WO2014112485A1 - Method for manufacturing molded body and method for manufacturing glass molded body - Google Patents

Method for manufacturing molded body and method for manufacturing glass molded body Download PDF

Info

Publication number
WO2014112485A1
WO2014112485A1 PCT/JP2014/050469 JP2014050469W WO2014112485A1 WO 2014112485 A1 WO2014112485 A1 WO 2014112485A1 JP 2014050469 W JP2014050469 W JP 2014050469W WO 2014112485 A1 WO2014112485 A1 WO 2014112485A1
Authority
WO
WIPO (PCT)
Prior art keywords
glass
mold
molten
molded body
molten glass
Prior art date
Application number
PCT/JP2014/050469
Other languages
French (fr)
Japanese (ja)
Inventor
伊賀 元一
正徳 中野
Original Assignee
旭硝子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 旭硝子株式会社 filed Critical 旭硝子株式会社
Priority to JP2014557463A priority Critical patent/JP6075392B2/en
Publication of WO2014112485A1 publication Critical patent/WO2014112485A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B11/00Pressing molten glass or performed glass reheated to equivalent low viscosity without blowing
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B13/00Rolling molten glass, i.e. where the molten glass is shaped by rolling
    • C03B13/08Rolling patterned sheets, e.g. sheets having a surface pattern
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B17/00Forming molten glass by flowing-out, pushing-out, extruding or drawing downwardly or laterally from forming slits or by overflowing over lips
    • C03B17/06Forming glass sheets
    • C03B17/065Forming profiled, patterned or corrugated sheets
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B18/00Shaping glass in contact with the surface of a liquid
    • C03B18/02Forming sheets
    • C03B18/04Changing or regulating the dimensions of the molten glass ribbon
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B18/00Shaping glass in contact with the surface of a liquid
    • C03B18/02Forming sheets
    • C03B18/14Changing the surface of the glass ribbon, e.g. roughening
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B23/00Re-forming shaped glass
    • C03B23/02Re-forming glass sheets
    • C03B23/023Re-forming glass sheets by bending
    • C03B23/03Re-forming glass sheets by bending by press-bending between shaping moulds
    • C03B23/033Re-forming glass sheets by bending by press-bending between shaping moulds in a continuous way, e.g. roll forming, or press-roll bending

Definitions

  • the present invention relates to a method for producing a molded body and a method for producing a glass molded body.
  • a chemically strengthened glass is attached as a cover glass on the front surface of the display device, and has a function of improving design as well as a function of protecting a liquid crystal display (LCD).
  • a flat plate glass has been used so far.
  • a part of the flat plate glass for example, an outer edge portion surrounding a flat portion is bent into a curved shape to cover the cover glass.
  • the glass may be molded so as to form a part of the housing.
  • press forming As a method for forming a sheet glass, press forming is generally known.
  • a sheet glass heated to near the softening point in a heating furnace is transferred to a forming part between an upper mold and a lower mold in a horizontal state by a conveying roller, and is bent between the upper mold and the lower mold.
  • a molding apparatus for molding is disclosed.
  • an object of the present invention is to provide a method for producing a molded body and a method for producing a glass molded body, which produce a molded body that is not affected by the surface shape of the mold.
  • the present invention provides the following aspects. (1) A molten substance having a specific gravity lower than that of a liquid substance is floated on the liquid substance, a mold having a non-contact portion surrounded by a contact portion that contacts the molten substance is pressed against the molten substance, and the molten substance is cooled. To obtain a molded body. (2) A glass molded body is formed by pressing a mold having a non-contact portion surrounded by a contact portion in contact with the molten glass against the molten glass floated on the molten metal, and cooling the molten glass. The manufacturing method of the glass forming body characterized by obtaining.
  • a mold having a hollow portion surrounded by a contact portion in contact with the molten glass is pressed against the molten glass, and the molten glass is cooled to obtain a glass molded body.
  • a method for producing a glass molded body characterized by being obtained.
  • a molten mold floated on the molten metal is pressed against the molten glass so that the sidewall is in contact with the molten glass with an opening surrounded by the side wall at one end and the other end closed.
  • a method for producing a glass molded body comprising obtaining a glass molded body by cooling the molten glass.
  • a method for producing a glass molded body comprising: a molding step of floating molten glass on a molten metal to mold a glass ribbon; and a slow cooling step of gradually cooling the glass ribbon,
  • a method for producing a glass molded body characterized in that, in the molding step, a molded glass ribbon is obtained by pressing a mold having a hollow portion surrounded by a contact portion in contact with the molten glass against the molten glass.
  • a method for producing a glass molded body comprising: a molding step of floating molten glass on a molten metal to form a glass ribbon; and a slow cooling step of gradually cooling the glass ribbon,
  • a molded glass ribbon is formed by pressing a mold having an opening surrounded by a side wall on one end side and closing the other end side against the molten glass so that the side wall is in contact with the molten glass.
  • a method for producing a glass molded body characterized by being obtained.
  • the bottom surface of the molten material is in contact with the liquid material, and the top surface is exposed to the molding atmosphere corresponding to the non-contact portion of the mold,
  • the part used as a product does not contact the mold on both sides. Therefore, a molded body having a smooth surface shape can be obtained without being affected by the surface shapes of the upper die and the lower die. Further, maintenance of the upper mold and the lower mold is not required, surface treatment of the molded body after press molding can be omitted, productivity is high, and manufacturing cost can be reduced.
  • the bottom surface of the molten glass is in contact with the molten metal, and the top surface is in the non-contact portion, hollow portion or opening of the mold.
  • the part used as a product does not contact the mold on both sides. Therefore, a glass molded body having a smooth surface shape can be obtained without being influenced by the surface shapes of the upper die and the lower die. Further, maintenance of the upper mold and the lower mold is unnecessary, and the surface treatment of the glass molded body after press molding can be omitted, so that the productivity is high and the manufacturing cost can be reduced.
  • 1 (a) to 1 (e) are explanatory views for explaining each step of a method for producing a glass molded body according to an embodiment of the present invention.
  • 2 (A) and 2 (B) are explanatory views for explaining each step of the method for producing a glass molded body according to one embodiment of the present invention.
  • It is a perspective view of the hollow type which is one embodiment of a type.
  • It is a schematic diagram which shows typically the press apparatus provided in the float bath of the glass manufacturing apparatus.
  • FIG. 5 is a sectional view taken along line AA in FIG. 4. It is a figure which shows the photograph of the glass molded object manufactured in the Example.
  • FIG. 1 is an explanatory view explaining each process of a manufacturing method of a glass fabrication object of one embodiment of the present invention, and (a) is a figure showing the state where molten glass was floated on the molten metal in a molten metal bath.
  • (B) is a figure which shows the state which has arrange
  • (c) is a figure which shows the state which pressed the hollow type
  • (d) is glass deform
  • (e) is a figure which shows the state which took out only the hollow type
  • a molten metal bath 10 in a heating device capable of temperature control is heated, and a molten glass 20 (hereinafter referred to as molten glass) is formed on a molten metal 11 such as molten tin. Also called).
  • the temperature in the molten metal bath is set near the softening point, for example, 800 ° C.
  • the hollow mold 12 is disposed on the molten glass 20 on the molten metal 11.
  • the hollow mold 12 is made of a material having heat resistance at a molding temperature, for example, metal, ceramic, carbon or the like.
  • a cylindrical hollow mold shown in FIG. 3 will be described as an example.
  • the hollow mold 12 has a hollow portion 12b in which the inside of the annular portion 12a that is in contact with the molten glass 20 is hollowed in a columnar shape, and a region other than the annular portion 12a is formed before and after the deformation of the molten glass 20 in the molten glass 20. It is configured not to come into contact with.
  • the shape of the hollow portion 12b is determined so as to correspond to the shape of the glass to be formed, such as a circular shape, an elliptical shape, a triangular shape, and a rectangular shape, and a glass portion corresponding to the hollow portion 12b (described below).
  • the forming region 21 and the boundary region 23) constitute the glass molded body 25 as a product.
  • the hollow mold 12 on the molten glass 20 is pressed downward toward the molten metal 11.
  • the molten glass 20 is pressed into the molten metal 11 by pressing so that the upper surface of the molten glass 20 is not buried in the molten metal 11.
  • the pressing force is set according to the thickness and viscosity of the molten glass, and the shape of the glass molded body to be molded, and the weight of the hollow mold 12 may be appropriately set so as to be pressed by its own weight. In addition to the weight of the mold 12, a pressing force may be applied.
  • the black arrow indicates the buoyancy acting on the lower surface of the molten glass 20 according to the depth of the molten glass 20.
  • the temperature in the molten metal bath is lowered from 800 ° C. to 600 ° C., for example.
  • the viscosity of the molten glass 20 at this time is preferably in the range of 10 7 to 10 9 Pa ⁇ s.
  • the molten glass 20 is shaped by buoyancy acting on the lower surface of the molten glass 20 corresponding to the hollow portion 12b of the hollow mold 12 as shown in FIG.
  • the glass located outside the region 21 and the annular portion 12a is deformed so as to protrude upward.
  • the boundary region 23 between the contact region 22 corresponding to the annular portion 12a of the hollow mold 12 and the molding region 21 is curved in a convex shape, and the molding region 21 corresponding to the center of the hollow portion 12b becomes flat.
  • the curved shape of the boundary region 23 differs depending on the glass viscosity and the plate thickness. For example, when the glass viscosity is low and the glass plate is thin, the boundary region 23 is formed in the annular portion 12a. When the glass is highly viscous and the glass is thick, the boundary region 23 is gently curved along the annular portion 12a.
  • type 12 becomes hollow by taking out the hollow type
  • the hollow mold 12 can take out the glass molded body 25 together with the hollow mold 12 by increasing the surface roughness of the annular portion 12 a and increasing the contact area with the molten glass 20. After the glass molded body 25 is cooled, the contact area 22 is cut out to have a final shape.
  • the glass molded body 25 may be subjected to a chemical strengthening treatment after molding.
  • the chemical strengthening is performed, for example, by immersing the glass in a potassium nitrate (KNO 3 ) molten salt at 380 ° C. to 450 ° C. for 0.1 to 20 hours.
  • the temperature of the potassium nitrate (KNO 3 ) molten salt, the immersion time, the melting By changing the salt or the like, the way of chemical strengthening can be adjusted.
  • a compressive stress layer is formed on the glass surface, and a tensile stress layer is formed inside.
  • the glass molded body 25 thus manufactured has a bottom surface that is in contact with the molten metal 11 and a top surface that is exposed to a molding atmosphere corresponding to the hollow portion 12b of the hollow mold 12, and is used as a product.
  • a certain molding region 21 and boundary region 23 are not in contact with the hollow mold 12 on both sides. Therefore, unlike the prior art, a glass molded body 25 having a smooth surface shape can be obtained without being affected by the surface shapes of the upper mold and the lower mold.
  • the maintenance of the upper mold and the lower mold, which has been conventionally performed, is unnecessary, the surface treatment of the glass molded body after press molding can be omitted, and the productivity is high and the manufacturing cost can be reduced.
  • the molding speed and the indentation speed of the glass molding described in the above embodiment it can be greatly deformed in the height direction.
  • the hollow mold 12 is slowly and gradually pushed down so that the molten metal 11 does not enter from the edge of the deformed molten glass 20 (FIG. 2 (B) ( d2)), a glass molded body 25 having a higher height can be formed. Since the weight of the molten metal 11 sunk by the hollow mold 12 is equal to the reaction force acting on the hollow mold 12 and this reaction force becomes the molding pressure, the area of the molten glass 20 is made sufficiently large. It is suppressed that the molten glass 20 whole is pushed down by putting. Since the molding speed of high-viscosity glass is slow, the higher the viscosity, the slower the push-down speed.
  • the molten glass 20 used for manufacturing the glass molded body 25 may be heated again to a molten state by heating a glass plate manufactured by a manufacturing method such as a float method or a fusion method, or melted by melting a glass raw material. Glass may be used. Moreover, it can also shape
  • soda lime glass As the glass 20, soda lime glass, aluminosilicate glass, or the like can be used.
  • aluminosilicate glass for example, a glass having the following composition is used.
  • the K 2 O containing 0-10% Until 10% not essential K 2 O is a, and an object may include a range that does not impair the present invention, in the meaning of is there.
  • the composition expressed in mol% is SiO 2 50-74%, Al 2 O 3 1-10%, Na 2 O 6-14%, K 2 O 3-11%, MgO 2 -15%, CaO 0-6% and ZrO 2 0-5%, the total content of SiO 2 and Al 2 O 3 is 75% or less, the total content of Na 2 O and K 2 O Is 12 to 25%, and the total content of MgO and CaO is 7 to 15%.
  • the composition expressed in mol% is SiO 2 68-80%, Al 2 O 3 4-10%, Na 2 O 5-15%, K 2 O 0-1%, MgO 4 to 15% and a ZrO 2 0 - 1% glass containing.
  • composition expressed in mol% is SiO 2 67-75%, Al 2 O 3 0-4%, Na 2 O 7-15%, K 2 O 1-9%, MgO 6 -14% and ZrO 2 0-1.5%, the total content of SiO 2 and Al 2 O 3 is 71-75%, the total content of Na 2 O and K 2 O is 12-20 %, And when it contains CaO, its content is less than 1%.
  • the glass 20 preferably has a thickness of 1.5 mm or less, more preferably 0.3 to 1.1 mm.
  • the glass manufacturing apparatus 30 includes a melting furnace (not shown) for melting a glass raw material, a float bath 31 that floats the molten glass on molten tin to form a flat glass ribbon G, and a glass ribbon G. And a slow cooling furnace 33 that gradually cools the glass ribbon G by gradually lowering the temperature of the glass ribbon G after being drawn out from the float bath 31.
  • a pressing device 40 is provided in the float bath 31 in which molten tin is provided.
  • an electric heater H supplies an amount of heat whose output is controlled to a necessary position in the float bath 31, and a desired size and thickness are obtained while slowly cooling the glass ribbon G being conveyed. And then discharged to the slow cooling furnace 33.
  • the pressing device 40 is disposed so as to face the top surface of the glass ribbon G in a region where the viscosity of the glass in the float bath 31 is in a range of 10 7 to 10 9 Pa ⁇ s.
  • at least two support shafts 42 extending from the side wall 31a of the float bath 31 are rotatably arranged at a predetermined interval on the upstream side and the downstream side.
  • a plurality of pressing dies 45 in which a plurality of hollow portions 44 formed by lattice-like contact portions are arranged in the width direction and the conveyance direction are provided on the wound endless belt 43.
  • the endless belt 43 is rotated by the rotation of the two support shafts 42, the pressing mold 45 presses the molten glass with a predetermined pressing force, and the molten glass is conveyed.
  • the pressing mold 45 moves, the molten glass is cooled while being pressed.
  • the contact region 22 corresponding to the annular portion 12a of the hollow mold 12 and the boundary region 23 between the forming regions 21 are curved in a convex shape, and the forming region 21 corresponding to the center of the hollow portion 12b has a flat glass ribbon G.
  • a plurality of glass molded bodies 25 are obtained by cutting the glass ribbon G obtained and discharged from the slow cooling furnace 33.
  • the transport roller 34 that transports the glass ribbon G does not contact the molding region 21 and the boundary region 23, and transports the product.
  • the roller 34 can be configured at a low cost, and a net-shaped conveying member can be used instead of the roll.
  • soda lime glass having a length of about 30 mm, a width of about 60 mm, and a plate thickness of about 0.7 mm was prepared and placed on the molten tin in a molten metal bath in which molten tin was prepared.
  • the temperature in the molten metal bath at this time was about 800 ° C.
  • a cylindrical hollow mold made of carbon shown in FIG. 3 was prepared. This hollow mold had an inner diameter of about 40 mm, an outer diameter of about 50 mm, and a weight of about 22 g.
  • this hollow mold is pressed against soda lime glass placed on molten tin, cooled to about 600 ° C. at a cooling rate of about 20 ° C./min, and when it reaches about 600 ° C., The hollow mold and soda lime glass were taken out.
  • FIG. 6 is a view showing a photograph of the obtained glass molded body.
  • the glass molded body can be formed into a shape in which the forming region corresponding to the hollow portion of the hollow mold is flat and the boundary region between the contact region and the forming region is curved, and the forming region and the boundary region can be formed. It could be formed without contacting the hollow mold.
  • the hollow portion 12b surrounded by the annular portion 12a contacting the molten glass 20 with respect to the molten glass 20 floated on the molten metal. Since the glass mold 25 is obtained by pressing the hollow mold 12 having a temperature and cooling the molten glass 20, the bottom surface of the molten glass 20 to be the glass mold 25 is in contact with the molten metal 11, and the top surface is hollow. The mold 12 is exposed to a molding atmosphere corresponding to the hollow portion 12 b of the mold 12, and the molding area 21 and the boundary area 23 that are used parts of the product do not contact the hollow mold 12 on both sides.
  • the glass molded body 25 having a smooth surface shape can be obtained without being affected by the surface shapes of the upper die and the lower die. Further, maintenance of the upper mold and the lower mold is unnecessary, and the surface treatment of the glass molded body 25 after press molding can be omitted, so that the productivity is high and the manufacturing cost can be reduced.
  • the portion corresponding to the center of the hollow portion 12b of the hollow mold 12 is flattened. Meanwhile, a curved glass having a desired curvature can be formed at the outer edge of the hollow portion.
  • the shape of the glass molded body can be adjusted by applying a hollow self weight or a pressing force in addition to the self weight.
  • a hollow mold is illustrated as a mold, but the mold is not limited to this as long as the mold has a non-contact portion surrounded by a contact portion that contacts the molten glass.
  • a bottomed mold 13 having an opening 13a on one end side and closed on the other end side may be used.
  • the illustrated bottomed mold 13 has a substantially rectangular opening 13a on one end side, the other end side is closed by a bottom surface 13b, and the opening 13a side of the side wall 13c that defines and forms the opening 13a.
  • the bottom surface of the molten glass 20 to be the glass molded body 25 is in contact with the molten metal 11, and the top surface is exposed to the molding atmosphere corresponding to the space portion of the bottomed mold 13. It is.
  • the bottom surface 13 b is set to a height that does not contact the molten glass 20.
  • the bottom surface 13b may be provided with a communication hole that communicates the inside and the outside.
  • molded objects such as resin and rubber
  • the molten material having a specific gravity higher than that of the molten material such as resin or rubber is floated on the liquid material, and the hollow mold is pressed against the molten material to be cooled.
  • a molded body can be obtained.
  • both the liquid substance and the molten substance are common in that they are liquids, and the terms liquid substance and molten substance are appropriately used depending on the specific gravity.
  • molten tin with a large specific gravity is a liquid material
  • molten soda lime silica glass with a small specific gravity is a molten material.
  • the uses such as the glass manufactured in the above embodiment are not limited to the cover glass of the display device, but can be applied to all uses such as an automobile windshield.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Glass Compositions (AREA)
  • Surface Treatment Of Glass (AREA)

Abstract

A glass molded body is obtained by pressing a mold having a noncontact part that is surrounded by a contact part that contacts molten glass against molten glass floating on molten metal and by cooling the molten glass.

Description

成形体の製造方法及びガラス成形体の製造方法Method for producing molded body and method for producing glass molded body
 本発明は、成形体の製造方法及びガラス成形体の製造方法に関する。 The present invention relates to a method for producing a molded body and a method for producing a glass molded body.
 近年、携帯電話、携帯情報端末(PDA)、タブレットPC等のディスプレイ装置が普及している。ディスプレイ装置の前面には、化学強化ガラスがカバーガラスとして取り付けられており、液晶ディプレイ(LCD)を保護する機能とともに、意匠性を高める機能を有している。このカバーガラスとしては、これまで平坦な板ガラスが用いられているが、意匠性を高めることを考慮すると、平坦な板ガラスの一部、例えば、平面部を囲う外縁部を曲面状に折り曲げて、カバーガラスが筐体の一部をなすように成形することなどが考えられる。 In recent years, display devices such as mobile phones, personal digital assistants (PDAs), and tablet PCs have become widespread. A chemically strengthened glass is attached as a cover glass on the front surface of the display device, and has a function of improving design as well as a function of protecting a liquid crystal display (LCD). As this cover glass, a flat plate glass has been used so far. However, in consideration of improving the design, a part of the flat plate glass, for example, an outer edge portion surrounding a flat portion is bent into a curved shape to cover the cover glass. For example, the glass may be molded so as to form a part of the housing.
 板ガラスを成形する方法としては、プレス成形が一般的に知られている。特許文献1には、加熱炉にて軟化点近くまで加熱された板ガラスを搬送ローラによって水平状態のまま上型と下型との間の成形部まで移送し、上型と下型の間で曲げ成形するようにした成形装置が開示されている。 As a method for forming a sheet glass, press forming is generally known. In Patent Document 1, a sheet glass heated to near the softening point in a heating furnace is transferred to a forming part between an upper mold and a lower mold in a horizontal state by a conveying roller, and is bent between the upper mold and the lower mold. A molding apparatus for molding is disclosed.
日本国特開昭61-91025号公報Japanese Unexamined Patent Publication No. 61-91025
 しかしながら、上型と下型の間で板ガラスを曲げ成形する場合、板ガラスが上型と下型に接触するため上型と下型の凹凸が板ガラスに転写し、平滑な表面を得ることができないという課題があった。 However, when the glass sheet is bent between the upper mold and the lower mold, the unevenness of the upper mold and the lower mold is transferred to the plate glass because the glass sheet contacts the upper mold and the lower mold, and a smooth surface cannot be obtained. There was a problem.
 上型と下型の凹凸を抑制するためには、上型と下型のメンテナンスが必要であり、メンテナンスコストが嵩むという課題があった。また、このプレス成形されたガラス表面を平滑にするためには、プレス成形後の板ガラスを研磨等により表面処理する必要があり、生産性が悪いという課題があった。なお、この上記課題は、ガラスに限らず、樹脂材料等においても同様に発生し得るものである。 In order to suppress the unevenness of the upper mold and the lower mold, maintenance of the upper mold and the lower mold is necessary, and there is a problem that the maintenance cost increases. Further, in order to smooth the press-molded glass surface, it is necessary to surface-treat the plate glass after press molding by polishing or the like, and there is a problem that productivity is poor. Note that this problem can occur not only in glass but also in resin materials and the like.
 そこで、本発明は、型の表面形状に影響を受けない成形体を製造する成形体の製造方法及びガラス成形体の製造方法を提供することを目的とする。 Therefore, an object of the present invention is to provide a method for producing a molded body and a method for producing a glass molded body, which produce a molded body that is not affected by the surface shape of the mold.
 本発明は、以下の態様を提供するものである。
(1) 液状物質よりも比重の軽い溶融物質を該液状物質上に浮かせ、該溶融物質に接触する接触部に囲まれた非接触部を有する型を前記溶融物質に押し付け、前記溶融物質を冷却することで成形体を得ることを特徴とする成形体の製造方法。
(2) 溶融金属上に浮かせた溶融ガラスに対し、該溶融ガラスに接触する接触部に囲まれた非接触部を有する型を前記溶融ガラスに押し付け、前記溶融ガラスを冷却することでガラス成形体を得ることを特徴とするガラス成形体の製造方法。
(3) 溶融金属上に浮かせた溶融ガラスに対し、該溶融ガラスに接触する接触部に囲まれた中空部を有する型を前記溶融ガラスに押し付け、前記溶融ガラスを冷却することでガラス成形体を得ることを特徴とするガラス成形体の製造方法。
(4) 溶融金属上に浮かせた溶融ガラスに対し、側壁に囲繞された開口部を一端側に有し他端側が閉塞された型を前記側壁が前記溶融ガラスと接するように前記溶融ガラスに押し付け、前記溶融ガラスを冷却することでガラス成形体を得ることを特徴とするガラス成形体の製造方法。
(5) ガラスの粘度が10~10Pa・sである範囲内において、前記型を前記溶融ガラスに押し付けることを特徴とする(2)~(4)のいずれかに記載のガラス成形体の製造方法。
(6) 600℃~800℃の温度範囲内において、前記型を前記溶融ガラスに押し付けることを特徴とする(2)~(4)のいずれかに記載のガラス成形体の製造方法。
(7) 前記型の自重によって前記型を前記溶融ガラスに押し付けるか、若しくは、該自重に加えて押付力を付与することで前記型を前記溶融ガラスに押し付けることを特徴とする(2)~(6)のいずれかに記載のガラス成形体の製造方法。
(8) 溶融ガラスを溶融金属上に浮かせてガラスリボンを成形する成形工程と、前記ガラスリボンを徐冷する徐冷工程と、を有するガラス成形体の製造方法であって、
 前記成形工程において、該溶融ガラスに接触する接触部に囲まれた中空部を有する型を前記溶融ガラスに押し付けることにより、成形されたガラスリボンを得ることを特徴とするガラス成形体の製造方法。
(9) 溶融ガラスを溶融金属上に浮かせてガラスリボンを成形する成形工程と、前記ガラスリボンを徐冷する徐冷工程と、を有するガラス成形体の製造方法であって、
 前記成形工程において、側壁に囲繞された開口部を一端側に有し他端側が閉塞された型を前記側壁が前記溶融ガラスと接するように前記溶融ガラスに押し付けることにより、成形されたガラスリボンを得ることを特徴とするガラス成形体の製造方法。
(10) ガラスの粘度が10~10Pa・sである範囲内において、前記型を前記溶融ガラスに押し付けることを特徴とする(8)又は(9)に記載のガラス成形体の製造方法。
(11) 600℃~800℃の温度範囲内において、前記型を前記溶融ガラスに押し付けることを特徴とする(8)~(10)のいずれかに記載のガラス成形体の製造方法。
(12) 前記型の自重によって前記型を前記溶融ガラスに押し付けるか、若しくは、該自重に加えて押付力を付与することで前記型を前記溶融ガラスに押し付けることを特徴とする(8)~(11)のいずれかに記載のガラス成形体の製造方法。
The present invention provides the following aspects.
(1) A molten substance having a specific gravity lower than that of a liquid substance is floated on the liquid substance, a mold having a non-contact portion surrounded by a contact portion that contacts the molten substance is pressed against the molten substance, and the molten substance is cooled. To obtain a molded body.
(2) A glass molded body is formed by pressing a mold having a non-contact portion surrounded by a contact portion in contact with the molten glass against the molten glass floated on the molten metal, and cooling the molten glass. The manufacturing method of the glass forming body characterized by obtaining.
(3) With respect to the molten glass floated on the molten metal, a mold having a hollow portion surrounded by a contact portion in contact with the molten glass is pressed against the molten glass, and the molten glass is cooled to obtain a glass molded body. A method for producing a glass molded body, characterized by being obtained.
(4) A molten mold floated on the molten metal is pressed against the molten glass so that the sidewall is in contact with the molten glass with an opening surrounded by the side wall at one end and the other end closed. A method for producing a glass molded body, comprising obtaining a glass molded body by cooling the molten glass.
(5) The glass molded body according to any one of (2) to (4), wherein the mold is pressed against the molten glass within a range where the viscosity of the glass is 10 7 to 10 9 Pa · s. Manufacturing method.
(6) The method for producing a glass molded body according to any one of (2) to (4), wherein the mold is pressed against the molten glass within a temperature range of 600 ° C. to 800 ° C.
(7) The mold is pressed against the molten glass by the weight of the mold, or the mold is pressed against the molten glass by applying a pressing force in addition to the dead weight. 6) The manufacturing method of the glass forming body in any one of.
(8) A method for producing a glass molded body, comprising: a molding step of floating molten glass on a molten metal to mold a glass ribbon; and a slow cooling step of gradually cooling the glass ribbon,
A method for producing a glass molded body, characterized in that, in the molding step, a molded glass ribbon is obtained by pressing a mold having a hollow portion surrounded by a contact portion in contact with the molten glass against the molten glass.
(9) A method for producing a glass molded body, comprising: a molding step of floating molten glass on a molten metal to form a glass ribbon; and a slow cooling step of gradually cooling the glass ribbon,
In the molding step, a molded glass ribbon is formed by pressing a mold having an opening surrounded by a side wall on one end side and closing the other end side against the molten glass so that the side wall is in contact with the molten glass. A method for producing a glass molded body, characterized by being obtained.
(10) The method for producing a glass molded body according to (8) or (9), wherein the mold is pressed against the molten glass within a range where the viscosity of the glass is 10 7 to 10 9 Pa · s. .
(11) The method for producing a glass molded body according to any one of (8) to (10), wherein the mold is pressed against the molten glass within a temperature range of 600 ° C. to 800 ° C.
(12) The mold is pressed against the molten glass by its own weight, or the mold is pressed against the molten glass by applying a pressing force in addition to its own weight. The manufacturing method of the glass molded object in any one of 11).
 上記(1)に記載の成形体の製造方法によれば、成形中、溶融物質のボトム面は液状物質に接し、トップ面は型の非接触部に対応して成形雰囲気にさらされており、製品としての使用部分は両面ともに型と接触しない。そのため、上型と下型の表面形状に影響されず平滑な表面形状を有する成形体を得ることができる。また、上型と下型のメンテナンスも不要であり、プレス成形後の成形体の表面処理を省略することもでき、生産性が高く、製造コストを低減させることができる。 According to the method for producing a molded body described in (1) above, during molding, the bottom surface of the molten material is in contact with the liquid material, and the top surface is exposed to the molding atmosphere corresponding to the non-contact portion of the mold, The part used as a product does not contact the mold on both sides. Therefore, a molded body having a smooth surface shape can be obtained without being affected by the surface shapes of the upper die and the lower die. Further, maintenance of the upper mold and the lower mold is not required, surface treatment of the molded body after press molding can be omitted, productivity is high, and manufacturing cost can be reduced.
 上記(2)~(4)に記載のガラス成形体の製造方法によれば、成形中、溶融ガラスのボトム面は溶融金属に接し、トップ面は型の非接触部、中空部又は開口部に対応して成形雰囲気にさらされており、製品としての使用部分は両面ともに型と接触しない。そのため、上型と下型の表面形状に影響されず平滑な表面形状を有するガラス成形体を得ることができる。また、上型と下型のメンテナンスも不要であり、プレス成形後のガラス成形体の表面処理を省略することもでき、生産性が高く、製造コストを低減させることができる。 According to the method for producing a glass molded body described in (2) to (4) above, during molding, the bottom surface of the molten glass is in contact with the molten metal, and the top surface is in the non-contact portion, hollow portion or opening of the mold. Correspondingly, it is exposed to the molding atmosphere, and the part used as a product does not contact the mold on both sides. Therefore, a glass molded body having a smooth surface shape can be obtained without being influenced by the surface shapes of the upper die and the lower die. Further, maintenance of the upper mold and the lower mold is unnecessary, and the surface treatment of the glass molded body after press molding can be omitted, so that the productivity is high and the manufacturing cost can be reduced.
 また、上記(8)及び(9)に記載のガラス成形体の製造方法によれば、上記(3)及び(4)に記載の効果に加えて、オンライン上でガラス成形体を成形することで、一度冷却したガラスを再加熱する必要はなく、生産工程を大幅に簡略化することができる。 Moreover, according to the manufacturing method of the glass forming body as described in said (8) and (9), in addition to the effect as described in said (3) and (4), by forming a glass forming body on-line. It is not necessary to reheat the glass once cooled, and the production process can be greatly simplified.
図1(a)~(e)は本発明の一実施形態のガラス成形体の製造方法の各工程を説明する説明図である。1 (a) to 1 (e) are explanatory views for explaining each step of a method for producing a glass molded body according to an embodiment of the present invention. 図2(A),(B)は本発明の一実施形態のガラス成形体の製造方法の各工程を説明する説明図である。2 (A) and 2 (B) are explanatory views for explaining each step of the method for producing a glass molded body according to one embodiment of the present invention. 型の一実施形態である中空型の斜視図である。It is a perspective view of the hollow type which is one embodiment of a type. ガラス製造装置のフロートバスに設けられた押圧装置を模式的に示す模式図である。It is a schematic diagram which shows typically the press apparatus provided in the float bath of the glass manufacturing apparatus. 図4のA-A線断面図である。FIG. 5 is a sectional view taken along line AA in FIG. 4. 実施例で製造されたガラス成形体の写真を示す図である。It is a figure which shows the photograph of the glass molded object manufactured in the Example. 型の他の実施形態である有底型の斜視図である。It is a perspective view of the bottomed type | mold which is other embodiment of a type | mold.
 先ず、本発明の成形体の製造方法の一実施形態としてガラス成形体の製造方法について図面に基づいて説明する。本実施形態のガラス成形体の製造方法は、溶融金属上に浮かせた溶融ガラスに対し、該溶融ガラスに接触する接触部に囲まれた非接触部を有する型を該溶融ガラスに押し付け、該溶融ガラスを冷却することでガラス成形体を製造するものである。図1は、本発明の一実施形態のガラス成形体の製造方法の各工程を説明する説明図であり、(a)は溶融金属浴内の溶融金属上に溶融ガラスを浮かせた状態を示す図であり、(b)は溶融ガラス上に中空型を配置した状態を示す図であり、(c)は中空型を押圧した状態を示す図であり、(d)は押圧中にガラスが変形する状態を示す図であり、(e)は溶融金属浴から中空型のみを取り出した状態を示す図である。 First, a method for producing a glass molded body as an embodiment of the method for producing a molded body according to the present invention will be described with reference to the drawings. In the method for producing a glass molded body of the present embodiment, a molten glass floated on a molten metal is pressed against the molten glass by pressing a mold having a non-contact portion surrounded by a contact portion in contact with the molten glass. A glass molded body is produced by cooling the glass. Drawing 1 is an explanatory view explaining each process of a manufacturing method of a glass fabrication object of one embodiment of the present invention, and (a) is a figure showing the state where molten glass was floated on the molten metal in a molten metal bath. (B) is a figure which shows the state which has arrange | positioned the hollow type | mold on molten glass, (c) is a figure which shows the state which pressed the hollow type | mold, (d) is glass deform | transforming during pressing. It is a figure which shows a state, (e) is a figure which shows the state which took out only the hollow type | mold from the molten metal bath.
 図1(a)に示すように、先ず、温度制御が可能な加温装置内の溶融金属浴10を加温して溶融錫等の溶融金属11上に溶融状態のガラス20(以下、溶融ガラスとも呼ぶ。)を浮かせる。溶融金属浴内温度は、軟化点近傍、例えば、800℃に設定される。 As shown in FIG. 1A, first, a molten metal bath 10 in a heating device capable of temperature control is heated, and a molten glass 20 (hereinafter referred to as molten glass) is formed on a molten metal 11 such as molten tin. Also called). The temperature in the molten metal bath is set near the softening point, for example, 800 ° C.
 続いて、図1(b)に示すように、溶融金属11上の溶融ガラス20上に中空型12を配置する。中空型12は、成形温度において耐熱性を有する材料、例えば、金属、セラミック、カーボン等から構成される。本実施形態では、図3に示す円筒状の中空型を例示して説明する。中空型12は、溶融ガラス20と接触する環状部12aの内部が円柱状にくりぬかれた中空部12bとなっており、環状部12a以外の領域が溶融ガラス20の変形の前後において、溶融ガラス20と接触しないように構成されている。中空部12bは、例えば、円形状、楕円形状、三角形状、矩形形状等、成形するガラスの形状に対応するようにその形状が決められており、中空部12bに対応するガラス部分(以下で説明する、成形領域21、境界領域23)が製品としてのガラス成形体25を構成することとなる。 Subsequently, as shown in FIG. 1B, the hollow mold 12 is disposed on the molten glass 20 on the molten metal 11. The hollow mold 12 is made of a material having heat resistance at a molding temperature, for example, metal, ceramic, carbon or the like. In the present embodiment, a cylindrical hollow mold shown in FIG. 3 will be described as an example. The hollow mold 12 has a hollow portion 12b in which the inside of the annular portion 12a that is in contact with the molten glass 20 is hollowed in a columnar shape, and a region other than the annular portion 12a is formed before and after the deformation of the molten glass 20 in the molten glass 20. It is configured not to come into contact with. The shape of the hollow portion 12b is determined so as to correspond to the shape of the glass to be formed, such as a circular shape, an elliptical shape, a triangular shape, and a rectangular shape, and a glass portion corresponding to the hollow portion 12b (described below). The forming region 21 and the boundary region 23) constitute the glass molded body 25 as a product.
 続いて、図1(c)に示すように、溶融ガラス20上の中空型12を溶融金属11に向けて下方に押圧する。溶融ガラス20の上面が溶融金属11に埋没しないように押圧することで、溶融ガラス20は、溶融金属11中に押し込まれる。押圧力は、溶融ガラスの厚さ、粘度、成形するガラス成形体の形状に応じて設定され、中空型12の自重により押圧するように中空型12の重さを適宜設定してもよく、中空型12の自重に加えて、押圧力を付与してもよい。図1(c)の白抜きの矢印は押圧力を示し、黒い矢印は溶融ガラス20の深さに応じて溶融ガラス20の下面に作用する浮力を示している。押圧中、溶融金属浴内温度は、例えば、800℃から600℃へと降下させる。また、このときの溶融ガラス20の粘度は、10~10Pa・sの範囲内であることが好ましい。 Subsequently, as shown in FIG. 1C, the hollow mold 12 on the molten glass 20 is pressed downward toward the molten metal 11. The molten glass 20 is pressed into the molten metal 11 by pressing so that the upper surface of the molten glass 20 is not buried in the molten metal 11. The pressing force is set according to the thickness and viscosity of the molten glass, and the shape of the glass molded body to be molded, and the weight of the hollow mold 12 may be appropriately set so as to be pressed by its own weight. In addition to the weight of the mold 12, a pressing force may be applied. The white arrow in FIG. 1C indicates the pressing force, and the black arrow indicates the buoyancy acting on the lower surface of the molten glass 20 according to the depth of the molten glass 20. During the pressing, the temperature in the molten metal bath is lowered from 800 ° C. to 600 ° C., for example. In addition, the viscosity of the molten glass 20 at this time is preferably in the range of 10 7 to 10 9 Pa · s.
 図1(c)の状態から所定時間が経過すると、図1(d)に示すように、中空型12の中空部12bに対応する溶融ガラス20の下面に作用する浮力により、溶融ガラス20の成形領域21及び環状部12aの外側に位置するガラスが上方に凸となるように変形する。最終的に、中空型12の環状部12aに対応する接触領域22と成形領域21の境界領域23が凸状に湾曲し、中空部12b中央に対応する成形領域21は平坦となる。この境界領域23の湾曲形状は、ガラスの粘性、板厚に応じて形状が異なり、例えば、ガラスの粘性が低い状態で、且つ、ガラスの板厚が薄い場合、境界領域23は環状部12aに沿って鋭く湾曲し、反対に、ガラスの粘性が高い状態で、且つ、ガラスの板厚が厚い場合、境界領域23は環状部12aに沿って緩やかに湾曲する。 When a predetermined time elapses from the state of FIG. 1C, the molten glass 20 is shaped by buoyancy acting on the lower surface of the molten glass 20 corresponding to the hollow portion 12b of the hollow mold 12 as shown in FIG. The glass located outside the region 21 and the annular portion 12a is deformed so as to protrude upward. Finally, the boundary region 23 between the contact region 22 corresponding to the annular portion 12a of the hollow mold 12 and the molding region 21 is curved in a convex shape, and the molding region 21 corresponding to the center of the hollow portion 12b becomes flat. The curved shape of the boundary region 23 differs depending on the glass viscosity and the plate thickness. For example, when the glass viscosity is low and the glass plate is thin, the boundary region 23 is formed in the annular portion 12a. When the glass is highly viscous and the glass is thick, the boundary region 23 is gently curved along the annular portion 12a.
 そして、ガラスの温度が降下して固化した状態で、図1(e)に示すように、中空型12を取り出すことで、中空型12の環状部12aに対応する接触領域22が窪み、接触領域22から凸状に湾曲した境界領域23を経て中空部12b中央に対応する成形領域21が平坦となった曲面ガラスであるガラス成形体25が得られる。なお、中空型12は、環状部12aの表面粗さを粗くして溶融ガラス20との接触面積を大きくすることで、中空型12とともにガラス成形体25を取り出すこともできる。ガラス成形体25は、冷却後、接触領域22が切り取られて、最終的な形状となる。 And in the state which the temperature of glass fell and solidified, as shown in FIG.1 (e), the contact area | region 22 corresponding to the cyclic | annular part 12a of the hollow mold | type 12 becomes hollow by taking out the hollow type | mold 12, and a contact area | region A glass molded body 25 which is a curved glass in which the molding region 21 corresponding to the center of the hollow portion 12b is flattened through the boundary region 23 curved from the convex shape 22 is obtained. The hollow mold 12 can take out the glass molded body 25 together with the hollow mold 12 by increasing the surface roughness of the annular portion 12 a and increasing the contact area with the molten glass 20. After the glass molded body 25 is cooled, the contact area 22 is cut out to have a final shape.
 ガラス成形体25は、成形後、化学強化処理が行われてもよい。化学強化は、例えば、380℃~450℃の硝酸カリウム(KNO)溶融塩にガラスを0.1~20hr浸漬させることで行われるが、硝酸カリウム(KNO)溶融塩の温度や、浸漬時間、溶融塩等を変更することで、化学強化の入り方を調整することができる。化学強化することでガラス表面には圧縮応力層が形成され、内部に引張応力層が形成される。 The glass molded body 25 may be subjected to a chemical strengthening treatment after molding. The chemical strengthening is performed, for example, by immersing the glass in a potassium nitrate (KNO 3 ) molten salt at 380 ° C. to 450 ° C. for 0.1 to 20 hours. The temperature of the potassium nitrate (KNO 3 ) molten salt, the immersion time, the melting By changing the salt or the like, the way of chemical strengthening can be adjusted. By chemically strengthening, a compressive stress layer is formed on the glass surface, and a tensile stress layer is formed inside.
 このようにして製造されたガラス成形体25は、ボトム面が溶融金属11に接し、トップ面は中空型12の中空部12bに対応して成形雰囲気にさらされており、製品としての使用部分である成形領域21及び境界領域23は両面ともに中空型12と接触しない。そのため、従来のように、上型と下型の表面形状に影響されず平滑な表面形状を有するガラス成形体25を得ることができる。また、従来行っていた上型と下型のメンテナンスも不要となり、プレス成形後のガラス成形体の表面処理を省略することもでき、生産性が高く、製造コストを低減させることができる。 The glass molded body 25 thus manufactured has a bottom surface that is in contact with the molten metal 11 and a top surface that is exposed to a molding atmosphere corresponding to the hollow portion 12b of the hollow mold 12, and is used as a product. A certain molding region 21 and boundary region 23 are not in contact with the hollow mold 12 on both sides. Therefore, unlike the prior art, a glass molded body 25 having a smooth surface shape can be obtained without being affected by the surface shapes of the upper mold and the lower mold. In addition, the maintenance of the upper mold and the lower mold, which has been conventionally performed, is unnecessary, the surface treatment of the glass molded body after press molding can be omitted, and the productivity is high and the manufacturing cost can be reduced.
 また、上記実施形態で説明したガラス成形の成形速度と押し込み速度を制御することで、より高さ方向に大きく変形させることもできる。例えば、図2(A)(d1)に示すように、変形した溶融ガラス20の縁から溶融金属11が入ってこないように、中空型12をゆっくり徐々に押し下げることで(図2(B)(d2))、より高さのあるガラス成形体25を形成することができる。中空型12によって沈められた溶融金属11の(体積部分の)重量が、中空型12に作用する反力と等しく、この反力が成形圧力となるため、溶融ガラス20の面積を十分大きくしておくことで溶融ガラス20全体が押し下げられることが抑制される。高粘性のガラスの成形速度は遅いので、粘性が高くなればなるほど押し下げ速度も遅くなる。 Further, by controlling the molding speed and the indentation speed of the glass molding described in the above embodiment, it can be greatly deformed in the height direction. For example, as shown in FIGS. 2 (A) and (d1), the hollow mold 12 is slowly and gradually pushed down so that the molten metal 11 does not enter from the edge of the deformed molten glass 20 (FIG. 2 (B) ( d2)), a glass molded body 25 having a higher height can be formed. Since the weight of the molten metal 11 sunk by the hollow mold 12 is equal to the reaction force acting on the hollow mold 12 and this reaction force becomes the molding pressure, the area of the molten glass 20 is made sufficiently large. It is suppressed that the molten glass 20 whole is pushed down by putting. Since the molding speed of high-viscosity glass is slow, the higher the viscosity, the slower the push-down speed.
 このガラス成形体25の製造に用いられる溶融ガラス20は、フロート法、フュージョン法等の製造方法で製造されたガラス板を加温して再度、溶融状態にしてもよく、ガラス原料を溶解した溶融ガラスを用いてもよい。また、フロート法に用いられるガラス製造装置内に組み込むことで、オンライン上で成形を行うこともできる。 The molten glass 20 used for manufacturing the glass molded body 25 may be heated again to a molten state by heating a glass plate manufactured by a manufacturing method such as a float method or a fusion method, or melted by melting a glass raw material. Glass may be used. Moreover, it can also shape | mold on-line by incorporating in the glass manufacturing apparatus used for the float glass process.
 ガラス20としては、ソーダライムガラス、アルミノシリケートガラスなどが使用され得る。 As the glass 20, soda lime glass, aluminosilicate glass, or the like can be used.
 アルミノシリケートガラスとしては、例えば以下の組成のガラスが使用される。
(i)モル%で表示した組成で、SiOを50~80%、Alを2~25%、LiOを0~10%、NaOを0~18%、KOを0~10%、MgOを0~15%、CaOを0~5%およびZrOを0~5%を含むガラス。ここで、たとえば「KOを0~10%含む」とはKOは必須ではないが10%までの範囲で、かつ、本発明の目的を損なわない範囲で含んでもよい、の意である。
(ii)モル%で表示した組成が、SiOを50~74%、Alを1~10%、NaOを6~14%、KOを3~11%、MgOを2~15%、CaOを0~6%およびZrOを0~5%含有し、SiOおよびAlの含有量の合計が75%以下、NaOおよびKOの含有量の合計が12~25%、MgOおよびCaOの含有量の合計が7~15%であるガラス。
(iii)モル%で表示した組成が、SiOを68~80%、Alを4~10%、NaOを5~15%、KOを0~1%、MgOを4~15%およびZrOを0~1%含有するガラス。
(iv)モル%で表示した組成が、SiOを67~75%、Alを0~4%、NaOを7~15%、KOを1~9%、MgOを6~14%およびZrOを0~1.5%含有し、SiOおよびAlの含有量の合計が71~75%、NaOおよびKOの含有量の合計が12~20%であり、CaOを含有する場合その含有量が1%未満であるガラス。
As the aluminosilicate glass, for example, a glass having the following composition is used.
(I) a composition that is displayed in mol%, the SiO 2 50 ~ 80%, the Al 2 O 3 2 ~ 25% , the Li 2 O 0 ~ 10%, a Na 2 O 0 ~ 18%, K 2 O 0-10%, MgO 0-15%, CaO 0-5% and ZrO 2 0-5%. Here, for example, in the range of "the K 2 O containing 0-10%" Until 10% not essential K 2 O is a, and an object may include a range that does not impair the present invention, in the meaning of is there.
(Ii) The composition expressed in mol% is SiO 2 50-74%, Al 2 O 3 1-10%, Na 2 O 6-14%, K 2 O 3-11%, MgO 2 -15%, CaO 0-6% and ZrO 2 0-5%, the total content of SiO 2 and Al 2 O 3 is 75% or less, the total content of Na 2 O and K 2 O Is 12 to 25%, and the total content of MgO and CaO is 7 to 15%.
(Iii) The composition expressed in mol% is SiO 2 68-80%, Al 2 O 3 4-10%, Na 2 O 5-15%, K 2 O 0-1%, MgO 4 to 15% and a ZrO 2 0 - 1% glass containing.
(Iv) The composition expressed in mol% is SiO 2 67-75%, Al 2 O 3 0-4%, Na 2 O 7-15%, K 2 O 1-9%, MgO 6 -14% and ZrO 2 0-1.5%, the total content of SiO 2 and Al 2 O 3 is 71-75%, the total content of Na 2 O and K 2 O is 12-20 %, And when it contains CaO, its content is less than 1%.
 また、ガラス20は、板厚が1.5mm以下が好ましく、0.3~1.1mmがより好ましい。 Further, the glass 20 preferably has a thickness of 1.5 mm or less, more preferably 0.3 to 1.1 mm.
 図4、5は、オンライン上で押圧成形を行う際のガラス製造装置の例を示す図である。
 ガラス製造装置30は、ガラスの原料を溶解する溶解炉(図示せず)と、溶解された溶融ガラスを溶融錫上に浮かせて平坦なガラスリボンGを成形するフロートバス31と、ガラスリボンGをフロートバス31から引き出した後に、ガラスリボンGの温度を徐々に下げることで徐冷する徐冷炉33と、を備えて構成される。
4 and 5 are diagrams illustrating an example of a glass manufacturing apparatus when performing press molding on-line.
The glass manufacturing apparatus 30 includes a melting furnace (not shown) for melting a glass raw material, a float bath 31 that floats the molten glass on molten tin to form a flat glass ribbon G, and a glass ribbon G. And a slow cooling furnace 33 that gradually cools the glass ribbon G by gradually lowering the temperature of the glass ribbon G after being drawn out from the float bath 31.
 溶融錫が湛えられたフロートバス31には、押圧装置40が設けられている。フロートバス31では、例えば、電気ヒータHにより、その出力が制御された熱量をフロートバス31内の必要位置に供給して、搬送されるガラスリボンGをゆっくり冷却しながら所望の大きさ及び板厚に成形して徐冷炉33へ排出している。 A pressing device 40 is provided in the float bath 31 in which molten tin is provided. In the float bath 31, for example, an electric heater H supplies an amount of heat whose output is controlled to a necessary position in the float bath 31, and a desired size and thickness are obtained while slowly cooling the glass ribbon G being conveyed. And then discharged to the slow cooling furnace 33.
 押圧装置40は、このフロートバス31内のガラスの粘度が10~10Pa・sである範囲内となる領域にガラスリボンGのトップ面と対向するように配置される。押圧装置40には、フロートバス31の側壁31aから延びる少なくとも2本の支持軸42が上流側と下流側に所定の間隔をあけて回転可能に配置されており、この2本の支持軸42に巻き掛けられた無端ベルト43上に、格子状の接触部により形成される複数の中空部44が幅方向及び搬送方向に並んだ押圧型45が複数設けられている。このように構成された押圧装置40では、2本の支持軸42が回転することで、無端ベルト43が回動し、押圧型45が所定の押圧力で溶融ガラスを押圧し、溶融ガラスの搬送とともに押圧型45が移動することで、溶融ガラスが押圧されながら冷却される。これにより、中空型12の環状部12aに対応する接触領域22と成形領域21の境界領域23が凸状に湾曲し、中空部12b中央に対応する成形領域21は平坦となったガラスリボンGが得られ、徐冷炉33から排出されたガラスリボンGを切断することで複数のガラス成形体25が得られる。 The pressing device 40 is disposed so as to face the top surface of the glass ribbon G in a region where the viscosity of the glass in the float bath 31 is in a range of 10 7 to 10 9 Pa · s. In the pressing device 40, at least two support shafts 42 extending from the side wall 31a of the float bath 31 are rotatably arranged at a predetermined interval on the upstream side and the downstream side. A plurality of pressing dies 45 in which a plurality of hollow portions 44 formed by lattice-like contact portions are arranged in the width direction and the conveyance direction are provided on the wound endless belt 43. In the pressing device 40 configured in this way, the endless belt 43 is rotated by the rotation of the two support shafts 42, the pressing mold 45 presses the molten glass with a predetermined pressing force, and the molten glass is conveyed. At the same time, when the pressing mold 45 moves, the molten glass is cooled while being pressed. Thereby, the contact region 22 corresponding to the annular portion 12a of the hollow mold 12 and the boundary region 23 between the forming regions 21 are curved in a convex shape, and the forming region 21 corresponding to the center of the hollow portion 12b has a flat glass ribbon G. A plurality of glass molded bodies 25 are obtained by cutting the glass ribbon G obtained and discharged from the slow cooling furnace 33.
 このように、オンライン上でガラス成形体25を成形することで、一度冷却したガラスを再加熱する必要はなく、生産工程を大幅に簡略化することができる。また、製品となる成形領域21及び境界領域23が、接触領域22よりも上方に位置するので、ガラスリボンGを搬送する搬送ローラ34が成形領域21及び境界領域23に接触することはなく、搬送ローラ34を安価に構成することができ、ロールの代わりにネット状の搬送部材を用いることもできる。 Thus, by forming the glass molded body 25 online, it is not necessary to reheat the glass once cooled, and the production process can be greatly simplified. Further, since the molding region 21 and the boundary region 23 that are products are located above the contact region 22, the transport roller 34 that transports the glass ribbon G does not contact the molding region 21 and the boundary region 23, and transports the product. The roller 34 can be configured at a low cost, and a net-shaped conveying member can be used instead of the roll.
 以下、本発明の実施例について説明する。
 先ず、縦:約30mm、横:約60mm、板厚:約0.7mmのソーダライムガラスを準備し、溶融錫が湛えられた溶融金属浴内の溶融錫上に配置した。このときの溶融金属浴内温度は約800℃であった。
Examples of the present invention will be described below.
First, soda lime glass having a length of about 30 mm, a width of about 60 mm, and a plate thickness of about 0.7 mm was prepared and placed on the molten tin in a molten metal bath in which molten tin was prepared. The temperature in the molten metal bath at this time was about 800 ° C.
 中空型として、図3に示す円筒形状のカーボン製の中空型を準備した。この中空型は、内径:約40mm、外径:約50mm、重さ:約22gであった。 As the hollow mold, a cylindrical hollow mold made of carbon shown in FIG. 3 was prepared. This hollow mold had an inner diameter of about 40 mm, an outer diameter of about 50 mm, and a weight of about 22 g.
 そして、窒素雰囲気下で、この中空型を溶融錫上に配置したソーダライムガラスに押圧して、約20℃/minの冷却速度で約600℃まで冷却し、約600℃になったときに、中空型及びソーダライムガラスを取り出した。 Then, in a nitrogen atmosphere, this hollow mold is pressed against soda lime glass placed on molten tin, cooled to about 600 ° C. at a cooling rate of about 20 ° C./min, and when it reaches about 600 ° C., The hollow mold and soda lime glass were taken out.
 図6は、得られたガラス成形体の写真を示す図である。このように、ガラス成形体は、中空型の中空部に対応する成形領域を平坦に、接触領域と成形領域の境界領域を湾曲した形状に成形することができ、これらの成形領域及び境界領域を中空型に接触させずに形成することができた。 FIG. 6 is a view showing a photograph of the obtained glass molded body. As described above, the glass molded body can be formed into a shape in which the forming region corresponding to the hollow portion of the hollow mold is flat and the boundary region between the contact region and the forming region is curved, and the forming region and the boundary region can be formed. It could be formed without contacting the hollow mold.
 以上、説明したように、本実施形態のガラス成形体の製造方法によれば、溶融金属上に浮かせた溶融ガラス20に対し、該溶融ガラス20に接触する環状部12aに囲まれた中空部12bを有する中空型12を押し付け、該溶融ガラス20を冷却することでガラス成形体25が得られるので、ガラス成形体25となる該溶融ガラス20のボトム面は溶融金属11に接し、トップ面は中空型12の中空部12bに対応して成形雰囲気にさらされており、製品としての使用部分である成形領域21及び境界領域23は両面ともに中空型12と接触しない。そのため、上型と下型の表面形状に影響されず平滑な表面形状を有するガラス成形体25を得ることができる。また、上型と下型のメンテナンスも不要であり、プレス成形後のガラス成形体25の表面処理を省略することもでき、生産性が高く、製造コストを低減させることができる。 As described above, according to the method for producing a glass molded body of the present embodiment, the hollow portion 12b surrounded by the annular portion 12a contacting the molten glass 20 with respect to the molten glass 20 floated on the molten metal. Since the glass mold 25 is obtained by pressing the hollow mold 12 having a temperature and cooling the molten glass 20, the bottom surface of the molten glass 20 to be the glass mold 25 is in contact with the molten metal 11, and the top surface is hollow. The mold 12 is exposed to a molding atmosphere corresponding to the hollow portion 12 b of the mold 12, and the molding area 21 and the boundary area 23 that are used parts of the product do not contact the hollow mold 12 on both sides. Therefore, the glass molded body 25 having a smooth surface shape can be obtained without being affected by the surface shapes of the upper die and the lower die. Further, maintenance of the upper mold and the lower mold is unnecessary, and the surface treatment of the glass molded body 25 after press molding can be omitted, so that the productivity is high and the manufacturing cost can be reduced.
 また、溶融ガラス20のガラスの粘度が10~10Pa・sである範囲内において、中空型12を溶融ガラスに押し付けることにより、中空型12の中空部12b中央に対応する部分を平坦としつつ、中空部外縁部分に所望の湾曲を有する曲面ガラスを形成することができる。 In addition, by pressing the hollow mold 12 against the molten glass within the range where the glass viscosity of the molten glass 20 is 10 7 to 10 9 Pa · s, the portion corresponding to the center of the hollow portion 12b of the hollow mold 12 is flattened. Meanwhile, a curved glass having a desired curvature can be formed at the outer edge of the hollow portion.
 また、中空型の自重、若しくは該自重に加えて押付力を付与することで、ガラス成形体の形状を調整することができる。 Also, the shape of the glass molded body can be adjusted by applying a hollow self weight or a pressing force in addition to the self weight.
 なお、本発明は上述した実施形態に何ら限定されるものではなく、その要旨を逸脱しない範囲において種々の形態で実施し得るものである。 The present invention is not limited to the embodiment described above, and can be implemented in various forms without departing from the scope of the invention.
 例えば、上記実施形態では、型として中空型を例示したが、溶融ガラスに接触する接触部に囲まれた非接触部を有する型であればこれに限定されるものではない。例えば、図7に示すように、一端側に開口部13aを有し他端側が閉塞された有底型13を用いてもよい。ここで、例示した有底型13は、一端側に略矩形状の開口部13aを有し、他端側が底面13bで閉塞されており、開口部13aを区画形成する側壁13cの開口部13a側端部が溶融ガラス20に押し付けられることで、ガラス成形体25となる該溶融ガラス20のボトム面は溶融金属11に接し、トップ面は有底型13の空間部に対応して成形雰囲気にさらされる。底面13bは溶融ガラス20と接触しない高さに設定される。なお、底面13bには、内部と外部を連通する連通孔が設けられていてもよい。 For example, in the above embodiment, a hollow mold is illustrated as a mold, but the mold is not limited to this as long as the mold has a non-contact portion surrounded by a contact portion that contacts the molten glass. For example, as shown in FIG. 7, a bottomed mold 13 having an opening 13a on one end side and closed on the other end side may be used. Here, the illustrated bottomed mold 13 has a substantially rectangular opening 13a on one end side, the other end side is closed by a bottom surface 13b, and the opening 13a side of the side wall 13c that defines and forms the opening 13a. When the end portion is pressed against the molten glass 20, the bottom surface of the molten glass 20 to be the glass molded body 25 is in contact with the molten metal 11, and the top surface is exposed to the molding atmosphere corresponding to the space portion of the bottomed mold 13. It is. The bottom surface 13 b is set to a height that does not contact the molten glass 20. The bottom surface 13b may be provided with a communication hole that communicates the inside and the outside.
 また、上記実施形態では、ガラスの製造方法を例示したが、これに限らず、樹脂、ゴム等の成形体を形成することができる。この場合、樹脂、ゴム等の溶融物質よりも比重の重い液状物質上に、液状物質よりも比重の軽いこれらの溶融物質を該液状物質上に浮かせ、該溶融物質に中空型を押し付け、冷却することで成形体を得ることができる。なお、本発明において液状物質および溶融物質はいずれも液体という点で共通し、比重の大小によって便宜的に液状物質と溶融物質の語を使い分けている。たとえば溶融スズと溶融ソーダライムシリカガラスが接触している場合、比重の大きな溶融スズは液状物質であり、比重の小さい溶融ソーダライムシリカガラスは溶融物質である。
 また、上記実施形態で製造されるガラス等の用途は、ディスプレイ装置のカバーガラスに限らず、自動車用フロントガラス等、あらゆる用途に適用することができる。
Moreover, in the said embodiment, although the manufacturing method of glass was illustrated, not only this but molded objects, such as resin and rubber | gum, can be formed. In this case, the molten material having a specific gravity higher than that of the molten material such as resin or rubber is floated on the liquid material, and the hollow mold is pressed against the molten material to be cooled. Thus, a molded body can be obtained. In the present invention, both the liquid substance and the molten substance are common in that they are liquids, and the terms liquid substance and molten substance are appropriately used depending on the specific gravity. For example, when molten tin and molten soda lime silica glass are in contact, molten tin with a large specific gravity is a liquid material, and molten soda lime silica glass with a small specific gravity is a molten material.
Moreover, the uses such as the glass manufactured in the above embodiment are not limited to the cover glass of the display device, but can be applied to all uses such as an automobile windshield.
 本出願は、2013年1月17日出願の日本特許出願2013-006504に基づくものであり、その内容はここに参照として取り込まれる。 This application is based on Japanese Patent Application No. 2013-006504 filed on January 17, 2013, the contents of which are incorporated herein by reference.
11 溶融金属
12 中空型(型)
12b 中空部
13 有底型(型)
13a 開口部
13b 底面
13c 側壁
20 ガラス(溶融ガラス)
25 ガラス成形体
G  ガラスリボン
11 Molten metal 12 Hollow mold
12b Hollow part 13 Bottomed type (type)
13a Opening 13b Bottom 13c Side wall 20 Glass (molten glass)
25 Glass molding G Glass ribbon

Claims (10)

  1.  液状物質よりも比重の軽い溶融物質を該液状物質上に浮かせ、該溶融物質に接触する接触部に囲まれた非接触部を有する型を前記溶融物質に押し付け、前記溶融物質を冷却することで成形体を得ることを特徴とする成形体の製造方法。 A floating substance having a specific gravity lower than that of the liquid substance is floated on the liquid substance, a mold having a non-contact portion surrounded by a contact portion that contacts the molten substance is pressed against the molten substance, and the molten substance is cooled. A method for producing a molded body, comprising obtaining a molded body.
  2.  溶融金属上に浮かせた溶融ガラスに対し、該溶融ガラスに接触する接触部に囲まれた非接触部を有する型を前記溶融ガラスに押し付け、前記溶融ガラスを冷却することでガラス成形体を得ることを特徴とするガラス成形体の製造方法。 A glass molded body is obtained by pressing a mold having a non-contact part surrounded by a contact part in contact with the molten glass against the molten glass floated on the molten metal and cooling the molten glass. A method for producing a glass molded body characterized by the above.
  3.  溶融金属上に浮かせた溶融ガラスに対し、該溶融ガラスに接触する接触部に囲まれた中空部を有する型を前記溶融ガラスに押し付け、前記溶融ガラスを冷却することでガラス成形体を得ることを特徴とするガラス成形体の製造方法。 For a molten glass floated on a molten metal, a mold having a hollow portion surrounded by a contact portion that contacts the molten glass is pressed against the molten glass, and the molten glass is cooled to obtain a glass molded body. The manufacturing method of the glass forming body characterized.
  4.  溶融金属上に浮かせた溶融ガラスに対し、側壁に囲繞された開口部を一端側に有し他端側が閉塞された型を前記側壁が前記溶融ガラスと接するように前記溶融ガラスに押し付け、前記溶融ガラスを冷却することでガラス成形体を得ることを特徴とするガラス成形体の製造方法。 The molten glass floated on the molten metal is pressed against the molten glass so that the side wall is in contact with the molten glass with a mold having an opening surrounded by the side wall at one end and closed at the other end. A method for producing a glass molded body, comprising obtaining a glass molded body by cooling glass.
  5.  ガラスの粘度が10~10Pa・sである範囲内において、前記型を前記溶融ガラスに押し付けることを特徴とする請求項2~4のいずれか1項に記載のガラス成形体の製造方法。 The method for producing a glass molded body according to any one of claims 2 to 4, wherein the mold is pressed against the molten glass within a range where the viscosity of the glass is 10 7 to 10 9 Pa · s. .
  6.  前記型の自重によって前記型を前記溶融ガラスに押し付けるか、若しくは、該自重に加えて押付力を付与することで前記型を前記溶融ガラスに押し付けることを特徴とする請求項2~5のいずれか1項に記載のガラス成形体の製造方法。 6. The mold according to claim 2, wherein the mold is pressed against the molten glass by the weight of the mold, or the mold is pressed against the molten glass by applying a pressing force in addition to the weight of the mold. The manufacturing method of the glass molded object of 1 item | term.
  7.  溶融ガラスを溶融金属上に浮かせてガラスリボンを成形する成形工程と、前記ガラスリボンを徐冷する徐冷工程と、を有するガラス成形体の製造方法であって、
     前記成形工程において、該溶融ガラスに接触する接触部に囲まれた中空部を有する型を前記溶融ガラスに押し付けることにより、成形されたガラスリボンを得ることを特徴とするガラス成形体の製造方法。
    A method for producing a glass molded body comprising: a molding step of floating a molten glass on a molten metal to form a glass ribbon; and a slow cooling step of gradually cooling the glass ribbon,
    A method for producing a glass molded body, characterized in that, in the molding step, a molded glass ribbon is obtained by pressing a mold having a hollow portion surrounded by a contact portion in contact with the molten glass against the molten glass.
  8.  溶融ガラスを溶融金属上に浮かせてガラスリボンを成形する成形工程と、前記ガラスリボンを徐冷する徐冷工程と、を有するガラス成形体の製造方法であって、
     前記成形工程において、側壁に囲繞された開口部を一端側に有し他端側が閉塞された型を前記側壁が前記溶融ガラスと接するように前記溶融ガラスに押し付けることにより、成形されたガラスリボンを得ることを特徴とするガラス成形体の製造方法。
    A method for producing a glass molded body comprising: a molding step of floating a molten glass on a molten metal to form a glass ribbon; and a slow cooling step of gradually cooling the glass ribbon,
    In the molding step, a molded glass ribbon is formed by pressing a mold having an opening surrounded by a side wall on one end side and closing the other end side against the molten glass so that the side wall is in contact with the molten glass. A method for producing a glass molded body, characterized by being obtained.
  9.  ガラスの粘度が10~10Pa・sである範囲内において、前記型を前記溶融ガラスに押し付けることを特徴とする請求項7又は8に記載のガラス成形体の製造方法。 The method for producing a glass molded body according to claim 7 or 8, wherein the mold is pressed against the molten glass within a range where the viscosity of the glass is 10 7 to 10 9 Pa · s.
  10.  前記型の自重によって前記型を前記溶融ガラスに押し付けるか、若しくは、該自重に加えて押付力を付与することで前記型を前記溶融ガラスに押し付けることを特徴とする請求項7~9のいずれか1項に記載のガラス成形体の製造方法。 10. The mold according to claim 7, wherein the mold is pressed against the molten glass by the weight of the mold, or the mold is pressed against the molten glass by applying a pressing force in addition to the weight of the mold. The manufacturing method of the glass molded object of 1 item | term.
PCT/JP2014/050469 2013-01-17 2014-01-14 Method for manufacturing molded body and method for manufacturing glass molded body WO2014112485A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014557463A JP6075392B2 (en) 2013-01-17 2014-01-14 Method for producing molded body and method for producing glass molded body

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-006504 2013-01-17
JP2013006504 2013-01-17

Publications (1)

Publication Number Publication Date
WO2014112485A1 true WO2014112485A1 (en) 2014-07-24

Family

ID=51209575

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/050469 WO2014112485A1 (en) 2013-01-17 2014-01-14 Method for manufacturing molded body and method for manufacturing glass molded body

Country Status (3)

Country Link
JP (1) JP6075392B2 (en)
TW (1) TW201437157A (en)
WO (1) WO2014112485A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3663234B1 (en) * 2017-08-03 2023-12-06 AGC Inc. Container for holding liquid and methods therewith

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5899127A (en) * 1981-12-09 1983-06-13 Nippon Sheet Glass Co Ltd Molding method of glass plate
JPS58223621A (en) * 1982-06-17 1983-12-26 Nippon Sheet Glass Co Ltd Method for forming glass plate on high-temperature liquid bath
JPS63211363A (en) * 1987-02-23 1988-09-02 難波プレス工業株式会社 Method for molding thermoplastic cloth
JPH04506053A (en) * 1989-05-24 1992-10-22 ジャガー カーズ リミテッド Forming of thermoplastic sheet materials

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5899127A (en) * 1981-12-09 1983-06-13 Nippon Sheet Glass Co Ltd Molding method of glass plate
JPS58223621A (en) * 1982-06-17 1983-12-26 Nippon Sheet Glass Co Ltd Method for forming glass plate on high-temperature liquid bath
JPS63211363A (en) * 1987-02-23 1988-09-02 難波プレス工業株式会社 Method for molding thermoplastic cloth
JPH04506053A (en) * 1989-05-24 1992-10-22 ジャガー カーズ リミテッド Forming of thermoplastic sheet materials

Also Published As

Publication number Publication date
TW201437157A (en) 2014-10-01
JP6075392B2 (en) 2017-02-08
JPWO2014112485A1 (en) 2017-01-19

Similar Documents

Publication Publication Date Title
US11084751B2 (en) Shaped glass articles and methods for forming the same
CN115028356B (en) High strength ultra-thin glass and method for manufacturing same
TWI725945B (en) Glass article with determined stress profile
CN112135803A (en) Ultra-thin glass with high impact resistance
US20170217815A1 (en) Method and apparatus for reforming ultra-thin glass sheets
KR101833809B1 (en) Method for producing glass plate
JP7102984B2 (en) Manufacturing method of 3D cover glass
TWI605022B (en) Glass substrate for display
KR20110106321A (en) Method and apparatus for forming shaped articles from sheet material
WO2010065349A1 (en) Method and apparatus for forming and cutting a shaped article from a sheet of material
CN110563318A (en) Strip glass feeding and mobile phone cover plate glass online 3D compression molding method and device
CN109422448B (en) Method for manufacturing 3D protective glass
JP6075392B2 (en) Method for producing molded body and method for producing glass molded body
TWI782151B (en) Manufacturing method and manufacturing apparatus of glass article
CN103003208A (en) Apparatus and method for continuous shaping of a glass ribbon
TW201806884A (en) Glass lamination system and method
WO2011136149A1 (en) Production method for glass plate and glass plate
CN111328322B (en) Method for manufacturing curved substrate and mold for forming curved substrate
WO2023181719A1 (en) Method for producing glass sheet
JP2008297187A (en) Molding material of optical device, and its forming method
KR960000794A (en) Method for producing a quartz glass article

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14740464

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014557463

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14740464

Country of ref document: EP

Kind code of ref document: A1