스의 연기 농도 측정기.
  3. 제 1항에 있어서,
    상기 팬 챔버(fan chamber, 20) 내부에 블로우팬(blow fan)이 부착되어 배기가스 연기가 상기 스모크 챔버(10) 내부로 유입되어 계속적으로 머물러 연속적인 연기 농도 측정을 방해하는 것을 방지하기 위해서 연속적이고 안정적인 바람을 공급하는 것을 특징으로 하는 적외선 센서를 이용한 굴뚝 배기가스의 연기 농도 측정기.
  4. 제 1항에 있어서,
    상기 적외선 수광부에서 감지하는 광량이 많을수록 연기농도가 높은 것을 특징으로 하는 적외선 센서를 이용한 굴뚝 배기가스의 연기 농도 측정기.
  5. 굴뚝의 측면에 설치되되, 적외선 파장대의 빛을 발산하는 발광부와, 상기 발광부에서 발산되어 굴뚝 배기 연기에 의해 반사된 빛을 감지하는 수광부가 일체로 형성된 적외선 센서(30);
    상기 적외선 센서에서 측정된 굴뚝 배기 연기 농도를 표시하는 제어 판넬(40);을 포함하는 것을 특징으로 하는 적외선 센서를 이용한 굴뚝 배기가스의 연기 농도 측정기
PCT/KR2013/002987 2013-01-21 2013-04-10 적외선 센서를 이용한 굴뚝 배기 가스의 연기 농도 측정기 WO2014112691A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020130006685A KR20140094727A (ko) 2013-01-21 2013-01-21 적외선 센서를 이용한 굴뚝 배기 가스의 연기 농도 측정기
KR10-2013-0006685 2013-01-21

Publications (1)

Publication Number Publication Date
WO2014112691A1 true WO2014112691A1 (ko) 2014-07-24

Family

ID=51209772

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2013/002987 WO2014112691A1 (ko) 2013-01-21 2013-04-10 적외선 센서를 이용한 굴뚝 배기 가스의 연기 농도 측정기

Country Status (2)

Country Link
KR (1) KR20140094727A (ko)
WO (1) WO2014112691A1 (ko)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105954465A (zh) * 2016-04-25 2016-09-21 国网天津市电力公司 一种新型烟气在线取样方法
CN106885786A (zh) * 2017-04-07 2017-06-23 北京星空永恒科技有限公司 机动车尾气遥测系统
CN107607492A (zh) * 2017-09-14 2018-01-19 天津同阳科技发展有限公司 机动车尾气标准的检测方法及设备
CN108693142A (zh) * 2018-06-11 2018-10-23 重庆大学 一种基于光学散射原理的pm2.5检测方法
CN111044473A (zh) * 2019-12-11 2020-04-21 华帝股份有限公司 一种油烟检测装置的油烟浓度检测方法及吸油烟机

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102347585B1 (ko) 2018-12-28 2022-01-06 조원아 단독 사용 및 각종 전기전자기기에 내장하여 사용할 수 있는 복합감지센서를 이용한 재난 및 재해 경보장치
KR102412201B1 (ko) 2018-12-28 2022-06-23 조원아 단독 사용 및 각종 전기전자기기에 내장하여 사용할 수 있는 복합감지센서를 이용한 재난 및 재해 경보장치
KR102268808B1 (ko) 2018-12-28 2021-06-23 강승오 단독 사용 및 각종 전기전자기기에 내장하여 사용할 수 있는 복합감지센서를 이용한 재난 및 재해 경보장치
KR102088682B1 (ko) 2018-12-28 2020-03-13 이건국 광량 검지식 융복합감지센서 및 이를 이용한 다기능 재해 경보장치
KR102480747B1 (ko) 2020-12-18 2022-12-22 조원아 재난재해 경보장치

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4560873A (en) * 1983-06-17 1985-12-24 Lear Siegler, Inc. Situ multi-channel combustion gas analyzer
US5485276A (en) * 1994-09-22 1996-01-16 Spectral Sciences Inc. Multi-pass optical cell species concentration measurement system
WO2000007161A1 (en) * 1998-07-31 2000-02-10 Gsbs Development Corporation Smoke detectors
US6565352B2 (en) * 2001-04-09 2003-05-20 Ken E. Nielsen Smoke density monitor
US7375643B2 (en) * 2004-11-15 2008-05-20 Honeywell International, Inc. Through a wall combustion detector

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4560873A (en) * 1983-06-17 1985-12-24 Lear Siegler, Inc. Situ multi-channel combustion gas analyzer
US5485276A (en) * 1994-09-22 1996-01-16 Spectral Sciences Inc. Multi-pass optical cell species concentration measurement system
WO2000007161A1 (en) * 1998-07-31 2000-02-10 Gsbs Development Corporation Smoke detectors
US6565352B2 (en) * 2001-04-09 2003-05-20 Ken E. Nielsen Smoke density monitor
US7375643B2 (en) * 2004-11-15 2008-05-20 Honeywell International, Inc. Through a wall combustion detector

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105954465A (zh) * 2016-04-25 2016-09-21 国网天津市电力公司 一种新型烟气在线取样方法
CN106885786A (zh) * 2017-04-07 2017-06-23 北京星空永恒科技有限公司 机动车尾气遥测系统
CN107607492A (zh) * 2017-09-14 2018-01-19 天津同阳科技发展有限公司 机动车尾气标准的检测方法及设备
CN108693142A (zh) * 2018-06-11 2018-10-23 重庆大学 一种基于光学散射原理的pm2.5检测方法
CN108693142B (zh) * 2018-06-11 2020-10-30 重庆大学 一种基于光学散射原理的pm2.5检测方法
CN111044473A (zh) * 2019-12-11 2020-04-21 华帝股份有限公司 一种油烟检测装置的油烟浓度检测方法及吸油烟机

Also Published As

Publication number Publication date
KR20140094727A (ko) 2014-07-31

Similar Documents

Publication Publication Date Title
WO2014112691A1 (ko) 적외선 센서를 이용한 굴뚝 배기 가스의 연기 농도 측정기
US7551277B2 (en) Particle monitors and method(s) therefor
EP2112639B1 (en) Improvement(s) related to particle detectors
RU2536383C2 (ru) Оценка сигналов рассеяния света в оптическом устройстве аварийной сигнализации и выдача как взвешенного сигнала плотности дыма, так и взвешенного сигнала плотности пыли/пара
AU2006251047B9 (en) A flame detector and a method
EP2571001B1 (en) Flame detector using optical sensing
KR101864612B1 (ko) 자동 환기 시스템과 연동되는 화재 경보 방법 및 장치
CN102163364A (zh) 基于减光原理的烟感探测器灵敏度检测装置
CN110009863A (zh) 一种立式双光路感烟探测迷宫及其探测方法
US6565352B2 (en) Smoke density monitor
JP2007078313A (ja) 火炎検知装置
CN209842821U (zh) 红外光和蓝光组合的立式前向感烟火灾探测器迷宫
CN209842826U (zh) 一种多光路双向散射感烟探测器迷宫
JP3423124B2 (ja) 燃焼監視センサ及びこれを用いた燃焼装置の空気比制御方法
CN107478614B (zh) 油烟浓度传感器的污染程度检测装置及检测方法
CN209842824U (zh) 一种感烟探测迷宫
CN2722244Y (zh) 一种吸气式烟雾和气体复合火灾探测器
KR100920067B1 (ko) 자가진단형 불꽃감지기
AU2007203107B2 (en) Improvement(s) related to particle monitors and method(s) therefor
CN209842825U (zh) 一种立式多光路双向散射感烟探测器迷宫
CN209842827U (zh) 红外光和蓝光组合的立式后向感烟探测器迷宫
CN214041146U (zh) 隧道能见度检测器
CN102393026A (zh) 一种油气智能火焰检测装置
CA2598745A1 (en) Improvement(s) related to particle monitors and method(s) therefor
KR20060071535A (ko) 레이저 및 광도계를 이용한 실시간 비산먼지 감시시스템

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13871969

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13871969

Country of ref document: EP

Kind code of ref document: A1